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Introductory Note 

This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophic Theories 
and their Applications, published between 2013-2021 in the international book series about neutrosophic sets and 
systems by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 
countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, 
Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, 
Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk 
Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, 
Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, 
Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham 
Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, 
M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi
Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov,
Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N.
Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-
Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz,
Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali,
Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega,
P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu
Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed
Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi
Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M.
Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.

Keywords 

Neutrosophy; Neutrosophic Logic; Neutrosophic Sets; Neutrosophic Crisp Set; Neutrosophic Topology; Neutrosophic 
Crisp Topology; Interval-Valued Neutrosophic Set; Interval-Valued Neutrosophic Subring; Interval-Valued 
Neutrosophic Normal Subring; Interval-Valued Neutrosophic Hypersoft Set; Neutrosophic Multiple Regression; 
Neutrosophic Regression; Neutrosophic Correlation; Neutrosophic Implication; Single Valued Neutrosophic 
Numbers; Neutrosophic Uninorm; Neutrosophic Implicatory; Neutrosophic Components; Neutrosophic Offset 
Components; Neutrosophic Distance; Similarity Measure; Bipolar Neutrosophic Sets; Neutrosophic Soft Rough Set; 
Single-Valued Neutrosophic Triplet Numbers; Single-Valued Neutrosophic Score Function; Single-Valued 
Neutrosophic Accuracy Function; Single-Valued Neutrosophic Certainty Function; Entropy Measure; Medical 
Diagnosis; Autoimmune Disease; Fuzzy Cognitive Maps; Neutrosophic Hypergraphs; Optimal Decision Making; 
Neutrosophic Cubic Translation; Neutrosophic Cubic Multiplication; Neutrosophic Cubic BF Ideal; Neutrosophic 
Cubic BF Subalgebra; Neutrosophic Cubic Magnified Translation; Quadratic Residues; Quadratic Nonresidues; 
Neutrosophic Quadratic Residues; Neutrosophic Quadratic Nonresidues; Neutrosophic Quadratic Residue Graph; 
Neutrosophic Quadratic Nonresidue Graph; Fuzzy Neutrosophic Soft Mapping; Coincidence Point; Fixed Point; 
Centroid Points; Neutrosophic Metric Space; Banach Contraction; Edelstein Contraction; Trapezoidal Fuzzy 
Neutrosophic Numbers; TriVariate Truth-Value; MultiVariate Truth-Value; UniVariate Truth-Value; Automata 
Theory; Box Function; Sociogram; Neutrosophic Sociogram; Neutrosociology; Group Analysis; Sociometry 
Analysis; Communication; Information; Extensics. 
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Florentin Smarandache is an emeritus prof. dr. of mathematics 
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The Guangdong University of Technology, Guangzhou, China. 
He is the founder of neutrosophy (generalization of dialectics), 
neutrosophic set, logic, probability and statistics since 1995 and 
has published hundreds of papers and books on neutrosophic 
physics, superluminal and instantaneous physics, unmatter, 
quantum paradoxes, absolute theory of relativity, redshift and 
blueshift due to the medium gradient and refraction index besides the Doppler effect, paradoxism, 
outerart, neutrosophy as a new branch of philosophy, Law of Included Multiple-Middle, 
multispace and multistructure, hypersoft set, IndetermSoft Set and IndetermHyperSoft Set, 
SuperHyperGraph, SuperHyperTopology, SuperHyperAlgebra, Neutrosophic 
SuperHyperAlgebra, degree of dependence and independence between neutrosophic components, 
refined neutrosophic set, neutrosophic over-under-off-set, plithogenic set / logic / probability / 
statistics, neutrosophic triplet and duplet structures, quadruple neutrosophic structures, extension 
of algebraic structures to NeutroAlgebra and AntiAlgebra, NeutroGeometry & AntiGeometry, 
Dezert-Smarandache Theory and so on to many peer-reviewed international journals and many 
books and he presented papers and plenary lectures to many international conferences around the 
world.  
In addition, he published many books of poetry, dramas, children’ stories, translations, essays, a 
novel, folklore collections, traveling memories, and art albums 
[ http://fs.unm.edu/FlorentinSmarandache.htm ]. 
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Neutrosophic Measure and Neutrosophic Integral  
Florentin Smarandache 

Abstract. Since the world is full of indeterminacy, the 
neutrosophics found their place into contemporary 
research. We now introduce for the first time the notions 
of neutrosophic measure and neutrosophic integral. 
Neutrosophic Science means development and 
applications of neutrosophic logic/set/measure/integral/ 
probability etc. and their applications in any field. It is 
possible to define the neutrosophic measure and 
consequently the neutrosophic integral and neutrosophic 
probability in many ways, because there are various types 

of indeterminacies, depending on the problem we need to 
solve. Indeterminacy is different from randomness. 
Indeterminacy can be caused by physical space materials 
and type of construction, by items involved in the space, 
or by other factors. Neutrosophic measure is a 
generalization of the classical measure for the case when 
the space contains some indeterminacy. Neutrosophic 
Integral is defined on neutrosophic measure. Simple 
examples of neutrosophic integrals are given. 

Keywords: neutrosophy, neutrosophic measure, neutrosophic integral, indeterminacy, randomness, probability. 

1 Introduction to Neutrosophic Measure 

1.1 Introduction 
Let <A> be an item. <A> can be a notion, an attribute, 

an idea, a proposition, a theorem, a theory, etc. 
And let <antiA> be the opposite of <A>; while 

<neutA> be neither <A> nor <antiA> but the neutral (or 
indeterminacy, unknown) related to <A>. 

For example, if <A> = victory, then <antiA> = defeat, 
while <neutA> = tie game. 

If <A> is the degree of truth value of a proposition, 
then <antiA> is the degree of falsehood of the proposition, 
while <neutA> is the degree of indeterminacy (i.e. neither 
true nor false) of the proposition. 

Also, if <A> = voting for a candidate, <antiA> = voting 
against that candidate, while <neutA> = not voting at all, 
or casting a blank vote, or casting a black vote. In the case 
when <antiA> does not exist, we consider its measure be 
null {m(antiA)=0}. And similarly when <neutA> does not 
exist, its measure is null { m(neutA) = 0}. 

1.2 Definition of Neutrosophic Measure 
We introduce for the first time the scientific notion of 

neutrosophic measure. 
Let X  be a neutrosophic space, and Σ  a   

σ -neutrosophic algebra over X . A neutrosophic
measure ν  is defined by for neutrosophic set A∈ Σ  by

3: X Rν → ,

( ) ( )A = m(A), m(neutA),m(antiA)ν ,  (1) 

with antiA = the opposite of A, and neutA = the neutral 
(indeterminacy) neither A nor anti A (as defined above); 

for any A X⊆  and A∈ Σ , 
m(A) means measure of the determinate part of A; 
m(neutA) means measure of indeterminate part of A; 
and m(antiA) means measure of the determinate part of 

antiA; 
where ν  is a function that satisfies the following two 

properties: 
a) Null empty set: ( ) ( )0 0 0, ,ν Φ = .  

b) Countable additivity (or σ -additivity): For all
countable collections { }n n L

A
∈

  of disjoint neutrosophic 

sets in Σ , one has: 

 1n n n n
n L n L n Ln L

A m( A ), m( neutA ), m( antiA ) ( n )m( X )ν
∈ ∈ ∈∈

   = − −   
  
  

where X is the whole neutrosophic space, 
and

1n n nn L
n L n L

m( antiA ) ( n )m( X ) m( X ) m( A ) m( antiA ).
∈

∈ ∈

− − = − = ∩   

1.3 Neutrosophic Measure Space 

A neutrosophic measure space is a triplet ( )X , ,νΣ .

1.4 Normalized Neutrosophic Measure 
A neutrosophic measure is called normalized if 

( ) ( )1 2 3X ( m( X ),m( neutX ),m( antiX )) x ,x ,xν = = ,

with 
1 2 3 1x x x+ + = ,  

and 
1 2 30 0 0x ,x ,x≥ ≥ ≥ .  (3) 

Where, of course, X is the whole neutrosophic measure 
space. 
1.5 Finite Neutrosophic Measure Space 

(2) 

4

4
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Let A X⊂ . We say that ( ) ( )1 2 3A a ,a ,aν =  is finite if all 

a1, a2, and a3  are finite real numbers. 
A neutrosophic measure space ( )X , ,νΣ  is called finite 

if ( ) ( )X a ,b ,cν =  such that all a, b, and c are finite (rather 

than infinite). 

1.6 σ-Finite Neutrosophic Measure 
A neutrosophic measure is called  σ-finite if X can be 

decomposed into a countable union of neutrosophically 
measurable sets of fine neutrosophic measure. 

Analogously, a set A  in X is said to have a σ-finite 
neutrosophic measure if it is a countable union of sets with 
finite neutrosophic measure. 

1.7 Neutrosophic Axiom of Non-Negativity 
We say that the neutrosophic measure ν  satisfies the 

axiom of non-negativity, if:  
 A∀ ∈Σ ,

( ) ( )1 2 3 1 2 30 if 0 0, and 0A a ,a ,a a ,a aν = ≥ ≥ ≥ ≥ . (4)

While a neutrosophic measure ν , that satisfies only 
the null empty set and countable additivity axioms (hence 
not the non-negativity axiom), takes on at most one of the 
±∞  values. 

1.8 Measurable Neutrosophic Set and Measurable 
Neutrosophic Space 

The members of Σ  are called measurable neutrosophic 
sets, while ( )X ,Σ   is called a measurable neutrosophic 
space. 
1.9 Neutrosophic Measurable Function 

A function ( ) ( )X Yf : X , Y ,Σ → Σ , mapping two 

measurable neutrosophic spaces, is called neutrosophic 
measurable function if ( )1 Y XB , f B−∀ ∈Σ ∈Σ  (the

inverse image of a neutrosophic Y -measurable set is a 
neutrosophic X -measurable set). 

1.10 Neutrosophic Probability Measure 
As a particular case of neutrosophic measure ν  is th 

neutrosophic probability measure, i.e. a neutrosophic 
measure that measures probable/possible propositions        

( )0 3Xν− +≤ ≤ ,     (5)

where X is the whole neutrosophic probability sample
space.

We use nonstandard numbers, such 1+ for example, to 
denominate the absolute measure (measure in all possible 
worlds), and standard numbers such as 1 to denominate the 
relative measure (measure in at least one world). Etc. 

We denote the neutrosophic probability measure by 
NP  for a closer connection with the classical probability 
P . 

1.11 Neutrosophic Category Theory 

The neutrosophic measurable functions and their 
neutrosophic measurable spaces form a neutrosophic 
category, where the functions are arrows and the spaces 
objects. 

We introduce the neutrosophic category theory, which 
means the study of the neutrosophic structures and of the 
neutrosophic mappings that preserve these structures. 

The classical category theory was introduced about 
1940 by Eilenberg and Mac Lane. 

A neutrosophic category is formed by a class of 
neutrosophic objects X ,Y ,Z ,...  and a class of 

neutrosophic morphisms (arrows) , , ,...ν ξ ω  such that: 

a) If ( )Hom X ,Y  represent the neutrosophic

morphisms from X  to Y , then ( )Hom X ,Y and

( )Hom X ',Y '  are disjoint, except when X X '=  and

Y Y '= ; 
b) The composition of the neutrosophic morphisms

verify the axioms of 
i) Associativity: ( ) ( )ν ξ ω ν ξ ω=   

ii) Identity unit: for each neutrosophic object X
there exists a neutrosophic morphism denoted Xid , called 

neutrosophic identity of X  such that Xid ν ν=  and 

Xidξ ξ=  

  Fig. 2 

1.12 Properties of Neutrosophic Measure 
a) Monotonicity.

If 1A  and 2A  are neutrosophically measurable, with 

1 2A A⊆ , where 

( ) ( ) ( )( )1 1 1 1A m A ,m neutA ,m( antiA )ν = ,

and ( ) ( ) ( )( )2 2 2 2A m A ,m neutA ,m( antiA )ν = ,

then 

1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( )m A m A m neutA m neutA m antiA m antiA≤ ≤ ≥
  (6) 

Let ( ) ( )1 2 3X x ,x ,xν =  and ( ) ( )1 2 3Y y , y , yν = . We

say that ( ) ( )X Yν ν≤ , if 1 1x y≤ , 2 2x y≤ , and 
3 3x y≥ .  

b) Additivity.
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If
1 2A A = Φ , then ( ) ( ) ( )1 2 1 2A A A Aν ν ν= + ,    

(7)  
where we define 
( ) ( ) ( )1 1 1 2 2 2 1 2 1 2 3 3a ,b ,c a ,b ,c a a ,b b ,a b m( X )+ = + + + −  

(8) 
where X is the whole neutrosophic space, and 

3 3 1 2( ) ( ) ( ) ( ) ( )

( ).

a b m X m X m A m B m X a a

m antiA antiB

+ − = − − = − −

= ∩
(9) 

1.13 Neutrosophic Measure Continuous from 
Below or Above 

A neutrosophic measure ν  is continuous from below 

if, for 1 2A ,A ,...  neutrosophically measurable sets with 

1n nA A +⊆ for all n , the union of the sets nA  is

neutrosophically measurable, and 

( )
1

n n
n

n

A lim Aν ν
∞

→∞
=

  = 
 
                  (10) 

And a neutrosophic measure ν  is continuous from 

above if for 1 2A ,A ,...  neutrosophically measurable sets,

with 1n nA A +⊇  for all n , and at least one nA  has finite 

neutrosophic measure, the intersection of the sets nA  and 

neutrosophically measurable, and 

 ( )
1

n n
n

n

A lim Aν ν
∞

→∞
=

 
= 

 
 .        (11)            

1.14 Generalizations 
Neutrosophic measure is a generalization of the fuzzy 

measure, because when ( ) 0m neutA =  and m(antiA) is

ignored, we get  

( ) ( )( ) ( )0 0A m A , , m Aν = ≡      (12)

and the two fuzzy measure axioms are verified: 
a) If A = Φ , then ( ) ( )0 0 0 0A , ,ν = ≡
b) If A B⊆ , then ( ) ( )A Bν ν≤ . 

The neutrosophic measure is practically a triple
classical measure: a classical measure of the determinate 
part of a neutrosophic object, a classical part of the 
indeterminate part of the neutrosophic object, and another 
classical measure of the determinate part of the opposite 
neutrosophic object. Of course, if the indeterminate part 
does not exist (its measure is zero) and the measure of the 
opposite object is ignored, the neutrosophic measure is 
reduced to the classical measure. 

1.15 Examples 
Let’s see some examples of neutrosophic objects and 

neutrosophic measures. 
a) If a book of 100 sheets (covers included) has 3

missing sheets, then 

( ) ( )97 3 0book , ,ν =    (13)

where ν is the neutrosophic measure of the book 
number of pages. 

b) If a surface of 5 × 5 square meters has cracks of
0.1 × 0.2 square meters, then ( ) ( )24 98 0 02 0surface . , . ,ν = ,             

(14), where ν is the neutrosophic measure of the surface. 
c) If a die has two erased faces then

( ) ( )4 2 0die , ,ν = , (14)

where ν is the neutrosophic measure of the die’s 
number of correct faces. 

d) An approximate number N  can be interpreted as

a neutrosophic measure N d i= + , where d  is its

determinate part, and i  its indeterminate part. Its anti part 

is considered 0. 
For example if we don’t know exactly a quantity q ,

but only that it is between let’s say [ ]0 8 0 9q . , .∈ , then

0 8q . i= + , where 0.8 is the determinate part of    q , and

its indeterminate part [ ]0 0 1i , .∈ .

We get a negative neutrosophic measure if we 
approximate a quantity measured in an inverse direction on 
the x-axis to an equivalent positive quantity. 

For example, if [ ]6 4r ,∈ − − , then 6r i= − + , where  -6

is the determinate part of r, and [ ]0 2i ,∈  is its

indeterminate part. Its anti part is also 0. 
e) Let’s measure the truth-value of the proposition
G = “through a point exterior to a line one can draw

only one parallel to the given line”. 
The proposition is incomplete, since it does not specify 

the type of geometrical space it belongs to. In an Euclidean 
geometric space the proposition G is true; in a Riemannian 
geometric space the proposition G is false (since there is 
no parallel passing through an exterior point to a given 
line); in a Smarandache geometric space (constructed from 
mixed spaces, for example from a part of Euclidean 
subspace together with another part of Riemannian space) 
the proposition G is indeterminate (true and false in the 
same time). 

( ) (1,1,1)Gν = .     (15) 

f) In general, not well determined objects, notions,
ideas, etc. can become subject to the neutrosophic theory. 

2 Introduction to Neutrosophic Integral 
2.1 Definition of Neutrosophic Integral 

Using the neutrosophic measure, we can define a 
neutrosophic integral. 

The neutrosophic integral of a function f is written as: 

X
fdν   (16) 

where X is the a neutrosophic measure space, 
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and the integral is taken with respect to the 
neutrosophic measure ν .  

Indeterminacy related to integration can occur in 
multiple ways: with respect to value of the function to be 
integrated, or with respect to the lower or upper limit of 
integration, or with respect to the space and its measure. 

2.2 First Example of Neutrosophic Integral: 
Indeterminacy Related to Function’s Values 

Let  fN: [a, b]  R  (17)
where the neutrosophic function is defined as: 

fN (x) = g(x)+i(x)   (18)
with g(x) the determinate part of fN(x), and i(x) the 
indeterminate part of fN(x),where for all x in [a, b] one 
has: ( ) [0, ( )], ( ) 0i x h x h x∈ ≥ .                    (19) 

Therefore the values of the function fN(x) are 
approximate, i.e. ( ) [ ( ), ( ) ( )]Nf x g x g x h x∈ + .  (20) 

Similarly, the neutrosophic integral is an approxi-
mation: 

( ) ( ) ( )
b b b

N

a a a

f x d g x dx i x dxν = +    (21) 

1.10 Second Example of Neutrosophic Integral: 
Indeterminacy  Related to the Lower Limit 

Suppose we need to integrate the function 

f: X R      22) 

on the interval [a, b] from X, but we are unsure about the 

lower limit a.  Let’s suppose that the lower limit “a” has a 

determinant part “a1” and an indeterminate part ε, i.e. 

a = a1+ε    (23) 

where 

[0, 0.1]ε ∈ .   (24) 

Therefore 

1

1( ) i
b b

X

a a

fd f x dxν = −    (25) 

where the indeterminacy i1 belongs to the interval: 

1

1

0.1

1 [0, ( ) ]
a

a

i f x dx
+

∈  .      (26) 

Or, in a different way: 

1

2

0.1

( ) i
b b

X

a a

fd f x dxν
+

= +   (27)

where similarly the indeterminacy i2 belongs to the 
interval: 

1

1

0.1

2 [0, ( ) ]
a

a

i f x dx
+

∈ 
.     (28) 
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Soft Neutrosophic Group 
Muhammad Shabir, Mumtaz Ali, Munazza Naz, Florentin Smarandache

Abstract.In this paper we extend the neutrosophic group 
and subgroup to soft neutrosophic group and soft neutro-

sophic subgroup respectively. Properties and theorems 
related to them are proved and many examples are given. 

Keywords:Neutrosophic group,neutrosophic subgroup,soft set,soft subset,soft group,soft subgroup,soft neutrosophic group, soft 
,neutrosophic subgroup.

1 Introduction
The concept of neutrosophic set was first introduced by 

Smarandache [13,16] which is a generalization of the clas-
sical sets, fuzzy set [18], intuitionistic fuzzy set [4] and in-
terval valued fuzzy set [7]. Soft Set theory was initiated by 
Molodstov as a new mathematical tool which is free from 
the problems of parameterization inadequacy. In his paper 
[11], he presented the fundamental results of new theory 
and successfully applied it into several directions such as 
smoothness of functions, game theory, operations research, 
Riemann-integration, Perron integration, theory of proba-
bility. Later on many researchers followed him and worked 
on soft set theory as well as applications of soft sets in de-
cision making problems and artificial intelligence. Now, 
this idea has a wide range of research in many fields, such 
as databases [5, 6], medical diagnosis problem [7], deci-
sion making problem [8], topology [9], algebra and so 
on.Maji gave the concept of neutrosophic soft set in [8] 
and later on Broumi and Smarandache defined intuition-
istic neutrosophic soft set. We have worked with neutro-
sophic soft set and its applications in group theory. 

2 Preliminaries

2.1 Nuetrosophic Groups

Definition 1 [14]  Let  ( ),G *   be any group and let

G Iá È ñ { }: ,a bI a b G= + Î  . Then neutrosophic

group is generated by  I   and  G   under  *   denoted by  

( ) { },N G G I= á È ñ *  .  I   is called the neutrosoph-

ic element with the property  2I I=  . For an integer  n 
, n I+   and  nI   are neutrosophic elements and  

0. 0I =  . 
1
I

-
 , the inverse of  I   is not defined and hence does not

exist. 

Theorem 1 [ ]14   Let  ( )N G   be a neutrosophic

group. Then 

1) ( )N G   in general is not a group;

2) ( )N G   always contains a group.

Definition 2 A pseudo neutrosophic group is defined as a 
neutrosophic group, which does not contain a proper sub-
set which is a group. 

Definition 3 Let  ( )N G   be a neutrosophic group.

Then, 

1) A proper subset  ( )N H   of  ( )N G   is said to be a

neutrosophic subgroup of  ( )N G   if  ( )N H   is a

neutrosophic group, that is,  ( )N H   contains a

proper subset which is a group.

2) ( )N H   is said to be a pseudo neutrosophic sub-

group if it does not contain a proper subset which is a
group.

Example 1 ( ( ), )N Z +  ,  ( ( ), )N Q + ( ( ), )N R +   and  

( ( ), )N C +   are neutrosophic groups of integer, rational, 

real and complex numbers, respectively. 

Example 2 Let  { }7 ,1, 2, ..., 6Z o=   be a group under

addition modulo  7  .  

( ) { }7 , ' ' mod 7N G Z I ulo= á È ñ +  is a neutro-

sophic group which is in fact a group. For 

( ) { }7: ,N G a bI a b Z= + Î   is a group under ` 

+ ' modulo  7  .

Definition 4 Let  ( )N G   be a finite neutrosophic group.

Let  P   be a proper subset of  ( )N G   which under the
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operations of  ( )N G   is a neutrosophic group. If

( ) ( )( )/o P o N G   then we call  P   to be a Lagrange

neutrosophic subgroup.

Definition 5 ( )N G   is called weakly Lagrange neutro-

sophic group if  ( )N G   has at least one Lagrange neu-

trosophic subgroup. 

Definition 6 ( )N G   is called Lagrange free neutrosoph-

ic group if  ( )N G   has no Lagrange neutrosophic sub-

group. 

Definition7 Let  ( )N G   be a finite neutrosophic group.

Suppose  L   is a pseudo neutrosophic subgroup of  

( )N G   and if  ( ) ( )( )/o L o N G   then we call  L

to be a pseudo Lagrange neutrosophic subgroup. 

Definition 8 If  ( )N G   has at least one pseudo La-

grange neutrosophic subgroup then we call  ( )N G   to

be a weakly pseudo Lagrange neutrosophic group. 

Definition 9 If  ( )N G   has no pseudo Lagrange neutro-

sophic subgroup then we call  ( )N G   to be pseudo La-

grange free neutrosophic group. 

Definition 10 Let  ( )N G   be a neutrosophic group. We

say a neutrosophic subgroup  H   of  ( )N G   is normal

if we can find  x   and  y   in  ( )N G   such that

H xHy=   for all  ( ),x y N GÎ   (Note  x y=   or

1y x-=   can also occur). 

Definition 11 A neutrosophic group  ( )N G   which has

no nontrivial neutrosophic normal subgroup is called a 
simple neutrosophic group. 

Definition 12 Let  ( )N G   be a neutrosophic group. A

proper pseudo neutrosophic subgroup  P   of  ( )N G   is

said to be normal if we have  P xPy=   for all  

( ),x y N GÎ  . A neutrosophic group is said to be

pseudo simple neutrosophic group if  ( )N G   has no

nontrivial pseudo normal subgroups. 

2.2 Soft Sets

Throughout this subsection  U   refers to an initial 

universe,  E   is a set of parameters,  ( )P U   is the pow-

er set of  U  , and  A EÌ  . Molodtsov [12] defined the 
soft set in the following manner: 

Definition13 [ ]11  A pair  ( ),F A   is called a soft set

over  U   where  F   is a mapping given by  F :

( )A P U  .

In other words, a soft set over  U   is a parameterized fami-

ly of subsets of the universe  U  . For  e AÎ  ,  ( )F e

may be considered as the set of  e  -elements of the soft set 

( ),F A  , or as the set of e-approximate elements of the

soft set. 
Example 3 Suppose that  U   is the set of shops.  E   is 
the set of parameters and each parameter is a word or sen-
tence. Let  

high rent,normal rent,

in  good condition ,in bad condition
E

ì üï ïï ï= í ýï ïï ïî þ
 . 

Let us consider a soft set  ( ),F A   which describes the

attractiveness of shops that Mr. Z   is taking on rent. Sup-
pose that there are five houses in the universe  

{ }1 2 3 4 5, , , ,U h h h h h=  under consideration, and that  

{ }1 2 3, ,A e e e=  be the set of parameters where 

e1   stands for the parameter 'high rent,

e2   stands for the parameter 'normal rent,

e3   stands for the parameter 'in good condition.
Suppose that 

1 1 4( ) { , }F e h h=  , 

2 2 5( ) { , }F e h h=  , 

3 3 4 5( ) { , , }F e h h h=  . 

The soft set  ( ),F A   is an approximated family

{ ( ), 1, 2, 3}iF e i =   of subsets of the 

set  U   which gives us a collection of approximate de-
scription of an object. Thus, we have the soft set (F, A) as 
a collection of approximations as below: 

( , ) {F A =  high rent  1 4{ , },h h=  normal rent  

2 5{ , },h h=  in good condition  { }3 4 5, , }h h h=  . 

Definition 14 [ ]3  . For two soft sets  ( ),F A   and
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( ),H B   over  U  ,  ( ),F A   is called a soft subset of

( ),H B   if

1) A BÍ   and

2) ( ) ( )F e H eÍ , for all  e AÎ  .

This relationship is denoted by  ( ) ( ), ,F A H BÌ  .

Similarly  ( ),F A   is called a soft superset of  ( ),H B

if  ( ),H B   is a soft subset of  ( ),F A   which is denot-

ed by  ( ) ( ), ,F A H BÉ  .

Definition 15 [ ]3  . Two soft sets  ( ),F A   and

( ),H B   over  U   are called soft equal if ( ),F A   is a

soft subset of  ( ),H B   and  ( ),H B   is a soft subset of

( ),F A  .

Definition 16  Let [ ]3  ( ),F A   and  ( ),G B   be two

soft sets over a common universe  U   such that  
A B fÇ ¹  . Then their restricted intersection is denot-

ed by ( , ) ( , ) ( , )RF A G B H CÇ =   where  ( ),H C

is defined as  ( ) ( ) ( )H c F c G c= Ç   for all 

c C A B= Ç  .

Definition 17[ ]3   The extended intersection of two soft 

sets  ( ),F A   and  ( ),G B   over a common universe  U

is the soft set  ( ),H C  , where  C A B= È  , and for

all  e CÎ  ,  ( )H e   is defined as

( ) if 

( ) ( ) if 

( ) ( ) if .

F e e A B

H e G e e B A

F e G e e A B

ìï -ïïïï= -íïïï Ç Çïïî





We write  ( , ) ( , ) ( , )F A G B H CeÇ =  . 

Definition 18 [ ]3 The restricted union of two soft sets  

( ),F A   and  ( ),G B   over a common universe  U   is

the soft set  ( ),H C  , where  C A B= È  , and for all

e CÎ  ,  ( )H e   is defined as the soft set  ( ),H C =

( ) ( ), ,RF A G BÈ   where  C A B= Ç   and  

( ) ( ) ( )H c F c G c= È   for all  c CÎ  . 

Definition 19[ ]3  The extended union of two soft sets  

( ),F A   and  ( ),G B   over a common universe  U   is

the soft set  ( ),H C  , where  C A B= È  , and for all

e CÎ  ,  ( )H e   is defined as

( ) if 

( ) ( ) if 

( ) ( ) if .

F e e A B

H e G e e B A

F e G e e A B

ìï -ïïïï= -íïïï È Çïïî





We write  ( , ) ( , ) ( , )F A G B H CeÈ =  . 

2.3 Soft Groups

Definition 20[ ]2  Let  ( ),F A   be a soft set over  G  .

Then  ( ),F A   is said to be a soft group over  G   if and

only if  ( )F x G   forall  x AÎ  .

Example 4 Suppose that  

3 { ,(12),(13),(23),(123),(132)}G A S e= = =  

. Then  ( ),F A   is a soft group over  3S   where  

( ) { }
( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( ) ( ) ( ) ( ){ }

,

12 , 12 ,

13 , 13 ,

23 , 23 ,

123 132 , 123 , 132 .

F e e

F e

F e

F e

F F e

=

=

=

=

= =

Definition 21[ ]2  Let  ( ),F A   be a soft group over  G  .

Then 

1) ( ),F A   is said to be an identity soft group over  G

if  ( ) { }F x e=   for all  x AÎ  , where  e   is the

identity element of G and

2) ( ),F A   is said to be an absolute soft group if

( )F x G=   for all  x AÎ  .

Definition 22 The restricted product  ( ),H C   of two soft

groups  ( ),F A   and  ( ),K B   over  G   is denoted by

the soft set  ( ) ( ) ( ), , ,H C F A K B


=


  where

C A B= Ç   and  H   is a set valued function from  C
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to  ( )P G   and is defined as  ( ) ( ) ( )H c F c K c=   for

all  c CÎ  . The soft set  ( ),H C   is called the restrict-

ed soft product of  ( ),F A   and  ( ),K B   over  G . 

3 Soft Neutrosophic Group

Definition 23 Let  ( )N G   be a neutrosophic group and

( ),F A   be soft set over  ( )N G  .Then  ( ),F A   is

called soft neutrosophic  group over  ( )N G   if and only

if  ( ) ( )F x N G  , for all  x AÎ .

Example 5 Let  

( )4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3 ,

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
N Z

I I I I I I

ì ü+ + +ï ïï ï=í ýï ï+ + + + + +ï ïî þ
 

be a neutrosophic group under addition modulo  4 .  Let  

{ }1 2 3 4, , ,A e e e e=  be the set of parameters, then

( ),F A  is soft  neutrosophic group over  ( )4N Z

where 

( ) { } ( ) { }
( ) { }
( ) { }

1 2

3

4

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 ,

0, , 2 , 3 , 2, 2 2 , 2 , 2 3 .

F e F e I I I

F e I I

F e I I I I I I

= =

= +

= + + +

Theorem 2 Let  ( ),F A   and  ( H, A )  be two soft neu-

trosophic  groups over  ( )N G  . Then their intersection

( ) ( ), ,F A H AÇ   is again a soft neutrosophic group

over  ( )N G  .

Proof  The proof is straightforward. 

Theorem 3 Let  ( ),F A   and  ( ),H B   be two  soft neu-

trosophic groups over N(G). If  A B fÇ =  , then  

( ) ( ), ,F A H BÈ   is a soft neutrosophic group over

( )N G  .

Theorem 4 Let  ( ),F A   and  ( ),H A   be two soft neu-

trosophic groups over  ( )N G  . If  ( ) ( )F e H eÍ for

all  e AÎ  , then  ( ),F A   is a soft neutrosophic sub-

group of  ( ),H A  .

Theorem 5 The extended union of two  soft  neutrosophic  

groups  ( ),F A   and  ( ),K B   over  ( )N G   is not a

soft neutrosophic  group over  ( )N G  .

Proof  Let   ( ),F A   and  ( ),K B   be two soft  neutro-

sophic  groups over  ( )N G  . Let  C A B= È  , then

for all  ,e CÎ ( , ) ( , ) ( , )F A K B H CeÈ =   where

( )
( ) ( )

( ) ( )

If ,

If ,

If .

F e e A B

H e K e e B A

F e K e e A B

= Î -

= Î -

= È Î Ç
 

As union of two subgroups may not be again a subgroup. 

Clearly if  e C A B= Ç  , then  ( )H e   may not be

a subgroup of  ( )N G  . Hence the extended union

( ),H C   is not a soft neutrosophic group over  ( )N G  .

Example 6  Let  ( ),F A   and  ( ),K B   be two  soft

neutrosophic  groups over  ( )2N Z   under addition

modulo  2  , where  

( ) { } ( ) { }1 20,1 , 0,F e F e I= =
And 

( ) { } ( ) { }2 30,1 , 0,1 .K e K e I= = +
Then clearly their extended union is not a  soft neutrosoph-
ic  group as  

( ) ( ) ( ) { }2 2 2 0,1,H e F e K e I= È =   is not a 

subgroup of  ( )2N Z  . 

Theorem 6 The extended intersection of two  soft neutro-

sophic  groups over  ( )N G   is  soft neutrosophic  group

over  ( )N G  .

Theorem 7 The restricted union of two  soft neutrosophic  

groups  ( ),F A   and  ( ),K B   over  ( )N G   is not a

soft neutrosophic  group over  ( ).N G

Theorem 8 The restricted intersection of two soft  neutro-

sophic groups over  ( )N G   is  soft neutrosophic  group

over  ( )N G  .

Theorem 9 The restricted product of two  soft neutrosoph-
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ict groups  ( ),F A   and  ( ),K B   over ( )N G   is a

soft neutrosophic  group over ( )N G .

Theorem 10 The  AND   operation of two  soft neutro-

sophic  groups over  ( )N G   is  soft neutrosophic  group

over  ( )N G  .

Theorem 11 The  OR   operation of two soft neutrosophic  

groups over  ( )N G   may not be a  soft neutrosophic

group. 
Definition 24 A  soft neutrosophic  group which does not 
contain a proper soft group is called  soft pseudo neutro-
sophic  group. 
Example 7 Let  

{ }2 2( ) 0,1, ,1N Z Z I I I= È = +   be a neu-

trosophic group under addition modulo  2.   Let 

{ }1 2 3, ,A e e e=   be the set of parameters, then

( ),F A   is a  soft pseudo neutrosophic  group over

( )N G   where

( ) { }
( ) { }
( ) { }

1

2

3

0,1 ,

0, ,

0,1 .

F e

F e I

F e I

=

=

= +

Theorem 12 The extended union of two  soft pseudo neu-

trosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is not a soft  pseudo neutrosophic  group over

( )N G  .

Example 8  Let  

{ }2 2( ) 0,1, ,1N Z Z I I I= È = +   be a neu-

trosophic group under addition modulo  2.   Let  ( ),F A

and  ( ),K B   be two  soft pseudo neutrosophic  groups

over  ( )N G  , where

{ } { }
{ }

1 2

3

( ) 0,1 , ( ) 0, ,

( ) 0,1 .

F e F e I

F e I

= =
= +

And 

( ) { } ( ) { }1 20,1 , 0,1 .K e I K e= + =  

Clearly their restricted union is not a soft  pseudo neutro-
sophic  group as union of two subgroups is not a subgroup. 

Theorem 13  The extended intersection of two  soft pseudo 

neutrosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is again a  soft pseudo neutrosophic  group over

( )N G  .

Theorem 14 The restricted union of two  soft pseudo neu-

trosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is not a  soft pseudo neutrosophic  group over

( )N G  .

Theorem 15 The restricted intersection of two  soft pseudo 

neutrosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is again a soft  pseudo neutrosophic group over

( ).N G

Theorem 16 The restricted product of two soft pseudo 

neutrosophic  groups  ( ),F A   and  ( ),K B   over

( )N G   is a  soft pseudo neutrosophic  group over

( ).N G

Theorem 17 The  AND   operation of two  soft pseudo 

neutrosophic  groups over  ( )N G   soft pseudo neutro-

sophic soft group over  ( )N G  .

Theorem 18 The  OR   operation of two  soft pseudo neu-

trosophic  groups over  ( )N G   may not be a soft  pseudo

neutrosophic  group. 
Theorem19 Every  soft pseudo neutrosophic  group is a  
soft neutrosophic  group. 
Proof The proof is straight forward. 
Remark 1  The converse of above theorem does not hold. 

Example 9  Let  ( )4N Z   be a neutrosophic group and  

( ),F A   be a soft neutrosophic  group over  ( )4N Z  . 

Then 

( ) { } ( ) { }
( ) { }

1 2

3

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 .

F e F e I I I

F e I I

= =
= +

But  ( ),F A   is not a  soft pseudo neutrosophic group as

( ),H B   is clearly a proper soft subgroup of  ( ), .F A

where  

( ) { } ( ) { }1 20, 2 , 0, 2 .H e H e= =

Theorem 20 ( ),F A   over  ( )N G   is  a  soft pseudo
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neutrosophic  group if  ( )N G    is a  pseudo neutrosoph-

ic group. 

Proof  Suppose that  ( )N G   be a pseudo neutrosophic

group, then it does not contain a proper group and for all  

,e AÎ   the  soft neutrosophic   group  ( ),F A   over

( )N G   is such that  ( ) ( ).F e N G   Since each

( )F e   is a pseudo neutrosophic subgroup which does not

contain a proper group which make  ( ),F A   is soft

pseudo neutrosophic  group. 
Example 10  Let  

{ }2 2( ) 0,1, ,1N Z Z I I I= È = +   be a pseudo 

neutrosophic group under addition modulo  2.   Then 

clearly  ( ),F A   a  soft pseudo neutrosophic soft group

over  ( )2N Z  , where 

( ) { } ( ) { }
( ) { }

1 2

3

0,1 , 0, ,

0,1 .

F e F e I

F e I

= =
= +

Definition 25  Let  ( ),F A   and  ( ),H B   be two  soft

neutrosophic  groups over  ( )N G  . Then  ( ),H B   is a

soft neutrosophic  subgroup of  ( ),F A  , denoted  as

( ) ( ), ,H B F A  , if

1) B AÌ  and

2) ( ) ( )H e F e  , for all  e AÎ  .

Example 11 Let  4 4( )N Z Z I= È   be a soft  neu-

trosophic  group under addition modulo  4  , that is 

( )4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3 ,
.

2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
N Z

I I I I I I

ì ü+ + +ï ïï ï= í ýï ï+ + + + + +ï ïî þ
 

Let  ( ),F A   be a  soft neutrosophic  group  over

( )4N Z  , then 

( ) { } ( ) { }
( ) { }

( ) { }

1 2

3

4

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 ,

0, , 2 , 3 , 2, 2 2 ,2 , 2 3 .

F e F e I I I

F e I I

F e I I I I I I

= =

= +

= + + +

( ),H B   is a soft  neutrosophic  subgroup of  ( ),F A  ,

where  

( ) { } ( ) { }
( ) { }

1 2

4

0, 2 , 0, 2 ,

0, , 2 , 3 .

H e H e I

H e I I I

= =
=

Theorem 21  A soft group over  G   is always a  soft neu-
trosophic  subgroup of a  soft neutrosophic  group over  

( )N G   if  .A BÌ

Proof   Let ( ),F A   be a soft  neutrosophic  group over

( )N G   and  ( ),H B   be a soft group over  .G   As

( )G N GÌ   and for all

( ) ( ),b B H b G N GÎ Ì  . This implies

( ) ( )H e F e  , for all  e AÎ   as  .B AÌ   Hence

( ) ( ), , .H B F A

Example 12 Let  ( ),F A   be a soft  neutrosophic  group

over  ( )4N Z  , then 

( ) { } ( ) { }
( ) { }

1 2

3

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 .

F e F e I I I

F e I I

= =
= +

Let  { }1 3,B e e= such that  ( ) ( ), ,H B F A  ,

where  

( ) { } ( ) { }1 30, 2 , 0, 2 .H e H= =  

Clearly  B AÌ   and  ( ) ( )H e F e   for all

.e BÎ  

Theorem 22 A  soft neutrosophic group over  ( )N G
always contains a soft group over G. 
Proof The proof is followed from above Theorem. 

Definition 26 Let  ( ),F A   and  ( ),H B   be two  soft

pseudo neutrosophic  groups over  ( )N G  . Then

( ),H B   is called  soft pseudo neutrosophic  subgroup of

( ),F A  , denoted as  ( ) ( ), ,H B F A  , if

1) B AÌ
2) ( ) ( )H e F e  , for all  e AÎ  .

Example 13  Let  ( ),F A   be a soft  pseudo neutrosophic

group over  ( )4N Z  , where
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( ) { } ( ) { }1 20, , 2 , 3 , 0, 2 .F e I I I F e I= =

Hence  ( ) ( ), ,H B F A   where

( ) { }1 0, 2 .H e I=

Theorem 23 Every  soft  neutrosophic  group  ( ),F A

over  ( )N G   has  soft neutrosophic  subgroup as well as

soft pseudo neutrosophic subgroup. 
Proof    Straightforward. 

Definition 27  Let  ( ),F A   be a soft  neutrosophic

group over  ( )N G  , then  ( ),F A   is called the identity

soft neutrosophic  group over  ( )N G   if

( ) { },F x e=  for all  x AÎ  , where  e   is the iden-

tity element of  G  . 

Definition 28 Let  ( ),H B   be a  soft neutrosophic

group over  ( )N G  , then  ( ),H B   is called  Full-soft

neutrosophic   group over  ( )N G   if

( ) ( )F x N G=  , for all  x AÎ  .

Example 14  Let  
: ,  and 

( )
 is indeterminacy

a bI a b R
N R

I

+ì üï ïï ï= í ýï ïï ïî þ



is a neutrosophic real group where  R   is set of real num-

bers and  2I I=  , therefore  nI I=  , for  n   a posi-

tive integer. Then  ( ),F A   is a Full-soft neutrosophic

real group where 
( ) ( ), for all F e N R e A= 

Theorem 24 Every Full-soft neutrosophic  group contain 
absolute soft group. 
Theorem 25 Every absolute soft group over  G   is a  soft 
neutrosophic  subgroup of Full-soft neutrosophic  group 

over  ( )N G  .

Theorem 26  Let  ( )N G   be a neutrosophic group. If

order of  ( )N G   is prime number, then  the  soft neutro-

sophic  group  ( ),F A   over  ( )N G   is either identity

soft neutrosophic  group or Full-soft neutrosophic  group. 
Proof  Straightforward. 

Definition 29 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  .  If  for all  e AÎ  , each  ( )F e  is  La-

grange  neutrosophic subgroup  of  ( )N G  , then

( ),F A   is called  soft Lagrange neutrosophic  group

over  ( )N G  .

Example 15  Let  { }( )3 / 0N Z {1,2, , 2 }I I=   is  a

neutrosophic group under multiplication modulo  3  . Now 

{ }1,2  , { }1, I   are subgroups of  { }( )3 / 0N Z

which divides order of  { }( )3 / 0N Z  . Then the  soft 

neutrosophic   group

( ) ( ) { } ( ) { }{ }1 2, 1, 2 , 1,F A F e F e I= = =
is an example of  soft Lagrange neutrosophic  group. 

Theorem 27 If  ( )N G   is Lagrange neutrosophic group,

then  ( ),F A   over  ( )N G   is soft  Lagrange neutro-

sophic  group but the converse is not true in general. 
Theorem 28 Every  soft Lagrange neutrosophic  group is 
a  soft neutrosophic  group. 
Proof  Straightforward. 
Remark 2 The converse of the above theorem does not 
hold. 
Example 16 Let  ( ) {1,2, 3, 4, , 2 , 3 , 4 }N G I I I I=   

be a neutrosophic group under multiplication modulo  5   

and  ( ),F A   be  a  soft neutrosophic   group over

( )N G  , where

( ) { } ( ) { }
( ) { }

1 2

3

1, 4, , 2 , 3 , 4 , 1, 2, 3, 4 ,

1, , 2 , 3 , 4 .

F e I I I I F e

F e I I I I

= =
=

 But clearly it is not  soft Lagrange neutrosophic  group as 

( )1F e   which is a subgroup of  ( )N G   does not divide

order of  ( )N G  .

Theorem 29 If  ( )N G   is a neutrosophic group, then the

soft Lagrange neutrosophic  group is a  soft neutrosophic 
group. 

Proof  Suppose that  ( )N G   be a neutrosophic group

and  ( ),F A   be a  soft Lagrange neutrosophic  group

over  ( )N G  . Then by above theorem  ( ),F A   is also

soft neutrosophic   group. 
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Example 17 Let  ( )4N Z   be a neutrosophic group and

( ),F A   is a  soft Lagrange neutrosophic  group over

( )4N Z   under addition modulo  4  , where 

( ) { } ( ) { }
( ) { }

1 2

3

0,1, 2, 3 , 0, , 2 , 3 ,

0, 2, 2 , 2 2 .

F e F e I I I

F e I I

= =
= +

But  ( ),F A   has a proper soft group  ( ),H B  , where

( ) { } ( ) { }1 30, 2 , 0, 2 .H e H e= =

Hence  ( ),F A   is  soft neutrosophic  group.

Theorem 30 Let  ( ),F A   and  ( ),K B   be two  soft

Lagrange neutrosophic  groups over  ( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ  over  

( )N G   is not  soft Lagrange neutrosophic  group

over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is not soft  Lagrange neutrosophic

group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not  soft Lagrange neutrosophic  group

over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is not  soft Lagrange neutrosophic

group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not soft  Lagrange neutrosophic  group

over  ( )N G  .

Theorem 31 Let  ( ),F A   and  ( ),H B   be two  soft

Lagrange neutrosophic  groups over  ( )N G  .Then

1) Their  AND   operation  ( ) ( ), ,F A K B   is not

soft Lagrange neutrosophic  group over  ( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not a

soft Lagrange neutrosophic  group over  ( )N G  .

Definition 30  Let  ( ),F A   be a  soft neutrosophic

group over  ( )N G  . Then  ( ),F A   is called  soft weak-

ly Lagrange neutrosophic  group if atleast one  ( )F e  is a

Lagrange neutrosophic subgroup of  ( )N G  , for some

e AÎ  . 

Example 18 Let  ( ) {1,2,3, 4, ,2 , 3 , 4 }N G I I I I=
be a neutrosophic group under multiplication modulo  5  , 

then  ( ),F A   is a  soft weakly Lagrange neutrosophic

group over  ( )N G  , where

( ) { } ( ) { }
( ) { }

1 2

3

1, 4, ,2 ,3 , 4 , 1,2,3, 4 ,

1, ,2 ,3 , 4 .

F e I I I I F e

F e I I I I

= =

=

As  ( )1F e   and  ( )3F e   which are subgroups of 

( )N G   do not divide order of  ( )N G  .

Theorem 32 Every  soft weakly Lagrange neutrosophic 

group  ( ),F A   is  soft neutrosophic  group.

Remark 3 The converse of the above theorem does not 
hold in general. 

Example 19 Let  ( )4N Z   be a neutrosophic group un-

der addition modulo  4   and  { }1 2,A e e=   be the set 

of parameters, then  ( ),F A   is a soft  neutrosophic

group over  ( )4N Z  , where 

( ) { } ( ) { }1 20, , 2 , 3 , 0, 2 .F e I I I F e I= =  

 But not  soft weakly Lagrange neutrosophic   group over  

( )4 .N Z  

Definition 31 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  . Then  ( ),F A   is called soft  Lagrange

free neutrosophic  group if   ( )F e  is not Lagrangeneu-

trosophic subgroup of  ( )N G  , for all  e AÎ  .

Example 20 Let  ( ) {1,2, 3, 4, , 2 , 3 , 4 }N G I I I I=   

be a neutrosophic group under multiplication modulo  5   
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and   then ( ),F A   be a  soft Lagrange  free neutrosophic

group over  ( )N G  , where

( ) { } ( ) { }1 21,4, ,2 ,3 ,4 , 1, ,2 ,3 ,4 .F e I I I I F e I I I I= =

As  ( )1F e   and  ( )2F e   which are subgroups of 

( )N G   do not divide order of  ( )N G  .

Theorem 33 Every  soft Lagrange free neutrosophic  

group  ( ),F A   over  ( )N G   is a  soft neutrosophic

group but the converse is not true. 

Definition 32 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  . If for all  e AÎ  , each  ( )F e   is a

pseudo Lagrange neutrosophic subgroup of ( )N G  , then

( ),F A is called  soft pseudo Lagrange neutrosophic

group over  ( )N G  .

Example 21 Let  ( )4N Z   be a neutrosophic group un-

der addition modulo  4   and  { }1 2,A e e=   be the set 

of parameters, then  ( ),F A   is a  soft pseudo Lagrange

neutrosophic  group over  ( )4N Z   where 

( ) { } ( ) { }1 20, , 2 , 3 , 0, 2 .F e I I I F e I= =  

Theorem 34 Every soft  pseudo Lagrange neutrosophic 
group is a soft  neutrosophic  group but the converse may 
not be true. 
Proof  Straightforward. 

Theorem 35  Let  ( ),F A   and  ( ),K B   be two  soft

pseudo Lagrange neutrosophic  groups over  ( )N G  .

Then 

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not a soft pseudo Lagrange neutrosophic

group over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is not pseudo Lagrange neutrosophic

soft group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over  

( )N G   is not pseudo Lagrange neutrosophic soft

group over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is also not soft  pseudo Lagrange neu-

trosophic  group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



  over 

( )N G   is not  soft pseudo Lagrange neutrosophic

group over  ( )N G  .

Theorem 36 Let  ( ),F A   and  ( ),H B   be two  soft

pseudo Lagrange neutrosophic  groups over  ( )N G  .

Then 

1) Their  AND   operation  ( ) ( ), ,F A K B   is not

soft  pseudo Lagrange neutrosophic  group over

( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not a

soft pseudo Lagrange neutrosophic soft group over

( )N G  .

Definition 33 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  . Then  ( ),F A   is called  soft weakly

pseudo Lagrange neutrosophic  group if atleast one  

( )F e  is a pseudo Lagrange neutrosophic subgroup of

( )N G  , for some  e AÎ  .

Example 22 Let  ( ) {1,2,3, 4, ,2 , 3 , 4 }N G I I I I=
be a neutrosophic group under multiplication modulo  5   

Then  ( ),F A   is a  soft weakly pseudo Lagrange neutro-

sophic  group over  ( )N G  , where

( ) { } ( ) { }1 21, , 2 , 3 , 4 , 1, .F e I I I I F e I= =  

As ( )1F e   which is a subgroup of  ( )N G   does not di-

vide order of  ( )N G  .

Theorem 37 Every soft  weakly pseudo Lagrange neutro-

sophic  group  ( ),F A   is  soft neutrosophic  group.

Remark 4 The converse of the above theorem is not true in 
general. 
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Example 23 Let  ( )4N Z   be a neutrosophic group un-

der addition modulo  4   and  { }1 2,A e e=   be the set

of parameters, then  ( ),F A   is a soft  neutrosophic

group over  ( )4N Z ,where 

( ) { } ( ) { }1 2), , 2 , 3 , 0, 2 .F e I I I F e I= =  

But it is not  soft weakly pseudo Lagrange neutrosophic  
group. 

Theorem 38 Let  ( ),F A   and  ( ),K B   be two  soft

weakly pseudo Lagrange neutrosophic  groups over  

( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not  soft weakly pseudo Lagrange neutro-

sophic  group over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is not  soft weakly pseudo Lagrange

neutrosophic  group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not soft  weakly pseudo Lagrange neutro-

sophic group over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is not soft  weakly pseudo Lagrange

neutrosophic  group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not  soft weakly pseudo Lagrange neutro-

sophic  group over  ( )N G  .

Definition 34 Let  ( ),F A   be a  soft neutrosophic  group

over  ( )N G  . Then  ( ),F A   is called  soft pseudo La-

grange free neutrosophic  group if  ( )F e  is not pseudo

Lagrange neutrosophic subgroup of  ( )N G  , for all

e AÎ  . 

Example 24 Let  ( ) {1,2,3, 4, ,2 , 3 , 4 }N G I I I I=
be a neutrosophic group under multiplication modulo  5   

Then  ( ),F A   is a  soft pseudo Lagrange free neutro-

sophic  group over  ( )N G  , where

( ) { } ( ) { }1 21, ,2 , 3 , 4 , 1, , 2 , 3 , 4 .F e I I I I F e I I I I= =

As  ( )1F e   and  ( )2F e   which are subgroups of  

( )N G
 
do not divide order of  ( )N G  .

Theorem 39 Every soft  pseudo Lagrange free neutrosoph-

ic  group ( ),F A   over  ( )N G   is a soft  neutrosophic

group but the converse is not true. 

Theorem 40  Let  ( ),F A   and  ( ),K B   be two  soft

pseudo Lagrange free neutrosophic  groups over  ( )N G

. Then 

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not  soft pseudo Lagrange free neutro-

sophic  group over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is not  soft pseudo Lagrange free neu-

trosophic  group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not pseudo Lagrange free neutrosophic

soft group over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is not soft  pseudo Lagrange free neu-

trosophic  group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not  soft  pseudo Lagrange free neutro-

sophic  group over  ( )N G  .

Definition 35 A  soft neutrosophic  group ( ),F A   over

( )N G   is called  soft normal neutrosophic  group over
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( )N G   if  ( )F e   is a normal neutrosophic subgroup of

( )N G  , for all  e AÎ  .

Example 25 Let  ( ) { , , , , , , , }N G e a b c I aI bI cI=

be a neutrosophic group under multiplicationwhere 2a
2 2 , , ,b c e bc cb a ac ca b ab ba c= = = = = = = = =  . 

Then  ( ),F A   is a soft  normal neutrosophic  group over

( )N G   where

( ) { }
( ) { }
( ) { }

1

2

3

, , , ,

, , , ,

, , , .

F e e a I aI

F e e b I bI

F e e c I cI

=

=

=
Theorem 42  Every soft  normal neutrosophic group 

( ),F A   over  ( )N G   is a soft  neutrosophic  group but

the converse is not true. 

Theorem 42  Let  ( ),F A   and  ( ),H B   be two soft

normal neutrosophic  groups over  ( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not soft  normal neutrosophic  group over

( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is  soft normal neutrosophic   group

over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not  soft normal neutrosophic  group over

( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is soft  normal neutrosophic  group

over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



  over  

( )N G   is not soft  normal neutrosophic soft group

over  ( )N G  .

Theorem 43 Let  ( ),F A   and  ( ),H B   be two  soft

normal neutrosophic  groups over  ( )N G  . Then

1) Their  AND   operation  ( ) ( ), ,F A K B   is soft

normal neutrosophic   group over  ( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not

soft normal neutrosophic  group over  ( )N G  .

Definition 36 Let  ( ),F A   be a soft  neutrosophic  group

over  ( )N G  . Then  ( ),F A   is called  soft pseudo

normal neutrosophic   group if  ( )F e   is a pseudo nor-

mal neutrosophic subgroup of  ( )N G  ,  for all  e AÎ
. 
Example 26 Let  

( ) { }2 2 0,1, ,1N Z Z I I I= È = +   be a neu-

trosophic group under addition modulo  2  and  let 

{ }1 2,A e e=   be the set of parameters, then  ( ),F A

is soft  pseudo normal neutrosophic   group over  

( ),N G   where

( ) { } ( ) { }1 20, , 0,1 .F e I F e I= = +  

As  ( )1F e   and  ( )2F e   are pseudo normal subgroup 

of  ( )N G  .

Theorem 44 Every soft  pseudo normal neutrosophic  

group ( ),F A   over  ( )N G   is a  soft neutrosophic

group but the converse is not true. 

Theorem 45 Let  ( ),F A   and  ( ),K B   be two  soft

pseudo normal neutrosophic  groups over  ( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ  over  

( )N G   is not soft  pseudo normal neutrosophic

group over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is  soft pseudo normal neutrosophic

group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over  

( )N G   is not soft  pseudo normal neutrosophic
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group over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is soft  pseudo normal neutrosophic

group over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not soft  pseudo normal neutrosophic

group over  ( )N G  .

Theorem 46  Let( ),F A   and  ( ),K B   be two soft

pseudo normal neutrosophic  groups over  ( )N G  . Then

1) Their  AND   operation  ( ) ( ), ,F A K B   is

soft pseudo normal neutrosophic   group over

( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not

soft pseudo normal neutrosophic   group over

( )N G  .

Definition 37 Let  ( )N G   be a neutrosophic group.

Then  ( ),F A   is called  soft conjugate neutrosophic

group over  ( )N G
 
if and only  if  ( )F e   is  conjugate

neutrosophic  subgroup of ( )N G , for all  e AÎ  .

Example 27 Let  

( )
0,1, 2, 3, 4, 5, , 2 , 3 , 4 , 5 ,

1 , 2 , 3 , ..., 5 5

I I I I I
N G

I I I I

ì üï ïï ï= í ýï ï+ + + +ï ïî þ
 

 be a neutrosophic group under addition modulo  6   and 

let  { }0,3,3 , 3 3P I I= +   and

{ }0,2, 4,2 2 , 4 4 ,2 , 4K I I I I= + +   are  conju-

gate  neutrosophic subgroups of  ( )N G  .  Then

( ),F A   is  soft conjugate neutrosophic  group over

( )N G  , where

( ) { }
( ) { }

1

2

0, 3, 3 , 3 3 ,

0, 2, 4, 2 2 , 4 4 , 2 , 4 .

F e I I

F e I I I I

= +
= + +

Theorem 47  Let  ( ),F A   and  ( ),K B   be two  soft

conjugate neutrosophic  groups over  ( )N G  . Then

1) Their extended union  ( ) ( ), ,F A K BeÈ   over

( )N G   is not soft  conjugate neutrosophic  group

over  ( )N G  .

2) Their extended intersection  ( ) ( ), ,F A K BeÇ

over  ( )N G   is again  soft conjugate neutrosophic

group over  ( )N G  .

3) Their restricted union  ( ) ( ), ,RF A K BÈ   over

( )N G   is not  soft conjugate neutrosophic  group

over  ( )N G  .

4) Their restricted intersection  ( ) ( ), ,RF A K BÇ

over  ( )N G   is  soft conjugate neutrosophic   group

over  ( )N G  .

5) Their restricted product  ( ) ( ), ,F A K B



 over  

( )N G   is not  soft conjugate neutrosophic   group

over  ( )N G  .

Theorem 48 Let  ( ),F A   and  ( ),K B   be two  soft

conjugate neutrosophic  groups over  ( )N G  . Then

1) Their  AND   operation  ( ) ( ), ,F A K B   is

again  soft conjugate neutrosophic  group over

( )N G  .

2) Their  OR   operation  ( ) ( ), ,F A K B   is not

soft conjugate neutrosophic  group over  ( )N G  .

Conclusion
In this paper we extend the neutrosophic group and 
sub-group, pseudo neutrosophic group and subgroup to  
soft neutrosophic  group and  soft neutrosophic 
subgroup and respectively soft pseudo neutrosophic group 
and soft pseu-do neutrosophic  subgroup. The normal 
neutrosophic sub-group is extended to soft  normal 
neutrosophic  subgroup. We showed all these by giving 
various examples in order to illustrate the soft part of 
the neutrosophic notions used. 
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Filters via Neutrosophic Crisp Sets  
A. A. Salama,  Florentin Smarandache

Abstract. In this paper we introduce the notion of filter 
on the neutrosophic crisp set, then we consider a 
generalization of the filter’s studies. Afterwards, we 
present the important neutrosophic crisp filters. We also 

study several relations between different neutrosophic 
crisp filters and neutrosophic topologies. Possible 
applications to database systems are touched upon. 

Keywords: Filters; Neutrosophic Sets; Neutrosophic crisp filters; Neutrosophic Topology; Neutrosophic Crisp Ultra Filters; 
Neutrosophic Crisp Sets.

1 Introduction 
The fundamental concept of neutrosophic set, 

introduced by Smarandache in [6, 7, 8] and studied by 
Salama in [1, 2, 3, 4, 5, 9, 10], provides a groundwork to 
mathematically act towards the neutrosophic phenomena 
which exists pervasively in our real world and expand to 
building new branches of neutrosophic mathematics.  
Neutrosophy has laid the foundation for a whole family of 
new mathematical theories, generalizing both their crisp 
and fuzzy counterparts, such as the neutrosophic crisp set 
theory. 

2 Preliminaries 
We recollect some relevant basic preliminaries, and in 

particular, the work of Smarandache in [6, 7, 8] and 
Salama et al. [1, 2, 3, 4, 5, 9, 10]. Smarandache introduced 
the neutrosophic components T, I, and F which represent 
the membership, indeterminacy, and non-membership
values respectively, where ] [+1,0 - is the non- standard unit

interval. 

3 Neutrosophic Crisp Filters 
3.1 Definition 1 

First we recall that a neutrosophic crisp set A is an 
object of the form A = <A1, A2, A3>, where A1, A2, A3 are 
subsets of X, and 

1 2 1 3 2 3, , .A A A A A Aφ φ φ∩ = ∩ = ∩ =  

Let Ψ  be a neutrosophic crisp set in the set X. We call 
Ψ a neutrosophic crisp filter on X if it satisfies the
following conditions:

( )1N Every neutrosophic crisp set in X, containing a

member of Ψ , belongs toΨ . 
( )2N Every finite intersection of members of Ψ

belongs toΨ . 

( )3N Nφ  is not inΨ .

In this case, the pair ( )Ψ,X is neutrosophically

filtered byΨ . 
It follows from ( )2N and ( )3N that every finite

intersection of members of Ψ is not Nφ (not empty). We

obtain the following results. 

3.2 Proposition 1 
The conditions ( )2N and (N1) are equivalent to the

following two conditions: 
( )aN2 The intersection of two members of Ψ belongs

toΨ . 

( )aN1 NX  belongs to Ψ .

3.3 Proposition 1.2 
Let Ψ  be a non-empty neutrosophic subsets in X 

satisfying ( )1N .

Then,  

(1) Ψ∈NX iff NφΨ ≠ ;

(2) Ψφ ∉N  iff ≠Ψ  all neutrosophic  crisp subsets

of  X. 
From the above Propositions (1) and (2),   we can 

characterize the concept of neutrosophic crisp filter. 

3.4 Theorem 1.1 
Let Ψ  be a neutrosophic crisp subsets in a set X. Then 

Ψ is neutrosophic crisp filter on X, if and only if it
satisfies the following conditions:

(i) Every neutrosophic crisp set in X, containing a
member of Ψ , belongs toΨ . 

(ii) If Ψ∈BA, , then Ψ∈∩ BA .

(iii) N
X φΨΨ ≠≠ .

A.A. Salama. Florentin Smarandache (2013). Filters via Neutrosophic Crisp Sets. 
Neutrosophic Sets and Systems 1, 34-37

Florentin Smarandache (author and editor) Collected Papers, XII

47



Proof: It ̓s clear. 

3.5 Theorem 1.2 

Let φ≠X . Then the set{ }NX  is a neutrosophic crisp

filter on X. Moreover if A is a non-empty neutrosophic

crisp set in X, then { }BAB X ⊆∈ :Ψ  is a neutrosophic

crisp filter on X. 

Proof: Let { }BABN X ⊆∈= :Ψ . Since

Ψ∈NX and ,Ψφ ∉N
X

N ΨΨφ ≠≠ .  

Suppose Ψ∈VU , , then VAUA ⊆⊆ , . 

Thus 111 VUA ∩⊆ , 
222 VUA ∩⊆  or

222 VUA ∪⊆ , and  333 VUA ∪⊆  for all Xx ∈ . So

VUA ∩⊆ and hence .NVU ∈∩  

4 Comparison of Neutrosophic Crisp Filters 
4.1 Definition 2 

Let 1Ψ and 2Ψ  be two neutrosophic crisp filters on a

set X. We say that 2Ψ  is finer than 1Ψ , or 1Ψ is coarser

than 2Ψ , if 21 ΨΨ ⊂ .

If also 21 ΨΨ ≠ , then we say that 2Ψ is strictly finer

than 1Ψ , or 1Ψ is strictly coarser than 2Ψ .

We say that two neutrosophic crisp filters are 
comparable if one is finer than the other. The set of all 
neutrosophic crisp filters on X is ordered by the relation: 

1Ψ coarser than 2Ψ , this relation inducing the inclusion

relation in XΨ .

4.2 Proposition 2 

Let Jjj ∈)(Ψ  be any non-empty family of neutrosophic

crisp filters on X. Then jJj ΨΨ ∈∩= is a neutrosophic

crisp filter on X. In fact, Ψ is the greatest lower bound of 

the neutrosophic crisp set Jjj ∈)(Ψ  in the ordered set of all

neutrosophic crisp filters on X.  

4.3 Remark 2 
The neutrosophic crisp filter induced by the single 

neutrosophic set NX is the smallest element of the ordered

set of all neutrosophic crisp filters on X.  

4.4 Theorem 2 
Let Α be a neutrosophic set in X. Then there exists a 

neutrosophic filter )(ΑΨ  on X containing Α if for any 

given finite subset { }nSSS ,...,, 21  of Α , the intersection

Nii S φ≠∩ =1 . In fact )(ΑΨ  is the coarsest 

neutrosophic crisp filter containing Α .

Proof )( Suppose there exists a neutrosophic filter 

)(ΑΨ on X containing A . Let B be the set of all finite

intersections of members of A . Then by axiom ( )2N ,

)(ΑΨ⊂B . By axiom ( )3N , )(ΑΨφ ∉N . Thus for

each member B of B, we get that the necessary condition 
holds  

)(⇐ Suppose the necessary condition holds. 

Let { }B ofmember  a  contains  :)( AAA XΨΨ ∈= ,

where B is the family of all finite intersections of members 
of A. Then we can easily check that )(AΨ  satisfies the 

conditions in Definition 1. We say that the neutrosophic 
crisp filter )(AΨ defined above is generated by A, and A 

is called a sub-base of )(AΨ .  

4.5 Corollary 2.1 
Let Ψ  be a neutrosophic crisp filter in a set X, and A a 

neutrosophic set. Then there is a neutrosophic crisp 

filter /Ψ which is finer than Ψ and such that /Ψ∈A if
and A is a neutrosophic set. Then there is a neutrosophic 

crisp filter /Ψ which is finer than Ψ and such that
/Ψ∈A iff NUA φ≠∩ for each Ψ∈U .

4.6 Corollary 2.2 

A set Nϕ of a neutrosophic crisp filter on a non-empty

set X, has a least upper bound in the set of all neutrosophic 
crisp filters on X if for all finite sequence 

njJjj ≤≤∈ 0,)(Ψ of elements of Nϕ and all 

),1( njA jj ≤≤∈Ψ Njj A φ≠∩=1 .

4.7 Corollary 2.3 
The ordered set of all neutrosophic crisp filters on a 

non-empty set X is inductive. 
If Λ  is a sub-base of a neutrosophic filter Ν on X, 

then Ψ  is not in general the set of neutrosophic sets in X 
containing an element of Λ ; for Λ  to have this property it 
is  necessary and sufficient that every finite intersection of 
members of Λ  should contain an element of Λ . Hence, 
we have the following results. 

4.8 Theorem 3 
Let β  be a set of neutrosophic crisp sets on a set X. 

Then the set of neutrosophic crisp sets in X containing an 
element of β  is a neutrosophic crisp filter on X if β  

possesses the following two conditions: 
)( 1β The intersection of two members of β  contain a 

member of β . 
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)( 2β Nφβ ≠ and βφ ∉N .

4.9 Definition 3 
Let Λ and β be two neutrosophic sets on X satisfying 

conditions )( 1β and )( 2β . We call them bases of 

neutrosophic crisp filters they generate. We consider two 
neutrosophic bases equivalent, if they generate the same 
neutrosophic crisp filter. 

4.10 Remark 3 
Let Λ  be a sub-base of neutrosophic filter Ψ . Then 

the set β of finite intersections of members of Λ  is a base 

of a neutrosophic filter Ψ . 

4.11 Proposition 3.1 
A subset β of a neutrosophic crisp filter Ψ  on X is a 

base of Ψ  if every member of Ψ  contains a member 
of β . 

Proof )( Suppose β is a base of Ν . Then clearly, 

every member of Ψ contains an element of β . )(⇐  

Suppose the necessary condition holds. Then the set of 
neutrosophic sets in X containing a member of 

β coincides with Ψ  by reason of Jjj ∈)(Ψ .

4.12 Proposition 3.2 

On a set X, a neutrosophic crisp filter /Ψ with base
/β is finer than a neutrosophic crisp filterΨ with base

β if every member of β contains a member of /β .

Proof: This is an immediate consequence of 
Definitions 2 and 3.  

4.13 Proposition 3.3 

Two neutrosophic crisp filters bases β  and  /β  on a 

set X are equivalent if every member of β contains a 

member of /β  and every member of /β and every 

member of /β  contains a member of β . 

5 Neutrosophic Crisp Ultrafilters 
5.1 Definition 4 

A neutrosophic ultrafilter on a set X is a neutrosophic 
crisp filter Ψ such that there is no neutrosophic crisp filter 
on X which is strictly finer than Ψ  (in other words, a 
maximal element in the ordered set of all neutrosophic 
crisp filters on X). 

 Since the ordered set of all neutrosophic crisp filters on 
X is inductive, Zorn's lemma shows that:  

5.2 Theorem 4 
Let Ψ  be any neutrosophic ultrafilter on a set X; then 

there is a neutrosophic ultrafilter other than Ψ . 

5.3 Proposition 4 
Let Ψ  be a neutrosophic ultrafilter on a set X. If A

and B are two neutrosophic subsets such 
that Ψ∈∪ BA , then Ψ∈A or Ψ∈B . 

Proof: Suppose not. Then there are neutrosophic sets 
A and B in X such that ΨΨ ∉∉ BA , and 

Ψ∈∪ BA Let { }ΨΨΛ ∈∪∈= MAM X : . It is

straightforward to check that Λ  is a neutrosophic crisp 
filter on X, and Λ  is strictly finer than Ψ , since 

Λ∈B .This contradiction proves the hypothesis that Ψ is 
a neutrosophic crisp ultrafilter. 

5.4 Corollary 4 
Let Ψ  be a neutrosophic crisp ultrafilter on a set X 

and let njj ≤≤1)(Ψ  be a finite sequence of neutrosophic

crisp sets in X. If ΨΨ ∈∪
=

j
j 1

, then at least one of the jΨ

belongs to Ψ . 

5.5 Definition 5 
Let Α  be a neutrosophic crisp set in a set X. If U is 

any neutrosophic crisp set in X, then the neutrosophic crisp 
set UA ∩ is called trace of U on A, and it is denoted by 

AU . For all neutrosophic crisp sets U and V in X, we 

have ( ) .AAA VUVU ∩=∩

5.6 Definition 6 
Let Α  be a neutrosophic crisp set in a set X. Then the 

set AΛ  of traces XΨΑ ∈ of members of Λ is called the

trace of Λ  on Α . 

5.7 Proposition 5 
Let Ψ  be a neutrosophic crisp filter on a set X 

and XΨΑ ∈ . Then the trace AΨ  of  Ψ on A  is a

neutrosophic crisp filter if each member of Ψ  intersects 
with A . 

Proof: The result in Definition 6 shows that AΨ
satisfies ( )2N . If ,APAM ⊂⊂∩ then

( ) APMP ∩∪= . Thus AΨ  satisfies ( )1N . Hence AΨ is

a neutrosophic crisp filter if it satisfies ( )3N , i.e. if each

member of Ψ  intersects with A . 
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5.8 Definition 7 
Let Ψ  be a neutrosophic crisp filter on a set X 

and XΨΑ ∈ .  If the trace is AΨ  of  Ψ on Α , then AΨ  is

said to be induced by Ψ and Α . 

5.9 Proposition 6 
Let Ψ  be a neutrosophic crisp filter on a set X 

inducing a neutrosophic filter AΝ  on XΨΑ ∈ . Then the

trace Aβ  on Α of a base β of Ψ  is a base of AΨ .
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Communication vs. Information, an Axiomatic 
Neutrosophic Solution  
Florentin Smarandache, Ştefan Vlăduțescu

Abstract. Study represents an application of the neutrosophic 
method, for solving the contradiction between communication 
and information. In addition, it recourse to an appropriate 
method of approaching the contradictions: Extensics, as the 
method and the science of solving the contradictions.  

The research core is the reality that the scientific 
research of communication-information relationship has 
reached a dead end. The bivalent relationship communication-
information, information-communication has come to be 
contradictory, and the two concepts to block each other.  

After the critical examination of conflicting positions 
expressed by many experts in the field, the extensic and 
inclusive hypothesis is issued that information is a form of 
communication. The object of communication is the sending of 
a message. The message may consist of thoughts, ideas, 
opinions, feelings, beliefs, facts, information, intelligence or 
other significational elements. When the message content is 
primarily informational, communication will become 
information or intelligence. 

The arguments of supporting the hypothesis are: 
a) linguistic (the most important being that there is

"communication of information" but not "information of 

communication"; also, it is clarified and reinforced the over 
situated referent, that of the communication as a process),  

b) systemic-procedural (in the communication system
is developing an information system; the informing actant is a 
type of communicator, the information process is a 
communication process),  

c) practical (the delimitation eliminates the efforts of
disparate and inconsistent understanding of the two concepts),  

d) epistemological arguments (the possibility of inter-
subjective thinking of reality is created), linguistic arguments, 

e) logical and realistic arguments (it is noted the
situation that allows to think coherently  in a system of 
concepts - derivative series or integrative groups)  

f) and arguments from historical experience (the
concept of communication has temporal priority, it appears 13 
times in Julius Caesar’s writings ).  

In an axiomatic conclusion, the main arguments are 
summarized in four axioms: three are based on the pertinent 
observations of specialists, and the fourth is a relevant 
application of Florentin Smarandache’s neutrosophic theory.

Keywords: neutrosophy, communication, information, message, extensics 

1. Clarification on the used methodological tool
With the Extensics as a science of solving the

conflicting issues, "extensical procedures" will be used to 
solve the contradiction. In this respect, considering that the 
matter-elements are defined, their properties will be 
explored ("The key to solve contradictory problems, Wen 
Cai argues, the founder of Extensics (Cai, 1999, p. 1540), 
is the study of properties about matter-elements"). 
According to „The basic method of Extensics is called 
extension methodology” (...), and "the application of the 
extension methodology in every field is the extension 
engineering methods" (Weihai Li & Chunyan Yang, 2008, 
p. 34).

With neutrosophic, linguistic, systemic, and 
hermeneutical methods, grafted on "extension 
methodology" a) are "open up the things", b) is marked 
"divergent nature of matter-element", c) "extensibility of 
matter-element" takes place and c) "extension 
communication" allows a new inclusion perspective to 

open,  a sequential ranging of things to emphasize at a 
higher level and the contradictory elements to be solved. 
"Extension" is, as postulated by Wen Cai (Cai, 1999, p. 
1538) "opening up carried out". 

2. The subject of communication: the message.
The subject of informing: the information. The
information thesis as species of message

In order to finish our basic thesis that of the 
information as a form of communication, new arguments 
may be revealed which corroborate with those previously 
mentioned. As phenomena, processes, the communication 
and information occur in a unique communication system. 
In communication, information has acquired a specialized 
profile. In the information field, the intelligence, in his 
turn, strengthened a specific, detectable, identifiable and 
discriminative profile. It is therefore acceptable under the 
pressure of practical argument that one may speak of a 
general communication system which in relation to the 
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message sent and configured   in the communication 
process could be imagined as information system or 
intelligence system. Under the influence of the systemic 
assumption that a (unitary) communicator transmits or 
customize transactionally with another (receiving) 
communicator a message, one may understand the 
communicational system as the interactional unit of the 
factors that exerts and fulfill the function of 
communicating a message. 

In his books "Messages: building interpersonal 
communication skills" (attained in 1993 its fourth edition 
and in 2010 its twelfth) and "Human Communication" 
(2000), Joseph De Vito (the renowned specialist who has 
proposed the name "Communicology" for the sciences of 
communication - 1978), develops a concept of a simple 
and productive message. The message is, as content, what 
is communicated. As a systemic factor, it is emerging as 
what is communicated. To remember in this context is that 
the German Otto Kade insisted that what it is 
communicated to receive the title of "release". According 
to Joseph De Vito, through communication meanings are 
transmitted. "The communicated message" is only a part 
of the meanings (De Vito, 1993, p. 116). Among the 
shared meanings feelings and perceptions are found (De 
Vito J., 1993, p. 298). Likewise, information can be 
communicated (De Vito, 1990, p. 42), (De Vito, 2000, p. 
347) (also, Fârte, 2004; Ciupercă, 2009; Cojocaru, Bragaru
& Ciuchi, 2012; Cobley & Schulz, 2013).

In a "message theory" called "Angelitics", Rafael 
Capurro argues that the message and information are 
concepts that designate similar but not identical 
phenomena. In Greek "Angelia" meant message; from 
here, "Angelitics" or theory of the message (Angelitics is 
different from Angeologia dealing, in the field of religion 
and theology, with the study of angels). R. Capurro set 
four criteria for assessing the relationship between 
message and information. The similarity of the two 
extends over three of them. The message, as well as the 
information, is characterized as follows: „is supposed to 
bring something new and/or relevant to the receiver; can 
be coded and transmitted through different media or 
messengers; is an utterance that gives rise to the receiver’s 
selection through a release mechanism of interpretation”. 
"The difference between these two is the next: „a message 
is sender-dependent, i.e. it is based on a heteronomic or 
assymetric structure. This is not the case of information: 
we receive a message but we ask for information” 
(http://www.capurro.de/angeletics_zkm.html) (see also, 
Capurro, 2011; Holgate, 2011). To request information is 
to send a message of requesting information. Therefore, 
the message is similar to the information in this respect 
too. In our opinion, the difference between them is from 
genus to species: information is a species of message. The 
message depends on the transmitter and the information, 
as well. Information is still a specification of the message, 
is an informative message. C. Shannon asserts that the 

message is the defining subject of the communication. He 
is the stake of the communication because „the 
fundamental problem of communication is that of 
reproducing at one point either exactly or approximately a 
message selected at another point” (Shannon, 1948, p. 31). 

The communication process is in fact the 
"communication" of a complex and multilayered message. 
'Thoughts, interests, talents, experiences"(Duck & 
McMahan, 2011, p. 222), "information, ideas, beliefs, 
feelings "(Wood, 2009, p. 19 and p. 260) can be found in a 
message. G. A. Miller, T. M. Newcomb and Brent R. 
Ruben consider that the subject of communication is 
information: "Communication - Miller shows – means that 
information is passed from one place to another” (Miller, 
1951, p. 6). In his turn, T. M. Newcomb asserts: „very 
communication act is viewed as a transmission of 
information” (Newcomb, 1966, p. 66) and Brent R. Ruben 
argues: „Human communication is the process through 
which individuals in relationships, groups, organizations 
and societies create, transmit and use information to relate 
to the environment and one another” (Ruben, 1992, p. 18). 

Professor Nicolae Drăgulănescu, member of the 
American Society of Information Science and Technology, 
is the most important of Romanian specialists in the 
Science of information. According to him, 
"communicating information" is the third of the four 
processes that form the "informational cycle", along with 
generating the information, processing/storing the 
information and the use of information. The process of 
communication, Nicolae  Drăgulanescu argues, is one of 
the processes whose object is the information 
(http://ndragulanescu.ro/publicatii/CP54.pdf, p. 8) (also, 
Drăgulănescu, 2002; Drăgulănescu, 2005). The same line 
is followed by Gabriel Zamfir too; he sees the information 
as "what is communicated in one or other of the available 
languages" (Zamfir, 1998, p. 7), as well as teacher Sultana 
Craia: communication is a "process of transmitting a piece 
of information, a message" (Craia, 2008, p. 53). In general, 
it is accepted that information means transmitting or 
receiving information. However, when speaking of 
transmitting information, the process is considered not to 
be information but communication. Therefore, it is created 
the appearance that the information is the product and 
communication would only be the transmitting process. 
Teodoru Ştefan, Ion Ivan şi Cristian Popa assert: 
"Communication is the process of transmitting 
information, so the ratio of the two categories is from the 
basic product to its transmission" (Popa, Teodoru & Ivan 
I., 2008, p. 22). The professors Vasile Tran and Irina 
Stănciugelu see communication as an "exchange of 
information with symbolic content" (Tran & Stănciugelu, 
2003, p. 109). The communication is an over-ranged 
concept and an ontological category more extended than 
informing or information. On the other hand, information 
is generated even in the global communication process. 
From this point of view, information (whose subject-
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message is information) is a regional, sectorial 
communication. Information is that communication whose 
message consists of new, relevant, pertinent and useful 
significances, i.e. of information. This position is shared 
by Doru Enache too (Enache, 2010, p. 26). 

The position set by Norbert Wiener, consolidated by L. 
Brillouin and endorsed by many others makes from the 
information the only content of the message. N. Wiener 
argues that the message "contains information" (Wiener 
N., 1965, p. 16), L. Brillouin talks about "information 
contained in the message" (Brillouin, 2004, p. 94 and p. 
28). 

Through communication "information, concepts, 
emotions, beliefs are conveyed" and communication 
"means (and subsumes) information" (Rotaru, 2007, p.10). 
Well-known teachers Marius Petrescu and Neculae 
Năbârjoiu consider that the distinction between 
communication and information must be achieved 
depending on the message. A communication with an 
informational message becomes information. As a form of 
communication, information is characterized by an 
informative message and a "message is informative as 
long as it contains something unknown yet" (Petrescu & 
Năbârjoiu, 2006, p. 25). One of the possible significant 
elements that could form the message content is thus the 
information as well. Other components could be thoughts, 
ideas, beliefs, knowledge, feelings, emotions, experiences, 
news facts. Communication is "communicating" a 
message regardless of its significant content. 

3. The information thesis as a form of commu-
nication

The question of the relationship between commu-
nication and information as fields of existence is the 
fingerprint axis of communication and information 
ontology. The ontological format allows two formulas: the 
existence in the act and the virtual existence. The 
ontological component of the concepts integrates a 
presence or a potency and an existential fact or at a 
potential of existence (Zins, 2007; Allo, 2007; Stan, 2009; 
Burgin, 2010; Case, 2013). 

In addition to the categorial-ontological element, in the 
nuclear ratio of communication-information concepts it 
shows comparative specificities and regarding attributes 
and characteristics, on three components, epistemological, 
methodological and hermeneutical. 

In a science which would have firmly taken a strong 
subject, a methodology and a specific set of concepts, this 
ontological founding decision would be taken in an axiom. 
It is known that, in principle, axioms solve within the 
limits of that type of argument called evidence (clear and 
distinct situation), the relations between the systemic, 
structural, basic concepts. Specifically, in Extensics, 
scientists with an advanced vision, substantiated by 
professor Wen Cai, axioms govern the relationship 
between two matter-elements with divergent profiles. For 

the communication and information issues that have 
occurred relatively recently (about three quarters of a 
century) in subjects of study or areas of scientific concern 
not a scientific authority to settle the issue was found. The 
weaknesses of these sciences of soft type are visible even 
today when after non accredited proposals of science 
("comunicology" - communicology Joseph De Vito, 
"communicatics," - "comunicatique" of Metayer G., 
informatology - Klaus Otten and Anthony Debons, 1970) 
it was resorted to the remaining in the ambiguity of 
validating the subject "The sciences of communication and 
information" or "The sciences of information and 
communication", enjoying the support of some courses, 
books, studies and dictionaries (Toma, 1999; Tudor, 2001; 
Strechie, 2009; Ţenescu, 2009). 

This generic vision of unity and cohesion wrongs both 
the communication and information (Vlăduțescu, 2004; 
Vlăduțescu, 2006). In practice, the apparent unjust overall, 
integrative, altogether treatment has not an entirely and 
covering confirmation. In almost all humanist universities 
of the world the faculties and the communication courses 
are prevailing, including those of Romania and China. 
Professor Nicolae Drăgulănescu ascertained in what 
Romania is concerned, that in 20 colleagues commu-
nication (with various denominations) is taught and in only 
two the informing-information is taught. 

The main perspectives from which the contradictory 
relationship of communication-information was 
approached are the ontological, the epistemological and 
the systemic. In most cases, opinions were incidental. 
When it was about the dedicated studies, the most 
common comparative approach was not programmatically 
made on one or more criteria and neither directly and 
applied.  

In his study "Communication and Information" (19 
March 9, pp. 3-31), J. R. Schement starts from the 
observation that "in the rhetoric of the Information Age, 
the communication and information converge in 
synonymous meanings." On the other hand, he retains that 
there are specialists who declare in favor of stating a 
firming distinction of their meanings. To clarify exactly 
the relationship between the two phenomena, i.e. concepts, 
he examines the definitions of information and 
communication that have marked the evolution of the 
"information studies" and the "communication studies". 
For informing (information) three fundamental themes 
result: information-as-thing (M. K. Buckland), infor-
mation-as-process (N. J. Belkin - 1978, R. M. Hayes, 
Machlup & Mansfield, Elstner - 2010 etc.), Information-
as-product-of - manipulation (C. J. Fox, R. M. Hayes). It is 
also noted that these three subjects involve the assessing of 
their issuers, a "connection to the phenomenon of com-
munication". In parallel, from examining the definitions of 
communication it is revealed that the specialists 
"implicitly or explicitly introduce the notion of infor-
mation in defining communication". There are also three 
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the central themes of defining communication: commu-
nication-as-transmission (C. Shannon, W. Weaver, E. 
Emery, C. Cherry, B. Berelson, G. Steiner), commu-
nication-as-sharing-process (R. S. Gover, W. Schramm), 
communication-as-interaction (G. Gerbner, L. Thayer). 
Comparing the six thematic nodes, Schement emphasizes 
that the link between information and communication is 
"highly complex" and dynamic "information and 
communication is ever present and connected" (Schement, 
1993, p. 17). In addition, in order that “information exist, 
the potential for communication must be present”. The 
result at the ontological level of these findings is that the 
existence of information is (strictly) conditioned by the 
presence of communication. That is for the information to 
occur communication must be present. Communication 
will precede and always condition the existence of 
information. And more detailed: communication is part of 
the information ontology. Ontologically, information 
occurs in communication also as potency of 
communication (Vlăduțescu, 2002). J. R. Schement is 
focused on finding a way to census a coherent image 
leading to a theory of communication and information 
("Toward a Theory of Communication and Information" - 
Schement, 1993, p. 6). He avoids to conclusively asserting 
the temporal and linguistic priority, the ontological 
precedence and the amplitude of communication in 
relation to information. The study concludes that  

1. "Information and communication are social
structures" ("two words are used as interchangeable, even 
as synonyms" – it is argued) (Schement, 1993, p. 17),  

2. "The study of information and communication share
concepts in common" (in both of them communication, 
information, "symbol, cognition, content, structure, 
process, interaction, technology and system are to be 
found" - Schement, 1993, p. 18),  

3. "Information and communication form dual aspects
of a broader phenomenon" (Schement J.R., 1993, p. 18). 

In other words, we understand that: a) linguistically 
("words", "terms", "notions", "concepts", "idea of") 
communication and information are synonyms; b) as area 
of study the two resort the same conceptual arsenal. 
Situation produced by these two elements of the 
conclusion allows, in our opinion, a hierarchy between 
communication and information. If it is true that 
ontologically and temporally the communication precedes 
information, if this latter phenomenon is an extension 
smaller than the first, if eventual sciences having 
communication as object, respectively information, benefit 
from the one and the same conceptual vocabulary, then the 
information can be a form of communication. Despite this 
line followed coherently by the linguistic, categorical-
ontological, conceptual and definitional epistemological 
arguments brought in the reasoning, the third part of the 
conclusion postulates the existence of a unique 
phenomenon which would include communication and 
information (3. "Information and communication form two 

aspects of the same phenomenon "- Schement JR, 1993, p. 
18). This phenomenon is not named. The conclusive line 
followed by the arguments and the previous conclusive 
elements enabled us to articulate information as one of the 
forms of communication. Confirmatively, the fact that J. 
R. Schement does not name a phenomenon situated over
communication and information, gives us the possibility of
attracting the argument in order to strengthen our thesis
that information is a form of communication. That is
because a category of phenomena encompassing
communication and information cannot be found. J. R.
Schement tends towards a leveling perspective and of
convergence in the communication and information
ontology. Instead, M. Norton supports an emphasized
differentiation between communication and information.
He belongs to those who see communication as one of the
processes and one of the methods "for making information
available". The two phenomena "are intricately connected
and have some aspects that seem similar, but they are not
the same" (Norton, 2000, p. 48 and p. 39). Harmut B.
Mokros and Brent R. Ruben (1991) lay the foundation of a
systemic vision and leveling understanding of the
communication-information relationship. Taking into
account the context of reporting as a core element of the
internal structure of communication and information
systems, they mark the information as a criterion for the
radiography of relationship. The systemic-theoretical non-
linear method of research founded in 1983 by B. R. Ruben
is applied to the subject represented by the phenomena of
communication and information. Research lays in the
"Information Age" and creates an informational reporting
image. The main merit of the investigation comes from the
relevance given to the non-subordination between
communication and information in terms of a unipolar
communication that relates to a leveling information.
Interesting is the approach of information in three
constituent aspects: "informatione" (potential information
- that which exists in a particular context, but never
received a significance in the system), "information"
(active information in the system) and "information"
(information created socially and culturally in the system).
The leveling information is related to a unified
communication (Hofkirchner, 2010; Floridi, 2011; Fuchs,
2013; Hofkirchner, 2013). On each level of information
there is communication. Information and communication
is co-present: communication is inherent to information.
Information has inherent properties of communication.
Research brings a systemic-contextual elucidation to the
relationship between communication and information and
only subsidiarily a firm ontological positioning. In any
case: in information communication never misses.

In the most important studies of the professor Stan 
Petrescu: "Information, the fourth weapon" (1999) and 
"About intelligence. Espionage-Counterespionage" (2007), 
information is understood as "a type of communication" 
(Petrescu, 1999, p. 143) and situated in the broader context 
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However, communication remains; communication 
system preserves its validity, which indicates and, 
subsequently, proves that there can be communication that 
does not involve information (Bates, 2006; Dejica, 2006; 
Chapman & Ramage, 2013). 

On the other hand, then  
a) when in the Information System functional

principles such as "need to know"/"need to share" are 
introduced, 

b) when running processes for collecting, analyzing
and disseminating information, 

c) when the beneficiaries are deciders, "decision
maker", "ministry", "government", "policymakers" and 

d) when the caginess item occurs, this Information
System will become Intelligence System (see Gill, Marrin 
& Phytian, 2009, p. 16, p. 17, p. 112, p. 217), (Sims & 
Gerber, 2005, p. 46, p. 234; Gill P.& Phytian, 2006, p. 9, 
p. 236, p. 88; Johnson, 2010, p. 5, p. 6, p. 61, p. 392, p.
279; Maior, 2009; Maior, 2010).  Peter Gill shows that
"Secrecy is the Key to Understanding the essence of
intelligence" (Gill, 2009, p. 18), and Professor George
Cristian Maior emphasizes: "in intelligence, collecting and
processing information from secret sources remain
essential" (Major, 2010, p. 11).

Sherman Kent, W. Laqueur, M. M. Lowenthal, G.-C. 
Maior etc. start from a complex and multilayered concept 
of intelligence, understood as meaning knowledge, 
activity, organization, product, process and information. 
Subsequently, the question of ontology, epistemology, 
hermeneutics and methodology of intelligence occurs. 
Like Peter Gill, G.-C. Maior does pioneering work to 
separate the ontological approach of intelligence from the 
epistemological one and to analyze the "epistemological 
foundation of intelligence" (Maior, 2010, p. 33 and p. 43). 

The intelligence must be also considered in terms of 
ontological axiom of the object. In this regard, noticeable 
is that one of its meanings, perhaps the critical one, places 
it in some way in the information area. In our opinion, the 
information that has critical significance for accredited 
operators of the state, economic, financial and political 
power, and holds or acquires confidential, secret feature is 
or becomes intelligence. Information from intelligence 
systems can be by itself intelligence or end up being 
intelligence after some specialized processing. 
"Intelligence is not just information that merely exists" 
(Marinică & Ivan, 2010, p. 108), Mariana Marinică and 
Ion Ivan assert, it is acquired after a "conscious act of 
creation, collection, analysis, interpretation and modeling 
information" (Marinică & Ivan, 2010, p. 105).        

4.2. Linguistic axiom.  
A second axiom of communication-information 

ontological segregation can be drawn in relation to the 
linguistic argument of the acceptable grammatical context. 
Richard Varey considers that understanding "the 
difference between communication and information is the 

  

of "knowledge on the internal and international 
information environment " (Petrescu, 2007, p. 32). 

4. Axiomatic conclusion: four axioms of com-
munication-information ontology

4.1. The message axiom.  
We call the ontological segregation axiom on the 

subject or the Tom D. Wilson - Solomon Marcus’ axiom, 
the thesis that not any communication is information, but 
any information is communication. Whenever the message 
contains information, the communicational process will 
acquire an informational profile. Moreover, the 
communicational system becomes informational system. 
Derivatively, the communicator becomes the "informer" 
and the communicational relationship turns into 
informational relationship. The interactional basis of 
society, even in the Information Age, is the 
communicational interaction. Most social interactions are 
non-informational. In this respect, T. D. Wilson has noted: 
„We frequently receive communications of facts, data, 
news, or whatever which leave us more confused than 
ever. Under formal definition, these communications 
contain no information” (Wilson, 1987, p. 410). 
Academician Solomon Marcus takes into account the 
undeniable existence of a communication "without a 
transfer of information" (Marcus, 2011a, p. 220; Marcus, 
2011b). For communications that do not contain 
information we do not have a separate and specific term. 
Communications containing information or just 
information are called informing. 

Communication involves a kind of information, but as 
Jean Baudrillard stated (Apud Dâncu, 1999, p. 39), "it is 
not necessarily based on information". More specifically, 
any communication contains cognition that can be 
knowledge, data or information. Therefore, in 
communication, information may be missing, may be 
adjacent, incidental or collateral. Communication can be 
informational in nature or its destination. That 
communication which by its nature and organization is 
communication of information is called informing. 

The main process ran in Information System is 
informing. The function of such a system is to inform. The 
actants can be informants, producers-consumers of 
information, transmitters of information, etc. The 
information action takes identity by the cover enabled 
onto-categorial by the verb "to inform". In his turn, Petros 
A. Gelepithis considers the two concepts, communication 
and information to be crucial for "the study of information 
system" (Gelepithis, 1999, p. 69).

Confirming the information axiom as post reductionist 
message, as reduced object of communication, Soren Brier 
substantiates: „communication system actually does not 
exchange information” (Brier, 1999, p. 96). Sometimes, 
within the communication system information is no longer 
exchanged.  
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central factor" and finds in the linguistic context the 
criterion to validate the difference: „we speak of giving 
information to while communicate with other” (Varey, 
1997, p. 220). The transmission of information takes place 
"to" or to someone, and communication takes place 
"with". Along with this variant of grammatical context it 
might also emerge the situation of acceptability of some 
statements in relation to the object of the communication 
process, respectively the object of the information process. 

The statement "to communicate a message, 
information" is acceptable. Instead, the statement "to 
inform communication" is not. The phrase 
"communication of messages-information" is valid, but the 
phrase "informing of communication", is not. Therefore, 
language bears knowledge and "lead us" (Martin 
Heidegger states) to note that, linguistically, 
communication is more ontological extensive and that 
information ontology is subsumed to it (Henno, 2013; Gîfu 
& Cristea, 2013; Gorun & Gorun, 2011). 

The ontical and ontological nature of language allows 
it to express the existence and to achieve a functional-
grammatical specification. Language allows only 
grammatical existences. As message, the information can 
be "communicated" or "communicable". There is also the 
case in which a piece of information cannot be 
"communicated" or "communicable". Related, 
communication cannot be "informed". The semantic field 
of communication is therefore larger, richer and more 
versatile (Ştefan Buzărnescu, 2006). Communication 
allows the "incommunicable". 

4.3. Teleological axiom.  
In addition to the axiom of segregating 

communication, of informing in relation to the object 
(message), it may be stated as an axiom a Magoroh 
Maruyama's contribution to the demythologization of 
information. In the article "Information and 
Communication in Poly Epistemological System" in "The 
Myths of Information", he states: „The transmission of 
information is not the purpose of communication. In 
Danish culture, for example, the purpose of 
communication is frequently to perpetuate the familiar, 
rather than to introduce new information” (Maruyama, 
1980, p. 29). 

The ontological axiom of segregation in relation to the 
purpose determines information as that type of 
communication with low emergence in which the purpose 
of the interaction is transmitting information. 

4.4. The neutrosophic communication axiom. 
Understanding the frame set by the three axioms, we 

find that some communicational elements are 
heterogeneous and neutral in relation to the criterion of 
informativity. In a speech some elements can be 
suppressed without the message suffering informational 
alterations. This means that some message-discursive 

meanings are redundant; others are not essential in relation 
to the orexis-the practical course or of practical touch in 
the order of reasoning. Redundancies and non-nuclear 
significational components can be elided and 
informational and the message remains informationally 
unchanged. This proves the existence of cores with 
neutral, neutrosophic meanings. (In the epistemological 
foundations of the concept of neutrosophy we refer to 
Florentin Smarandache’s work, A Unifying Field in 
Logics, Neutrosophic Logic, Neutrosophy, Neutrosophic 
Set, Neutrosophic Probability and Statistics, 1998) 
(Smarandache, 1998; Smarandache, 1999; Smarandache, 
2002; Smarandache, 2005; Smarandache, 2010a; 
Smarandache, 2010b; Smarandache & Păroiu, 2012). 

On the operation of this phenomenon are based the 
procedures of textual contraction, of grouping, of serial 
registration, of associating, summarizing, synthesizing, 
integrating. 

We propose to understand by neutrosophic 
communication that type of communication in which the 
message consists of and it is based on neutrosophic 
significational elements: non-informational, redundant, 
elidable, contradictory, incomplete, vague, imprecise, 
contemplative, non-practical, of relational cultivation. 
Informational communication is that type of 
communication whose purpose is sharing an informational 
message. The issuer's fundamental approach is, in 
informational communication, to inform. To inform is to 
transmit information or, specifically, in the professor’s Ilie 
Rad words: "to inform, that is just send information" 
(Moldovan, 2011, p. 70) (also, Rad, 2005; Rad, 2008). In 
general, any communication contains some or certain 
neutrosophic elements, suppressible, redundant, elidable, 
non-nuclear elements. But when neutrosophic elements are 
prevailing communication is no longer informational, but 
neutrosophic. Therefore, the neutrosophic axiom allows us 
to distinguish two types of communication: neutrosophic 
communication and informational communication. In most 
of the time our communication is neutrosophic. The 
neutrosophic communication is the rule. The informational 
communication is the exception. In the ocean of the 
neutrosophic communication, diamantine islands of 
informational communication are distinguished. 
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Several Similarity Measures of Neutrosophic Sets 
Said Broumi, Florentin Smarandache

Abstract. Smarandache (1995) defined the notion of 
neutrosophic sets, which is a generalization of Zadeh's 
fuzzy set and Atanassov's intuitionistic fuzzy set. In this 
paper, we first develop some similarity measures of 
neutrosophic sets. We will present a method to calculate 

the distance between neutrosophic sets (NS) on the basis 
of the Hausdorff  distance. Then we will use this distance 
to generate a new similarity measure to calculate the 
degree of similarity between NS. Finally we will prove 
some properties of the proposed similarity measures.  

1 Introduction
Smarandache introduced a concept of 

neutrosophic set which has been a mathematical tool 
for handling problems involving imprecise, 
indeterminacy, and inconsistent data [1, 2].The 
concept of similarity is fundamentally important in 
almost every scientific field. Many methods have 
been proposed for measuring the degree of similarity 
between fuzzy sets (Chen, [11]; Chen et al., [12]; 
Hyung, Song, & Lee, [14]; Pappis& Karacapilidis, 
[10]; Wang, [13]...). But these methods are unsuitable 
for dealing with the similarity measures of 
neutrosophic set (NS). Few researchers have dealt 
with similarity measures for neutrosophic set and 
single valued neutrosophic set  ([3, 4,17,18]), (i.e. the 
crisp neutrosophic sets, where the components T, I, F 
are all crisp numbers). Recently, Jun [3] discussed 
similarity measures on interval neutrosophic set 
(which an instance of NS) based on Hamming 
distance and Euclidean distance and showed how 
these measures may be used in decision making 
problems. Furthermore, A.A.Salama [4] defined the 
correlation coefficient, on the domain of neutrosophic 
sets, which is another kind of similarity measurement. 
In this paper we first extend the Hausdorff  distance 
to neutrosophic set which plays an important role in 
practical application, especially in many visual tasks, 
computer assisted surgery and so on. After that a new 
series of similarity measures has been proposed for 
neutrosophic set using different approaches. 

Similarity measures have extensive application in 
several areas such as pattern recognition, image 

processing, region extraction, psychology [5], 
handwriting recognition [6], decision making [7], 
coding theory etc. 

This paper is organized as follows: Section2 
briefly reviews the definition of Hausdorff distance 
and the neutrosophic set. Section 3 presents the new 
extended Hausdorff distance between neutrosophic 
sets. Section 4 provides the new series of similarity 
measure between neutrosophic sets, some of its 
properties are discussed. In section 5 a comparative 
study was done. Finally the section 6 outlines some 
conclusions. 

2 Preliminaries
In this section we briefly review some definitions 

and examples which will be used in the rest of the 
paper.  

2.1Definition: Hausdorff  Distance 
The Hausdorff  distance (Nadler, 1978)  is  the 

maximum distance of a set to the nearest point in the 
other set. More formal description is given by the 
following  

Given two finite sets A = {a1, ..., ap} and B = {b1, ..., 
bq}, the Hausdorff  distance H (A, B) is defined as:  

H (A, B) = max {h (A, B), h (B, A)} 
(1) 

where 
H (A, B) = max min d (a, b)                         (2) 

a∈A b∈B 
a and b are elements of sets A and B 

respectively; d (a, b) is any metric between these 
elements.  

Keywords- Neutrosophic Set, Matching Function, Hausdorff  Distance, Similarity Measure. 
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The two distances h (A, B) and h (B, A) are 
called directed Hausdorff  distances.  

The function h (A, B) (the directed Hausdorff 
distance from A to B) ranks each element of A based 
on its distance to the nearest element of B, and 
then the largest ranked such element (the most 
mismatched element of A) specifies the value of 
the distance. Intuitively, if h(A, B) = c, then each 
element of A must be within distance c of some 
element of B, and there also is some element of A 
that is exactly distance c from the nearest element 
of B (the most mismatched element).  In general h 
(A, B) and h (B, A) can attain very different values 
(the directed distances are not symmetric). 

Let us consider the real space R, for any two 
intervals A= [a1,a2] and B= [b1,b2], the Hausdorff 
distance H(A,B) is given by 

H (A, B) =max { , }        (3) 

2.2 Definition (see [2]). Let U be an universe of 
discourse  then the neutrosophic set A is an object 
having the form A = {< x: TA(x),IA(x),FA(x) >,x ∈ U}, 
where the functions T, I, F : U→]−0,1+[  define 
respectively the degree of membership (or Truth) , the 
degree of indeterminacy, and the degree of non-
membership (or Falsehood) of the element x ∈ U to the 
set A with the condition.  

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.                     (4) 
From philosophical point of view, the 

neutrosophic set takes the value from real standard or 
non-standard subsets of ]−0,1+[. So instead of ]−0,1+[ 
we need to take the interval [0,1] for technical 
applications, because ]−0,1+[will be difficult to apply 
in the real applications  such as in scientific and 
engineering problems.  

2.3 Definition (see [18] ): Let X be a space of points
(objects) with generic elements in X denoted by x 
(Wang et al., 2010). An SVNS A in X is 
characterized by a truth-membership function TA(x), 
an indeterminacy-membership function IA(x), and a 
falsity-membership function FA(x) for each point x in 
X, TA(x), IA(x), FA(x) [0, 1].  

When X is continuous, an SVNS A can be written 
as 

 A=  (5) 
When X is discrete, an SVNS A can be written as 

A=  (6)      

2.4 Definition (see [2,18]). A neutrosophic set or 
single valued neutrosophic set (SVNS ) A is 
contained in another neutrosophic set B i.e. A ⊆ B if 
∀x ∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x). 

2.5 Definition (see [2]). The complement of a 
neutrosophic set A is denoted by Ac and is defined as 
TA

c
(x) = FA(x), IA

c
(x) = IA(x), and  

F A
c
(x) = TA(x) for every x in X. 
A complete study of the operations and application 

of neutrosophic set can be found in [1] [2] [18]. 
In this paper we are concerned with neutrosophic 

sets whose TA, IA and FA values are single points in 
[0, 1] instead of subintervals/subsets in [0, 1]. 

3 Extended Hausdorff Distance Between Two 
Neutrosophic Sets
Based on the Hausdorff  metric, Eulalia Szmidt 

and Janusz Kacprzyk  defined a new distance 
between intuitionistic fuzzy sets and/or interval-
valued fuzzy sets in[8], taking into account three 
parameter representation (membership, non-
membership values, and the hesitation margins) of A-
IFSs which fulfill the properties of the Hausdorff 
distances. Their definition is defined by: 

 (7) 
where A = {< x, µA(x), νA(x), πA(x) >} and B = 

{< x, µB(x), νB(x), πB(x)>}. 
The terms and symbols used in [8] are changed so 

that they are consistent with those in this section. 
In this paper we are interested in extending the 

Hausdorff distance formulation in constructing a new 
distance for neutrosophic set due to its simplicity in 
the calculation. 

Let X={x1,x2, …, xn} be a discrete finite set. 
Consider a neutrosophic set A in X, where TA(xi), 
IA(xi), FA(xi)  [0, 1], for every xi   X, represent its 
membership, indeterminacy, and non-membership 
values respectively denoted  by A = {< x, TA(xi) , IA(xi),
FA(xi) >}.  

Then we propose a new distance between A  NS 
and B  NS defined by 

   (8) 
Where = H (A, B) denote the 

extended Hausdorff  distance between two 
neutrosophic sets A and B. 

Let A, B and C be three neutrosophic sets. For all 
xi X we have: 

 = H (A, B) 
=

     (9) 
The same between A and C are written as: 
For all xi X 
H (A, C) 

=
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     (10) 
and between B and C is written as: 
For all xi X  
H (B , C) 

=

       (11) 

3.1 Proposition: 
The above defined distance   between NS 

A and B satisfies the following properties (D1-D4): 

(D1)  ≥ 0.           (12) 

(D2)  =0 if and only if A = B; for all A, B 
 NS. (13) 

(D3)  = .               (14)     

(D4) If A⊆B⊆C, C is an NS in X, then 

 (15) 
 And 

 (16) 

Remark: Let A, B  NS, A  B if and only if , for 
all xi in X 

(17)
It is easy to see that the defined measure 

satisfies the above properties (D1)-(D3). Therefore, we 
only prove (D4). 

Proof of (D4) for the extended  Hausdorff  distance 
between two  neutrosophic  sets. Since 

A  B  C implies  ,  for all xi in X 

We prove that 
(18)     

α - If 

 (19)      
Then 

H (A, C) =  but we have 
(i) For all xi in X,  

(ii) (20)

 And ,  X   

(21) 

(iii) X ,  
       

(22) 

  And ,for all xi in X  

(23) 

On the other hand we have,  X   

(iv)
(24) 

  and 

Combining  (i), (ii), and (iii) we obtain 
Therefore, for all xi in X 

And 

That is 
 and . 

 (25) 
β - If

(26)
Then 

H (A, C) =  but we have  X     

  (27) 

(a)   (28) 
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And           

(b) 
(29) 

  And        (30) 

On the other hand we have  X     : 
(c)  and   (31) 

Combining (a) and (c) we obtain: 
Therefore,     X      

And 

That is 

and 
      

(32) 

- If

(33)

Then 

H (A, C) =  but we have for all xi in X                                                                   
(34) 

(a) 
(35)    

and      ( 
36)                                                       

(b) X
(37)

and  X
(38)

On the other hand we have for all xi in X 

(c) X
(39)
and

(40)

Combining (a), (b), and (c) we obtain 

Therefore, for all xi in X 

. 

And 

That is 

and 
. 

(41) 

From α, β , and , we can obtain the property (D4). 

3.2 Weighted Extended Hausdorff  Distance 
Between Two Neutrosophic Sets. 

In many situations the weight of the 
element xi  X should be taken into account. 
Usually the elements have different 
importance. We need to consider the weight 
of the element so that we have the following 
weighted distance between NS. Assume that 
the weight of xi  X is wi where X={x1, x2,.., 
xn}, wi  [0,1], i={1,2,3,.., n} and 1. 
Then the weighted extended Hausdorff 
distance between NS A and B is defined as: 

    (42) 

It is easy to check that  satisfies the four 
properties D1-D4 defined above. 

4 Some new similarity measures for neutro-
sophic sets
The distance measure between two NS is 

used in finding the similarity between 
neutrosophic sets. We found in the literature 
different similarity measures, and we extend 
them to neutrosophic sets (NS), several of 
them defined below: Liu [9] also gave an 
axiom definition for the similarity measure of 
fuzzy sets, which also can be expressed for 
neutrosophic sets (NS) as follow: 
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4.1.Definition: Axioms of a Similarity Measure 
 A mapping S:NS(X) NS(X) [0,1], 

NS(X) denotes the set of all NS in 
X={x1,x2,…,xn}, S(A, B) is said to be the 
degree of similarity between A  NS and B  
NS, if S(A,B) satisfies the properties of 
conditions (P1-P4): 
(P1) S (A, B) = S (B, A).  (43)                                                 
(P2) S(A,B) = (1,0,0) =  .If  A = B  for all 
A,B  NS.      (44) 
(P3)  0,  0, 
0.     (45)                                                                            
(P4) If A⊆B⊆C for all A, B, C  NS, then S 
(A, B) S (A, C) and S (B, C)  S (A, C). 

 (46) 
Numerical Example: 

Let  A  B C. with TA  TB  TC and 
IA IB IC and FA FB FC for each xi  NS. 

For example: 
A= { x1 (0.2, 0.5, 0.6); x2 (0.2, 0.4, 0.4) } 
B= { x1 (0.2, 0.4, 0.4); x2 (0.4, 0.2, 0.3) } 
C= { x1 (0.3, 0.3, 0.4); x2 (0.5, 0.0, 0.3) } 
In the following we define a new similarity 

measure of neutrosophic set and discuss its 
properties. 

4.2 Similarity Measures Based on the Set –
Theoretic Approach. 

In this section we extend the similarity 
measure for intuitionistic and fuzzy set 
defined by Hung and Yung [16] to 
neutrosophic set which is based on set-
theoretic approach as follow.  

4.2.Definition: Let A,B be two neutrosophic 
sets in X={x1,x2,.., xn}, if A = {< x, TA(xi), 
IA(xi), FA(xi) >} and B= {< x, TB(xi), IB(xi), 
FB(xi) >} are neutrosophic values  of X in A 
and B respectively, then the similarity 
measure between the neutrosophic sets A and 
B can be evaluated by the function 

For all xi in X 

/n 

(47) 

/n 

(48) 

)/n 

(49) 

and 
(50) 

where 
 denote the degree of similarity 

(where we take only the T's). 
 denote the degree of indeterminate 

similarity (where we take only the I's). 
 denote degree of nonsimilarity 

(where we take only the F's). 
Min  denotes the minimum between each 

element of A and B. 
Max denotes the minimum between each 

element of A and B. 
Proof of (P4) for the (1). 
Since A⊆B⊆C implies,  for all xi in X 

Then, for all xi in X 
 (51) 

 (52) 

 (53) 

Therefore, for all xi in X 
    (54) 

(since  ) 
Furthermore, for all xi in X 

    (55) 

Or 
  or     (56) 

(since  ) 
Inequality (53) implies that, for all xi in X 

 (57) 

From the inequalities (54) and (57), the property 
(P4) for   is proven. 

In a similar way we can prove that  and 
. 

We will to prove that . For all 
xi  X we have: 

=

(58) 
Since 
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Similarly we prove  for all xi 
in X  

(59) 
=

(60) 
Since 
Then   S(A, C) S(A, B) where 
S(A,C)=( , , ) and 

S (A, B) = ( , , ). 
(61) 

In a similar way we can prove that S (B, C)  S (A, 
C). If A⊆B⊆C therefore S (A, B) satisfies (P4)
of definition 4.1.

By applying (50), the degree of similarity
between the neutrosophic sets (A, B), (A, C)
and (B, C) are:
S(A, B) = = (0.75, 0.35,
0.30)
S (A, C) = = (0.53, 0.7,
0.30)
S (B, C) = = (0.73,
0.63, 0)

Then  (49) satisfies property P4: S(A, C)  S(A,
B) and S(A, C)  S(B, C).

Usually, the weight of the element xi  X should be
taken into account, then we present the following 
weighted similarity between NS. Assume that the 
weight of xi  X={1,2,…,n} is wi (i=1,2,…, n) when 
wi  [0,1], . 

Denote /n 

(62) 

/n 

(63) 

)/n 

(64) 

and   

(65) 

It is easy to check that  satisfies the four 
properties P1-P4 defined above. 

4.3 Similarity Measure Based on the Type1 
Geometric Distance Model  

In the following, we express the definition 
of similarity measure between fuzzy sets 
based on the model of geometric distance 
proposed by Pappis and Karacapilidis in [10] 
to similarity of neutrosophic set. 

4.3.Definition: Let A,B be two neutrosophic 
sets in X={x1, x2,..., xn}, if A = {< x, TA(xi), 
IA(xi), FA(xi) >} and B= {< x, TB(xi), IB(xi), 
FB(xi) >} are neutrosophic values  of X in A 
and B respectively, then the similarity 
measure between the neutrosophic sets A and 
B can be evaluated by the function    

For all xi in X 

(66) 

(67) 

(68) 
and 

(69) 

We will prove this similarity measure 
satisfies the properties 1-4 as above. The 
property (P1) for the similarity measure (69) 
is obtained directly from the definition 4.1. 

Proof: obviously, (68) satisfies P1-P3-P4 of 
definition 4.1. In the following L (A, B) will be proved 
to satisfy (P2) and (P4). 

   Proof of (P2) for the (69) 

     For all xi in X 

First of all, 

     (70) 

(71) 

(72) 

Then  = (1, 

0, 0) if A=B for all A, B  NS. 

(73) 

   Proof of P3 for the (69) is obvious. 
By applying (69) the degree of similarity 

between the neutrosophic sets (A, B), (A, C) 
and (B, C) are: 
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L (A, B) = = (0.8, 0.2, 
0.17). 
L (A, C) = = (0.67, 0.5, 
0.17). 
L (B, C) = = (0.85, 0.33, 
0). 

The result indicates that the degree of 
similarity between neutrosophic sets A and B 

 [0, 1]. Then (69) satisfies property P4: L(A, 
C) L(A, B) and L(A, C)  L(B, C).

4.4 Similarity Measure Based on the Type 2 
Geometric Distance model  

In this section we extend the similarity measure 
proposed by Yang and Hang [16] to neutrosophic set 
as follow: 

4.4.Definition: Let A, B be two neutrosophic 
set in X={x1,x2,.., xn}, if A = {< x, TA(xi), 
IA(xi), FA(xi) >} and B= {<x, TB(xi), IB(xi), 
FB(xi) >} are neutrosophic values  of X in A 
and B respectively, then the similarity 
measure between the neutrosophic set A and 
B can be evaluated by the function: 

For all xi in X 
 (A, B) = .          

(74)                                                                              
 (A, B) =  .         

(75)                                                                            
 (A, B) = . 

And 

  for 

all i={x1,x2 ,.., xn}   (76) 

The proofs of the properties P1-P2-P3 in 
definition 4.1 (Axioms of a Similarity Measure) of 
the similarity measure in definition 4.4 are obvious. 

Proof of (P4) for the (76). 
Since for all xi in X 

Then for all xi in X 

(77) 

+ 

) 

Then (A, C) (B, C).                       (78) 
Similarly, (A, C) (A, B) can be proved 

easily. 
For (A, C) (B, C) and (A, C) (B, 

C) the proof is easy.
Then by the definition 4.4, (P4) for definition 4.1,

is satisfied as well. 
By applying (76), the degree of similarity 

between the neutrosophic sets (A, B), (A, C) 
and (B, C) are: 

M(A, B)=(  (A,B),  (A,B),  (A,B))=(0.95 , 0.075 , 
0.075) 
M(A, C)= ( (A,C), (A,C), (A,C))=(0.9, 0.15 , 
0.075) 
M(B, C)= (  (B,C),  (B,C),  (B,C))=(0.9, 0.075 , 0) 

Then (76) satisfies property P4: 
 M (A,  C)  M (A, B) and M (A,  C)  M (B, C). 

(79) 
Another way of calculating similarity (degree) of 

neutrosophic sets is based on their distance. There are 
more approaches on how the relation between the two 
notions in form of a function can be expressed. Two 
of them are presented below (in section 4.5 and 4.6).  

4.5 Similarity Measure Based on the Type3 
Geometric Distance Model. 

In the following we extended the similarity 
measure proposed by Koczy in [15] to 
neutrosophic set (NS). 

4.5.Definition: Let A, B be two neutrosophic 
sets in X={x1,x2,.., xn}, if A = {< x, TA(xi), 
IA(xi), FA(xi) >} and B= {< x, TB(xi), IB(xi), 
FB(xi) >} are neutrosophic values  of x in A 
and B respectively, then the similarity 
measure between the neutrosophic sets A and 
B can be evaluated by the function 

  denotes the degree of 
similarity. 

 (80) 

  denotes the degree of 
indeterminate similarity. (81)
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. 
(83) 

. 
(84) 

. 
(85) 

and   H (A, B) = ( , ). 
(86)     

By applying the (86) in  numerical example we 
obtain: 

= (0.2, 0.2, 0.2), then H (A, B) = (0.83, 
0.17, 0.17). 

= (0.3, 0.4, 0.1), then H (A, C) = (0.76, 
0.29, 0.17). 

= (0.1, 0.2, 0), then H (B, C) = (0.90, 
0.17, 0). 

It can be verified that H (A, B) also has the 
properties (P1)-(P4). 

4.6 Similarity Measure Based on Extended 
Hausdorff  Distance  

It is well known that similarity measures 
can be generated from distance measures. 
Therefore, we may use the proposed distance 
measure based on extended Hausdorff 
distance to define similarity measures. Based 
on the relationship of similarity measures and 
distance measures, we can define a new 
similarity measure between NS A and B as 
follows: 

 (87)  

Where represent the extended 
Hausdorff  distance between  neutrosophic sets 
(NS) A and  B. 

According to the above distance properties 
(D1-D4).It is easy to check that the similarity 
measure (87) satisfies the four properties of 
axiom similarity defined in 4.1 

By applying the (87) in numerical example we 
obtain: 

0.8 
0.7 
0.85 

Then (5) satisfies property P4: 
N(A, C)  N(A, B) and N(A, C)  N(B, C) 

Remark: It is clear that the larger the value of 
N(A, B),  the more the similarity between NS A and 
B. 

Next we define similarity measure between NS A 
and B using a matching function. 

4.7 Similarity Measure of two Neutrosophic 
Sets Based on Matching Function. 

Chen [11] and Chen et al. [12] introduced a 
matching function to calculate the degree of similarity 
between fuzzy sets. In the following, we extend the 
matching function to deal with the similarity measure 
of NS. 

4.7 Definition Let F and E be two neutrosophic 
sets over U. Then the similarity between them, 
denoted by K (F, G) or KF, G   has been defined based 
on the matching function as: 

For all xi in X 

        (88) 

Considering the weight wj [0, 1] of each 
element xi X, we get the weighting similarity 
measure between NS as: 

For all xi in X 

  (89) 

If each element xi∈ X has the same importance, 
then (89) is reduced to (88). The larger the value 
of  the more the similarity between F and G. 
Here  has all the properties described as listed 
in the definition 4.1. 

By applying the (88) in  numerical example we 
obtain: 

0.75, 0.66, and 

0.92 

Then (87) satisfies property P4: K(A, C)  K(A, 

B) and K(A, C)  K(B, C) 

2 Comparision of various similarity measures
In this section, we make a comparison 

among similarity measures proposed in the 
paper. Table 1 show the comparison of 
various similarity measures between two 
neutrosophic sets respectively. 

A, B A, C B, C 

 (50) (0.75, 0.35, 0.3) (0.53, 0.7, 0.3) (0.73, 0.63, 
0) 

 (69) (0.8, 0.2,0.17) (0.67, 0.5, 0.17) (0.85, 0.33, 
0) 

 (76) (0.95, 0.075, 
0.075) 

(0.9, 0.15, 0.075) (0.9, 0.075, 
0) 

 (86) (0.83, 0.17, 0.17) (0.76, 0.29, 0.17) (0.9, 0.17, 0) 
 (87) 0.8 0.7 0.85 

 (88) 0.75 0.66 0.92 
Table 1: Example results obtained from the similarity measures 

between neutrosophic sets A , B and C. 

Each similarity measure expression has its own 
measuring. They all evaluate the similarities in 
neutrosophic sets, and they can meet all or most of  the 
properties of similarity measure. 

60 

61 62

2

Florentin Smarandache (author and editor) Collected Papers, XII

66



 (87) 0.8 0.7 0.85 

 (88) 0.75 0.66 0.92 
Table 1: Example results obtained from the similarity measures 

between neutrosophic sets A , B and C. 

Each similarity measure expression has its own 
measuring. They all evaluate the similarities in 
neutrosophic sets, and they can meet all or most of  the 
properties of similarity measure. 

In definition 4.1, that is P1-P4. It seems from the 
table above that from the results of similarity measures 
between neutrosophic sets  can be  classified in two 
type of similarity measures: the first type which we 
called “crisp similarity measure” is illustrated by 
similarity measures (N and K) and the second type 
called  “neutrosophic similarity measures” illustrated 
by similarity measures (S, L, M and H). The 
computation of measure H , N and S are much simpler 
than that of  L, M and K.  

Conclusions
In this paper we have presented a new distance called 

"extended Hausdorff distance for neutrosophic sets" or 
"neutrosophic Hausdorff distance". Then, we defined a new 
series of similarity measures to calculate the similarity 
between neutrosophic sets. It’s hoped that our findings will 
help enhancing this study on neutrosophic set for 
researchers. 
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On Neutrosophic Implications 

Said Broumi, Florentin Smarandache

Abstract: In this paper, we firstly review the neutrosophic set, 
and then construct two new concepts called neutrosophic 
implication of type 1 and of type 2 for neutrosophic sets. 

 Furthermore, some of their basic properties and some 
results associated with the two neutrosophic 

implications are proven. 
Keywords: Neutrosophic Implication, Neutrosophic Set, N-norm, N-conorm. 

1 Introduction 
Neutrosophic set (NS) was introduced by Florentin 
Smarandache in 1995 [1], as a generalization of the fuzzy 
set proposed by Zadeh [2], interval-valued fuzzy set [3], 
intuitionistic fuzzy set [4], interval-valued intuitionistic 
fuzzy set  [5], and so on. This concept represents 
uncertain, imprecise, incomplete and inconsistent 
information existing in the real world.  A NS is a set 
where each element of the universe has a degree of truth, 
indeterminacy and falsity respectively and with lies in] 0- , 
1+  [, the non-standard unit interval.  
NS has been studied and applied in different fields 
including decision making problems [6, 7, 8], Databases 
[10], Medical diagnosis problem [11], topology [12], 
control theory [13], image processing [14, 15, 16] and so 
on. 
In this paper, motivated by fuzzy implication [17] and 
intutionistic fuzzy implication [18], we will introduce the 
definitions of two new concepts called neutrosophic 
implication for neutrosophic set. 
This paper is organized as follow: In section 2 some basic 
definitions of neutrosophic sets are presented. In section 3, 
we propose some sets operations on neutrosophic sets. 
Then, two kind of neutrosophic implication are proposed. 
Finally, we conclude the paper. 

2 Preliminaries 
This section gives a brief overview of concepts of 
neutrosophic sets, single valued neutrosophic sets, 
neutrosophic norm and neutrosophic conorm which will 
be utilized in the rest of the paper. 

Definition 1 (Neutrosophic set) [1] 
Let X be a universe of discourse then, the neutrosophic set 
A is an object having the form:  
A = {< x: , , >,x  X}, where the 
functions T, I, F : X→ ]−0, 1+[  define respectively the 
degree of membership (or Truth), the degree of 

indeterminacy, and the degree of non-membership 
(or Falsehood) of the element x  X to the set A 
with the condition.  

  −0 ≤  + + ≤ 3+.       (1) 

From philosophical point of view, the 
neutrosophic set takes the value from real 
standard or non-standard subsets of ]−0, 1+[. So 
instead of ]−0, 1+[, we need to take the interval [0, 
1] for technical applications, because ]−0, 1+[will
be difficult to apply in the real applications  such
as in scientific and engineering problems.

Definition 2 (Single-valued Neutrosophic sets) [20] 
Let X be an universe of discourse with generic 
elements in X denoted by x. An SVNS A in X is 
characterized by a truth-membership function 

, an indeterminacy-membership function 
, and a falsity-membership function ,  

for each point x in X, , , , [0, 
1].  
When X is continuous, an SVNS A can be written 
as     
A=          (2)    
When X is discrete, an SVNS A can be written as 
 A=         (3) 
Definition 3 (Neutrosophic norm, n-norm) [19] 
Mapping : (]-0,1+[ × ]-0,1+[ × ]-0,1+[)2→ ]-
0,1+[  × ]-0,1+[ × ]-0,1+[  

 (x( , , ), y( , , )  ) = ( T(x,y), 
I(x,y), F(x,y), where 
T(.,.), I(.,.), F(.,.) 

are the truth/membership, indeterminacy, and 
respectively falsehood/ nonmembership 
components. 
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 have to satisfy, for any x, y, z in the neutrosophic 
logic/set M of the universe of discourse X, the following 
axioms 
a) Boundary Conditions:  (x, 0) = 0,  (x, 1) = x. 
b) Commutativity:  (x, y) =  (y, x). 
c) Monotonicity: If x ≤y, then  (x, z) ≤  (y, z). 
d) Associativity:  (  (x, y), z) =  (x,  (y, z)). 

 represents the intersection operator in neutrosophic set 
theory. 
Let J {T, I, F} be a component. 
Most known N-norms, as in fuzzy logic and set the T-
norms, are:  
• The Algebraic Product N-norm: J(x, y) = x · y  
• The Bounded N-Norm: J(x, y) = max{0, x + 
y −1}
• The Default (min) N-norm:  (x, y) = min{x, y}. 
A general example of N-norm would be this. 
Let  x( , , ) and  y ( , , )  be in the neutrosophic 
set M. Then: 

 (x, y) = ( ,  , )                         (4) 
where the “ ” operator is a N-norm (verifying the above 
N-norms axioms); while the “ ” operator, is a N-conorm.
For example,  can be the Algebraic Product T-norm/N-
norm, so = ·   and can be the Algebraic 
Product T-conorm/N-conorm, so = + - ·  
Or  can be any T-norm/N-norm, and  any T-conorm/N-
conorm from the above. 

Definition 4 (Neutrosophic conorm, N-conorm) [19] 
Mapping : ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2→]-0,1+[ × ]-
0,1+[ × ]-0,1+[  

(x( , , ), y( , , )) = ( T(x,y), I(x,y), 
F(x,y)), 

where T(.,.), I(.,.), F(.,.) are the truth/membership, 
indeterminacy, and respectively falsehood/non mem-
bership components.  

 have to satisfy, for any x, y, z in the neutrosophic 
logic/set M of universe of discourse X, the following 
axioms:  
a) Boundary Conditions:  (x, 1) = 1,  (x, 0) = x. 
b) Commutativity:  (x, y) =  (y, x). 
c) Monotonicity: if x ≤y, then  (x, z) ≤  (y, z). 
d) Associativity:  (  (x, y), z) =  (x,  (y, z)) 

 represents respectively the union operator in 
neutrosophic set theory.  
Let J {T, I, F} be a component. Most known N-
conorms, as in fuzzy logic and set the T-conorms, are:  
• The Algebraic Product N-conorm:  J(x, y) = 
x + y −x · y  
• The Bounded N-conorm:  J(x, y) = min{1, x 
+ y}
• The Default (max) N-conorm:  J(x, y) = max{x, 
y}. 
A general example of N-conorm would be this. 
Let x( , , ) and y( , , ) be in the neutrosophic 
set/logic M. Then: 

 (x, y) = (T1 T2, I1 I2, F1 F2)     (5) 

where the “ ” operator is a N-norm (verifying the 
above N-conorms axioms); while the “ ” 
operator, is a N-norm.  
For example,  can be the Algebraic Product T-
norm/N-norm, so T1 T2= T1·T2 and  can be the 
Algebraic Product T-conorm/N-conorm, so 
T1 T2= T1+T2-T1·T2. 
Or  can be any T-norm/N-norm, and  any T-
conorm/N-conorm from the above. 
In 2013, A. Salama [21] introduced beside the 
intersection and union operations between two 
neutrosophic set A and B, another operations 
defined as follows: 

Definition 5  
Let A, B two neutrosophic sets 
A  = min (   ,  ) ,max (  ,   ) , max(   , ) 
A  B = (max (  , ) , max (  , ) ,min(  , )) 
A  B={ min (  ,  ), min (  ,  ), max (  , )} 
A  B = (max (  , ) , min (  , ) ,min(  , )) 

= (  ,   ,  ). 

Remark 
For the sake of simplicity we have denoted: 

 = min min max,  = max min min 
 = min max max,  = max max min. 

Where  ,  represent the intersection set and 
the union set proposed by Florentin Smarandache 
and  ,  represent the intersection set and the 
union set proposed by A.Salama. 

3 Neutrosophic Implications 
In this subsection, we introduce the set operations 
on neutrosophic set, which we will work with. 
Then, two neutrosophic implication are 
constructed on the basis of  single valued 
neutrosophic set .The two neutrosophic 
implications  are denoted by   and . Also, 
important properties of and are 
demonstrated and proved. 

Definition 6 (Set Operations on Neutrosophic sets) 
Let  and  two neutrosophic sets , we propose 
the following operations on NSs as follows: 

  @   = ( , ,  )  where 
 < , ,  ,< , ,

  = ( , , ) ,where 
< , ,  ,< , ,

  #   = ( ,  ,  ) , where 
   < , ,  ,< , ,

 B=(  + -  , , ) ,where 
   < , ,  ,< , ,

 B= (  , + - , + - ), where 
 < , ,  ,< , ,
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Obviously, for every two  and , (  @ ),  ( ), 
( ) ,  B and  B are also NSs. 
Based on definition of standard implication denoted by “A 

 B”, which is equivalent to “non A or B”. We extended 
it for neutrosophic set as follows: 

Definition 7  
Let A(x) ={<x,  ,  , > | x  X}     and 
B(x) ={<x,  ,  , > | x  X} ,  A, B  
NS(X).  So, depending on how we handle the 
indeterminacy, we can defined two types of neutrosophic 
implication, then  is the neutrosophic type1 defined as 
A  B ={< x,   ,     ,

> | x  X}  (6) 
And 

 is the neutrosophic type 2 defined as 
 A  B =={< x,     ,   ,

  > | x  X}                (7) 
by  and   we denote a neutrosophic norm (N-norm) and 
neutrosophic conorm (N-conorm). 

Note: The neutrosophic implications are not unique, as 
this depends on the type of functions used in N-norm and 
N-conorm.
Throughout this paper, we used the function (dual) min/
max.

Theorem 1    
For A, B and C  NS(X), 

i. A  B  C  =( A  C  )  ( B  C  ) 
ii. A   B  =( A  B  )  ( A  C  ) 

iii. A  C = ( A  C  )  ( B  C  ) 
iv. A   B  =( A  B  )  ( A  C) 

Proof 
(i) From definition in (5) ,we have

A  B  C  ={<x ,Max(min(  , ), ) , Min(max 
( , ),  ) , Min(max (  , ), ) >| x X} (8)
and 
(A  C)  (B  C)= {<x, Min( max(  , ), 
max( , )) , Max (min (  , ), min (  , )),  Max(min 
(  , ), min (  , )) >| x  X} (9)            
Comparing the result of (8) and (9), we get 
Max(min(  , ), )= Min( max(  , ), max(  , )) 
Min(max (  , ),  )= Max (min (  , ), min (  , )) 
Min(max (  , ), )= Max(min (  , ), min (  , )) 

Hence, A  B  C  = (A  C )  (B  C) 

(ii) From definition in (5), we have
A   B ={Max( , min(  , )) , Min(  ,max 
( , ) ) , Min( ,  max (  , ) >| x  X}     (10)   
and  ( A  B  )  ( A  C  ) = {<x, Min (max (
, ), max(  , )) , Max (min (  , ), min (  , )), 

Max(min (  , ), min (  , ) >| x  X}     
(11)     
Comparing the result of (10) and (11), we get 
Max( , min(  , ))= Min( max(  , ), 
max(  , )) 
Min(  ,max (  , ) )= Max (min (  , ), min 
(  , )) 
Min( ,  max (  , )= Max(min (  , ), min 
(  , )) 
Hence,   A  C = (A  C)  (B  C) 

(iii) From definition in (5), we have
A  C ={< x , Max(max(  , ), ) , 
Min(min(  , ),  ) , Min(min (  , ), ) >| x 

 X} (12) 
and 
(A  C)  (B C) = {<x, Max( max(  , ), 
max(  , )) , Max (min (  , ), min (  , )), 
Min(min (  , ), min (  , )) >| x  X} 
(13)     
Comparing the result of (12) and (13), we get 
Max(max(  , ), )= Max( max(  , ), 
max(  , )) 
Min(min(  , ),  )= Max (min (  , ), min 
( , )) 
Min(min (  , ), )= Min(min (  , ), min 
(  , )), 
Hence,   A  C = ( A  C  )  (B  C) 
(iv) From definition in (5), we have
A   B  ={<x, Max (  ,Max (   ,  )), 
Min (  , Max (  ,  )),  Min( , Min(   , )) 
>| x X} (14)
and 
(A  B  )  (A  C ) = {<x, Max(max 
( , ), max(  , )) , Max (min (  , ), min 
(  , )), Min(min (  , ), min (  , )) >| x 
X}  (15) 
Comparing the result of (14) and (15), we get 
Max (  , Max (   ,  )) = Max( max(  , ), 
max(  , )) 
Min (  , Max (  ,  )) = Max (min (  , ), min 
(  , )) 
Min ( , Min(   ,   )) = Min(min (  , ), min 
(  , )) 
hence, A   B  = ( A  B  )  ( A  C ) 

In the following theorem, we use the 
operators:  = min min max     ,  = max min 
min. 

Theorem 2 For A, B and C  NS(X), 

i. A  B  C  =( A  C  )  ( B 
C  )
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ii. A   B  =( A  B  )  ( A  C  ) 
iii. A  C = ( A  C  )  ( B  C  ) 
iv. A   B  =( A  B  )  ( A  C  ) 

Proof  
The proof is straightforward. 
In view of A  B ={< x,  ,   ,   >| x 

X} , we have the following theorem:

Theorem 3  
For A, B and C  NS(X), 

i. A  B  C  =( A  C  )  ( B  C  ) 
ii. A   B  =( A  B  )  ( A  C  ) 

iii. A  C = ( A  C  )  ( B  C  ) 
iv. A   B  =( A  B  )  ( A  C  ) 

Proof 
(i) From definition in (5), we have
A  B  C  ={<x, Max(min(  , ), ), Max(max 
( , ),  ) , Min(max (  , ), ) >| x X} (16)             
and 
( A  C  )  ( B  C  )= {<x, Min( max(  , ), 
max(  , )) , Max (max (  , ), max (  , )), 
Max(min (  , ), min (  , )) >| x X} (17)                                        
Comparing the result of (16) and (17), we get 
Max(min(  , ), )= Min( max(  , ), max(  , )) 
Max(max (  , ),  )= Max (max(  , ), max (  , )) 
Min(max (  , ), )= Max(min (  , ), min (  , )) 
hence, A  B  C  = ( A  C  )  ( B  C  ) 
(ii) From definition in (5) ,we have
A   B ={<x ,Max( , min(  , )) , Max(  , max 
(  , ) ) , Min( ,  max (  , ) >| x X} (18)   
and 
 ( A  B  )  ( A  C  ) = {<x,Min( max(  , ), 
max(  , )) , Max (max (  , ),max (  , )), Max(min 
(  , ), min (  , )) >| x  X}  (19)                    
Comparing the result of (18) and (19), we get 
Max( , min(  , ))= Min( max(  , ), max(  , )) 
Max(  ,max (  , ) )= Max (max(  , ), max (  , )) 
Min( ,  max (  , )= Max(min (  , ), min (  , )) 
Hence , A   B  =( A  B  )  ( A  C  ) 
(iii) From definition in (5), we have
A  C ={<x, Max(max(  , ), ) , Max(max 
( , ),  ) , Min(min (  , ), ) >| x X} (20)
and 
( A  C  )  ( B  C  ) = {Max( max(  , ), 
max( , )) , Max (max (  , ), max (  , )), Min(min 
(  , ), min (  , )) }  (21)          
Comparing the result of (20) and (21), we get 
Max(max(  , ), )= Max( max(  , ), max(  , )) 
Max(max(  , ),  )= Max (max (  , ), max (  , )) 
Min(min (  , ), )= Min(min (  , ), min (  , )), 

hence, A  C = ( A  C  )  ( B  C ) 
(iv) From definition in (5) ,we have
A   B  ={<x, Max (  , Max (   ,  )), 
Max (  , Max (  ,  )) ,  Min ( , Min(   ,
))> | x   (22) 
and 
( A  B  )  ( A  C  )= Max( max(  , ), 
max(  , )) , Max (max (  , ), max (  , )), 
Min(min (  , ), min (  , ))    (23). 
Comparing the result of (22) and (23), we get 
Max (  , Max (   ,  )) = Max( max(  , ), 
max(  , )) 
Max (  , Max (  ,  )) = Max (max (  , ), 
max (  , )) 
Min ( , Min(   ,   )) = Min(min (  , ), min 
(  , )) 
hence , A   B  =( A  B  )  ( A  C ) 
Using the two operators  = min min max     , 

 = max min min, we have 

Theorem 4   
For A, B and C  NS(X), 

i. A  B  C  =( A  C  )  ( B 
C  ) 

ii. A   B  =( A  B  )  ( A 
C  )

iii. A  C = ( A  C  )  (B  C) 
iv. A   B  =( A  B  )  (A  C) 

Proof  
The proof is straightforward. 

Theorem 5 
For A, B  NS(X), 

i. A   = 
ii.   =  = A 

B 
iii.  = A  B 
iv. B =
v. =

Proof 
(i) From definition in (5) ,we have

A  ={<x, max (  , ) ,min (  ,  ) , min 
(  ,  ) | x   (24) 

and 
  ={ max (  , ) ,min (  ,  ) , min ( , 

 )} (25)
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From (24) and (25), we get     A  = 
(ii) From definition in (5), we have

 ={<x, max (  , ) ,min (  ,  ) , min 
( , ) > | x                 (26) 
and 

= {<x, min (  ,  ),min (  ,  ) ,max 
(  , ) > | x 
(27)     
From (26) and (27), we get 
= = A  B 
(iii) From definition in (5) ,we have

 ={ <x, min (  ,  ), min (  ,  ), max 
( , ) > | x  (28)  
and 
A  B={ min (  ,  ), min (  ,  ), max (  , )} 

     (29)  
From (28) and (29), we get  = A  B 
(iv) 

 B =   ={ <x, max (  , ) , min (  ,  ), 
min (  ,  ) > | x 
(v) 

 ={<x, max (  ,  ),min (  ,  ) , max (  , ) 
> | x  (30) 
and

 ={<x,  max (  ,  ),min (  ,  ) , max 
( , ) > | x  (31) 
From (30) and (31), we get  = 

Theorem 6 
For A, B  NS(X), 

i. =

 =

ii.  =

=

iii.  =

=

iv.  =

=

v.  =

 =

vi.  =

 =

Proof  
Let us recall following simple fact for any two real 
numbers a and b. 
Max(a, b) +Min(a, b) = a +b. 
Max(a, b) x Min(a, b) = a x b. 

(i) From definition  in (6), we have

 = {<x,Max(  + -

, ) ,Min( , ) ,Min( ) 
> | x  = (  + -

, ,
 = (32) 
and 

 = (  , , ) 
(  + -  , , ) 

= {<x, Max( ,  + - ) ,Min( ,

) ,Min( ) > | x  (33) 
  =(  + -  ,  ,  ) 
=
From (32) and (33 ), we get the result ( i) 
(ii) From definition in (6), we have

= ( ,
, ) 

 = 
  = ( , , ) ( 

, ,  ) 

 ={<x, Max ( ,  ) ,Min(

,  ,Min( , ) > | x 

 =  ,  , ) =  (34) 
and 

= 

=  ,  , ) ( ,  + -
, + - ) 

={< x, Max( , , Min (  ,  + -

), Min (  ,  + - ) | x } 

=  ,  , ) = (35) 
From (34)  and (35 ), we get the result ( ii) 
(iii) From definition  in (6) ,we have

=(
, , )

( , ,  ) 

= {<x , Max (  , ) ,Min( , 

), Min( , ) > | x 

 =(  ,  , ) 
 =  (36) 
and 

=( ,  , ) 
 (  , + - , + -  ) 

={<x, Max (  , ) ,Min( , + -

), Min( , + - ) > | x 
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= (  ,  ,   )=  (37)                             
From ( 36)  and (37), we get the result (iii). 
(iv) From definition in (6), we have

= ( ,  , ,  + - ) 

( ,  , ) 

  = {<x, Max (  + -  , ), Min( , 
,), Min( , ) > | x 

 = (  ,  , ) 
  =  (38)            
and 

= (  ,  , ) ( 
+ -   ,  ,  ) 

 ={< x, Max (  ,  + - ) ,Min( , 
), Min( , ) > | x 
  = (  ,  , ) 
  = (39) 
From (38)  and (39), we get the result (iv). 
(v) From definition in (6), we have

 = ( ,

, ) (  ,  , ) 

 ={<x, Max (  , ) ,Min( , 
), Min( , ) > | x 

 =  ,  , ) 
  = (40) 
and 

=(  ,

, ) (    , + -  ,  + -  ) 

={<x, Max ( ,  ) ,Min(
), Min( , ) > | x 
=  ,  , ) 
=  (41) 
From (40)  and (41), we get the result (v). 
(vi) From definition in (6), we have

 =
=

 = ( ,
, ) (  + -  , , ) 

 ={<x, Max ( ,  + -  ) ,Min(
 ), Min( , ) > | x 

 = (  + -  , , ) 
=  (42) 
 and 

 =( , ,  + -
(   , + - , + -  ) 

={<x,  Max (  + - ,  ) , Min ( + -
), Min(  , + - ) > | x 

 = (  + -  , , ) 
=  (43) 

From (42) and (43), we get the result (vi). 
The following theorem is not valid. 

Theorem 7 
For A, B  NS(X), 

i. =

=
ii.  =

=
iii.  =

=
iv.  =

=

v.  =

=

vi.  =

=

Proof 
The proof is straightforward. 

Theorem 8 
For A, B   NS(X), 

i. =

 =

ii.  =

=

iii.  =

=

iv.  =

=

v.  =

=

vi.  =

=

 Proof 

Florentin Smarandache (author and editor) Collected Papers, XII

73



(i) From definition  in (6), we have

 = (  + -   ,  , 

) ( , ,  ) 

={<x , > |

x 
= 

=( , ,
=  (44) 
and 

=

=

=

=(  ,  , ) 
=  (45)      
From ( 44)  and (45), we get the result (i). 

(ii) From definition  in (6) ,we have

= 

=
=(  ,  , ) 
=  (46) 
and 

={<x,(  ,  , ) 
( , , ) > | x 
= 

= 
=( ,  , ) 
=  (47) 
From (46)  and (47), we get the result (ii). 
(iii)From definition in (6), we have

= 

=

= 

=
= (48) 
and 

 =

 ( ,  , ,  + - ) 
=

= 

=
= (49) 
From (48) and (49), we get the result (iii). 
(iv) From definition in (6), we have

 = 
=

= 
=
= (50) 
and 

= 

=

= 
=
=               (51)     
From (50)  and (51), we get the result (iv). 
(v) From definition in (6), we have

 = 

=

=
=  ,  , ) 
= (52) 
and 
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= 

=

=
=  ,  , ) 
= (53) 
From (52)  and (53), we get the result (v). 
(vi) From definition in (2), we have

=

=
=
=  (54) 
and 

= 

=

=
=
=  (55)            
From (54)  and (55), we get the result (v). 
The following are not valid. 

Theorem 9 
1- =
=
2-  = 

=

3-  = 

=

4-  = 

=

5-  =

=

6-  =

 =

8-  =

 =

9-  =

 =
Example  
We prove  only the (i) 
1-  = 

 ( , 

,  ) 

={<x, max  (  ,  ) 

,max( , ) ,min (  , ) > | x 

={<x,   ,  , > | x

The same thing, for 
 Then, 

=

. 

Remark 
We remark that if  the indeterminacy values are 
restricted to 0, and the membership /non-
membership are restricted to  0 and 1. The results 
of the two neutrosophic implications and 

collapse to the fuzzy /intuitionistic fuzzy 
implications defined (V(A  ) in [17]  

Table  
Comparison of three kind of implications 
From the table, we conclude that fuzzy 
/intuitionistic fuzzy implications are special case 
of neutrosophic implication. 

Conclusion 
In this paper, the neutrosophic implication is 
studied. The basic knowledge of the neutrosophic 
set is firstly reviewed, a two kind of neutrosophic 
implications are constructed, and its properties. 
These implications may be the subject of further 
research, both in terms of their properties or 
comparison with other neutrosophic implication, 
and possible applications. 

< 
, > 

< 
, > 

A B A B V(A

< 0 ,1> < 0 ,1> < 1 ,0> < 1 ,0> < 1 ,0> 
< 0 ,1> < 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> 
< 1 ,0> < 0 ,1> < 0 ,1> < 0 ,1> < 0 ,1> 
< 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> 
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Neutrosophic Crisp Sets &  
Neutrosophic Crisp Topological Spaces 

A. A. Salama, Florentin Smarandache, Valeri Kroumov

Abstract. In this paper, we generalize the crisp topological 
spaces to the notion of neutrosophic crisp topological space, and 
we construct the basic concepts of the neutrosophic crisp 
topology. In addition to these, we introduce the definitions of 
neutrosophic crisp continuous function and neutrosophic crisp 

compact spaces.  Finally, some characterizations 
concerning neutrosophic crisp compact spaces are 
presented and one obtains several properties.  Possible 
application to GIS topology rules are touched upon.  

Keywords: Neutrosophic Crisp Set; Neutrosophic Topology; Neutrosophic Crisp Topology. 

1 Introduction 

     Neutrosophy has laid the foundation for a whole 
family of new mathematical theories generalizing both 
their crisp and fuzzy counterparts, the most used one 
being the neutrosophic set theory [6, 7, 8]. After the 
introduction of the neutrosophic set concepts in [1, 2, 3, 4, 
5, 9, 10, 11, 12] and after haven given the fundamental 
definitions of neutrosophic set operations, we generalize 
the crisp topological space to the notion of neutrosophic 
crisp set. Finally, we introduce the definitions of 
neutrosophic crisp continuous function and neutrosophic 
crisp compact space, and we obtain several properties and 
some characterizations concerning the neutrosophic crisp 
compact space. 

2 Terminology 

     We recollect some relevant basic preliminaries, and 
in particular, the work of   Smarandache   in [6, 7, 8, 12], 
and Salama et al. [1, 2, 3, 4, 5, 9, 10, 11, 12]. 
Smarandache introduced the neutrosophic components T, 
I, F which represent the membership, indeterminacy, and 
non-membership values respectively, where 1,0- is
non-standard unit interval.

     Hanafy and Salama et al. [10, 12] considered some 
possible definitions for basic concepts of the neutrosophic 

crisp set and its operations. We now improve 
some results   by the following. 

3 Neutrosophic Crisp Sets 

3.1 Definition 

Let X be a non-empty fixed set. A
neutrosophic crisp set (NCS for short) A  is an 
object having the form

  
321 ,, AAAA where 

321 and , AAA are  subsets of X satisfying 

21 AA , 31 AA and 32 AA . 

3.1 Remark 
   A neutrosophic crisp set 321 ,, AAAA

can be identified as an ordered triple 321 ,, AAA , 
where A1, A2, A3 are subsets on X, and one can 
define several relations and operations between 
NCSs. 

   Since our purpose is to construct the tools for 
developing neutrosophic crisp sets, we must 
introduce the types of NCSs NN X,  in X as 
follows: 

1) N may be defined in many ways as a 
NCS, as follows: 

A.A. Salama, Florentin Smarandache, Valeri Kroumov (2014). Neutrosophic Crisp Sets 
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i) ,,, XN or 

ii) ,,, XXN or 

iii) ,,, XN or 

iv) ,,N
2) NX may also be defined in many ways as a
NCS: 

i) ,,,XX N

ii) ,,, XXX N

iii) ,,, XXX N
Every crisp set A formed by three disjoint subsets of a

non-empty set  is obviously a NCS having the form
321 ,, AAAA . 

3.2 Definition 
  Let 321 ,, AAAA a NCS on , then the 

complement of the set A ,  ( cA for short may be 
defined in three different ways: 

1C
cccc AAAA 321 ,, , 

2C 123 ,, AAAAc

3C 123 ,, AAAA cc

 One can define several relations and operations 
between NCSs as follows: 

3.3 Definition 
Let X be a non-empty set, and the NCSs A  and B

in the form 321 ,, AAAA , 321 ,, BBBB , then we may
consider two possible definitions for subsets A B

A B may be defined in two ways:
1) 332211 and  , BABABABA  

or
2) 332211   and  , BABABABA

3.1 Proposition 
 For any neutrosophic crisp set A  the following hold: 

i) ., NNN A
ii) .   , NNN XXXA

3.4 Definition 
Let X is a non-empty set, and the NCSs A  and B

in the form 321 ,, AAAA , 321 ,, BBBB . Then:
1) A B may be defined in two ways:
i) 332211 ,, BABABABA or 
ii) 332211 ,, BABABABA

2) A B may also be defined in two ways:
 i) 332211 ,, BABABABA  or 

 ii) 332211 ,, BABABABA

3) cAAAA 121 ,,]  [ . 

4) 323 ,, AAAA c . 

3.2 Proposition 
 For all two neutrosophic crisp sets A and B 

on X, then the followings are true: 
1)
2)
    We can easily generalize the operations of 

intersection and union in definition 3.2 to 
arbitrary family of neutrosophic crisp subsets as 
follows: 

3.3 Proposition 
  Let be arbitrary family of 

neutrosophic crisp subsets in X, then 
1) jA may be defined as the following

types : 
i) 321 ,, jjj AAAjA ,or 

ii) 321 ,, jjj AAAjA . 

2) jA may be defined as the following
types : 
i) 321 ,, jjj AAAjA or 

ii) 321 ,, jjj AAAjA . 

3.5 Definition 
     The product of two neutrosophic crisp sets 
A and B is a neutrosophic crisp set BA
given by  

332211 ,, BABABABA . 

4 Neutrosophic Crisp Topological Spaces 
     Here we extend the concepts of topological 

space and intuitionistic topological space to the 
case of neutrosophic crisp sets. 

4.1 Definition 

     A neutrosophic crisp topology (NCT for 
short) on a non-empty set  is a family 
of neutrosophic crisp subsets in  satisfying 
the following axioms 

i) NN X, . 

ii) 21 AA for any 1A and 2A . 

iii) jA . 
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In this case the pair  ,X  is called a neutrosophic
crisp topological space NCTS( for short) in X . The 
elements in are called neutrosophic crisp open sets 
(NCOSs for short) in X .  A neutrosophic crisp set F is 
closed if and only if its complement CF is an open 
neutrosophic crisp set. 

4.1 Remark 
     Neutrosophic crisp topological spaces are very 

natural generalizations of topological spaces and 
intuitionistic topological spaces, and they allow more 
general functions to be members of topology. 

NCTSITSTS 

4.1 Example 
Let  dcbaX ,,, , NN X, be any types of the

universal and empty subsets, and A, B two neutrosophic 
crisp subsets on X  defined by      cdbaA ,,, ,

     cbaB ,, , then the family  BAX NN ,,,   is
a neutrosophic crisp topology on X. 

4.2 Example 
Let  ,X be a topological space such that 

is not indiscrete. Suppose  JiGi : be a family and
   JiGX i  :,  . Then we can construct the

following topologies as follows 
i) Two intuitionistic topologies

a)    JiGX iII  ,,,1  .

b)    JiGX c
iII  ,,,2 

ii) Four neutrosophic crisp topologies

a)    JiGX c
iNN  ,,,,1 

b)    JiGX iNN  ,,,,2 

c)    JiGGX c
iiNN  ,,,,3  , 

d)    JiGX c
iNN  ,,,,4 

4.2 Definition 

Let    21 ,,,  XX be two neutrosophic crisp
topological spaces on X . Then 1  is said be contained in

2 (in symbols 21   ) if 2G for each 1G . In 
this case, we also say that 1 is coarser than 2 . 

4.1 Proposition 

Let Jjj :   be a family of NCTs on X . Then

j   is a neutrosophic crisp topology on X . 

Furthermore, j  is the coarsest NCT on X
containing  all topologies. 

Proof 
 Obvious. Now, we define the neutrosophic crisp 
closure and neutrosophic crisp interior operations 
on neutrosophic crisp topological spaces: 

4.3 Definition 

Let  ,X  be NCTS and 321 ,, AAAA   be a

NCS in X . Then the neutrosophic crisp closure  
of  A (NCCl(A) for short) and neutrosophic 
interior crisp (NCInt (A ) for short) of A  are 
defined by  

 KA and Xin   NCSan   is  :)(  KKANCCl
 AG and Xin    NCOSan   is  :)(  GGANCInt , 

where NCS is a neutrosophic crisp set, and NCOS 
is a neutrosophic crisp open set. 

It can be also shown that )(   ANCCl  is a NCCS 
(neutrosophic crisp closed set) and )( ANCInt  is a 
CNOS in X

a) A is in X if and only if   AANCCl )( .

b) A   is a NCCS in X if and only if  
AANCInt )( .

4.2 Proposition 

For any neutrosophic crisp set A  in  ,X
we have 

(a) ,))(()( cc ANCIntANCCl 

(b) .))(()( cc ANCClANCInt 

Proof 
a) Let 321 ,, AAAA   and suppose that the

family of neutrosophic crisp subsets
contained  in A  are indexed by the family if

NCSs contained in A  are indexed by the
family  JiAAAA jjj  :,, 321 . Then

we see that we have two types of 
  321 ,,)( jjj AAAANCInt  or 

  321 ,,)( jjj AAAANCInt  hence

  321 ,,))(( jjj
c AAAANCInt  or 

  321 ,,))(( jjj
c AAAANCInt . 

Hence ,))(()( cc ANCIntANCCl  which 
is analogous to (a). 
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4.3 Proposition 

Let  ,X  be a NCTS and ,A B  be two
neutrosophic crisp sets in X . Then the following 
properties hold: 

(a) ,)( AANCInt 

(b) ),(ANCClA

(c) ),()( BNCIntANCIntBA 

(d) ),()( BNCClANCClBA 

(e) ),()()( BNCIntANCIntBANCInt 

(f) ),()()( BNCClANCClBANCCl 

(g) ,)( NN XXNCInt 

(h) NNNCCl  )(

Proof.   (a), (b) and (e) are obvious; (c) follows from (a) 
and from definitions. 

5 Neutrosophic Crisp Continuity 

    Here come the basic definitions first 

5.1 Definition 

(a) If 321 ,, BBBB   is a NCS in Y, then the
preimage of  B under ,f  denoted by ),(1 Bf  is a
NCS in X defined by 

.)(),(),()( 3
1

2
1

1
11 BfBfBfBf  

(b) If 321 ,, AAAA   is a NCS in X, then the image 
of A under ,f denoted by ),(Af  is the a NCS in 
Y defined by .))(),(),()( 321

cAfAfAfAf 

Here we introduce the properties of images and preimages 
some of which we shall frequently use in the following 
sections . 

5.1 Corollary 
Let A,  JiAi :  , be NCSs in X, and

B,  KjB j :  NCS in Y, and YXf : a
 function. Then 
(a) ),()( 2121 AfAfAA 

),()( 2
1

1
1

21 BfBfBB  

(b) ))((1 AffA   and if f is injective, then 
))((1 AffA  . 

(c) BBff  ))((1  and if f is surjective, then 
,))((1 BBff  . 

(d) ),())( 11
ii BfBf   ),())( 11

ii BfBf  

(e) );()( ii AfAf  );()( ii AfAf  and if f is 
injective, then  );()( ii AfAf 

(f) ,)(1
NN XYf 

NNf   )(1 . 
(g) ,)( NNf   ,)( NN YXf  if f is subjective.

Proof 
   Obvious. 

5.2 Definition 
Let  1,X and  2,Y be two NCTSs, and

let YXf : be a function. Then f  is said to 
be continuous iff the preimage of each NCS in 

2  is a NCS in 1 . 

5.3 Definition 
Let  1,X and  2,Y be two NCTSs and

let YXf : be a function. Then f  is said to 
be open iff the image of each NCS in 1  is a 
NCS in 2 . 

5.1 Example 
Let  oX , and  oY , be two NCTSs

(a) If YXf :  is continuous in the usual
sense, then in this case, f  is continuous in the
sense of Definition 5.1 too. Here we consider
the NCTs on X and Y, respectively, as follows :

 o
c GGG   :,,1 and 

 o
c HHH   :,,2 , 

In  this case we have, for each 2,,  cHH , 

oH  , 

)(),(),(,, 1111 cc HffHfHHf   

1
1 ))((),(,    cHffHf . 

(b) If YXf :  is open in the usual sense,
then in this case, f  is open in the sense
of Definition 3.2. Now we obtain some
characterizations of continuity:

5.1 Proposition 
  Let ),(),(: 21  YXf  . 

f is continuous if the preimage of each 
CNCS (crisp neutrosophic closed set) in 2  is a 
CNCS in 2 .

5.2 Proposition 
  The following are equivalent to each other: 

(a) ),(),(: 21  YXf  is continuous.
(b) ))(()(( 11 BfCNIntBCNIntf  

for each CNS B in Y. 
(c) ))(())(( 11 BCNClfBfCNCl  

for each CNC B in Y.
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5.2 Example 
Let  2,Y  be a NCTS and YXf : be a function.

In this case  2
1

1 :)(    HHf is a NCT on X. 
Indeed, it is the coarsest NCT on X which makes the 
function YXf : continuous. One may call it the initial 
neutrosophic crisp  topology  with respect to .f  

6  Neutrosophic Crisp Compact Space (NCCS) 
First we present the basic concepts: 

6.1 Definition 
Let  ,X  be an NCTS.

(a) If a family  JiGGG iii :,, 321  of  NCOSs in 
X satisfies the condition 
  ,:,,, 321 Niii XJiGGGX  then it is called

an  neutrosophic open cover of X. 
(b) A finite subfamily of an open cover

 JiGGG iii :,, 321  on X, which is also a  
neutrosophic open cover of X , is called a 
neutrosophic finite subcover 
 JiGGG iii :,, 321 .

(c) A family  JiKKK iii :,, 321  of NCCSs in X
satisfies the finite intersection property (FIP for 
short) iff every finite subfamily 
 niKKK iii ,...,2,1:,, 321   of the family
satisfies the  condition 
  Niii JiKKK  :,,

321
. 

6.2 Definition 
A NCTS  ,X is called neutrosophic crisp compact

iff each crisp neutrosophic open cover of X has a finite 
subcover. 

6.1 Example 
a) Let X   and let’s consider the NCSs

(neutrosophic crisp sets) given below: 

  ,,,,...4,3,21 A    ,1,,,...4,32 A

    ,2,1,,,...6,5,43 A …      

   1,...3,2,1,,,...3,2,1  nnnnAn  . 

Then    ,...5,4,3, :  nNN AX is a NCT on X and

 ,X is a neutrosophic crisp compact.

b) Let  1,0X and let’s take the NCSs

   nn
n

nn XA 111 ,0,,,,  , ,...5,4,3n in X. 

In this case    ,...5,4,3, :  nNN AX

is an NCT on X, which is not a neutrosophic 
crisp compact. 

6.1 Corollary 

A NCTS  ,X  is a neutrosophic crisp

compact iff every family 
 JiGGGX iii :,,, 321  of NCCSs in X having 

the FIP has nonempty intersection. 

 6.2 Corollary 
Let  1,X ,  2,Y be NCTSs and

YXf : be a continuous surjection. If  1,X

is a neutrosophic crisp compact, then so is  2,Y

6.3 Definition 

(a) If a family  JiGGG iii :,, 321  of 

NCCSs in X satisfies the condition
 JiGGGA iii  :,, 321  , then it is 

called a  neutrosophic crisp open cover 
of A.  

(b) Let’s consider a finite subfamily of a
neutrosophic crisp open subcover of
 JiGGG iii :,, 321 . 

A neutrosophic crisp set 321 ,, AAAA    in a 
NCTS  ,X  is called neutrosophic crisp
compact iff every neutrosophic crisp open cover 
of A has a finite neutrosophic crisp open 
subcover. 

6.3 Corollary 
Let  1,X ,  2,Y be NCTSs and

YXf : be a continuous surjection. If A is a
neutrosophic crisp compact in  1,X , then so is

)(Af in  2,Y .

7 Conclusion 
In this paper we introduce both the neutrosophic 
crisp topology and the neutrosophic crisp compact 
space, and we present properties related to them. 
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Neutrosophic Lattices 

Vasantha Kandasamy, Florentin Smarandache

Abstract. In this paper authors for the first time define a 

new notion called neutrosophic lattices.  We define few 

properties related with them.  Three types of neutrosophic 

lattices are defined and the special properties about these 

new class of lattices are discussed and developed. This 

paper is organised into three sections. First section 

introduces the concept of partially ordered neutrosophic 

set and neutrosophic lattices. Section two introduces 

different types of neutrosophic lattices and the final sec-

tion studies neutrosophic Boolean algebras. Conclusions 

and results are provided in section three. 

Keywords: Neutrosophic set, neutrosophic lattices and neutrosophic partially ordered set.

1 Introduction to partially ordered neutrosophic 
set 

Here we define the notion of a partial order on a 

neutrosophic set and the greatest element and the least 

element of it.  Let N(P) denote a neutrosophic set which 

must contain I, 0, 1 and 1 + I;  that is 0, 1, I and 1+ I ∈ 

N(P).  We call 0 to be the least element so  0 < 1 and 0 < I 

is assumed for the working.  Further by this N(P) becomes 

a partially ordered set.  We define 0 of N(P) to be the least 

element and I ∪ 1 = 1 + I to be the greatest element of 

N(P).  

Suppose N(P) = {0, 1, I, 1 + I, a1, a2, a3, a1I, a2I, a3I} 

then N(P) with 0 < ai, 0 < aiI, 1 ≤ i ≤ 3.  Further 1 > ai; I > 

aiI; 1 ≤ i ≤ 3  ai </  aj if i ≠ j for 1 ≤ i, j ≤ 3 and Iai </  Iaj; i ≠ 

j  for 1 ≤ i, j ≤ 3.  

We will define the notion of Neutrosophic lattice. 

DEFINITION 1.1:  Let N(P) be a partially ordered set with 

0, 1, I, 1+I = 1 ∪ I ∈ N(P). 

Define min and max on N(P) that is max {x, y} and min 

{x, y} ∈ N(P).  0 is the least element and 1 ∪ I = 1 + I is 

the greatest element of N(P).  {N(P), min, max} is defined 

as the neutrosophic lattice. 

We will illustrate this by some examples. 

Example 1.1:  Let N(P) = {0, 1, I, I ∪ 1 = 1 + I, a, aI} be a 

partially ordered set; N(P) is a neutrosophic lattice.  

We know in case of usual lattices [1-4].  Hasse defined 

the notion of representing finite lattices by diagrams 

known as Hasse diagrams [1-4]. We in case of 

Neutrosophic lattices represent them by the diagram which 

will be known as the neutrosophic Hasse diagram.  

The neutrosophic lattice given in example 1.1 will have the 

following Hasse neutrosophic diagram. 

 

 

Figure 1.1 

Example 1.2:   Let N(P) = {0, 1, I, 1 ∪ I, a1, a2, a1I, a2I} be 

a neutrosophic lattice associated with the following Hasse 

neutrosophic diagram. 

Figure 1.2 

Example 1.3:  Let N(P) = {0 1, I, 1 ∪ I} be a neutrosophic 

lattice given by the following neutrosophic Hasse diagram. 

Figure 1.3 

0 

• I ∪ 1

•1 • 
I 

• a1 

• 

• a2 • a1I • a2I

• 
I ∪ 1 

• 1 • I

• a • a I

• 
0 

• 

• 

• 

1∪I 

I 1 

• 
0 
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It is pertinent to observe that if N(P) is a neutrosophic 

lattice then 0, 1, I, 1 ∪ I ∈ N(P) and so that N(P) given in 

example 1.3 is the smallest neutrosophic lattice. 

Example 1.4:  Let N(P) = {0, 1, I, 1 ∪ I = 1 + I, a1, a2, a1I, 

a2I, a1 < a2} be the neutrosophic lattice.  The Hasse 

diagram of the neutrosophic lattice N(P) is as follows: 

Figure 1.4 

We can have neutrosophic lattices which are different. 

Example 1.5:  Let N(P) = {0, 1, I, a1, a2, a3, a4, a1I, a2I, a3I, 

a4I, 1 + I = I ∪ 1} be the neutrosophic lattice of finite order. 

(ai is not comparable with aj if i ≠ j, 1 ≤ i, j ≤ 4). 

Figure 1.5 

We see N(P) is a neutrosophic lattice with the above 

neutrosophic Hasse diagram. 

In the following section we proceed onto discuss 

various types of neutrosophic lattices.   

2. Types of Neutrosophic Lattices

The concept of modular lattice, distributive lattice,

super modular lattice and chain lattices can be had from [1-

4]. We just give examples of them and derive a few 

properties associated with them.  In the first place we say a 

neutrosophic lattice to be a pure neutrosophic lattice if it 

has only neutrosophic coordinates or equivalently all the 

co ordinates (vertices) are neutrosophic barring 0. 

In the example 1.5 we see the pure neutrosophic part of 

the neutrosophic lattice figure 2.1; 

Figure 2.1 

whose Hasse diagram is given is the pure neutrosophic 

sublattice lattice from figure 1.5.  Likewise we can have 

the Hasse diagram of the usual lattice from example 1.5. 

Figure 2.2 

We see the diagrams are identical as diagrams one is pure 

neutrosophic where as the other is a usual lattice.  As we 

have no method to compare a neutrosophic number and a 

non neutrosophic number, we get two sublattices identical 

in diagram of a neutrosophic lattice. For the modular 

identity, distributive identity and the super modular 

identity and their related properties refer [1-4]. 

The neutrosophic lattice given in example 1.5 has a 

sublattice which is a modular pure neutrosophic lattice and 

sublattice which is a usual modular lattice.   

The neutrosophic lattice given in example 1.3 is a 

distributive lattice with four elements. However the 

neutrosophic lattice given in example 1.5 is not distributive 

as it contains sublattices whose homomorphic image is 

isomorphic to the neutrosophic modular lattice N(M4); 

where N(M4) is a lattice of the form 

0 

• 
I ∪ 1 

• 1 • I

• a1 • a1I

• 

• a2 • a2I

• 
I ∪ 1 

• 
1 

• I

• a2 

• 
0 

• a3 • a1I • 
a3I 

• a4 • a1 • 
a2I 

• 
a4I 

• 
I 

• a1I 

• 
0 

• a2I •a3I • a4I

• 
1 

• a1 

• 
0 

• a2 • a3 • a4
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Figure 2.3 

Likewise by N(Mn) we have a pure neutrosophic lattice of 

the form given below in figure 2.4. 

Figure 2.4 

Figure 2.5 

The neutrosophic pentagon lattice is given in figure 2.5 

which is neither distributive nor modular. 

The lattice N(M4) is not neutrosophic super modular we 

see the neutrosophic lattice in example 1.5 is not modular 

for it has sublattices whose homomorphic image is 

isomorphic to the pentagon lattice.   

So we define a neutrosophic lattice N(L) to be a quasi 

modular lattice if it has atleast one sublattice (usual) which 

is modular and one sublattice which is a pure neutrosophic 

modular lattice.   

Thus we need to modify the set S and the neutrosophic 

set N(S) of S.  For if S = {a1, …, an} we define N(S) = {a1I, 

a2I, …, anI} and take with S ∪ N(S) and the elements 0, 1, 

I, and 1 ∪ I = 1 + I.  Thus to work in this way is not 

interesting and in general does not yield modular 

neutrosophic lattices.   

We define the strong neutrosophic set of a set S as 

follows 

Let A = {a1, a2, …, an}, the strong neutropshic set of A; 

SN(A) = {ai, ajI, ai ∪ ajI = ai + ajI; 0, 1, I, 1 + I, 1 ≤ i, j 

≤ n}.

S(L) the strong neutrosophic lattice is defined as

follows: 

S(L) = {0, 1, I, 1 + I, ai, ajI, 

I ∪ ai = I + ai  a1I ∪ 1 = aiI + 1, ai + ajI = ai ∪ ajI  0 
≠
<

ai 
≠
<  1; 0 < ajI < I, 1 ≤ i, j ≤ n}. 

S(L) with max, min is defined as the strong 

neutrosophic lattice.    

We will illustrate this situation by some examples. 

Example 2.1:  Let S(L) = {0, 1, I, 1 + I, a, aI, a + aI, 1 + aI, 

I + a} 

Figure 2.6 

be a strong neutrosophic lattice. 

We have several sublattices both strong neutrosophic 

sublattice as well as usual lattice.   

For 

Figure 2.7 

is the usual lattice. 

Figure 2.8 

is the pure neutrosophic lattice. 

• I

• a

• 0

• I

• aI

• 0

• 
I 

• a1I 

• 
0 

• a2I • a3I • a4I

• I 

• a1I 

• 
0 

• a2I …. • a4I

• 
I 

• aI 

• 
0 

• cI

• bI 

• 

• 
1+I 

1+aI 

• • 

I+a 

I 

• • aIa 

• 
0 

• 

• a+aI 1 
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Figure 2.9 

is the strong neutrosophic lattice. 

These lattices have the edges to be real.  Only vertices are 

indeterminates or neutrosophic numbers.  However we can 

have lattices where all its vertices are real but some of the 

lines (or edges) are indeterminates. 

Example 2.2:  For consider 

Figure 2.10 

Such type of lattices will be known as edge neutrosophic 

lattices. 

In case of edge neutrosophic lattices, we can have edge 

neutrosophic distributive lattices, edge neutrosophic 

modular lattices and edge neutrosophic super modular 

lattices and so on.   

We will only illustrate these by some examples. 

Example 2.3:  Consider the following Hasse diagram. 

 

Figure 2.11 

This is a edge neutrosophic lattice as the edge connecting 0 

to a2 is an indeterminate.  

Example 2.4: Let us consider the following Hasse diagram 

of a lattice L. 

 

Figure 2.12 

L is a edge neutrosophic modular lattice. 

The edges connecting 0 to a3 and 1 to a4 are neutrosophic 

edges and the rest of the edges are reals.  However all the 

vertices are real and it is a partially ordered set.  We take 

some of the edges to be an indeterminate. 

Example 2.5:  Let L be the edge neutrosophic lattice 

whose Hassee diagram is as follows: 

Figure 2.13 

Clearly L is not a distributive edge neutrosophic lattice. 

However L has modular edge neutrosophic sublattices as 

well as modular lattices which are not neutrosophic.   

Inview of this we have the following theorem. 

THEOREM 2.1:  Let L be a edge neutrosophic lattice.  Then 

L in general have sublattices which are not edge 

neutrosophic. 

Proof follows from the simple fact that every vertex is a 

sublattice and all vertices of the edge neutrosophic lattice 

• 

• 
1+I 

1 

• 

• I • 

0 

• 

• 
1 

a1 

• 

• a3 • 

a4 

• a2

• 
0 

• 
1 

a2 

• 

• a1• 

0 

• 

• 
1 

a2 

• 

• a4 • 

0 

• a3
a1 • • a5

• 

• 
1 

a2 

• 

a3 • 

a5 

a1 • • a4

• a7 

• 

a9 • 

0 

• a8
a6 • • a10 • a11

Florentin Smarandache (author and editor) Collected Papers, XII

86



which are not neutrosophic; but real is an instance of a not 

an edge neutropshic lattice. 

We can have pure neutrosophic lattice which have the 

edges as well the vertices to be neutrosophic.   

The following lattices with the Hasse diagram are pure 

neutrosophic lattices. 

Figure 2.14 

Figure 2.15 

These two pure neutrosophic lattices cannot have edge 

neutrosophic sublattice or vertex neutrosophic sublattice. 

3. Neutrosophic Boolean Algebras

Let us consider the power set of a neutrosophic set S =

{a + bI | a = 0 or b = 0 can occur with 0 as the least 

element and 1 + I as the largest element}. P(S) = 

{Collection of all subsets of the set S} {P(S), ∪, ∩, φ, S} 

is a lattice defined as the neutrosophic Boolean algebra of 

order 2
|P(S)|

. 

We will give examples of them. 

Example 3.1:  Let S = {0, 1, 1 +I, I}.  P(S) = {φ, {0}, {1}, 

{1+I}, {I}, {0,1}, {0, I}, {0, 1+I}, {1, I}, {1, 1+I}, {I, 

1+I}, {0, 1, I}, {0, 1, 1+I}, {0, I, 1+I}, {1, I, 1+I}, S} be 

the collection of all subsets of S including the empty set φ 

and the set S. |P(S)| = 16.  P(S) is a neutrosophic Boolean 

algebra under ‘∪’ and ‘∩’ as the operations on P(S) and 

the containment relation of subsets as the partial order 

relation on P(S). 

Figure 3.1 

Example 3.2:  Let S = {0, 1, I, 1+I, a, aI, a+I, aI+1, aI+a} 

be the neutrosophic set; 0 < a < 1.  P(S) be the power set of 

S. |P(S)| = 2
9
.  P(S) is a neutrosophic Boolean algebra of

order 2
9
.

Example 3.3:  Let S = {0, 1, I, 1+I, a1, a2, a1I, a2I, a1+I, 

a2+I, 1+a1I, 1+a2I, 1+a1I+a2, a1+a2, 1 + a1I + a2I, …} be the 

neutrosophic set with a1 </  a2 or a2 </  a1, 0 < a1 < 1, 0 < a2 

< 1.  P(S) is a neutrosophic Boolean algebra. 

Now these neutrosophic Boolean algebras cannot be 

edge neutrosophic lattices. We make it possible to define 

edge neutrosophic  lattice.  Let L be a lattice given by the 

following Hasse-diagram. 

Figure 3.2 

a1 and a3 are not comparable but we can have a 

neutrosophic edge given by the above diagram. 

So we see the lattice has become a edge neutrosophic 

lattice. 

Let L be a lattice given by the following diagram. 

• 

• 
1 

a1 I 

• 

• a2I • 

0 

• 1+I 

• a1I

• a2I

• a3I

• a4I

• 0

• 
1 

a1 

• 

• a2• 

0 

• a3

Φ 

• 
1 

{0,I,1+I} 

• 

• 
{0,1,I} 

• 
{1,I+1+I} 

• 
{0,1,1+I}• 

{0,1} • {0,I) • 
{1+I} 

• {0,1+I} • 
{1,1+I} 

•{I,1+I} • 

{1} •{0} • {I} •{I+1} •
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Figure 3.3 

 Clearly a1 and a6 are not comparable, a2 and a5 are not 

comparable a4 and a7 are not comparable. 

We can have the following Hasse diagram which has 

neutrosophic edges. 

 Figure 3.4 

Clearly L is a edge neutrosophic lattice where we have 

some neutrosophic edges which are not comparable in the 

original lattice. 

So we can on usual lattices L remake it into a edge 

neutrosophic lattice this is done if one doubts that a pair of 

elements {a1, a2} of L with a1 ≠ a2, min {a1, a2} ≠ a1 or a2 

or max {a1, a2} ≠ a1 or a2. 

 If some experts needs to connect a1 with a2 by edge 

then the resultant lattice becomes a edge neutrosophic 

lattice. 

Conclusion: Here for the first time we introduce the 

concept of neutrosophic lattices.  Certainly these lattices 

will find applications in all places where lattices find their 

applications together with some indeterminancy.  When 

one doubts a connection between two vertices one can 

have a neutrosophic edge. 
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Soft Neutrosophic Bigroup and Soft Neutrosophic 
N-Group

Mumtaz Ali, Florentin Smarandache, Muhammad Shabir, Munazza Naz

Abstract. Soft neutrosophic group and soft neutrosophic 
subgroup are generalized to soft neutrosophic bigroup 
and soft neutrosophic N-group respectively in this paper. 
Different kinds of soft neutrosophic bigroup and soft 

neutrosophic N-group are given. The structural properties 
and theorems have been discussed with a lot of examples 
to disclose many aspects of this beautiful man made 
structure.

Keywords: Neutrosophic bigroup, Neutrosophic N-group, soft set, soft group, soft subgroup, soft neutrosophic bigroup, soft neu-
trosophic subbigroup, soft neutrosophic N-group, soft neutrosophic sub N-group.

1 Introduction
    Neutrosophy is a new branch of philosophy which is in 
fact the birth stage of neutrosophic logic first found by 
Florentin Smarandache in 1995.  Each proposition in neu-
trosophic logic is approximated to have the percentage of 
truth in a subset T, the percentage of indeterminacy in a 
subset I, and the percentage of falsity in a subset F so that 
this neutrosophic logic is called an extension of fuzzy log-
ic. In fact neutrosophic set is the generalization of classical 
sets, conventional fuzzy set  1 , intuitionistic fuzzy set

 2 and interval valued fuzzy set  3 . This mathematical
tool is handling problems like imprecise, indeterminacy 
and inconsistent data etc. By utilizing neutrosophic theory,
Vasantha Kandasamy and Florentin Smarandache dig out 
neutrosophic algebraic structures in  11 . Some of them
are neutrosophic fields, neutrosophic vector spaces, neu-
trosophic groups, neutrosophic bigroups, neutrosophic N-
groups, neutrosophic semigroups, neutrosophic bisemi-
groups, neutrosophic N-semigroup, neutrosophic loops, 
neutrosophic biloops, neutrosophic N-loop, neutrosophic 
groupoids, and neutrosophic bigroupoids and so on. 

Molodtsov in  11  laid down the stone foundation of a
richer structure called soft set theory which is free from the 
parameterization inadequacy, syndrome of fuzzy se theory, 
rough set theory, probability theory and so on. In many ar-
eas it has been successfully applied such as smoothness of 
functions, game theory, operations research, Riemann inte-
gration, Perron integration, and probability. Recently soft 
set theory has attained much attention since its appearance 
and the work based on several operations of soft sets intro-

duced in   2,9,10 . Some more exciting properties and

algebra may be found in  1 . Feng et al. introduced the soft

semirings  5 . By means of level soft sets an adjustable
approach to fuzzy soft sets based decision making can be 
seen in 6 . Some other new concept combined with fuzzy

sets and rough sets was presented in 7,8 . AygÄunoglu

et al. introduced the Fuzzy soft groups  4 . This paper is a
mixture of neutrosophic bigroup,neutrosophic  N -group 
and soft set theory which is infact a generalization of soft 
neutrosophic group. This combination gave birth to a new 
and fantastic approach called "Soft Neutrosophic Bigroup 
and Soft Neutrosophic N -group". 

2.1 Neutrosophic Bigroup and N-Group
Definition 1 Let       1 2 1 2, ,NB G B G B G   

be a non empty subset with two binary operations 
on  NB G satisfying the following conditions: 

1)       1 2NB G B G B G  where  1B G

and  2B G   are proper subsets of  NB G .

2)   1 1,B G    is a neutrosophic group. 

3)   2 2,B G  is a group .

Then we define    1 2, ,NB G     to be a neutrosophic 
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bigroup. If both  1B G and  2B G   are neutrosophic 

groups. We say  NB G is a strong neutrosophic
bigroup. If both the groups are not neutrosophic group, we 
say  NB G is just a bigroup. 

Example 1 Let       1 2NB G B G B G 

where     9
1 / 1B G g g  be a cyclic group of order 

9 and    2 1,2, ,2B G I I neutrosophic group un-

der multiplication modulo  3  . We call   NB G a neu-
trosophic bigroup. 

Example 2 Let       1 2NB G B G B G 

Where    1 1,2,3,4, ,2 ,3 ,4B G I I I I a neutrosoph

ic group under multiplication modulo  5 .

   2 0,1,2, ,2 ,1 ,2 ,1 2 ,2 2B G I I I I I I    

is a neutrosophic group under multiplication modulo

3 . Clearly   NB G is a strong neutrosophic bi 

group.
Definition 2 Let       1 2 1 2, ,NB G B G B G   

 be a neutrosophic bigroup. A proper subset 

 1 2 1 2, ,P P P      is a neutrosophic subbi 

group of  NB G if the following conditions are 

satisfied  1 2 1 2, ,P P P      is a neutroso 

phic bigroup under the operations  1 2,  i.e. 

 1 1,P  is a neutrosophic subgroup of   1 1,B 

and   2 2,P  is a subgroup of   2 2,B  . 

1 1P P B  and 2 2P P B  are subgroups of 
1B and 2B respectively. If both of 1P and 2P

are not neutrosophic then we call 1 2P P P  to 

be just a bigroup. 

Definition 3 Let 
      1 2 1 2, ,NB G B G B G   

be a neutrosophic bigroup. If both  1B G   and 

 2B G   are commutative groups, then we call  

 NB G to be a commutative bigroup. 

Definition 4 Let

      1 2 1 2, ,NB G B G B G    be a neutrosophic

bigroup. If both   1B G   and  2B G   are cyclic, we 

call   NB G a cyclic bigroup.
Definition 5 Let 

      1 2 1 2, ,NB G B G B G      be a neutrosophic 

bigroup.       1 2 1 2, ,P G P G P G      be a neu-

trosophic bigroup.       1 2 1 2, ,P G P G P G   

is said to be a neutrosophic normal subbigroup of 
 NB G if  P G is a neutrosophic subbigroup and

both   1P G   and  2P G   are normal subgroups of

 1B G   and  2B G   respectively.
Definition 6 Let 

      1 2 1 2, ,NB G B G B G      be a neutrosophic 

bigroup of finite order. Let 

      1 2 1 2, ,P G P G P G      be a neutrosophic 

subbigroup of  NB G . If      / No P G o B G

then we call   P G   a Lagrange neutrosophic sub-

bigroup, if every neutrosophic subbigroup  P   is such that 

    / No P o B G   then we call   NB G to be a La-

grange neutrosophic bigroup. 
 Definition 7 If  NB G has atleast one Lagrange neu-

trosophic subbigroup then we call   NB G to be a weak
Lagrange neutrosophic bigroup. 
 Definition 8 If  NB G has no Lagrange neutrosophic 

subbigroup then  NB G is called Lagrange free neutro-
sophic bigroup. 
Definition 9 Let       1 2 1 2, ,NB G B G B G   

be a neutrosophic bigroup. Suppose 

    1 2 1 2, ,P P G P G      and 
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    1 2 1 2, ,K K G K G      be any two neutro-

sophic subbigroups. we say  P   and  K   are conjugate if 
each   iP G   is conjugate with   , 1,2iK G i   , then

we say  P   and  K   are neutrosophic conjugate sub-
bigroups of  NB G .

Definition 10 A set   , ,G I  with two binary

operations `   ' and `  ' is called a strong neutrosophic 
bigroup if 
1) 1 2 ,G I G I G I    

2)  1 ,G I  is a neutrosophic group and

3)  2 ,G I is a neutrosophic group. 

Example 3 Let   1 2, ,G I   be a strong neutro-

sophic bigroup where 
 0,1,2,3,4, ,2 ,3 ,4G I Z I I I I I    .

Z I   under `   ' is a neutrosophic group and 

 0,1,2,3,4, ,2 ,3 ,4I I I I under multiplication modulo

5 is a neutrosophic group. 
Definition 11 A subset H    of a strong neutrosoph-

ic bigroup   , ,G I  is called a strong neutrosoph-

ic subbigroup if  H   itself is a strong neutrosophic 
bigroup under `   ' and `  ' operations defined on 
G I  . 

Definition 12 Let   , ,G I  be a strong neutro-

sophic bigroup of finite order. Let  H    be a strong 

neutrosophic subbigroup of   , ,G I  . If

   /o H o G I then we call H, a Lagrange strong

neutrosophic subbigroup of G I  . If every strong 

neutrosophic subbigroup of G I  is a Lagrange 

strong neutrosophic subbigroup then we call  G I  a 
Lagrange strong neutrosophic bigroup. 

Definition 13 If the strong neutrosophic bigroup has at 
least one Lagrange strong neutrosophic subbigroup then 
we call  G I a weakly Lagrange strong neutrosophic 
bigroup. 
Definition 14 If G I   has no Lagrange strong neu-

trosophic subbigroup then we call  G I  a Lagrange 

free strong neutrosophic bigroup. 
Definition 15 Let   , ,G I  be a strong neutro-

sophic bigroup with 1 2G I G I G I      . 

Let  , ,H   be a neutrosophic subbigroup where

1 2H H H  . We say H is a neutrosophic normal 

subbigroup of  G   if both 1H and 2H are neutrosoph-

ic normal subgroups of  1G I   and 2G I   re-
spectively. 
 Definition 16 Let 1 2 , ,G G G    , be a neutro-
sophic bigroup. We say two neutrosophic strong sub-
bigroups 1 2H H H  and 1 2K K K  are conju-
gate neutrosophic subbigroups of 

1 2G I G I G I     if 1H is conjugate to 

1K and 2H is conjugate to 2K as neutrosophic sub-

groups of 1G I  and 1G I  respectively. 

Definition 17 Let  1, ,..., NG I   be a nonempty

set with N -binary operations defined on it. We say 
G I  is a strong neutrosophic N -group if the follow-

ing conditions are true. 
1)  1 2 ... NG I G I G I G I         where 

iG I  are proper subsets of G I  . 

2)  ,i iG I  is a neutrosophic group,

1,2,...,i N . 
3) If in the above definition we  have

a. 1 2 1... ...k k NG I G G I G I G I G          

b.  ,i iG    is a group for some i or 

4)  ,j jG I  is a neutrosophic group for some

j . Then we call G I  to be a neutrosophic N -
group. 

Example 4 Let  

 1 2 3 4 1 2 3 4, , , ,G I G I G I G I G I            

be a neutrosophic  4 -group where 
 1 1,2,3,4, ,2 ,3 ,4G I I I I I 

neutrosophic group under multiplication modulo 5 .  

 2 0,1,2, ,2 ,1 ,2 ,1 2 ,2 2G I I I I I I I     

a neutrosophic group under multiplication modulo 3 ,  
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3G I Z I   ,  a neutrosophic group under addi-

tion and     4 , : , 1, ,4,4G I a b a b I I   ,

component-wise multiplication modulo  5 .

Hence G I is a strong neutrosophic 4 -group. 

Example 5 Let  

 1 2 3 4 1 2 3 4, , , ,G I G I G I G G          

be a neutrosophic 4 -group, where 
 1 1,2,3,4, ,2 ,3 ,4G I I I I I  a neutrosophic

group under multiplication modulo 5 .  

 2 0,1, ,1G I I I   ,a neutrosophic group under

multiplication modulo 2 .  3 3G S and  4 5G A , the 

alternating group. G I is a neutrosophic 4 -group. 
Definition 18 Let 

 1 2 1... , ,...,N NG I G I G I G I         

  be a neutrosophic N -group. A proper subset 

 1, ,..., NP     is said to be a neutrosophic sub N -group 

of G I   if  1 ... NP P P   and each  ,i iP 

is a neutrosophic subgroup (subgroup) of 
 , ,1i iG i N   . 

It is important to note  , iP  for no i is a neutrosophic
group. 
 Thus we see a strong neutrosophic N -group can have 3   
types of subgroups viz. 
1) Strong neutrosophic sub N -groups.
2) Neutrosophic sub N -groups.
3) Sub N -groups.
Also a neutrosophic N -group can have two types of sub
N -groups.
1) Neutrosophic sub N -groups.
2) Sub N -groups.
 Definition 19 If G I  is a neutrosophic N -group 

and if G I   has a proper subset T such that T  is a 

neutrosophic sub  N -group and not a strong neutrosophic 

sub N -group and    /o T o G I then we call  T
a Lagrange sub  N -group. If every sub  N -group of 
G I   is a Lagrange sub  N -group then we call  

G I   a Lagrange  N  -group. 

Definition 20 If G I   has atleast one Lagrange sub 

N -group then we call  G I   a weakly Lagrange neu-
trosophic N-group. 
Definition 21 If G I   has no Lagrange sub  N -

group then we call  G I   to be a Lagrange free  N -
group. 
Definition 22 Let 

 1 2 1... , ,...,N NG I G I G I G I         

be a neutrosophic  N  -group. Suppose 

 1 2 1... , ,...,N NH H H H       and 

 1 2 1... , ,...,N NK K K K       are two sub  N -

groups of G I  , we say K  is a conjugate 

to H or H is conjugate to K  if each iH is conjugate to 

iK  1,2,...,i N as subgroups of  iG  . 

 2.2 Soft Sets 
  Throughout this subsection U refers to an initial uni-
verse, E  is a set of parameters, ( )PU  is the power set of
U , and A E  . Molodtsov defined the soft set in the
following manner: 

Definition 23 A pair ( , )F A  is called a soft set over U
where F is a mapping given by  : ( )F A PU .
In other words, a soft set over  U  is a parameterized fami-
ly of subsets of the universe  U . For  x A  , ( )F x
may be considered as the set of  x -elements of the soft set
( , )F A  , or as the set of e-approximate elements of the
soft set. 
Example 6  Suppose that U  is the set of shops. E is the

set of parameters and each parameter is a word or sentence. 
Let  

high rent,normal rent,

in good condition,in bad condition
E  . 

Let us consider a soft set ( , )F A which describes the at-
tractiveness of shops that Mr.Z  is taking on rent. Suppose
that there are five houses in the universe  

1 2 3 4 5{ , , , , }U s s s s s under consideration, and that

1 2 3{ , , }A x x x be the set of parameters where

1x stands for the parameter 'high rent,

2x stands for the parameter 'normal rent,
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3x stands for the parameter 'in good condition.
Suppose that 

1 1 4( ) { , }F x s s ,

2 2 5( ) { , }F x s s ,

3 3 4 5( ) { , , }.F x s s s
The soft set ( , )F A  is an approximated family

{ ( ), 1,2,3}iF e i of subsets of the set U which gives
us a collection of approximate description of an object. 
Then ( , )F A  is a soft set as a collection of approxima-
tions over  U , where

21 1  { , }) ,( high rex nt s sF

2 2 5( )   { , },F x normal rent s s

3 3 4 5( )    { , , }.F x in good condition s s s

Definition 24 For two soft sets ( , )F A  and  ( , )H B  over
U , ( , )F A  is called a soft subset of  ( , )H B  if

1. A B and
2. ( ) ( )F x H x , for all  x A  .

This relationship is denoted by ( , ) ( , )F A H B . Simi-
larly ( , )F A  is called a soft superset of ( , )H B  if
( , )H B  is a soft subset of ( , )F A  which is denoted by
( , ) ( , )F A H B .
Definition 25 Two soft sets ( , )F A  and ( , )H B  over
U are called soft equal if ( , )F A  is a soft subset of
( , )H B  and ( , )H B  is a soft subset of ( , )F A .
Definition 26  Let ( , )F A  and ( , )K B  be two soft sets
over a common universe U such that  A B  .
Then their restricted intersection is denoted by 
( , ) ( , ) ( , )RF A K B H C  where ( , )H C  is de-

fined as  ( ) ( ) )H c F c c for all
c C A B .
Definition 27  The extended intersection of two soft sets 
( , )F A  and  ( , )K B  over a common universe U is the
soft set  ( , )H C  , where  C A B  , and for all
c C  , ( )H c  is defined as

( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

We write  ( , ) ( , ) ( , )F A K B H C  .
Definition 28 The restricted union of two soft sets  
( , )F A  and ( , )K B  over a common universe U is the
soft set  ( , )H C , where  C A B  , and for all

c C , ( )H c is defined as  ( ) ( ) ( )H c F c G c
for all  c C  . We write it as
( , ) ( , ) ( , ).RF A K B H C
Definition 29 The extended union of two soft sets  
( , )F A  and ( , )K B  over a common universe U is the
soft set  ( , )H C , where  C A B  , and for all

c C  ,  ( )H c   is defined as

( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

We write  ( , ) ( , ) ( , )F A K B H C .

2.3 Soft Groups 

Definition 30  Let ( , )F A  be a soft set over G . Then
( , )F A  is said to be a soft group over G  if and only if

( )F x G  for all  x A  .

Example 7  Suppose that 

3 { ,(12),(13),(23),(123),(132)}.G A S e

Then ( , )F A  is a soft group over 3S where

( ) { },

(12) { ,(12)},

(13) { ,(13)},

(23) { ,(23)},

(123) (132) { ,(123),(132)}.

F e e

F e

F e

F e

F F e

Definition 31  Let ( , )F A  be a soft group overG . Then
1. ( , )F A is said to be an identity soft group

over G if ( ) { }F x e for all x A ,
where  e is the identity element of G and

2. ( , )F A is said to be an absolute soft group if

( )F x G for all x A  .

3 Soft Neutrosophic Bigroup 
Definition 32 Let 

      1 2 1 2, ,NB G B G B G   
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be a neutrosophic bigroup and let   ,F A   be a soft set

over  NB G  . Then   ,F A   is said to be soft neutro-

sophic bigroup over  NB G if and only if  F x is a

subbigroup of  NB G for all  x A . 
Example 8 Let  

      1 2 1 2, ,NB G B G B G   

be a neutrosophic bigroup, where 
   1 0,1,2,3,4, ,2 ,3 ,4B G I I I I

 is a neutrosophic group under multiplication modulo  5  .  

   12
2 : 1B G g g  is a cyclic group of order  12.  

Let       1 2 1 2, ,P G P G P G      be a neutro-

sophic subbigroup where    1 1,4, ,4P G I I and

   2 4 6 8 10
2 1, , , , ,P G g g g g g  . 

Also       1 2 1 2, ,Q G Q G Q G      be another

neutrosophic subbigroup where    1 1,Q G I and

   3 6 9
2 1, , ,Q G g g g  . 

Then   ,F A   is a soft neutrosophic  bigroup over

 NB G , where

   

   

2 4 6 8 10
1

3 6 9
2

1,4, ,4 ,1, , , , ,

1, ,1, , , .

F e I I g g g g g

F e I g g g





Theorem 1 Let   ,F A   and   ,H A   be two soft

neutrosophic bigroup over  NB G . Then their intersec-

tion     , ,F A H A   is again a soft neutrosophic

bigroup over  NB G . 
 Proof Straight forward. 

Theorem 2 Let   ,F A   and   ,H B   be two  soft

neutrosophic bigroups over   NB G such that

A B   , then their union is soft neutrosophic bigroup

over   NB G . 
Proof Straight forward. 

Proposition 1 The extended union of two soft neutro-

sophic  bigroups   ,F A   and   ,K D   over  NB G

is not a soft neutrosophic  bigroup over   .NB G
To prove it, see the following example. 
Example 9 Let       1 2 1 2, ,NB G B G B G     ,

where    1 1,2,3,4 ,2 ,3 ,4B G I I I I and

 2 3B G S . 

Let       1 2 1 2, ,P G P G P G      be a neutro-

sophic subbigroup where    1 1,4, ,4P G I I and

    2 , 12P G e . 

Also       1 2 1 2, ,Q G Q G Q G      be another 

neutrosophic subbigroup where    1 1,Q G I and

      2 , 123 , 132Q G e  . 

Then   ,F A   is a soft neutrosophic bigroup over

 NB G , where

    

      

1

2

1,4, ,4 , , 12

1, , , 123 , 132 .

F x I I e

F x I e





Again let       1 2 1 2, ,R G R G R G    be anoth-

er neutrosophic subbigroup where    1 1,4, ,4R G I I

and     2 , 13R G e . 

Also        1 2 1 2, ,T G T G T G      be a neutro-

sophic subbigroup where     1 1,T G I and

    2 , 23 .T G e

Then   ,K D   is a soft  neutrosophic bigroup over

 NB G  , where

    

    

2

3

1,4, ,4 , , 13 ,

1, , , 23 .

K x I I e

K x I e





The extended union       , , ,F A K D H C  such

that  C A D    and for 2x C , we have 

            2 2 2 1,4, ,4 , , 13 123 , 132H x F x K x I I e  

  is not a subbigroup of  NB G .
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Proposition 2 The extended intersection of two soft neu-
trosophic bigroups   ,F A   and   ,K D   over

 NB G is again a soft neutrosophic bigroup over

 NB G .
Proposition 3 The restricted union of two soft neutro-

sophic bigroups  ,F A  and  ,K D   over  NB G is

not a soft neutrosophic  bigroup over  NB G .

Proposition 4 The restricted intersection of two soft 
neutrosophic bigroups   ,F A   and   ,K D   over

 NB G is a soft neutrosophic bigroup over  NB G .

 Proposition 5 The  AND   operation of two soft neu-
trosophic bigroups over  NB G is again soft neutro-

sophic bigroup over  NB G . 

Proposition 6 The  OR   operation of two soft neutro-
sophic bigroups over   NB G may not be a soft nuetro-
sophic bigroup. 
Definition 33 Let   ,F A   be a soft neutrosophic

bigroup over  NB G . Then

1)  ,F A is called identity soft neutrosophic bigroup

if     1 2,F x e e for all  x A , where  1e   and 

2e are the identities of  1B G and  2B G re-
spectively. 

2)  ,F A is called Full-soft neutrosophic  bigroup if

   NF x B G for all  x A .

Theorem 3 Let  NB G be a neutrosophic bigroup of 

prime order  P , then   ,F A   over  NB G is either
identity soft neutrosophic bigroup or Full-soft  neutrosoph-
ic bigroup. 
Definition 34 Let  ,F A  and   ,H K  be two soft

neutrosophic bigroups over  NB G . Then  ,H K is

soft neutrosophi  subbigroup of   ,F A   written as

   , ,H K F A , if

1) K A ,
2)    K x F x for all  x A .
Example 10 Let 

      1 2 1 2, ,B G B G B G    where 

 1

0,1,2,3,4, ,2 ,3 ,4 ,1 ,2 ,3 ,4 ,
1 2 ,2 2 ,3 2 ,4 2 ,1 3 ,2 3 ,
3 3 ,4 3 ,1 4 ,2 4 ,3 4 ,4 4

I I I I I I I I
B G I I I I I I

I I I I I I

    
 

       
       

  

be a neutrosophic group under multiplication modulo  5   

and     16
2 : 1B G g g  a cyclic group of order 

16 . Let       1 2 1 2, ,P G P G P G    be a neu-

trosophic subbigroup where 
   1 0,1,2,3,4, ,2 ,3 ,4P G I I I I

and  
be another neutrosophic subbigroup where 

   2 4 6 8 10 12 14
2 , , , , , , ,1P G g g g g g g g . 

Also       1 2 1 2, ,Q G Q G Q G   

   1 0,1,4, ,4Q G I I

 and 

   4 8 12
2 , , ,1Q G g g g . 

Again let       1 2 1 2, ,R G R G R G    be a neu-

trosophic subbigroup where 

   1 0,1,R G I and    8
2 1,R G g . 

Let   ,F A be a soft neutrsophic  bigroup  over  NB G
where 

   

   

   

2 4 6 8 10 12 14
1

4 8 12
2

8
3

0,1,2,3,4, ,2 ,3 ,4 , , , , , , , ,1 ,

0,1,4, ,4 , , , ,1 ,

0,1, , ,1 .

F x I I I I g g g g g g g

F x I I g g g

F x I g







Let   ,H K  be another  soft neutrosophic  bigroup over

 NB G , where

   

   

4 8 12
1

8
2

0,1,2,3,4, , , ,1 ,

0,1, , ,1 .

H x g g g

H x I g





Clearly     , , .H K F A

Definition 35 Let  NB G be a neutrosophic bigroup.

Then   ,F A  over  NB G is called commutative soft  

neutrosophic  bigroup if and only if   F x  is a commuta-

tive subbigroup of  NB G for all  .x A
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Example 11 Let       1 2 1 2, ,B G B G B G   

be a neutrosophic bigroup where    10
1 : 1B G g g 

be a cyclic group of order 10  and 

   2 1,2,3,4, ,2 I,3 ,4B G I I I be a neutrosophic 

group under mltiplication modulo 5 . 

Let        1 2 1 2, ,P G P G P G    be a commuta-

tive neutrosophic subbigroup where    5
1 1,P G g

and    2 1,4, ,4P G I I . Also

      1 2 1 2, ,Q G Q G Q G    be another commu-

tative neutrosophic subbigroup where 

   2 4 6 8
1 1, , , ,Q G g g g g  and    2 1,Q G I . 

Then   ,F A  is commutative soft neutrosophic bigroup

over  NB G , where 

   

   

5
1

2 4 6 8
2

1, ,1,4, ,4 ,

1, , , , ,1, .

F x g I I

F x g g g g I





Theorem 4 Every commutative soft neutrosophic 
bigroup   ,F A   over  NB G is a soft neutrosophic
bigroup but the converse is not true. 

Theorem 5 If  NB G is commutative neutrosophic 

bigroup. Then   ,F A  over  NB G is commutative 
soft neutrosophic bigroup but the converse is not true. 

Theorem 6 If  NB G is cyclic neutrosophic bigroup. 

Then   ,F A  over  NB G is commutative soft neu-
trosophic  bigroup. 

Proposition 7 Let  ,F A  and  ,K D  be two commu-

tative  soft neutrosophic  bigroups over   NB G . Then

1) Their extended union     , ,F A K D  over 

 NB G is not commutative soft  neutrosophic

bigroup over  NB G .

2) Their extended intersection     , ,F A K D  over 

 NB G is commutative soft  neutrosophic bigroup

over  NB G .

3) Their restricted union     , ,RF A K D over

 NB G is not commutative soft  neutrosophic

bigroup over  NB G .

4) Their restricted intersection     , ,RF A K D

over  NB G is commutative soft  neutrosophic

bigroup over   .NB G

Proposition 8 Let  ,F A  and  ,K D  be two com-

mutative soft neutrosophic  bigroups over  NB G . Then

1) Their  AND  operation    , ,F A K D  is com-

mutative soft neutrosophic  bigroup over  NB G .

2) Their OR  operation    , ,F A K D  is not com-

mutative  soft  neutrosophic  bigroup over  NB G .

Definition 36 Let  NB G be a neutrosophic bigroup. 

Then  ,F A  over  NB G is called cyclic soft neutro-

sophic bigroup if and only if   F x  is a cyclic sub-

bigroup of  NB G for all  .x A

Example 12 Let       1 2 1 2, ,B G B G B G   

be a neutrosophic bigroup where    10
1 : 1B G g g 

be a cyclic group of order 10  and 

   2 0,1,2, ,2 ,1 ,2 ,1 2 ,2 2B G I I I I I I    

be a neutrosophic group under multiplication modulo 3 . 

Le       1 2 1 2, ,P G P G P G      be a cyclic neu-

trosophic subbigroup where    5
1 1,P G g and

 1,1 I .

Also       1 2 1 2, ,Q G Q G Q G    be another

cyclic neutrosophic subbigroup where 

   2 4 6 8
1 1, , , ,Q G g g g g  and 

   2 1,2 2 .Q G I 

Then  ,F A  is cyclic soft neutrosophic bigroup over

  ,NB G  where 
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5
1

2 4 6 8
2

1, ,1,1 ,

1, , , , ,1,2 2 .

F x g I

F x g g g g I

 

 

Theorem 7 If  NB G is a cyclic neutrosophic soft 

bigroup, then  ,F A  over  NB G is also cyclic soft 
neutrosophic bigroup. 

Theorem 8 Every cyclic  soft neutrosophic  bigroup 
 ,F A over  NB G is a  soft neutrosophic bigroup but 
the converse is not true. 

Proposition 9 Let  ,F A  and  ,K D  be two cyclic

soft neutrosophic  bigroups over    .NB G Then

1) Their extended union     , ,F A K D   over 

 NB G is not cyclic soft  neutrosophic bigroup over

  .NB G

2) Their extended intersection     , ,F A K D over

 NB G  is cyclic  soft neutrosophic bigroup over

  .NB G

3) Their restricted union     , ,RF A K D over

 NB G is not cyclic  soft neutrosophic bigroup over

  .NB G

4) Their restricted intersection     , ,RF A K D

over  NB G is cyclic soft neutrosophic  bigroup

over   .NB G

Proposition 10 Let  ,F A  and  ,K D  be two cyclic

soft  neutrosophic  bigroups over   .NB G Then

1) Their AND  operation    , ,F A K D  is cyclic

soft  neutrosophic  bigroup over    .NB G

2) Their OR  operation    , ,F A K D  is not cyclic

soft neutrosophic bigroup over   .NB G

 Definition 37 Let  NB G be a neutrosophic bigroup.

Then  ,F A  over  NB G is called normal soft neutro-

sophic bigroup if and only if   F x  is normal subbigroup

of  NB G for all  .x A

Example 13 Let       1 2 1 2, ,B G B G B G   

be a neutrosophic  bigroup, where 

 
2 2

1 2 2

, , , , , , ,
, , , ,

e y x x xy x y I
B G

Iy Ix Ix Ixy Ix y

  
  
  

 is a neutrosophic group under multiplaction  and 

   6
2 : 1B G g g  is a cyclic group of order 6 . 

Let       1 2 1 2, ,P G P G P G    be a normal

neutrosophic subbigroup where    1 ,P G e y and

   2 4
2 1, ,P G g g  . 

Also       1 2 1 2, ,Q G Q G Q G    be another

normal neutrosophic subbigroup where 

   2
1 , ,Q G e x x and    3

2 1, .Q G g

Then   ,F A  is a normal soft neutrosophic  bigroup over

 NB G  where

   

   

2 4
1

2 3
2

, ,1, , ,

, , ,1, .

F x e y g g

F x e x x g





Theorem 9 Every normal soft neutrosophic  bigroup 
 ,F A over  NB G is a  soft neutrosophic bigroup but 
the converse is not true. 

Theorem 10 If  NB G is a normal neutrosophic

bigroup. Then  ,F A  over  NB G is also normal soft 
neutrosophic bigroup. 

Theorem 11 If  NB G is a commutative neutrosophic

bigroup. Then  ,F A  over  NB G is normal soft neu-
trosophic bigroup. 

Theorem 12 If  NB G is a cyclic neutrosophic

bigroup. Then  ,F A  over  NB G is normal soft neu-
trosophic bigroup. 
Proposition 11 Let  ,F A  and  ,K D  be two nor-

mal soft neutrosophic bigroups over   .NB G Then

1) Their extended union     , ,F A K D   over 

 NB G is not normal soft neutrosophic  bigroup over
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  .NB G

2) Their extended intersection     , ,F A K D  over 

 NB G is normal soft neutrosophic  bigroup over

  .NB G

3) Their restricted union    , ,RF A K D over

 NB G is not normal soft neutrosophic bigroup over

  .NB G

4) Their restricted intersection     , ,RF A K D

over  NB G is normal soft neutrosophic bigroup

over   .NB G

Proposition 12 Let  ,F A  and  ,K D  be two nor-

mal soft neutrosophic bigroups over   .NB G Then

1) Their AND  operation    , ,F A K D  is normal

soft neutrosophic bigroup over    .NB G

2) Their OR  operation    , ,F A K D  is not nor-

mal soft neutrosophic  bigroup over   .NB G

Definition 38 Let  ,F A  be a soft neutrosophic bigroup

over  NB G . If for all x A  each   F x  is a La-

grange subbigroup of  NB G , then  ,F A is called

Lagrange soft neutosophic bigroup over   .NB G

Example 14 Let       1 2 1 2, ,B G B G B G   

be a neutrosophic bigroup, where 

 
2 2

1 2 2

, , , , , , ,
, , , ,

e y x x xy x y I
B G

Iy Ix Ix Ixy Ix y

  
  
  

is a neutrosophic symmetric group of  and 
   2 0,1, ,1B G I I  be a neutrosophic group under ad-

dition modulo 2 . Let 

      1 2 1 2, ,P G P G P G       be a neutrosophic 

subbigroup where    1 ,P G e y and

   2 0,1P G  . 

Also       1 2 1 2, ,Q G Q G Q G    be another

neutrosophic subbigroup where    1 ,Q G e Iy and

   2 0,1 .Q G I 

Then   ,F A  is Lagrange soft neutrosophic  bigroup over

 NB G , where

   

   

2

2

, ,0,1 ,

, ,0,1 .

F x e y

F x e yI I



 

Theorem 13 If  NB G is a Lagrange neutrosophic 

bigroup, then  ,F A  over  NB G is Lagrange soft neu-
trosophic bigroup. 

Theorem 14 Every Lagrange soft neutrosophic  bigroup 
 ,F A over  NB G is a soft neutrosophic  bigroup but
the converse is not true. 

Proposition 13 Let  ,F A  and  ,K D  be two La-

grange soft neutrosophic bigroups over  NB G . Then

1) Their extended union     , ,F A K D   over 

 NB G is not Lagrange soft neutrosophic bigroup

over   .NB G

2) Their extended intersection    , ,F A K D  over 

 NB G is not Lagrange soft neutrosophic bigroup

over   .NB G

3) Their restricted union     , ,RF A K D over

 NB G is not Lagrange soft neutrosophic bigroup

over   .NB G

4) Their restricted intersection     , ,RF A K D

over  NB G is not Lagrange soft neutrosophic 

bigroup over   .NB G

Proposition 14 Let  ,F A  and  ,K D  be two La-

grange soft neutrosophic bigroups over   .NB G Then

1) Their AND  operation     , ,F A K D  is not La-

grange soft neutrosophic bigroup over    .NB G

2) Their OR  operation    , ,F A K D  is not La-

grange soft neutrosophic bigroup over    .NB G
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Definition 39 Let  ,F A  be a soft neutrosophic

bigroup over   .NB G Then  ,F A is called weakly

Lagrange soft neutosophic bigroup over  NB G if at-

least one  F x  is a Lagrange subbigroup of   ,NB G
for some  .x A  

Example 15 Let       1 2 1 2, ,B G B G B G   

be a neutrosophic bigroup, where 

 1

0,1,2,3,4, ,2 ,3 ,4 ,1 ,2 ,3 ,4 ,
1 2 ,2 2 ,3 2 ,4 2 ,1 3 ,2 3 ,
3 3 ,4 3 ,1 4 ,2 4 ,3 4 ,4 4

I I I I I I I I
B G I I I I I I

I I I I I I

    
 

       
       

  is a neutrosophic group under multiplication modulo 5  

and    10
2 : 1B G g g  is a cyclic group of order 

10 . Let       1 2 1 2, ,P G P G P G    be a neu-

trosophic subbigroup where    1 0,1,4, ,4P G I I

and    2 4 6 8
2 , , , ,1 .P G g g g g Also

      1 2 1 2, ,Q G Q G Q G    be another neutro-

sophic subbigroup where    1 0,1,4, ,4Q G I I and

   5
2 ,1 .Q G g Then  ,F A is a weakly Lagrange

soft neutrosophic bigroup over   ,NB G  where 

   

   

2 4 6 8
1

5
2

0,1,4, ,4 , , , , ,1 ,

0,1,4, ,4 , ,1 .

F x I I g g g g

F x I I g





Theorem 15 Every weakly Lagrange soft neutrosophic 
bigroup  ,F A  over  NB G is a soft neutrosophic
bigroup but the converse is not true. 

Proposition 15 Let  ,F A  and  ,K D  be two weak-

ly Lagrange soft neutrosophic bigroups over    .NB G
Then 
1) Their extended union     , ,F A K D over

 NB G is not weakly Lagrange soft neutrosophic

bigroup over   .NB G

2) Their extended intersection     , ,F A K D  over 

 NB G is not weakly Lagrange soft neutrosophic

bigroup over  NB G . 

3) Their restricted union    , ,RF A K D over

 NB G is not weakly Lagrange soft neutrosophic

bigroup over   .NB G

4) Their restricted intersection    , ,RF A K D

over  NB G is not weakly Lagrange soft neutrosoph-

ic bigroup over   .NB G

Proposition 16 Let  ,F A  and  ,K D  be two weak-

ly Lagrange soft neutrosophic bigroups over   .NB G
Then 
1) Their AND  operation     , ,F A K D  is not

weakly Lagrange soft neutrosophic bigroup over
  .NB G

2) Their OR operation    , ,F A K D  is not weakly

Lagrange soft neutrosophic bigroup over   .NB G

Definition 40 Let  ,F A  be a soft neutrosophic

bigroup over  NB G . Then  ,F A is called Lagrange

free soft neutrosophic bigroup if each  F x is not La-

grange subbigroup of   ,NB G for all .x A

Example 16 Let       1 2 1 2, ,B G B G B G   

be a neutrosophic  bigroup, where 
   1 0,1, ,1B G I I  is a neutrosophic group under 

addition modulo 2  of order 4  and 

   12
2 : 1B G g g  is a cyclic group of order 12.  

Let       1 2 1 2, ,P G P G P G    be a neutro-

sophic subbigroup where    1 0,P G I and

   4 8
2 , ,1P G g g . Also 

      1 2 1 2, ,Q G Q G Q G    be another neutro-

sophic subbigroup where    1 0,1Q G I  and

   3 6 9
2 1, , ,Q G g g g . Then  ,F A is Lagrange

free soft neutrosophic bigroup over  NB G , where 

   

   

4 8
1

3 6 9
2

0, ,1, , ,

0,1 ,1, , , .

F x I g g

F x I g g g
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Theorem 16 If  NB G is Lagrange free neutrosophic 

bigroup, and then  ,F A  over  NB G is Lagrange free 
soft neutrosophic bigroup. 

Theorem 17 Every Lagrange free soft neutrosophic 
bigroup  ,F A  over  NB G is a soft neutrosophic
bigroup but the converse is not true. 
Proposition 17 Let  ,F A  and  ,K D be two La-

grange free soft neutrosophic bigroups over   .NB G
Then 

1) Their extended union     , ,F A K D over 

 NB G is not Lagrange free soft neutrosophic

bigroup over   .NB G

2) Their extended intersection     , ,F A K D

over  NB G is not Lagrange free soft neutro-

sophic bigroup over  NB G .

3) Their restricted union    , ,RF A K D over

 NB G is not Lagrange free soft neutrosophic

bigroup over   .NB G

4) Their restricted intersection    , ,RF A K D

over  NB G is not Lagrange free soft neutro-

sophic bigroup over   .NB G

Proposition 18 Let  ,F A  and  ,K D  be two La-

grange free soft neutrosophic  bigroups over   .NB G
Then 
1) Their AND  operation    , ,F A K D  is not La-

grange free soft neutrosophic bigroup over   .NB G

2) Their OR  operation    , ,F A K D  is not La-

grange free soft neutrosophic bigroup over   .NB G

Definition 41 Let  NB G be a neutrosophic bigroup. 

Then  ,F A  is called conjugate soft neutrosophic

bigroup over  NB G if and only if  F x is neutrosophic

conjugate subbigroup of  NB G for all  .x A

Example 17 Let       1 2 1 2, ,B G B G B G    be

a soft neutrosophic bigroup, where 

   2 2
1 , , , , ,B G e y x x xy x y

 is Klien 4 -group and 

 2

0,1,2,3,4,5, ,2 ,3 ,4 ,5 ,
1 ,2 ,3 ,...,5 5

I I I I I
B G

I I I I
 

  
    

be a neutrosophic group under addition modulo  6 . 

Let       1 2 1 2, ,P G P G P G    be a neutrosoph-

ic subbigroup of   ,NB G where     1 ,P G e y and

   2 0,3,3 ,3 3 .P G I I  Again 

let       1 2 1 2, ,Q G Q G Q G    be another neu-

trosophic subbigroup of   ,NB G   where 

   2
1 , ,Q G e x x   and

   2 0,2,4,2 2 ,4 4 ,2 ,4 .Q G I I I I   Then

 ,F A is conjugate soft neutrosophic bigroup over

  ,NB G  where

   

   
1

2
2

, ,0,3,3 ,3 3 ,

, , ,0,2,4,2 2 ,4 4 ,2 ,4 .

F x e y I I

F x e x x I I I I

 

  

Theorem 18 If  NB G is conjugate neutrosophic 

bigroup, then  ,F A  over  NB G is conjugate soft neu-
trosophic bigroup. 

Theorem 19 Every conjugate soft neutrosophic bigroup 
 ,F A over  NB G is a soft neutrosophic bigroup but 
the converse is not true. 
Proposition 19 Let  ,F A and  ,K D be two conju-

gate soft neutrosophic bigroups over   .NB G Then

1) Their extended union    , ,F A K D  over 

 NB G is not conjugate soft neutrosophic bigroup

over   .NB G

2) Their extended intersection     , ,F A K D  over 

 NB G is conjugate soft neutrosophic bigroup over

  .NB G
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3) Their restricted union    , ,RF A K D over

 NB G is not conjugate soft neutrosophic bigroup

over   .NB G
4) Their restricted intersection

   , ,RF A K D over  NB G is conjgate soft 

neutrosophic bigroup over   .NB G

Proposition 20 Let  ,F A and  ,K D be two conju-

gate soft neutrosophic bigroups over    .NB G Then

1) Their AND  operation    , ,F A K D  is conju-

gate soft neutrosophic bigroup over    .NB G

2) Their OR  operation    , ,F A K D  is not conju-

gate soft neutrosophic bigroup over    .NB G

3.3 Soft Strong Neutrosophic Bigroup 

Definition 42 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over  1 2, ,G I   is 

called soft strong neutrosophic bigroup if and only if 
 F x is a strong neutrosophic subbigroup of

 1 2, ,G I   for all .x A

Example 18 Let  1 2, ,G I   be a strong neutro-

sophic bigroup, where 1 2G I G I G I    

with 1G I Z I    , the neutrosophic group un-

der addition and   2 0,1,2,3,4, ,2 ,3 ,4G I I I I I 

a neutrosophic group under multiplication modulo 5.   Let 

1 2H H H  be a strong neutrosophic subbigroup of 

 1 2, , ,G I   where  1 2 ,H Z I   is a 

neutrosophic subgroup and  2 0,1,4, ,4H I I is a neu-

trosophic subgroup. Again let 1 2K K K  be another

strong neutrosophic subbigroup of   1 2, , ,G I  

where  1 3 ,K Z I   is a neutrosophic subgroup

and  2 0,1, ,2 ,3 ,4K I I I I is a neutrosophic subgroup. 

Then clearly  ,F A  is a soft strong neutrosophic bigroup

over   1 2, , ,G I   where 

   

   

1

2

0, 2, 4,...,1,4, ,4 ,

0, 3, 6,...,1, ,2 ,3 ,4 .

F x I I

F x I I I I

  

  

Theorem 20 Every soft strong neutrosophic bigroup 
 ,F A is a soft neutrosophic bigroup but the converse is
not true.
Theorem 21 If  1 2, ,G I   is a strong neutro-

sophic bigroup, then  ,F A over  1 2, ,G I   is 

soft strong neutrosophic bigroup. 
Proposition 21 Let  ,F A  and  ,K D  be two soft

strong neutrosophic bigroups over   1 2, ,G I   . 

Then 
1) Their extended union    , ,F A K D over

 1 2, ,G I   is not soft strong neutrosophic 

bigroup over  1 2, , .G I  

2) Their extended intersection     , ,F A K D over

 1 2, ,G I   is soft strong neutrosophic bigroup

over   1 2, , .G I  

3) Their restricted union    , ,RF A K D over

 1 2, ,G I   is not soft strong neutrosophic 

bigroup over   1 2, , .G I  

4) Their restricted intersection     , ,RF A K D

over  1 2, ,G I   is soft strong neutrosophic 

bigroup over   1 2, , .G I  

Proposition 22 Let   ,F A  and  ,K D be two soft

strong neutrosophic bigroups over   1 2, ,G I   . 

Then 
1) Their AND  operation    , ,F A K D  is soft

strong neutrosophic bigroup over  1 2, , .G I  

2) Their OR  operation    , ,F A K D  is not soft

strong neutrosophic bigroup over   1 2, , .G I  

Definition 43 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over   1 2, ,G I   is 
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called Lagrange soft strong neutrosophic bigroup if and 
only if  F x is Lagrange subbigroup of

 1 2, ,G I   for all  .x A

Example 19 Let  1 2, ,G I   be a strong neutro-

sophic bigroup of order 15 , where 

1 2G I G I G I      with 

 1 0,1,2,1 , ,2 ,2 ,2 2 ,1 2 ,G I I I I I I I     

the neutrosophic group under mltiplication modulo 3  and 

 2 2
2 3 , , , , ,G I A I e x x I xI x I    . Let

1 2H H H  be a strong neutrosophic subbigroup of 

 1 2, , ,G I   where  1 1,2 2H I  is a neutro-

sophic subgroup and  2
2 , ,H e x x  is a neutrosophic 

subgroup. Again let 1 2K K K  be another strong neu-

trosophic subbigroup of   1 2, , ,G I   where 

 1 1,1K I  is a neutrosophic subgroup and 

 2
2 , ,K I xI x I is a neutrosophic subgroup. Then

clearly  ,F A is Lagrange soft strong neutrosophic

bigroup over   1 2, , ,G I   where 

   

   

2
1

2
2

1,2 2 , , , ,

1,1 , , , .

F x I e x x

F x I I xI x I

 

 

Theorem 22 Every Lagrange soft strong neutrosophic 
bigroup  ,F A  is a soft neutrosophic bigroup but the
converse is not true. 

Theorem 23 Every Lagrange soft strong neutrosophic 
bigroup  ,F A  is a soft strong neutrosophic bigroup but
the converse is not true. 

Theorem 24 If  1 2, ,G I   is a Lagrange strong

neutrosophic bigroup, then  ,F A  over

 1 2, ,G I   is a Lagrange soft strong neutrosophic 

soft bigroup. 
Proposition 23 Let  ,F A  and  ,K D  be two La-

grange soft strong neutrosophic bigroups over  

 1 2, , .G I   Then

1) Their extended union    , ,F A K D over

 1 2, ,G I   is not  Lagrange soft strong neu-

trosophic bigroup over   1 2, , .G I  

2) Their extended intersection     , ,F A K D over

 1 2, ,G I   is not Lagrange soft strong neutro-

sophic bigroup over   1 2, , .G I  

3) Their restricted union    , ,RF A K D over

 1 2, ,G I   is not Lagrange soft strong neutro-

sophic bigroup over   1 2, , .G I  

4) Their restricted intersection     , ,RF A K D

over  1 2, ,G I   is not Lagrange soft strong 

neutrosophic bigroup over   1 2, , .G I  

Proposition 24 Let  ,F A  and  ,K D  be two La-
grange soft strong neutrosophic bigroups over  

 1 2, , .G I   Then

1) Their AND  operation    , ,F A K D  is not La-
grange soft strong neutrosophic bigroup over

 1 2, , .G I  

2) Their OR  operation    , ,F A K D  is not La-
grange soft strong neutrosophic bigroup over

 1 2, , .G I  

Definition 44 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over   1 2, ,G I   is

called weakly Lagrange soft strong neutrosophic bigroup if 
atleast one  F x  is a Lagrange subbigroup of

 1 2, ,G I   for some .x A

Example 20 Let  1 2, ,G I   be a strong neutro-

sophic bigroup of order 15 , where 

1 2G I G I G I      with 

 1 0,1,2,1 , ,2 ,2 ,2 2 ,1 2 ,G I I I I I I I     

the neutrosophic under mltiplication modulo 3 and 

Florentin Smarandache (author and editor) Collected Papers, XII

102



 2 2
2 , , , , ,G I e x x I xI x I  . Let

1 2H H H  be a strong neutrosophic subbigroup of 

 1 2, , ,G I   where  1 1,2, ,2H I I is a neu-

trosophic subgroup and  2
2 , ,H e x x  is a neutrosoph-

ic subgroup. Again let 1 2K K K  be another strong 

neutrosophic subbigroup of   1 2, ,G I   , where

 1 1,1K I  is a neutrosophic subgroup and 

 2
2 , , ,K e I xI x I is a neutrosophic subgroup. 

Then clearly  ,F A  is weakly Lagrange soft strong neu-

trosophic bigroup over   1 2, , ,G I   where 

   

   

2
1

2
2

1,2, ,2 , , , ,

1,1 , , , , .

F x I I e x x

F x I e I xI x I



 

Theorem 25 Every weakly Lagrange soft strong neutro-
sophic bigroup  ,F A  is a soft neutrosophic bigroup but
the converse is not true. 

Theorem 26 Every weakly Lagrange soft strong neutro-
sophic bigroup  ,F A is a soft strong neutrosophic
bigroup but the converse is not true. 

Proposition 25 Let  ,F A  and  ,K D  be two weak-
ly Lagrange soft strong neutrosophic bigroups over  

 1 2, ,G I   . Then

1) Their extended union    , ,F A K D over

 1 2, ,G I   is not  weakly Lagrange soft 

strong neutrosophic bigroup over   1 2, , .G I  

.
2) Their extended intersection     , ,F A K D over

 1 2, ,G I   is not weakly Lagrange soft strong

neutrosophic bigroup over  1 2, , .G I  

3) Their restricted union    , ,RF A K D over

 1 2, ,G I   is not weakly Lagrange soft strong

neutrosophic bigroup over   1 2, , .G I   . 

4) Their restricted intersection     , ,RF A K D

over   1 2, ,G I   is not weakly Lagrange soft 

strong neutrosophic bigroup over   1 2, , .G I  

Proposition 26 Let  ,F A  and  ,K D  be two weak-
ly Lagrange soft strong neutrosophic bigroups over 

 1 2, ,G I   . Then

1) Their AND  operation    , ,F A K D  is not
weakly Lagrange soft strong neutrosophic bigroup
over  1 2, , .G I   .

2) Their OR  operation    , ,F A K D is not weakly
Lagrange soft strong neutrosophic bigroup over

 1 2, , .G I  

Definition 45 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over   1 2, ,G I   is 

called Lagrange free soft strong neutrosophic bigroup if 
and only if  F x   is not Lagrange subbigroup of

 1 2, ,G I   for all  .x A

Example 21 Let  1 2, ,G I   be a strong neutro-

sophic bigroup of order  15 , where 

1 2G I G I G I      with 

 1 0,1,2,3,4, ,2 ,3 ,4 ,G I I I I I  the neutrosoph-

ic under mltiplication modulo 5  and 

 2 2
2 , , , , , ,G I e x x I xI x I  a neutrosophic sym-

metric group .  Let 1 2H H H  be a strong neutro-

sophic subbigroup of   1 2, , ,G I   where 

 1 1,4, ,4H I I is a neutrosophic subgroup and 

 2
2 , ,H e x x  is a neutrosophic subgroup. Again let 

1 2K K K  be another strong neutrosophic sub-

bigroup of   1 2, , ,G I   where 

 1 1, ,2 ,3 ,4K I I I I is a neutrosophic subgroup and 

 2
2 , ,K e x x  is a neutrosophic subgroup. 

Then clearly  ,F A  is Lagrange free soft strong neutro-

sophic bigroup over  1 2, , ,G I   where 

Florentin Smarandache (author and editor) Collected Papers, XII

103



   

   

2
1

2
2

1,4, ,4 , , , ,

1, ,2 ,3 ,4 , , , .

F x I I e x x

F x I I I I e x x





 Theorem 27 Every Lagrange free soft strong neutro-
sophic bigroup  ,F A  is a soft neutrosophic bigroup but
the converse is not true. 

Theorem 28 Every Lagrange free soft strong neutrosoph-
ic bigroup  ,F A  is a soft strong neutrosophic bigroup
but the converse is not true. 

Theorem 29 If  1 2, ,G I   is a Lagrange free 

strong neutrosophic bigroup, then  ,F A   over

 1 2, ,G I   is also Lagrange free soft strong neu-

trosophic bigroup. 
Proposition 27 Let  ,F A  and  ,K D  be weakly

Lagrange free soft strong neutrosophic bigroups over 

 1 2, , .G I   Then

1) Their extended union    , ,F A K D over

 1 2, ,G I   is not Lagrange free soft strong 

neutrosophic bigroup over   1 2, , .G I  

2) Their extended intersection     , ,F A K D

over  1 2, ,G I   is not Lagrange free soft

strong neutrosophic bigroup over   1 2, , .G I  

3) Their restricted union    , ,RF A K D over

 1 2, ,G I   is not Lagrange free soft strong 

neutrosophic bigroup over   1 2, , .G I  

4) Their restricted intersection     , ,RF A K D

over   1 2, ,G I   is not Lagrange free soft 

strong neutrosophic  bigroup over

 1 2, , .G I  

Proposition 28 Let  ,F A  and  ,K D  be two La-
grange free soft strong neutrosophic  bigroups over  

 1 2, , .G I   Then

1) Their AND  operation    , ,F A K D  is not La-
grange free soft strong neutrosophic bigroup over

 1 2, , .G I  

2) Their OR  operation    , ,F A K D  is not La-
grange free soft strong neutrosophic bigroup over

 1 2, , .G I  

Definition 46 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over  1 2, ,G I   is

called soft normal strong neutrosophic bigroup if and only 
if  F x  is normal strong neutrosophic subbigroup of

 1 2, ,G I   for all  .x A

Theorem 30 Every soft normal strong neutrosophic 
bigroup  ,F A  over  1 2, ,G I   is a soft neutro-

sophic bigroup but the converse is not true. 
Theorem 31 Every soft normal strong neutrosophic 

bigroup  ,F A  over  1 2, ,G I   is a soft strong 

neutrosophic bigroup but the converse is not true. 
Proposition 29 Let  ,F A  and  ,K D  be two soft

normal strong neutrosophic  bigroups over  

 1 2, ,G I   . Then

1) Their extended union    , ,F A K D over

 1 2, ,G I   is not soft normal strong neutro-

sophic bigroup over   1 2, , .G I  

2) Their extended intersection     , ,F A K D

over  1 2, ,G I   is soft normal strong neutro-

sophic bigroup over   1 2, , .G I  

3) Their restricted union    , ,RF A K D over

 1 2, ,G I   is not soft normal strong neutro-

sophic bigroup over   1 2, , .G I  

4) Their restricted intersection     , ,RF A K D

over  1 2, ,G I   is soft normal strong neutro-

sophic bigroup over   1 2, , .G I  

Proposition 30 Let  ,F A  and  ,K D  be two soft
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normal strong neutrosophic bigroups over 

 1 2, , .G I   Then

1) Their AND  operation     , ,F A K D  is soft
normal strong neutrosophic bigroup over

 1 2, , .G I  

2) Their OR  operation    , ,F A K D  is not soft
normal strong neutrosophic bigroup over

 1 2, , .G I  

Definition 47 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over   1 2, ,G I   is 

called soft conjugate strong neutrosophic bigroup if and 
only if   F x  is conjugate neutrosophic subbigroup of

 1 2, ,G I   for all  .x A

Theorem 32 Every soft conjugate strong neutrosophic 
bigroup  ,F A  over  1 2, ,G I     is a soft neutro-

sophic bigroup but the converse is not true. 
Theorem 33 Every soft conjugate strong neutrosophic 

bigroup   ,F A  over  1 2, ,G I     is a soft strong 

neutrosophic bigroup but the converse is not true. 
Proposition 31 Let  ,F A  and  ,K D  be two soft

conjugate strong neutrosophic bigroups over  

 1 2, , .G I   Then

1) Their extended union    , ,F A K D over

 1 2, ,G I   is not soft conjugate strong neu-

trosophic bigroup over   1 2, , .G I  

2) Their extended intersection     , ,F A K D over

 1 2, ,G I   is soft conjugate strong neutro-

sophic bigroup over   1 2, , .G I  

3) Their restricted union    , ,RF A K D over

 1 2, ,G I   is not soft conjugate strong neu-

trosophic bigroup over   1 2, , .G I  

4) Their restricted intersection     , ,RF A K D

over  1 2, ,G I   is soft conjugate strong neu-

trosophic bigroup over   1 2, , .G I  

Proposition 32 Let  ,F A  and  ,K D  be two soft
conjugate strong neutrosophic bigroups over  

 1 2, , .G I   Then

1) Their AND  operation    , ,F A K D  is soft
conjugate strong neutrosophic bigroup over

 1 2, , .G I  

2) Their OR operation     , ,F A K D  is not soft
conjgate strong neutrosophic  bigroup over

 1 2, , .G I  

4.1 Soft Neutrosophic N-Group 
Definition 48 Let  1, ,..., NG I   be a neutro-

sophic N -group. Then  ,F A  over

 1 2, ,...,G I   is called soft neutrosophic N -

group if and only if  F x  is a sub N -group of

 1 2, ,...,G I   for all  .x A

Example 22 Let 

 1 2 3 1 2 3, , ,G I G I G I G I         

be a neutrosophic 3 -group, where 1G I Q I  

a neutrosophic group under multiplication. 
 2 0,1,2,3,4, ,2 ,3 ,4G I I I I I  neutrosophic

group under multiplication modulo 5  and 

 3 0,1,2,1 ,2 , ,2 ,1 2 ,2 2G I I I I I I I     

a neutrosophic group under multiplication modulo  3.  Let 

 
     

1 1,2 , , 2 , ,1 , 1,4, ,4 , 1,2, ,2 ,
2 2

nn
nnP I I I I I I

I

    
   
    

      \ 0 , 1,2,3,4 , 1,2T Q and

      \ 0 , 1,2, ,2 , 1,4, ,4X Q I I I I are sub 3 -

groups. 
Then  ,F A  is clearly soft neutrosophic 3 -group over

 1 2 3 1 2 3, , , ,G I G I G I G I         

where 
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1

2

3

1 1,2 , , 2 , ,1 , 1,4, ,4 , 1,2, ,2 ,
2 2

\ 0 , 1,2,3,4 , 1,2 ,

\ 0 , 1,2, ,2 , 1,4, ,4 .

nn
nnF x I I I I I I

I

F x Q

F x Q I I I I

    
   
    





Theorem 34 Let  ,F A  and  ,H A  be two soft neu-

trosophic N -groups over   1, ,..., NG I   . Then

their intersection     , ,F A H A  is again a soft neu-

trosophic N -group over   1, ,..., NG I   .

 Proof The proof is straight forward. 
Theorem 35 Let  ,F A  and  ,H B  be two soft neu-

trosophic N -groups over   1, ,..., NG I    such

that  ,A B     then their union is soft neutrosophic 

N -group over  1, ,..., .NG I  

 Proof The proof can be established easily. 
Proposition 33 Let  ,F A and  ,K D be two soft

neutrosophic N -groups over   1, ,..., .NG I  

Then 
1) Their extended union     , ,F A K D   is not soft 

neutrosophic N -group over   1, ,..., .NG I  

2) Their extended intersection     , ,F A K D is 

soft neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not soft 

neutrosophic N -group over   1, ,..., .NG I  

4) Their restricted intersection     , ,RF A K D is 

soft neutrosophic N -group over

 1, ,..., .NG I  

Proposition 34 Let  ,F A and  ,K D be two soft

neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is soft

neutrosophic N -group over   1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not soft

neutrosophic N -group over   1, ,..., .NG I  

Definition 49 Let  ,F A   be a soft neutrosophic N -

group over  1, ,..., NG I   . Then

1)  ,F A is called identity soft neutrosophic N -group

if    1,..., NF x e e  for all ,x A  where

1,..., Ne e are the identities of 

1 ,..., NG I G I   respectively. 

2)  ,F A is called Full soft neutrosophic N -group if

   1, ,..., NF x G I    for all  .x A

Definition 50 Let  ,F A  and  ,K D  be two soft neu-

trosophic N -groups over   1, ,..., .NG I   Then

 ,K D is soft neutrosophic sub N -group of  ,F A

written as     , ,K D F A , if

1) ,D A

2)    K x F x for all  .x A

Example 23 Let  ,F A be as in example 22. Let

 ,K D be another soft neutrosophic soft N -group over

 1 2 3 1 2 3, , , ,G I G I G I G I         

where 

     

        

1

2

1 ,2 , 1,4, ,4 , 1,2, ,2 ,
2

\ 0 , 1,4 , 1,2 .

n
nK x I I I I

K x Q

  
   

  



Clearly    , , .K D F A
Thus a soft neutrosophic N -group can have two types of 
soft neutrosophic sub N -groups, which are following 

Definition 51 A soft neutrosophic sub N -group 

 ,K D of a soft neutrosophic N -group  ,F A is

called soft strong neutrosophic sub N -group if 
1) ,D A

2)  K x is neutrosophic sub N -group of  F x for
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all  .x A  
 Definition 52 A soft neutrosophic sub N -group 

 ,K D of a soft neutrosophic N -group  ,F A is

called soft sub N -group if 
1) ,D A

2)  K x is only sub N -group of  F x for all

.x A

Definition 53 Let  1, ,..., NG I   be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I   is called soft Lagrange neutrosoph-

ic N -group if and only if  F x  is Lagrange sub N -

group of  1, ,..., NG I   for all .x A

Example 24 Let 

 1 2 3 1 2 3, , ,G I G I G G        be neutro-

sophic N -group, where   1 6G I Z I   is a 

group under addition modulo 6  , 2 4G A and
12

3 : 1 ,G g g  a cyclic group of order 12,  

  60.o G I 

Take  1 2 3 1 2 3, , , ,P P I P P       a neutro-

sophic sub 
3 -group where

 1 0,3,3 ,3 3 ,T I I I  

2

1234 1234 1234 1234
, , , ,

1234 2143 4321 3412
P

        
         

        

 6
3 1, .P g Since P is a Lagrange neutrosophic sub 3 -

group where order of  10.P   

Let us Take   1 2 3 1 2 3, , , ,T T I T T      

where 1 2 2{0,3,3 ,3 3 },T I I I T P      and

 3 6 9
3 , , ,1T g g g is another Lagrange sub 3 -group 

where    12.o T 

Let  ,F A  is soft Lagrange neutrosophic N -group over

 1 2 3 1 2 3, , ,G I G I G G        , where

 

 

6
1

3 6 9
2

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , ,

1234 2143 4321 3412

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , , , .

1234 2143 4321 3412

F x I I g

F x I I g g g

        
         

        

        
         

        
Theorem 36 Every soft Lagrange neutrosophic N -group 

 ,F A over  1, ,..., NG I   is a soft neutrosoph-

ic N -group but the converse is not true. 

Theorem 37 If  1, ,..., NG I   is a Lagrange

neutrosophic N -group, then  ,F A   over

 1, ,..., NG I   is also soft Lagrange neutrosoph-

ic N -group. 
Proposition 35 Let  ,F A  and  ,K D be two soft

Lagrange neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not soft 

Lagrange neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection     , ,F A K D is 

not soft Lagrange neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not soft 

Lagrange neutrosophic N -group over

 1, ,..., .NG I  

4) Their restricted intersection     , ,RF A K D is 

not soft Lagrange neutrosophic N -group over

 1, ,..., .NG I  

Proposition 36 Let  ,F A  and  ,K D  be two soft

Lagrange neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is not soft

Lagrange neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not soft

Lagrange neutrosophic N -group over

 1, ,..., .NG I  
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Definition 54 Let  1, ,..., NG I    be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I   is called soft weakly Lagrange neu-

trosophic N -group if atleast one   F x  is Lagrange sub

N -group of  1, ,..., NG I   for some .x A

Examp 25 Let 

 1 2 3 1 2 3, , ,G I G I G G        be neutro-

sophic N -group, where  1 6G I Z I   is a 

group under addition modulo 6  , 2 4G A and
12

3 : 1 ,G g g  a cyclic group of order 12,  

  60.o G I 

Take  1 2 3 1 2 3, , , ,P P I P P       a neutro-

sophic sub 
3 -group where

 1 0,3,3 ,3 3 ,T I I I  

2

1234 1234 1234 1234
, , , ,

1234 2143 4321 3412
P

        
         

        

 6
3 1, .P g Since P is a Lagrange neutrosophic sub 3 -

group where order of  10.P   

Let us Take   1 2 3 1 2 3, , , ,T T I T T      

where 1 2 2{0,3,3 ,3 3 },T I I I T P      and

 4 8
3 , ,1T g g is another Lagrange sub 3 -group. 

Then  ,F A  is soft weakly Lagrange neutrosophic N -
group over  

 1 2 3 1 2 3, , ,G I G I G G        , where

 

 

6
1

4 8
2

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , ,

1234 2143 4321 3412

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , , .

1234 2143 4321 3412

F x I I g

F x I I g g

        
         

        

        
         

        

Theorem 38 Every soft weakly Lagrange neutrosoph-
ic N -group  ,F A  over   1, ,..., NG I   is a soft

neutrosophic N -group but the converse is not tue. 

Theorem 39 If  1, ,..., NG I   is a weakly La-

grange neutrosophi N -group, then  ,F A   over

 1, ,..., NG I   is also soft weakly Lagrange neu-

trosophic N -group. 
Proposition 37 Let  ,F A and  ,K D be two soft

weakly Lagrange neutrosophic N -groups over  

 1, ,..., .NG I   Then

1. Their extended union    , ,F A K D is not

soft weakly Lagrange neutrosophic N -group over

 1, ,..., .NG I  

2. Their extended intersection
   , ,F A K D is not soft weakly Lagrange 

neutrosophic N -group over

 1, ,..., .NG I  

3. Their restricted union    , ,RF A K D is not

soft weakly Lagrange neutrosophic N -group over 

 1, ,..., .NG I  

4. Their restricted intersection
   , ,RF A K D is not soft weakly Lagrange

neutrosophic N -group over

 1, ,..., .NG I  

Proposition 38 Let  ,F A  and  ,K D be two soft

weakly Lagrange neutrosophic N -groups over  

 1, ,..., NG I   . Then

1) Their AND  operation    , ,F A K D  is not soft

weakly Lagrange neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not soft

weakly Lagrange neutrosophic N -group over

 1, ,..., .NG I  

Definition 55 Let  1, ,..., NG I   be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I   is called soft Lagrange free neutro-
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sophic N -group if  F x  is not Lagrange sub N -group

of   1, ,..., NG I    for all  .x A

Example 26 Let 

 1 2 3 1 2 3, , ,G I G I G G        be neutro-

sophic 3 -group, where  1 6G I Z I   is a 

group under addition modulo 6  , 2 4G A  and 
12

3 : 1 ,G g g  a cyclic group of order 12,  

  60.o G I 

Take  1 2 3 1 2 3, , , ,P P I P P       a neutro-

sophic sub 3 -group where 

 1 0,2,4 ,P 

2

1234 1234 1234 1234
, , , ,

1234 2143 4321 3412
P

        
         

        

 6
3 1, .P g Since P is a Lagrange neutrosophic sub 3 -

group where order of  10.P   

Let us Take   1 2 3 1 2 3, , , ,T T I T T      

where 1 2 2{0,3,3 ,3 3 },T I I I T P      and

 4 8
3 , ,1T g g is another Lagrange sub 3 -group. 

Then  ,F A  is soft Lagrange free neutrosophic 3 -group

over   1 2 3 1 2 3, , ,G I G I G G        , 

where 

 

 

6
1

4 8
2

1234 1234 1234 1234
0,2,4,1, , , , , ,

1234 2143 4321 3412

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , ,

1234 2143 4321 3412

F x g

F x I I g g

        
         

        

        
         

        
 Theorem 40 Every soft Lagrange free neutrosophic N -

group  ,F A  over   1, ,..., NG I   is a soft neu-

trosophic N -group but the converse is not true. 

Theorem 41 If  1, ,..., NG I   is a Lagrange

free neutrosophic N -group, then  ,F A   over

 1, ,..., NG I   is also soft Lagrange free neutro-

sophic N -group. 

Proposition 39 Let  ,F A  and  ,K D be two soft

Lagrange free neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not 

soft Lagrange free neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection
   , ,F A K D is not soft Lagrange free 

neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not 

soft Lagrange free neutrosophic N -group over

 1, ,..., .NG I  

4) Their restricted intersection
   , ,RF A K D is not soft Lagrange free 

neutrosophic N -group over

 1, ,..., .NG I  

Proposition 40 Let  ,F A  and  ,K D  be two soft

Lagrange free neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is not

soft  Lagrange free neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft Lagrange free neutrosophic N -group over

 1, ,..., .NG I  

Definition 56 Let  1, ,..., NG I   be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I   is called soft normal neutrosoph-

ic N -group if  F x  is normal sub N -group of

 1, ,..., NG I   for all .x A

Example 27 Let 

 1 1 2 3 1 2 3, , ,G I G I G G I         be 

a soft neutrosophic N  -group, where 

 2 2 2 2
1 , , , , , , , , , , ,G I e y x x xy x y I yI xI x I xyI x yI 
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is a neutrosophic group under multiplaction, 

 6
2 : 1 ,G g g  a cyclic group of order 6  and

 3 8 1, , , , , , ,G I Q I i j k I iI jI kI           

  is a group under multiplication. Let 

 1 2 3 1 2 3, , , ,P P I P P I        a normal 

sub 3 -group where  1 , , , ,P e y I yI  2 4
2 1, ,P g g

and  3 1, 1 .P   Also

 1 2 3 1 2 3, , ,T T I T T I        be another

normal sub 3 -group where 

   2 3
1 2, , , , 1,T I e I xI x I T g   and

 3 1, .T I i    Then  ,F A is a soft normal neu-

trosophic N -group over 

 1 1 2 3 1 2 3, , , ,G I G I G G I        

where 
   

   

2 4
1

2 3
2

, , , ,1, , , 1 ,

, , , ,1, , 1, .

F x e y I yI g g

F x e I xI x I g i

 

  

Theorem 42 Every soft normal neutrosophic N -group 

 ,F A over  1, ,..., NG I   is a soft neutrosoph-

ic N -group but the converse is not true. 
Proposition 41 Let  ,F A  and  ,K D  be two soft

normal neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not soft 

normal neutrosophic soft N -group over

 1, ,..., .NG I  

2) Their extended intersection     , ,F A K D is 

soft normal neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not soft

normal neutrosophic N -group over

 1, ,..., .NG I  

4) Their restricted intersection     , ,RF A K D is 

soft normal neutrosophic N -group over

 1, ,..., .NG I  

Proposition 42 Let  ,F A  and  ,K D  be two soft

normal neutrosophic N -groups over 

 1, ,..., .NG I   Then

1) Their AND operation    , ,F A K D  is soft nor-

mal neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR  operation    , ,F A K D  is not soft

normal neutrosophic N -group over

 1, ,..., .NG I  

Definition 56 Let  1, ,..., NG I   be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I   is called soft conjugate neutrosoph-

ic N -group if  F x  is conjugate sub N -group of

 1, ,..., NG I   for all .x A

 Theorem 43 Every soft conjugate neutrosophic N -

group  ,F A  over  1, ,..., NG I   is a soft neu-

trosophic N -group but the converse is not true. 
Proposition 43 Let  ,F A  and  ,K D  be two soft

conjugate neutrosophic N -groups over  

 1, ,..., NG I   . Then

1) Their extended union    , ,F A K D is not  soft 

conjugate neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection     , ,F A K D is 

soft conjugate neutrosophic N -group over 

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not soft 

conjugate neutrosophic N -group over

 1, ,..., .NG I  

4) Their restricted intersection     , ,RF A K D is 

soft conjugate neutrosophic N -group over

 1, ,..., .NG I  

Proposition 44 Let  ,F A  and ( , )K D  be two soft

conjugate neutrosophic N -groups over  
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 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is soft

conjugate neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR  operation    , ,F A K D  is not soft

conjugate neutrosophic N -group over

 1, ,..., .NG I  

4.2 Soft Strong Neutrosophic N-Group 
Definition 57 Let  1, ,..., NG I   be a neutro-

sophic  N -group. Then  ,F A  over

 1, ,..., NG I   is called soft strong neutrosophic

N -group if and only if  F x is a strong neutrosophic

sub N -group for all x A . 

Example 28 Let 

 1 2 3 1 2 3, , ,G I G I G I G I         

  be a neutrosophic 3 -group, where 

 1 2 0,1, ,1G I Z I I I     ,  a neutrosophic

group under multiplication modulo  2 .  
 2 ,1,2,3,4, ,2 ,3 ,4G I O I I I I  , neutrosophic

group under multiplication modulo 5  and 

 3 0,1,2, ,2G I I I  ,a neutrosophic group under

multiplication modulo 3 . Let 

 
     

1 1,2 , , 2 , ,1 , 1,4, ,4 , 1,2, ,2 ,
2 2

nn
nnP I I I I I I

I

    
   
    

and       \ 0 , 1,2, ,2 , 1,X Q I I I  are neutrosophic

sub 3 -groups. 
Then  ,F A  is clearly soft strong neutrosophic 3 -group
over  

 1 2 3 1 2 3, , ,G I G I G I G I          ,

where 

 
 

     1
1 1,2 , , 2 , ,1 , 1,4, ,4 , 1, ,
2 2

nn
nnF x I I I I I

I

    
   
    

        2 \ 0 , 1,2, ,2 , 1,F x Q I I I . 

 Theorem 44 Every soft strong neutrosophic soft N -
group  ,F A  is a soft neutrosophic N -group but the
converse is not true. 
Theorem 89  ,F A  over  1, ,..., NG I   is soft

strong neutrosophic N -group if   1, ,..., NG I   is

a strong neutrosophic N -group. 
Proposition 45 Let  ,F A  and  ,K D  be two soft

strong neutrosophic N -groups over  

 1, ,..., NG I   . Then

1) Their extended union    , ,F A K D is not soft 

strong neutrosophic N -group over

 1, ,..., NG I   .

2) Their extended intersection    , ,F A K D is 

not soft strong neutrosophic N -group over

 1, ,..., NG I   .

3) Their restricted union    , ,RF A K D is not soft 

strong neutrosophic N -group over 

 1, ,..., NG I   . 

4) Their restricted intersection    , ,RF A K D is 

not soft strong neutrosophic N -group over

 1, ,..., NG I   . 

Proposition 46 Let  ,F A  and  ,K D  be two soft

strong neutrosophic N -groups over 

 1, ,..., NG I   . Then

1) Their AND operation    , ,F A K D is not soft

strong neutrosophic N -group over

 1, ,..., NG I   . 

2) Their OR  operation    , ,F A K D  is not soft

strong neutrosophic N -group over

 1, ,..., NG I   . 

Definition 58  
Let  ,F A and  ,H K be two soft strong neutrosophic

N -groups over  1, ,..., NG I   . Then  ,H K  is

called soft strong neutrosophic sub x A -group 
of  ,F A  written as    , ,H K F A  , if

Florentin Smarandache (author and editor) Collected Papers, XII

111



1) ,K A

2)  K x is soft neutrosophic soft sub N -group of

 F x for all x A .

Theorem 45 If  1, ,..., NG I    is a strong neutro-

sophic N -group. Then every soft neutrosophic sub N -
group of  ,F A  is soft strong neutosophic sub N -group.

Definition 59 Let  1, ,..., NG I   be a strong

neutrosophic N -group. Then  ,F A  over

 1, ,..., NG I   is called soft Lagrange strong neu-

trosophic N -group if  F x is a Lagrange neutrosophic

sub N -group of  1, ,..., NG I     for all x A .

Theorem 46 Every soft Lagrange strong neutrosophic 
N -group  ,F A over  1, ,..., NG I   is a soft

neutrosophic soft N -group but the converse is not true. 
Theorem 47 Every soft Lagrange strong neutrosoph-

ic N -group  ,F A  over  1, ,..., NG I   is a soft

srtong neutrosophic N -group but the converse is not tue. 

Theorem 48 If  1, ,..., NG I    is a Lagrange

strong neutrosophic N -group, then  ,F A

over  1, ,..., NG I   is also soft Lagrange strong

neutrosophic N -group. 
Proposition 47 Let  ,F A  and  ,K D be two soft

Lagrange strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not

soft Lagrange strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection
   , ,F A K D is not soft Lagrange strong 

neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not

soft Lagrange strong neutrosophic N -group over 

 1, ,..., .NG I  

4) Their restricted intersection
   , ,RF A K D is not soft Lagrange strong

neutrosophic N -group over

 1, ,..., .NG I  

Proposition 48 Let  ,F A  and  ,K D  be two soft

Lagrange strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is not

soft  Lagrange strong neutrosophic N -group

over   1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft Lagrange strong neutrosophic N -group over

 1, ,..., .NG I  

Definition 60 Let  1, ,..., NG I   be a strong

neutrosophic N -group. Then  ,F A   over

 1, ,..., NG I   is called soft weakly Lagrange

strong neutrosophic soft N -group if atleast 
one  F x  is a Lagrange neutrosophic sub N -group

of  1, ,..., NG I   for some x A .

Theorem 49 Every soft weakly Lagrange strong neutro-
sophic N -group  ,F A  over  1, ,..., NG I   is a

soft neutrosophic soft N -group but the converse is not 
true. 
Theorem 50 Every soft weakly Lagrange strong neutro-

sophic N -group  ,F A  over  1, ,..., NG I   is a

soft strong neutrosophic N -group but the converse is not 
true. 
Proposition 49 Let  ,F A  and  ,K D be two soft

weakly Lagrange strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not 

soft weakly Lagrange strong neutrosophic N -

group over   1, ,..., .NG I  

2) Their extended intersection
   , ,F A K D is not soft weakly Lagrange 

strong  neutrosophic N -group over
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 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not 

soft weakly Lagrange strong neutrosophic N -

group over   1, ,..., .NG I  

4) Their restricted intersection
   , ,RF A K D is not soft weakly Lagrange

strong  neutrosophic N -group over

 1, ,..., .NG I  

Proposition 50 Let  ,F A  and  ,K D  be two soft

weakly Lagrange strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is not

soft  weakly Lagrange strong neutrosophic N -

group over   1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft weakly Lagrange strong neutrosophic N -

group over  1, ,..., .NG I  

Definition 61 Let  1, ,..., NG I   be a strong neu-

trosophic N -group. Then  ,F A over

 1, ,..., NG I   is called soft Lagrange free strong

neutrosophic N -group if  F x  is not Lagrange neutro-

sophic sub N -group of  1, ,..., NG I   for all N .

Theorem 51 Every soft Lagrange free strong neutro-
sophic N -group  ,F A  over  1, ,..., NG I   is a

soft neutrosophic N -group but the converse is not true. 
Theorem 52 Every soft Lagrange free strong neutro-

sophic N -group  ,F A  over  1, ,..., NG I   is a

soft strong neutrosophic N -group but the converse is not 
true. 
Theorem 53 If  1, ,..., NG I    is a Lagrange

free strong neutrosophic N -group, then  ,F A  over

 1, ,..., NG I   is also soft Lagrange free strong

neutrosophic N -group. 
Proposition 51 Let  ,F A  and  ,K D be two soft

Lagrange free strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not

soft Lagrange free strong neutrosophic N -group

over   1, ,..., .NG I  

2) Their extended intersection
   , ,F A K D is not soft Lagrange free 

strong  neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not

soft Lagrange free strong neutrosophic N -group 

over   1, ,..., .NG I  

4) Their restricted intersection
   , ,RF A K D is not soft Lagrange free

strong  neutrosophic N -group over

 1, ,..., .NG I  

Proposition 52 Let  ,F A  and  ,K D  be two soft

Lagrange free strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is not

soft Lagrange free strong neutrosophic N -group

over   1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft Lagrange free strong neutrosophic N -group

over  1, ,..., .NG I  

Definition 62 Let N  be a strong neutrosophic N -group. 

Then  ,F A  over  1, ,..., NG I    is called sofyt

normal strong neutrosophic N -group if  F x  is normal

neutrosophic sub N -group of  1, ,..., NG I   for

all x A . 
Theorem 54 Every soft normal strong neutrosophic N -

group  ,F A  over  1, ,..., NG I   is a soft neutro-

sophic N -group but the converse is not true. 
 Theorem 55 Every soft normal strong neutrosophic N -

group  ,F A  over  1, ,..., NG I   is a soft strong

neutrosophic N -group but the converse is not true. 
Proposition 53 Let  ,F A  and  ,K D be two soft
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normal strong neutrosophic N -groups over 

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not 

soft normal strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection
   , ,F A K D is soft normal strong neutro-

sophic N -group over   1, ,..., .NG I    

3) Their restricted union    , ,RF A K D is not 

soft normal strong neutrosophic N -group over 

 1, ,..., .NG I  

4) Their restricted intersection
   , ,RF A K D is soft normal strong  neu-

trosophic N -group over   1, ,..., .NG I  

Proposition 54 Let  ,F A  and  ,K D  be two soft

normal strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is soft

normal strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft normal strong neutrosophic N -group over

 1, ,..., .NG I  

Definition 63 Let  1, ,..., NG I   be a strong neu-

trosophic N -group. Then  ,F A over

 1, ,..., NG I   is called soft conjugate strong neu-

trosophic N -group if  F x  is conjugate neutrosophic

sub N -group of  1, ,..., NG I    for all x A .

Theorem 56 Every soft conjugate strong neutrosophic 
N -group  ,F A over  1, ,..., NG I   is a soft

neutrosophic N -group but the converse is not true. 
Theorem 57 Every soft conjugate strong neutrosophic 
N -group  ,F A over  1, ,..., NG I   is a soft

strong neutrosophic N -group but the converse is not true. 

Proposition 55 Let  ,F A  and  ,K D be two soft

conjugate strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not

soft conjugate strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection
   , ,F A K D is soft conjugate strong neu-

trosophic N -group over   1, ,..., .NG I    

3) Their restricted union    , ,RF A K D is not 

soft conjugate strong neutrosophic N -group over 

 1, ,..., .NG I  

4) Their restricted intersection
   , ,RF A K D is soft conjugate strong  neu-

trosophic N -group over   1, ,..., .NG I    

Proposition 56 Let  ,F A  and  ,K D  be two soft

conjugate strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is soft

conjugate strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft conjugate strong neutrosophic N -group over

 1, ,..., .NG I  

Conclusion 
  This paper is about the generalization of soft neutrosophic 
groups. We have extended the concept of soft neutrosophic 
group and soft neutrosophic subgroup to soft neutrosophic 
bigroup and soft neutrosophic N-group. The notions of soft 
normal neutrosophic bigroup, soft normal neutrosophic N-
group, soft conjugate neutrosophic bigroup and soft conju-
gate neutrosophic N-group are defined. We have given var-
ious examples and important theorems to illustrate the as-
pect of soft neutrosophic bigroup and soft neutrosophic N-
group. 
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 The Characteristic Function of a Neutrosophic Set 
A. A. Salama, Florentin Smarandache, S. A. Alblowi

Abstract. The purpose of this paper is to introduce and 
study the characteristic function of a neutrosophic set. 
After given the fundamental definitions of neutrosophic 
set operations generated by the characteristic function of 
a neutrosophic set ( Ng  for short), we obtain several
properties, and discussed the relationship between 

neutrosophic sets generated by Ng  and others. Finally, 
we introduce the neutrosophic topological spaces 
generated by Ng . Possible application to GIS topology
rules are touched upon. 

Keywords: Neutrosophic Set; Neutrosophic Topology; Characteristic Function. 

1 Introduction 

Neutrosophy has laid the foundation for a whole family 
of new mathematical theories generalizing both their 
classical and fuzzy counterparts, such as a neutrosophic set 
theory. After the introduction of the neutrosophic set 
concepts in [2-13]. In this paper we introduce definitions 
of neutrosophic sets by characteristic function. After given 
the fundamental definitions of neutrosophic set operations 
by Ng , we obtain several properties, and discussed the 
relationship between neutrosophic sets and others. Added 
to, we introduce the neutrosophic topological spaces 
generated by Ng . 

2 Terminologies 
We recollect some relevant basic preliminaries, and in 

particular, the work of  Smarandache in [7- 9], Hanafy,  
Salama et al. [2- 13]  and  Demirci in [1]. 

3 Neutrosophic Sets generated by Ng

 We shall now consider some possible definitions for basic 
concepts of the neutrosophic sets generated by Ng  and its 
operations. 

3.1 Definition 
    Let X is a non-empty fixed set. A  neutrosophic set 

( NS for short) A  is an object having the form
  )(),(),(, xxxxA AAA  where    xx AA  ,  and  A x

which represent the degree of member ship function 
(namely  xA ), the degree of indeterminacy (namely

 xA ), and the degree of non-member ship (namely
 A x ) respectively of each element Xx to the set 

A .and  let IXg A  ]1,0[]1,0[: be reality function, 
then  321 ,,,)(  xNgNg AA  is said to be the
characteristic function of  a  neutrosophic  set on X  if 



 


otherwise    0

)(,,)( if  1
)( 32)(1 


xx

Ng AxAA
A

 Where   321 ,,,  x .  Then the object 

)(),(),(,)( )()()( xxxxAG AGAGAG  is a 

neutrosophic set generated by Ng  where 
 })(1sup)(   AAG Ng

 })(sup 2)(    AAG Ng

 })(sup 3)(    AAG Ng

3.1 Proposition 
1) ).()( BGAGBA Ng 
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2) )()( BGAGBA Ng 

3.2 Definition 
  Let A be neutrosophic set of   X. Then the neutrosophic 

complement of A generated by Ng  denoted by NgcA
iff   cAG )( may be defined as the following: 

)( 1cNg )(),(),(, xxxx A
c

A
c

A
c 

)( 2cNg )(),(),(, xxxx AAA 

)( 3cNg )(),(),(, xxxx AA
c

A 

3.1 Example. Let  }{xX  , ,6.0,7.0,5.0,xA   
1ANg ,  0ANg .    Then  6.0,7.0,5.0,)( xAG 

Since our main purpose is to construct the tools for 
developing neutrosophic set and neutrosophic topology, we 
must introduce the )0( NG and )1( NG  as follows  )0( NG  may  
be  defined as: 

i) 1,0,0,)0( xG N 

ii) 1,1,0,)0( xG N 

iii) 0,1,0,)0( xG N 

iv) 0,0,0,)0( xG N 

)1( NG may be defined as:

i) 0,0,1,)1( xG N 

ii) 1,0,1,)1( xG N 

iii) 0,1,1,)1( xG N 

iv) 1,1,1,)1( xG N 

We will define the following operations intersection and 
union for neutrosophic sets generated by Ng   denoted by 

Ng and Ng respectively.

3.3 Definition.  Let two neutrosophic sets 
)(),(),(, xxxxA AAA  and 

)(),(),(, xxxxB BBB   on X, and 

)(),(),(,)( )()()( xxxxAG AGAGAG  , 

)(),(),(,)( )()()( xxxxBG BGBGBG  .Then 
BA Ng may be  defined as three types:

i)



)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG  

ii) Type II:

 )( BAG
)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG   . 

ii) Type III:
 )( BAG

)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG  

BA Ng may  be  defined as two types: 
Type I : 

 )( BAG
)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG   ii) 

Type II: 
 )( BAG

)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG  

. 3.4 Definition
Let a neutrosophic set )(),(),(, xxxxA AAA   and 

)(),(),(,)( )()()( xxxxAG AGAGAG  . Then 

(1) ANg]    [ )(1),(),(: )()()( xxxx AGAGAG  

(2)  ANg

)(),(),(1: )()()( xxxx AGAGAG 

3.2 Proposition  
For all two neutrosophic sets A and B on X generated 
by Ng , then the following are true 

1)   .cNgcNgcNg BABA 

2)   .cNgcNgcNg BABA 

We can easily generalize the operations of intersection and 
union in definition 3.2 to arbitrary family of neutrosophic 
subsets by generated by Ng  as follows: 

3.3 Proposition. 
Let  JjA j :  be arbitrary family of neutrosophic

subsets in X generated by Ng , then 

a) j
Ng A may be defined as :

1) Type I :
 )( jAG )(),(),( )()()( xxx jAGjAGjAG   , 

2) Type II:
 )( jAG )(),(),( )()()( xxx jAGjAGjAG   , 

b) j
Ng A may be defined as :

1)  )( jAG )(),(),( )()()( xxx jAGjAGjAG   or 

U  

type I: G(A B)=
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2)  )( jAG )(),(),( )()()( xxx jAGjAGjAG   . 

3.4 Definition 
 Let f. X  Y be a mapping . 

(i) The image of a neutrosophic set A generated
by Ng  on X under f is a neutrosophic set B on Y
generated by Ng  , denoted by f (A) whose reality
function    gB : Y x  I  I=[0, 1] satisfies the property

 })(1sup)(   ABG Ng

 })(sup 2)(    ABG Ng

 })(sup 3)(    ABG Ng

(ii) The preimage of a neutrosophic set B on Y
generated by Ng  under f is a neutrosophic set A on X
generated by Ng , denoted by  f -1 (B) , whose reality
function  gA :  X x  [0, 1] [0, 1]  satisfies the 
property G(A) = G ( B ) o f  

3.4 Proposition  

Let  JjA j :  and  JjB j : be families of neutrosophic

sets on X and Y generated by Ng , respectively. Then for a 
function f: X  Y, the following properties hold:  

(i) If  Aj
Ng Ak ;i , jJ, then  f ( Aj )

Ng f(Ak)

(ii) If  Bj
Ng Bk , for j , K  J, then

f -1( Bj )
Ng f -1 (BK)

(iii) f -1 ( j
Ng

jEJ
B ) Ng Ng

jEJ
 f -1 (Bj)

3.5 Proposition  

 Let A and B be neutrosophic sets on X and Y generated 
by Ng , respectively. Then, for a mappings f : X → Y , we 
have : 

(i) A Ng f -1  ( f ( A ) ) ( if f  is injective the
equality holds ) . 

(ii) f ( f -1 ( B ) ) Ng B ( if  f  is surjective the
equality holds ) .

(iii) [ f -1 (B) ] Ngc Ng f -1 ( BN gc ) .

3.5 Definition . Let X be a nonempty set, Ψ a family of 
neutrosophic sets generated by Ng  and let us use the 
notation  

G ( Ψ ) = { G ( A ) : AΨ } . 

If  ( X , G ( Ψ )= N )  is a neutrosophic  topological space 
on X is Salama’s sense [3] , then we say that Ψ is a 
neutrosophic topology on X generated by Ng  and the pair 
( X , Ψ ) is said to be a neutrosophic  topological space 
generated by Ng  ( ngts , for short ). The elements in Ψ are 
called genuine neutrosophic open sets. also , we define the 
family  

G ( Ψc ) = { 1- G ( A ) : A  Ψ } .

3.6 Definition 

 Let ( X , Ψ ) be a ngts . A neutrosophic set C in X 
generated by Ng  is said to be a neutrosophic closed set 
generated by Ng , if 1- G( C ) G ( Ψ ) = N .

3.7 Definition 

 Let ( X , Ψ ) be a ngts and A a neutrosophic set on X 
generated by Ng . Then the neutrosophic interior of A 
generated by Ng , denoted by, ngintA, is a set 
characterized by G(intA) = int

)(G
G(A) , where int

)(G
denotes the interior operation in neutrosophic topological 
spaces generated by Ng .Similarly, the neutrosophic 
closure of A generated by Ng , denoted by  ngclA , is a 
neutrosophic set characterized by G(ngclA)= cl

G )(
G(A) 

, where cl
G )(

denotes the closure operation in 

neutrosophic topological spaces generated by Ng . 

The neutrosophic interior gnint(A)  and the genuine  
neutrosophic closure gnclA generated by Ng  can be 
characterized by :  

gnintA Ng Ng { U : U  Ψ and U Ng A }

gnclA Ng  Ng { C : C is neutrosophic closed
generated by Ng  and A Ng C }

Since : G ( gnint A ) = { G (U) : G (U)  G ( Ψ ) , G (
U )   G (A) }

G ( gncl A ) = ∩ { G ( C ) : G ( C )  G  ( Ψc ) , G (A) 
G(C) }. 
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3.6 Proposition .  For any neutrosophic set A generated 
by Ng  on a NTS ( X , Ψ ) , we have 

(i) cl ANgc Ng ( int A )Ngc

(ii) Int ANgc Ng ( cl A )Ngc

References 

[1] D. Demirci, Genuine sets, Fuzzy sets and Systems,

100 (1999), 377-384.

[2] A.A. Salama and S.A. Alblowi, "Generalized
Neutrosophic Set and Generalized Neutrousophic
Topological Spaces ", Journal computer Sci.
Engineering, Vol. (2) No. (7), (2012), pp129-132.

[3] A.A. Salama and S.A. Alblowi,"Neutrosophic set and

neutrosophic topological space" ISOR
J.Math,Vol.(3), Issue(4), .(2012), pp-31-35.

[4] A.A. Salama and S.A. Alblowi, Intuitionistic Fuzzy
Ideals Topological Spaces, Advances in Fuzzy
Mathematics , Vol.(7), Number 1, (2012), pp 51- 60.

[5] A.A.Salama, and H.Elagamy, "Neutrosophic Filters"
International Journal of Computer Science
Engineering and Information Technology Reseearch
(IJCSEITR), Vol.3, Issue(1), (2013)pp 307-312.

[6] S. A. Alblowi, A. A. Salama & Mohmed Eisa, New
Concepts of  Neutrosophic Sets, International Journal
of Mathematics and Computer Applications Research
(IJMCAR),Vol.3, Issue 4, Oct (2013), 95-102.

[7] Florentin  Smarandache , Neutrosophy and
Neutrosophic Logic , First International Conference
on Neutrosophy , Neutrosophic Logic , Set,
Probability, and Statistics University  of   New
Mexico, Gallup, NM 87301, USA(2002) .

[8] Florentin  Smarandache , An introduction to the
Neutrosophy probability applid in Quntum Physics ,
International Conference on introducation
Neutrosoph Physics , Neutrosophic Logic, Set,
Probability, and Statistics University  of   New
Mexico, Gallup, NM 87301, USA2-4 December
(2011) .

[9] F. Smarandache. A Unifying Field in Logics:
Neutrosophic Logic. Neutrosophy, Neutrosophic Set,

Neutrosophic Probability. American Research Press, 
Rehoboth, NM, 1999. 

[10] I. Hanafy, A.A. Salama and K. Mahfouz, "Correlation
of neutrosophic Data" International Refereed Journal
of Engineering and Science (IRJES), Vol.(1), Issue
2,(2012), pp.39-43.

[11] I.M. Hanafy, A.A. Salama and K.M. Mahfouz,"
Neutrosophic Classical Events and Its Probability"
International Journal of Mathematics and Computer
Applications Research(IJMCAR) Vol.(3),Issue
1,(2013), pp171-178.

[12] A. A. Salama,"Neutrosophic Crisp Points &
Neutrosophic Crisp Ideals", Neutrosophic Sets and
Systems, Vol.1, No. 1,(2013) pp50-54.

[13] A. A. Salama and F. Smarandache, " Filters via
Neutrosophic Crisp Sets", Neutrosophic Sets and
Systems, Vol.1, No. 1,(2013) pp 34-38.

Florentin Smarandache (author and editor) Collected Papers, XII

119



 A Note on Square Neutrosophic Fuzzy Matrices

Mamouni Dhar, Said Broumi, Florentin Smarandache 

Abstract. In this article, we shall define the addition and 
multiplication of two neutrosophic fuzzy matrices. Thereafter, 

some properties of addition and multiplication of these matrices 
are also put forward. 

Keywords: Neutrosophic fuzzy matrice, Neutrosophic Set.

1 Introduction 

Neutrosophic sets  theory was proposed by Florentin 
Smarandache [1] in 1999, where each element had three 
associated defining functions, namely the membership 
function (T), the non-membership (F) function and the 
indeterminacy function (I) defined on the universe of 
discourse X, the three functions are completely 
independent. The theory has been found extensive 
application in various field [2,3,4,5,6,7,8,9,10,11]  for 
dealing with indeterminate and inconsistent information in 
real world.Neutrosophic set is a part of neutrosophy which 
studied the origin, nature and scope of neutralities, as well 
as their interactions with ideational spectra. The 
neutrosophic set generalized the concept of classical fuzzy 
set [12, 13], interval-valued fuzzy set, intuitionistic fuzzy 
set [14, 15], and so on.  

   Also as we know, matrices play an important role in 
science and technology. However, the classical matrix 
theory sometimes fails to solve the problems involving 
uncertainties, occurring in an imprecise environment. In 
[17] Thomason, introduced the fuzzy matrices to represent
fuzzy relation in a system based on fuzzy set theory and
discussed about the convergence of powers of fuzzy
matrix. In 2004, W. B. V. Kandasamy  and F.
Smarandache  introduced fuzzy relational maps and
neutrosophic relational maps.

Our aim ,In this paper is  to propose another type of fuzzy 
neutrosophic matrices ,called “square neutrosophic fuzzy 
matrices”,  whose entries is of the form a+Ib (neutrosophic 
number) , where a,b are the elements of [0,1] and I is an 
indeterminate such that =I, n being a positive integer. In 
this study we will focus on square neutrosophic fuzzy 
matrices.The paper unfolds as follows. The next section 
briefly introduces some definitions related to neutrosophic 
set, neutrosophic matrices, Fuzzy integral neutrosophic 
matrices and fuzzy matrix. Section 3 presents a new type of 
fuzzy neutrosophic matrices and investigated some 
properties such as addition and multiplication. Conclusions 
appear in the last section. 

2 Preliminaries 
In this section we recall some concept such as , 
neutrosophic set, neutrosophic matrices and fuzzy 
neutrosophic matrices proposed by W. B. V. Kandasamy 
and F. Smarandache  in their books [16 ] , and also  the 
concept of fuzzy matrix . 

Definition 2.1 (Neutrosophic Sets).[1] 

Let U be an universe of discourse then the neutrosophic set 

A is an object having the form  

A = {< x: , , >,x  U}, where the 

functions T, I, F : U→ ]−0, 1+[  define respectively the 

degree of membership (or Truth) , the degree of 

indeterminacy, and the degree of non-membership (or 

Mamouni Dhar, Said Broumi, Florentin Smarandache (2014). A Note on Square 
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Falsehood) of the element x U to the set A with the 

condition.  

     −0 ≤  + + ≤ 3+.  

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of ]−0, 1+[. So instead of ]−0, 1+[ we need to take the 

interval [0, 1] for technical applications, because ]−0, 

1+[will be difficult to apply in the real applications  such as 

in scientific and engineering problems.  

Definition 2.2 (Neutrosophic matrix) [16]. 

Let = {(  ) /   K(I)}, where K (I), is  a 

neutrosophic field. We call  to be the neutrosophic 
matrix. 

Example 1: Let Q(I) = 〈Q ∪ I 〉be the neutrosophic field 

=

 denotes the neutrosophic matrix, with entries from 
rationals and the indeterminacy. 

Definition 2.3   (Fuzzy integral neutrosophic matrices) 

Let N = [0, 1]   I  where I is the indeterminacy. The m ×n 
matrices = {(  ) /   [0, 1] I}  is called the 
fuzzy integral neutrosophic matrices. Clearly the class of m 
×n matrices is contained in the class of fuzzy integral 
neutrosophic matrices. 

 An integral fuzzy neutrosophic row vector is a 1 × n 
integral fuzzy neutrosophic matrix, Similarly an integral 
fuzzy neutrosophic column vector is a m ×1 integral fuzzy 
neutrosophic matrix. 

Example 2 : Let  =

A is a 3 ×3 integral fuzzy neutrosophic matrix. 

Definition 2.5  (Fuzzy neutrosophic matrix) [16] 

Let = [0, 1] ∪ nI / n  (0, 1]}; we call the set  to be 
the fuzzy neutrosophic set. Let  be the fuzzy 

neutrosophic set. = {(  ) /   } we call the 
matrices with entries from  to be the  fuzzy neutrosophic 
matrices. 

Example 3: Let = [0,1] ∪{nI/ n  (0,1]} be the set 

P = 

is a 3 ×3 fuzzy neutrosophic matrix 

Definition 2.6 (Fuzzy matrix) [17] 

A fuzzy matrix is a matrix which has its elements from the 
interval [0, 1], called the unit fuzzy interval. A m x n  
fuzzy matrix for which m = n (i.e the number of rows is 
equal to the number of columns) and whose  elements 
belong to the unit interval [0, 1]  is called a fuzzy square 
matrix of order n. A fuzzy square matrix of order two is 
expressed in the following way 

A= , where the entries a,b,c,d all belongs to the 

interval [0,1]. 

3 Some Properties of Square Neutrosophic Fuzzy 
Matrices 

In this section ,we define a new type of fuzzy neutrosophic 
set and define some operations on this neutrosophic  fuzzy  
matrice. 

3.1 .Definition (Neutrosophic Fuzzy Matrices) 

Let A be a neutrosophic fuzzy matrices,  whose entries is 
of the form a+Ib (neutrosophic number) , where a,b are the 
elements of [0,1] and I is an indeterminate such that =I, n 
being a positive integer. 

A=

3.2.Arithmetic with Square  Neutrosophic Fuzzy 
Matrices 

In this section we shall define the addition and 
multiplication of neutrosophic fuzzy matrices along with 
some properties associated with such matrices. 
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3.2.1. Addition Operation of two Neutrosophic Fuzzy 
Matrices 

Let us consider two neutrosophic fuzzy matrices as 

A=  B=

Then we would like to define the addition of these two 
matrices as  

[ ]ijA B C 

Where 

It is noted that the matrices defined by our way is reduced 
to fuzzy neutrosophic matrix when a = 

Properties 1 

The following properties can be found to hold in cases of 

neutrosophic fuzzy matrix multiplication 

(i) A+B = B+A

(ii) (A+B)+C = A+(B+C)

3.2.2  Multiplication Operation of Neutrosophic Fuzzy 
Matrices 

Let us consider two neutrosophic fuzzy matrices as 
[ ]ij ijA a Ib  and [ ]ij ijB c Id  . Then we shall 

define the multiplication of these two neutrosophic fuzzy 
matrices as  

[max min( , ) max min( , )]ij ji ij jiAB a c I b d  . It can 

be defined in the following way: 

If the above mentioned neutrosophic fuzzy matrices are 
considered then we can define the product of the above 
matrices as 

A B = [ , where 

It is important to mention here that if the multiplication of 
two neutrosophic fuzzy matrices is defined in the above 
way then the following properties can be observed to hold: 

Properties 

(i) AB BA

(ii) A(B+C)=AB+AC

2.4.1 Numerical Example 

Let us consider three neutrosophic fuzzy matrices as 

 A=

B=

C= 

B+C = 

A (B +C)= 

Let us take 

A (B +C) =  , where 

max{min(0.1, 0.4), min(0.4,0.6)}+I max{min(0.3, 
0.6), min(0.1, 0.8)} 

   = max(0.1, 0.4) + I max (0.3, 0.1) 

  = 0.4 + I 0.3 

max{min(0.1, 0.5), min(0.4,0.9)}+I max{min(0.3, 
0.4), min(0.1, 0.2)} 

   = max(0.1, 0.4) + I max (0.3, 0.1) 
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   = 0.4 + I 0.3 

 max{min(0.2, 0.4), min(0.1,0.6)}+I max{min(0.4, 
0.6), min(0.7, 0.8)} 

   = max(0.2, 0.1) + I max (0.4, 0.7) 

   = 0.2 + I 0.7 

 max{min(0.2, 0.5), min(0.1,0.9)}+I max{min(0.4, 
0.4), min(0.7, 0.2)} 

   = max(0.2, 0.1) + I max (0.4, 0.2) 

    = 0.2 + I 0.4 

Therefore we have 

  A (B + C)= 

Now we shall see what happens to AB+BC 

Then let us calculate AB 

A B = 

Let is now consider 

A B= , where 

 max{min(0.1, 0.2), min(0.4,0.3)}+I max{min(0.3, 
0.3), min(0.1, 0.8)} 

   = max(0.1, 0.3) + I max (0.3, 0.1) 

   = 0.3 + I 0.3 

max{min(0.1, 0.5), min(0.4,0.9)}+I max{min(0.3, 
0.4), min(0.1, 0.1)} 

   = max(0.1, 0.4) + I max (0.3, 0.1) 

   = 0.4 + I 0.3 

 max{min(0.2, 0.2), min(0.1,0.3)}+I max{min(0.4, 
0.3), min(0.7, 0.8)} 

    = max(0.2, 0.1) + I max (0.3, 0.7) 

   = 0.2 + I 0.7 

max{min(0.2, 0.5), min(0.1,0.9)}+I max{min(0.4, 
0.4), min(0.7, 0.1)} 

   = max(0.2, 0.1) + I max (0.4, 0.1) 

   = 0.2 + I 0.4 

 Let us consider A C= , where 

 max{min(0.1, 0.4), min(0.4,0.6)}+I max{min(0.3, 
0.6), min(0.1, 0.2)} 

   = max(0.1, 0.4) + I max (0.3, 0.1) 

  = 0.4 + I 0.3 

 max{min(0.1, 0.5), min(0.4,0.3)}+I max{min(0.3, 
0.3), min(0.1, 0.2)} 

   = max(0.1, 0.3) + I max (0.3, 0.1) 

   = 0.3 + I 0.3 

 max{min(0.2, 0.4), min(0.1,0.6)}+I max{min(0.4, 
0.6), min(0.7, 0.2)} 

   = max(0.2, 0.1) + I max (0.4, 0.2) 

   = 0.2 + I 0.2 

max{min(0.2, 0.5), min(0.1,0.3)}+I max{min(0.4, 
0.3), min(0.7, 0.2)} 

     = max(0.2, 0.1) + I max (0.3, 0.2) 

      = 0.2 + I 0.3 

Thus we have 

= (0.3 + I 0.3) + (0.4 + I 0.3) 

  = 0.4 + I 0.3 

= (0.4+ I 0.3) + (0.3 + I 0.3) 

  = 0.4 + I 0.3 

= (0.2+ I 0.7) + (0.2 + I 0.2) 

  = 0.2+ I 0.7 

= (0.2+ I 0.4) + (0.2 + I 0.3) 
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=0.2+ I 0.4 

Thus, we get, A B + A C= 

From the above results, it can be established that 

A (B+C) = AB + AC 

4. Conclusions

According the newly defined addition and multiplication 
operation of neutrosophic fuzzy matrices, it can be seen that some 
of the properties of arithmetic operation of these matrices are 
analogous to the classical matrices. Further some future works are 
necessary to deal with some more properties and operations of 
such kind of matrices. 
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Introduction to Develop Some Software Programs for 
Dealing with Neutrosophic Sets 

A. A. Salama, Haitham A. El-Ghareeb,  Ayman M. Manie, Florentin Smarandache

Abstract. In this paper, we have developed an Excel 
package to be utilized for calculating neutrosophic data 
and analyze them. The use of object oriented  
programming  techniques and concepts as they may 
apply to the design and development a new framework to 
implement neutrosophic data operations, the c# 
programming language, NET Framework and Microsoft 
Visual Studio are  used to implement the neutrosophic 
classes.   We have used Excel as it is a powerful tool that 
is widely accepted and used for statistical analysis. 
Figure 1 shows Class Diagram of the implemented 

package. Figure 2 presents a working example of the 
package interface calculating the complement. Our 
implemented Neutrosophic package can calculate 
Intersection, Union, and Complement of the nuetrosophic 
set. Figure 3 presents our neutrosphic package capability 
to draw figures of presented neutrosphic set. Figure 4 
presents charting of Union operation calculation, and 
figure 5 Intersection Operation. nuetrosophic set are 
characterized by its efficiency as it takes into 
consideration the three data items: True, Intermediate, 
and False. 

Keywords: Neutrosophic Data; Software Programs.

1 Introduction 

The fundamental concepts of neutrosophic set, 
introduced by Smarandache in [8, 9] and Salama at 
el. in [1, 2, 3, 4, 5, 6, 7], provides a natural 
foundation for treating mathematically the 
neutrosophic phenomena which exist pervasively 
in our real world and for building new branches of 
neutrosophic mathematics. In this paper, we have 
developed an Excel package to be utilized for 
calculating neutrosophic data and analyze them. 
We have used Excel as it is a powerful tool that is 
widely accepted and used for statistical analysis. In 

this paper, we have developed an Excel package to be utilized 
for calculating neutrosophic data and analyze them. The use of 
object oriented  programming  techniques and concepts as 
they may apply to the design and development a new 
framework to implement neutrosophic data operations, the c# 
programming language, NET Framework and Microsoft Visual 
Studio are  used to implement the neutrosophic classes. 

2  Related Works 

     We recollect some relevant basic preliminaries, and in 

particular, the work of Smarandache in [8, 9], and Salama 

at el. [ 1, 2, 3, 4, 5, 6, 7 ]. The c# programming language, NET 

Framework and Microsoft Visual Studio are  used to implement 

the neutrosophic classes. 

3 Proposed frameworks 

Figure 1: Neutrosophic Package Class 
Diagram.

A.A. Salama, Haitham A. El-Ghareeb, Ayman M. Manie, Florentin Smarandache (2014). 
Introduction to Develop Some Software Programs for Dealing with Neutrosophic Sets. 
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Figure 2: Neutrosophic Package Interface and Calculating Complement.

Figure 3: Neutrosophic Chart 

Figure 4: Neutrosophic Packege Union Chart 

Figure 5: Neutrosophic Packege Intersection Chart 

4  Conclusions and Future Work 
In future studies we will develop some software programs 
to deal with the statistical analysis of the neutrosophic 
data.  
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Soft Neutrosophic Ring and Soft Neutrosophic Field
Mumtaz Ali, Florentin Smarandache, Muhammad Shabir, Munazza Naz

Abstract. In this paper we extend the theory of 
neutrosophic rings and neutrosophic fields to soft 
sets and construct soft neutrosophic rings and soft 
neutrosophic fields. We also extend  neutrosophic 
ideal theory to form soft neutrosophic ideal over a 
neutrosophic ring and soft neutrosophic ideal of a 

soft neutrosophic ring . We have given many 
examples to illustrate the theory of soft 
neutrosophic rings and soft neutrosophic fields and 
display many properties of of these. At the end of 
this paper we gave soft neutrosophic ring 
homomorphism. 

1 Introduction

Neutrosophy is a new branch of philosophy which 
studies the origin and features of neutralities in the 
nature. Florentin Smarandache in 1980 firstly 
introduced the concept of neutrosophic logic where 
each proposition in neutrosophic logic is approximated 
to have the percentage of truth in a subset T, the 
percentage of indeterminacy in a subset I, and the 
percentage of falsity in a subset F so that this 
neutrosophic logic is called an extension of fuzzy 
logic. In fact neutrosophic set is the generalization of 
classical sets, conventional fuzzy set, intuitionistic 
fuzzy set and interval valued fuzzy set. This 
mathematical tool is used to handle problems like 
imprecise, indeterminacy and inconsistent data etc. By 
utilizing neutrosophic theory, Vasantha Kandasamy 
and Florentin Smarandache dig out neutrosophic 
algebraic structures.  Some of them are neutrosophic 
fields, neutrosophic vector spaces, neutrosophic 
groups, neutrosophic bigroups, neutrosophic N-groups, 
neutrosophic semigroups, neutrosophic bisemigroups, 
neutrosophic N-semigroup, neutrosophic loops, 
neutrosophic biloops, neutrosophic N-loop, 
neutrosophic groupoids, and neutrosophic bigroupoids 
and so on.  

Molodtsov in 8 laid down the stone foundation of

a richer structure called soft set theory which is free 
from the parameterization inadequacy, syndrome of 
fuzzy se theory, rough set theory, probability theory 
and so on. In many areas it has been successfully 
applied such as smoothness of functions, game theory, 
operations research, Riemann integration, Perron 
integration, and probability. Recently soft set theory 
has attained much attention since its appearance and 
the work based on several operations of soft sets 
introduced in   2,9,10 . Some more exciting

properties and algebra may be found in 1 . Feng et al.

introduced the soft semirings 5 . By means of level

soft sets an adjustable approach to fuzzy soft sets 
based decision making can be seen in 6 . Some other

new concept combined with fuzzy sets and rough sets 
was presented in 7,8 . AygÄunoglu et al. introduced

the Fuzzy soft groups 4 .

   Firstly, fundamental and basic concepts are given for 
neutrosophic rings neutrosohic fields and soft rings. In  
the next section we presents the newly defined notions 
and results in soft neutrosophic rings and neutrosophic 

Keywords: Neutrosophic ring, neutrosophic field,neutrosophic ring homomorphism, soft neutrosophic 

ring, soft neutrosophic field, soft neutrosophic ring homomorphism.
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fields. Various types of soft neutrosophic ideals of 
rings are defined and elaborated with the help of 
examples. Furthermore, the homomorphisms of  soft 
neutrosophic rings are discussed at the end. 

2 Fundamental Concepts 

Neutrosophic Rings and Neutrosophic Fields 

Definition 1.  Let R be any ring. The neutrosophic ring 

R I  is also a ring generated by R  and I  under 

the operations of  R . I   is called the neutrosophic

element with the property  2I I . For an integer n
, n I   and  nI   are neutrosophic elements and

0. 0I .
1

I , the inverse of I is not defined and
hence does not exist. 

Definition 2.  Let R I  be a neutrosophic ring.  A 

proper subset P  of  R I  is said to be a 

neutrosophic subring if  P  itself is a neutrosophic ring 
under the operations of R I . 

Definition 2.  Let R I be any neutrosophic ring, 

a non empty subset P  of R I  is defined to be a 

neutrosophic ideal of  R I  if the following 
conditions are satisfied; 

1. P is a neutrosophic subring of R I . 

2. For every p P  and r R I  , rp  and 

pr P .
Definition 4. Let K  be a field . We call the field 
generated by K I  to be the neutrosophic field for it 
involves the indeterminacy factor in it. We define 

2I I , 2I I I  i.e., ,...,I I I nI    , and 
if k K then . ,0 I 0k I kI  . We denote the 

neutrosophic field by ( )K I which is generated by 

K I that is ( )K I K I  . K I denotes 

the field generated by K  and I . 

Definition 5.  Let ( )K I  be a neutrosophic field, 

( )P K I is a neutrosophic subfield of P if  P
itself is a neutrosophic field. 

Soft Sets 
Throughout this subsection  U   refers to an initial
universe,  E   is a set of parameters,  ( )PU   is the

Upower set of  U , and  A E  . Molodtsov [8]
defined the soft set in the following manner: 

Definition 6. A pair  ( , )F A   is called a soft set over

U   where  F   is a mapping given by
F : ( )A PU .In other words, a soft set over U
is a parameterized family of subsets of the universe  
U  . For  a A  ,  ( )F a   may be considered as the

set of  a  -elements of the soft set  ( , )F A  , or as the
set of  a -approximate elements of the soft set.

Definition 7. For two soft sets  ( , )F A   and  ( , )H B

over  U  ,  ( , )F A   is called a soft subset of  ( , )H B
if 

1) A B and
2) ( ) ( )F a H a , for all  a A  .
This relationship is denoted by  ( , ) ( , )F A H B .

Similarly  ( , )F A is called a soft superset of

( , )H B if  ( , )H B is a soft subset of  ( , )F A

which is denoted by  ( , ) ( , )F A H B .

Definition 8. Two soft sets  ( , )F A   and  ( ,B)H

over  U   are called soft equal if ( , )F A   is a soft

subset of  ( , )H B   and  ( , )H B   is a soft subset of

( , )F A  .

Definition 9.  Let ( , )F A   and  ( , )K B   be two soft

sets over a common universe  U   such that
A B  . Then their restricted intersection is 

denoted by ( , ) (K, ) ( , )RF A B H C   where

( , )H C is defined as  ( ) ( ) ( )H c F c c for

all  c C A B .

Definition 10.  The extended intersection of two soft 
sets  ( , )F A   and  ( , )K B   over a common universe

U   is the soft set  ( , )H C  , where  C A B  ,
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and for all  c C  ,  H c   is defined as

(c) if c

(c) K(c) if c

(c) (c) if c .

F A B

H B A

F A B

We write  ( , ) (K, ) ( , )F A B H C  .

Definition 11.The restricted union of two soft sets  
( , )F A and  ( , )K B over a common universe  U

is the soft set  ( , )H C  , where  C A B , and

for all  c C  ,  H c   is defined as the soft set

( , )H C ( , ) ( , )RF A K B where

C A B   and  (c) ( ) ( )H F c c for all

c C .

Definition 12. The extended union of two soft sets  
( , )F A and  ( , )K B over a common universe  U

is the soft set  ( , )H C  , where  C A B , and

for all  c C  ,  ( )H c   is defined as

(c) if c

(c) K(c) if c

(c) (c) if c .

F A B

H B A

F K A B

We write  ( , ) (K, ) ( , )F A B H C .

Soft Rings 

Definition 13. Let R  be a ring and let ( , )F A  be a

non-null soft set over R . Then ( , )F A  is called a

soft ring over R  if ( )F a  is a subring of R  ,  for all

a A .

Definition 14. Let  ( , )F A  and ( , )K B  be soft rings
over R . Then ( , )K B  is called a soft sub ring  of
( , )F A , If it satisfies the following;

1. B A
2. ( )K a is a sub ring of ( )F a , for all
a A .

Definition 15. Let ( , )F A  and ( , )K B  be soft rings
over R . Then ( , )K B  is called a soft ideal  of

,F A , If it satisfies the following;

1. B A
2. ( )K a is an idela of ( )F a , for all a A .

3 Soft Neutrosophic Ring

Definition. Let R I be a neutrosophic ring and 

( , )F A be a soft set over R I . Then ( , )F A  is 

called soft neutrosophic ring if and only if ( )F a  is a 

neutrosophic subring of R I for all .a A  

Example. Let Z I be a neutrosophic ring of 

integers and let ( , )F A  be a soft set over Z I . 

Let 1 2 3 4{ , , , }A a a a a be a set of parameters. Then 

clearly ( , )F A  is a soft neutrosophic ring over 

Z I , where 

 1 2( ) 2 , 3F a Z I F a Z I   

   3 45 , 6F a Z I F a Z I    . 

Theorem . Let  ( , )F A   and  H,A   be two soft

neutrosophic  rings  over  R I . Then their

intersection  ( , ) ( , )F A H A   is again a soft

neutrosophic ring over  R I  .

Proof.  The proof is straightforward. 

Theorem.  Let  ( , )F A   and  ( , )H B   be two  soft

neutrosophic rings over R I .  If  

A B , then  ( , ) ( , )F A H B   is a soft

neutrosophic ring over R I .

Proof. This is straightforward. 

Remark. The extended union of two soft  
neutrosophic  rings  ( , )F A   and  ( , )K B   over

R I is not a soft neutrosophic ring over

R I . 

We check this by the help of following Example. 

Example. Let Z I be a neutrosophic ring of 

integers. Let ( , )F A  and ( , )K B  be two soft

neutrosophic rings over Z I , where 

1 2 3( ) 2 , ( ) 3 , ( ) 4F a Z I F a Z I F a Z I , 
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And 

1 3( ) 5 , ( ) 7K a Z I K a Z I . 

Their extended union 

( , ) ( , ) ( , )EF A K B H C , where

1( ) 2 5H a Z I Z I , 

2( ) 3H a Z I , 

3( ) 5 7H a Z I Z I . 

Thus clearly 1( ) 2 5H a Z I Z I , 

3( ) 5 7H a Z I Z I  is not a 

neutrosophic rings. 

Remark. The restricted union of two soft neutrosophic  

rings  ( , )F A   and  ( , )K B   over R I  is not

a soft neutrosophic ring over .R I

Theorem. The  OR   operation of two soft

neutrosophic  rings over  R I  may not be a soft 

neutrosophic  ring over R I . 

 One can easily check these remarks with the help of 
Examples. 

Theorem. The extended intersection of two  soft 

neutrosophic  rings over  R I  is soft 

neutrosophic  ring over  R I . 

Proof. The proof is straightforward. 

Theorem. The restricted intersection of two soft 

neutrosophic rings over R I  is  soft 

neutrosophic  ring over  R I . 

Proof. It is obvious. 

Theorem. The AND  operation of two  soft

neutrosophic  rings over  R I   is  soft 

neutrosophic  ring over  R I . 

Proof.  Easy. 

Definition. Let ( , )F A  be a soft set over a

neutrosophic ring R I . Then ( , )F A is called

an absolute soft neutrosophic ring if 

( )F a R I for all .a A

Definition. Let ( , )F A  be a soft set over a

neutrosophic ring R I . Then ( , )F A  is called

soft neutrosophic ideal over R I if and only if

( )F a is a neutrosophic ideal over R I .

Example. Let 12Z I  be a neutrosophic ring. Let

1 2{ , }A a a be a set of parameters and ( , )F A be

a soft set over 12Z I . Then clearly ( , )F A  is a

soft neutrosophic ideal over R I , where

1( ) {0,6,2 , 4 ,6 ,8 ,10 ,6 2 ,...,6 10 }F a I I I I I I I ,

2( ) {0,6,6 ,6 6 }F a I I .

Theorem. Every soft neutrosophic ideal ( , )F A  over

a neutrosophic ring R I  is trivially a soft

neutrosophic ring. 

Proof. Let ( , )F A  be a soft neutrosophic ideal over a

neutrosophic ring R I . Then by definition

( )F a is a neutrosophic ideal for all .a A Since
we know that every neutrosophic  ideal is a 
neutrosophic subring. It follows that ( )F a is a

neutrosophic subring of R I . Thus by

definition of soft neutrosophic ring, this implies that 
( , )F A  is a soft neutrosophic ring.

Remark. The converse of the above theorem is not 
true. 

To check the converse, we take the following 
Example. 
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Example. Let 10Z I  be a neutrosophic ring. Let 

1 2{ , }A a a be a set of parameters and ( ,A)F be

a soft neutrosophic ring over 10Z I , where

1( ) {0,2, 4,6,8,2 , 4 ,6 ,8 },F a I I I I

2F( ) {0,2 , 4 ,6 ,8 }a I I I I .

Then obviously ( ,A)F  is not a soft neutrosophic

ideal over 10Z I .

Proposition. Let ( , )F A  and ( , )K B  be two soft
neutosophic ideals over a neutrosophic ring 

R I . Then

1. Their extended union ( , ) ( , )EF A K B  is
again a soft neutrosophic ideal over
R I . 

2. Their extended intersection
( , ) ( , )EF A K B is again a soft

neutrosophic ideal over R I . 

3. Their restricted union ( , ) ( , )RF A K B is
again a soft neutrosophic ideal over 
R I .

4. Their restricted intersection
( , ) ( , )RF A K B is again a soft

neutrosophic ideal over R I . 

5. Their OR  operation ( , ) ( , )F A K B  is
again a soft neutrosophic ideal over
R I . 

6. Their AND  operation ( , ) ( , )F A K B
is again a soft neutrosophic ideal over
R I .

Proof. Supoose ( , )F A and ( , )K B be two soft

neutrosophic ideals over R I .  Let  

C A B . Then for all  ,c C The extended

union is ( , ) ( , ) ( , )EF A K B H C ,  where

( ), If c ,

(c) ( ), If c ,

( ) ( ), If c .

F c A B

H K c B A

F c K c A B

As union of two neutrosophic ideals is again a 

neutrosophic ideal of R I .  Hence the extended 

union  ,H C   is a soft neutrosophic ideal over

R I . 

Similarly (2),(3),(4),(5),  and (6)  can be proved
respectively. 

Definition. Let ( , )F A  and ( , )K B  be two soft

neutrosophic rings over R I . Then ( , )K B is

called soft neutrosophic subring of ( , )F A , if

1. B A , and
2. ( )K a is a neutrosophic subring of ( )F a for

all a A .
Example. Let C I  be the neutrosophic ring of

complex numbers. Let 1 2 3{ , , }A a a a be a set of

parameters. Then ( , )F A  be a soft neutrosophic ring

over C I , where 

1 2( ) , ( ) ,F a Z I F a Q I

3( )F a R I . 

Where ,Z I Q I  and R I  are

neutrosophic rings of integers, rational numbers, and 
real numbers respectively. 

Let 2 3{ , }B a a be a set of parmeters . Let

( , )K B be the neutrosophic subring of ( , )F A over

C I , where

2 3K( ) ,K( )a Z I a Q I . 

Theorem. Every soft ring ( , )H B  over a ring R  is a
soft neutrosophic subring of a soft neutrosophic ring 
( , )F A  over the corresponding neutrosophic ring

R I if B A .

Proof. Straightforward. 

Definition. Let ( , )F A  and ( , )K B  be two soft

neutrosophic rings over R I . Then ( , )K B is

called soft neutrosophic ideal of ( , )F A , if

1. B A , and
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2. ( )K a is a neutrosophic ideal of ( )F a for
all a A .

Example. Let 12Z I  be a neutrosophic ring. Let 

1 2{ , }A a a be a set of parameters and ( , )F A be

a soft set over 12Z I . Then clearly ( , )F A  is a

soft neutrosophic ring over 

12Z I ,where

1( ) {0,6,2 , 4 ,6 ,8 ,10 ,6 2 ,...,6 10 }F a I I I I I I I ,

2( ) {0,2, 4,6,8,2 I, 4 I,6 I,8 I}F a .

Let 1 2{ , }B a a be a set of parameters. Then

clearly ( , )H B  is a soft neutrosophic ideal of ( , )F A

over 12Z I , where

1( ) {0,6,6 6 }H a I ,

2( ) {0,2, 4,6,8}H a .

Proposition. All soft neutrosophic ideals are trivially 
soft neutrosophic subrings. 

Proof. Straightforward. 

4 Soft Neutrosophic Field 

Defintion. Let ( )K I K I  be a

neutrosophic field and let ( , )F A  be a soft set over

( )K I . Then ( , )F A  is said to be soft neutrosophic

field if and only if ( )F a  is a neutrosophic subfield of

( )K I  for all a A .

Example. Let C I  be a neutrosophic field of 

complex numbers. Let 1 2{ , }A a a be a set of

parameters and let ( , )F A  be a soft set of C I . 

Then (F,A)  is called soft neutrosophic field over

C I , where

1 2( ) , ( )F a R I F a Q I . 

Where R I  and Q I  are the neutosophic 

fields of real numbers and rational numbers. 

Proposition. Every soft neutrosophic field is trivially a 
soft neutrosophic ring. 

Proof. The proof is trivial. 

 Remark. The converse of above proposition is not 
true. 

To see the converse, lets take a look to the following 
example. 

 Example. Let Z I be a neutrosophic ring of 

integers. Let 1 2 3 4{ , , , }A a a a a be a set of 

parameters and let ( , )F A  be a soft set over 

Z I .  Then ( , )F A  is a soft neutrosophic ring 

over Z I , where

 1 2( ) 2 , 3F a Z I F a Z I   

   3 45 , 6F a Z I F a Z I    . 

Clearly ( , )F A  is not a soft neutrosophic field. 

Definition. Let ( , )F A  be a soft neutrosophic field 

over a neutrosophic field K I . Then ( , )F A  is 

called an absolute soft neutrosophic field if 

( )F a K I  , for all a A . 

5 Soft Neutrosophic Ring Homomorphism 

Definition. Let ( , )F A  and ( , )K B  be the soft

neutrosophic rings over R I and 'R I

respectively. Let ':f R I R I  and 

:g A B be mappings. Let

( , ) : (F,A) (K,B)f g be another mapping.

Then ( , )f g  is called a soft neutrosophic ring
homomorphism if the following conditions are hold. 
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1. f is a neutrosophic ring homomorphism

from R I  to 'R I .

2. g is onto mapping from A to B , and
3. ( ( )) ( ( ))f F a K g a for all a A .

If f  is an isomorphicm and g is a bijective mapping.

Then ( , )f g  is called soft neutrosophic ring
isomorphism. 

Conclusions 
In this paper we extend the neutrosophic ring, 
neutrosophic field and neutrosophic subring to   soft 
neutrosophic ring, soft neutrosophic field and  soft 
neutrosophic subring respectively. The neutrosophic 
ideal of a ring is extended to soft  neutrosophic ideal. 
We showed all these by giving various examples in 
order to illustrate the soft part of the neutrosophic 
notions used. 
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New Neutrosophic  Crisp Topological Concepts 

A. A. Salama, Florentin Smarandache, S. A. Alblowi

Abstract 
   In this paper, we introduce the concept of ""neutrosophic crisp neighborhoods system for the neutrosophic crisp point ". Added to, 
we introduce and study the concept of neutrosophic crisp local function, and construct a new type of neutrosophic crisp topological 
space via neutrosophic crisp ideals.   Possible application to GIS topology rules are touched upon. 

 Keywords: Neutrosophic Crisp Point, Neutrosophic Crisp Ideal; Neutrosophic Crisp Topology; Neutrosophic Crisp Neighborhoods

1 INTRODUCTION 

     The idea of "neutrosophic set" was first given by 

Smarandache [14, 15]. In 2012 neutrosophic operations 

have been investigated by Salama et al. [4-13]. The fuzzy

set was introduced by Zadeh [17]. The intuitionstic fuzzy 

set was introduced by Atanassov [1, 2, 3]. Salama et al.

[11]defined intuitionistic fuzzy ideal for a set and

generalized the concept of fuzzy ideal concepts, first 

initiated by Sarker [16]. Neutrosophy  has laid the 

foundation for a whole family of new mathematical 

theories, generalizing both their crisp and fuzzy 

counterparts. Here we shall present the  neutrosophic crisp 

version of these concepts.   In this paper, we introduce the 

concept of  "neutrosophic crisp points "and "neutrosophic 

crisp neigbourhoods systems". Added to we  define the 

new concept of  neutrosophic crisp  local function, and 

construct new type of neutrosophic  crisp topological space 

via neutrosophic crisp ideals. 

2  TERMINOLOGIES 

     We recollect some relevant basic preliminaries, and in 

particular the work of Smarandache in [14, 15], and 

Salama et  al. [4 -13].

2.1 Definition [13]
    Let X be a non-empty fixed set. A  neutrosophic crisp 
set (NCS for short) A  is an object having the form

  321 ,, AAAA   where 321 and , AAA are  subsets of  X 
satisfying  21 AA ,  31 AA and  32 AA . 
2.2 Definition [13].

  Let  X be a nonempty set and Xp   Then  the 
neutrosophic crisp point Np  defined    by 

   c
N ppp ,, is called  a  neutrosophic crisp point

(NCP for short) in X, where NCP is a triple ({only one 
element in X}, the empty set,{the complement of the same 
element in X}).  

2.3 Definition [13]
 Let  X  be  a nonempty set, and Xp a fixed element 

in X. Then the neutrosophic crisp set    c
NN ppp ,,

is called “vanishing neutrosophic crisp point“ (VNCP for 
short) in X, where VNCP is a triple (the empty set,{only 
one element in X},{the complement of the same element in 
X}). 

2.4 Definition [13]

Let    c
N ppp ,, be a NCP in X and 

321 ,, AAAA   a neutrosophic crisp set in X. 

(a) Np is said to be contained in A ( Ap N  for short)

iff 1Ap  . 

(b) Let NNp  be a VNCP in X, and 321 ,, AAAA  a

neutrosophic crisp set in X. Then NNp  is said to be

A.A. Salama, Florentin Smarandache, S.A. Alblowi (2014). New Neutrosophic Crisp 
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(b) Let NNp  be a VNCP in X, and 321 ,, AAAA  a

neutrosophic crisp set in X. Then NNp  is said to be

contained in A  ( Ap NN  for short ) iff 3Ap .

2.5 Definition [13]. 
   Let X be non-empty set, and L a non–empty family of 

NCSs. We call L a neutrosophic crisp ideal (NCL for 

short) on  X  if 

i. LBABLA   and  [heredity],

ii. LL and   BABLA [Finite additivity].

A neutrosophic crisp ideal L is called a 

 - neutrosophic crisp ideal if    LM jj 


  , implies 

LjM
Jj





(countable additivity). 

      The smallest and largest neutrosophic crisp ideals on a 

non-empty set X are  N and the NSs on X. Also,

cf NCL  ,LNC are denoting the neutrosophic crisp 

ideals (NCL for short) of neutrosophic subsets having 

finite and countable support of X respectively. Moreover, 

if A is a nonempty NS in X, then  ABNCSB  :  is an

NCL on X. This is called the principal NCL of all NCSs,  

denoted by NCL A . 

2.1 Proposition [13] 

Let  JjL j :  be any non - empty family of

neutrosophic crisp ideals on a set X. Then 
Jj

jL


 and 


Jj

jL


 are neutrosophic crisp ideals on X, where 

321 ,, j
Jj

j
Jj

j
Jj

j
Jj

AAAL

 or

321 ,, j
Jj

j
Jj

j
Jj

j
Jj

AAAL

  and 

321 ,, j
Jj

j
Jj

j
Jj

j
Jj

AAAL

 or 

.,, 321 j
Jj

j
Jj

j
Jj

j
Jj

AAAL



2,2 Remark [13] 
 The neutrosophic crisp ideal defined by the single 

neutrosophic set N  is the smallest element of the ordered

set of all neutrosophic crisp ideals on X. 

2.1 Proposition [13] 
 A neutrosophic crisp set 321 ,, AAAA  in the 

neutrosophic crisp ideal L on X is a base of L iff every 
member of L is contained in A. 

3. Neutrosophic  Crisp Neigborhoods System

3.1 Definition.
Let 321 ,, AAAA  ,  be a neutrosophic crisp set on a 

set X, then       ,,, 321 pppp  321 ppp  X is called 
a neutrosophic crisp point 

An NCP       ,,, 321 pppp  is said to be belong to a 

neutrosophic crisp set 321 ,, AAAA  , of X, denoted 

by Ap , if may be defined by two types 
i) Type 1: 2211 }{,}{ ApAp  and 33}{ Ap 

ii) Type 2: 2211 }{,}{ ApAp  and 33}{ Ap 

3.1 Theorem
   Let ,,, 321 AAAA  and ,,, 321 BBBB  be neu-

trosophic crisp subsets of X. Then BA  iff
Ap implies Bp for any neutrosophic crisp point 

p in X.
Proof 

Let BA  and Ap . Then two types
Type 1: 2211 }{,}{ ApAp  and 33}{ Ap  or 
Type 2: 2211 }{,}{ ApAp  and 33}{ Ap  . Thus Bp . 
Conversely, take any x in X. Let  11 Ap   and 

22 Ap  and 33 Ap  . Then  p  is a neutrosophic crisp 
point in X. and Ap . By the hypothesis Bp . Thus 

11 Bp  , or Type 1: 2211 }{,}{ BpBp  and 33}{ Bp  or 
 Type 2: 2211 }{,}{ BpBp  and 33}{ Bp  . Hence. 
BA . 

3.2 Theorem
Let  321 ,, AAAA , be a neutrosophic crisp

subset of X. Then  .: AppA   
   Proof 

  Since  .: App  may be two types 
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Type 1:
   333222111 :,:},:{ AppAppApp  or 

Type 2:
   333222111 :,:},:{ AppAppApp  . Hence

321 ,, AAAA

3.1 Proposition

Let  JjA j :  is a family of   NCSs in X. Then

)( 1a      321 ,, pppp  j
Jj

A

 iff jAp  for each

Jj . 
)( 2a j

Jj
Ap


 iff Jj  such that jAp  .

. 
3.2 Proposition 

 Let 321 ,, AAAA  and 321 ,, BBBB   be two 

neutrosophic crisp sets in X. Then 

a) BA  iff   for each p  we have

BpAp  and for each p  we have 

BpAp  . 

b) BA  iff   for each p  we have
BpAp   and for each p   we 

have BpAp  . 

3.3 Proposition

    Let 321 ,, AAAA  be a neutrosophic crisp set in X. 

Then 

     333222111 :,:,: AppAppAppA  .

3.2 Definition 

    Let YXf : be a function and p  be a nutrosophic 
crisp point in X. Then the image of p  under f , denoted 
by )( pf , is defined by 

     321 ,,)( qqqpf  ,where )(),( 2211 pfqpfq  .and

)( 33 pfq  . 

It is easy to see that )( pf  is indeed a NCP in Y, namely 
qpf )( , where )( pfq  , and it is exactly the same 

meaning of the image of a NCP under the function f . 

4 4. Neutrosophic Crisp Local functions 

4.1 Definition 
Let p be a neutrosophic crisp point of a neutrosophic 

crisp topological space  ,X . A neutrosophic crisp neigh-
bourhood ( NCNBD for short) of a neutrosophic crisp 
point p if there is a neutrosophic crisp open set( NCOS for 
short) B in X such that .ABp   

4.1 Theorem 
Let  ,X  be a neutrosophic crisp topological space

(NCTS for short) of X. Then the neutrosophic crisp set A 
of X is NCOS iff A is a NCNBD of  p for every neutro-
sophic crisp set .Ap  

Proof 
 Let  A be NCOS of  X . Clearly A is a NCBD of any 

.Ap  Conversely, let .Ap Since A is a NCBD of  p, 
there is a NCOS B in X such that .ABp  So we have 

 AppA  :   AApB  : and 
hence  ApBA  : . Since each B is NCOS.

 4.2 Definition 
Let  ,X be a neutrosophic crisp topological spaces

(NCTS for short) and L be neutrsophic crisp ideal (NCL, 
for short) on X. Let A be any NCS of X. Then the neutro-
sophic crisp local function  ,LNCA  of A is the union of 
all neutrosophic crisp points( NCP, for short) 

      ,,, 321 pppP  such that if  )( pNU  and 

 N(P) of nbd every Ufor   :),(* LUAXpLNA  ,
),( LNCA is called a neutrosophic crisp local function

of A with respect to L and    which it will be denoted by 
),( LNCA , or simply   LNCA .

4.1 Example 
    One may easily verify that. 
If L= )(),(C N then  },{ ANCclLAN   , for any neutro-

sophic  crisp set NCSsA  on X. 
If    NLA    ),(NC    then  Xon  NCSs all L , for 

any NCSsA  on X . 

4.2 Theorem 
Let  ,X  be a NCTS and 21, LL be two topological

neutrosophic crisp ideals on X. Then for any neutrosophic 
crisp sets A, B  of   X. then the following statements are 
verified  

i) ),,(),(  LNCBLNCABA  

ii) ),(),( 1221  LNCALNCALL   . 

iii) )()( ANCclANCclNCA   . 
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iv)  NCANCA ** .

v)   
 NCBNCABANC .,

vi) ).()()()( LNCBLNCALBANC  

vii)   .
 NCAANCL 

viii) ),( LNCA is neutrosophic  crisp closed set .

Proof 
i) Since BA  , let      321 ,, pppp   1

* LNCA then 
LUA  for every  pNU  . By hypothesis we get

LUB  , then      321 ,, pppp   1
* LNB . 

ii) Clearly. 21 LL   implies ),(),( 12  LNCALNCA    as
there may be other IFSs which belong to 2L  so that for 

GIFP      321 ,, pppp   1
* LNCA but  P  may not 

be contained in  2LNCA . 
iii) Since   LN   for any NCL on X, therefore by (ii)

and Example 3.1,      )(ANCclONCALNCA N  

for any NCS A on X. Suppose 
     3211 ,, pppP   )( 1

* LANCcl . So for every 

 1PNCU  , ,)( NUANC   there exists 

     3212 ,, qqqP    ULNCA  1
* such that for every V

NCNBD of   .,22 LUAPNP   Since  2pNVU 

then   LVUA   which leads to LUA  , for every
)( 1PNU  therefore  )( *

1 LANCP   and so

    NCANANCcl While, the other inclusion follows di-
rectly. Hence )(   NCANCclNCA .But the inequali-
ty )(   NCANclNCA . 

iv) The inclusion    BANCNCBNCA  fol-
lows directly by (i). To show the other implication, let 

  BANCp then for every ),( pNCU 

  ,., eiLUBA      .LUBUA  then, we have 
two cases LUA   and LUB   or the converse, this 
means that exist  PNUU 21 , such that LUA  1 ,

,1 LUB  LUA  2 and LUB  2 . Then 
  LUUA  21  and   LUUB  21 this gives

    ,21 LUUBA   )(21 PCNUU   which contra-
dicts the hypothesis. Hence the equality holds in various 
cases. 
vi) By  (iii), we have

  )(NCANCclNCA   NCANCANCcl )(
Let  ,X  be a NCTS and L be NCL on X . Let us  de-

fine the  neutrosophic  crisp closure operator 

)()(   ANCAANCcl  for any NCS A of X. Clearly, let 

)(ANCcl is a neutrosophic   crisp operator. Let

)(LNC    be NCT generated by NCcl

.i.e    .)(: cc AANCclALNC    now

 NL      ANCclANCAAANCcl    for eve-
ry  neutrosophic crisp set A. So,     )( NN . Again 

 Xon  NCSs  allL     ,AANCcl  be-

cause NNCA * , for every neutrosophic  crisp set A so
 LNC * is the neutrosophic crisp discrete topology on X.

So we can conclude by Theorem 4.1.(ii). 
   LNCNC N

*)(    i.e. * NCNC  , for  any neutro-
sophic   ideal 1L  on X. In particular, we have for two topo-
logical neutrosophic ideals ,1L  and 2L  on X, 

   2
*

1
*

21 LNCLNCLL   . 
4.3 Theorem 
Let 21,  be two neutrosophic  crisp topologies on X. 

Then for any topological neutrosophic crisp ideal L on X, 
21   implies ),(),( 12  LNALNA   , for every A L  then 

21
   NCNC

Proof 
Clear. 
A basis   ,LNC  for )(LNC   can be described 

as follows: 
   ,LNC  LBABA  ,:  . Then we have the fol-

lowing theorem 
4.4 Theorem 

   ,LNC  LBABA  ,:  Forms a basis for
the generated NT of the NCT  ,X with topological neu-
trosophic crisp ideal L on X.

Proof 
Straight forward. 

The relationship between NC  and NC )(L estab-
lished throughout the following result which have an im-
mediately   proof . 

4.5 Theorem 
Let 21 ,  be two neutrosophic crisp topologies on X. 

Then for any topological neutrosophic ideal L on X,  
21   implies 21

   NCNC . 
4.6 Theorem 
Let   ,  be a NCTS and 21, LL  be two neutrosophic

crisp ideals on X . Then for any neutrosophic crisp set A in 
X, we have  
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i)      .)(,)(,, 221121 LNCLNCALNCLNCALLNCA    ii)
    )(()()()( 122121 LLNCLLNCLLNC

  

Proof  
Let  ,,21 LLp   this means that there exists

 PNCU  such that  21 LLUA p  i.e. There exists

11 L and 22 L such that  21  UA because of 

the heredity of L1, and assuming NO 21  .Thus we
have   21  UA  and    12   pUA there-
fore   221 LAU  

and   112 LAU   . Hence   ,, 12 LNCLNCAp   or

  ,, 21 LNCLNCAP   because p  must belong to either 1

or 2 but not to both. This gives
     .)(,)(,, 221121 LNCLNCALNCLNCALLNCA    .

To show the second inclusion, let us as-
sume   ,, 21 LNCLNCAP   . This implies that there exist

 PNU  and 22 L such that   12 LAU p   . By the

heredity of 2L ,  if we assume that A2  and define
  AU  21   . Then we 

have   2121 LLUA   . Thus,
     .)(,)(,, 221121 LNCLNCALNCLNCALLNCA   

and similarly, we can get    .)(,, 1221 LLNCALLNCA    .
This gives the other inclusion, which complete the proof. 

4.1 Corollary 
.Let   ,  be a NCTS with topological neutrosophic

crisp ideal L on X. Then 

i) )())(()(NC and ),(),( LLNCNCLLNCALNCA   

ii)    )()()( 2121 LNCLNCLLNC   

Proof   
Follows  by applying the previous statement. 
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Soft Neutrosophic Loops and Their Generalization 
Mumtaz Ali, Christopher Dyer, Muhammad Shabir, Florentin Smarandache

Abstract. Soft set theory is a general mathematical tool 
for dealing with uncertain, fuzzy, not clearly defined ob-
jects. In this paper we introduced soft neutrosophic 
loop,soft neutosophic biloop, soft neutrosophic N -loop
with the discuission of some of their characteristics. We 
also introduced a new type of soft neutrophic loop, the so 

called soft strong neutrosophic loop which is of pure neu-
trosophic character. This notion also found in all the oth-
er corresponding notions of soft neutrosophic thoery. We 
also given some of their properties of this newly born 
soft structure related to the strong part of neutrosophic 
theory. 

Keywords: Neutrosophic loop, neutrosophic biloop, neutrosophic N-loop, soft set, soft neutrosophic loop,soft neutrosophic biloop, 
soft neutrosophic N-loop.

1 Introduction 

  Florentin Smarandache for the first time intorduced the 
concept of neutrosophy in 1995 , which is basically a new 
branch of philosophy which actually studies the origion, 
nature, and scope of neutralities. The neutrosophic logic 
came into being by neutrosophy. In neutrosophic logic 
each proposition is approximated to have the percentage of 
truth in a subset T , the percentage of indeterminacy in a 
subset I , and the percentage of falsity in a subset F . 
Neutrosophic logic is an extension of fuzzy logic. In fact 
the neutrosophic set is the generalization of classical set, 
fuzzy conventional set, intuitionistic fuzzy set, and interal 
valued fuzzy set. Neutrosophic logic is used to overcome 
the problems of imperciseness, indeterminate, and incon-
sistentness of date etc. The theoy of neutrosophy is so ap-
plicable to every field of agebra. W.B Vasantha Kan-
dasamy and Florentin Smarandache introduced neutro-
sophic fields, neutrosophic rings, neutrosophic vectorspac-
es, neutrosophic groups, neutrosophic bigroups and neutro-
sophic N -groups, neutrosophic semigroups, neutrosophic 
bisemigroups, and neutrsosophic N -semigroups, neutro-
sophic loops, nuetrosophic biloops, and neutrosophic N -
loops, and so on. Mumtaz ali et.al. introduced nuetosophic 
LA -semigoups. 

  Molodtsov intorduced the theory of soft set. This mathe-
matical tool is free from parameterization inadequacy, 
syndrome of fuzzy set theory, rough set theory, probability 
theory and so on. This theory has been applied successfully 
in many fields such as smoothness of functions, game the-

ory, operation reaserch, Riemann integration, Perron inte-
gration, and probability. Recently soft set theory attained 
much attention of the researchers since its appearance and 
the work based on several operations of soft set introduced 
in  2,9,10 . Some properties and algebra may be found

in   1 .  Feng et.al. introduced soft semirings in  5 . By
means of level soft sets an adjustable approach to fuzy soft 
set can be seen in  6 . Some other concepts together with

fuzzy set and rough set were shown in  7,8 .
  This paper is about to introduced soft nuetrosophic loop, 
soft neutrosphic biloop, and soft neutrosophic N -loop and 
the related strong or pure part of neutrosophy with the no-
tions of soft set theory. In the proceeding section, we de-
fine soft neutrosophic loop, soft neutrosophic strong loop, 
and some of their properties are discuissed. In the next sec-
tion, soft neutrosophic biloop are presented with their 
strong neutrosophic part. Also in this section some of their 
characterization have been made. In the last section soft 
neutrosophic N -loop and their coresponding strong theo-
ry have been constructed with some of their properties. 

2 Fundamental Concepts 
Neutrosophic Loop 

Definition 1. A neutrosophic loop is generated by a loop 
L and I denoted by L I . A neutrosophic loop in 

general need not be a loop for 2I I and I may not 
have an inverse but every element in a loop has an inverse. 
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Definition 2. Let L I  be a neutrosophic loop. A 

proper subset P I of L I  is called the neutro-

sophic subloop, if P I  is itself a neutrosophic loop 

under the operations of  L I . 

Definition 3. Let ( , )L I be a neutrosophic loop of 

finite order. A proper subset P  of  L I  is said to be 

Lagrange neutrosophic subloop, if P  is a neutrosophic 
subloop under the operation  and ( ) / oo P L I . 

Definition 4. If every neutrosophic subloop of L I  is 

Lagrange then we call L I  to be a Lagrange neutro-
sophic loop. 

Definition 5. If L I  has no Lagrange neutrosophic 

subloop then we call L I  to be a Lagrange free neu-
trosophic loop. 

Definition 6. If L I  has atleast one Lagrange neutro-

sophic subloop then we call L I  to be a weakly La-
grange neutrosophic loop. 

Neutrosophic Biloops 

Definition 6. Let 1 2( , , )B I   be a non-empty neu-

trosophic set with two binary operations  1 2,  , B I

is a neutrosophic biloop if the following conditions are sat-
isfied. 

1. 1 2B I P P   where 1P and 2P are proper 

subsets of B I . 

2. 1 1( , )P  is a neutrosophic loop. 

3. 2 2( , )P  is a group or a loop.

Definition 7. Let 1 2( , , )B I   be a neutrosophic bi-

loop. A proper subset P  of B I   is said to be a neu-

trosophic subbiloop of B I  if 1 1 2( , , )P    is itself a 

neutrosophic biloop under the operations of B I . 

Definition 8. Let 1 2 1 2( , , )B B B    be a finite neu-

trosophic biloop. Let 1 2 1 2(P , , )P P    be a neutro-

sophic biloop. If o(P) / o(B)  then we call P , a Lagrange 
neutrosophic subbiloop of B . 
Definition 9. If every neutrosophic subbiloop of B  is La-
grange then we call B  to be a Lagrange neutrosophic bi-
loop. 

Definition 10. If B  has atleast one Lagrange neutrosophic 
subbiloop then we call B  to be a weakly Lagrange neutro-
sophic biloop. 

Definition 11. If B  has no Lagrange neutrosophic subbi-
loops then we call B  to be a Lagrange free neutrosophic 
biloop. 

Neutrosophic N-loop 

Definition 12. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }n NS B S B S B S B      

be a non-empty neutrosophic set with N -binary opera-
tions. ( )S B  is a neutrosophic N -loop if  

1 2( ) ( ) ( ) ... ( )nS B S B S B S B    , ( )iS B are 

proper subsets of ( )S B  for 1 i N  and some of 

( )iS B  are neutrosophic loops and some of the ( )iS B  are 
groups. 

Definition 13. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }n NS B S B S B S B      

be a neutrosophic  N -loop. A proper subset 

1 2(P, , ,..., )N    of ( )S B  is said to be a neutrosophic 

sub N -loop of  ( )S B  if P  itself is a neutrosophic N -
loop under the operations of ( )S B . 

Definition 14. Let 

1 2 1 2( ... , , ,..., )N NL L L L       be a neutrosoph-
ic N -loop of finite order. Suppose P  is a proper subset 
of L , which is a neutrosophic sub N -loop. If  

( ) / ( )o P o L   then we call P  a Lagrange neutrosophic 
sub  N -loop. 

Definition 15.If every neutrosophic sub N -loop is La-
grange then we call L  to be a Lagrange neutrosophic N -
loop. 
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Definition 16. If L  has atleast one Lagrange neutrosophic 
sub  N -loop then we call L  to be a weakly Lagrange 
neutrosophic N -loop. 

Definition 17. If L  has no Lagrange neutrosophic sub 
N -loop then we call L  to be a Lagrange free neutrosoph-
ic N -loop.

Soft Sets 

Throughout this subsection U refers to an initial universe,
E  is a set of parameters, ( )PU  is the power set of  U ,
and ,A B E . Molodtsov defined the soft set in the
following manner: 

Definition 7. A pair ( , )F A  is called a soft set over U
where F is a mapping given by  : ( )F A PU .
In other words, a soft set over  U  is a parameterized fami-
ly of subsets of the universe  U . For  a A  , (a)F
may be considered as the set of  a -elements of the soft set
( , )F A  , or as the set of  a -approximate elements of the
soft set. 

Example 1.  Suppose that U  is the set of shops. E is the
set of parameters and each parameter is a word or sentence. 
Let 

  
high rent,normal rent,

in good condition,in bad condition
E  . 

Let us consider a soft set ( , )F A which describes the at-
tractiveness of shops that Mr.Z  is taking on rent. Suppose
that there are five houses in the universe  

1 2 3 4 5{ , , , , }U s s s s s under consideration, and that

1 2 3{ , , }A a a a be the set of parameters where

1a stands for the parameter 'high rent,

2a stands for the parameter 'normal rent,

3a stands for the parameter 'in good condition.
Suppose that 

1 1 4( ) { , }F a s s ,

2 2 5( ) { , }F a s s ,

3 3( ) { }.F a s
The soft set ( , )F A  is an approximated family

{ ( ), 1,2,3}iF a i of subsets of the set U which gives

us a collection of approximate description of an object. 
Then ( , )F A  is a soft set as a collection of approxima-
tions over  U , where

21 1  { , }) ,( high rea nt s sF

2 2 5( )   { , },F normal ra ent s s

3 3( )    { }.F in good condit na io s

Definition 8.  For two soft sets ( , )F A  and  ( ,C)H  over
U , ( , )F A  is called a soft subset of  ( ,C)H  if

1. A C and
2. ( ) ( )F a H a , for all  x A  .

This relationship is denoted by ( , ) ( ,C)F A H . Simi-
larly ( , )F A  is called a soft superset of ( ,C)H  if
( ,C)H  is a soft subset of ( , )F A  which is denoted by
( , ) ( ,C)F A H .

Definition 9.  Two soft sets ( , )F A  and ( ,C)H  over
U are called soft equal if ( , )F A  is a soft subset of
( ,C)H  and ( ,C)H  is a soft subset of ( , )F A .

Definition 10.  Let ( , )F A  and ( ,C)K  be two soft sets
over a common universe U such that  A C  .
Then their restricted intersection is denoted by 
( , ) ( ,C) ( ,D)RF A K H  where ( ,D)H  is de-

fined as  ( ) ( ) )H c F c c for all
Dc A C .

Definition 11.  The extended intersection of two soft sets  
( , )F A  and  ( ,C)K  over a common universe U is the
soft set  ( ,D)H  , where  D A C  , and for all
c C  , ( )H c  is defined as

( ) if c ,

( ) K( ) if c ,

( ) ( ) if c .

F c A C

H c c C A

F c c A C

We write  ( , ) ( , ) ( ,D)F A K C H .

Definition 12. The restricted union of two soft sets  
( , )F A  and ( ,C)K  over a common universe U is the
soft set  ( ,D)H , where  D A C , and for all
c D , ( )H c is defined as  ( ) ( ) ( )H c F c c
for all  c D  . We write it as
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( , ) ( ,C) ( ,D).RF A K H

Definition 13. The extended union of two soft sets  
( , )F A  and ( ,C)K  over a common universe U is the
soft set  ( ,D)H , where  D A C , and for all
c D ,  ( )H c is defined as

( ) if c ,

( ) K( ) if c ,

( ) ( ) if c .

F c A C

H c c C A

F c K c A C

We write ( , ) ( ,C) ( ,D)F A K H .

3 Soft Neutrosophic Loop 

Definition 14. Let L I be a neutrosophic loop and 

( , )F A be a soft set over L I . Then ( , )F A  is 

called soft neutrosophic loop if and only if ( )F a  is neu-

trosophic subloop of  L I  for all a A . 

Example 2. Let 7(4)L I L I   be a neutro-

sophic loop where 7(4)L is a loop. Then ( , )F A  is a soft 

neutrosophic loop over L I , where 

1 2

3

( ) { , ,2,2 }, ( ) { ,3 },

F( ) { , }.

F a e eI I F a e

a e eI

 



Theorem 1. Every soft neutrosophic loop over L I

contains a soft loop over L . 

Proof. The proof is straightforward. 

Theorem 2. Let ( , )F A  and ( , )H A  be two soft neutro-

sophic loops over L I . Then their intersection 

( , ) ( , )F A H A  is again soft neutrosophic loop over 

L I . 

Proof. The proof is staightforward. 

Theorem 3. Let ( , )F A  and ( ,C)H  be two soft neutro-

sophic loops over L I . If  A C   , then 

( , ) ( ,C)F A H is a soft neutrosophic loop over

L I . 

Remark 1. The extended union of two soft neutrosophic 
loops ( , )F A  and ( ,C)K  over L I  is not a soft 

neutrosophic loop over L I . 

With the help of example we can easily check the above 
remark. 

Proposition 1. The extended intersection of two soft neu-
trosophic loopps over L I is a soft neutrosophic loop 

over L I . 

Remark 2. The restricted union of two soft neutrosophic 
loops ( , )F A  and ( , )K C  over L I  is not a soft 

neutrosophic loop over L I . 

One can easily check it by the help of example. 

Proposition 2. The restricted intersection of two soft neu-
trosophic loops over L I  is a soft neutrosophic loop 

over L I . 

Proposition 3. The AND  operation of two soft neutro-
sophic loops over L I  is a soft neutrosophic loop 

over L I . 

Remark 3. The OR  operation of two soft neutosophic 
loops over L I  may not be a soft nuetrosophic loop 

over L I . 

Definition 15. Let 
( ) { ,1,2,..., , ,1 ,2 ,..., }nL m I e n eI I I nI  be a 

new class of neutrosophic loop and ( , )F A  be a soft neu-

trosophic loop over ( )nL m I . Then ( , )F A  is called 

soft new class neutrosophic loop if ( )F a  is a neutrosoph-

ic subloop of ( )nL m I  for all a A . 

Example 3. Let 
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5(3) { ,1,2,3,4,5, ,1 ,2 ,3 ,4 ,5 }L I e eI I I I I I  be 
a new class of neutrosophic loop. Let 

1 2 3 4 5{ , , , , }A a a a a a be a set of parameters. Then 

( , )F A is soft new class neutrosophic loop over 

5(3)L I , where 

1 2

3 3

5

( ) { , ,1,1 }, ( ) { , ,2,2 },
( ) { , ,3,3 }, ( ) { , ,4,4 },
( ) { , ,5,5 }.

F a e eI I F a e eI I
F a e eI I F a e eI I
F a e eI I

 

 



Theorem 4. Every soft new class neutrosophic loop over 
( )nL m I  is a soft neutrosophic loop over 

( )nL m I  but the converse is not true. 

Proposition 4. Let ( , )F A  and ( ,C)K  be two soft new 

class neutrosophic loops over ( )nL m I . Then 

1) Their extended intersection ( , ) ( ,C)EF A K  is a 

soft new class neutrosophic loop over ( )nL m I . 

2) Their restricted intersection  ( , ) ( ,C)RF A K  is a 
soft new classes neutrosophic loop over 

( )nL m I . 

3) Their AND  operation  ( , ) ( ,C)F A K  is a soft

new class neutrosophic loop over ( )nL m I .

Remark 4. Let ( , )F A and (K,C)  be two soft new class 

neutrosophic loops over ( )nL m I . Then 

1) Their extended union ( , ) ( ,C)EF A K  is not a soft 

new class neutrosophic loop over ( )nL m I . 

2) Their restricted union  ( , ) ( ,C)RF A K  is not a 

soft new class neutrosophic loop over ( )nL m I . 

3) Their OR  operation ( , ) ( ,C)F A K  is not a soft

new class neutrosophic loop over ( )nL m I . 

One can easily verify (1),(2), and (3) by the help of ex-
amples. 

Definition 16. Let ( , )F A  be a soft neutrosophic loop 

over L I . Then ( , )F A  is called the identity soft 

neutrosophic loop over L I if ( ) { }F a e  for all

a A , where e is the identity element of L I . 

Definition 17. Let ( , )F A  be a soft neutrosophic loop 

over L I . Then ( , )F A  is called an absolute soft 

neutrosophic loop over L I  if ( )F a L I   for 

all a A . 

Definition 18. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic loops over L I . Then  ( ,C)H  is callsed 

soft neutrosophic subloop of ( , )F A , if 
1. C A .
2. ( )H a is a neutrosophic subloop of ( )F a for all

a A .

Example 4.  Consider the neutrosophic loop 

15(2) { ,1,2,3,4,...,15, ,1 ,2 ,...,14 ,15 }L I e eI I I I I 

of order 32 . Let 1 2 3{ , , }A a a a be a set of parameters. 

Then  ( , )F A  is a soft neutrosophic loop over 

15(2)L I , where

1

2

3

( ) { ,2,5,8,11,14, ,2 ,5 ,8 ,11 ,14 },
( ) {e,2,5,8,11,14},

F( ) { ,3, ,3 }.

F a e eI I I I I I
F a

a e eI I







Thus ( ,C)H  is a soft neutrosophic subloop of ( , )F A  

over 15(2)L I , where 

1

2

( ) { , ,2 ,5 ,8 ,11 ,14 },
( ) { ,3}.

H a e eI I I I I I
H a e





Theorem 5. Every soft loop over L  is a soft neutrosophic 
subloop over L I . 

Definition 19. Let L I be a neutrosophic loop and 

( , )F A be a soft set over L I . Then ( , )F A  is 

called soft normal neutrosophic loop if and only if ( )F a
is normal neutrosophic subloop of L I  for all 
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a A . 

Example 5. Let 

5(3) { ,1,2,3,4,5, ,1 ,2 ,3 ,4 ,5 }L I e eI I I I I I  be 

a neutrosophic loop. Let 1 2 3{ , , }A a a a be a set of pa-

rameters. Then clearly  ( , )F A  is soft normal neutrosoph-

ic loop over 5(3)L I , where 

1 2

3

( ) { , ,1,1 }, ( ) {e,eI,2,2 I},
( ) {e,eI,3,3I}.

F a e eI I F a
F a

 



Theorem 6. Every soft normal neutrosophic loop over 
L I  is a soft neutrosophic loop over  L I  but 

the converse is not true. 

Proposition 5. Let ( , )F A  and ( ,C)K  be two soft nor-

mal neutrosophic loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft normal neutrosophic loop over L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft normal neutrosophic loop over L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft normal neutrosophic loop over L I .

Remark 5. Let ( , )F A and (K,C)  be two soft normal 

neutrosophic loops over L I . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft normal neutrosophic loop over L I . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft normal neutrosophic loop over L I . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft normal neutrosophic loop over  L I .

One can easily verify (1),(2), and (3) by the help of ex-
amples. 

Definition 20. Let L I  be a neutrosophic loop and 

( , )F A be a soft neutrosophic loop over L I . Then 

( , )F A is called soft Lagrange neutrosophic loop if  

( )F a is a Lagrange neutrosophic subloop of L I

for all  a A . 

Example 6. In Example (1) , ( ,A)F  is a soft Lagrange 

neutrosophic loop over L I .  

Theorem 7. Every soft Lagrange neutrosophic loop over 
L I  is a soft neutrosophic loop over  L I  but 

the converse is not true. 

Theorem 8. If L I  is a Lagrange neutrosophic loop, 

then ( , )F A  over L I  is a soft Lagrange neutro-
sophic loop but the converse is not true. 

 Remark 6. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic loop over
L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange neutrosophic loop over
L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not

a soft Lagrange neutrosophic loop over L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 

soft Lagrnage neutrosophic loop over  L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft Lagrange neutrosophic loop over L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange neutrosophic loop over  L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 21. Let L I  be a neutrosophic loop and 
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( , )F A be a soft neutrosophic loop over L I . Then 

( , )F A  is called soft weak Lagrange neutrosophic loop if 
atleast one ( )F a is not a Lagrange neutrosophic subloop 

of L I for some a A . 

Example 7.  Consider the neutrosophic loop 

15(2) { ,1,2,3,4,...,15, ,1 ,2 ,...,14 ,15 }L I e eI I I I I 

of order 32 . Let 1 2 3{ , , }A a a a be a set of parameters. 

Then  ( , )F A  is a soft weakly Lagrange neutrosophic 

loop over 15(2)L I , where 

1

2

3

( ) { ,2,5,8,11,14, ,2 ,5 ,8 ,11 ,14 },
( ) {e,2,5,8,11,14},

F( ) { ,3, ,3 }.

F a e eI I I I I I
F a

a e eI I







Theorem 9. Every soft weak Lagrange neutrosophic loop 
over L I  is a soft neutrosophic loop over L I  
but the converse is not true. 

Theorem 10. If L I  is weak Lagrange neutrosophic 

loop, then ( , )F A  over L I  is also soft weak La-
grange neutrosophic loop but the converse is not true. 

Remark 7. Let ( , )F A  and ( ,C)K  be two soft weak 

Lagrange neutrosophic loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic loop
over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weak Lagrange neutrosophic loop
over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weak Lagrange neutrosophic loop over

L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weak Lagrnage neutrosophic loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft weak Lagrange neutrosophic loop over 
L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft weak Lagrange neutrosophic loop over

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples.

Definition 22. Let L I be a neutrosophic loop and 

( , )F A be a soft neutrosophic loop over L I . Then 

( ,A)F is called soft Lagrange free neutrosophic loop if 

( )F a is not a lagrange neutrosophic subloop of L I

for all a A . 

Theorem 11. Every soft Lagrange free neutrosophic loop 
over L I  is a soft neutrosophic loop over L I  
but the converse is not true. 

Theorem 12. If L I  is a Lagrange free neutrosophic 

loop, then ( , )F A  over L I  is also a soft Lagrange 
free neutrosophic loop but the converse is not true. 

Remark 8. Let ( , )F A  and ( ,C)K  be two soft Lagrange 

free neutrosophic loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange soft neutrosophic loop over
L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange soft neutrosophic loop over
L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic loop over

L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage soft neutrosophic loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic loop over

L I . 
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6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic loop over

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

4 Soft Neutrosophic Strong Loop 

Definition 23. Let L I be a neutrosophic loop and 

( , )F A be a soft set over L I . Then ( , )F A  is 

called soft neutrosophic strong loop if and only if ( )F a  is 

a strong neutrosophic subloop of  L I  for all a A . 

Proposition 6. Let ( , )F A  and ( ,C)K  be two soft neu-

trosophic strong loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong loop over L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic strong loop over L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic strong loop over L I .

Remark 9. Let ( , )F A and (K,C)  be two soft neutro-

sophic strong loops over L I . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic strong loop over L I . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic strong loop over L I . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic strong loop over  L I .

One can easily verify (1),(2), and (3) by the help of ex-
amples. 

Definition 24. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic strong loops over L I . Then  ( ,C)H  is 

called soft neutrosophic strong subloop of ( , )F A , if 
1. C A .
2. ( )H a is a neutrosophic strong subloop of ( )F a

for all a A .

Definition 25. Let L I be a neutrosophic strong loop 

and ( , )F A  be a soft neutrosophic loop over L I . 

Then ( , )F A  is called soft Lagrange neutrosophic strong 
loop if  ( )F a  is a Lagrange neutrosophic strong subloop 

of L I  for all  a A . 

Theorem 13. Every soft Lagrange neutrosophic strong 
loop over L I  is a soft neutrosophic loop over 

L I  but the converse is not true. 

Theorem 14. If L I  is a Lagrange neutrosophic 

strong loop, then ( , )F A  over L I  is a soft La-
grange neutrosophic loop but the converse is not true. 

 Remark 10. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic strong loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic strong loop
over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange strong neutrosophic loop
over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange neutrosophic strong loop over

L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage neutrosophic strong loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange neutrosophic strong loop over

L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange neutrosophic strong loop over
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L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 26.  Let L I be a neutrosophic strong 

loop and ( , )F A  be a soft neutrosophic loop over 

L I . Then ( , )F A  is called soft weak Lagrange neu-

trosophic strong loop if atleast one ( )F a  is not a La-

grange neutrosophic strong subloop of L I for some 

a A . 

Theorem 15. Every soft weak Lagrange neutrosophic 
strong loop over L I  is a soft neutrosophic loop over 

L I  but the converse is not true. 

Theorem 16. If L I  is weak Lagrange neutrosophic 

strong loop, then ( , )F A  over L I  is also soft weak 
Lagrange neutrosophic strong loop but the converse is not 
true. 

Remark 11. Let ( , )F A  and ( ,C)K  be two soft weak 

Lagrange neutrosophic strong loops over L I . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic strong
loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weak Lagrange neutrosophic strong
loop over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weak Lagrange neutrosophic strong loop
over L I .

4. Their extended union ( , ) ( ,C)EF A K  is not a
soft weak Lagrnage neutrosophic strong loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft weak Lagrange neutrosophic strong loop
over L I .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft weak Lagrange neutrosophic strong loop over

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 27.  Let L I be a neutrosophic strong 

loop and ( , )F A  be a soft neutrosophic loop over 

L I . Then ( ,A)F  is called soft Lagrange free neu-

trosophic strong loop if ( )F a  is not a lagrange neutro-

sophic strong subloop of L I  for all a A . 

Theorem 17. Every soft Lagrange free neutrosophic strong 
loop over L I  is a soft neutrosophic loop over 

L I  but the converse is not true. 

Theorem 18. If L I  is a Lagrange free neutrosophic 

strong loop, then ( , )F A  over L I  is also a soft La-
grange free neutrosophic strong loop but the converse is 
not true. 

Remark 12. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic strong loops over L I . 
Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong
loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic strong
loop over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic strong loop
over L I .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage free strong neutrosophic strong
loop over  L I .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic loop over

L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic strong loop over
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L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Soft Neutrosophic Biloop 

Definition 27. Let 1 2( , , )B I   be a neutrosophic 

biloop and ( , )F A  be a soft set over  1 2( , , )B I   . 

Then ( , )F A  is called soft neutrosophic biloop if and only 
if ( )F a  is a neutrosophic subbiloop of 

1 2( , , )B I   for all a A . 

Example 8. Let  
6

1 2( , , ) ({ ,1,2,3,4,5, ,1 ,2 ,3 ,4 ,5 } {g : g }B I e eI I I I I I e     

 be a neutrosophic biloop. Let 1 2{ , }A a a be a set of 

parameters.  Then ( , )F A  is clearly soft neutrosophic bi-

loop over 1 2( , , )B I   , where

2 4
1

3
2

( ) {e,2,eI,2 I} {g , , },
( ) {e,3,eI,3I} {g , }.

F a g e
F a e

 

 

Theorem 19. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic biloops over 1 2( , , )B I   . Then their in-

tersection ( , ) ( , )F A H A  is again a soft neutrosophic 

biloop over  1 2( , , )B I   . 

Proof. Straightforward. 

Theorem 20. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic biloops over 1 2( , , )B I   such that 

A C   . Then their union is soft neutrosophic biloop 

over 1 2( , , )B I   . 

Proof. Straightforward. 

Proposition 7. Let ( , )F A  and ( ,C)K  be two soft neu-

trosophic biloops over 1 2( , , )B I   . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic biloop over 

1 2( , , )B I   . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic biloop over

1 2( , , )B I   .

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic biloop over 1 2( , , )B I   . 

Remark 13. Let ( , )F A and (K,C)  be two soft neutro-

sophic biloops over 1 2( , , )B I   . Then

1. Their extended union ( , ) ( ,C)EF A K is not a

soft neutrosophic biloop over  1 2( , , )B I   . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft neutrosophic biloop over

1 2( , , )B I   .

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic biloop over  1 2( , , )B I   . 

One can easily verify (1),(2), and (3) by the help of ex-
amples. 

Definition 28. Let 2 1 2( ( ) , , )nB L m I B      be a 

new class neutrosophic biloop and ( , )F A  be a soft set 

over 2 1 2( ( ) , , )nB L m I B     . Then 

2 1 2( ( ) , , )nB L m I B      is called soft new class 

neutrosophic subbiloop if and only if ( )F a  is a neutro-

sophic subbiloop of  2 1 2( ( ) , , )nB L m I B    

for all a A . 

Example 9. Let 1 2 1 2( , , )B B B    be a new class 
neutrosophic biloop, where 

1 5(3) { ,1,2,3,4,5, ,2 ,3 ,4 ,5I}B L I e eI I I I  

be a new class of neutrosophic loop and  
12

2 { : }B g g e  is a group.  

e,eI, 1,1I  1,g6,
e,eI, 2,2I  1,g2,g4,g6,g8,g10,
e,eI, 3,3I  1,g3,g6,g9,
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e,eI,4,4I  1,g4,g8 are neutrosophic subloops
of  B  . Let 1 2 3 4{ , , , }A a a a a  be a set of parameters.

Then ( , )F A  is soft new class neutrosophic biloop over
B , where

6
1

2 4 6 8 10
2

3 6 6
3

4 8
4

( ) { , ,1,1 } { , },
( ) {e,eI,2,2 I} { , , , , , },
( ) { , ,3,3 } { , , , },
( ) { , ,4,4 } { , , }.

F a e eI I e g
F a e g g g g g
F a e eI I e g g g
F a e eI I e g g

 

 

 

 

Theorem 21. Every soft new class neutrosophic biloop 
over 2 1 2( ( ) , , )nB L m I B      is trivially a soft 
neutrosophic biloop over but the converse is not true. 

Proposition 8. Let ( , )F A  and ( ,C)K  be two soft new 
class neutrosophic biloops over 

2 1 2( ( ) , , )nB L m I B     . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft new class neutrosophic biloop over 

2 1 2( ( ) , , )nB L m I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft new class neutrosophic biloop over 

2 1 2( ( ) , , )nB L m I B     . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a
soft new class neutrosophic biloop over

2 1 2( ( ) , , )nB L m I B     .

Remark 14. Let ( , )F A and (K,C)  be two soft new 
class neutrosophic biloops over 

2 1 2( ( ) , , )nB L m I B     . Then

1. Their extended union ( , ) ( ,C)EF A K  is not a 
soft new class neutrosophic biloop over 

2 1 2( ( ) , , )nB L m I B     . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft new class neutrosophic biloop over 

2 1 2( ( ) , , )nB L m I B     . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a
soft new class neutrosophic biloop over

2 1 2( ( ) , , )nB L m I B     .

One can easily verify (1),(2), and (3) by the help of ex-
amples. 

Definition 29. Let ( , )F A  be a soft neutrosophic biloop 

over 1 2 1 2( , , )B B I B     . Then  ( , )F A  is 
called the identity soft neutrosophic biloop over  

1 2 1 2( , , )B B I B     if  1 2( ) { , }F a e e for all

a A , where 1e , 2e are the identities of 

1 2 1 2( , , )B B I B     respectively.

Definition 30. Let ( , )F A  be a soft neutrosophic biloop 

over  1 2 1 2( , , )B B I B     . Then ( , )F A  is 
called an absolute-soft neutrosophic biloop over 

1 2 1 2( , , )B B I B     if  

1 2 1 2( ) ( , , )F a B I B     for all a A . 

Definition 31. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic biloops over 1 2 1 2( , , )B B I B     . 

Then ( ,C)H  is called soft neutrosophic subbiloop of 
( , )F A , if 

1. C A .
2. ( )H a is a neutrosophic subbiloop of ( )F a for

all a A .

 Example 10. Let 1 2 1 2( , , )B B B    be a neutrosoph-
ic biloop, where 

1 5(3) { ,1,2,3,4,5, ,2 ,3 ,4 ,5I}B L I e eI I I I  

be a new class of neutrosophic loop and  
12

2 { : }B g g e  is a group. Let 1 2 3 4{ , , , }A a a a a

be a set of parameters. Then ( , )F A  is soft neutrosophic 
biloop over B , where 

6
1

2 4 6 8 10
2

3 6 6
3

4 8
4

( ) { , ,1,1 } { , },
( ) {e,eI,2,2 I} { , , , , , },
( ) { , ,3,3 } { , , , },
( ) { , ,4,4 } { , , }.

F a e eI I e g
F a e g g g g g
F a e eI I e g g g
F a e eI I e g g

 

 

 

 

Then ( ,C)H  is soft neutrosophic subbiloop of ( , )F A , 
where 

Florentin Smarandache (author and editor) Collected Papers, XII

149



2
1

6
2

( ) { ,2) { , },
( ) {e,eI,3,3 } { , }.

H a e e g
H a I e g

 

 

Definition 32. Let 1 2( , , )B I    be a neutrosophic

biloop and ( , )F A  be a soft set over  1 2( , , )B I   . 

Then ( , )F A  is called soft Lagrange neutrosophic biloop 
if and only if ( )F a   is  Lagrange neutrosophic subbiloop 

of 1 2( , , )B I   for all a A . 

Example 11. Let 1 2 1 2(B , , )B B    be a neutrosophic

biloop of order 20 , where 1 5(3)B L I   and 
8

2 { : }B g g e  .  Then clearly ( , )F A  is a soft La-

grange soft neutrosophic biloop over 1 2( , , )B I   , 
where 

1

2

( ) {e,eI,2,2 I} {e},
F( ) { , ,3,3 } { }.
F a

a e eI I e
 

 

Theorem 22. Every soft Lagrange neutrosophic biloop 
over 1 2 1 2( , , )B B I B     is a soft neutrosophic 
biloop but the converse is not true. 

Remark 15. Let ( , )F A  and ( ,C)K  be two soft La-
grange neutrosophic biloops over 

1 2 1 2( , , )B B I B     . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 33. Let 1 2( , , )B I   be a neutrosophic 

biloop and ( , )F A  be a soft set over  1 2( , , )B I   . 

Then ( , )F A  is called soft weakly Lagrange neutrosophic 
biloop if atleast one  ( )F a  is not a Lagrange neutrosophic 

subbiloop of 1 2( , , )B I   for some a A . 

Example 12. Let 1 2 1 2(B , , )B B    be a neutrosophic

biloop of order 20 , where 1 5(3)B L I   and 
8

2 { : }B g g e  .  Then clearly ( , )F A  is a soft weak-

ly Lagrange neutrosophic biloop over 1 2( , , )B I   , 
where 

1
4

2

( ) {e,eI,2,2 I} {e},
F( ) { , ,3,3 } {e,g }.
F a

a e eI I
 

 

Theorem 23. Every soft weakly Lagrange neutrosophic bi-
loop over 1 2 1 2( , , )B B I B      is a soft neutro-
sophic biloop but the converse is not true. 

Theorem 24. If 1 2 1 2( , , )B B I B     is a weakly 

Lagrange neutrosophic biloop, then  ( , )F A  over B  is al-
so soft weakly Lagrange neutrosophic biloop but the con-
verse is not holds. 

Remark 16. Let ( , )F A  and ( ,C)K  be two soft weakly 
Lagrange neutrosophic biloops over 

1 2 1 2( , , )B B I B     . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weakly Lagrange neutrosophic biloop
over 1 2 1 2( , , )B B I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K
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is not a soft weakly Lagrange neutrosophic biloop 
over 1 2 1 2( , , )B B I B     .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weakly Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weakly Lagrnage neutrosophic biloop over  

1 2 1 2( , , )B B I B     . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft weakly Lagrange neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft weakly Lagrange neutrosophic biloop over

1 2 1 2( , , )B B I B     .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 34. Let 1 2( , , )B I   be a neutrosophic 

biloop and ( , )F A  be a soft set over  1 2( , , )B I   . 

Then ( , )F A  is called soft Lagrange free neutrosophic bi-
loop if and only if  ( )F a  is not a Lagrange neutrosophic 

subbiloop of 1 2( , , )B I   for all a A . 

Example 13. Let 1 2 1 2(B , , )B B    be a neutrosophic

biloop of order 20 , where 1 5(3)B L I   and 
8

2 { : }B g g e  .  Then clearly ( , )F A  is a soft La-

grange free  neutrosophic biloop over 1 2( , , )B I   , 
where 

2 4 6
1

4
2

( ) {e,eI,2,2 I} {e,g ,g ,g },
F( ) { , ,3,3 } {e,g }.
F a

a e eI I
 

 

Theorem 25. Every soft Lagrange free neutrosophic bi-
loop over 1 2 1 2( , , )B B I B     is a soft neutro-
sophic biloop but the converse is not true. 

Theorem 26. If 1 2 1 2( , , )B B I B     is a La-

grange free neutrosophic biloop, then  ( , )F A  over B  is 
also soft Lagrange free neutrosophic biloop but the con-
verse is not holds. 

Remark 17. Let ( , )F A  and ( ,C)K  be two soft La-
grange free neutrosophic biloops over 

1 2 1 2( , , )B B I B     . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic biloop
over 1 2 1 2( , , )B B I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic biloop 
over 1 2 1 2( , , )B B I B     . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic biloop over

1 2 1 2( , , )B B I B     . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage free neutrosophic biloop over  

1 2 1 2( , , )B B I B     . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic biloop over 

1 2 1 2( , , )B B I B     . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic biloop over

1 2 1 2( , , )B B I B     .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples.  

Soft Neutrosophic Strong Biloop 

Definition 35. Let 1 2 1 2( , , )B B B    be a neutro-

sophic biloop where 1B is a neutrosopphic biloop and 2B
is a neutrosophic group and  F,A  be soft set over B .
Then ( , )F A  over B  is called soft neutrosophic strong 
biloop if and only if ( )F a  is a neutrosopchic strong sub-
biloop of B for all a A . 

Example 14. Let 1 2 1 2( , , )B B B    where 

1 5(2)B L I   is a neutrosophic loop and 

2 {0,1,2,3,4,,1I,2 I,3I,4 I}B  under multiplication 

modulo 5  is a neutrosophic group. Let 1 2{ , }A a a be a 

set of parameters. Then ( , )F A  is soft neutrosophic strong 
biloop over B , where 
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1

2

( ) { ,2, ,2 } {1, ,4 },
( ) {e,3,eI,3I} {1, I,4 I}.

F a e eI I I I
F a

 

 

Theorem 27. Every soft neutrosophic strong biloop over 

1 2 1 2( , , )B B B    is a soft neutrosophic biloop but
the converse is not true. 

Theorem 28. If 1 2 1 2( , , )B B B    is a neutrosophic 

strong biloop, then ( , )F A  over B  is also soft neutro-
sophic strong biloop but the converse is not holds. 

Proposition 9. Let ( , )F A  and ( ,C)K  be two soft neu-

trosophic strong biloops over 1 2 1 2( , , )B B B    . 
Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

3. Their AND  operation  ( , ) ( ,C)F A K  is a
soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

Remark 18. Let ( , )F A and (K,B)  be two soft neutro-

sophic strong biloops over 1 2 1 2( , , )B B B    . Then

1. Their extended union ( , ) ( ,C)EF A K  is not a 
soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

2. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

3. Their OR  operation ( , ) ( ,C)F A K  is not a
soft neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

One can easily verify (1),(2), and (3) by the help of ex-
amples. 

Definition 36. Let ( , )F A  and ( ,C)H  be two soft neu-

trosophic strong biloops over 1 2 1 2( , , )B B B    . 

Then ( ,C)H  is called soft neutrosophic strong subbiloop 
of ( , )F A , if 

3. C A .
4. ( )H a is a neutrosophic strong subbiloop of

( )F a for all a A .

Definition 37. Let 1 2 1 2( , , )B B B    be a neutro-

sophic biloop and ( , )F A  be a soft set over  

1 2 1 2( , , )B B B    . Then ( , )F A  is called soft La-

grange neutrosophic strong biloop if and only if ( )F a  is a 
Lagrange neutrosophic strong subbiloop of 

1 2 1 2( , , )B B B    for all a A . 

Theorem 29. Every soft Lagrange neutrosophic strong bi-
loop over 1 2 1 2( , , )B B B    is a soft neutrosophic bi-
loop but the converse is not true. 

Remark 19. Let ( , )F A  and ( ,C)K  be two soft La-
grange neutrosophic strong biloops over 

1 2 1 2( , , )B B B    . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic strong biloop
over 1 2 1 2( , , )B B B    .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange neutrosophic strong biloop
over 1 2 1 2( , , )B B B    .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange neutrosophic strong biloop over

1 2 1 2( , , )B B B    .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange neutrosophic strong biloop over

1 2 1 2( , , )B B B    .
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One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 38. Let 1 2 1 2( , , )B B B    be a neutro-

sophic biloop and ( , )F A  be a soft set over  

1 2 1 2( , , )B B B    . Then ( , )F A  is called soft weak-
ly Lagrange neutrosophic strong biloop if atleast one 

( )F a is not a Lagrange neutrosophic strong subbiloop of 

1 2 1 2( , , )B B B    for some a A . 

Theorem 30. Every soft weakly Lagrange neutrosophic 
strong biloop over 1 2 1 2( , , )B B B     is a soft neutro-
sophic biloop but the converse is not true. 

Theorem 31. If 1 2 1 2( , , )B B B    is a weakly La-

grange neutrosophic strong biloop, then  ( , )F A  over B
is also soft weakly Lagrange neutrosophic strong biloop 
but the converse does not holds. 

Remark 20. Let ( , )F A  and ( ,C)K  be two soft weakly 
Lagrange neutrosophic strong biloops over 

1 2 1 2( , , )B B B    . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weakly Lagrange neutrosophic strong 
biloop over 1 2 1 2( , , )B B B    . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weakly Lagrange neutrosophic strong 
biloop over 1 2 1 2( , , )B B B    . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weakly Lagrange neutrosophic strong bi-
loop over 1 2 1 2( , , )B B B    . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weakly Lagrange neutrosophic strong biloop 
over  1 2 1 2( , , )B B B    . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft weakly Lagrange neutrosophic strong bi-
loop over 1 2 1 2( , , )B B B    . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft weakly Lagrange neutrosophic strong biloop
over  1 2 1 2( , , )B B B    . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 

Definition 39. Let 1 2 1 2( , , )B B B    be a neutro-

sophic biloop and ( , )F A  be a soft set over  

1 2 1 2( , , )B B B    . Then ( , )F A  is called soft La-
grange free neutrosophic strong biloop if and only if 

( )F a  is not a Lagrange neutrosophic subbiloop of 

1 2 1 2( , , )B B B    for all a A . 

Theorem 32. Every soft Lagrange free neutrosophic strong 
biloop over 1 2 1 2( , , )B B B     is a soft neutrosophic 
biloop but the converse is not true. 

Theorem 33. If 1 2 1 2( , , )B B B    is a Lagrange free 

neutrosophic strong biloop, then  ( , )F A  over B  is also 
soft strong lagrange free neutrosophic strong biloop but the 
converse is not true. 

Remark 21. Let ( , )F A  and ( ,C)K  be two soft La-
grange free neutrosophic strong biloops over 

1 2 1 2( , , )B B B    . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong bi-
loop over 1 2 1 2( , , )B B B    . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic strong bi-
loop over 1 2 1 2( , , )B B B    . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic strong biloop
over 1 2 1 2( , , )B B B    . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage free neutrosophic strong biloop 
over 1 2 1 2( , , )B B B    . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic strong biloop 
over 1 2 1 2( , , )B B B    . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic strong biloop
over 1 2 1 2( , , )B B B    . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples.  
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Soft Neutrosophic N-loop 

Definition 40. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

be a neutrosophic N -loop and ( , )F A  be a soft set over 
( )S B . Then ( , )F A  is called soft neutrosophic N -loop 

if and only if ( )F a is a neutrosopchic sub N -loop of 
( )S B for all a A . 

Example 15. Let  

1 2 3 1 2 3( ) { ( ) ( ) ( ), , , }S B S B S B S B      be a neu-

trosophic 3 -loop, where  1 5( ) (3)S B L I  , 
12

2( ) { : }S B g g e  and  3 3( )S B S . Then ( , )F A   

is sof neutrosophic N -loop over ( )S B , where 

6
1

4 8
2

( ) {e,eI,2,2 I} {e,g } {e,(12)},
F( ) { , ,3,3 } { , , } { ,(13)}.
F a

a e eI I e g g e
  

  

Theorem 34. Let ( , )F A  and ( , )H A  be two soft neu-
trosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then their intersection ( , ) ( , )F A H A  is again a soft 
neutrosophic N -loop over  ( )S B . 

Proof. Straightforward. 

Theorem 35. Let ( , )F A  and ( ,C)H  be two soft neu-
trosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

such that A C   . Then their union is soft neutro-
sophic N -loop over ( )S B . 

Proof. Straightforward. 

Proposition 10. Let ( , )F A  and ( ,C)K  be two soft neu-
trosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic N -loop over ( )S B . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic N -loop over ( )S B . 
3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic N -loop over ( )S B .

Remark 22. Let ( , )F A and ( ,C)H  be two soft neutro-
sophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

Then 
1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic N -loop over ( )S B . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic N -loop over ( )S B . 
3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic N -loop over ( )S B .

One can easily verify (1),(2), and (3) by the help of ex-
amples. 

Definition 41. Let ( , )F A  be a soft neutrosophic N -loop 
over  

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then ( , )F A  is called the identity soft neutrosophic N -

loop over ( )S B  if 1 2( ) { , ,..., }NF a e e e  for all  

a A , where  1 2, ,..., Ne e e are the identities element of 

1 2( ), ( ),..., ( )NS B S B S B  respectively. 

Definition 42. Let ( , )F A  be a soft neutrosophic N -loop 
over  

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then ( , )F A  is called an absolute-soft neutrosophic N -
loop over ( )S B  if ( ) ( )F a S B  for all a A . 

Definition 43. Let ( , )F A  and ( ,C)H  be two soft neu-
trosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then ( ,C)H  is called soft neutrosophic sub N -loop of 
( , )F A , if 

1. C A .
2. ( )H a is a neutrosophic sub N -loop of ( )F a

for all a A .
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Definition 45. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

be a neutrosophic N -loop and ( , )F A  be a soft set over  
( )S B . Then ( , )F A  is called soft Lagrange neutrosophic 

N -loop if and only if ( )F a is  Lagrange neutrosophic
sub N -loop of ( )S B for all a A . 

Theorem 36. Every soft Lagrange neutrosophic N -loop 
over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

is a soft neutrosophic N -loop but the converse is not true. 

Remark 23. Let ( , )F A  and ( ,C)K  be two soft La-
grange neutrosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic N -loop over
( )S B .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange neutrosophic N -loop over
( )S B .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange neutrosophic N -loop over ( )B .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage neutrosophic N -loop over

( )S B .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange neutrosophic N -loop over

( )S B .
6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange neutrosophic N -loop over
( )S B .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 46. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

be a neutrosophic N -loop and ( , )F A  be a soft set over 
( )S B . Then ( , )F A  is called soft weakly Lagrange neu-

trosophic biloop if atleast one ( )F a  is not a Lagrange 

neutrosophic sub N -loop of ( )S B for some a A . 

Theorem 37. Every soft weakly Lagrange neutrosophic 
N -loop over

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

is a soft neutrosophic N -loop but the converse is not true. 

Theorem 38. If 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

is a weakly Lagrange neutrosophic N -loop, then  ( , )F A  
over ( )S B  is also soft weakly Lagrange neutrosophic 
N -loop but the converse is not holds. 

Remark 24. Let ( , )F A  and ( ,C)K  be two soft weakly 
Lagrange neutrosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weakly Lagrange neutrosophic N -
loop over ( )S B .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weakly Lagrange neutrosophic N -
loop over ( )S B .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weakly Lagrange neutrosophic N -loop
over ( )S B .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weakly Lagrnage neutrosophic N -loop over

( )S B .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft weakly Lagrange neutrosophic N -loop
over ( )S B .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft weakly Lagrange neutrosophic N -loop over

( )S B .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 47. Let 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

be a neutrosophic N -loop and ( , )F A  be a soft set over  
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( )S B . Then ( , )F A  is called soft Lagrange free neutro-
sophic N -loop if and only if ( )F a is not a Lagrange
neutrosophic sub N -loop of ( )S B for all a A . 

Theorem 39. Every soft Lagrange free neutrosophic N -
loop over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

is a soft neutrosophic biloop but the converse is not true. 

Theorem 40. If 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

is a Lagrange free neutrosophic N -loop, then  ( , )F A  
over ( )S B  is also soft lagrange free neutrosophic N -
loop but the converse is not hold. 

Remark 25. Let ( , )F A  and ( ,C)K  be two soft La-
grange free neutrosophic N -loops over 

1 2 1 2( ) { ( ) ( ) ... ( ), , ,..., }N NS B S B S B S B      

. Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic N -loop
over 1 2 1 2( , , )B B I B     . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic N -loop
over ( )S B .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic N -loop over

( )S B .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage free neutrosophic N -loop over

( )S B .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic N -loop over

( )S B .
6. Their OR  operation ( , ) ( ,C)F A K  is not a

soft Lagrange free neutrosophic N -loop over
( )S B .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Soft Neutrosophic Strong N-loop 

Definition 48. Let 

1 2 1 2{ ... , , ,..., }N NL I L L L        be a neu-

trosophic N -loop and  ( , )F A  be a soft set over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then

( , )F A is called soft neutrosophic strong N -loop if and 
only if ( )F a is a neutrosopchic strong sub N -loop of  

1 2 1 2{ ... , , ,..., }N NL I L L L        for all

a A . 

Example 16. Let 1 2 3 1 2 3{ , , , }L I L L L      

where 1 5 2 7(3) , (3)L L I L L I     and 

3 {1,2,1 ,2 }L I I . Then ( , )F A  is a soft neutrosophic 

strong N -loop over L I , where 

1

2

( ) {e,2,eI,2 I} {e,2,eI,2 I} {1, I},
F( ) {e,3,eI,3I} {e,3,eI,3I} {1,2,2 I}.
F a

a
  

  

Theorem 41. All soft neutrosophic strong N -loops are 
soft neutrosophic N -loops but the converse is not true. 

One can easily see the converse with the help of example. 

 Proposition 11. Let ( , )F A  and ( ,C)K  be two soft 
neutrosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong N -loop over
L I . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic strong N -loop over
L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic strong N -loop over L I . 

Remark 26. Let ( , )F A and (K,C)  be two soft neutro-
sophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then
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1. Their extended union ( , ) ( ,C)EF A K  is not a

soft neutrosophic strong N -loop over L I . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft neutrosophic strong N -loop over 

L I . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic strong N -loop over L I . 

One can easily verify (1),(2), and (3) by the help of ex-
amples. 

Definition 49. Let ( , )F A  and ( ,C)H  be two soft neu-
trosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then

( ,C)H is called soft neutrosophic strong sub N -loop of 
( , )F A , if 

1. C A .
2. ( )H a is a neutrosophic strong sub N -loop of

( )F a for all a A .

Definition 50. Let 

1 2 1 2{ ... , , ,..., }N NL I L L L        be a neu-

trosophic strong N -loop and ( , )F A  be a soft set over 

L I . Then ( , )F A  is called soft Lagrange neutro-

sophic strong N -loop if and only if ( )F a is a Lagrange 

neutrosophic strong sub N -loop of L I for all 

a A . 

Theorem 42. Every soft Lagrange neutrosophic strong 
N -loop over

1 2 1 2{ ... , , ,..., }N NL I L L L        is a soft

neutrosophic N -loop but the converse is not true. 

Remark 27. Let ( , )F A  and ( ,C)K  be two soft La-
grange neutrosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange neutrosophic strong N -
loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange neutrosophic strong N -
loop over L I . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange neutrosophic strong N -loop over

L I . 

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage neutrosophic strong N -loop over

L I . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not
a soft Lagrange neutrosophic strong N -loop over

L I . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange neutrosophic strong N -loop over

L I . 

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 51. Let 

1 2 1 2{ ... , , ,..., }N NL I L L L        be a neu-

trosophic strong N -loop and ( , )F A  be a soft set over 

L I . Then ( , )F A  is called soft weakly Lagrange 

neutrosophic strong N -loop if atleast one ( )F a is not a 

Lagrange neutrosophic strong sub N -loop of L I

for some a A . 

Theorem 43. Every soft weakly Lagrange neutrosophic 
strong N -loop over 

1 2 1 2{ ... , , ,..., }N NL I L L L        is a soft

neutrosophic N -loop but the converse is not true. 

Theorem 44. If 

1 2 1 2{ ... , , ,..., }N NL I L L L        is a

weakly Lagrange neutrosophic strong N -loop, then  
( , )F A  over L I  is also a soft weakly Lagrange 

neutrosophic strong N -loop but the converse is not true. 

Remark 28. Let ( , )F A  and ( ,C)K  be two soft weakly 
Lagrange neutrosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then
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1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weakly Lagrange neutrosophic strong
N -loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weakly Lagrange neutrosophic strong
N -loop over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weakly Lagrange neutrosophic strong N -
loop over L I .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weakly Lagrnage neutrosophic strong N -
loop over L I .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft weakly Lagrange neutrosophic strong N -
loop over L I .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft weakly Lagrange neutrosophic strong N -
loop over L I .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 52. Let 

1 2 1 2{ ... , , ,..., }N NL I L L L        be a neu-

trosophic N -loop and ( , )F A  be a soft set over  

L I . Then ( , )F A  is called soft Lagrange free neu-

trosophic strong N -loop if and only if  ( )F a  is not a 

Lagrange neutrosophic strong sub N -loop of L I

for all a A . 

Theorem 45. Every soft Lagrange free neutrosophic strong 
N -loop over

1 2 1 2{ ... , , ,..., }N NL I L L L        is a soft

neutrosophic N -loop but the converse is not true. 

Theorem 45. If 

1 2 1 2{ ... , , ,..., }N NL I L L L        is a La-

grange free neutrosophic strong N -loop, then  ( , )F A  

over L I  is also a soft Lagrange free neutrosophic 

strong N -loop but the converse is not true. 

Remark 29. Let ( , )F A  and ( ,C)K  be two soft La-
grange free neutrosophic strong N -loops over 

1 2 1 2{ ... , , ,..., }N NL I L L L        . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong
N -loop over L I .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic strong
N -loop over L I .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic strong N -loop
over L I .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage free neutrosophic strong N -loop
over  L I .

5. Their restricted union  ( , ) ( ,C)RF A K  is not
a soft Lagrange free neutrosophic strong N -loop
over L I .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic strong N -loop
over L I .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Conclusion 
This paper is an extension of neutrosphic loop to soft neu-
trosophic loop. We also extend neutrosophic biloop, neu-
trosophic  N -loop to soft neutrosophic biloop, and soft 
neutrosophic  N -loop. Their related properties and results 
are explained with many illustrative examples. The notions 
related with strong part of neutrosophy also established 
within soft neutrosophic loop. 
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Generalization of Neutrosophic Rings and Neutrosophic Fields 

Mumtaz Ali, Florentin Smarandache, Muhammad Shabir, Luige Vlădăreanu

Abstract. In this paper we present the generalization of 
neutrosophic rings and neutrosophic fields. We also ex-
tend the neutrosophic ideal to neutrosophic biideal and 
neutrosophic N-ideal. We also find some new type of no-
tions which are related to the strong or pure part of neu-

trosophy. We have given sufficient amount of  examples 
to illustrate the theory of neutrosophic birings, neutro-
sophic N-rings with neutrosophic bifields and neutro-
sophic N-fields and display many properties of them in 
this paper. 

Keywords: Neutrosophic ring, neutrosophic field, neutrosophic biring, neutrosophic N-ring, neutrosophic bifield neutrosophic N-
field.

1 Introduction

 Neutrosophy is a new branch of philosophy which studies 
the origin and features of neutralities in the nature. Floren-
tin Smarandache in 1980 firstly introduced the concept of 
neutrosophic logic where each proposition in neutrosophic 
logic is approximated to have the percentage of truth in a 
subset T, the percentage of indeterminacy in a subset I, and 
the percentage of falsity in a subset F so that this neutro-
sophic logic is called an extension of fuzzy logic. In fact 
neutrosophic set is the generalization of classical sets, con-
ventional fuzzy set  1 , intuitionistic fuzzy set  2 and in-

terval valued fuzzy set  3 . This mathematical tool is used
to handle problems like imprecise, indeterminacy and in-
consistent data etc. By utilizing neutrosophic theory, 
Vasantha Kandasamy and Florentin Smarandache dig out 
neutrosophic algebraic structures in 11 . Some of them
are neutrosophic fields, neutrosophic vector spaces, neu-
trosophic groups, neutrosophic bigroups, neutrosophic N-
groups, neutrosophic semigroups, neutrosophic bisemi-
groups, neutrosophic N-semigroup, neutrosophic loops, 
neutrosophic biloops, neutrosophic N-loop, neutrosophic 
groupoids, and neutrosophic bigroupoids and so on. 

    In this paper we have tried to develop the the 
generalization of neutrosophic ring and neutrosophic field 
in a logical manner. Firstly, preliminaries and basic 
concepts are given for neutrosophic rings and neutrosophic 
fields. Then we  presented the newly defined notions and 
results in neutrosophic birings  and neutrosophic N-rings,  

neutrosophic bifields and neutosophic N-fields. Various 
types of neutrosophic biideals and neutrosophic N-ideal are 
defined and elaborated with the help of examples.  

2 Fundamental Concepts 

In this section, we give a brief description of neutrosophic 
rings and neutrosophic fields. 

Definition: Let R  be a ring. The neutrosophic ring 
R I  is also a ring generated by R  and I  under the 

operation of R , where I is called the  neutrosophic ele-
ment with property 2I I . For an integer n , n I and 
nI are neutrosophic elements and 0. 0I  . 1I  , the in-
verse of I is not defined and hence does not exist. 

Definition: Let R I  be a neutrosophic ring. A proper 

subset P  of R I  is called a neutosophic subring if  

P itself a neutrosophic ring under the operation of 
R I . 

Definition: Let T  be a non-empty set with two binary op-
erations   and . T  is said to be a pseudo neutrosophic 
ring if  

1. T contains element of the form a bI ( ,a b
are reals and 0b  for atleast one value ) .
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2. ( , )T  is an abelian group.
3. ( , )T is a semigroup.

Definition: Let R I  be a neutrosophic ring. A non-

empty set P  of R I  is called a neutrosophic ideal of 

R I  if the following conditions are satisfied. 

1. P is a neutrosophic subring of R I , and 

2. For every p P  and r R I  , pr  and 

rp P .

Definition: Let K  be a field. The neutrosophic field gen-
erated by K I  which is denoted by 

( )K I K I  . 

Definition: Let ( )K I  be a neutrosophic field. A proper 
subset P  of ( )K I  is called a neutrosophic sufield if P
itself a neutrosophic field. 

3 Neutrosophic Biring 

Definition **. Let  ( (R), , )BN   be a non-empty set 
with two binary operations   and .  ( (R), , )BN   is 

said to be a neutrosophic biring if 1 2(Rs)BN R R 

where atleast one of  1(R , , )  or 2(R , , )  is a neutro-

sophic ring and other is just a ring. 1R and 2R are proper 

subsets of (R).BN

Example 2. Let 1 2(R) (R , , ) (R , , )BN     where  

1(R , , ) ( , , )I     and 2(R , , ) ( , , )    . 

Clearly 1(R , , )  is a neutrosophic ring under addition 

and multiplication. 2(R , , )  is just a ring. Thus 

( (R), , )BN  is a neutrosophic biring. 

Theorem: Every neutrosophic biring contains a corre-
sponding  biring. 

Definition: Let 1 2(R) (R , , ) (R , , )BN     be a 

neutrosophic biring. Then  (R)BN  is called a commuta-

tive neutrosophic biring if each 1(R , , )  and 2(R , , )

is a commutative neutrosophic ring. 

Example 2. Let 1 2(R) (R , , ) (R , , )BN     where  

1(R , , ) ( , , )I     and 2(R , , ) ( , , )    . 

Clearly 1(R , , )  is a commutative neutrosophic ring and 

2(R , , ) is also a commutative ring. Thus 

( (R), , )BN  is a commutative neutrosophic biring. 

Definition: Let 1 2(R) (R , , ) (R , , )BN     be a 

neutrosophic biring. Then  (R)BN  is called a pseudo 

neutrosophic biring if each 1(R , , )  and 2(R , , ) is a 
pseudo neutrosophic ring. 

Example 2. Let 1 2(R) (R , , ) (R , , )BN     

where  1(R , , ) {0, ,2 ,3 }I I I    is a pseudo neutro-
sophic ring under addition and multiplication modulo 4 
and 2(R , , ) {0, 1I, 2 I, 3I,...}       is another pseu-

do neutrosophic ring. Thus ( (R), , )BN    is a pseudo 
neutrosophic biring. 

Theorem: Every pseudo neutrosophic biring is trivially a 
neutrosophic biring but the converse may not be true. 

Definition 8. Let 1 2( (R) ; , )BN R R    be a neutro-

sophic biring. A proper subset  ( , , )T   is said to be a 
neutrosophic subbiring of (R)BN  if 

1)  1 2T T T   where 1 1T R T  and 

2 2T R T  and 

2) At least one of 1( , )T  or 2( , )T  is a neutrosophic 
ring.

Example: Let 1 2(R) (R , , ) (R , , )BN     where  

1(R , , ) ( , , )I     and 

2(R , , ) ( , , )    . Let 1 2P P P  be a proper 

subset of ( )BN R , where 1 ( , , )P    and 

2 ( , , )P    . Clearly ( , , )P   is a neutrosophic sub-

biring of ( )BN R . 

Definition: If both 1(R , )  and 2(R , ) in the above def-
inition ** are neutrosophic rings then we call  
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( (R), , )BN  to be a strong neutrosophic biring. 

Example 2. Let 1 2(R) (R , , ) (R , , )BN     where  

1(R , , ) ( , , )I     and 

2(R , , ) ( , , )I     . Clearly 1R and 2R are 
neutrosophic rings under addition and multiplication. Thus 
( (R), , )BN   is a strong neutrosophic biring. 

Theorem. All strong neutrosophic birings are trivially neu-
trosophic birings but the converse is not true in general. 

To see the converse, we take the following Example. 

Example 2. Let 1 2(R) (R , , ) (R , , )BN     where  

1(R , , ) ( , , )I     and 2(R , , ) ( , , )    . 

Clearly 1(R , , ) is a neutrosophic ring under addition 

and multiplication. 2(R , , ) is just a ring. Thus 

( (R), , )BN  is a neutrosophic biring but not a strong 
neutrosophic biring. 

Remark: A neutrosophic biring can have subbirings, neu-
trosophic subbirings, strong neutrosophic subbirings and 
pseudo neutrosohic subbirings. 

Definition 8. Let 1 2( (R) ; , )BN R R   be a neutro-

sophic biring and let ( , , )T   is a neutrosophic subbiring 
of (R)BN . Then ( , , )T   is called a neutrosophic biide-
al of ( )BN R  if 

1) 1 2T T T  where 1 1T R T   and 

2 2T R T  and 

2) At least one of 1( , , )T   or 2( , , )T  is a neutrosoph-
ic ideal.

If both 1( , , )T  and 2( , , )T  in the above  definition are 

neutrosophic ideals, then we call ( , , )T   to be a strong 
neutrosophic biideal of ( )BN R . 

Example: Let 1 2(R) (R , , ) (R , , )BN     where  

1 12(R , , ) ( , , )I     and 

2 16(R , , ) ( , , )    . Let 1 2P P P  be a neutro-

sophic subbiring of ( )BN R , where 

1 {0,6,2 ,4 ,6 ,8 ,10 ,6 2 ,...,6 10 }P I I I I I I I   and 

2 {02 ,4 ,6 ,8 ,10 ,12 ,14 }P I I I I I I I . Clearly

( , , )P   is a neutrosophic biideal of ( )BN R . 

Theorem: Every neutrosophic biideal is trivially a neutro-
sophic subbiring but the converse may not be true. 

Theorem: Every strong neutrosophic biideal is trivially a 
neutrosophic biideal but the converse may not be true. 

Theorem: Every strong neutrosophic biideal is trivially a 
neutrosophic subbiring  but the converse may not be true. 

Theorem: Every strong neutrosophic biideal is trivially a 
strong neutrosophic subbiring but the converse may not be 
true. 

Definition 8. Let 1 2( (R) ; , )BN R R   be a neutro-

sophic biring and let ( , , )T   is a neutrosophic subbiring 
of (R)BN . Then ( , , )T   is called a pseudo neutrosoph-
ic biideal of ( )BN R  if 

1. 1 2T T T  where 1 1T R T   and 

2 2T R T  and 

2. 1( , , )T  and 2( , , )T   are pseudo neutrosophic 
ideals. 

Theorem: Every pseudo neutrosophic biideal is trivially a  
neutrosophic subbiring but the converse may not be true. 

Theorem: Every pseudo neutrosophic biideal is trivially a 
strong neutrosophic subbiring but the converse may not be 
true. 

Theorem: Every pseudo neutrosophic biideal is trivially a 
neutrosophic biideal but the converse may not be true. 

Theorem: Every pseudo neutrosophic biideal is trivially a 
strong neutrosophic biideal but the converse may not be 
true. 

4 Neutrosophic N -ring

Definition*. Let 1 2 1 2{N(R), ,..., , , ,..., }N   be a 
non-empty set with two N -binary operations defined on 
it. We call ( )N R  a neutrosophic N -ring  ( N  a positive 
integer)  if the following conditions are satisfied. 
1) 1 2N(R) ... NR R R    where each iR is a 

proper subset of N(R)  i.e. i jR R or j iR R if  

i j . 
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2) (R , , )i i i is either a neutrosophic ring or a ring for

1,2,3,...,i N . 

Example 2. Let 

1 2 3(R) (R , , ) (R , , ) (R , , )N       where  

1(R , , ) ( , , )I     , 2(R , , ) ( , , )    and 

3 12( , , ) ( , , )R Z    . Thus ( (R), , )N  is a neutro-
sophic N -ring. 

Theorem: Every neutrosophic  N -ring contains a corre-
sponding  N -ring. 

Definition: Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic N-ring. Then  (R)N  is called a pseudo 

neutrosophic N-ring if each (R , )i i  is a pseudo neutro-

sophic ring where 1,2,..., Ni  . 

Example 2. Let 

1 2 3(R) (R , , ) (R , , ) (R , , )N          where  

1(R , , ) {0, ,2 ,3 }I I I   is a pseudo neutrosophic ring 
under addition and multiplication modulo 4, 

2(R , , ) {0, 1I, 2 I, 3I,...}      is a pseudo neutro-

sophic ring and 3(R , , ) {0, 2I, 4 I, 6I...}      . 

Thus ( (R), , )N    is a pseudo neutrosophic 3-ring. 

Theorem: Every pseudo neutrosophic N-ring is trivially a 
neutrosophic N-ring but the converse may not be true. 

Definition. If all the N -rings (R , )i i  in definition * are

neutrosophic rings  (i.e. for  1,2,3,...,i N ) then we 
call N(R)  to be a neutrosophic strong N -ring. 

Example 2. Let 

1 2 3(R) (R , , ) (R , , ) (R , , )N       where  

1(R , , ) ( , , )I     , 

2(R , , ) ( , , )I     and 

3 12( , , ) ( , , )R I     . Thus ( (R), , )N  is a 

strong neutrosophic N -ring. 

Theorem: All strong neutrosophic N-rings are neutrosoph-
ic N-rings but the converse may not be true. 

Definition 13. Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2{P ....P , , ,..., }N NP P       of N(R)  is said to 
be a neutrosophic N -subring if 

, 1,2,...,i iP P R i N   are subrings of iR in which 
atleast some of the subrings are neutrosophic subrings. 

Example: Let 

1 2 3(R) (R , , ) (R , , ) (R , , )N       where  

1(R , , ) ( , , )I     , 

2(R , , ) ( , , )    and 2 10(R , , ) (Z , , )    Let 

1 2 3P P P P   be a proper subset of ( )N R , where 

1 ( , , )P    , 2 ( , , )P    and 

3(R , , ) {0,2,4,6,8, I,2 I,4 I,6I,8I}  . Clearly

( , , )P   is a neutrosophic sub 3-ring of ( )N R . 

Definition 14. Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic N -ring. A proper subset 

1 2 1 2 1 2{T .... T , , ,..., , , ,..., }N N NT T        of 

( )N R is said to be a neutrosophic strong sub N -ring if 

each  ( , )i iT   is a neutrosophic subring of  (R , , )i i i

for  1,2,...,i N  where i iT R T  . 

Remark: A  strong neutrosophic su N-ring  is trivially a 
neutrosophic sub N-ring but the converse is not true. 

Remark: A neutrosophic N-ring can have sub N-rings, 
neutrosophic sub N-rings, strong neutrosophic sub N-rings 
and pseudo neutrosohic sub N-rings. 

Definition 16. Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2 1 2{P .... , , ,..., , , ,..., }N N NP P P      

where t tP P R  for  1,2,...,t N is said to be a 

neutrosophic N -ideal of ( )N R  if the following condi-
tions are satisfied. 

1) Each it is a neutrosophic subring  of
, 1,2,...,tR t N .
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2) Each it is a two sided ideal of tR  for 1,2,...,t N .

If (P , , )i i i  in the above  definition are neutrosophic ide-

als, then we call (P , , )i i i  to be a strong neutrosophic N-

ideal of ( )N R . 

 Theorem: Every neutrosophic N-ideal is trivially a neu-
trosophic sub N-ring but the converse may not be true. 

Theorem: Every strong neutrosophic N-ideal is trivially a 
neutrosophic N-ideal but the converse may not be true. 

Theorem: Every strong neutrosophic N-ideal is trivially a 
neutrosophic sub N-ring  but the converse may not be true. 

Theorem: Every strong neutrosophic biideal is trivially a 
strong neutrosophic subbiring but the converse may not be 
true. 

Definition 16. Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2 1 2{P .... , , ,..., , , ,..., }N N NP P P      

where t tP P R  for  1,2,...,t N is said to be a 

pseudo neutrosophic N -ideal of ( )N R  if the following 
conditions are satisfied. 

1. Each it is a neutrosophic subring  of
, 1,2,...,tR t N .

2. Each (P , , )i i i  is a pseudo neutrosophic ideal.

Theorem: Every pseudo neutrosophic N-ideal is trivially a  
neutrosophic sub N-ring but the converse may not be true. 

Theorem: Every pseudo neutrosophic N-ideal is trivially a 
strong neutrosophic sub N-ring but the converse may not 
be true. 

Theorem: Every pseudo neutrosophic N-ideal is trivially a 
neutrosophic N-ideal but the converse may not be true. 

Theorem: Every pseudo neutrosophic N-ideal is trivially a 
strong neutrosophic N-ideal but the converse may not be 
true. 

5 Neutrosophic Bi-Fields and Neutrosophic N-Fields 

Definition **. Let  ( (F), , )BN   be a non-empty set 
with two binary operations   and .  ( (F), , )BN   is 

said to be a neutrosophic bifiel if 1 2(F)BN F F 

where atleast one of  1(F , , ) or 2(F , , ) is a neutro-

sophic field and other is just a field. 1F and 2F are proper

subsets of (F).BN  

If in the above definition both 1(F , , ) and 2(F , , ) are 

neutrosophic fields, then we call ( (F), , )BN   to be a 
neutrosophic strong bifield. 

Example 2. Let 1 2(F) (F , , ) (F , , )BN     where  

1(F , , ) ( , , )I     and 2(F , , ) ( , , )    . 

Clearly 1(F , , ) is a neutrosophic field and 2(F , , ) is 

just a field. Thus ( (F), , )BN   is a neutrosophic bifield. 

Theorem: All strong neutrosophic bifields are trivially 
neutrosophic bifields but the converse is not true. 

Definition 8. Let 1 2(F) (F , , )BN F   be a neutro-

sophic bifield. A proper subset  ( , , )T   is said to be a 
neutrosophic subbifield of (F)BN  if 

3)  1 2T T T   where 1 1T F T  and 

2 2T F T  and 

4) At least one of 1( , )T  or 2( , )T  is a neutrosophic 
field and the other is just a field. 

Example: Let 1 2(F) (F , , ) (F , , )BN     where  

1(F , , ) ( , , )I     and 2(F , , ) ( , , )    . 

Let 1 2P P P  be a proper subset of (F)BN , where 

1 ( , , )P    and 2 ( , , )P    . Clearly ( , , )P   is 

a neutrosophic subbifield of (F)BN . 

Definition*. Let 1 2 1 2{N(F), ,..., , , ,..., }N   be a 
non-empty set with two N -binary operations defined on 
it. We call ( )N R  a neutrosophic N -field  ( N  a positive 
integer)  if the following conditions are satisfied. 

1. 1 2N(F) ... NF F F    where each iF is a 

proper subset of N(F) i.e. i jR R or 

j iR R if  i j . 

2. (R , , )i i i is either a neutrosophic field or just a

field for 1,2,3,...,i N .
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If in the above definition each (R , , )i i i is a neutro-

sophic field, then we call ( )N R  to be a strong neu-
trosophic N-field. 

Theorem: Every strong neutrosophic N-field is obvi-
ously a neutrosophic field but the converse is not true. 

Definition 14. Let 

1 2 1 2 1 2N(F) {F .... , , ,..., , , ,..., }N N NF F      

 be a neutrosophic N -field. A proper subset 

1 2 1 2 1 2{T .... T , , ,..., , , ,..., }N N NT T        of 

(F)N is said to be a neutrosophic N -subfield if each  

( , )i iT  is a neutrosophic subfield of  (F , , )i i i  for

1,2,...,i N where i iT F T  . 

Conclusion 
In this paper we extend neutrosophic ring and neutrosophic 
field to neutrosophic  biring, neutrosophic N-ring and neu-
trosophic bifield and neutrosophic N-field. The neutro-
sophic ideal theory  is extend to neutrosophic biideal and 
neutrosophic N-ideal. Some new type of neutrosophic ide-
als are discovered which is strongly neutrosophic or purely 
neutrosophic. Related examples are given to illustrate neu-
trosophic biring, neutrosophic N-ring, neutrosophic bifield 
and neutrosophic N-field and many theorems and proper-
ties are discussed. 
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Cosine Similarity Measure of Interval Valued 
Neutrosophic Sets 
Said Broumi, Florentin Smarandache

Abstract. In this paper, we define a new cosine similari-
ty between two interval valued neutrosophic sets based 
on Bhattacharya’s distance [19]. The notions of interval 
valued neutrosophic sets (IVNS, for short) will be used 
as vector representations in 3D-vector space. Based on 

the comparative analysis of the existing similarity 
measures for IVNS, we find that our proposed similarity 
measure is better and more robust. An illustrative exam-
ple of the pattern recognition shows that the proposed 
method is simple and effective. 

Keywords: Cosine Similarity Measure; Interval Valued 
 Neutrosophic Sets

1. Introduction

The neutrsophic sets (NS), pioneered by F. 
Smarandache [1],  has been studied and applied in different 
fields, including  decision making problems  [2, 3, 4 , 5, 
23], databases [6-7], medical diagnosis problems [8] , to-
pology [9], control theory [10], Image processing 
[11,12,13] and so on. The character of NSs is that the val-
ues of its membership  function,  non-membership function 
and indeterminacy function are subsets. The concept of 
neutrosophic sets generalizes the following concepts: the 
classic set, fuzzy set, interval valued fuzzy set, Intuitionistic 
fuzzy set, and interval valued intuitionistic fuzzy set and so 
on, from a philosophical point of view. Therefore, Wang et 
al [14] introduced an instance of neutrosophic sets  known 
as single valued neutrosophic sets (SVNS), which were mo-
tivated from the practical point of view and that can be used 
in real scientific and engineering application,  and provide 
the set theoretic operators and various properties of SVNSs. 
However, in many applications, due to lack of knowledge 
or data about the problem domains, the decision infor-
mation may be provided with intervals, instead of real 
numbers. Thus, interval valued neutrosophic sets (IVNS), 
as a useful generation of NS, was introduced by Wang et al 
[15], which is characterized by a membership function, 
non-membership function and an indeterminacy function, 
whose values are intervals rather than real numbers. Also, 
the interval valued neutrosophic set can represent uncertain, 
imprecise, incomplete and inconsistent information which 
exist in the real world. As an important extension of NS, 
IVNS has many applications in real life [16, 17].  

Many methods have been proposed for measuring the 
degree of similarity between neutrosophic set,  S. Broumi 
and F. Smarandache [22] proposed several definitions of 
similarity measure between NS.  P. Majumdar and S.K. 
Samanta [21] suggested some new methods for measuring 
the similarity between neutrosophic set. However, there is a 
little investigation on the similarity measure of IVNS, alt-
hough some method on measure of similarity between in-

tervals valued neutrosophic sets have been presented in [5] 
recently.  

Pattern recognition has been one of the fastest growing 
areas during the last two decades because of its usefulness 
and fascination. In pattern recognition, on the basis of the 
knowledge of known pattern, our aim is to classify the un-
known pattern. Because of the complex and uncertain na-
ture of the problems. The problem pattern recognition is 
given in the form of interval valued neutrosophic sets. 

In this paper, motivated by the cosine similarity meas-
ure based on Bhattacharya’s distance [19], we propose a 
new method called “cosine similarity measure for interval 
valued neutrosophic sets. Also the proposed and existing 
similarity measures are compared to show that the proposed 
similarity measure is more reasonable than some similarity 
measures. The proposed similarity measure is applied to 
pattern recognition 

This paper is organized as follow: In section 2 some basic 
definitions of neutrosophic set, single valued neutrosophic 
set, interval valued neutrosophic set and cosine similarity 
measure are presented briefly.  In section 3, cosine similari-
ty measure of interval valued neutrosophic sets and their 
proofs are introduced. In section 4, results of the proposed 
similarity measure and existing similarity measures are 
compared .In section 5, the proposed similarity measure is 
applied to deal with the problem related to medical diagno-
sis. Finally we conclude the paper. 

2. Preliminaries

This section gives a brief overview of the concepts of
neutrosophic set, single valued neutrosophic set, interval 
valued neutrosophic set and cosine similarity measure. 

2.2 Neutrosophic Sets 
Definition 2.1 [1] 

Let U be an universe of discourse then the neutrosophic 
set A is an object having the form  

Said Broumi, Florentin Smarandache (2014). Cosine Similarity Measure of Interval Valued 
Neutrosophic Sets. Neutrosophic Sets and Systems 5, 15-20
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A = {< x: )(xTA , )(xI A , )(xFA >, x U}, where the 
functions T, I, F : U→ ]−0, 1+[  define respectively the de-
gree of membership (or Truth) , the degree of indetermina-
cy, and the degree of non-membership (or Falsehood) of the 
element x  U to the set A with the condition.  

−0 ≤ )(xTA + )(xI A + )(xFA ≤3+.  (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 
of ]−0, 1+[. So instead of] −0, 1+[ we need to take the inter-
val [0, 1] for technical applications, because ]−0, 1+[will be 
difficult to apply in the real applications  such as in scien-
tific and engineering problems.  

        For two NS, NSA  = {<x, )(xTA , )(xI A , )(xFA > |
xX } 

And NSB  = {<x, )(xTB , )(xIB , )(xFB > | xX >the
two relations are defined as follows: 

(1) NSA  NSB If and only if )(xTA   )(xTB , )(xI A

)(xIB , )(xFA   )(xFB  for any  x X. 

(2) NSA  = NSB  if and only if )(xTA = )(xTB , )(xI A

= )(xIB , )(xFA  = )(xFB  for any  x X. 

2.3.Single Valued Neutrosophic Sets 

Definition 2.3 [14] 
Let X be a space of points (objects) with generic ele-

ments in X denoted by x. An SVNS A in X is characterized 
by a truth-membership function )(xTA , an indeterminacy-
membership function )(xI A , and a falsity-membership 
function )(xFA ,  for each point x in X,  )(xTA , )(xI A , 

)(xFA  [0, 1].

When X is continuous, an SVNS A can be written as 

A= Xx
x

xFxIxT
X

AAA 


 ,)(),(),(  (2) 

    When X is discrete, an SVNS A can be written as 

A= Xx
x

xFxIxT
i

n
i

i

iAiAiA 


 ,)(),(),(  (3)        

For two SVNS, SVNSA  = {<x, )(xTA , )(xI A , )(xFA > | x
X }

And SVNSB  ={<x, )(xTA , )(xI A , )(xFA > | x X }the two
relations are defined as follows: 

(1) SVNSA  SVNSB if and only if )(xTA  )(xTB

)(xI A  )(xIB , )(xFA  )(xFB

(2) SVNSA  = SVNSB  if and only if )(xTA = )(xTB , )(xI A

= )(xIB , )(xFA  = )(xFB  for any  x X. 

2.4 Interval Valued Neutrosophic Sets 
Definition  2.4 [15] 

Let X be a space of points (objects) with generic elements 
in X denoted by x. An interval valued neutrosophic set (for 
short IVNS) A in X is characterized by truth-membership 
function )(xTA , indeteminacy-membership function )(xI A
and falsity-membership function )(xFA . For each point x 
in X, we have that )(xTA , )(xI A , )(xFA    [0, 1] .
For two IVNS, INSA  ={<x, [ )(xT L

A , )(xT U
A ] , 

[ )(xI L
A , )(xIU

A ],[ )(xF L
A , )(xFU

A ]> | x X } 

And INSB = {<x, ={<x, [ )(xT L
B , )(xT U

B ] , 

[ )(xI L
B , )(xI U

B ],[ )(xF L
B , )(xFU

B ]> | x X }>|x X } the 
two relations are defined as follows: 
(1) INSA  INSB if and only if )(xT L

A  )(xT L
B , )(xT U

A 

)(xT U
B , )(xI L

A  )(xI L
B , )(xF L

A  )(xFB  , )(xFU
A 

)(xFU
B . 

(2) INSA  = INSB  if and only if  , )(xT L
A = )(xT L

B , 

)(xT U
A = )(xT U

B , )(xI L
A = )(xI L

B , 

)(xI U
A = )(xI U

B , )(xF L
A = )(xF L

B , )(xFU
A  = )(xFU

B  for any 
x X. 

2.5 Cosine Similarity 
Definition 2.5 

Cosine similarity is a fundamental angle-based measure 
of similarity between two vectors of n dimensions using the 
cosine of the angle between them Candan and Sapino [20]. 
It measures the similarity between two vectors based only 
on the direction, ignoring the impact of the distance be-
tween them. Given two vectors of attributes, X= 
( 1x , 2x ,…, nx ) and Y= ( 1y , 2y ,…, ny ), the cosine similari-
ty, cosθ, is represented using a dot product and magnitude 
as 

Cosθ=








n

i
i

n

i
i

n

i
ii

yx

yx

22

  (4) 

In vector space, a cosine similarity measure based on 
Bhattacharya’s distance [19] between two fuzzy set 

)( iA x and )( iB x defined as follows:
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),( BACF  = 








n

i
iB

n

i
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n

i
iBiA
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   (5) 

The cosine of the angle between the vectors is within 
the values between 0 and 1. 

In 2-D vector space, J. Ye [18] defines cosine similarity 
measure between IFS as follows: 

),( BACIFS  =

















n

i
iBviB

n

i
iAiA

n

i
iBiAiBiA

xxxx

xxxx
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   (6) 

 III . Cosine Similarity Measure for Interval Valued 
Neutrosophic Sets. 

The existing cosine similarity measure is defined as the 
inner product of these two vectors divided by the product of 
their lengths. The cosine similarity measure is the cosine of 
the angle between the vector representations of the two 
fuzzy sets. The cosine similarity measure is a classic meas-
ure used in information retrieval and is the most widely re-
ported measures of vector similarity [19]. However, to the 
best of our Knowledge, the existing cosine similarity 
measures does not deal with interval valued neutrosophic 
sets. Therefore, to overcome this limitation in this section, a 
new cosine similarity measure between interval valued neu-
trosophic sets is proposed in 3-D vector space. 

Let A be an  interval valued neutrosophic sets in a universe 
of discourse X ={x}, the interval valued neutrosophic sets 
is characterized by the interval of membership  [ L

AT , U
AT ] 

,the interval degree of non-membership [ L
AF , U

AF ] and the
interval degree of indeterminacy [ L

AI , U
AI ] which can be

considered as a vector representation  with the three ele-
ments. Therefore, a cosine similarity measure for interval 
neutrosophic sets is proposed in an analogous manner to the 
cosine similarity measure proposed by J. Ye [18]. 

Definition 3.1 :Assume that there are two interval neutro-
sophic sets A and B in X  ={ 1x , 2x ,…, nx } Based on the ex-
tension measure for fuzzy sets, a cosine similarity measure 
between interval valued neutrosophic sets A and B is pro-
posed as  follows: 

.)()()()()()(1),(
222222 ))(())(())(())(())(())((1 iBiBiBiAiAiA xFxIxTxFxIxT

iBiAiBiAiBiAn

i
N

xFxFxIxIxTxT
n

BAC



 

 (7) 

Where 
)( iA xT = )( i

L
A xT + )( i

U
A xT , )( iB xT = )( i

L
B xT + )( i

U
B xT

)( iA xI = )( i
L
A xI + )( i

U
A xI , )( iB xI = )( i

L
B xI + )( i

U
B xI

And )( iA xF = )( i
L
A xF + )( i

U
A xF , 

)( iB xF = )( i
U
B xF + )( i

U
B xF

Proposition 3.2 
Let A and B be interval valued neutrosophic sets then 

i. 0  ),( BACN  1
ii. ),( BACN  = ),( ABCN

iii. ),( BACN  = 1  if A= B i.e 

)( i
L

A xT = )( i
L

B xT , )( i
U
A xT = )( i

U
B xT

)( i
L
A xI = )( i

L
B xI , )( i

U
A xI = )( i

U
B xI and 

)( i
L
A xF = )( i

L
B xF , )( i

U
A xF = )( i

U
B xF for  i=1,2,…., n 

Proof : (i) it is obvious that the proposition is true 
according to the cosine valued 
(ii) it is obvious that the proposition is true.
(iii) when A =B, there are

)( i
L

A xT = )( i
L

B xT , )( i
U
A xT = )( i

U
B xT

)( i
L
A xI = )( i

L
B xI , )( i

U
A xI = )( i

U
B xI and 

)( i
L

A xF = )( i
L

B xF , )( i
U
A xF = )( i

U
B xF for  i=1,2,…., n 

, So there is ),( BACN  = 1 
If we consider the weights of each element ix , a weighted 
cosine similarity measure between IVNSs A and B is given 
as follows: 

.)()()()()()(1),(
222222 ))(())(())(())(())(())((1 iBiBiBiAiAiA xFxIxTxFxIxT

iBiAiBiAiBiAn

i
iWN

xFxFxIxIxTxTw
n

BAC



 

(8) 

Where iw  ,i =1,2,…,n ,and  


n

i
iw

1
 =1. 

If we take iw = 
n
1  , i =1,2,…,n , then there is  ),( BACWN  

= ),( BACN . 

The weighted cosine similarity measure between two 
IVNSs A and B also satisfies the  following properties: 

i. 0   ),( BACWN   1
ii. ),( BACWN  = ),( ABCWN  

iii. ),( BACWN  = 1  if A= B i.e 

 )( i
L

A xT = )( i
L

B xT , )( i
U
A xT = )( i

U
B xT

)( i
L
A xI = )( i

L
B xI , )( i

U
A xI = )( i

U
B xI and 

)( i
L
A xF = )( i

L
B xF , )( i

U
A xF = )( i

U
B xF for  i=1,2,…., n 

Proposition 3.3 
Let the distance measure of the angle as d(A,B)= arcos 

),( BACN ,then it satisfies the following properties.
i. d(A, B)     0,  if  0   ),( BACN  1
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ii. d(A, B) = arcos( ) = 0,  if ),( BACN = 1 
iii. d(A, B) = d( B, A) if  ),( BACN  =  ),( ABCN

iv. d(A, C)    d(A, B) + d( B, C)  if  A   B   C for
any interval valued neutrosophic sets C.

Proof : obviously, d(A,B) satisfies the (i) – (iii). In the 
following , d(A,B) will be proved to satisfy the (iv). 

For any  C = { ix }, A   B   C since Eq (7) is the sum 
of terms. Let us consider the distance measure of the angle 
between vectors: 

id (A( ix ), B( ix )) = arcos( NC (A( ix ), B( ix )),

id (B( ix ), C( ix )) = arcos( NC (B( ix ), C( ix )), and 
id (A( ix ), C( ix )) = arcos( NC (A( ix ), C( ix )),, for  i=1, 

2, .., n, where 
.

))(())(())(())(())(())((

)()()()()()(

1

1),(
222222
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       (11) 

For three vectors 

A( ix )= < ix , [ )( i
L

A xT , )( i
U
A xT ], [ )( i

L
A xI , )( i

U
A xI ],

[ )( i
L

A xF , )( i
U
A xF ] > 

B( ix ) = < [ )( i
L

B xT , )( i
U
B xT ], [ )( i

L
B xI , )( i

U
b xI ],

[ )( i
L

B xF , )( i
U
B xF ]  > 

C( ix ) = < [ )( i
L

C xT , )( i
U
C xT ], [ )( i

L
C xI , )( i

U
C xI ],

[ )( i
L

C xF , )( i
U
C xF ] > in a plane 

If A( ix ) B ( ix ) C ( ix ) (i =1, 2,…, n), then it is obvi-
ous that  d(A( ix ), C( ix ))   d( A( ix ), B( ix )) + d(B( ix ), 
C( ix )), According to the triangle inequality. Combining 
the inequality with E.q (7),  we can obtain  d(A, C)   d(A, 
B) + d(B, C). Thus, d(A,B) satisfies the property (iv). So we
have finished the proof.

IV. Comparison of New  Similarity Measure  with the
Existing Measures.

 Let A and B be two interval  neutrosophic set in the 
universe of discourse X={ 1x , 2x ,…, nx }. For the cosine 
similarity and the existing similarity measures of interval 
valued neutrosophic sets introduced in [5, 21], they are 
listed as follows: 

Pinaki’s similarity I [21] 

PIS = 

      

      
.

)()(max)()(max)()(max

)()(min)()(min)()(min

1

1

 

 





n

i
iBiAiBiAiBiA

n

i
iBiAiBiAiBiA

xFxFxIxIxTxT

xFxFxIxIxTxT

   (12) 

Also ,P. Majumdar [21] proposed weighted similarity 
measure for neutrosophic set  as follows: 

PIIS =

),(

))()()()()()((

222222 )()()()()()(

1

iBiBiBiAiAiA xFxIxT
i

xTxTxT
i

iBiAiBiAiBiA
n

i
i

wwMax

xFxFxIxIxTxTw







          (13) 

Where, PIS , PIIS  denotes Pinaki’s similarity I and Pinaki’s 
similarity II 
Ye’s similarity [5] is defined as the following: 

yeS (A, B) = 1-




























)(sup)(sup)(inf)(inf

)(sup)(sup)(inf)(inf

)(sup)(sup)(inf)(inf

1

iBiAiBiA

iBiAiBiA

iBiAiBiA
n

i
i

xFxFxFxF

xIxIxixI

xTxTxTxT

w

 (14) 

Example 1: 

Let A = {<x, (0.2, 0.2 0.3)>}  and B= {<x, (0.5, 0.2 0.5)>} 

Pinaki similarity I  = 0.58     

Pinaki similarity II (with iw =1) = 0.29 

Ye similarity (with iw =1) = 0.83 

Cosine similarity ),( BACN  = 0.95 

Example 2: 

Let  A= {<x, ([0.2, 0.3], [0.5, 0.6] ,[ 0.3, 0.5])>} and B{<x, 
([0.5, 0.6], [0.3, 0.6] ,[0.5, 0.6])>}     

Pinaki similarty I = NA 

Pinaki similarty II (with iw =1) = NA

Ye similarity (with iw =1) =0.81

Cosine similarity ),( BACN = 0.92 

On the basis of computational study. J.Ye [5] have shown 
that their measure is more effective and reasonable .A simi-
lar kind of study with the help of the proposed new measure 
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based on the cosine similarity, has been done and it is found 
that the obtained results are more refined and accurate. It 
may be observed from the example 1 and 2 that the values 
of similarity measures are more closer to 1 with ),( BACN  
,the proposed similarity measure. This implies that we may 
be more deterministic for correct diagnosis and proper 
treatment. 

V. Application of Cosine Similarity Measure for Inter-
val Valued Neutrosophic Numbers to Pattern Recogni-
tion

In order to demonstrate the application of the proposed 
cosine similarity measure for  interval valued  neutrosophic 
numbers to pattern recognition, we discuss the medical 
diagnosis problem as follows: 
For example the patient reported temperature claiming that 
the patient has temperature between 0.5 and 0.7  severity 
/certainty, some how it is between 0.2 and 0.4 
indeterminable if temperature is cause or the effect of his 
current  disease. And it between 0.1 and 0.2 sure that 
temperature has no relation with his main disease. This 
piece of information about one patient  and one symptom 
may be written as: 
(patient , Temperature) = <[0.5, 0.7], [0.2 ,0.4], [0.1, 0.2]> 
(patient , Headache)  = < [0.2, 0.3], [0.3 ,0.5], [0.3, 0.6]> 
(patient , Cough)   =  <[0.4, 0.5], [0.6 ,0.7], [0.3, 0.4]> 
Then,  P = {< 1x ,  [0.5, 0.7], [0.2 ,0.4], [0.1, 0.2] >, < 

2x , [0.2, 0.3], [0.3, 0.5], [0.3, 0.6] > ,< 3x , [0.4, 0.5], 
[0.6 ,0.7], [0.3, 0.4]>}

And each diagnosis iA ( i=1, 2, 3) can  also be represented 
by interval valued neutrosophic numbers with respect to all 
the symptoms as follows: 

= {< 1x , [0.5, 0.6], [0.2 ,0.3], [0.4, 0.5] >, < 2x , [0.2 , 
0.6 ], [0.3 ,0.4 ], [0.6 , 0.7]>,< 3x , [0.1, 0.2 ], [0.3 ,0.6 ],
[0.7, 0.8]>} 

= {< 1x , [0.4, 0.5], [0.3, 0.4], [0.5, 0.6] >, < 2x , [0.3, 
0.5 ], [0.4 ,0.6 ], [0.2, 0.4]> , < 3x , [0.3, 0.6 ], [0.1, 0.2], 
[0.5, 0.6]>} 

= {< 1x , [0.6, 0.8], [0.4 ,0.5], [0.3, 0.4]>, < 2x , [0.3, 0.7 
], [0.2, 0.3], [0.4, 0.7]> ,< 3x , [0.3, 0.5 ], [0.4, 0.7 ], [0.2,
0.6]>} 

Our aim is to classify the pattern P in one of the classes 
1A , 2A , 3A .According to the recognition principle of max-

imum degree of similarity measure between interval valued 
neutrosophic numbers, the process of diagnosis  kA  to pa-
tient P is derived according to 

 k =  arg Max{ ),( PAC iN )} 

from the previous formula (7) , we can compute the co-
sine similarity between iA  (i=1, 2, 3) and P as follows; 

),( 1 PACN =0.8988, ),( 2 PACN =0.8560, ),( 3 PACN
=0.9654 

Then, we can assign the patient to diagnosis 3A (Typoid) 
according to recognition of principal. 

VI. Conclusions.
In this paper a cosine  similarity measure between two and
weighted interval valued neutrosophic sets is proposed.
The results of the proposed similarity measure and existing
similarity measure are compared. Finally, the proposed
cosine similarity measure is applied to pattern recognition.
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Neutrosophic Crisp Set Theory 
A. A. Salama, Florentin Smarandache

Abstract. The purpose of this paper is to introduce new 
types of neutrosophic crisp sets with three types 1, 2, 3. 
After given the fundamental definitions and operations, 
we obtain several properties, and discussed the relation-

ship between neutrosophic crisp sets and others. Also, we 
introduce and study the neutrosophic crisp point and neu-
trosophic crisp relations. Possible applications to data-
base are touched upon. 

Keywords: Neutrosophic Set, Neutrosophic Crisp Sets; Neutrosophic Crisp Relations; Generalized Neutrosophic Sets; 
Intuitionistic Neutrosophic Sets. 

1 Introduction 

Since the world is full of indeterminacy, the neutrosophics 
found their place into contemporary research. The funda-
mental concepts of neutrosophic set, introduced by 
Smarandache in [16, 17, 18] and Salama et al. in [4, 5, 6, 7, 
8, 9, 10, 11, 15, 16, 19,20, 21], provides a natural founda-
tion for treating mathematically the neutrosophic phenom-
ena which exist pervasively in our real world and for build-
ing new branches of neutrosophic mathematics. Neu-
trosophy has laid the foundation for a whole family of new 
mathematical theories generalizing both their classical and 
fuzzy counterparts [1, 2, 3, 4, 23] such as a neutrosophic 
set theory.  In this paper we introduce new types of neutro-
sophic crisp set. After given the fundamental definitions 
and operations, we obtain several properties, and discussed 
the relationship between neutrosophic crisp sets and others. 
Also, we introduce and study the neutrosophic crisp points 
and relation between two new neutrosophic crisp notions. 
Finally, we introduce and study the notion of neutrosophic 
crisp relations. 

2 Terminologies 
We recollect some relevant basic preliminaries, and in par-
ticular, the work of Smarandache in [16, 17, 18], and 
Salama et al. [7, 11, 12, 20]. Smarandache introduced the 
neutrosophic components T, I, F which represent the 
membership, indeterminacy, and non-membership values 
respectively, where  1,0 - is nonstandard unit interval.

Definition 2.1 [ 7] 
A neutrosophic crisp set (NCS for short) 

321 ,, AAAA   can be identified to an ordered triple 

321 ,, AAA  are subsets on X and every crisp set in X is 
obviously a NCS having the form 321 ,, AAA , 

Salama et al. constructed the tools for developed neu-
trosophic crisp set, and introduced the NCS NN X,  in X 
as follows: 

N may be defined as four types:

i) Type1: ,,, XN   or 

ii) Type2: ,,, XXN   or 

iii) Type3: ,,,  XN  or 

iv) Type4:  ,,N

1) NX  may be defined as four types 

i) Type1: ,,, XX N 

ii) Type2: ,,, XXX N 

iii) Type3: ,,, XXX N 

iv) Type4: ,,, XXXX N 

Definition 2.2 [6, 7] 
  Let 321 ,, AAAA   a NCS on X , then the comple-

ment of the set A  ( cA , for short  may be defined as
three kinds  

 1C Type1: 321 ,, cccc AAAA  , 

 2C Type2: 123 ,, AAAAc 

A.A. Salama, Florentin Smarandache (2014). Neutrosophic Crisp Set Theory. 
Neutrosophic Sets and Systems 5, 27-35
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 3C Type3: 123 ,, AAAA cc 

Definition 2.3 [6, 7] 
Let X    be a non-empty set, and NCSS A  and   B   in 

the form 321 ,, AAAA  , 321 ,, BBBB   , then we may consid-
er two possible definitions for subsets ( BA ) 

( BA  )  may be defined as two types: 
1) Type1: 332211 and  , BABABABA  or 
2) Type2: 332211   and  , BABABABA  . 

Definition 2.5 [6, 7] 
Let X be a non-empty set, and   NCSs A  and B in 

the form 321 ,, AAAA  , 321 ,, BBBB   are NCSS Then 
1) A B may be defined as two types:

i. Type1: 332211 ,, BABABABA  or 

ii. Type2: 332211 ,, BABABABA 

2) A B may be defined as two types:
i) Type1: 332211 ,, BABABABA   or 
ii) Type2: 332211 ,, BABABABA  .

3  Some Types of Neutrosophic Crisp Sets  
We shall now consider some possible definitions for some 
types of neutrosophic crisp sets  

Definition 3.1 
The object having the form

 
321 ,, AAAA   is called 

1) (Neutrosophic Crisp Set with Type 1) If satisfy-
ing  21 AA ,  31 AA  and  32 AA .
(NCS-Type1 for short).

2) (Neutrosophic Crisp Set with Type 2 ) If satisfy-
ing  21 AA ,  31 AA  and  32 AA  and  

.321 XAAA  (NCS-Type2 for short).
3) (Neutrosophic Crisp Set with Type 3 ) If satisfy-

ing  321 AAA  and  .321 XAAA 

(NCS-Type3 for short).
Definition 3.3 

1) (Neutrosophic Set [9, 16, 17]):  Let X be a non-
empty fixed set. A neutrosophic set ( NS for short) A
is an object having the form  )(),(),( xxxA AAA 

where    xx AA  ,  and  xA which represent the
degree of membership function (namely  xA ), the
degree of indeterminacy (namely  xA ), and the de-
gree of non-member ship (namely  xA ) respectively
of each element Xx  to the set A  where

  1)(),(),(0 xxx AAA  and
  3)()()(0 xxx AAA  .

2) (Generalized Neutrosophic Set [8] ):  Let X be  a
non-empty fixed set. A generalized neutrosophic
(GNS for short)  set A  is an object having the form 

)(),(),(, xxxxA AAA   where    xx AA  ,  and
 xA which represent the degree of member ship

function (namely  xA ), the degree of indeterminacy
(namely  xA ), and the degree of non-member ship
(namely  xA ) respectively of each element Xx  to

the set A  where   1)(),(),(0 xxx AAA  and 
the functions satisfy the condition 

      5.0 xxx AAA   and 
  3)()()(0 xxx AAA  .

3) (Intuitionistic Neutrosophic Set [22]). Let X be a
non-empty fixed set. An  intuitionistic  neutrosophic set A  
(INS for short) is an object having the form 

)(),(),( xxxA AAA  where    xx AA  , and  xA

which represent the degree of member ship function 
(namely  xA ), the degree of indeterminacy (namely

 xA ), and the degree of non-member ship (name-
ly  xA )   respectively of each element  Xx  to the set
A where )(),(),(5.0 xxx AAA  and the functions sat-

isfy the condition     ,5.0 xx AA 

  ,5.0)(  xx AA    ,5.0)(  xx AA 

and   2)()()(0 xxx AAA  . A neutrosophic
crisp with three types the object 321 ,, AAAA  can be 

identified to an ordered triple 321 ,, AAA  are subsets on 

X, and every crisp set in X is obviously a NCS having the 
form 321 ,, AAA . 
Every neutrosophic set )(),(),( xxxA AAA   on X  is 

obviously on NS having the form )(),(),( xxx AAA  . 
Remark 3.1 
1) The neutrosophic set not to be generalized neutro-

sophic set in general.
2) The generalized neutrosophic set in general not intui-

tionistic NS but the intuitionistic NS is generalized
NS. 

Intuitionistic NS      Generalized NS   NS 
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Fig. 1. Represents the relation between types of NS 

Corollary 3.1 
Let X non-empty fixed set and )(),(),( xxxA AAA 

be INS on X Then: 
1) Type1- cA of INS be a GNS. 
2) Type2- cA of INS be a INS.
3) Type3- cA of INS be a GNS. 

Proof 
Since A INS then )(),(),( xxx AAA  , and

5.0)()(,5.0)()(  xxxx AAAA 

5.0)()(  xx AA  Implies 

5.0)(),(),( xxx A
c

A
c

A
c  then is not to be Type1- cA

INS. On other hand the Type 2- cA ,
)(),(),( xxxA AAA

c  be INS and Type3- cA ,

)(),(),( xxxA AA
c

A
c  and 5.0)( xA

c implies to

)(),(),( xxxA AA
c

A
c  GNS and not to be INS 

Example 3.1 
Let  cbaX ,, , and CBA ,, are neutrosophic sets on

X, ,\8.0,7.0,9.0(,\)6.0,7.0,6.0(,\)8.0,9.0,7.0 cbaA 

cbaB \8.0,5.0,9.0(,\)5.0,4.0,6.0(,\)5.0,9.0,7.0

cbaC \8.0,5.0,9.0(,\)5.0,8.0,6.0(,\)5.0,9.0,7.0 By the Def-
inition 3.3 no.3     ,5.0)(  xxx AAA  A be not
GNS and INS, 

cbaB \8.0,5.0,9.0(,\)5.0,4.0,6.0(,\)5.0,9.0,7.0 not INS, 
where 5.04.0)( bA . Since 

5.0)()()(  xxx BBB  then   B is a GNS but not INS.
cbaAc \2.0,3.0,1.0(,\)4.0,3.0,4.0(,\)2.0,1.0,3.0

Be a GNS, but not INS. 
cbaBc \2.0,5.0,1.0(,\)5.0,6.0,4.0(,\)5.0,1.0,3.0

Be a GNS, but not INS, C be INS and GNS, 
cbaCc \2.0,5.0,1.0(,\)5.0,2.0,4.0(,\)5.0,1.0,3.0

Be a GNS but not INS.

Definition 3.2 
A NCS-Type1 11 , NN X  in X as follows: 

1) 1N may be defined as three types:

i) Type1: ,,,
1

XN   or 

ii) Type2: ,,,
1

 XN  or 

iii) Type3:  ,,N . 
2) 1NX  may be defined as one type 

Type1: ,,
1

XX N  . 

Definition 3.3 
A NCS-Type2, 2,

2 NN X  in X as follows: 

1) 2N may be defined as two types:

i) Type1: ,,,
2

XN   or 

ii) Type2:  ,,
2

XN 

2) 2NX  may be defined as one type 

    Type1: ,,
2

XX N 

Definition 3.4 
A NCS-Type 3, 33 , NN X  in X as follows: 

1)  3N may be defined as three types:

i) Type1: ,,,3 XN   or 

ii) Type2: ,,,3  XN  or 

iii) Type3: .,,3 XXN  

2) 3NX  may be defined as three types 

i) Type1: ,,,3 XX N 

ii) Type2: ,,,3 XXX N 

iii) Type3: ,,,3 XXX N 

Corollary 3.2 
In general  
1- Every NCS-Type 1, 2, 3 are NCS.
2- Every NCS-Type 1 not to be NCS-Type2, 3.
3- Every NCS-Type 2 not to be NCS-Type1, 3.
4- Every NCS-Type 3 not to be NCS-Type2, 1, 2.
5- Every crisp set be NCS.
The following Venn diagram represents the relation be-

tween NCSs 

Fig 1. Venn diagram represents the relation between NCSs 

Example 3.2 
Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA  , 

},{},,{},,{ dfcebaD   be a NCS-Type 2, 
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}{},{},,,{ edcbaB   be a NCT-Type1 but not NCS-
Type 2, 3. },,{},,{},,{ afedcbaC   be a NCS-Type 3.but 
not NCS-Type1, 2. 

Definition 3.5 
Let   X be a non-empty set, 321 ,, AAAA 

1) If   A   be a NCS-Type1 on X , then the complement
of the set A  ( cA , for short  maybe defined as one

kind of complement Type1: 123 ,, AAAAc   . 
2) If   A   be a NCS-Type 2 on X , then the comple-
ment of the set A  ( cA , for short  may be defined

as one kind of complement 123 ,, AAAAc  . 
3) If A  be NCS-Type3 on X , then the complement
of the set A  ( cA , for short  maybe defined as one
kind of complement defined as three kinds of com-
plements 

 1C Type1: 321 ,, cccc AAAA  , 

 2C Type2: 123 ,, AAAAc 

 3C Type3: 123 ,, AAAA cc 

Example 3.3 
Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA   be a 

NCS-Type 2, },{},{},,,{ edcbaB   be a NCS-Type1., 

},{},,{},,{ fedcbaC  NCS-Type 3, then the comple-

ment }{},{},,,,{ fedcbaA  , 

},,,{},{},{ dcbaefAc   NCS-Type 2, the complement 

of },{},{},,,{ edcbaB  , },,{},{},,{ cbaedBc 

NCS-Type1. The complement of 
},{},,{},,{ fedcbaC  may be defined as three types: 

Type 1: },,,{},,,,{},,,,{ dcbafebafedcCc  . 

Type 2: },{},,,,{},,{ bafebafeCc  , 

Type 3: },{},,{},,{ badcfeCc  , 

Proposition 3.1 
Let  JjA j :  be arbitrary family of neutrosophic 

crisp subsets on X, then 
1) jA may be defined two types as :

i) Type1:
32

,,1 jjj AAAjA  ,or 

ii) Type2:
32

,,1 jjj AAAjA  . 

2) jA may be defined  two types as :

1) Type1:
32

,,1 jjj AAAjA  or 

2) Type2:
32

,,1 jjj AAAjA  . 

Definition 3.6 
(a) If 321 ,, BBBB   is a NCS in Y, then the preimage 

of  B under ,f  denoted by ),(1 Bf  is a NCS in X 
defined by .)(),(),()( 3

1
2

1
1

11 BfBfBfBf    

(b) If 321 ,, AAAA   is a NCS in X, then the image 

of A under ,f denoted by ),(Af  is the a NCS in 

Y defined by .))(),(),()( 321
cAfAfAfAf 

Here we introduce the properties of images and preimages 
some of which we shall frequently use in the following. 

Corollary 3.3 
Let A ,  JiAi :  , be  a family of NCS in X, and  B, 
 KjB j :  NCS in Y, and YXf : a function. Then 

(a) ),()( 2121 AfAfAA 

),()( 2
1

1
1

21 BfBfBB  

(b) ))((1 AffA   and if f is injective, then 

))((1 AffA  , 

(c) BBff  ))((1  and if f is surjective, then 

,))((1 BBff 

(d) ),())( 11
ii BfBf   ),())( 11

ii BfBf  

(e) );()( iiii AfAf  );()( iiii AfAf  and if f is injec-

tive, then );()( iiii AfAf 

(f) ,)(1
NN XYf 

NNf   )(1 . 

(g) ,)( NNf   ,)( NN YXf  if f is subjective. 

Proof 
Obvious 

4  Neutrosophic Crisp Points 
One can easily define a nature   neutrosophic crisp set in X, 
called "neutrosophic crisp point" in X, corresponding to an 
element X:

Definition 4.1 
Let 

321
,, AAAA  ,be a neutrosophic crisp set on a 

set X, then       ,,, 321 pppp  321 ppp  X is called 
a neutrosophic crisp point on A. 
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A NCP       ,,, 321 pppp   is said to be belong to a 

neutrosophic crisp set
321

,, AAAA  , of X, denoted 

by Ap , if may be defined by two types 
Type 1: 2211 }{,}{ ApAp  and 33}{ Ap  or 
Type 2: 2211 }{,}{ ApAp  and 33}{ Ap 

Theorem 4.1 
 Let 

321
,, AAAA  and ,,, 321 BBBB  be neutro-

sophic crisp subsets of X. Then BA  iff Ap implies 
Bp for any neutrosophic crisp point p in X. 

Proof 
Let BA  and Ap , Type 1: 2211 }{,}{ ApAp  and 

33}{ Ap  or Type 2: 2211 }{,}{ ApAp  and 33}{ Ap 

Thus Bp . Conversely, take any point in X. Let  11 Ap 

and 22 Ap   and 33 Ap  . Then p is a neutrosophic 
crisp point in X. and Ap . By the  hypothesis .Bp  
Thus 11 Bp  or Type1: 2211 }{,}{ BpBp  and 

33}{ Bp  or Type 2: 2211 }{,}{ BpBp  and 33}{ Bp  . 
Hence BA . 

Theorem 4.2 
Let

321
,, AAAA  , be a neutrosophic crisp subset of 

X. Then  .: AppA 

Proof
Obvious

Proposition 4.1 
Let  JjA j :  is a family of   NCSs in X. Then 

  )( 1a      321 ,, pppp  jJj
A


 iff jAp  for each 

Jj . 
)( 2a jJj

Ap

 iff  Jj  such that jAp  . 

Proposition 4.2 
Let  

321
,, AAAA   and 

321
,, BBBB   be two 

neutrosophic crisp sets in X. Then BA   iff   for each p
we have BpAp   and for each p  we have 

BpAp  . iff BA      for each p  we have 

BpAp  and for each p   we have 

BpAp  . 

Proposition 4.3 

Let  
321

,, AAAA   be a neutrosophic crisp set in X.  

Then      333222111 :,:,: AppAppAppA  .

Definition 4.2 
Let YXf : be a function and p  be a neutrosophic 

crisp point in X. Then the image of p under f , denoted 
by )( pf , is defined by      321 ,,)( qqqpf  , where 

)(),( 2211 pfqpfq   and )( 33 pfq  .It is easy to see 
that )( pf  is indeed a NCP in Y, namely qpf )( , 

where )( pfq  , and it is exactly the same meaning of the 
image of a NCP under the function f .  

Definition 4.3 
Let X be a nonempty set and Xp . Then the neutro-

sophic crisp point Np defined by    c
N ppp ,, is 

called a neutrosophic crisp point (NCP for short) in X, 
where NCP is a triple ({only element in X}, empty set,{the 
complement of the same element in X }). Neutrosophic 
crisp points in X can sometimes be inconvenient when ex-
press neutrosophic crisp set in X in terms of neutrosophic 
crisp points. This situation will occur if

321
,, AAAA 

NCS-Type1, 1Ap  .  Therefore we shall define "vanish-
ing" neutrosophic crisp points as follows: 

Definition 4.4 
Let  X  be  a nonempty set and Xp a fixed element 

in X Then the neutrosophic crisp set    c
N ppp

N
,,

is called vanishing" neutrosophic crisp point (VNCP for 
short) in X. where VNCP is a triple (empty set,{only ele-
ment in X}, { the complement of the same element in X}). 

Example 4.1 
Let  dcbaX ,,,   and   Xbp  . Then

   dcabpN ,,,, ,    dcabp
NN ,,,, , 

   dabP },{, . 
Now we shall present some types of inclusion of a neu-

trosophic crisp point to a neutrosophic crisp set: 

Definition 4.5 
Let    c

N ppp ,, is a NCP in X and 

321
,, AAAA  a neutrosophic crisp set in X. 
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(a) Np is said to be contained in A ( ApN  for

short ) iff 1Ap . 

(b) NNp  be VNCP in X and 
321

,, AAAA   a neu-

trosophic crisp set in X. Then NNp  is said to be contained 

in A  ( Ap
NN  for short ) iff 3Ap . 

Remark 4.2 
Np and NNp  are NCS-Type1 

Proposition 4.4 
Let  JjA j :  is a family of   NCSs in X. Then 

)( 1a jJjN Ap

 iff jN Ap  for each Jj  . 

)( 2a jJjN Ap
N 

 iff jN Ap
N
 for each Jj .

)( 1b jJjN Ap

 iff Jj  such that jN Ap  . 

)( 2b jJjN Ap
N 

 iff Jj  such that jN Ap
N
 .

Proof   
Straightforward. 

Proposition 4.5 
Let  

321
,, AAAA   and 

321
,, BBBB   are two 

neutrosophic crisp sets in X. Then BA    iff  for each 

Np  we have BpAp NN  and for each NNp  we 

have BpAp
NNN  .  BA   iff   for each Np we 

have BpAp NN  and for each
NNp we 

have BpAp
NN NN  .

Proof  
Obvious  
Proposition 4.6 
Let  321 ,, AAAA  be a neutrosophic crisp set in X. 

Then      AppAppA NNNNNN  :: .
Proof  
It is sufficient to show the following equalities: 

     ApAppA NNN  ::}1  , 3A

and      AppAppA NN
c

N
c  :}{:}{3

which are fairly obvious. 

Definition 4.6 
Let YXf : be a function and Np be a nutrosophic

crisp point in X. Then the image of Np under f , denoted 

by )( Npf  is defined by    c
N qqpf ,,)( 

where )( pfq  . 

Let NNp  be a VNCP in X. Then the image of NNp
under ,f  denoted by ),( NNpf  is defined by 

   c
NN qqpf ,,)(   where )( pfq  . 

It is easy to see that )( Npf is indeed a NCP in Y,
namely NN qpf )( where )( pfq  , and it is exactly 

the same meaning of the image of a NCP under he func-
tion f . ),( NNpf is also a VNCP in Y, namely 

,)( NNNN qpf  where )( pfq  . 

Proposition 4.7  
 States that any NCS A in X can be written in the 
form

NNNNNN
AAAA  , where  AppA NNN

 : ,

N
N
A  and  AppA NNNNNNN

 : . It is easy to show

that, if 
321

,, AAAA  , then c
N

AAA 11 ,, and 

32 ,, AAA
NN

 . 

Proposition 4.8  
Let YXf :  be a function and 

321
,, AAAA   be a 

neutrosophic crisp set in X.  Then we have 
)()()()(

NNNNNN
AfAfAfAf  . 

Proof 
This is obvious from

NNNNNN
AAAA  . 

 Proposition 4.9 
Let 

321
,, AAAA   and 

321
,, BBBB   be two 

neutrosophic crisp sets in X. Then 
a) BA  iff   for each Np we have 

BpAp NN  and for each 
NNp  we have 

BpAp
NNN  .

b) BA  iff   for each Np we have 

BpAp NN  and for each
NNp   we 

have BpAp
NN NN  .

Proof  
Obvious 
Proposition 4.10 
Let 

321
,, AAAA   be a neutrosophic crisp set in X. 

Then      AppAppA NNNNNN  :: .
Proof 
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It is sufficient to show the following equalities: 
     ApAppA NNN  ::}1  3A

and      AppAppA NN
c

N
c  :}{:}{3  , 

which are fairly obvious. 
 Definition 4.7 
Let YXf : be a function. 
(a) Let Np be a neutrosophic crisp point in X. Then 

the image of Np under f , denoted by )( Npf , is defined 

by    c
N qqpf ,,)(  , where )( pfq  . 

(b) Let NNp  be a VNCP in X. Then the image of 

NNp under f , denoted by ),( NNpf is defined by 

   c
NN qqpf ,,)(  , where )( pfq  . It is easy to see

that )( Npf  is indeed a NCP in Y, namely NN qpf )( , 
where )( pfq  , and it is exactly the same meaning of the 

image of a NCP under the function f . )( NNpf is also a 
VNCP in Y, namely  ,)( NNNN qpf  where )( pfq  . 

Proposition 4.11 
Any NCS A in X can be written in the 

form
NNNNNN
AAAA  , where  AppA NNN

 : ,

NN
A  and  AppA NNNNNNN

 : . It is easy to show

that, if 
321

,, AAAA  , then c
N

AAxA 11 ,,,  and 

32 ,,, AAxA
NN

 . 

 Proposition 4.12 
Let YXf :  be a function and 321 ,, AAAA   be a 

neutrosophic crisp set in X.  Then we have 
)()()()(

NNNNNN
AfAfAfAf  . 

Proof 
This is obvious from

NNNNNN
AAAA  . 

5  Neutrosophic Crisp Set Relations 
Here we give the definition relation on neutrosophic crisp 
sets and study of its properties.  

Let X, Y and Z be three crisp nonempty sets 

Definition 5.1 
Let X and Y are two non-empty crisp sets and NCSS 

A and B in the form 321 ,, AAAA  on X, 

321 ,, BBBB  on Y. Then 
i) The product of two neutrosophic crisp sets A and

B is a neutrosophic crisp set BA given by 

332211 ,, BABABABA  on YX  . 
ii) We will call a neutrosophic crisp relation

BAR  on the direct product YX  . 
The collection of all neutrosophic crisp relations on 
YX  is denoted as )( YXNCR   

Definition 5.2 
Let R  be a neutrosophic crisp relation on YX  , then 

the inverse of R  is donated by 1R  where 
BAR  on YX  then ABR 1 on .XY   

Example 5.1 
Let },,,{ dcbaX  , }{},{},,{ dcbaA  and 

},{},{},{ bdcaB  then the product of two neutrosophic 
crisp sets given by 

)},(),,{()},,{()},,(),,{( bdddccabaaBA   and 

)},(),,{()},,{()},,(),,{( dbddccbaaaAB  , and 

)},{()},,{()},,{(1 ddccaaR  , BAR 1 on XX  , 

)},(),,{()},,{()},,{(2 dbddccbaR  ABR 2 on XX  , 
1

1
R = )},{()},,{()},,{( ddccaa AB and 

)},(),,{()},,{()},,{(1
2 bdddccabR 
 AB . 
Example 5.2 

   Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA  , 

},{},,{},,{ dfcebaD   be a NCS-Type 2, 

},{},{},,,{ edcbaB   be a NCS-Type1. 

},{},,{},,{ fedcbaC   be a NCS-Type 3.Then 
)},(),,{()},,(),,{()},,(),,(),,(),,(),,(),,(),,(),,(),,{( dfffceeebdadbcacbbbbabbaaaDA 

)},(),,(),,(),,{()},,(),,(),,(),,{()},,(),,(),,(),,{( fdedffefdcccdecebbabbaaaCD 

We can construct many types of relations on products. 
We can define the operations of neutrosophic crisp re-

lation. 

Definition 5.3 
Let R  and S  be two neutrosophic crisp relations be-

tween X and Y for every YXyx ),(   and NCSS A  and 
B in the form 321 ,, AAAA  on X, 321 ,, BBBB  on Y 
Then we can defined the following operations 

i) SR  may be defined as two types
a) Type1: SR   ,11 SR

BA  ,22 BA  SR BA 33 

b) Type2: SR   ,11 SR
BA  ,22 SR BA 

RS AB 33 

ii) SR may be defined as two types
a) Type1: SR

SRSRSR BABABA 332211 ,,  , 
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b) Type2:
SR SRSRSR BABABA 332211 ,,  . 

iii) SR may be defined as two types
a) Type1: SR SRSRSR BABABA 332211 ,,  , 
b) Type2:
SR SRSRSR BABABA 332211 ,,  . 

Theorem 5.1 
Let R , S and Q  be three neutrosophic crisp relations 

between X and Y for every YXyx ),( , then 

i) .11   SRSR  
ii)   .111 

 SRSR

iii)   .111 
 SRSR

iv)   .
11 RR 


v)      QRSRQSR  . .
vi)      QRSRQSR  . .
vii) If ,RS  ,RQ  then RQS 

Proof 
 Clear 
Definition 5.4 
The neutrosophic crisp relation )( XXNCRI  , the 

neutrosophic crisp relation of identity may be defined as 
two types  

i) Type1:   },{},{ AAAAI
ii) Type2:   ,},{ AAI
Now we define two composite relations of neutrosoph-

ic crisp sets. 

Definition 5.5 
Let R  be a neutrosophic crisp relation in YX  , and S  

be a neutrosophic crisp relation in ZY  . Then the compo-
sition of R  and S , SR   be a neutrosophic crisp relation 
in ZX  as a definition may be defined as two types  

i) Type 1:
SR  ),)(( zxSR  })(){({ 2211 SR BABA  ,

},)(){( 2222 SR BABA   })(){( 3333 SR BABA . 
ii) Type 2:
SR  ),)(( zxSR  })(){({ 2211 SR BABA  ,

},)(){( 2222 SR BABA   })(){( 3333 SR BABA . 
Example 5.3 
Let },,,{ dcbaX  , }{},{},,{ dcbaA  and 

},{},{},{ bdcaB  then the product of two events given 
by )},(),,{()},,{()},,(),,{( bdddccabaaBA  , and 

)},(),,{()},,{()},,(),,{( dbddccbaaaAB  , and 

)},{()},,{()},,{(1 ddccaaR  , BAR 1 on XX   , 

)},(),,{()},,{()},,{(2 dbddccbaR  ABR 2 on XX  . 

)},{()},,{()},,{()},{(21 ddccbaaaRR 

)},{()},,{(},{ ddcc and     

}{)},,).(,).(,{()},.).(,).(,{(1 abbaaaabbaaaI A  ,

}{},{)},.).(,).(,{(2 abbaaaI A 

Theorem 5.2 
Let R  be a neutrosophic crisp relation in YX  , and S

be a neutrosophic crisp relation 
in ZY  then 111)(   RSSR  . 

Proof 
Let BAR  on YX   then ABR 1 , 

DBS  on ZY  then BDS 1 , from Definition 5.4 
and similarly we can ),(  and  ),(),( 111)( zxIzxIzxI RSSR  


 

then  111)(   RSSR 
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Introduction to Image Processing via Neutrosophic 
Techniques  

A. A. Salama, Florentin Smarandache, Mohamed Eisa

Abstract. This paper is an attempt of proposing the 
processing approach of neutrosophic technique in image 
processing. As neutrosophic sets is a suitable tool to 
cope with imperfectly defined images, the properties, 
basic operations distance measure, entropy measures, of 
the neutrosophic sets method are presented here. İn this 
paper we, introduce the distances between neutrosophic 
sets: the Hamming distance, the normalized Hamming 

distance, the Euclidean distance and normalized 
Euclidean distance. We will extend the concepts of 
distances to the case of neutrosophic hesitancy degree. 
Entropy plays an important role in image processing. In 
our further considertions on entropy for neutrosophic 
sets the concept of cardinality of a neutrosophic set will 
also be useful. Possible applications to image processing 
are touched upon. 

Keywords: Neutrosophic sets; Hamming distance; Euclidean distance; Normalized Euclidean distance; Image processing. 

1. Introduction
Since the world is full of indeterminacy, the

neutrosophics found their place into contemporary 
research. Smarandache [9, 10] and Salama et al [ 4, 5, 6, 
7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 45]. Entropy plays an important role in image 
processing. İn this paper we, introduce the distances 
between neutrosophic sets: the Hamming distance. İn 
this paper we, introduce the distances between 
neutrosophic sets: the Hamming distance, The 
normalized Hamming distance, the Euclidean distance 
and normalized Euclidean distance. We will extend the 
concepts of distances to the case of neutrosophic 
hesitancy degree. In our further considertions on entropy 
for neutrosophic sets the concept of cardinality of a 
neutrosophic set will also be useful. 

2. Terminologies
Neutrosophy has laid the foundation for a whole family
of new mathematical theories generalizing both their

classical and fuzzy counterparts [1, 2, 3, 11, 27, 28, 29, 
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 
46] such as a neutrosophic set theory. We recollect some
relevant basic preliminaries, and in particular, the work
of Smarandache in [9, 10] and Salama et al. [4, 5, 6, 7, 8,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
45]. Smarandache introduced the neutrosophic
components T, I, F which represent the membership,
indeterminacy, and non-membership values respectively,
where   1,0 is nonstandard unit interval. Salama et al.
introduced the following:  
Let X be a non-empty fixed set. A neutrosophic set A  is 
an object having the form  )(),(),( xxxA AAA 

where    xx AA  , and  xA which represent the
degree of member ship function (namely  xA ), the
degree of indeterminacy (namely  xA ), and the degree
of non-member ship (namely  xA ) respectively of each
element Xx to the set A where 
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  1)(),(),(0 xxx AAA  and
  3)()()(0 xxx AAA  .Smarandache

introduced the following:  Let T, I,F be real standard or 
nonstandard subsets of   1,0 , with
Sup_T=t_sup, inf_T=t_inf 
Sup_I=i_sup, inf_I=i_inf 
Sup_F=f_sup, inf_F=f_inf 
n-sup=t_sup+i_sup+f_sup
n-inf=t_inf+i_inf+f_inf,
T, I, F are called neutrosophic components
3. Distances Betoween Neutrosophic Sets
We will now extend the concepts of distances presented
in [11] to the case of neutrosophic sets.

Definition 3.1 
Let  XxxxxA AAA  )),(),(),((   and 
 XxxxxB BBB  )),(),(),((   in 
 nxxxxX ,...,,, 321   then 

i) The Hamming distance is equal to
   




n

i
iBiAiBiAiBiANs xxxxxxBAd

1
)()()()()()(, 

. 
ii) The Euclidean distance is equal to

        



n

i
iBiAiBiAiBiANs xxxxxxBAe

1

222 )()()()()()(, 

iii) The  normalized Hamming distance is equal to
   




n

i
iBiAiBiAiBiANs xxxxxx

n
BANH

1
)()()()()()(

2
1, 

iv) The normalized Euclidean distance is equal to
        




n

i
iBiAiBiAiBiANs xxxxxx

n
BANE

1

222 )()()()()()(
2
1, 

 Example 3.1 
      Let us consider for simplicity degenrated 
neutrosophic sets FGDBA ,,,, in  .aX   A full
description of each neutrosophic set i.e. 

 XaxxxA AAA  )),(),(),((  , may be exemplified 
by  XaA  ,0,0,1 ,  ,,0,1,0 XaB 

 ,,1,0,0 XaD   ,,0,5.0,5.0 XaG 

 ,,5.0.0,25.0,25.0 XaE  .
     Let us calculate four distances between the above 
neutrosophic sets using i), ii), iii) and iv) formulas , 

 (Fig.1) A geometrical interpretation of the neutrosophic 
considered in Example 5.1 . 

We obtain  
2
1, DAeNs ,  

2
1, DBeNs ,

 
2
1, BAeNs ,  

2
1, GAeNs ,   ,

2
1, GBeNs

  ,
4
1, GEeNs   ,

4
1, GDeNs   ,1, BANE Ns

  ,1, DANE Ns   ,1, DBNE Ns   ,
2
1, GANENs

  ,
2
1, GBNE Ns   ,

2
1, GBNENs   ,

4
3, GENENs a

nd   ,
2
3, GDNENs

      From the above results the triangle ABD (Fig.1) 
has edges equal to 2   and 

      
2
1,,,  BAeDBeDAe NsNsNs  and 

      DBNEDANEBANE NsNsNs ,,,
    ,1,2,2  GBNEGANE NsNs and  GENE Ns , is

equal to half of the height of triangle with all edges equal

to 2 multiplied by,
2

1 i.e.
4
3 . 

 Example 3.2 
   Let us consider the following neutrosophic sets A 

and B in   .,,,, edcbaX  ,
 0,0,1,6.0,2.0,2.0,5.0,2.0,3.0,2.0,6.0,2.0,2.0,3.0,5.0A

 0,0,0,1.0,0,9.0,3.0,2.0,5.0,5.0,2.0,3.0,2.0,6.0,2.0B
.Then 

  ,3, BAd Ns   ,43.0, BANH Ns   49.1, BAeNs

and   .55.0, BANE Ns

 Remark 3.1 
     Clearly these distances satisfy the conditions of 

metric space. 
 Remark 3.2 

       It is easy to notice that for formulas i), ii), iii) and 
iv) the following is valid:

a)   nBAd Ns  ,0
b)   1,0  BANH Ns

c)   nBAeNs  ,0
d)   1,0  BANE Ns . 

This representation of a neutrosophic set (Fig. 2) will be 
a point of departure for neutrosophic crisp distances, and 
entropy of neutrosophic sets. 
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Fig. 2. A three-dimension representation of a 
neutrosophic set[9, 10]. 

4. Hesitancy Degree and Cardinality for
Neutrosophic Sets
We will now extend the concepts of distances to the case
of neutrosophic hesitancy degree. By taking into account
the four parameters characterization of  neutrosophic
sets  i.e.  XxxxxxA AAAA  ,)(),(),(),( 

Definition4.1 
Let  XxxxxA AAA  )),(),(),((   and 
 XxxxxB BBB  )),(),(),((  on 
 nxxxxX ,...,,, 321

For  a neutrosophic 
set  XxxxxA AAA  )),(),(),((  in X, we 
call   )()()(3 xxxx AAAA   , the neutrosophic 
index of x in A. İt is a hesitancy degree of x to A it is 
obvtous that   30  xA .
Definition 4.2
Let  XxxxxA AAA  )),(),(),((  and

 XxxxxB BBB  )),(),(),((  in
 nxxxxX ,...,,, 321  then 

i) The Hamming distance is equal to
      




n

i
iBiAiBiAiBiAiBiANs xxxxxxxxBAd

1
)()()()()()(, 

. Taking into account that 
  )()()(3 iAiAiAiA xxxx    and 
  )()()(3 iBiBiBiB xxxx  

we have 
  )()()(3)()()(3)( iBiBiAiAiAiAiBiA xxxxxxxx  

)()()()()()( iAiBiAiBiAiB xxxxxx  

. 

ii) The Euclidean distance is equal to

             



n

i
iBiAiBiAiBiAiBiANs xxxxxxxxBAe

1

2222 )()()()()()(, 

we have 
 

     
2

iBiA xx 

  2))()()(()()( iBiBiBiAiAiA xxxxxx  

=   
22 )()())()(( iBiAiAiB xxxx 

2))()(( iBiA xx  

+  )()()()((2 iBiAiAiB xxxx  

))()(( iAiB xx  

iii) The  normalized Hamming distance is equal to
      




n

i
BiAiBiAiBiAiBiANs xxxxxxxx

n
BANH

1
1)()()()()()(

2
1, 

iv) The  normalized Euclidean distance is equal to
             




n

i
iBiAiBiAiBiAiBiANs xxxxxxxx

n
BANE

1

2222 )()()()()()(
2
1, 

5.2 Remark 
       It is easy to notice that for formulas i), ii), iii) and 

the following is valid: 
a)   nBAd Ns 2,0 

b)   2,0  BANH Ns

c)   nBAeNs 2,0 

d)   2,0  BANENs . 

5. from Images to Neutrosophic Sets, and
Entropy
Given the definitions of the previous section several
possible contributions are discussed. Neutrosophic sets
may be used to solve some of the problems of data
causes problems in the classification of pixels. Hesitancy
in images originates from various factors, which in their
majority are due to the inherent weaknesses of the
acquisition and the imaging mechanisms. Limitations of
the acquisition chain, such as the quantization noise, the
suppression of the dynamic range, or the nonlinear
behavior of the mapping system, affect our certainty on
deciding whether a pixel is “gray” or “edgy” and
therefore introduce a degree of hesitancy associated with
the corresponding pixel. Therefore, hesitancy should
encapsulate the aforementioned sources of indeterminacy
that characterize digital images. Defining the
membership component of the  A–NS that describes the
brightness of pixels in an image, is a more
straightforward task that can be carried out in a similar
manner as in traditional fuzzy image processing systems.
In the presented heuristic framework, we consider the
membership value of a gray level g to be its normalized
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intensity level; that 

is
x

A L
g

g
1

)(


 where  1,...,0  Lg .It should be 

mentioned that any other method for 
calculating )(gA can also be applied.
In the image is A  being ),( yx  the coordinates of each 
pixel and the  ),( yxg  be the gray level of the pixel 

),( yx implies 1),(0  Lyxg . Each image pixel is 
associated with four numerical values: 

 A value representing the membership )(xA ,

obtained by means of membership function
associated with the set that represents the
expert’s knowledge of the image.

 A value representing the  indeterminacy )(xA ,
obtained by means of the
indeterminacy function associated with the set
that represents the ignorance
of the expert’s decision.

 A value representing the non-
membership )(xA , obtained by means of the
non -membership function associated with the
set that represents the ignorance
of the expert’s decision.

 A value representing the hesitation
measure  xA , obtained by means of
the   )()()(3 xxxx AAAA   .

 Let an image A of size NM  pixels having L gray 
levels ranging between 0 and L-1. The image in the 
neutrosophic domain is considered as an array of 
neutrosophic singletons. Here, each element denoted the 
degree of the membership, indeterminacy and non-
membership according to a pixel with respect to an 
image considered. An image A in neutrosophic set 
is   1,...,0,)(),(),(  LggggA ijijAijAijA 

where )(),(),( ijAijAijA ggg  denote the degrees of 
membership indeterminacy and non-membership of the 

thji ),(  pixel to the set A associated with an image 

property 
max

min)(
gg
gg

gA



 where ming and maxg are 

the minimum and the maximum gray levels of the image. 
Entropy plays an important role in image processing. In 
our further considertions on entropy for neutrosophic 
sets the concept of cardinality of a neutrosophic set will 
also be useful 

Definition 5.1 
 Let XxxxxA AAA  )),(),(),((   a 

neutrosophic set in X, first, we define two cardinalities 
of a neutrosophic set 

 The least (sure) cadinality of A  is equal to so is
called segma-count, and is called here the

    



11

)(min
i

iA
i

iA xxAcont 

 The bigesst cadinality of A , which is possible
due to  xA is equal to

    ))())(()(max
11

iA
i

iAiA
i

iA xxxxAcont    


and , clearly for cA we have 
    




11

)(min
i

iA
i

iA
c xxAcont  ,

    ))())(()(max
11

iA
i

iAiA
i

iA
c xxxxAcont    



. Then the cadinality of neutrosophic set is defined as 
the interval 

   )(max),(min)( AContAContACard

Definition 5.2   
An entropy on )(XNS  is a real-valued 
functional ]1,0[)(: XNSE ,  satisfying the following 
axiomatic requirements: 
E1: 0)( AE  iff A is a neutrosophic crisp set; that is 

0)( iA x or 1)( iA x  for all .Xxi 

E2 : 1)( AE  iff )()()( iAiAiA xxx   for 

all .Xxi  that is cAA  . 
E3: )()( BEAE   if A  refine B ; i.e. BA  . 

E4:  )()( cAEAE 

Where a neutrosophic  entropy measure be define as 
 
 

 




n

i
c
ii

c
ii

AACount
AACount

n
AE

1 max
max1)( where 

)(XCardinaln  and iA denotes the single-element 

A–NS corresponding to the ith element of the universe X 
and is described as 

 XxxxxA iiAiAiAi  )),(),(),((  . 

In other words, iA is the ith “component” of A. 
Moreover,  )(max ACount   denotes the biggest 
cardinality of A and is given by : 

    ))())(()(max
11

iA
i

iAiA
i

iA xxxxAcont    


Conclusion 
Some of the properties of the neutrosophic sets, Distance 
measures, Hesitancy Degree, Cardinality and Entropy 
measures are briefed in this paper. These measures can 
be used effectively in image processing and pattern 
recognition. The future work will cover the application 
of these measures. 
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Interval Valued Neutrosophic Soft Topological 
Spaces 

Anjan Mukherjee, Mithun Datta, Florentin Smarandache

Abstract. In this paper we introduce the concept of in-
terval valued neutrosophic soft topological space together 
with interval valued neutrosophic soft finer and interval 
valued neutrosophic soft coarser topology. We also de-
fine interval valued neutrosophic interior and closer of an 

interval valued neutrosophic soft set. Some theorems and 
examples are cites. Interval valued neutrosophic soft sub-
space topology are studied. Some examples and theorems 
regarding this concept are presented.. 

Keywords: Soft set, interval valued neutrosophic set, interval valued neutrosophic soft set,  interval valued neutrosophic soft topo-
logical space.

1 Introduction 

In 1999, Molodtsov [9] introduced the concept of soft 
set theory which is completely new approach for modeling 
uncertainty. In this paper [9] Molodtsov established the 
fundamental results of this new theory and successfully 
applied the soft set theory into several directions. Maji et al. 
[7] defined and studied several basic notions of soft set
theory in 2003. Pie and Miao [11], Aktas and Cagman [1]
and Ali et. al. [2] improved the work of Maji et al [7]. The
intuitionistic fuzzy set is introduced by Atanaasov [4] as a
generalization of fuzzy set [15] where he added degree of
non-membership with degree of membership. Neutrosoph-
ic set introduced by F. Smarandache in 1995 [12].
Smarandache [13] introduced the concept of neutrosophic
set which is a mathematical tool for handling problems in-
volving imprecise, indeterminacy and inconstant data. Maji
[8] combined neutrosophic set and soft set and established
some operations on these sets. Wang et al. [14] introduced
interval neutrosophic sets. Deli [6] introduced the concept
of interval-valued neutrosophic soft sets.

In this paper we form a topological structure on inter-
val valued neutrosophic soft sets and establish some prop-
erties of interval valued neutrosophic soft topological 
space with supporting proofs and examples. 

2 Preliminaries 
In this section we recall some basic notions rele-

vant to soft sets, interval-valued neutrosophic sets and in-
terval-valued neutrosophic soft sets. 

Definition 2.1: [9]  Let U  be an initial universe and E be 
a set of parameters. Let  P U  denotes the power set of U
and A E . Then the pair  ,f A  is called a soft set

overU , where f  is a mapping given by  :f A P U .

Definition 2.2: [13] A neutrosophic set A  on the universe 
of discourse U  is defined as  

       , , ,A A AA x Ux x x x     , where 

, , 0,1A A A U  
 

   are functions such that the
condition:      , 0 3A A Ax U x x x  

 
      is

satisfied. 
Here      , ,A A Ax x x   represent the truth-

membership, indeterminacy-membership and falsity-
membership respectively of the element x U . From 
philosophical point of view, the neutrosophic set takes the 
value from real standard or non-standard subsets of 

0,1 
  . But in real life application in scientific and 
engineering problems it is difficult to use neutrosophic set 
with value from real standard or non-standard subset of 

0,1 
  . Hence we consider the neutrosophic set which

takes the value from the subset of  0,1 .
Definition 2.3: [14] An interval valued neutrosophic set 
A on the universe of discourse U is defined as

       , , ,A A AA x x x x x U     , where 

, , 0,1A A A U Int        are functions such that the 
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condition: 
     , 0 3A A Ax U sup x sup x sup x  

 
      is
satisfied. 

In real life applications it is difficult to use 
interval valued neutrosophic set with interval-value from 
real standard or non-standard subset of  0,1Int  

  .
Hence we consider the interval valued neutrosophic set 
which takes the interval-value from the subset 
of   0,1Int  (where   0,1Int  denotes the set of all

closed sub intervals of  0,1 ). The set of all interval valued

neutrosophic sets on U  is denoted by IVNS(U). 
Definition 2.4: [6] Let U  be an universe set, E be a set of 
parameters and A E . Let IVNs(U) denotes the set of all 
interval valued neutrosophic sets of U . Then the pair 
 ,f A is called an interval valued neutrosophic soft set
(IVNSs in short) over U , where f is a mapping given 
by  f A IVNs U  . The collection of all interval valued
neutrosophic soft sets over U is denoted by IVNSs(U). 

Definition 2.5: [6] Let U  be a universe set and E  be a 
set of parameters. Let      , , ,f A g B IVNSs U , where

 f A IVNs U  is defined by

             ( ) , , ,f a f a f af a x Ux x x x    

and   g B IVNs U   is defined by

             ( ) , , ,g b g b g bg b x Ux x x x    

where 
                          , , , , , 0,1f a f a f a g b g b g bx x x x x x Int      

for x U . Then 
(i)  ,f A is called interval valued neutrosophic subset of

 ,g B (denoted by    , ,f A g B ) if A B and

       f e g ex x  ,        f e g ex x  , 

       f e g ex x  e A  , x U  . Where

       f e g ex x   iff 
   f e g einf inf  and 

   f e g esup sup 

       f e g ex x   iff
   f e g einf inf  and 

   f e g esup sup 

       f e g ex x   iff    f e g einf inf  and 

   f e g esup sup  . 

(ii) Their union, denoted by      , , ,f A g B h C 

(say), is an interval valued neutrosophic soft set overU ,
where C A B   and for e C ,  h C IVNS U 

is defined by 

               , , ,h e h e h eh e x x x x x U     ,where 

for x U , 

   

   

   

       

f e

h e g e

f e g e

x if e A B

x x if e B A

x x if e A B



 

 

  


  


  

   

   

   

       

f e

h e g e

f e g e

x if e A B

x x if e B A

x x if e A B



 

 

 

  

  







   

   

   

       

f e

h e g e

f e g e

x if e A B

x x if e B A

x x if e A B



 

 

 

  

  







(iii) Their intersection, denoted by      , , ,f A g B h C   
(say), is an interval valued neutrosophic soft set of overU ,
where C A B   and for e C ,  h C IVNS U   is
defined by
               , , ,h e h e h eh e x Ux x x x     , where 

for x U and e C , 

                       ,h e f e g e h e f e g ex x x x x x        

and            h e f e g ex x x    . 

(iv) The complement of  ,f A , denoted by  , cf A
is an interval valued neutrosophic soft set over U  and is 

defined as    , ,c cf A f A  , where 

 cf IVNS U is defined by

                   , , 1 ,1 ,c
f a f a f a f af a x Ux x sup x inf x x       

 

 for a A . 

Definition 2.6:[5,6] An IVNSs  ,f A  over the universe U
is said to be universe IVNSs with respect to A if 

     1,1f a x  ,      0,0f a x  ,      0,0f a x 

,x U a A    . It is denoted by I . 
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Definition 2.7: An IVNSs  ,f A  over the universe U is

said to be null IVNSs with respect to A if      0,0f a x  , 

     1,1f a x  ,      1,1f a x  ,x U a A    . It is 

denoted by  . 

3 Interval Valued Neutrosophic Soft Topological 
Spaces 

In this section, we give the definition of interval valued 
neutrosophic soft topological spaces with some examples 
and results. We also define discrete and indiscrete interval
valued neutrosophic soft topological space along with 
interval valued neutrosophic soft finer and coarser topology. 

Let U be an universe set, E be the set of 
parameters,  U

 be the set of all subsets of U, IVNs(U)
be the set of all interval valued neutrosophic sets in U and 
IVSNs(U;E) be the family of all interval valued 
neutrosophic soft sets over U via parameters in E. 
Definition 3.1: Let  ,A E be an element of IVNSs(U;E), 

 ,A E be the collection of all interval valued 

neutrosophic soft subsets of  ,A E . A sub family   of 

 ,A E is called an interval valued neutrosophic soft 

topology (in short IVNS-topology) on  ,A E if the
following axioms are satisfied: 
(i)    , , ,

A AE E

  

(ii)     , : ,k k
A A

k K
f E k K f E 



   

(iii) If    , , ,A Ag E h E  then    , ,A Ag E h E  

The triplet  , ,A E  is called interval valued 
neutrosophic soft topological space (in short IVNS-
topological space) over  ,A E . The members of   are
called  –open IVNS sets (or simply open sets). Here 

: ( )
A

A IVNS U

  is defined as

         , 0,0 , 1,1 , 1,1 :
A

e x x U

   e A  . 

Example 3.2: Let  1 2 3, ,U u u u ,  1 2 3 4, , ,E e e e e , 

 1 2 3, ,A e e e . The tabular representation of  ,A E

given by 
U e1 e2 
u1 ([.5,.8],[.3,.5],[.2,.7]) ([.4,.7],[.2,.3],[.1,.3]) 
u2 ([.4,.7],[.3,.4],[.1,.2]) ([.6,.9],[.1,.2],[.1,.2]) 
u3 ([.5,1],[0,.1],[.3,.6]) ([.6,.8],[.2,.4],[.1,.3]) 

Table1:Tabular representation of  ,A E

The tabular representation of  ,
A

E

  is given by 

U e1 e2 

u1 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 
u2 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 
u3 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 

e3 
([0,0],[1,1],[1,1]) 
([0,0],[1,1],[1,1]) 
([0,0],[1,1],[1,1]) 

Table2:Tabular representation of  ,
A

E

The tabular representation of  1,Af E is given by

U e1 e2 

u1 ([.1,.7],[.4,.8],[.3,1]) ([.1,.3],[.4,.6],[.2,.6]) 
u2 ([.1,.3],[.6,.7],[.2,.8]) ([0,.5],[.5,.8],[.4,1]) 
u3 ([.4,.8],[.6,.7],[.6,.9]) ([0,.3],[.4,.7],[.2,.8]) 

e3 
([.2,.5],[.8,.9],[.4,.9]) 
([0,.3],[.6,.9],[.1,.7]) 
([.1,.3],[.6,.8],[.3,.7]) 

Table3:Tabular representation of  1,Af E

The tabular representation of  2 ,Af E is given by

U e1 e2 

u1 ([.4,.7],[.5,.7],[.4,.9]) ([.2,.3],[.4,.5],[.7,.9]) 
u2 ([.3,.5],[.4,.8],[.1,.4]) ([.4,.6],[.3,.5],[.2,.5]) 
u3 ([.3,.9],[.1,.2],[.6,.7]) ([.5,.7],[.6,.7],[.3,.4]) 

e3 
([.3,.7],[.5,.8],[.1,.2]) 
([.1,.3],[.3,.5],[.6,.8]) 
([.2,.6],[.3,.5],[.5,.8]) 

Table4: Tabular representation of  2 ,Af E

Let      3 1 2, , ,A A Af E f E f E   then the tabular 

representation of  3 ,Af E is given by 

e3 
([.3,.9],[0,.1],[0,.2]) 
([.4,.8],[.1,.2],[0,.5]) 
([.4,.9],[.1,.3],[.2,.4]) 
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U e1 e2 

u1 ([.1,.7],[.5,.8],[.4,1]) ([.1,.3],[.4,.6],[.7,.9]) 
u2 ([.1,.3],[.6,.8],[.2,.8]) ([0,.5],[.5,.8],[.4,1]) 
u3 ([.3,.8],[.6,.7],[.6,.9]) ([0,.3],[.6,.7],[.3,.8]) 

e3 
([.2,.5],[.8,.9],[.4,.9]) 
([0,.3],[.6,.9],[.6,.8]) 
([.1,.3],[.6,.8],[.5,.8]) 

Table5:Tabular representation of  3,Af E

Let      4 1 2, , ,A A Af E f E f E  then the tabular 

representation of  4 ,Af E is given by

U e1 e2 

u1 ([.4,.7],[.4,.7],[.3,.9]) ([.2,.3],[.4,.5],[.2,.6]) 
u2 ([.3,.5],[.4,.7],[.1,.4]) ([.4,.6],[.3,.5],[.2,.5]) 
u3 ([.4,.9],[.1,.2],[.6,.7]) ([.5,.7],[.4,.7],[.2,.4]) 

e3 
([.3,.7],[.5,.8],[.1,.2]) 
([.1,.3],[.3,.5],[.1,.7]) 
([.2,.6],[.3,.5],[.3,.7]) 

Table6:Tabular representation of  4 ,Af E

Here we observe that the sub-family 
            1 2 3 4

1 , , , , , , , , , , ,
A A A A A AE E f E f E f E f E


  

of  ,A E is a IVNS-topology on  ,A E , as it satisfies 

the necessary three axioms of topology and  , ,A E  is a 
IVNS-topological space. But the sub-family 

        1 2
2 , , , , , , ,

A A A AE E f E f E


   of  ,A E  is not an

IVNS-topology on  ,A E , as the union 

     4 1 2, , ,A A Af E f E f E  does not belong to 2 .

Definition 3.3: As every IVNS-topology on  ,A E must 

contains the sets  ,
A

E and  ,A E , so the family

    , , ,
A AE E


   forms a IVNS-topology on

 ,A E . The topology is called indiscrete IVNS-topology 

and the triplet  , ,A E  is called an indiscrete interval
valued neutrosophic soft topological space (or simply 
indiscrete IVNS-topological space). 

Definition 3.4: Let   denotes the family of all IVNS-

subsets of  ,A E . Then we observe that   satisfies all 

the axioms of topology on  ,A E . This topology is called
discrete interval valued neutrosophic soft topology and the 
triplet  , ,A E  is called discrete interval valued
neutrosophic soft topological space (or simply discrete 
IVNS-topological space). 

Theorem 3.5: Let  :i i I  be any collection of IVNS-

topology on  ,A E . Then their intersection i
i I




 is also 

a IVNS-topology on  ,A E . 

Proof: (i) Since    , , ,
A A iE E   for each i I . 

Hence    , , ,
A A i

i I
E E  



 .

(ii) Let   , :k
Af E k K be an arbitrary family

of interval valued neutrosophic soft sets where 

 ,k
A i

i I
f E 



  for each k K . Then for each i I , 

 ,k
A if E  for k K and since for each i I , i ia a

IVNS-topology, therefore  ,k
A i

k K
f E 



  for each i I . 

Hence  ,k
A i

k K i I
f E 

 

 .

(iii) Let    1 2, , ,A A i
i I

f E f E 


 , then 

   1 2, , ,A A if E f E  for each i I . Since for each i I , 

i is an IVNS-topology, therefore    1 2, ,A A if E f E  

for each i I . Hence    1 2, ,A A i
i I

f E f E 


  . 

Thus i
i I




 satisfies all the axioms of topology. 

Hence i
i I




 forms a IVNS-topology. But union of IVNS-

topologies need not be a IVNS-topology. Let us show this 
with the following example. 
Example 3.6: In example 3.2, the sub families 

      1
3 , , , , ,

A A AE E f E


    and  4 , ,
A

E 

   2, , ,A AE f E are IVNS-topologies in  ,A E . But 

their union         1 2
3 4 , , , , , , ,

A A A AE E f E f E


    

is not a IVNS-topology in  ,A E . 

Definition 3.7: Let  , ,A E  be an IVNS-topological 

space over  ,A E . An interval valued neutrosophic soft 
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subset  ,Af E  of  ,A E is called interval valued 
neutrosophic soft closed set (in short IVNS-closed set) if its 
complement  , c

Af E is a member of  . 

Example 3.8: Let us consider example 3.2. then the IVNS-
closed sets in  1, ,A E  are 

U e1 e2 
u1 ([.2,.7],[.5,.7],[.5,.8]) ([.1,.3],[.7,.8],[.4,.7]) 
u2 ([.1,.2],[.6,.7],[.4,.7]) ([.1,.2],[.8,.9],[.6,.9]) 
u3 ([.3,.6],[.9,1],[.5,1]) ([.1,.3],[.6,.8],[.6,.8]) 

e3 
([0,.2],[.9,1],[.3,.9]) 
([0,.5],[.8,.9],[.4,.8]) 
([.2,.4],[.7,.9],[.4,.9]) 

Table7:Tabular representation of  , c
A E  

U e1 e2 
u1 ([1,1], [0,0],[0,0]) ([1,1], [0,0],[0,0]) 
u2 ([1,1], [0,0],[0,0]) ([1,1], [0,0],[0,0]) 
u3 ([1,1], [0,0],[0,0]) ([1,1], [0,0],[0,0]) 

e3 
([1,1], [0,0],[0,0]) 
([1,1], [0,0],[0,0]) 
([1,1], [0,0],[0,0]) 

Table8:Tabular representation of  ,
A

c
E

U e1 e2 
u1 ([.3,1],[.2,.6],[.1,.7]) ([.2,.6],[.4,.6],[.1,.3]) 
u2 ([.2,.8],[.3,.4],[.1,.3]) ([.4,1],[.2,.5],[0,.5]) 
u3 ([.6,.9,[.3,.4],[.4,.8]) ([.2,.8],[.3,.6],[0,.3]) 

e3 
([.4,.9],[.1,.2],[.2,.5]) 
([.1,.6],[.1,.4],[0,.3]) 
([.3,.7],[.2,.4],[.1,.3]) 

Table9:Tabular representation of  1,
c

Af E

U e1 e2 
u1 ([.4,.9],[.3,.5],[.4,.7]) ([.7,.9],[.5,.6],[.2,.3]) 
u2 ([.1,.4],[.2,.6],[.3,.5]) ([.2,.5],[.5,.7],[.4,.6]) 
u3 ([.6,.7],[.8,.9],[.3,.9]) ([.3,.4],[.3,.4],[.5,.7]) 

e3 

([.1,.2],[.2,.5],[.3,.7]) 
([.6,.8],[.5,.7],[.1,.3]) 
([.5,.8],[.5,.7],[.2,.6]) 

Table10:Tabular representation of  2 ,
c

Af E

U e1 e2 
u1 ([.4,1],[.2,.5],[.1,.7]) ([.7,.9],[.4,.6],[.1,.3]) 
u2 ([.2,.8],[.2,.4],[.1,.3]) ([.4,1],[.2,.5],[0,.5]) 
u3 ([.6,.9],[.3,.4],[.3,.8]) ([.3,.8],[.3,.4],[0,.3]) 

e3 
([.4,.9],[.1,.2],[.2,.5]) 
([.6,.8],[.1,.4],[0,.3]) 
([.5,.8],[.2,.4],[.1,.3]) 

Table11:Tabular representation of  3 ,
c

Af E

U e1 e2 
u1 ([.3,.9],[.3,.6],[.4,.7]) ([.2,.6],[.5,.6],[.2,.3]) 
u2 ([.1,.4],[.3,.6],[.3,.5]) ([.2,.5],[.5,.7],[.4,.6]) 
u3 ([.6,.7],[.8,.9],[.4,.9])    ([.2,.4],[.3,.6],[.5,.7]) 

e3 
([.1,.2],[.2,.5],[.3,.7]) 
([.1,.7],[.5,.7],[.1,.3]) 

   ([.3,.7],[.5,.7],[.2,.6]) 

Table12:Tabular representation of  4 ,
c

Af E

are the IVNS-closed sets in  1, ,A E  . 

Theorem 3.9: Let  , ,A E  be an IVNS-topological 

space over  ,A E . Then 

1.  ,
A

c
E ,  , c

A E are IVNS-closed sets. 

2. Arbitrary intersection of IVNS-closed sets is
IVNS-closed set.

3. Finite union of IVNS-closed sets is IVNS-closed
set.

Proof: 1. Since    , , ,
A AE E   , therefore 

   , , ,
A

c c
AE E  are IVNS-closed sets.

2. Let   , :k
Af E k K be an arbitrary family of 

IVNS-closed sets in  , ,A E  and let 

   , ,k
A A

k K
f E f E



 .
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Now       , , ,
c

cc k k

A A A
k K k K

f E f E f E
 

  and  ,
ck

Af E 

for each k K , so  ,
ck

A
k K

f E 


 . Hence  , c
Af E  . 

Thus  ,Af E is IVNS-closed set.

3. Let   , : 1,2,3,...,i
Af E i n be a family of 

IVNS-closed sets in  , ,A E  and let    
1

, ,
n

i
A A

i
g E f E



 . 

Now       
1 1

, , ,
cn n

cc i i

A A A
i i

g E f E f E
 

   and 

 ,
ci

Af E  for 1,2,3,...,i n , so  
1

,
n

ci

A
i

f E 


 . Hence

 , c
Ag E  . Thus  ,Ag E is IVNS-closed set.

Definition 3.10: Let  1, ,A E   and  2, ,A E  be two 

IVNS-topological spaces over  ,A E . If each 

  2,Af E  implies   1,Af E  , then 1 is called

interval valued neutrosophic soft finer topology than 2

and 2 is called interval valued neutrosophic soft coarser
topology than 1 . 

Example 3.11: In example 3.2 and 3.6, 1 is interval
valued neutrosophic soft finer topology than 3  and 3 is
called interval valued neutrosophic soft coarser topology 
than 1 . 

Definition 3.12: Let  , ,A E  be a IVNS-topological 

space over  ,A E and ß be a subfamily of  . If every 
element of   can be express as the arbitrary interval 
valued neutrosophic soft union of some elements of ß, then 
ß is called an interval valued neutrosophic soft basis for the 
IVNS-topology  . 

Example 3.13: In example 3.2, for the IVNS-
topology

            1

3 41 2 , , ,, , , , , , , ,
A A AA A A f E f EE E f E f E


   , the 

subfamily           1 2 3ß= , , , , , , , , ,
A A A A AE E f E f E f E


 

of  ,A E is a interval valued neutrosophic soft basis 

for the IVNS-topology 1 .

4 Some Properties of Interval Valued Neutrosoph-
ic Soft Topological Spaces 

In this section some properties of interval valued 
neutrosophic soft topological spaces are introduced. Some 
results on IVNSInt and IVNSCl are also intoduced. 

Definition 4.1: Let  , ,A E  be a IVNS-topological 

space and let  , ( ; )Af E IVNSS U E . The interval

valued neutrosophic soft interior and closer of  ,Af E is 
denoted by IVNSInt(fA,E) and IVNSCl(fA,E) are defined as 

        , , : , ,A A A AIVNSInt f E g E g E f E    and 

 ,AINVNSCl f E 

      , : , ,c
A A Ag E f E g E  respectively. 

Example 4.2: Let us consider example 3.2 and take an 
IVNSS  5 ,Af E as 

U e1 e2 
u1 ([.2,.8],[.3,.6],[.2,.8]) ([.2,.4],[.4,.6],[.2,.4]) 
u2 ([.1,.6],[.4,.5],[.2,.7]) ([.2,.6],[.5,.7],[.1,.7]) 
u3 ([.5,.8],[.5,.6],[.5,.8]) ([.1,.4],[.4,.6],[.1,.5]) 

e3 
([.2,.6],[.7,.8],[.3,.4]) 
([.1,.4],[.2,.5],[.1,.5]) 
([.2,.5],[.5,.8],[.2,.4]) 

Table13:Tabular representation of  5 ,Af E

Now    5 1, ,A AIVNSInt f E f E and    5 1, ,
c

A AIVNSCl f E f E . 

Theorem 4.3: Let  , ,A E  be a IVNS-topological space 

and  ,Af E ,    , ;Ag E IVNSS U E  then the 
following properties hold 

1.    , ,A AIVNSInt f E f E

2.        , , , ,A A A Af E g E IVNSInt f E IVNSInt g E  

3.  ,AIVNSInt f E 

4.      , , ,A A Af E IVNSInt f E f E  

5.     , ,A AIVNSInt IVNSInt f E IVNSInt f E

6.    , , ,A A A AIVNSInt E IVNSInt U E U  

Proof: 
1. Straight forward.
2.    , ,A Af E g E  implies all the IVNS-open sets

contained in  ,Af E also contained in  ,Ag E . 
i.e.

             * * * *, : , , , : , ,A A A A A Af E f E f E g E g E g E     
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i.e.

             * * * *, : , , , : , ,A A A A A Af E f E f E g E g E g E     

i.e.    , ,A AIVNSInt f E IVNSInt g E

3.         * *, , : , ,A A A AIVNSInt f E f E f E f E  

It is clear that       * *, : , ,A A Af E f E f E   

       So,  ,AIVNSInt f E  . 
4. Let  ,Af E  , then by (1) 

   , ,A AIVNSInt f E f E . 

Now since  ,Af E  and    , ,A Af E f E , 
Therefore 
          * *, , : , , ,A A A A Af E g E g E g E IVNSInt f E   

i.e,    , ,A Af E IVNSInt f E

Thus    , ,A AIVNSInt f E f E

Conversly, let    , ,A AIVNSInt f E f E

Since by (3)  ,AIVNSInt f E 

Therefore  ,Af E 

5. By (3)  ,AIVNSInt f E 

 By (4)     , ,A AIVNSInt IVNSInt f E IVNSInt f E . 

6. We know that    , , ,A AE U E 

 By (4)    , , ,A A A AIVNSInt E IVNSInt U E U  

Theorem 4.4: Let  , ,A E  be a IVNS-topological space 

and  ,Af E ,    , ;Ag E IVNSs U E then the following
properties hold 

1.    , ,A Af E IVNSCl f E

2.        , , , ,A A A Af E g E IVNSCl f E IVNSCl g E  

3.   , c

AIVNSCl f E 

4.      , , ,c

A A Af E IVNSCl f E f E  

5.     , ,A AIVNSCl IVNSCl f E IVNSCl f E

6.    , , ,A A A AIVNSCl E IVNSCl U E U  

Proof: straight forward. 

Theorem 4.5: Let  , ,A E  be an IVNS-topological space

on  ,A E and let      , , , ;A Af E g E IVNSs U E .
Then the following properties hold 

1.         , , , ,A A A AIVNSInt f E g E IVNSInt f E IVNSInt g E  

2.         , , , ,A A A AIVNSInt f E g E IVNSInt f E IVNSInt g E  

3.         , , , ,A A A AIVNSCl f E g E IVNSCl f E IVNSCl g E  

4.         , , , ,A A A AIVNSCl f E g E IVNSCl f E IVNSCl g E  

5.     , ,c c

A AIVNSInt f E IVNSCl f E

6.     , ,c

A A

cIVNSCl f E IVNSInt f E

Proof: 
1. By theorem 4.2 (1),    , ,A AIVNSInt f E f E

and    , ,A AIVNSInt g E g E .   Thus 
       , , , ,A A A AIVNSInt f E IVNSInt g E f E g E   . 
Hence 
        , , , ,A A A AIVNSInt f E IVNSInt g E IVNSInt f E g E  

…………… (i) 
Again since      , , ,A A Af E g E f E  . By the-

orem 4.2 (2),       , , ,A A AIVNSInt f E g E IVNSInt f E  .
Similarly 
      , , ,A A AIVNSInt f E g E IVNSInt g E 

Hence 
        , , , ,A A A AIVNSInt f E g E IVNSInt f E IVNSInt g E   …

..………… (ii) 
Using (i) and (ii) we get, 
        , , , ,A A A AIVNSInt f E g E IVNSInt f E IVNSInt g E  

. 
2. Since      , , ,A A Af E f E g E  . 

By theorem 4.2 (2), 
      , , ,A A AIVNSInt f E IVNSInt f E g E 

.
Similarly,

      , , ,A A AIVNSInt g E IVNSInt f E g E 

.
Hence

        , , , ,A A A AIVNSInt f E g E IVNSInt f E IVNSInt g E  

.
3. Similar to 1.
4. Similar to 2.
5.           , , : , ,

cc

A A A AIVNSInt f E g E g E f E   

      

 

, : , ,

,

cc

A A A

c

A

g E f E g E

IVNSCl f E
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6. Similar to 5.
Equality does not hold in theorem 4.4 (2), (4). Let us

show this by an example. 

Example 4.6: Let  1 2,U u u ,  1 2 3, ,E e e e , 

 1 2,A e e . The tabular representation of  ,A E is giv-
en by 
U e1 e2 
u1 ([.5,.8],[.3,.5],[.2,.7]) ([.3,.9],[.1,.2],[0,.1]) 
u2 ([.4,.6],[.3,.4],[.1,.2]) ([.4,.8],[.1,.3],[.1,.2]) 
Table14:Tabular representation of  ,A E  

The tabular representation of  ,
A

E

  is given by 

U e1 e2 
u1 ([0,0], [1,1], [1,1]) ([0,0], [1,1], [1,1]) 
u2 ([0,0], [1,1], [1,1]) ([0,0], [1,1], [1,1]) 

Table15:Tabular representation of  ,
A

E

The tabular representation of  ,Af E is given by

U e1 e2 
u1 ([.1,.7],[.4,.8],[.3,1]) ([.2,.5],[.7,.9],[.3,.7]) 
u2 ([.1,.2],[.6,.7],[.2,.7]) ([0,.3],[.5,.8],[.4,1]) 
Table16:Tabular representation of  ,Af E

Clearly       , , , , ,
A A AE E f E


    is a IVNS-topology 

on  ,A E . Let us now take two interval valued 

neutrosophic soft sets  ,Ag E and  ,Ah E as 

U e1 e2 

u1 ([.1,.6],[.4,.9],[.4,1]) ([.1,.5],[.7,.9],[.3,.8]) 
u2 ([.1,.2],[.6,.7],[.2,.8]) ([0,.2],[.5,.9],[.4,1]) 
Table17:Tabular representation of  ,Ag E

U e1 e2 

u1 ([0,.7],[.5,.8],[.3,1]) ([.2,.5],[.8,1],[.6,.7]) 
u2 ([.1,.2],[.6,.8],[.3,.7]) ([0,.3],[.6,.8],[.5,1]) 
Table18:Tabular representation of  ,Ah E

Now      , , ,A A Ag E h E f E 

 
        , , , ,A A A AIVNSInt g E h E IVNSInt f E f E  

Also    , ,
AAIVNSInt g E E


 ,    , ,

AAIVNSInt h E E



 
         , , , , ,

A A AA AIVNSInt g E IVNSInt h E E E E
  
     

Thus 
        , , , ,A A A AIVNSInt f E g E IVNSInt f E IVNSInt g E   .

Therefore equality does not hold for (2). 

By theorem 4.4 (5), 

        , , , ,
A

ccc

A A AIVNSCl g E IVNScl g E E E

    . 

Similarly    , ,c
A AIVNScl h E E . 

Therefore 
         , , , , ,c c

A A A A AIVNSCl g E IVNSCl h E E E E     

.  Also 
         

     

  

 

, , , ,

, ,

,

,

cc c

A A A A

c

A A

c

A

c

A

IVNSCl g E h E IVNSCl g E h E

IVNSInt g E h E

IVNSInt f E

f E

  

 





Thus 
        , , , ,A A A AIVNSCl f E g E IVNSCl f E IVNSCl g E  

. Therefore equality doesnot hold in (4). 

5 Interval Valued Neutrosophic Soft Subspace 
Topology 

In this section we introduce the concept of 
interval valued neutrosophic soft subspace topology along 
with some examples and results. 
Theorem 5.1: Let  , ,A E  be an IVNS-topological 

space on  ,A E and    , ,A Af E E . Then the 

collection 
        , , , : ,

A A A Af E f E g E g E    is 

an IVNS-topology on  ,A E . 
Proof: 
(i) Since    , , ,

A AE E

   , therefore 

       ,, , ,
A A AA f f Ef E E E


      and 

       ,, , ,
AA A A f Ef E E f E    . 

(ii) Let    ,, ,
A

k
A f Ef E k K   .Then 

     , , ,k k
A A Af E f E g E  where  ,k

Ag E  for each

k K . 
Now 

             ,, , , , ,
A

k k k
A A A A A f E

k K k K k K
f E f E g E f E g E 

  

    

(since  ,k
A

k K
g E 



 as each  ,k
Ag E  . 

(iii) Let      
1 2

,, , ,
AA A f Ef E f E  then 

     1 1, , ,A A Af E f E g E  and 

     2 2, , ,A A Af E f E g E  where    1 2, , ,A Ag E g E  . 
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Now 
             1 2 1 2, , , , , ,A A A A A Af E f E f E g E f E g E    

            

1 2

,, , ,
AA A A f Ef E g E g E    

(since    1 2, ,A Ag E g E   as    1 2, , ,A Ag E g E  ). 

Definition 5.2: Let  , ,A E  be an IVNS-topological 

space on  ,A E  and    , ,A Af E E . Then the

IVNS-topology         , , , : ,
A A A Af E f E g E g E   

is called interval valued neutrosophic soft subspace 
topology and   ,, ,

AA f Ef E   is called interval valued 

neutrosophic soft subspace of  , ,A E  . 

Example 5.3: Let us consider the IVNS-topology 
            1 2 3 4

1 , , , , , , , , , , ,
A A A A A AE E f E f E f E f E    as

in example 3.2 and an IVNSS  ,Af E : 

U e1 e2 
u1 ([.4,.6],[.6,.7],[.3,.5]) ([.5,.7],[.4,.6],[0,.3]) 
u2 ([.2,.3],[.3,.6],[.5,.7]) ([.6,.8],[.4,.5],[.2,.3]) 
u3 ([.5,.7],[.4,.6],[.3,.4]) ([.4,.5],[.7,.9],[.6,.7]) 

e3 
([.3,.5],[.5,.8],[.2,.3]) 
([.5,.8],[.5,.7],[.2,.3]) 
([.1,.3],[.7,.9],[.5,.7]) 

Table19:Tabular representation of  1,Af E

Then      , , ,
A Af AE f E E


   : 

U e1 e2 
u1 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 
u2 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 
u3 ([0,0],[1,1],[1,1]) ([0,0],[1,1],[1,1]) 

e3 
([0,0],[1,1],[1,1]) 
([0,0],[1,1],[1,1]) 
([0,0],[1,1],[1,1]) 

Table20:Tabular representation of  ,
Af

E

     1 1, , ,A A Ag E f E f E  : 

U e1 e2 
u1 ([.1,.6],[.6,.7],[.3,1]) ([.1,.3],[.4,.6],[.2,.6]) 
u2 ([.1,.3],[.6,.7],[.5,.8]) ([0,.5],[.4,.5],[.4,1]) 
u3 ([.4,.7],[.4,.6],[.6,.9]) ([0,.3],[.7,.9],[.6,.8]) 

e3 
([.2,.5],[.5,.8],[.4,.9]) 
([0,.3],[.6,.9],[.2,.7]) 
([.1,.3],[.7,.9],[.5,.7]) 

Table21:Tabular representation of  1 ,Ag E

     2 2, , ,A A Ag E f E f E  :

U e1 e2 
u1 ([.4,.6],[.6,.7],[.4,.9]) ([.2,.3],[.4,.6],[.7,.9]) 
u2 ([.2,.3],[.4,.8],[.5,.7]) ([.4,.6],[.4,.5],[.2,.5]) 
u3 ([.3,.7],[.4,.6],[.6,.7]) ([.4,.5],[.7,.9],[.6,.7]) 

e3 
([.3,.5],[.5,.8],[.2,.3]) 
([.1,.3],[.5,.7],[.6,.8]) 
([.1,.3],[.7,.9],[.3,.8]) 

Table22:Tabular representation of  2 ,Ag E

     3 3, , ,A A Ag E f E f E  :

U e1 e2 
u1 ([.1,.6],[.6,.8],[.4,1]) ([.1,.3],[.4,.6],[.7,.9]) 
u2 ([.1,.3],[.6,.8],[.5,.8]) ([0,.5],[.4,.5],[.4,1]) 
u3 ([.3,.7],[.4,.6],[.6,.9]) ([0,.3],[.7,.9],[.6,.8]) 

e3 
([.2,.5],[.5,.8],[.4,.9]) 
([0,.3],[.6,.9],[.6,.8]) 
([.1,.3],[.7,.9],[.5,.8]) 

Table23:Tabular representation of  3 ,Ag E

     4 4, , ,A A Ag E f E f E  : 

U e1 e2 
u1 ([.2,.5],[.5,.8],[.4,.9]) ([.2,.5],[.5,.8],[.4,.9]) 
u2 ([0,.3],[.6,.9],[.6,.8]) ([0,.3],[.6,.9],[.6,.8]) 
u3 ([.1,.3],[.7,.9],[.5,.8]) ([.1,.3],[.7,.9],[.5,.8]) 

e3 
([.3,.5],[.5,.8],[.2,.3]) 
([.1,.3],[.5,.7],[.2,.7]) 
([.1,.3],[.7,.9],[.5,.7]) 

Table24:Tabular representation of  4 ,Ag E

Then 
         ,

1 2, , , , , , , ,
A Af E f A A AE f E g E g E 

 4 ,
A

g E  is an interval valued neutrosophic soft subspace
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topology for 1  and 
  ,, ,

AA f Ef E   is called interval 

valued neutrosophic soft subspace of  1, ,A E  . 

Theorem 5.4: Let  , ,A E  be an IVNS-topological space 

on  ,A E , ß  be an IVNS-basis for   and 

   , ,A Af E E . Then the family

        ,ß = , , : , ß
A A A Af E f E g E g E  is an IVNS-basis 

for subspace topology 
 ,Af E .

Proof: Let    ,,
AA f Eh E   be arbitrary, then there exists 

an IVNSS  ,Ag E   such that

     , , ,A A Ah E f E g E  . Since ß is a basis for  , 

therefore there exists a sub collection   , :i
A E i I  of 

ß such that    , ,i
A A

i I
g E E



  . 

Now 
            , , , , , ,i i

A A A A A A
i I i I

h E f E g E E f E E 
 

      

. Since      ,, , ß
A

i
A A f Ef E E  , therefore 

 ,ß
Af E is an

IVNS-basis for the subspace topology 
 ,Af E .

Conclusion 

In this paper we introduce the concept of interval 
valued neutrosophic soft topology. Some basic theorem 
and properties of the above concept are also studied. IVN 
interior and IVN closer of an interval valued neutrosophic 
soft set are also defined. Interval valued neutrosophic soft 
subspace topology is also studied. 

In future there will be more research work in this 
concept, taking the basic definitions and results from this 
article. 
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Generalization of Soft Neutrosophic Rings 

and Soft Neutrosophic Fields 

Mumtaz Ali, Florentin Smarandache, Luige Vlădăreanu, Muhammad Shabir

Abstract. In this paper we extend soft neutrosophic rings 
and soft neutrosophic fields to soft neutrosophic birings, 
soft neutrosophic N-rings and soft neutrosophic bifields 
and soft neutrosophic N-fields. We also extend soft neu-
trosophic ideal theory to form soft neutrosophic biideal 
and soft neutrosophic N-ideals over a neutrosophic biring 

and soft neutrosophic  N-ring . We have given examples 
to illustrate the theory of soft neutrosophic birings, soft 
neutrosophic N-rings and soft neutrosophic fields and 
soft neutrosophic N-fields and display many properties of 
these. 

Keywords: Neutrosophic biring, neutrosophic N-ring, neutrosophic bifield,neutrosophic N-field,  soft set, soft neutro-
sophic  biring, soft neutrosophic N-ring, soft neutrosophic bifield, soft neutrosophic N-field.

1 Introduction 

     Neutrosophy is a new branch of philosophy which 
studies the origin and features of neutralities in the nature. 
Florentin Smarandache in 1980 firstly introduced the con-
cept of neutrosophic logic where each proposition in neu-
trosophic logic is approximated to have the percentage of 
truth in a subset T, the percentage of indeterminacy in a 
subset I, and the percentage of falsity in a subset F so that 
this neutrosophic logic is called an extension of fuzzy  log-
ic. In fact neutrosophic set is the generalization of classical 
sets, conventional fuzzy set, intuitionistic fuzzy set and in-
terval valued fuzzy set. This mathematical tool is used to 
handle problems like imprecise, indeterminacy and incon-
sistent data etc. By utilizing neutrosophic theory, Vasantha 
Kandasamy and Florentin Smarandache dig out neutro-
sophic algebraic structures.  Some of them are neutrosoph-
ic fields, neutrosophic vector spaces, neutrosophic groups, 
neutrosophic bigroups, neutrosophic N-groups, neutro-
sophic semigroups, neutrosophic bisemigroups, neutro-
sophic N-semigroup, neutrosophic loops, neutrosophic bi-
loops, neutrosophic N-loop, neutrosophip groupoids, and 
neutrosophic bigroupoids and so on. 

Molodtsov in  11  laid down the stone foundation of a
richer structure called soft set theory which is free from the 
parameterization inadequacy, syndrome of fuzzy se theory, 
rough set theory, probability theory and so on. In many ar-
eas it has been successfully applied such as smoothness of 

functions, game theory, operations research, Riemann inte-
gration, Perron integration, and probability. Recently soft 
set theory has attained much attention since its appearance 
and the work based on several operations of soft sets intro-
duced in   2,9,10 .  Some more exciting properties and

algebra may be found in 1 . Feng et al. introduced the soft

semirings 5 . By means of level soft sets an adjustable
approach to fuzzy soft sets based decision making can be 
seen in 6 . Some other new concept combined with fuzzy

sets and  rough sets was presented in 7,8 . AygÄunoglu

et al. introduced the Fuzzy soft groups 4 .
      Firstly, fundamental and basic concepts are given for 
neutrosophic birings, neutrosophic N-rings, neutrosohic bi-
fields and soft neutrosophic N-fields . In the next section 
we presents  the newly defined notions and results in soft 
neutrosophic birings, soft neutrosophic N-rings  and soft 
neutrosophic bifields and soft neutrosophic N-fields. Vari-
ous types of soft neutrosophic biideals and N-ideals of 
birings and N-rings  are defined and elaborated with the 
help of examples. 

2 Fundamental Concepts 

In this section, we give a brief description of neutrosophic 
birings, neutrosophic N-rings, neutrosophic bifields and 
neutrosophic N-fields respectively. 

Mumtaz Ali, Florentin Smarandache, Luige Vladareanu, Muhammad Shabir. 
Generalization of Soft Neutrosophic Rings and Soft Neutrosophic Fields. Neutrosophic 
Sets and Systems 6, 35-41
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Definition 2.1. Let  ( (R), , )BN   be a non-empty set 
with two binary operations   and .  ( (R), , )BN   is 

said to be a neutrosophic biring if 1 2(Rs)BN R R 

where atleast one of  1(R , , ) or 2(R , , ) is a neutro-

sophic ring and other is just a ring. 1R and 2R are proper 

subsets of (R).BN
Definition 2.2: Let 1 2(R) (R , , ) (R , , )BN     be a 

neutrosophic biring. Then  (R)BN  is called a commuta-

tive neutrosophic biring if each 1(R , , ) and 2(R , , )

is a commutative neutrosophic ring. 

Definition 2.3: Let 1 2(R) (R , , ) (R , , )BN     be a 

neutrosophic biring. Then  (R)BN  is called a pseudo 

neutrosophic biring if each 1(R , , ) and 2(R , , ) is a 
pseudo neutrosophic ring. 

Definition 2.4 Let 1 2( (R) ; , )BN R R   be a neutro-

sophic biring. A proper subset  ( , , )T   is said to be a 
neutrosophic subbiring of (R)BN  if 

1)  1 2T T T   where 1 1T R T  and 

2 2T R T  and 

2) At least one of 1( , )T  or 2( , )T  is a neutrosophic 
ring.

Definition 2.5: If both 1(R , ) and 2(R , ) in the above 
definition 2.1 are neutrosophic rings then we call  
( (R), , )BN   to be a strong neutrosophic biring. 

Definition 2.6 Let 1 2( (R) ; , )BN R R   be a neutro-

sophic biring and let ( , , )T   is a neutrosophic subbiring 
of (R)BN . Then ( , , )T   is called a neutrosophic biide-
al of ( )BN R  if 

1) 1 2T T T  where 1 1T R T   and 

2 2T R T  and 

2) At least one of 1( , , )T   or 2( , , )T  is a neutrosoph-
ic ideal.

If both 1( , , )T  and 2( , , )T  in the above  definition are 

neutrosophic ideals, then we call ( , , )T   to be a strong 

neutrosophic biideal of ( )BN R . 

Definition 2.7:  Let 1 2 1 2{N(R), ,..., , , ,..., }N   be a 
non-empty set with two N -binary operations defined on 
it. We call ( )N R  a neutrosophic N -ring  ( N  a positive 
integer)  if the following conditions are satisfied. 
1) 1 2N(R) ... NR R R    where each iR is a 

proper subset of N(R)  i.e. i jR R or j iR R if  

i j . 

2) (R , , )i i i is either a neutrosophic ring or a ring for

1,2,3,...,i N . 

Definition 2.8:  If all the N -rings (R , )i i  in definition

2.7  are neutrosophic rings  (i.e. for  1,2,3,...,i N ) 
then we call N(R)  to be a neutrosophic strong N -ring. 

Definition 2.9: Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2{P ....P , , ,..., }N NP P       of N(R)  is said to 
be a neutrosophic N -subring if 

, 1,2,...,i iP P R i N   are subrings of iR in which 
atleast some of the subrings are neutrosophic subrings. 

Definition 2.10:  Let 

1 2 1 2 1 2N(R) {R .... R , , ,..., , , ,..., }N N NR      

 be a neutrosophic  N -ring. A proper subset 

1 2 1 2 1 2{P .... , , ,..., , , ,..., }N N NP P P      

where t tP P R  for  1,2,...,t N is said to be a 

neutrosophic N -ideal of ( )N R  if the following condi-
tions are satisfied. 

1) Each it is a neutrosophic subring  of
, 1,2,...,tR t N .

2) Each it is a two sided ideal of tR for 1,2,...,t N . 

If (P , , )i i i  in the above  definition are neutrosophic ide-

als, then we call (P , , )i i i  to be a strong neutrosophic N-

ideal of ( )N R . 

Definition 2.11:  Let  ( (F), , )BN   be a non-empty set 
with two binary operations   and .  ( (F), , )BN   is 
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said to be a neutrosophic bifiel if 1 2(F)BN F F 

where atleast one of  1(F , , )  or 2(F , , ) is a neutro-

sophic field and other is just a field. 1F and 2F are proper

subsets of (F).BN  

If in the above definition both 1(F , , )  and 2(F , , ) are 

neutrosophic fields, then we call ( (F), , )BN   to be a 
neutrosophic strong bifield. 

Definition 2.12:  Let 1 2(F) (F , , )BN F   be a neu-

trosophic bifield. A proper subset  ( , , )T   is said to be a 
neutrosophic subbifield of (F)BN  if 

1.  1 2T T T   where 1 1T F T  and 

2 2T F T  and 

2. At least one of 1( , )T  or 2( , )T  is a neutrosoph-
ic field and the other is just a field. 

Definition 2.13:  Let 1 2 1 2{N(F), ,..., , , ,..., }N   be a 
non-empty set with two N -binary operations defined on 
it. We call ( )N R  a neutrosophic N -field  ( N  a positive 
integer)  if the following conditions are satisfied. 

1. 1 2N(F) ... NF F F    where each iF is a 

proper subset of N(F) i.e. i jR R or 

j iR R if  i j . 

2. (R , , )i i i is either a neutrosophic field or just a

field for 1,2,3,...,i N .
If in the above definition each (R , , )i i i is a neutro-

sophic field, then we call ( )N R  to be a strong neutro-
sophic N-field. 

Definition 2.14: Let 

1 2 1 2 1 2N(F) {F .... , , ,..., , , ,..., }N N NF F      

 be a neutrosophic N -field. A proper subset 

1 2 1 2 1 2{T .... T , , ,..., , , ,..., }N N NT T        of 

(F)N is said to be a neutrosophic N -subfield if each  

( , )i iT  is a neutrosophic subfield of  (F , , )i i i  for

1,2,...,i N where i iT F T  . 

3 Soft Neutrosophic Birings 

Definition 3.1: Let ( (R), , )BN   be a neutrosophic   
biring and ( , )F A  be a soft set over ( (R), , ).BN   Then 

( , )F A is called soft neutrosophic biring if and only if 
( )F a is a neutrosophic subbiring of ( (R), , )BN  for 

all .a A

Example 3.2: Let 1 2(R) (R , , ) (R , , )BN     be a 
neutrosophic biring, where  1(R , , ) ( , , )I    
and 2(R , , ) ( , , )    . Let 1 2 3 4{ , , , }A a a a a be a 
set of parameters. Then clearly ( , )F A  is a soft 
neutrosophic  biring over ( )BN R , where 

 1 2( ) 2 , 3 ,F a I F a I     

   3 45 , 6 2F a I F a I      . 
Theorem 3.3: Let  ,F A   and  H,A   be two soft

neutrosophic  birings  over  ( )BN R . Then their intersec-

tion  , ,F A H A   is again a soft neutrosophic

biring over  ( )BN R  .

Proof.  The proof is straightforward. 

Theorem 3.4:  Let  ,F A   and  ,H B   be two  soft

neutrosophic birings over  ( )BN R .  If  A B ,

then  , ,F A H B   is a soft neutrosophic  biring

over ( )BN R .

Proof. This is straightforward. 

Remark 3.5: The extended union of two soft  neutrosophic 
birings  ,F A   and  ,K B   over  ( )BN R  is not a

soft neutrosophic ring over  ( )BN R .

We check this by the help of  Examples. 

Remark 3.6: The restricted union of two soft neutrosophic  
rings  ,F A   and  ,K B   over  R I  is not a

soft neutrosophic ring over  .R I

Theorem 3.7: The  OR   operation of two soft neutro-
sophic  rings over  R I  may not be a soft neutro-

sophic  ring over R I . 

 One can easily check these remarks with the help of Ex-
amples. 

Theorem 3.8:  The extended intersection of two  soft neu 
trosophic  birings over  ( )BN R  is soft neutrosophic
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biring over  ( )BN R .

Proof. The proof is straightforward. 

Theorem 3.9:  The restricted intersection of two soft  neu-
trosophic birings over  ( )BN R  is  soft neutrosophic
biring over  ( )BN R .

Theorem 3.10: The AND  operation of two  soft neutro-
sophic  birings over  ( )BN R   is  soft neutrosophic  biring
over  ( )BN R .

Definition 3.11:  Let ,F A  be a soft set over a neutro-

sophic biring over ( )BN R . Then ( , )F A  is called an
absolute soft neutrosophic biring if ( ) ( )F a BN R  for
all .a A

Definition 3.12:  Let ( , )F A  be a soft set over a neutro-
sophic ring ( )BN R . Then ( , )F A  is called soft neutro-
sophic biideal over ( )BN R  if and only if ( )F a  is a neu-
trosophic biideal of ( )BN R .

Theorem 3.1.3:  Every soft neutrosophic biideal ( , )F A
over a neutrosophic biring ( )BN R  is trivially a soft neu-
trosophic biring but the converse may not be true. 

Proposition 3.14: Let ( , )F A  and ( , )K B  be two soft
neutosophic biideals over a neutrosophic biring  

( )BN R . Then

1. Their extended union ( , ) ( , )EF A K B  is

again a soft neutrosophic biideal over ( )BN R .

2. Their extended intersection ( , ) ( , )EF A K B
is again a soft neutrosophic biideal over
( )BN R .

3. Their restricted union ( , ) ( , )RF A K B  is

again a soft neutrosophic biideal over ( )BN R .

4. Their restricted intersection ( , ) ( , )RF A K B
is again a soft neutrosophic biideal over
( )BN R .

5. Their OR  operation ( , ) ( , )F A K B  is again
a soft neutrosophic biideal over ( )BN R .

6. Their AND  operation ( , ) ( , )F A K B  is
again a soft neutrosophic biideal over ( )BN R .

Definition 3.15: Let ( , )F A  and ( , )K B  be two soft
neutrosophic birings over ( )BN R . Then ( , )K B  is
called soft neutrosophic subbiring of ( , )F A , if

1. B A , and
2. ( )K a is a neutrosophic subbiring of ( )F a for

all a A .

Theorem 3.16:  Every soft biring  over a biring  is a soft 
neutrosophic subbiring of a soft  

neutrosophic biring  over the corresponding neutrosophic 
biring  if B A .

Definition 3.16: Let ( , )F A  and ( , )K B  be two soft
neutrosophic birings over ( )BN R . Then ( , )K B  is
called a soft neutrosophic  biideal of ( , )F A , if

1. B A , and
2. ( )K a is a neutrosophic biideal of ( )F a for all
a A .

Proposition 3.17:  All soft neutrosophic biideals are trivi-
ally soft neutrosophic subbirings. 

4 Soft Neutrosophic N-Ring 

Definition 4.1: Let 1 2( (R), , ,..., )NN     be a 
neutrosophic  N-ring and ( , )F A  be a soft set over 

( )N R Then ( , )F A  is called soft neutrosophic N-ring if 
and only if ( )F a is a neutrosophic sub N-ring of 

( )N R for all .a A

Example 4.2: Let 
1 2 3(R) (R , , ) (R , , ) (R , , )N       be 

aneutrosophic 3-ring, where  
1(R , , ) ( , , )I     , 2(R , , ) ( , , )    and 
3(R , , ) ( , , )    . Let 1 2 3 4{ , , , }A a a a a be a set 

of parameters. Then clearly ( , )F A  is a soft neutrosophic  
N-ring over ( )N R , where

 1 2( ) 2 , 3 ,F a I F a I       

   3 45 2 , 6 2F a I F a I       
. 
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Theorem 4.3:  Let  ,F A   and  H,A   be two soft

neutrosophic  N-rings  over  ( )N R . Then their intersec-

tion  , ,F A H A is again a soft neutrosophic N-

ring over  ( )N R  .

Proof.  The proof is straightforward. 

Theorem 4.4:  Let  ,F A   and  ,H B   be two  soft

neutrosophic N-rings over  ( )N R .  If  A B ,

then  , ,F A H B   is a soft neutrosophic  N-ring

over ( )N R .

Proof. This is straightforward. 

Remark 4.5: The extended union of two soft  neutrosophic 
N-rings  ,F A   and  ,K B   over  ( )BN R  is not a

soft neutrosophic ring over  ( )N R .

We can check this by the help of  Examples. 

Remark 4.6: The restricted union of two soft neutrosophic  
N-rings  ,F A   and  ,K B   over  ( )N R  is not a

soft neutrosophic N-ring over  ( )BN R

Theorem 4.7: The  OR   operation of two soft neutro-
sophic  N-rings over  ( )N R  may not be a soft neutro-
sophic  N-ring over ( )N R .

 One can easily check these remarks with the help of Ex-
amples. 

Theorem 4.8: The extended intersection of two  soft neu-
trosophic  N-rings over  ( )N R  is soft neutrosophic  Nring
over  ( )N R .

Proof. The proof is straightforward. 

Theorem. The restricted intersection of two soft  neutro-
sophic N-rings over  ( )N R  is  soft neutrosophic  N-ring
over  (R)N .

Proof. It is obvious. 

Theorem 4.9: The AND  operation of two  soft neutro-
sophic  N-rings over  ( )N R   is  soft neutrosophic  N-ring

over  ( )N R .

Definition 4.10: Let ,F A  be a soft set over a neutro-

sophic N-ring over ( )N R . Then ( , )F A  is called an ab-
solute soft neutrosophic N-ring if ( ) ( )F a N R  for all

.a A

Definition 4.11:  Let ( , )F A  be a soft set over a neutro-
sophic N-ring ( )N R . Then ( , )F A  is called soft neutro-
sophic N-ideal over ( )N R  if and only if ( )F a  is a neu-
trosophic N-ideal of ( )N R .

Theorem 4.12:  Every soft neutrosophic N-ideal ( , )F A
over a neutrosophic N-ring ( )N R  is trivially a soft neu-
trosophic N-ring but the converse may not be true. 

Proposition 4.13:  Let ( , )F A  and ( , )K B  be two soft
neutosophic N-ideals over a neutrosophic N-ring ( )N R .
Then 

1. Their extended intersection ( , ) ( , )EF A K B

is again a soft neutrosophic N-ideal over ( )N R .

2. Their restricted intersection ( , ) ( , )RF A K B

is again a soft neutrosophic N-ideal over ( )N R .
3. Their AND  operation ( , ) ( , )F A K B  is

again a soft neutrosophic N-ideal over ( )N R .

Remark 4.14: Let ( , )F A  and ( , )K B  be two soft neu-
tosophic N-ideals over a neutrosophic N-ring ( )N R .
Then 

1. Their extended union ( , ) ( , )EF A K B  is not

a soft neutrosophic N-ideal over ( )N R .

2. Their restricted union ( , ) ( , )RF A K B  is not

a soft neutrosophic N-ideal over ( )N R .
3. Their OR  operation ( , ) ( , )F A K B  is not a

soft neutrosophic N-ideal over ( )N R .

One can easily see these by the help of examples. 

Definition. 4.15: Let ( , )F A  and ( , )K B  be two soft
neutrosophic N-rings over ( )N R . Then ( , )K B  is called
soft neutrosophic sub N-ring of ( , )F A , if

1. B A , and
2. ( )K a is a neutrosophic sub N-ring of ( )F a for
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all a A .

Theorem 4.16: Every soft N-ring  over a N-ring  is a soft 
neutrosophic sub N-ring of a soft  

neutrosophic N-ring  over the corresponding neutrosophic 
N-ring  if B A .

Proof. Straightforward. 

Definition 4.17: Let ( , )F A  and ( , )K B  be two soft
neutrosophic N-rings over ( )N R . Then ( , )K B  is called
a soft neutrosophic  N-ideal of ( , )F A , if

1. B A , and
2. ( )K a is a neutrosophic N-ideal of ( )F a for all
a A .

Proposition 4.18: All soft neutrosophic N-ideals are trivi-
ally soft neutrosophic sub N-rings. 

5 Soft Neutrosophic Bifield 

Defintion 5.1: Let ( )BN K  be a neutrosophic bifield and
let ( , )F A  be a soft set over ( )BN K . Then ( , )F A  is
said to be soft neutrosophic bifield if and only if ( )F a  is a
neutrosophic subbifield of ( )BN K  for all a A .

Example 5.2:  Let ( )BN K I  be a
neutrosophic bifield of complex numbers. Let 

1 2{ , }A a a  be a set of parameters and let ( , )F A  be

a soft set of ( )BN K . Then (F,A)  is a soft neutrosophic
bifield over ( )BN K , where

1 2( ) , ( )F a I F a I . 

Where I  and I  are the neutosophic 
fields of real numbers and rational numbers. 

Proposition 5.3:  Every soft neutrosophic bifield is trivial-
ly a soft neutrosophic biring. 

Proof. The proof is trivial. 

Definition 5.4: Let ( , )F A  be a soft neutrosophic bifield 
over a neutrosophic bifield ( )BN K . Then ( , )F A  is  
called an absolute soft neutrosophic bifield if  

( ) ( )F a BN K , for all a A . 

Soft Neutrosophic N-field 

Defintion 5.4:  Let ( )N K  be a neutrosophic N-field and
let ( , )F A  be a soft set over ( )N K . Then ( , )F A  is
said to be soft neutrosophic N-field if and only if ( )F a  is
a neutrosophic sub N-field of ( )N K  for all a A .

Proposition 5.5: Every soft neutrosophic N-field is trivial-
ly a soft neutrosophic N-ring. 

Proof. The proof is trivial. 

Definition 5.6: Let ( , )F A  be a soft neutrosophic N-field 
over a neutrosophic N-field ( )N K . Then ( , )F A  is  
called an absolute soft neutrosophic N-field if  

( ) ( )F a N K , for all a A . 

Conclusion 
In this paper we extend neutrosophicb rings, neutrosophic 
N-rings, Neutrosophic bifields and neutrosophic N-fields
to soft neutrosophic  birings, soft neutrosophic N-rings and
soft neutrosophic bifields and soft  neutrosophic N-fields
respectively. The neutrosophic ideal theory  is extend to
soft neutrosophic biideal and soft neutrosophic N-ideal.
Some new types of  soft neutrosophic ideals are discovered
which is strongly neutrosophic or purely neutrosophic. Re-
lated examples are given to illustrate soft neutrosophic
biring, soft neutrosophic N-ring, soft neutrosophic bifield
and soft neutrosophic N-field and many theorems and
properties are discussed.
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Neutrosophic Refined  Similarity 
Measure Based on Cosine Function 

Said Broumi, Florentin Smarandache

Abstract: In this paper, the cosine similarity measure of  
neutrosophic refined (multi-) sets is proposed and its properties 
are studied. The concept of this cosine similarity measure of  
neutrosophic refined sets is the extension of improved cosine  

similarity measure of single valued neutrosophic. Finally, using  
this cosine similarity measure of  neutrosophic refined set, the 
application of medical diagnosis is presented. 

Keywords:  Neutrosophic set, neutrosophic refined set, cosine similarity measure. 

1.Introduction:

The  neutrsophic  sets  (NS), proposed by  F. Smarandache 
[7], has been studied and applied in different fields,  
including   decision  making  problems   [1,15],  databases  
[21,22],  medical  diagnosis  problems  [2],  topology  [6], 
control  theory [40],  image  processing [9,22,44] and so 
on. The  concept  of neutrosophic  sets  generalizes  the  
following  concepts:  the classic set, fuzzy set 
[20],intuitionistic fuzzy set [19], and interval valued 
intuitionistic fuzzy set [18] and so on.  The character of 
NSs is that the values of its membership function, non-
membership function and  indeterminacy  function  are  
subsets.  Therefore, H.Wang et al [10] introduced an 
instance of neutrosophic sets known as single valued 
neutrosophic sets (SVNS), which were motivated from the 
practical point of view and that can be used in real 
scientific and engineering application, and provide the set 
theoretic operators and various properties of SVNSs. 
However, in many applications, due to lack of knowledge 
or  data  about  the  problem  domains,  the  decision  
information  may  be  provided  with  intervals,  instead  of 
real numbers.  Thus,  interval  valued  neutrosophic  sets 
(IVNS), as a useful generation of NS, was introduced by 
H.Wang et al [11],  which  is  characterized  by  a
membership  function, non-membership  function  and  an
indeterminacy  function, whose values are intervals rather
than real numbers. Also, the interval valued neutrosophic

set can represent uncertain, imprecise,  incomplete  and  
inconsistent  information  which exist  in  the  real  world.  
As  an  important  extension  of  NS, SVNS and IVNS has 
many applications in real life [13,14,15,16, 
17,25,32,33,34,35,36,37,38,39] 

Several similarity measures have been proposed by some 
researchers. Broumi and Smarandache [35] defined the 
Hausdorff distance between neutrosophic sets and some 
similarity measures based on the distance, set theoretic 
approach, and matching function to calculate the similarity 
degree between neutrosophic sets. In the same year, 
Broumi and Smarandache [32] also proposed the 
correlation coefficient between interval neutrosphic sets. 
Majumdar and Smanta [24] introduced several similarity 
measures of single valued neutrosophic sets(SVNs) based 
on distances, a maching function, memebership grades, 
and then proposed an entropy measure for a SVNS. 
J.Ye[13] also presented the Hamming and Euclidean
distances between interval neutrosophic sets(INSs) an their
similarity measures and applied them to multiple attribute
decision –making problems with interval neutrosophic
information. J.Ye [15] further proposed the distance-based
similarity measure of SVNSs and applied it to the group
decision making problems with single valued neutrosophic
information. In other research, J.Ye [16] proposed three
vector similarity measure for SNSs,an instance of SVNS
and INS, including the Jaccard, Dice, and cosine similarity
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measures for SVNS and INSs, and applied them to 
multicriteria decision-making problems with simplified 
neutrosophic information. Recently,  A.Salama [4], 
introduced and studied the concepts of correlation and 
correlation coefficient of neutrosophic data in probability 
spaces and study some of their properties. 

The cosine similarity measure, based on Bhttacharya’s 
distance [3] is the inner product of the two vectors divided 
by the product of their lengths. As the cosine similarity 
measure is the cosine of the angle between the vector 
representations  of fuzzy sets, it is extended to cosine 
similarity measures between SVNSs by J.Ye [15,17] and 
also to cosine similarity measures between INSs by 
Broumi and Smarandache [36]. 

The notion of multisets was formulated first in [31] by 
Yager as generalization of the concept of set theory. 
Several authors from time to time made a number of 
generalization of set theory. For example, Sebastian and 
Ramakrishnan [42] introduced a new notion called 
multifuzzy sets, which is a generalization of multiset. 
Since then, Sebastian and Ramakrishnan [41,42] discussed 
more properties on multi fuzzy set. Later on, T. K. Shinoj 
and S. J. John [43]  made an extension of the concept of 
fuzzy multisets by an intuitionistic fuzzy set, which called 
intuitionistic fuzzy multisets(IFMS). Since then in the 
study on IFMS, a lot of excellent results have been 
achieved by researchers [26,27,28,29,30]. An element of a 
multi fuzzy sets can occur more than once with possibly 
the same or different membership values, whereas an 
element of intuitionistic fuzzy multisets allows the 
repeated occurrences of membership and non--membership 
values. The concepts of FMS and IFMS fails to deal with 
indeterminatcy. In 2013, Smarandache [8] extended the 
classical neutrosophic logic to n-valued refined 
neutrosophic logic, by refining each neutrosophic 
component T, I, F into respectively,   ,   , ...,   and   ,   , 
...,    and   ,   , ...,   . Recently, I.Deli et al .[12] 
introduced the concept of neutrosophic refined sets and 
studied some of their basic properties. The concept of 
neutrosophic refined set (NRS) is  a generalization of fuzzy 
multisets and intuitionistic fuzzy multisets. 

In this paper, motivated by the cosine similarity measure  
based  on  Bhattacharya’s  distance  and the improved 
cosine similarity measure of single valued neutrosophic 
proposed by J.Ye [17]. we  propose  a new  method called 
“cosine  similarity  measure  for   neutrosophic refined 
sets.  The  proposed cosine similarity  measure  is  applied  
to medical diagnosis problems. The paper is structured as 
follows. In Section 2, we first recall the  necessary  
background on cosine similarity measure and neutrosophic 
refined sets. In Section 3,we present cosine similarity 
measure for neutrosophic refined sets  and examines their 

respective properties. In section 4, we present a medical 
diagnosis using  NRS –cosine similarity measure. Finally 
we conclude the paper. 

2.Preliminaries

This section gives a brief overview of the concepts of 
neutrosophic set, single valued neutrosophic set, cosine 
similarity measure and neutrosophic refined sets. 

2.1 Neutrosophic Sets 
Definition 2.1 [7] 

Let U be an universe of discourse then the neutrosophic 
set A is an object having the form  

A = {< x:   ( ),   ( ),   ( )>, x   U}, where the 
functions T, I, F : U→ ]−0, 1+[  define respectively the 
degree of membership (or Truth) , the degree of 
indeterminacy, and the degree of non-membership (or 
Falsehood) of the element x   U to the set A with the 
condition.  

   −0 
≤   ( )+    ( )+    ( ) ≤3+.  (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 
of ]−0, 1+[. So instead of] −0, 1+[ we need to take the 
interval [0, 1] for technical applications, because ]−0, 
1+[will be difficult to apply in the real applications  such as 
in scientific and engineering problems.  

        For two NS,   = {<x,  ( ), ( ) ( )> |  } 

And  = {<x,   ( ),    ( ) ( )> |  } the two 
relations are defined as follows: 

(1)  If and only if ( ) ( ), ( ) 
( ), ( ) ( ) 

(2)   , ( )=  ( ), ( ) 
=  ( ), ( ) =  ( ) 

2.2Single Valued Neutrosophic Sets 
Definition 2.2 [10] 

Let X be a space of points (objects) with generic 
elements in X denoted by x. An SVNS A in X is 
characterized by a truth-membership function ( ), an 
indeterminacy-membership function ( ), and a falsity-
membership function ( ),  for each point x in X,   ( ), 
( ),   ( )   [0, 1]. 

When X is continuous, an SVNS A can be written as 

  A=∫  ( )   ( )   ( )  

(2) 

When X is discrete, an SVNS A can be written as 
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  A= ∑  (  )   (  )   (  )                                               
(3) 

For two SVNS,  = {<x,  ( ) ,   ( ) ( )> |  } 

And       ={ <x, ( ),    ( ) ( )> |  } the two 
relations are defined as follows: 

(1)  if and only if ( ) ( ),   ( ) 
( ),   ( ) ( ) 

(2)   , ( ) =  ( ), 
( ) =  ( ),   ( ) =  ( ) for any  . 

2.3 Cosine Similarity 
Definition 2.3 [5] 

Cosine similarity is a fundamental angle-based measure 
of similarity between two vectors of n dimensions using the 
cosine of the angle between them. It measures the similarity 
between two vectors based only on the direction, ignoring 
the impact of the distance between them. Given two vectors 
of attributes, X = (  ,   , … ,   ) and Y= (  ,   , … ,   ), 
the cosine similarity, cosθ, is represented using a dot 
product and magnitude as 

  Cosθ = ∑  

√∑ √∑

 (4)                

In vector space, a cosine similarity measure based on 
Bhattacharya’s distance [3] between two fuzzy set    (  ) 
and   (  ) defined as follows: 

(  ) = ∑  (  )
 
    (  )

√∑  (  )
  √∑  (  )

  
 

 (5) 

The cosine of the angle between the vectors is within 
the values between 0 and 1. 

In 3-D vector space, J. Ye [15] defines cosine similarity 
measure between SVNS as follows: 

(  ) = 
∑  (  )
 
    (  )  (  )  (  )  (  )  (  )

√∑  (  )
 

 (  )
 

 (  )
  √∑  (  )

 
 (  )

 
 (  )

  
 

(6) 

2.4. Neutrosophic  Refined Sets.          
Definition 2.4 [12]  
Let   and   be two neutrosophic refined sets. 
A = {<x,(   ( ),    ( ),...,   

 ( )), ( ( ),    ( ),...,   
 ( )), 

( ( ),    ( ),…,   
 ( ))>: x   X} 

where      ( ),    ( ),...,   
 ( ) : E  [0 ,1], 

,    ( ),    ( ),...,   
 ( ): E  [0 ,1], and 

( ),    ( ),...,   
 ( ): E  [0 ,1]  such that  0 ( ) 

+ ( ) + ( )  3 for i=1,2,…,p for any x  X 

,(   ( ),    ( ),…,   
 ( )), (   ( ),    ( ),…,   

 ( )) and 
( ( ),    ( ),…,   

 ( )) is the truth-membership 
sequence, indeterminacy-membership sequence and 
falsity-membership sequence of the element x, 
respectively. Also, P is called the dimension of 
neutrosophic refined sets (NRS) A. 

3.Cosine similarity measure for Neutrosophic
refined Sets.

Based on the improved cosine similarity measure of single 
valued neutrosophic sets proposed by J.Ye [17] which 
consists of membership, indeterminacy and non 
membership functions defined as follow: 

(A,B)= 
∑ [

 (|  (  )  (  )| |  (  )  (  )| |  (  )  (  )|)] 

         (7) 
And the cosine similarity measure of neutrosophic refined 
sets consisting of the multiple membership, indetrrminacy, 
and non-membership function is  

(A,B)=

∑ {
 
∑    [

 (|  
 (  ) (  )| |  

 (  ) (  )| |  
 (  ) (  )|)

]} 

  (8) 
Proposition 3.1. The defined cosine similarity measure 

(A,B) between NRS A and B satisfies the following 
properties 

1. 0 (   1 
2. (A,B=1 if and only if A= B
3. (A,B)= (B,A) 
4. If  C is a NRS in X and A B C ,then (A,C) 

(A,B) and (A,C) (B,C) 

Proof: 

(1) 

As the  membership, indeterminacy and non-membership 
functions of the NRSs and the value  
of the cosine function are within [0 ,1],the  similarity 
measure based on cosine function also is within [ 0.1]. 
Hence 0      (A,B)  1. 
(2)

Florentin Smarandache (author and editor) Collected Papers, XII

206



 For any two NRSs A and B , if A= B , this implies (  ) 
= (  ),   

 (  ) =   
 (  ),   

 (  ) = (  ) for i= 1,2,…,n 
and j=1,2….,p and X. Hence |  

 (  )  (  )| = 0, 
 |  
 (  ) (  )| =0, and |  

 (  ) (  )|=0 .Thus 
(A,B)=1. 

If     A,B)=1 this refers that  |  
 (  ) (  )| = 0, 

 |  
 (  )    

 (  )| =0, and |  
 (  ) (  )|=0 since 

cos(0)=1.Then ,these equalities indicates (  ) = 
(  ),   

 (  ) =   
 (  ),   

 (  ) = (  ) for all i,j values 
and      X. Hence A= B 
(3) 
 Proof is straightforward 
(4) 
If A B C. then there are (  ) (  ) (  ), 
(  )    

 (  ) (  ), and (  ) (  ) (  ) 
for all i,j values and X.Then we have the following
inequalities 
|  
 (  )    

 (  )| |  
 (  ) (  )| , |  

 (  )

(  )|  |  
 (  ) (  )|, 

|  
 (  ) (  )|   |  

 (  ) (  )| , |  
 (  ) (  )| 

|  
 (  ) (  )|, 
|  
 (  ) (  )| |  

 (  ) (  )| , |  
 (  )

(  )|  |  
 (  ) (  )|, 

Hence, (A,C) (A,B) and     (A,C) 
(B,C) for k=1,2, since the cosine function is a 

decreasing function  within the interval [0,  ]. 
4 Application 
In this section, we give some applications of NRS in 
medical diagnosis problems using the cosine similarity 
measure. Some of it is quoted from [29,30,41]. 
From now on, we use 
A = {<x,(   ( ),    ( ),    ( )),(   ( ),    ( ),    ( )),.., 
,(  

 ( ),   
 ( ),   

 ( ))>: x   X} 

Instead of  
A = {<x,(   ( ),    ( ),...,   

 ( )), ( ( ),    ( ),...,   
 ( )), 

( ( ),    ( ),…,   
 ( ))>: x   X} 

4.1. Medical Diagnosis using  NRS –cosine 
similarity measure 
    In what follows, let us consider an illustrative example 
adopted from Rajarajeswari and Uma [29]  with minor 
changes and typically considered in [30,43]. Obviously, 
the application is an extension of intuitionistic fuzzy multi 
sets [29]. 
    "As Medical diagnosis contains lots of uncertainties and 
increased volume of information available to physicians 
from new medical technologies, the process of classifying 
different set of symptoms under a single name of disease 
becomes difficult. In some practical situations, there is the 
possibility of each element having different truth 
membership, indeterminate and false membership 
functions. The proposed similarity measure among the 
patients Vs symptoms and symptoms Vs diseases gives the 
proper medical diagnosis. The unique feature of this 
proposed method is that it considers multi truth 
membership, indeterminate and false membership. By 
taking one time inspection, there may be error in diagnosis. 
Hence, this multi time inspection, by taking the samples of 
the same patient at different times gives best diagnosis" 
[29]. 
    Now, an example of a medical diagnosis will be 
presented. 
Example: Let P={P₁,P₂,P₃} be a set of patients, D={Viral 
Fever, Tuberculosis, Typhoid, Throat disease} be a set of 
diseases and S={Temperature, cough, throat pain, 
headache, body pain} be a set of symptoms. Our solution is 
to examine the patient at different time intervals (three 
times a day), which in turn give arise to different truth 
membership, indeterminate and false membership function 
for each patient. 

    Table I: Q (the relation Between Patient and Symptoms) 

Temperature Cough Throat pain Headache Body Pain 
P₁ (0.4,0.3,0.4) 

(0.3,0.4,0.6) 
(0.2,0.5,0.5) 

(0.5,0.4,0.4) 
(0.4,0.1,0.3) 
(0.3,0.4,0.5) 

(0.3,0.5,0.5) 
(0.2,0.6,0.4) 
(0.1,0.6,0.3) 

(0.5,0.3,0.4) 
(0.5,0.4,0.7) 
(0.3,0.3,0.6) 

(0.5,0.2,0.4) 
(0.2,0.3,0.5) 
(0.1,0.4,0.3) 

P₂ (0.6,0.3,0.5) 
(0.5,0.5,0.2) 
(0.4,0.4,0.5) 

(0.6,0.3,0.7) 
(0.4,0.4,0.2) 
(0.2,0.4,0.5) 

(0.6,0.3,0.3) 
(0.3,0.5,0.4) 
(0.1,0.4,0.5) 

(0.6,0.3,0.1) 
(0.4,0.5,0.8) 
(0.2,0.4,0.3) 

(0.4,0.4,0.5) 
(0.3,0.2,0.7) 
(0.1,0.5,0.5) 

P₃ (0.8,0.3,0.5) 
(0.7,0.5,0.4) 
(0.6,0.4,0.4) 

(0.5,0.5,0.3) 
(0.1,0.6,0.4) 
(0.3,0.4,0.3) 

(0.3,0.3,0.6) 
(0.2,0.5,0.7) 
(0.1,0.4,0.5) 

(0.6,0.2,0.5) 
(0.5,0.3,0.6) 
(0.2,0.2,0.6) 

(0.6,0.4,0.5) 
(0.3,0.3,0.4) 
(0.2,0.2,0.6) 

Let the samples be taken at three different timings in a day (in 08:00,16:00,24:00) 
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Remark :At three different timings in a day (in 08:00,16:00,24:00) 

P₁      the  em er t re may have the disease 1 with chance ( 0.4, 0.3 , 0.4) at 08:00 
P₁      the  em er t re m   h ve the    e  e 2 w th ch  ce ( 0 3  0 4   0 6)  t 16:00 
P₁      the  em er t re m y have the disease 3 with chance ( 0.2, 0.5 , 0.5) at 24:00 

Table II: R (the relation among Symptoms and Diseases) 

R Viral Fever Tuberculosis Typhoid Throat 
disease 

Temperature (0.2,0.5,0.6) (0.4,0.6,0.5) (0.6,0.4,0.5) (0.3,0.7,0.8) 
Cough (0.6,0.4,0.6) (0.8,0.2,0.3) (0.3,0.2,0.6) (0.2,0.4,0.1) 

Throat Pain (0.5,0.2,0.3) (0.4,0.5,0.3) (0.4,0.5,0.5) (0.2,0.6,0.2) 
Headache (0.6,0.8,0.2) (0.2,0.3,0.6) (0.1,0.6,0.3) (0.2,0.5,0.5) 
Body Pain (0.7,0.4,0.4) (0.2,0.3,0.4) (0.2,0.3,0.4) (0.2,0.2,0.3) 

Table III: The Correlation Measure between NRS Q and R 

The highest correlation measure from the Table III 
gives the proper medical diagnosis. Therefore, patient 
P₁  P₂ and P₃ suffers from Tuberculosis 

5.Conclusion

In this paper, we have extended the improved cosine 
similarity of single valued neutrosophic set proposed by 
J.Ye [17] to the case of neutrosophic refined sets and
proved some of their basic properties. We have present
an application of cosine similarity measure of
neutrosophic refined sets in medical diagnosis
problems. In The future work, we will extend this
cosine similarity measure  to the case of interval
neutrosophic refined sets.
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Soft Neutrosophic Groupoids and Their Generalization 
Mumtaz Ali, Florentin Smarandache, Muhammad Shabir

Abstract. Soft set theory is a general mathematical tool 
for dealing with uncertain, fuzzy, not clearly defined ob-
jects. In this paper we introduced soft neutrosophic 
groupoid and their generalization with the discuissionf of 
some of their characteristics. We also introduced a new 
type of soft neutrophic groupoid, the so called soft strong 

neutrosophic goupoid which is of pure neutrosophic 
character. This notion also found in all the other corre-
sponding notions of soft neutrosophic thoery. We also 
given some of their properties of this newly born soft 
structure related to the strong part of neutrosophic theory. 

Keywords: Neutrosophic groupoid, neutrosophic bigroupoid, neutrosophic N -groupoid, soft set, soft neutrosophic groupoid, soft
neutrosophic bigroupoid, soft neutrosophic N -groupoid.

1 Introduction 
 Florentine Smarandache for the first time introduced the 
concept of neutrosophy in  1995,   which is basically a
new branch of philosophy which actually studies the 
origin, nature, and scope of neutralities. The neutrosophic 
logic came into being by neutrosophy. In neutrosophic log-
ic each proposition is approximated to have the percentage 
of truth in a subset T , the percentage of indeterminacy in 
a subset I , and the percentage of falsity in a subset F . 
Neutrosophic logic is an extension of fuzzy logic. In fact 
the neutrosophic set is the generalization of classical set, 
fuzzy conventional set, intuitionistic fuzzy set, and interval 
valued fuzzy set. Neutrosophic logic is used to overcome 
the problems of impreciseness, indeterminate, and incon-
sistencies of date etc. The theory of neutrosophy is so ap-
plicable to every field of algebra. W.B. Vasantha Kan-
dasamy and Florentin Smarandache introduced neutro-
sophic fields, neutrosophic rings, neutrosophic vector 
spaces, neutrosophic groups, neutrosophic bigroups and 
neutrosophic N -groups, neutrosophic semigroups, neu-
trosophic bisemigroups, and neutrosophic  N -
semigroups, neutrosophic loops, nuetrosophic biloops, and 
neutrosophic N -loops, and so on. Mumtaz ali et al. intro-
duced nuetrosophic LA -semigroups. 
     Molodtsov introduced the theory of soft set. This math-
ematical tool is free from parameterization inadequacy, 
syndrome of fuzzy set theory, rough set theory, probability 
theory and so on. This theory has been applied successfully 
in many fields such as smoothness of functions, game the-

ory, operation research, Riemann integration, Perron inte-
gration, and probability. Recently soft set theory attained 
much attention of the researchers since its appearance and 
the work based on several operations of soft set introduced 
in  2,9,10 . Some properties and algebra may be found

in  1 .  Feng et al. introduced soft semirings in  5 . By
means of level soft sets an adjustable approach to fuzzy 
soft set can be seen in  6 . Some other concepts together

with fuzzy set and rough set were shown in  7,8 .
 This paper is about to introduced soft nuetrosophic 
groupoid, soft neutrosophic bigroupoid, and soft neutro-
sophic N -groupoid and the related strong or pure part of 
neutrosophy with the notions of soft set theory. In the pro-
ceeding section, we define soft neutrosophic groupoid, soft 
neutrosophic strong groupoid, and some of their properties 
are discussed. In the next section, soft neutrosophic 
bigroupoid are presented with their strong neutrosophic 
part. Also in this section some of their characterization 
have been made. In the last section soft neutrosophic N -
groupoid  and their corresponding strong theory have been 
constructed with some of their properties. 

2 Fundamental Concepts 
2.1 Neutrosophic Groupoid 
 Definition 2.1.1.  Let G be a groupoid, the groupoid gen-
erated by G and I i.e. G I is denoted  
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by G I  is defined to be a neutrosophic groupoid 

where I  is the indeterminacy element and 
termed as neutrosophic element. 
Definition 2.1.2. Let G I  be a neutrosophic 

groupoid.  A proper subset P  of G I is said to be a 

neutrosophic subgroupoid, if P  is a neutrosophic 
groupoid under the operations of  G I .  A neutro-

sophic groupoid G I  is said to have a subgroupoid if 

G I  has a proper subset which is a groupoid under 

the operations of G I . 

Theorem 2.1.3.  Let G I  be a neutrosophic 

groupoid. Suppose 1P and 2P be any two neutrosophic 

subgroupoids of G I , then 1 2P P , the union of 
two neutrosophic subgroupoids in general need not be a 
neutrosophic subgroupoid. 
Definition 2.1.4.  Let G I  be a neutrosophic 

groupoid under a binary operation  . P  be a proper sub-
set of G I . P  is said to be a neutrosophic ideal of 

G I  if the following conditions are satisfied. 

1. P is a neutrosophic groupoid.
2. For all p P  and for all s G I   we have 

p s  and s p  are in P .

2.2 Neutrosophic Bigroupoid 

Definition 2.2.1. Let  ( (G), , )BN   be a non-empty set 
with two binary operations   and .  ( (G), , )BN   is 
said to be a neutrosophic bigroupoid if 

1 2(G)BN P P  where atleast one of  1( , )P   or 

2( , )P is a neutrosophic groupoid and other is just a 

groupoid. 1P and 2P are proper subsets of (G)BN . 

If both 1( , )P   and 2( , )P in the above definition are 

neutrosophic groupoids then we call  ( (G), , )BN   a 
strong neutrosophic bigroupoid. All strong neutrosophic 
bigroupoids are trivially neutrosophic bigroupoids. 
Definition 2.2.2. Let 1( (G) P ;: , )BN P    be a neu-

trosophic bigroupoid. A proper subset  ( , , )T   is said to 
be a neutrosophic subbigroupoid of (G)BN  if 

1)  1 2T T T   where 1 1T P T  and 

2 2T P T  and 

2) At least one of 1( , )T  or 2( , )T  is a neutrosophic 
groupoid.

Definition 2.2.3. Let 1( (G) P , , )BN P   be a neu-
trosophic strong bigroupoid. A proper subset  T  of 

( )BN S is called the strong neutrosophic subbigroupoid if 

1 2T T T  with  1 1T P T   and 2 2T P T  and if 

both 1( , )T  and 2( , )T are neutrosophic subgroupoids of  

1( , )P  and 2( , )P respectively. We call 1 2T T T  to 
be a neutrosophic strong subbigroupoid, if atleast one of 

1( , )T  or 2( , )T is a groupoid then 1 2T T T  is only 
a neutrosophic subgroupoid. 
Definition 2.2.4. Let 1 2( (G) P , , )BN P    be any 
neutrosophic bigroupoid. Let J  be a proper subset of 

(J)BN such that 1 1J J P  and 2 2J J P  are 

ideals of 1P and 2P respectively. Then J is called the 

neutrosophic biideal of (G)BN . 
Definition 2.2.5. Let ( (G), , )BN   be a strong neutro-

sophic bigroupoid where  1 2( ) PBN S P  with 

1( , )P  and 2( , )P be any two neutrosophic groupoids. 

Let J  be a proper subset of (G)BN  where 1 2I I I 

with 1 1I I P  and 2 2I I P  are neutrosophic ide-

als of the neutrosophic groupoids 1P and 2P respectively. 
Then I  is called or defined as the strong neutrosophic 
biideal of (G)BN . 
Union of any two neutrosophic biideals in general is not a 
neutrosophic biideal. This is true of neutrosophic strong 
biideals. 

2.3 Neutrosophic N -groupoid 

Definition 2.3.1. Let 1 2{N(G), ,..., }   be a non-empty 
set with N -binary operations defined on it. We call 

( )N G a neutrosophic N -groupoid ( N a positive inte-
ger)  if the following conditions are satisfied. 
1) 1N(G) ... GNG    where each iG is a proper 

subset of ( )N G  i.e. i jG G or j iG G if  

i j . 

2) (G , )i i is either a neutrosophic groupoid or a

groupoid for 1,2,3,...,i N . 
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If all the N -groupoids (G , )i i are neutrosophic

groupoids  (i.e. for  1,2,3,...,i N ) then we call ( )N G  
to be a neutrosophic strong N -groupoid. 
Definition 2.3.2. Let 

1 2 1 2N(G) {G .... , , ,..., }N NG G       be a neu-
trosophic N -groupoid. A proper subset 

1 2 1 2{P ....P , , ,..., }N NP P       of ( )N G  is said 
to be a neutrosophic N -subgroupoid if 

, 1,2,...,i iP P G i N   are subgroupiids of iG in 
which atleast some of the subgroupoids are neutrosophic 
subgroupoids. 
Definition 2.3.3. Let 

1 2 1 2N(G) {G .... G , , ,..., }N NG        be a neu-
trosophic strong N -groupoid. A proper subset 

1 2 1 2{T .... T , , ,..., }N NT T       of ( )N G is 
said to be a neutrosophic strong sub N -groupoid if each  
( , )i iT  is a neutrosophic subgroupoid of  (G , )i i for

1,2,...,i N where i iT G T  . 

If only a few of the ( , )i iT   in T are just subgroupoids of

(G , )i i , (i.e.  ( , )i iT  are not neutrosophic subgroupoids

then we call T  to be a sub N -groupoid of ( )N G . 
Definition 2.3.4. Let 

1 2 1 2N(G) {G .... G , , ,..., }N NG        be a neu-
trosophic N -groupoid. A proper subset 

1 2 1 2{P .... , , ,..., }N NP P P       of ( )N G  is
said to be a neutrosophic N -subgroupoid, if the following 
conditions are true, 

1. P is a neutrosophic sub N -groupoid of
( )N G .

2. Each , 1,2,...,i iP G P i N   is an ideal of 

iG .
Then P  is called or defined as the neutrosophic N -ideal 
of the neutrosophic N -groupoid  ( )N G . 
Definition 2.3.5. Let 

1 2 1 2N(G) {G ....G , , ,..., }N NG       be a neutro-
sophic strong  N -groupoid. A proper subset 

1 2 1 2{J ....J , , ,..., }N NJ J      where 

t tJ J G  for  1,2,...,t N is said to be a neutro-

sophic strong N -ideal of ( )N G  if the following condi-
tions are satisfied. 
1) Each it is a neutrosophic subgroupoid of

, 1,2,...,tG t N i.e. It is a neutrosophic strong N-

subgroupoid of ( )N G . 

2) Each it is a two sided ideal of tG  for 1,2,...,t N . 
Similarly one can define neutrosophic strong N -left ideal 
or neutrosophic strong right ideal of  ( )N G . 
A neutrosophic strong N -ideal is one which is both a neu-
trosophic strong N -left ideal and N -right ideal of 

( )S N . 

2.4 Soft Sets 

Throughout this subsection U refers to an initial uni-
verse, E  is a set of parameters, ( )PU  is the power set of
U , and ,A B E . Molodtsov defined the soft set in the
following manner: 
Definition 2.4.1. A pair ( , )F A is called a soft set over
U where F is a mapping given by  : ( )F A PU .
In other words, a soft set over  U  is a parameterized fami-
ly of subsets of the universe  U . For  a A  , (a)F
may be considered as the set of  a -elements of the soft set
( , )F A  , or as the set of  a -approximate elements of the
soft set. 
Definition 2.4.2.  For two soft sets ( , )F A  and  ( , )H B
over U , ( , )F A  is called a soft subset of  ( , )H B  if

1. A B and
2. ( ) ( )F a H a , for all  x A  .

This relationship is denoted by ( , ) ( , )F A H B . Simi-
larly ( , )F A  is called a soft superset of ( , )H B  if
( , )H B  is a soft subset of ( , )F A  which is denoted by
( , ) ( , )F A H B .
Definition 2.4.3.  Two soft sets ( , )F A  and ( , )H B  over
U are called soft equal if ( , )F A  is a soft subset of
( , )H B  and ( , )H B  is a soft subset of ( , )F A .
Definition 2.4.4.  Let ( , )F A  and ( , )K B  be two soft
sets over a common universe U such that  A B  .
Then their restricted intersection is denoted by 
( , ) ( , ) ( , )RF A K B H C  where ( , )H C  is de-

fined as  ( ) ( ) )H c F c c for all
c C A B .
Definition 2.4.5.  The extended intersection of two soft 
sets  ( , )F A  and  ( , )K B  over a common universe U is
the soft set  ( , )H C  , where  C A B  , and for all
c C  , ( )H c  is defined as
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( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

We write  ( , ) ( , ) ( , )F A K B H C .
Definition 2.4.6. The restricted union of two soft sets  
( , )F A  and ( , )K B  over a common universe U is the
soft set  ( , )H C , where  C A B  , and for all
c C , ( )H c is defined as  ( ) ( ) ( )H c F c G c

for all  c C  . We write it as
( , ) ( , ) ( , ).RF A K B H C
Definition 2.4.7. The extended union of two soft sets  
( , )F A  and ( , )K B  over a common universe U is the
soft set  ( , )H C , where  C A B , and for all
c C ,  ( )H c is defined as

( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

We write ( , ) ( , ) ( , )F A K B H C .

3 Soft Neutrosophic Groupoid and Their Properties 

3.1 Soft Neutrosophic Groupoid 

Definition 3.1.1. Let { , }G I  be a neutrosophic 
groupoid and ( , )F A  be a soft set over { , }G I  . 
Then ( , )F A  is called soft neutrosophic groupoid if and 
only if ( )F a  is neutrosophic subgroupoid of   
{ , }G I   for all a A . 
Example 3.1.2. Let 

10

0,  1,  2,  3,  ,  9,  ,  2 ,  ,  9 ,
 1  ,  2  ,  ,  9  9

I I I
Z I

I I I
 

 


 
   


 
 

be a neutrosophic groupoid where    is defined on 

10Z I   by 3 2 (mod10)a b a b    for all 

, 10a b Z I   . Let 1 2{ , }A a a be a set of 

parameters. Then ( , )F A  is a soft neutrosophic groupoid 
over { 10 , }Z I    , where 

1( ) {0,5,5I,5 5I},F a  

2 10( ) (Z , )F a   . 
Theorem 3.1.3.  A soft neutrosophic groupoid over 
{ , }G I  always contain a soft groupoid over 

( , )G  . 

 Proof. The proof of this theorem is straightforward. 
Theorem 3.1.4. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic groupoids over { , }G I  . Then their inter-

section ( , ) ( , )F A H A  is again a soft neutrosophic 

groupoid over { , }G I  . 
Proof. The proof is straightforward. 
Theorem 3.1.5. Let ( , )F A  and ( , )H B  be two soft neu-

trosophic groupoids over { , }G I  . If  A B   , 

then ( , ) ( , )F A H B  is a soft neutrosophic groupoid 

over { , }G I  . 
Remark 3.1.6. The extended union of two soft neutrosoph-
ic groupoids ( , )F A  and ( , )K B  over  a neutrosophic 

groupoid { , }G I  is not a soft neutrosophic 

groupoid over { , }G I  . 
Proposition 3.1.7. The extended intersection of two soft 
neutrosophic groupoids over a neutrosophic groupoid 
{ , }G I  is a soft neutrosophic groupoid over 

{ , }G I  . 
Remark 3.1.8. The restricted union of two soft neutro-
sophic groupoids ( , )F A  and ( , )K B  over  

{ , }G I  is not a soft neutrosophic groupoid over 

{ , }G I  . 
Proposition 3.1.9. The restricted intersection of two soft 
neutrosophic groupoids over { , }G I  is a soft neu-

trosophic groupoid over { , }G I  . 

Proposition 3.1.10. The AND  operation of two soft neu-
trosophic groupoids over { , }G I  is a soft neutro-

sophic groupoid over { , }G I  . 

Remark 3.1.11. The OR  operation of two soft neuto-
sophic groupoids over { , }G I  is not a soft nuetro-

sophic groupoid over { , }G I  . 

Definition 3.1.12. Let ( , )F A  be a soft neutrosophic 

groupoid over { , }G I  . Then ( , )F A  is called an 

absolute-soft neutrosophic groupoid over { , }G I  if 

( ) { , }F a G I   , for all a A . 
Theorem 3.1.13. Every absolute-soft neutrosophic 
groupoid over { , }G I  always contain absolute soft
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groupoid over {G, } .  
Definition 3.1.14. Let ( , )F A  and ( , )H B  be two soft 

neutrosophic groupoids over { , }G I  . Then  

( , )H B  is a soft neutrosophic subgroupoid of ( , )F A , if 
1. B A .
2. ( )H a is neutrosophic subgroupoid of ( )F a ,

for all a B . 
Example 3.1.15. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3
2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I
   

   
      

 be a neutrosophic groupoid with respect to the operation 
 where   is defined as 2 (mod4)a b a b    for all

4,a b Z I  . Let 1 2 3{ , , }A a a a be a set of pa-

rameters. Then ( , )F A  is a soft neutrosophic groupoid 

over 4Z I , where 

1( ) {0,2,2 ,2 2 },F a I I 

2( ) {0,2,2 2I}F a   , 

3( ) {0,2 2 }F a I  . 

Let 1 2{ , } AB a a  . Then ( , )H B  is a soft neutro-

sophic subgroupoid of ( , )F A , where 

1( ) {0,2 2 },H a I 

2( ) {0,2 2 }H a I  . 

Definition 3.1.16. Let  ,G I  be a neutrosophic

groupoid and ( , )F A  be a soft neutrosophic groupoid 

over   ,G I  . Then ( , )F A  is called soft Lagrange

neutrosophic groupoid if and only if ( )F a  is a Lagrange 

neutrosophic subgroupoid of  ,G I  for all

a A . 
Example 3.1.17. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3
2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I
   

   
      

 be a neutrosophic groupoid of order 16 with respect to the 
operation   where   is defined as 

2 (mod4)a b a b   for all 4,a b Z I  . Let 

1 2{ , }A a a be a set of parameters. Then ( , )F A  is a 

soft Lagrange neutrosophic groupoid over 4Z I , 
where 

1( ) {0,2,2 ,2 2 },F a I I 

2( ) {0,2 2 }F a I  . 
Theorem 3.1.18. Every soft Lagrange neutrosophic 
groupoid over  ,G I  is a soft neutrosophic

groupoid over   ,G I  but the converse is not true.

We can easily show the converse by the help of example. 
Theorem 3.1.19. If  ,G I  is a Lagrange neutro-

sophic groupoid, then ( , )F A  over  ,G I  is a

soft Lagrange neutrosophic groupoid but the converse is 
not true. 
 Remark 3.1.20. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic groupoids over  ,G I  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic groupoid 
over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft Lagrange neutrosophic groupoid
over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  may
not be a soft Lagrange neutrosophic groipoid over

 ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  may 
not be a soft Lagrange neutrosophic groupoid
over   ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  may 
not be a soft Lagrange neutrosophic groupoid
over  ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  may not
be a soft Lagrange neutrosophic groupoid over

 ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 3.1.21. Let  ,G I   be a neutrosophic

groipoid and ( , )F A  be a soft neutrosophic groupoid over  

 ,G I  . Then ( , )F A  is called soft weak Lagrange

neutrosophic groupoid if atleast one ( )F a  is not a La-
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grange neutrosophic subgroupoid of  ,G I  for

some a A . 
Example 3.1.22. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3
2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I
   

   
      

be a neutrosophic groupoid of order 16 with respect to the 
operation   where   is defined as 

2 (mod4)a b a b   for all 4,a b Z I  . Let 

1 2 3{ , , }A a a a be a set of parameters. Then ( , )F A  is 
a soft weak Lagrange neutrosophic groupoid over 

4Z I , where 

1( ) {0,2,2 ,2 2 },F a I I 

2( ) {0,2,2 2I}F a   , 

3( ) {0,2 2 }F a I  . 
Theorem 3.1.23. Every soft weak Lagrange neutrosophic 
groupoid over  ,G I  is a soft neutrosophic

groupoid over  ,G I  but the converse is not true.

Theorem 3.1.24. If  ,G I  is weak Lagrange neu-

trosophic groupoid, then ( , )F A  over  ,G I  is

also soft weak Lagrange neutrosophic groupoid but the 
converse is not true. 
Remark 3.1.25. Let ( , )F A  and ( ,C)K  be two soft 
weak Lagrange neutrosophic groupoids over 

 ,G I  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic 
groupoid over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weak Lagrange neutrosophic 
groupoid over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weak Lagrange neutrosophic groupoid over

 ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weak Lagrnage neutrosophic groupoid over  

 ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not
a soft weak Lagrange neutrosophic groupoid over 

 ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft weak Lagrange neutrosophic groupoid over

 ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 3.126. Let  ,G I  be a neutrosophic

groupoid and ( , )F A  be a soft neutrosophic groupoid 

over   ,G I  . Then ( ,A)F is called soft Lagrange

free neutrosophic groupoid if ( )F a  is not a lagrange neu-

trosophic subgroupoid of  ,G I  for all a A .

Example 3.1.27. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3
2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I
   

   
      

 be a neutrosophic groupoid of order 16 with respect to the 
operation   where   is defined as 

2 (mod4)a b a b   for all 4,a b Z I  . Let 

1 2 3{ , , }A a a a be a set of parameters. Then ( , )F A  is 
a soft Lagrange free neutrosophic groupoid over 

4Z I , where 

1( ) {0,2 ,2 2 },F a I I 

2( ) {0,2,2 2I}F a   . 
Theorem 3.1.28. Every soft Lagrange free neutrosophic 
groupoid over  ,G I  is trivially a soft neutrosoph-

ic groupoid over  ,G I  but the converse is not

true. 

Theorem 3.1.29. If  ,G I  is a Lagrange free neu-

trosophic groupoid, then ( , )F A  over  ,G I  is

also a soft Lagrange free neutrosophic groupoid but the 
converse is not true. 
Remark 3.1.30. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic groupoids over  ,G I  .

Then 
1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic groupoid 
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over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic groupoid 
over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic groupoid over

 ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrnage free neutrosophic groupoid over  

 ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic groupoid over 

 ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic groupoid over

 ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 3.1.31.  ( , )F A  is called soft neutrosophic ide-

al over  ,G I  if ( )F a is a neutrosophic ideal of

 ,G I  , for all  a A .

Theorem 3.1.32. Every soft neutrosophic ideal ( , )F A  

over  ,G I  is trivially a soft neutrosophic sub-

groupid but the converse may not be true. 
Proposition 3.1.33. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic  ideals over  ,G I  . Then

1) Their extended intersection ( , ) ( , )EF A K B is 

soft neutrosophic  ideal over  ,G I  .

2) Their restricted intersection  ( , ) ( , )RF A K B is 

soft neutrosophic ideal over  ,G I  .

3) Their AND  operation ( , ) ( , )F A K B  is soft neu-

trosophic ideal over  ,G I  .

 Remark 3.1.34. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic  ideal over  ,G I  . Then

1) Their extended union ( , ) ( , )EF A K B is not soft 

neutrosophic  ideal over  ,G I  .

2) Their restricted union ( , ) ( , )RF A K B is not soft 

neutrosophic  ideal over  ,G I  .

3) Their OR  operation ( , ) ( , )F A K B  is not soft

neutrosophic  ideal over  ,G I  .

 One can easily proved (1),(2),  and (3)  by the help of 
examples. 
Theorem 3.1.35. Let ( , )F A  be a soft neutrosophic ideal 

over  ,G I  and  {( , ) : i J}i iH B  is a non-

empty family of soft neutrosophic  ideals of ( , )F A . Then 

1. ( , )i ii J
H B


  is a soft neutrosophic ideal of 

( , )F A . 

2. ( , )i ii J
H B


 is a soft neutrosophic ideal of

( , )
i J

F A

 .

3.2 Soft Neutrosophic Strong Groupoid 

Definition 3.2.1. Let  ,G I  be a neutrosophic

groupoid and ( , )F A  be a soft set over  ,G I  .

Then ( , )F A  is called soft neutrosophic strong groupoid 
if and only if ( )F a  is a  neutrosophic strong subgroupoid 

of   ,G I  for all a A .

Example 3.2.2. Let 

4

0,1,2,3, ,2 ,3 ,1 ,1 2 ,1 3
2 ,2 2 ,2 3 ,3 ,3 2 ,3 3

I I I I I I
Z I

I I I I I I
   

   
      

 be a neutrosophic groupoid  with respect to the operation 
 where   is defined as 2 (mod4)a b a b    for all

4,a b Z I  . Let 1 2 3{ , , }A a a a be a set of pa-

rameters. Then ( , )F A  is a soft neutrosophic strong 

groupoid over 4Z I , where 

1( ) {0,2 ,2 2 },F a I I 

2( ) {0,2 2I}F a   . 

Proposition 3.2.3. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic strong groupoids over  ,G I  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong groupoid over 

 ,G I  .
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2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic strong groupoid over

 ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is a
soft neutrosophic strong groupoid over

 ,G I  .

Remark 3.2.4. Let ( , )F A and (K,C)  be two soft neu-

trosophic strong groupoids over  ,G I  . Then

1. Their extended union ( , ) ( ,C)EF A K  is a 
soft neutrosophic strong groupoid over  

 ,G I  .

2. Their restricted union  ( , ) ( ,C)RF A K  is a 
soft neutrosophic strong groupoid over

 ,G I  .

3. Their OR  operation ( , ) ( ,C)F A K  is a soft
neutrosophic strong groupoid over

 ,G I  .

Definition 3.2.5. Let ( , )F A  and ( ,C)H  be two soft 

neutrosophic strong groupoids over  ,G I  . Then

( ,C)H  is called soft neutrosophic strong sublgroupoid of 
( , )F A , if 

1. C A .
2. ( )H a is a neutrosophic strong subgroupoid of

( )F a for all a A .

Definition 3.2.6. Let  ,G I  be a neutrosophic

strong groupoid and ( , )F A  be a soft neutrosophic 

groupoid over   ,G I  . Then ( , )F A  is called soft

Lagrange neutrosophic strong groupoid if and only if 
( )F a is a Lagrange neutrosophic strong subgroupoid of 

 ,G I  for all  a A .

 Theorem 3.2.7. Every soft Lagrange neutrosophic strong 
groupoid over  ,G I  is a soft neutrosophic

groupoid over   ,G I  but the converse is not true.

Theorem 3.2.8. If  ,G I  is a Lagrange neutro-

sophic strong groupoid, then ( , )F A  over  ,G I 

is a soft Lagrange neutrosophic groupoid but the converse 
is not true. 

  Remark 3.2.9. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic strong groupoids over  ,G I  .

Then 
1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic strong
groupoid over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft Lagrange strong neutrosophic
groupoid over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  may
not be a soft Lagrange neutrosophic strong
groupoid over  ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  may 
not be a soft Lagrange neutrosophic strong 
groupoid over   ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  may 
not be a soft Lagrange neutrosophic strong 
groupoid over  ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  may not
be a soft Lagrange neutrosophic strong groupoid
over   ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 3.2.10. Let  ,G I  be a neutrosophic

strong groupoid and ( , )F A  be a soft neutrosophic 

groupoid over   ,G I  . Then ( , )F A  is called soft

weak Lagrange neutrosophic strong groupoid if atleast one 
( )F a  is not a Lagrange neutrosophic strong subgroupoid 

of  ,G I  for some a A .

Theorem 3.2.11. Every soft weak Lagrange neutrosophic 
strong groupoid over  ,G I  is a soft neutrosophic

groupoid over  ,G I  but the converse is not true.

Theorem 3.2.12. If  ,G I  is weak Lagrange neu-

trosophic strong groupoid, then ( , )F A  over 

 ,G I  is also soft weak Lagrange neutrosophic

strong groupoid but the converse is not true. 
Remark 3.2.13. Let ( , )F A  and ( ,C)K  be two soft 
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weak Lagrange neutrosophic strong groupoids over 

 ,G I  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic strong
groupoid over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weak Lagrange neutrosophic strong
groupoid over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weak Lagrange neutrosophic strong
groupoid over  ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weak Lagrnage neutrosophic strong groupoid 
over   ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft weak Lagrange neutrosophic strong
groupoid over  ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft weak Lagrange neutrosophic strong groupoid
over   ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 3.2.14. Let L I be a neutrosophic strong 

groupoid and ( , )F A  be a soft neutrosophic groupoid 

over  L I . Then ( ,A)F is called soft Lagrange free 

neutrosophic strong groupoid if ( )F a  is not a Lagrange 

neutrosophic strong subgroupoid of  ,G I  for all

a A . 
 Theorem 3.2.14. Every soft Lagrange free neutrosophic 
strong groupoid over L I  is a soft neutrosophic 

groupoid over  ,G I  but the converse is not true.

Theorem 3.2.15. If  ,G I  is a Lagrange free neu-

trosophic strong groupoid, then ( , )F A  over 

 ,G I  is also a soft Lagrange free neutrosophic

strong groupoid but the converse is not true. 
Remark 3.2.16. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic strong groupoids over L I . 
Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong
groupoid over  ,G I  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic strong
groupoid over  ,G I  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic strong groupoid
over  ,G I  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrange free neutrosophic strong groupoid
over   ,G I  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic groupoid over

 ,G I  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic strong groupoid
over   ,G I  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 3.2.17.  ( , )F A  is called soft neutrosophic 

strong ideal over  ,G I  if ( )F a is a neutrosophic

strong ideal of  ,G I  , for all  a A .

Theorem 3.2.18. Every soft neutrosophic strong ideal 
( , )F A over  ,G I  is trivially a soft neutrosophic

strong groupoid. 
Theorem 3.2.19. Every soft neutrosophic strong ideal 
( , )F A over  ,G I  is trivially a soft neutrosophic

ideal. 
Proposition 3.2.20. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic strong ideals over  ,G I  . Then

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic strong ideal over

 ,G I  .

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic strong ideal over

 ,G I  .

3. Their AND  operation ( , ) ( , )F A K B  is soft
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neutrosophic strong ideal over  ,G I  .

Remark 3.2.21. Let ( , )F A  and ( , )K B  be two soft neu-

trosophic strong ideal over  ,G I  . Then

1. Their extended union ( , ) ( , )EF A K B  is not 
soft neutrosophic strong ideal over 

 ,G I  .

2. Their restricted union ( , ) ( , )RF A K B is not 
soft neutrosophic strong ideal over 

 ,G I  .

3. Their OR  operation ( , ) ( , )F A K B  is not
soft neutrosophic strong ideal over

 ,G I  .

 One can easily proved (1),(2),  and (3)  by the help of 
examples. 
Theorem 3.2.22. Let ( , )F A  be a soft neutrosophic 

strong ideal over  ,G I  and {( , ) : i J}i iH B  is

a non-empty family of soft neutrosophic strong  ideals of 
( , )F A . Then 

1. ( , )i ii J
H B


  is a soft neutrosophic strong ideal of 

( , )F A . 

2. ( , )i ii J
H B


 is a soft neutrosophic strong ideal of

( , )
i J

F A

 .

4 Soft Neutrosophic Bigroupoid and Their Properties 

4.1 Soft Neutrosophic Bigroupoid 

Definition 4.1.1. Let {B (G), , }N   be a neutrosophic
bigroupoid and ( , )F A  be a soft set over {B (G), , }N  .
Then ( , )F A  is called soft neutrosophic  bigroupoid if and 
only if ( )F a  is neutrosophic sub bigroupoid of 
{B (G), , }N  for all a A .
Example 4.1.2. Let {B (G), , }N  be a neutrosophic
groupoid with 1 2B (G)N G G  , where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
and 

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I      .
 Let 1 2{ , }A a a be a set of parameters. Then ( , )F A  is 
a soft neutrosophic bigroupoid over {B (G), , }N  , where

1( ) {0,5,5 ,5 5 } {0,2,2 ,2 2 },F a I I I I   

2 10( ) ( , ) {0,2 2I}F a Z    . 
Theorem 4.1.3. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic bigroupoids over {B (G), , }N  . Then their in-

tersection ( , ) ( , )F A H A  is again a soft neutrosophic 

groupoid over {B (G), , }N  . 
Proof. The proof is staightforward. 
Theorem 4.1.4. Let ( , )F A  and ( , )H B  be two soft neu-

trosophic groupoids over { , }G I  . If  A B   , 

then ( , ) ( , )F A H B  is a soft neutrosophic groupoid 

over { , }G I  . 

Proposition 4.1.5. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic bigroupoids over {B (G), , }N  . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic bigroupoid over 
{B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic bigroupoid over 
{B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a
soft neutrosophic bigroupoid over
{B (G), , }N  .

Remark 4.1.6. Let ( , )F A and (K,C)  be two soft neu-

trosophic biloops over {B (G), , }N  . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 
soft neutrosophic bigroupoid over  
{B (G), , }N  .

2. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft neutrosophic bigroupoid over 
{B (G), , }N  . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a
soft neutrosophic bigroupoid over
{B (G), , }N  .

One can easily verify (1),(2), and (3) by the help of ex-
amples. 
Definition 4.1.7. Let ( , )F A  be a soft neutrosophic 

bigroupoid over {B (G), , }N  . Then  ( , )F A  is called
an absolute soft neutrosophic bigroupoid over 
{B (G), , }N  if ( ) {B (G), , }NF a   for all a A .

Definition 4.1.8. Let ( , )F A  and ( ,C)H  be two soft 

neutrosophic bigroupoids over {B (G), , }N  . Then 

( ,C)H is called soft neutrosophic sub bigroupoid of 
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( , )F A , if 
1. C A .
2. ( )H a is a neutrosophic sub bigroupoid of

( )F a for all a A .
Example 4.1.9. Let {B (G), , }N   be a neutrosophic
groupoid with 1 2B (G)N G G  , where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
and 

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I      .
Let 1 2{ , }A a a be a set of parameters. Let ( , )F A  is a 
soft neutrosophic bigroupoid over {B (G), , }N  , where

1( ) {0,5,5 ,5 5 } {0,2,2 ,2 2 },F a I I I I   

2 10( ) ( , ) {0,2 2I}F a Z    . 
Let 1{ } AB a  . Then ( , )H B  is a soft neutrosophic
sub bigroupoid of ( , )F A , where 

1( ) {0,5} {0,2 2 }H a I   . 
Definition 4.1.10. Let {B (G), , }N   be a neutrosophic

strong bigroupoid and ( , )F A  be a soft neutrosophic 

bigroupoid over  {B (G), , }N  . Then ( , )F A  is called
soft Lagrange neutrosophic  bigroupoid if and only if 

( )F a  is a Lagrange neutrosophic sub bigroupoid of 

{B (G), , }N  for all  a A .
Theorem 4.1.11. Every soft Lagrange neutrosophic 
bigroupoid over {B (G), , }N   is a soft neutrosophic

bigroupoid over  {B (G), , }N   but the converse is not
true. 
One can easily see the converse by the help of examples. 
 Theorem 4.1.12. If {B (G), , }N   is a Lagrange neutro-

sophic bigroupoid, then ( , )F A  over {B (G), , }N   is a
soft Lagrange neutrosophic bigroupoid but the converse is 
not true. 
 Remark 4.1.13. Let ( , )F A  and ( ,C)K  be two soft La-

grange neutrosophic bigroupoids over {B (G), , }N  .
Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic 
bigroupoid over {B (G), , }N  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft Lagrange neutrosophic 
bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  may
not be a soft Lagrange neutrosophic  bigroupoid
over {B (G), , }N  .

4. Their extended union ( , ) ( ,C)EF A K  may 
not be a soft Lagrange neutrosophic bigroupoid 

over  {B (G), , }N  .

5. Their restricted union  ( , ) ( ,C)RF A K  may 
not be a soft Lagrange neutrosophic  bigroupoid 
over {B (G), , }N  .

6. Their OR  operation ( , ) ( ,C)F A K  may not
be a soft Lagrange neutrosophic bigroupoid over
{B (G), , }N  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 4.1.14. Let {B (G), , }N   be a neutrosophic 

bigroupoid and ( , )F A  be a soft neutrosophic bigroupoid 

over  {B (G), , }N  . Then ( , )F A  is called soft weak

Lagrange neutrosophic  bigroupoid if atleast one ( )F a  is 
not a Lagrange neutrosophic  sub bigroupoid of 
{B (G), , }N   for some a A . 
Theorem 4.1.15. Every soft weak Lagrange neutrosophic 
bigroupoid over {B (G), , }N   is a soft neutrosophic

groupoid over {B (G), , }N   but the converse is not true.

 Theorem 4.1.16. If {B (G), , }N   is weak Lagrange neu-

trosophic bigroupoid, then ( , )F A  over {B (G), , }N   is
also soft weak Lagrange neutrosophic bigroupoid but the 
converse is not true. 
Remark 4.1.17. Let ( , )F A  and ( ,C)K  be two soft 
weak Lagrange neutrosophic bigroupoids over 
{B (G), , }N  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic 
bigroupoid over {B (G), , }N  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weak Lagrange neutrosophic 
bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weak Lagrange neutrosophic bigroupoid
over {B (G), , }N  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weak Lagrnage neutrosophic bigroupoid over  
{B (G), , }N  .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft weak Lagrange neutrosophic bigroupoid 
over {B (G), , }N  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
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soft weak Lagrange neutrosophic bigroupoid over  
{B (G), , }N  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 4.1.18. Let {B (G), , }N   be a neutrosophic 

bigroupoid and ( , )F A  be a soft neutrosophic groupoid 

over  {B (G), , }N  . Then ( ,A)F  is called soft La-

grange free neutrosophic bigroupoid if ( )F a  is not a La-

grange neutrosophic  sub bigroupoid of {B (G), , }N   for

all a A . 
Theorem 4.1.19. Every soft Lagrange free neutrosophic 
bigroupoid over {B (G), , }N   is a soft neutrosophic

bigroupoid over {B (G), , }N   but the converse is not
true. 
 Theorem 4.1.20. If {B (G), , }N   is a Lagrange free

neutrosophic bigroupoid, then ( , )F A  over 

{B (G), , }N  is also a soft Lagrange free neutrosophic
bigroupoid but the converse is not true. 
Remark 4.1.21. Let ( , )F A  and ( ,C)K  be two soft La-

grange free neutrosophic bigroupoids over {B (G), , }N  .
Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic 
bigroupoid over {B (G), , }N  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic 
bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic bigroupoid over
{B (G), , }N  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrange free neutrosophic bigroupoid over  
{B (G), , }N  . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not
a soft Lagrange free neutrosophic bigroupoid over 
{B (G), , }N  . 

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic bigroupoid over
{B (G), , }N  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 

Definition 4.1.22.  ( , )F A  is called soft neutrosophic 

biideal over {B (G), , }N   if ( )F a  is a  neutrosophic

biideal of {B (G), , }N  , for all  a A .

Theorem 4.1.23. Every soft neutrosophic biideal ( , )F A  

over {B (G), , }N   is a soft neutrosophic bigroupoid.

 Proposition 4.1.24. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic biideals over {B (G), , }N  . Then

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic biideal over {B (G), , }N  .

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic biideal over {B (G), , }N  .

3. Their AND  operation ( , ) ( , )F A K B  is soft

neutrosophic biideal over {B (G), , }N  .

 Remark 4.1.25. Let ( , )F A  and ( , )K B  be two soft  

neutrosophic biideals over {B (G), , }N  . Then

1. Their extended union ( , ) ( , )EF A K B is not 

soft neutrosophic biideals over {B (G), , }N  .

2. Their restricted union ( , ) ( , )RF A K B is not 

soft neutrosophic biidleals over {B (G), , }N  .

3. Their OR  operation ( , ) ( , )F A K B  is not

soft neutrosophic biideals over {B (G), , }N  .

 One can easily proved (1),(2),  and (3)  by the help of 
examples 
Theorem 4.1.26. Let ( , )F A  be a soft neutrosophic biide-

al over {B (G), , }N   and  {( , ) : i J}i iH B  is a non-

empty family of soft neutrosophic biideals of ( , )F A . 
Then 

1. ( , )i ii J
H B


  is a soft neutrosophic biideal of 

( , )F A . 

2. ( , )i ii J
H B


 is a soft neutrosophic biideal of

( , )
i J

F A

 .

4.2 Soft Neutrosophic Strong Bigroupoid 

Definition 4.2.1. Let {B (G), , }N   be a neutrosophic
bigroupoid and ( , )F A  be a soft set over {B (G), , }N  .
Then ( , )F A  is called soft neutrosophic  strong 
bigroupoid if and only if ( )F a  is neutrosophic  strong 
sub bigroupoid of  {B (G), , }N   for all a A . 
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Example 4.2.2. Let {B (G), , }N  be a neutrosophic
groupoid with 1 2B (G)N G G  , where

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
and 

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I      . 
 Let 1 2{ , }A a a be a set of parameters. Then ( , )F A  is 
a soft neutrosophic strong bigroupoid over {B (G), , }N  ,
where 

1( ) {0,5 5 } {0,2 2 },F a I I   

2( ) {0,5 } {0,2 2I}F a I   . 
Theorem 4.2.3. Let ( , )F A  and ( , )H A  be two soft neu-

trosophic strong bigroupoids over {B (G), , }N  . Then

their intersection ( , ) ( , )F A H A  is again a soft neutro-

sophic strong bigroupoid over {B (G), , }N  .
Proof. The proof is staightforward. 
Theorem 4.2.4. Let ( , )F A  and ( , )H B  be two soft neu-

trosophic strong bigroupoids over {B (G), , }N  . If

A B   , then ( , ) ( , )F A H B  is a soft neutrosoph-

ic strong bigroupoid over {B (G), , }N  .

Proposition 4.2.5. Let ( , )F A  and ( ,C)K  be two soft 

neutrosophic strong bigroupoids over {B (G), , }N  .
Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong bigroupoid over 
{B (G), , }N  . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic strong bigroupoid over 
{B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a
soft neutrosophic strong bigroupoid over
{B (G), , }N  .

Remark 4.2.6. Let ( , )F A and (K,C)  be two soft neu-

trosophic strong bigroupoids over {B (G), , }N  . Then

1. Their extended union ( , ) ( ,C)EF A K is not a
soft neutrosophic strong bigroupoid over  
{B (G), , }N  .

2. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft neutrosophic strong bigroupoid over 
{B (G), , }N  . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a
soft neutrosophic strong bigroupoid over
{B (G), , }N  .

One can easily verify (1),(2), and (3) by the help of ex-

amples. 
Definition 4.2.7. Let ( , )F A  and ( ,C)H  be two soft 

neutrosophic strong bigroupoids over {B (G), , }N  .

Then ( ,C)H  is called soft neutrosophic strong sub 
bigroupoid of ( , )F A , if 

1. C A .
2. ( )H a is a neutrosophic strong sub bigroupoid of

( )F a for all a A .

Definition 4.2.8. Let {B (G), , }N   be a neutrosophic

strong bigroupoid and ( , )F A  be a soft neutrosophic 

strong bigroupoid over  {B (G), , }N  . Then ( , )F A  is
called soft Lagrange neutrosophic  strong bigroupoid if and 
only if ( )F a  is a Lagrange neutrosophic strong sub 

bigroupoid of {B (G), , }N   for all  a A .
 Theorem 4.2.9. Every soft Lagrange neutrosophic strong 
bigroupoid over {B (G), , }N   is a soft neutrosophic

strong bigroupoid over  {B (G), , }N   but the converse is
not true. 
One can easily see the converse by the help of examples. 
Theorem 4.2.10. If {B (G), , }N   is a Lagrange neutro-

sophic strong bigroupoid, then ( , )F A  over 

{B (G), , }N  is a soft Lagrange neutrosophic strong
bigroupoid but the converse is not true. 
 Remark 4.2.11. Let ( , )F A  and ( ,C)K  be two soft La-
grange neutrosophic strong bigroupoids over 
{B (G), , }N  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic strong 
bigroupoid over {B (G), , }N  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft Lagrange neutrosophic strong  
bigroupoid over {B (G), , }N  .

3. Their AND  operation  ( , ) ( ,C)F A K  may
not be a soft Lagrange neutrosophic  strong
bigroupoid over {B (G), , }N  .Their extended

union ( , ) ( ,C)EF A K  may not be a soft La-
grange neutrosophic strong bigroupoid over  
{B (G), , }N  .

4. Their restricted union  ( , ) ( ,C)RF A K  may 
not be a soft Lagrange neutrosophic  strong 
bigroupoid over {B (G), , }N  . 
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5. Their OR  operation ( , ) ( ,C)F A K  may not
be a soft Lagrange neutrosophic strong
bigroupoid over  {B (G), , }N  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 4.2.12. Let {B (G), , }N   be a neutrosophic 

strong bigroupoid and ( , )F A  be a soft neutrosophic 

strong bigroupoid over  {B (G), , }N  . Then ( , )F A  is
called soft weak Lagrange neutrosophic  strong bigroupoid 
if atleast one ( )F a  is not a Lagrange neutrosophic  strong 

sub bigroupoid of {B (G), , }N   for some a A .
Theorem 4.2.13. Every soft weak Lagrange neutrosophic 
strong bigroupoid over {B (G), , }N   is a soft neutro-

sophic strong bigroupoid over {B (G), , }N   but the con-
verse is not true. 
Theorem 4.2.14. If {B (G), , }N   is weak Lagrange neu-

trosophic strong bigroupoid, then ( , )F A  over 

{B (G), , }N  is also soft weak Lagrange neutrosophic
strong bigroupoid but the converse is not true. 
Remark 4.2.15. Let ( , )F A  and ( ,C)K  be two soft 
weak Lagrange neutrosophic strong bigroupoids over 
{B (G), , }N  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft weak Lagrange neutrosophic strong
bigroupoid over {B (G), , }N  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft weak Lagrange neutrosophic strong 
bigroupoid over {B (G), , }N  .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft weak Lagrange neutrosophic strong
bigroupoid over {B (G), , }N  .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft weak Lagrnage neutrosophic strong 
bigroupoid over  {B (G), , }N  . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft weak Lagrange neutrosophic strong 
bigroupoid over {B (G), , }N  .

6. Their OR  operation ( , ) ( ,C)F A K  is
not a soft weak Lagrange neutrosophi  strong bigroupoid 
over  {B (G), , }N  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 4.2.16. Let {B (G), , }N   be a neutrosophic 

strong bigroupoid and ( , )F A  be a soft neutrosophic 

strong bigroupoid over  {B (G), , }N  . Then ( ,A)F  is
called soft Lagrange free neutrosophic strong bigroupoid if 

( )F a is not a Lagrange neutrosophic  strong sub 

bigroupoid of {B (G), , }N   for all a A .
 Theorem 4.2.17. Every soft Lagrange free neutrosophic 
strong bigroupoid over {B (G), , }N   is a soft neutro-

sophic strong bigroupoid over {B (G), , }N   but the con-
verse is not true. 
 Theorem 4.2.18. If {B (G), , }N   is a Lagrange free

neutrosophic strong bigroupoid, then ( , )F A  over 

{B (G), , }N  is also a soft Lagrange free neutrosophic
strong bigroupoid but the converse is not true. 
Remark 4.2.19. Let ( , )F A  and ( ,C)K  be two soft La-
grange free neutrosophic strong bigroupoids over 
{B (G), , }N  . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong
bigroupoid over {B (G), , }N  .

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic strong 
bigroupoid over {B (G), , }N  . 

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic strong
bigroupoid over {B (G), , }N  .

4. Their extended union ( , ) ( ,C)EF A K  is not a
soft Lagrange free neutrosophic strong bigroupoid 
over  {B (G), , }N  . 

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic strong
bigroupoid over {B (G), , }N  .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic strong bigroupoid
over  {B (G), , }N  .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 4.2.20.  ( , )F A  is called soft neutrosophic 

strong biideal over {B (G), , }N   if ( )F a  is a  neutro-
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sophic strong biideal of {B (G), , }N  , for all  a A .
Theorem 4.2.21. Every soft neutrosophic strong biideal 
( , )F A over {B (G), , }N   is a soft neutrosophic strong
bigroupoid. 
 Proposition 4.2.22. Let ( , )F A  and ( , )K B  be two soft 

neutrosophic strong biideals over {B (G), , }N  . Then

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic strong biideal over 
{B (G), , }N  . 

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic strong biideal over 
{B (G), , }N  . 

3. Their AND  operation ( , ) ( , )F A K B  is soft

neutrosophic strong biideal over {B (G), , }N  .

 Remark 4.2.23. Let ( , )F A  and ( , )K B  be two soft  

neutrosophic strong biideals over {B (G), , }N  . Then

1. Their extended union ( , ) ( , )EF A K B is not 
soft neutrosophic strong biideals over 
{B (G), , }N  . 

2. Their restricted union ( , ) ( , )RF A K B is not 
soft neutrosophic strong biidleals over 
{B (G), , }N  . 

3. Their OR  operation ( , ) ( , )F A K B  is not
soft neutrosophic strong biideals over
{B (G), , }N  .

 One can easily proved (1),(2),  and (3)  by the help of 
examples 
Theorem 4.2.24. Let ( , )F A  be a soft neutrosophic 

strong biideal over {B (G), , }N   and

{( , ) : i J}i iH B  is a non-empty family of soft neutro-

sophic strong biideals of ( , )F A . Then 

1. ( , )i ii J
H B


  is a soft neutrosophic strong biideal 

of ( , )F A . 

2. ( , )i ii J
H B


 is a soft neutrosophic strong biideal

of ( , )
i J

F A

 .

5 Soft Neutrosophic N-groupoid and Their Properties 

5.1 Soft Neutrosophic N-groupoid 

Definition 5.1.1. Let 
 1 2 1 2N(G) ... G , , ,...,N NG G        be a

neutrosophic  N-groupoid and ( , )F A  be a soft set over 
 1 2 1 2N(G) ... G , , ,...,N NG G       . Then 

( , )F A is called soft neutrosophic  N-groupoid if and only 
if ( )F a is neutrosophic sub N-groupoid of  

 1 2 1 2N(G) ... G , , ,...,N NG G        for all
a A . 
Example 5.1.2. Let  1 2 3 1 2 3N(G) G , , ,G G     
be a neutrosophic  3-groupoid, where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I       , 
 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I     

 and  3 12 12| 8 4 (mod12); ,G Z I a b a b a b Z I       . 

Let 1 2{ , }A a a be a set of parameters. Then ( , )F A  is 
a soft neutrosophic  N-groupoid over 

 1 2 3 1 2 3N(G) G , , ,G G      , where
1( ) {0,5,5 ,5 5 } {0,2,2 ,2 2 } {0,2},F a I I I I    

2 10( ) ( , ) {0,2 2I} {0,2 I}F a Z     . 
Theorem 5.1.3. Let ( , )F A  and ( , )H A  be two soft neu-
trosophic N-groupoids over ( )N G . Then their intersec-
tion ( , ) ( , )F A H A  is again a soft neutrosophic N-
groupoid over ( )N G . 
Theorem 5.1.4. Let ( , )F A  and ( , )H B  be two soft neu-
trosophic N-groupoids over ( )N G . If  A B   , then 
( , ) ( , )F A H B  is a soft neutrosophic N-groupoid over 

( )N G . 
Proposition 5.1.5. Let ( , )F A  and ( ,C)K be two soft 
neutrosophic N-groupoids over ( )N G . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic N-groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic N-groupoid over ( )N G . 
3. Their AND  operation  ( , ) ( ,C)F A K  is a

soft neutrosophic N-groupoid over ( )N G .
Remark 5.1.4. Let ( , )F A and (K,C)  be two soft neu-
trosophic N-groupoids over ( )N G . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 

soft neutrosophic N-groupoid over  ( )N G . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 

a soft neutrosophic N-groupoid over ( )N G . 
3. Their OR  operation ( , ) ( ,C)F A K  is not a

soft neutrosophic N-groupoid over  ( )N G .
One can easily verify (1),(2), and (3) by the help of ex-
amples. 
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Definition 5.1.5. Let ( , )F A  be a soft neutrosophic N-
groupoid over ( )N G . Then  ( , )F A  is called an absolute 
soft neutrosophic N-groupoid over  ( )N G  if  

( ) ( )F a N G for all a A . 
Definition 5.1.6. Let ( , )F A  and ( ,C)H be two soft
neutrosophic N-groupoids over ( )N G . Then ( ,C)H is 
called soft neutrosophic sub N-groupoid of ( , )F A , if 

1. C A .
2. ( )H a is a neutrosophic sub bigroupoid of

( )F a for all a A .
Example 5.1.7. Let  1 2 3 1 2 3N(G) G , , ,G G     
be a neutrosophic  3-groupoid, where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
,  

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I     
and 

 3 12 12| 8 4 (mod12); ,G Z I a b a b a b Z I       . 

Let 1 2{ , }A a a be a set of parameters. Then ( , )F A  is 
a soft neutrosophic N-groupoid over 

 1 2 3 1 2 3N(G) G , , ,G G      , where

1( ) {0,5,5 ,5 5 } {0,2,2 ,2 2 } {0,2},F a I I I I    

2 10( ) ( , ) {0,2 2I} {0,2 I}F a Z     . 

Let 1{ } AB a  . Then ( , )H B  is a soft neutrosophic
sub N-groupoid of ( , )F A , where 

1( ) {0,5} {0,2 2 } {0,2}H a I    . 

Definition 5.1.8. Let ( )N G  be a neutrosophic N-
groupoid and ( , )F A  be a soft neutrosophic N-groupoid 
over  ( )N G . Then ( , )F A  is called soft Lagrange neu-
trosophic  N-groupoid if and only if ( )F a  is a Lagrange 
neutrosophic sub N-groupoid of ( )N G  for all  a A .  
Theorem 5.1.9. Every soft Lagrange neutrosophic N-
groupoid over ( )N G  is a soft neutrosophic N-groupoid 
over  ( )N G  but the converse may not be true. 
One can easily see the converse by the help of examples. 
 Theorem 5.1.10. If ( )N G  is a Lagrange neutrosophic N-
groupoid, then ( , )F A  over ( )N G  is a soft Lagrange 
neutrosophic N-groupoid but the converse is not true. 
 Remark 5.1.11. Let ( , )F A  and ( ,C)K  be two soft La-
grange neutrosophic N-groupoids over ( ).N G  Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic N-

groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft Lagrange neutrosophic N-
groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  may
not be a soft Lagrange neutrosophic  N-groupoid
over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  may
not be a soft Lagrange neutrosophic N-groupoid
over  ( )N G .

7. Their restricted union  ( , ) ( ,C)RF A K  may
not be a soft Lagrange neutrosophic  N-groupoid
over ( )N G .

8. Their OR  operation ( , ) ( ,C)F A K  may not
be a soft Lagrange neutrosophic N-groupoid over

( )N G .
One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 5.1.12. Let ( )N G  be a neutrosophic N-
groupoid and ( , )F A  be a soft neutrosophic N-groupoid 
over  ( )N G . Then ( , )F A  is called soft weak Lagrange 
neutrosophic  N-groupoid if atleast one ( )F a  is not a La-
grange neutrosophic  sub N-groupoid of ( )N G  for some 
a A . 
Theorem 5.1.13. Every soft weak Lagrange neutrosophic 
N-groupoid over ( )N G  is a soft neutrosophic N-groupoid
over ( )N G  but the converse is not true.
Theorem 5.1.14. If ( )N G  is weak Lagrange neutrosoph-
ic N-groupoid, then ( , )F A  over ( )N G  is also a soft
weak Lagrange neutrosophic bigroupoid but the converse
is not true.
Remark 5.1.15. Let ( , )F A  and ( ,C)K  be two soft
weak Lagrange neutrosophic N-groupoids over ( )N G .
Then

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft weak Lagrange neutrosophic N-
groupoid over ( )N G .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft weak Lagrange neutrosophic N-
groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  may
not be a soft weak Lagrange neutrosophic N-
groupoid over ( )N G .
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4. Their extended union ( , ) ( ,C)EF A K  may
not be a soft weak Lagrnage neutrosophic N-
groupoid over  ( )N G .

5. Their restricted union  ( , ) ( ,C)RF A K  may 
not be a soft weak Lagrange neutrosophic N-
groupoid over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  may not
be a soft weak Lagrange neutrosophic N-groupoid
over  ( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 5.1.16. Let ( )N G  be a neutrosophic N-
groupoid and ( , )F A  be a soft neutrosophic N-groupoid 
over  ( )N G . Then ( ,A)F  is called soft Lagrange free 
neutrosophic N-groupoid if ( )F a  is not a Lagrange neu-
trosophic  sub N-groupoid of ( )N G  for all a A . 
 Theorem 5.1.17. Every soft Lagrange free neutrosophic 
N-groupoid over ( )N G  is a soft neutrosophic N-groupoid
over ( )N G  but the converse is not true.
Theorem 5.1.18. If ( )N G  is a Lagrange free neutrosoph-
ic N-groupoid, then ( , )F A  over ( )N G  is also a soft La-
grange free neutrosophic N-groupoid but the converse is
not true.
Remark 5.1.19. Let ( , )F A  and ( ,C)K  be two soft La-
grange free neutrosophic N-groupoids over ( )N G . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic N-
groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic N-
groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic N-groupoid
over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrange free neutrosophic N-groupoid over

( )N G .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic N-groupoid
over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic N-groupoid over

( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 5.1.20.  ( , )F A  is called soft neutrosophic N-
ideal over ( )N G  if and only if ( )F a  is a  neutrosophic 
N-ideal of ( )N G , for all  a A .
Theorem 5.1.21. Every soft neutrosophic N-ideal ( , )F A  
over ( )N G  is a soft neutrosophic N-groupoid.
Proposition 5.1.22. Let ( , )F A  and ( , )K B  be two soft

neutrosophic N-ideals over ( )N G . Then

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic N-ideal over ( )N G . 

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic N-ideal over ( )N G . 
3. Their AND  operation ( , ) ( , )F A K B  is soft

neutrosophic N-ideal over ( )N G .
 Remark 5.1.23. Let ( , )F A  and ( , )K B  be two soft  
neutrosophic N-ideals over ( )N G . Then 

1. Their extended union ( , ) ( , )EF A K B  is not a 

soft neutrosophic N-ideal over ( )N G . 

2. Their restricted union ( , ) ( , )RF A K B  is not 

a soft neutrosophic N-idleal over ( )N G . 
3. Their OR  operation ( , ) ( , )F A K B  is not a

soft neutrosophic N-ideal over ( )N G .
 One can easily proved (1),(2),  and (3)  by the help of 
examples 
Theorem 5.1.24. Let ( , )F A  be a soft neutrosophic N-

ideal over ( )N G  and  {( , ) : i J}i iH B   be a non-empty

family of soft neutrosophic N-ideals of ( , )F A . Then 

1. ( , )i ii J
H B


  is a soft neutrosophic N-ideal of 

( , )F A . 

2. ( , )i ii J
H B


 is a soft neutrosophic N-ideal of

( , )
i J

F A

 .

5.2 Soft Neutrosophic Strong N-groupoid 

Definition 5.2.1. Let 
 1 2 1 2N(G) ... G , , ,...,N NG G        be a 

neutrosophic  N-groupoid and ( , )F A  be a soft set over 
 1 2 1 2N(G) ... G , , ,...,N NG G       . Then 

( , )F A is called soft neutrosophic  strong N-groupoid if  
and only if ( )F a is neutrosophic strong sub N-groupoid 
of   1 2 1 2N(G) ... G , , ,...,N NG G        for all
a A . 
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Example 5.2.2. Let  1 2 3 1 2 3N(G) G , , ,G G     
be a neutrosophic  3-groupoid, where 

 1 10 10| 2 3 (mod10); ,G Z I a b a b a b Z I      
, 

 2 4 4| 2 (mod 4); ,G Z I a b a b a b Z I     
 and 

 3 12 12| 8 4 (mod12); ,G Z I a b a b a b Z I      
. 
 Let 1 2{ , }A a a be a set of parameters. Then ( , )F A  is 
a soft neutrosophic  N-groupoid over 

 1 2 3 1 2 3N(G) G , , ,G G      , where

1( ) {0,5 } {0,2 } {0,2 },F a I I I  

2( ) {0,5 5 } {0,2 2I} {0,2 2I}F a I      . 

Theorem 5.2.3. Let ( , )F A  and ( , )H A  be two soft neu-
trosophic strong N-groupoids over ( )N G . Then their in-
tersection ( , ) ( , )F A H A  is again a soft neutrosophic 
strong N-groupoid over ( )N G . 
Theorem 5.2.4. Let ( , )F A  and ( , )H B  be two soft neu-
trosophic strong N-groupoids over ( )N G . If  
A B   , then ( , ) ( , )F A H B  is a soft neutrosoph-

ic strong N-groupoid over ( )N G . 
Theorem 5.2.5. If ( )N G is a neutrosophic strong N-
groupoid, then ( , )F A  over ( )N G is also a soft neutro-
sophic strong N-groupoid. 
Proposition 5.2.6. Let ( , )F A  and ( ,C)K be two soft 
neutrosophic strong N-groupoids over ( )N G . Then

1. Their extended intersection ( , ) ( ,C)EF A K

is a soft neutrosophic strong N-groupoid over 
( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is a soft neutrosophic strong N-groupoid over 
( )N G . 

3. Their AND  operation  ( , ) ( ,C)F A K  is a
soft neutrosophic strong N-groupoid over

( )N G .
Remark 5.2.7. Let ( , )F A and (K,C)  be two soft neu-
trosophic strong N-groupoids over ( )N G . Then 

1. Their extended union ( , ) ( ,C)EF A K  is not a 
soft neutrosophic strong N-groupoid over  

( )N G . 

2. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft neutrosophic strong N-groupoid over 

( )N G . 

3. Their OR  operation ( , ) ( ,C)F A K  is not a
soft neutrosophic strong N-groupoid over

( )N G .
One can easily verify (1),(2), and (3) by the help of ex-
amples. 
Definition 5.2.8. Let ( , )F A  and ( ,C)H  be two soft 
neutrosophic strong N-groupoids over ( )N G . Then 
( ,C)H  is called soft neutrosophic strong sub N-groupoid 
of ( , )F A , if 

1. C A .
2. ( )H a is a neutrosophic sub bigroupoid of

( )F a for all a A .
Definition 5.2.9. Let ( )N G  be a neutrosophic strong N-
groupoid and ( , )F A  be a soft neutrosophic strong N-
groupoid over  ( )N G . Then ( , )F A  is called soft La-
grange neutrosophic strong N-groupoid if and only if 

( )F a is a Lagrange neutrosophic sub N-groupoid of 
( )N G for all  .a A

 Theorem 5.2.10. Every soft Lagrange neutrosophic strong 
N-groupoid over ( )N G  is a soft neutrosophic N-groupoid
over  ( )N G  but the converse may not be true.
One can easily see the converse by the help of examples.
Theorem 5.2.11. Every soft Lagrange neutrosophic strong
N-groupoid over ( )N G  is a soft Lagrange neutrosophic
N-groupoid over  ( )N G  but the converse may not be true.
Theorem 5.2.12. If ( )N G  is a Lagrange neutrosophic

strong N-groupoid, then ( , )F A  over ( )N G  is a soft La-
grange neutrosophic strong N-groupoid but the converse is
not true.
  Remark 5.2.13. Let ( , )F A  and ( ,C)K  be two soft 
Lagrange neutrosophic strong N-groupoids over ( ).N G  
Then 

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft Lagrange neutrosophic strong 
N-groupoid over ( )N G .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft Lagrange neutrosophic strong 
N-groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  may
not be a soft Lagrange neutrosophic  strong N-
groupoid over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  may 
not be a soft Lagrange neutrosophic strong N-
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groupoid over  ( )N G . 

5. Their restricted union  ( , ) ( ,C)RF A K  may 
not be a soft Lagrange neutrosophic  strong N-
groupoid over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  may not
be a soft Lagrange neutrosophic strong N-
groupoid over  ( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 5.2.14. Let ( )N G  be a neutrosophic strong N-
groupoid and ( , )F A  be a soft neutrosophic strong N-
groupoid over  ( )N G . Then ( , )F A  is called soft weak 
Lagrange neutrosophic strong  N-groupoid if atleast one 

( )F a is not a Lagrange neutrosophic sub N-groupoid of 
( )N G for some a A . 

Theorem 5.2.15. Every soft weak Lagrange neutrosophic 
strong N-groupoid over ( )N G  is a soft neutrosophic N-
groupoid over ( )N G  but the converse is not true. 
Theorem 5.2.16. Every soft weak Lagrange neutrosophic 
strong N-groupoid over ( )N G  is a soft weak Lagrange 
neutrosophic N-groupoid over ( )N G  but the converse is 
not true. 
 Remark 5.2.17. Let ( , )F A  and ( ,C)K  be two soft 
weak Lagrange neutrosophic strong N-groupoids over 

( )N G . Then

1. Their extended intersection ( , ) ( ,C)EF A K

may not be a soft weak Lagrange neutrosophic
strong N-groupoid over ( )N G .

2. Their restricted intersection  ( , ) ( ,C)RF A K

may not be a soft weak Lagrange neutrosophic
strong N-groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  may
not be a soft weak Lagrange neutrosophic strong
N-groupoid over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  may
not be a soft weak Lagrnage neutrosophic strong
N-groupoid over  ( )N G .

5. Their restricted union  ( , ) ( ,C)RF A K  may
not be a soft weak Lagrange neutrosophic strong
N-groupoid over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  may not
be a soft weak Lagrange neutrosophic strong  N-
groupoid over  ( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 

the help of examples. 
Definition 5.2.18. Let ( )N G  be a neutrosophic strong N-
groupoid and ( , )F A  be a soft neutrosophic strong N-
groupoid over  ( )N G . Then ( ,A)F  is called soft La-
grange free neutrosophic strong N-groupoid if ( )F a  is 
not a Lagrange neutrosophic sub N-groupoid of ( )N G  for 
all a A . 
Theorem 5.2.19. Every soft Lagrange free neutrosophic 
strong N-groupoid over ( )N G  is a soft neutrosophic N-
groupoid over ( )N G  but the converse is not true. 
Theorem 5.2.20. Every soft Lagrange free neutrosophic 
strong N-groupoid over ( )N G  is a soft Lagrange neutro-
sophic N-groupoid over ( )N G  but the converse is not 
true. 
 Theorem 5.2.21. If ( )N G  is a Lagrange free neutro-
sophic strong N-groupoid, then ( , )F A  over ( )N G  is al-
so a soft Lagrange free neutrosophic strong N-groupoid but 
the converse is not true. 
Remark 5.2.22. Let ( , )F A  and ( ,C)K  be two soft La-
grange free neutrosophic N-groupoids over ( )N G . Then 

1. Their extended intersection ( , ) ( ,C)EF A K

is not a soft Lagrange free neutrosophic strong N-
groupoid over ( )N G . 

2. Their restricted intersection  ( , ) ( ,C)RF A K

is not a soft Lagrange free neutrosophic strong N-
groupoid over ( )N G .

3. Their AND  operation  ( , ) ( ,C)F A K  is not
a soft Lagrange free neutrosophic strong N-
groupoid over ( )N G .

4. Their extended union ( , ) ( ,C)EF A K  is not a 
soft Lagrange free neutrosophic strong N-
groupoid over  ( )N G .

5. Their restricted union  ( , ) ( ,C)RF A K  is not 
a soft Lagrange free neutrosophic strong  N-
groupoid over ( )N G .

6. Their OR  operation ( , ) ( ,C)F A K  is not a
soft Lagrange free neutrosophic stong N-groupoid
over  ( )N G .

One can easily verify (1),(2),(3),(4),(5) and (6)  by 
the help of examples. 
Definition 5.2.23.  ( , )F A  is called soft neutrosophic 
strong N-ideal over ( )N G  if and only if ( )F a  is a  neu-
trosophic strong N-ideal of ( )N G , for all  a A . 
Theorem 5.2.24. Every soft neutrosophic strong N-ideal 

Florentin Smarandache (author and editor) Collected Papers, XII

229



( , )F A over ( )N G is a soft neutrosophic N-groupoid. 
Theorem 5.2.25. Every soft neutrosophic strong N-ideal 
( , )F A  over ( )N G is a soft neutrosophic N-ideal but the 
converse is not true.
 Proposition 15. Let ( , )F A  and ( , )K B  be two soft 
neutrosophic strong N-ideals over ( )N G . Then 

1. Their extended intersection ( , ) ( , )EF A K B

is soft neutrosophic strong N-ideal over ( )N G . 

2. Their restricted intersection  ( , ) ( , )RF A K B

is soft neutrosophic strong N-ideal over ( )N G . 
3. Their AND  operation ( , ) ( , )F A K B  is soft

neutrosophicstrong  N-ideal over ( )N G .
 Remark 5.2.26. Let ( , )F A  and ( , )K B  be two soft  
neutrosophic strong N-ideals over ( )N G . Then 

1. Their extended union ( , ) ( , )EF A K B  is not a 

soft neutrosophic strong N-ideal over ( )N G . 

2. Their restricted union ( , ) ( , )RF A K B  is not 

a soft neutrosophic strong N-idleal over ( )N G . 
3. Their OR  operation ( , ) ( , )F A K B  is not a

soft neutrosophic strong N-ideal over ( ).N G
 One can easily proved (1),(2),  and (3)  by the help of 
examples 
Theorem 5.2.27. Let ( , )F A  be a soft neutrosophic 

strong N-ideal over ( )N G  and  {( , ) : i J}i iH B   be a
non-empty family of soft neutrosophic strong N-ideals of 
( , )F A . Then 

1. ( , )i ii J
H B


 is a soft neutrosophic strong N-ideal 

of ( , )F A . 

2. ( , )i ii J
H B


 is a soft neutrosophic strong N-ideal

of ( , )
i J

F A

 .

Conclusion 

 This paper is an extension of neutrosphic groupoids to soft 
neutrosophic groupoids. We also extend neutrosophic  
bigroupoid, neutrosophic  N  -groupoid to soft neutrosoph
ic bigroupoid, and soft neutrosophic  N  -groupoid. Their
related properties and results are explained with many il-
lustrative examples. The notions related with strong part of 
neutrosophy also established within soft neutrosophic 
groupoids. 
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Interval Neutrosophic Rough Set 
Said Broumi, Florentin Smarandache 

Abstract:  This Paper combines interval- valued  
neutrouphic  sets and rough sets. It studies roughness in 
interval- valued neutrosophic sets and some of its 

properties. Finally  we propose a  Hamming distance 
between lower and upper approximations of interval 
valued neutrosophic sets. 

Keywords: interval valued neutrosophic sets, rough sets, interval  valued neutrosophic sets.

1.Introduction

Neutrosophic set (NS for short), a part of neutrosophy 
introduced by Smarandache [1] as a new branch of 
philosophy, is a mathematical tool dealing with problems 
involving imprecise, indeterminacy and inconsistent 
knowledge. Contrary to fuzzy sets and  intuitionistic fuzzy 
sets, a neutrosophic set consists of three basic membership 
functions independently of each other, which are truth, 
indeterminacy and falsity. This theory has been well 
developed in both theories and applications. After the 
pioneering work  of  Smarandache,  In 2005, Wang [2] 
introduced the notion of  interval neutrosophic sets ( INS 
for short) which is another extension of neutrosophic sets. 
INS can be described by a membership interval, a non-
membership interval and indeterminate interval, thus the 
interval neutrosophic  (INS) has the virtue of 
complementing NS, which is more flexible and practical 
than neutrosophic set, and Interval Neutrosophic Set (INS ) 
provides a more  reasonable mathematical framework to 
deal with indeterminate and inconsistent information. The 
interval neutrosophic set generalize, the classical set ,fuzzy 
set [ 3] , the interval valued fuzzy set [4], intuitionistic 
fuzzy set [5 ] , interval valued intuitionstic fuzzy set [ 6] 
and so on. Many scholars have performed studies on 
neutrosophic sets , interval neutrosophic sets and their 
properties [7,8,9,10,11,12,13]. Interval neutrosophic sets 
have also been widely applied to many fields 
[14,15,16,17,18,19]. 

The rough  set  theory  was introduced  by  Pawlak  [20]  in 
1982, which  is  a  technique  for  managing  the  
uncertainty  and  imperfection,  can  analyze  incomplete 
information  effectively. Therefore, many models have 
been built upon different aspect, i.e, univers, relations, 
object, operators by many scholars [21,22,23,24,25,26] 
such as rough fuzzy sets, fuzzy rough sets, generalized 
fuzzy rough, rough intuitionistic fuzzy set.  intuitionistic 
fuzzy rough sets [27].  It has been successfully applied in 
many fields such as attribute reduction [28,29,30,31], 
feature selection [32,33,34], rule extraction [35,36,37,38] 
and so on. The  rough sets theory approximates any subset 
of objects of the universe by two sets, called the lower and 
upper approximations. It focuses on the ambiguity caused 
by the limited discernibility of  objects in the universe of 
discourse.  
More recently, S.Broumi et al [39] combined neutrosophic 
sets with rough sets in a new hybrid mathematical structure 
called “rough neutrosophic sets” handling incomplete and 
indeterminate information . The concept of rough 
neutrosophic sets generalizes fuzzy rough sets and 
intuitionistic fuzzy rough sets. Based on the equivalence 
relation on the universe of discourse, A.Mukherjee et al 
[40] introduced lower and upper approximation of interval
valued intuitionistic fuzzy set in Pawlak’s approximation
space . Motivated by this ,we extend the  interval
intuitionistic fuzzy  lower and upper approximations to the
case of interval valued neutrosophic set. The concept of
interval valued neutrosophic rough set is introduced by
coupling both interval neutrosophic sets and rough sets.

Said Broumi, Florentin Smarandache (2015). Interval Neutrosophic Rough Set. 
Neutrosophic Sets and Systems 7, 23-31
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The organization of this paper is as follow : In section 2, 
we briefly present some basic definitions and preliminary 
results are given which will be used in the rest of the paper. 
In section 3 , basic concept of rough approximation of an 
interval valued neutrosophic sets and their properties are 
presented. In section 4, Hamming distance between lower 
approximation and upper approximation of interval 
neutrosophic set is introduced, Finally, we concludes the 
paper. 

2.Preliminaries

Throughout this paper, We now recall some basic notions 
of neutrosophic sets , interval valued neutrosophic sets , 
rough set theory and intuitionistic fuzzy rough sets. More 
can found in ref [1, 2,20,27]. 

Definition 1 [1] 

Let U be an universe of discourse  then the neutrosophic 
set A is an object having the form A= {< x: 𝛍 A(x), 𝛎 A(x), 𝛚 

A(x) >,x ∈ U}, where the functions 𝛍, 𝛎, 𝛚 : U→]−0,1+[
define respectively the degree of membership , the degree 
of indeterminacy, and the degree of non-membership of the 
element x ∈ X to the set A with the condition.  

   −0 ≤μ A(x)+ ν A(x) + ω A(x) ≤ 3+.            (1)    
From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 
of ]−0,1+[.so instead of ]−0,1+[ we need to take the interval 
[0,1] for technical applications, because ]−0,1+[will be 
difficult to apply in the real applications  such as in 
scientific and engineering problems.  

Definition 2 [2] 
Let X be a space of points (objects) with generic elements 
in X denoted by x. An interval valued neutrosophic set 
(for short IVNS) A in X is characterized by truth-
membership function μ

A
(x), indeteminacy-membership

function νA(x) and falsity-membership function ωA(x).
For each point x in X, we have that μ

A
(x), νA(x),

ωA(x) ∈ [0 ,1].
For two IVNS, A= {<x , [μ

A
L (x), μ

A
U(x)] ,

[νA
L (x), νA

U(x)] , [ωA
L (x), ωA

U(x)]  > | x ∈ X }       (2) 

And B= {<x , [μ
B
L (x), μ

B
U(x)] , 

[νB
L (x), νB

U(x)] , [ωB
L (x), ωB

U(x)]> | x ∈ X } the two
relations are defined as follows: 

(1)A ⊆  Bif and only if μ
A
L (x) ≤ μ

B
L (x),μ

A
U(x) ≤

μ
B
U(x) , νA

L (x) ≥ νB
L (x) ,ωA

U(x) ≥ ωB
U(x) , ωA

L (x) ≥ ωB
L (x)

,ωA
U(x) ≥ ωB

U(x)

(2)A =  B  if and only if , μ
A

(x) =μ
B

(x) ,νA(x) =νB(x)

,ωA(x) =ωB(x) for any x ∈ X

The complement of AIVNS is denoted by AIVNS
o and is

defined by 

Ao={ <x , [ωA
L (x), ωA

U(x)]>  ,  [1 − νA
U(x), 1 − νA

L (x)]  ,
[μ

A
L (x), μ

A
U(x)] | x ∈ X }

A∩B ={ <x , [min(μ
A
L (x),μ

B
L (x)), min(μ

A
U(x),μ

B
U(x))],

[max(νA
L (x),νB

L (x)),
max(νA

U(x),νB
U(x)],  [max(ωA

L (x),ωB
L (x)),

max(ωA
U(x),ωB

U(x))] >: x ∈ X }

A∪B ={ <x , [max(μ
A
L (x),μ

B
L (x)), max(μ

A
U(x),μ

B
U(x))],

[min(νA
L (x),νB

L (x)),
min(νA

U(x),νB
U(x)], [min(ωA

L (x),ωB
L (x)),

min(ωA
U(x),ωB

U(x))] >: x ∈ X }

ON = {<x, [ 0, 0] ,[ 1 , 1], [1 ,1] >| x ∈ X}, denote the 
neutrosophic empty set ϕ 

1N = {<x, [ 0, 0] ,[ 0 , 0], [1 ,1] >| x ∈ X}, denote the 
neutrosophic universe set U 

As an illustration, let us consider the following example. 
Example 1. Assume that the universe of discourse 
U={x1, x2, x3}, where x1characterizes the capability, 
x2characterizes the trustworthiness and x3  indicates the 
prices of the objects. It may be further assumed that the 
values of x1, x2 and x3 are in [0, 1] and they are obtained 
from some questionnaires of some experts. The experts 
may impose their opinion in three components viz. the 
degree of goodness, the degree of indeterminacy and that 
of poorness to explain the characteristics of the objects. 
Suppose A is an interval neutrosophic set (INS) of U, 
such that, 
A = {< x1,[0.3 0.4],[0.5 0.6],[0.4 0.5] >,< x2, ,[0.1 
0.2],[0.3 0.4],[0.6 0.7]>,< x3, [0.2 0.4],[0.4 0.5],[0.4 0.6] 
>}, where the degree of goodness of capability is 0.3, 
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degree of indeterminacy of capability is 0.5 and degree of 
falsity of capability is 0.4 etc. 
Definition 3 [20]  
Let R be an equivalence relation on the universal set U. 
Then the pair (U, R) is called a Pawlak approximation 
space. An equivalence class of R containing x will be 
denoted by [x]R. Now for X ⊆ U, the lower and upper
approximation of X with respect to (U, R) are denoted by 
respectively R ∗X and R∗ X and are defined by
R∗ X ={x∈U: [x]R ⊆ X},
R ∗X ={ x∈U: [x]R ∩ X ≠ ∅}.
Now if R ∗X = R∗ X, then X is called definable; otherwise
X is called a rough set. 
Definition 4 [27] 
Let U be a universe and X , a rough set in U. An IF rough 
set A in U is characterized  by a membership function  μA

:U→ [0, 1] and  non-membership function  νA :U→ [ 0 , 1]
such that 
 μA(R X) = 1 ,  νA(R X) = 0
Or [μA(x), νA(x)] = [ 1, 0] if  x ∈ (R X ) and  μA(U -R X)
= 0 ,  νA(U -R X) = 1

Or [ μA(x) ,  νA(x)] = [ 0, 1]  if   x ∈ U − R X ,
0 ≤  μA(R X − R X) + νA(R X − R X) ≤ 1

Example 2: Example of IF Rough Sets 
Let U= {Child,  Pre-Teen,  Teen,  Youth,  Teenager, 
Young-Adult, Adult, Senior, Elderly} be a universe.  
Let the equivalence relation R be defined as follows: 
R*= {[Child,  Pre-Teen],  [Teen,  Youth,  Teenager], 
[Young-Adult, Adult],[Senior, Elderly]}. 
Let  X = {Child, Pre-Teen, Youth, Young-Adult} be a 
subset  of univers U. 
We  can  define X in  terms  of  its  lower  and  upper  
approximations: 
R X = {Child, Pre-Teen}, and R X =  {Child,  Pre-Teen,  
Teen,  Youth,  Teenager,  
Young-Adult, Adult}. 
The  membership  and  non-membership  functions  
 μA:U→] 1 , 0 [  and   νA∶ U→] 1 , 0 [  on a set  A are
defined as  follows: 
 μAChild) = 1,   μA (Pre-Teen) = 1 and   μA (Child) = 0,
 μA(Pre-Teen) = 0
 μA (Young-Adult) = 0,   μA (Adult) = 0,  μA(Senior) = 0,

 μA (Elderly) = 0

3.Basic Concept of Rough Approximations of an
Interval Valued Neutrosophic Set and their
Properties.

In  this  section  we  define  the  notion  of interval valued 
neutrosophic rough sets (in brief  ivn- rough  set ) by 
combining both rough sets and interval neutrosophic sets. 
IVN- rough sets are the generalizations  of interval valued 
intuitionistic fuzzy rough sets, that  give  more information 
about uncertain or boundary region. 

Definition  5  : Let ( U,R) be a pawlak approximation 
space ,for an interval valued neutrosophic set  

𝐴= {<x , [μA
L (x), μA

U(x)], [νA
L (x), νA

U(x)], [ωA
L (x), ωA

U(x)]  >
| x ∈ X } be  interval neutrosophic set. The lower 
approximation  𝐴𝑅   and 𝐴𝑅 upper approximations   of  A
in the pawlak approwimation space (U, R) are defined as: 

𝐴𝑅={<x, [⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

], 

[⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

], [⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

]>:x ∈ U}. 

𝐴𝑅={<x, [⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

], 

[⋀ {νA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {νA
U(y)𝑦 ∈[x]𝑅

], [⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

]:x ∈ U}. 

Where “ ⋀  “ means “ min” and “ ⋁ “ means “ max”, R 
denote an equivalence relation for interval valued 
neutrosophic set A. 

Here [x]𝑅  is the equivalence class of the element x. It is
easy to see that 

[⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

And 

 0 ≤  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

+ ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

+ ⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

≤ 3 

Then,  𝐴𝑅 is an interval neutrosophic set 
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Similarly , we have 

[⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋀ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋀ {νA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

And 

 0 ≤  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

+ ⋀ {νA
U(y)}𝑦 ∈[x]𝑅

+ ⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

≤ 3 

Then,  𝐴𝑅 is an interval neutrosophic set 

If 𝐴𝑅 = 𝐴𝑅 ,then A is a definable set, otherwise A is an 

interval valued neutrosophic rough set, 𝐴𝑅 and 𝐴𝑅 are 

called the lower and upper approximations of interval 
valued neutrosophic set with respect to approximation 

space ( U, R), respectively. 𝐴𝑅 and 𝐴𝑅 are simply denoted 

by 𝐴 and 𝐴. 

In the following , we employ an example to illustrate the 
above concepts 

Example: 

Theorem 1.  Let A, B be interval neutrosophic sets and 𝐴 
and 𝐴 the lower and upper approximation of interval –
valued neutrosophic set A with respect to approximation 
space (U, R) ,respectively. 𝐵 and 𝐵 the lower and upper 
approximation of interval –valued neutrosophic set B with 
respect to approximation space (U,R) ,respectively.Then 
we have 

i. 𝐴 ⊆ A ⊆  𝐴

ii. 𝐴 ∪ 𝐵 =𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 =𝐴 ∩ 𝐵

iii. 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵

iv. (𝐴) =(𝐴) =𝐴 , (𝐴)= (𝐴)=𝐴

v. 𝑈 =U ; 𝜙  = 𝜙

vi. If A ⊆ B ,then 𝐴 ⊆ 𝐵 and 𝐴 ⊆ 𝐵

vii. 𝐴𝑐 =(𝐴)𝑐  , 𝐴𝑐=(𝐴)𝑐

Proof: we prove only i,ii,iii, the others are trivial 

(i) 

Let  𝐴= {<x , [μA
L (x), μA

U(x)], [νA
L (x), νA

U(x)],
[ωA

L (x), ωA
U(x)]  > | x ∈ X } be  interval neutrosophic set

From definition of  𝐴𝑅 and 𝐴𝑅, we have

Which implies that 

μ𝐴
L(x) ≤ μA

L (x) ≤ μ
𝐴
L(x) ; μ𝐴

U(x) ≤ μA
U(x) ≤ μ

𝐴
U(x) for all

x ∈ X 

ν𝐴
L(x) ≥ νA

L (x) ≥ ν
𝐴
L (x) ; ν𝐴

U(x) ≥ νA
U(x) ≥ ν

𝐴
U(x) for all

x ∈ X 

ω𝐴
L(x) ≥ ωA

L (x) ≥ ω
𝐴
L (x) ; ω𝐴

U(x) ≥ ωA
U(x) ≥ ω

𝐴
U(x) for

all x ∈ X 

([μ𝐴
L  , μ𝐴

U], [ν𝐴
L , ν𝐴

U], [ω𝐴
L , ω𝐴

U]) ⊆ ([μ𝐴
L  , μ𝐴

U], [ν𝐴
L , ν𝐴

U], [ω𝐴
L

, ω𝐴
U]) ⊆([μ

𝐴
L , μ

𝐴
U], [ν

𝐴
L , ν

𝐴
U], [ω

𝐴
L , ω

𝐴
U]) .Hence  𝐴𝑅 ⊆A ⊆

𝐴𝑅

(ii) Let  𝐴= {<x , [μA
L (x), μA

U(x)], [νA
L (x), νA

U(x)],
[ωA

L (x), ωA
U(x)]  > | x ∈ X } and

B= {<x, [μB
L (x), μB

U(x)], [νB
L (x), νB

U(x)] , [ωB
L (x), ωB

U(x)] > |
x ∈ X } are two intervalvalued  neutrosophic set and 

𝐴 ∪ 𝐵 ={<x , [μ
𝐴∪𝐵
L (x), μ

𝐴∪𝐵
U (x)] , [ν

𝐴∪𝐵
L (x), ν

𝐴∪𝐵
U (x)] ,

[ω
𝐴∪𝐵
L (x), ω

𝐴∪𝐵
U (x)]  > | x ∈ X } 

𝐴 ∪ 𝐵= {x, [max(μ
𝐴
L (x) , μ

𝐵
L (x)) ,max(μ

𝐴
U(x) , μ

𝐵
U(x)) ],[ 

min(ν
𝐴
L (x) , ν

𝐵
L (x)) ,min(ν

𝐴
U(x) , ν

𝐵
U(x))],[ min(ω

𝐴
L (x) 

, ω
𝐵
L (x)) ,min(ω

𝐴
U(x) , ω

𝐵
U(x))] 

for all x ∈ X 

μ
𝐴∪𝐵
L (x) =⋁{ μ𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
L (y)  ∨  μB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∨  μA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  (∨  μA

L (y) | 𝑦 ∈ [x]𝑅)

=(μ
𝐴
L ⋁ μ

𝐵
L  )(x)

μ
𝐴∪𝐵
U (x) =⋁{ μ𝐴 ∪𝐵

u (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
U(y)  ∨  μB

U(y) | 𝑦 ∈ [x]𝑅}
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= ( ∨  μA
u (y) | 𝑦 ∈ [x]𝑅) ⋁  (∨  μA

U(y) | 𝑦 ∈ [x]𝑅)

=(μ
𝐴
U ⋁ μ

𝐵
U )(x)

ν
𝐴∪𝐵
L (x)=⋀{ ν𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
L (y)  ∧  νB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∧  νA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  (∧  νB

L (y) | 𝑦 ∈ [x]𝑅)

=(ν
𝐴
L  ⋀ ν

𝐵
L  )(x)

ν
𝐴∪𝐵
U (x)=⋀{ ν𝐴 ∪𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ( ∧  νA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  (∧ νB

U(y) | 𝑦 ∈ [x]𝑅)

=(ν
𝐴
U(y) ⋀ ν

𝐵
U(y) )(x)

ω
𝐴∪𝐵
L (x)=⋀{ ω𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
L (y)  ∧  ωB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∧  ωA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  (∧  ωB

L (y) | 𝑦 ∈ [x]𝑅)

=(ω
𝐴
L  ⋀ ω

𝐵
L  )(x)

ω
𝐴∪𝐵
U (x)=⋀{ ω𝐴 ∪𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ( ∧  ωA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  (∧ ωB

U(y) | 𝑦 ∈ [x]𝑅)

=(ω
𝐴
U ⋀ ω

𝐵
U )(x)

 Hence, 𝐴 ∪ 𝐵 =𝐴 ∪ 𝐵 

Also for 𝐴 ∩ 𝐵 =𝐴 ∩ 𝐵 for all x ∈ A 

μ𝐴∩𝐵 
L (x) =⋀{ μ𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {μA
L (y)  ∧  μB

L (y) | 𝑦 ∈ [x]𝑅}

= ⋀  (μA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  ( ∨ μB

L (y) | 𝑦 ∈ [x]𝑅)

 =μ𝐴
L (x) ∧ μ𝐵

L (x) 

         =(μ𝐴
L  ∧ μ𝐵

L )(x) 

Also 

μ𝐴∩𝐵 
U (x) =⋀{ μ𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {μA
U(y)  ∧  μB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋀  (μA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  ( ∨ μB

U(y) | 𝑦 ∈ [x]𝑅)

=μ𝐴
U(x) ∧ μ𝐵

U(x)

=(μ𝐴
U ∧ μ𝐵

U)(x)

ν𝐴∩𝐵 
L (x) =⋁{ ν𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {νA
L (y)  ∨  νB

L (y) | 𝑦 ∈ [x]𝑅}

= ⋁  (νA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ νB

L (y) | 𝑦 ∈ [x]𝑅)

 =ν𝐴
L(x) ∨ ν𝐵

L (x) 

=(ν𝐴
L ∨ ν𝐵

L )(x)

ν𝐴∩𝐵 
U (x) =⋁{ ν𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {νA
U(y)  ∨  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋁  (νA
U(y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ νB

U(y) | 𝑦 ∈ [x]𝑅)

=ν𝐴
U(x) ∨ ν𝐵

U(x)

=(ν𝐴
U ∨ ν𝐵

U)(x)

ω𝐴∩𝐵 
L (x) =⋁{ ω𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {ωA
L (y)  ∨  ωB

L (y) | 𝑦 ∈ [x]𝑅}

= ⋁  (ωA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ ωB

L (y) | 𝑦 ∈ [x]𝑅)

=ω𝐴
L(x) ∨ νω𝐵

L (x)

=(ω𝐴
L ∨ ω𝐵

L )(x)

ω𝐴∩𝐵 
U (x) =⋁{ ω𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {ωA
U(y)  ∨  ωB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋁  (ωA
U(y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ ωB

U(y) | 𝑦 ∈ [x]𝑅)

=ω𝐴
U(x) ∨ ω𝐵

U(x)
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=(ω𝐴
U ∨ ω𝐵

U)(x)

(iii)  

μ
𝐴∩𝐵
U (x) =⋁{ μ𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
U(y)  ∧  μB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋁  ( μA
U(y) | 𝑦 ∈ [x]𝑅)) ∧ (⋁  ( μA

U(y) | 𝑦 ∈

[x]𝑅))

= μ
𝐴
U(x) ∨ μ

𝐵
U(x) 

=(μ
𝐴
U ⋁ μ

𝐵
U )(x)

ν
𝐴∩𝐵
U (x) =⋀{ ν𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋀  ( νA
U(y) | 𝑦 ∈ [x]𝑅)) ∨ (⋀  ( νA

U(y) | 𝑦 ∈

[x]𝑅))

= ν
𝐴
U(x) ∨ ν

𝐵
U(x) 

=(ν
𝐴
U ⋁ ν

𝐵
U )(x)

ω
𝐴∩𝐵
U (x) =⋀{ ω𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
U(y)  ∧  ωνB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋀  ( ωA
U(y) | 𝑦 ∈ [x]𝑅)) ∨ (⋀  ( ωA

U(y) | 𝑦 ∈

[x]𝑅))

= ω
𝐴
U(x) ∨ ω

𝐵
U(x) 

=(ω
𝐴
U ⋁ ω

𝐵
U )(x) 

Hence follow that 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 .we get    𝐴 ∪ 

𝐵 = 𝐴 ∪ 𝐵    by following the same procedure as above. 

Definition  6: 

Let ( U,R) be a pawlak approximation space ,and A and B 
two interval valued neutrosophic sets over U. 

If  𝐴 =𝐵 ,then A and B are called interval valued 
neutrosophic lower rough equal. 

If 𝐴=𝐵 , then A and B are called interval valued 
neutrosophic upper rough equal. 

If 𝐴 =𝐵 , 𝐴=𝐵, then A and B are called interval valued 
neutrosophic rough equal. 

Theorem 2 . 

Let ( U,R) be a pawlak approximation space ,and A and B 
two interval valued neutrosophic sets over U. then 

1. 𝐴 =𝐵 ⇔ 𝐴 ∩ 𝐵 =𝐴 , 𝐴 ∩ 𝐵 =𝐵

2. 𝐴=𝐵 ⇔ 𝐴 ∪ 𝐵 =𝐴 , 𝐴 ∪ 𝐵 =𝐵

3. If 𝐴 = 𝐴′ and 𝐵 = 𝐵′ ,then 𝐴 ∪ 𝐵 =𝐴′ ∪ 𝐵′

4. If 𝐴 =𝐴′ and 𝐵 =𝐵′ ,Then

5. If  A ⊆ B and  𝐵 = 𝜙   ,then 𝐴 = 𝜙

6. If  A ⊆ B and  𝐵 = 𝑈  ,then 𝐴 = 𝑈

7. If  𝐴 = 𝜙   or  𝐵 = 𝜙    or  then 𝐴 ∩ 𝐵 =𝜙

8. If 𝐴 = 𝑈 or 𝐵 =𝑈,then 𝐴 ∪ 𝐵 =𝑈

9. 𝐴 = 𝑈 ⇔ A = U

10. 𝐴 = 𝜙  ⇔ A = 𝜙
Proof: the proof is trial 

4.Hamming distance between Lower 
Approximation and Upper Approximation of IVNS 

 In this section , we will compute the Hamming distance 
between lower and upper approximations of interval 
neutrosophic sets based on Hamming distance introduced 
by Ye [41 ] of interval neutrosophic sets. 

Based on Hamming distance between two interval 
neutrosophic set A and B as follow: 

d(A,B)=
1

6
∑ [|μA

L (xi) − μB
L (xi)| + |μA

U(xi) − μB
U(xi)| +𝑛

𝑖=1

|νA
L (xi) − νB

L (xi)| + |νA
U(xi) − νB

U(xi)| + |ωA
L (xi) −

ωB
L (xi)| +  |ωA

L (xi) − vB
U(xi)|]

we can obtain the standard hamming distance of 𝐴 and 𝐴 

from 

𝑑𝐻(𝐴 , 𝐴) = 
1

6
∑ [|μ𝐴

L(xj) − μ
𝐴
L (xj)| + |μ𝐴

U(xj) −𝑛
𝑖=1

μ
𝐴
U(xj)| + |ν𝐴

L(xj) − ν
𝐴
L(xj)| + |ν𝐴

U(xj) − ν
𝐴
U(xj)| +

|ω𝐴
L(xj) − ω

𝐴
L(xj)| + |ω𝐴

U(xj) − ω
𝐴
U(xj)|] 
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Where 

𝐴𝑅={<x, [⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

], 

[⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

], [⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

]>:x ∈ U}. 

𝐴𝑅={<x, [⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

], 

[⋀ {νA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {νA
U(y)𝑦 ∈[x]𝑅

], [⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

]:x ∈ U}. 

μ𝐴
L(xj) =   ⋀ {μA

L (y)}𝑦 ∈[x]𝑅
 ; μ𝐴

U(xj) =⋀ {μA
U(y)}𝑦 ∈[x]𝑅

ν𝐴
L(xj)=  ⋁ {νA

L (y)}𝑦 ∈[x]𝑅
  ; ν𝐴

U(xj) =  ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

ω𝐴
L(xj)=  ⋁ {ωA

L (y)}𝑦 ∈[x]𝑅
 ; ω𝐴

U(xj) = ⋁  {ωA
U(y)}𝑦 ∈[x]𝑅

μ
𝐴
L(xj)=   ⋁ {μA

L (y)}𝑦 ∈[x]𝑅
 ; μ

𝐴
U(xj) =  ⋁ {μA

U(y)}𝑦 ∈[x]𝑅

μ
𝐴
L(xj)=  ⋀ {νA

L (y)}𝑦 ∈[x]𝑅
 ; μ

𝐴
U(xj) =  ⋀  {νA

U(y)𝑦 ∈[x]𝑅
}  

ω
𝐴
L (xj)= ⋀ {ωA

L (y)}𝑦 ∈[x]𝑅
 ; ω

𝐴
U(xj) =   ⋀ {ωA

U(y)}𝑦 ∈[x]𝑅

Theorem 3. Let (U,  R) be approximation space, A be 
an interval valued neutrosophic set over U . Then

(1) If d (𝐴 , 𝐴) = 0, then A is a definable set.

(2) If 0 < d(𝐴 , 𝐴) < 1, then A is an interval-valued
neutrosophic rough set.     

Theorem 4. Let (U, R) be a Pawlak approximation space, 
and A and B two interval-valued neutrosophic sets over U 

. Then 

1. d (𝐴 , 𝐴) ≥ d (𝐴 , 𝐴) and  d (𝐴 , 𝐴) ≥ d (𝐴 , 𝐴);
2. d (𝐴 ∪ 𝐵 , 𝐴 ∪ 𝐵) = 0, d (𝐴 ∩ 𝐵 , 𝐴 ∩ 𝐵 ) = 0.
3. d (𝐴 ∪ 𝐵 , A  ∪ B)  ≥ d(𝐴 ∪ 𝐵 , 𝐴 ∪ 𝐵)

and  d(𝐴 ∪ 𝐵 , A  ∪ B)  ≥ d(𝐴 ∪ 𝐵 , A  ∪  B) ;
and d( A ∩ B, 𝐴 ∩ 𝐵)  ≥ d(A ∩ B, 𝐴 ∩ 𝐵)
and d( A ∩ B, 𝐴 ∩ 𝐵)   ≥ 𝑑(𝐴 ∩ 𝐵, 𝐴 ∩ 𝐵)

4. d((𝐴), (𝐴)= 0 , d((𝐴), 𝐴) = 0 , d((𝐴) , 𝐴)= 0;
d((𝐴) , (𝐴)) = 0 , d((𝐴) , , 𝐴) = 0 , d((𝐴) , 𝐴) = 0,

5. d (𝑈, U) =0 , d(𝜙, 𝜙) = 0
6. if A  B   ,then d(𝐴 ,B) ≥ d(𝐴 , 𝐵) and d(𝐴 , 𝐵) ≥

d(𝐵 ,B)

         d(𝐴 , 𝐵) ≥d( A, 𝐴) and d( A, 𝐵)= 
≥d(𝐴 , 𝐵) 

7. d(𝐴𝑐 ,(𝐴)𝑐)= 0, d( 𝐴𝑐,(𝐴)𝑐) = 0

5-Conclusion 
In this paper we have defined the notion of interval valued 
neutrosophic rough sets. We have also studied some 
properties on them and proved some propositions. The 
concept combines two different theories which are rough 
sets theory and  interval valued neutrosophic set  theory. 
Further, we have introduced the Hamming distance 
between two interval neutrosophic rough sets. We hope 
that our results can also be extended to other algebraic 
system. 
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A New Approach to Multi-spaces Through 
the Application of Soft Sets 

Mumtaz Ali, Florentin Smarandache, Said Broumi, Muhammad Shabir

Abstract. Multi-space is the notion combining different 
fields in to a unifying field, which is more applicable in 
our daily life. In this paper, we introduced the notion of 
multi-soft space which is the approximated collection of 

the multi-subspaces of a multi-space  . Further, we de-
fined some basic operations such as union, intersection, 
AND, OR etc. We also investigated some properties of 
multi-soft spaces. 

Keywords: Multi-space, soft set, multi-soft space.

1. Introduction

    Multi-spaces [24] were introduced by 
Smarandache in 1969 under the idea of hybrid 
structures: combining different fields into a 
unifying field [23] that are very effective in our 
real life. This idea has a wide range of 
acceptance in the world of sciences. In any 
domain of knowledge a Smarandache multi-
space is the union of n different spaces with 
some different for an integer 2n  .  
Smarandache multi-space is a qualitative notion 
as it is too huge which include both metric and 
non-metric spaces. This multi-space can be used 
for both discrete or connected spaces specially in 
spacetimes and geometries in theoretical physics. 
Multi-space theory has applied in physics 
successfully in the Unified Field Theory which 
unite the gravitational, electromagnetic, weak 
and strong interactions or in the parallel quantum 
computing or in the mu-bit theory etc. Several 
multi-algebraic structures have been introduced 
such as multi-groups, multi-rings, multi-vector 
spaces, multi-metric spaces etc. Literature on 
multi-algebraic structures can be found in [17]. 
   Molodtsov [20] proposed the theory of soft 
sets. This mathematical framework is free from 
parameterization inadequacy, syndrome of fuzzy 

set theory, rough set theory, probability theory 
and so on. Soft set theory has been applied suc-
cessfully in many areas such as smoothness of 
functions, game theory, operation research, Rie-
mann integration, Perron integration, and proba-
bility thoery. Soft sets gained much attention of 
the researchers recently from its appearance and 
some literature on soft sets can be seen in [1]-
[16]. Some other properties and algebras may be 
found in [18,19,20]. Some other concepts togeth-
er with fuzzy set and rough set were shown in 
[21,22,23]. 
    In  section 2, we review some basic concepts 
and notions on multi-spaces and soft sets. In sec-
tion 3, we define multi-subspac. Then multi-soft 
spaces has been introduced in the current section. 
Multi-soft space is a parameterized collection of 
multi-subspaces. We also investigated some 
properties and other notions of multi-soft spaces. 

2. Basic Concepts

In this section, we review some basic material of multi-
spaces and soft sets. 
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Definition 2.1 [24]. For any integer i , 1 i n , let

iM be a set with ensemble of law iL ,  and the intersec-

tion of k  sets
1 2
, ,...,

ki i iM M M of them constrains the

law 
1 2
, ,...,

ki i iI M M M . Then the union of iM ,

1 i n

1

n

i
i

M M

is called a multi-space. 

Let U  be  an initial universe, E  is a set of parame-
ters, ( )PU  is the power set of  U , and ,A B E . Mo-
lodtsov defined the soft set in the following manner: 

Definition 2.2 [20]. A pair ( , )F A  is called a soft set over
U ,  where F is a mapping given by  : ( )F A PU .
In other words, a soft set over  U  is a parameterized fami-
ly of subsets of the universe  U . For  a A  , F a
may be considered as the set of  a -elements of the soft set
( , )F A  , or as the set of  a -approximate elements of the
soft set. 

Example 2.3.  Suppose that U  is the set of shops. E is
the  set of parameters and each parameter is a word or sen-
tence. Let 

high rent,normal rent,

in good condition,in bad condition
E

Let us consider a soft set ( , )F A which describes the at-
tractiveness of shops that Mr.Z  is taking on rent. Suppose
that there are five houses in the universe  

1 2 3 4 5{ , , , , }U s s s s s under consideration, and that

1 2 3{ , , }A a a a be the set of parameters where

1a stands for the parameter 'high rent,

2a stands for the parameter 'normal rent,

3a stands for the parameter 'in good condition.
Suppose that 

1 1 4( ) { , }F a s s ,

2 2 5( ) { , }F a s s ,

3 3( ) { }.F a s

The soft set ( , )F A  is an approximated family

{ ( ), 1,2,3}iF a i of subsets of the set U which gives
us a collection of approximate description of an object. 
Then ( , )F A  is a soft set as a collection of approximations
over  U , where

21 1  { , }) ,( high rea nt s sF

2 2 5( )   { , },F normal ra ent s s

3 3( )    { }.F in good condit na io s

Definition 2.4 [19].  For two soft sets ( , )F A  and
( ,B)H  over U , ( , )F A  is called a soft subset of
( ,B)H  if

1. A B and
2. ( ) ( )F a H a , for all  x A  .

This relationship is denoted by ( , ) ( ,B)F A H . Simi-
larly ( , )F A  is called a soft superset of ( ,B)H  if
( ,B)H  is a soft subset of ( , )F A  which is denoted by
( , ) ( ,B)F A H .

Definition 2.5 [19].  Two soft sets ( , )F A  and ( ,B)H
over  U are called soft equal if ( , )F A  is a soft subset of
( ,B)H  and ( ,B)H  is a soft subset of ( , )F A .

Definition 2.6 [19].  Let ( , )F A  and (G,B)  be two soft
sets over a common universe U  such that  A B  . 
Then their restricted intersection is denoted by 
( , ) (G,B) ( ,C)RF A H where ( ,C)H  is defined

as  ( ) ( ) )H c F c c for all  c C A . 

Definition 2.7 [12].  The extended intersection of two soft 
sets  ( , )F A  and  (G,B)  over a common universe U is
the soft set  ( ,C)H  , where  C A B  , and for all
c C  , ( )H c  is defined as
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( ) if c ,

( ) G( ) if c ,

( ) G( ) if c .

F c A B

H c c B A

F c c A

We write  ( , ) (G,B) ( ,C)F A H .

Definition 2.8 [19]. The restricted union of two soft sets 
( , )F A  and (G,B)  over a common universe U is the
soft set  ( ,B)H , where  C A  , and for all
c C , ( )H c is defined as  ( ) ( ) G( )H c F c c
for all  c C  . We write it as
( , ) (G,B) ( ,C).RF A H

Definition 2.9 [12]. The extended union of two soft sets 
( , )F A  and (G,B)  over a common universe U is the
soft set  ( ,B)H , where  C A  , and for all
c C  ,  ( )H c   is defined as

( ) if c

( ) G( ) if c ,

( ) ( ) if c .

F c A B

H c c B A

F c G c A B

We write ( , ) (G,B) ( ,C)F A H .

In the next section, we introduced multi-soft spaces. 

3. Multi-Soft Space and Its Properties

    In this section, first we introduced the definition of 
multi-subspace. Further, we introduced multi-soft spaces 
and their core properties. 

Definition 3.1. Let M  be a multi-space and 'M M . 
Then 'M  is called a multi-subspace if 'M  is a multi-
space under the operations and constaints of M . 

Definition 3.2. Let 1 { : j J}jA a  ,
2 { : k }kA a K  ,…, { : n }n nA a L  be n-set of

parameters. Let 1 1 2 2( , ),( , ),...,( , )n nF A F A F A are soft
set over the distinct universes 1 2, ,..., nM M M
respectively. Then ( , )H C  is called a multi-soft space 
over 1 2 ... nM M M M    , where 

1 1 2 2(H,C) ( , ) ( , ) ,..., ( , )E E E n nF A F A F A   
such that 1 2 .... nC A A A    and for all c C , 

( )H c is defined by 

1 2
( ) ( ) ( ) ... ( )

ki i iH c F c F c F c

if 

2 1 21( ... ) ( ... )
k k ni i ik i i ic A A A A A A ,

where 1 2 1( , ,..., , ,..., )k k ni i i i i  are all possible 

permutations of the indexes (1,2,..., )n  k = 1, 2, …, n.

There are 12n  pieces of the piece-wise function  ( , )H C .

Proposition 3.3. Let M  be a universe of discourse and
( , )F A  is a soft set over M . Then ( , )F A  is a multi-soft
space over M  if and only if M  is a multi-space.

Proof: Suppose that M  is a multi-space and 
: (M)F A P  be a mapping. Then clearly for each 

a A , then ( )F a is a subset of M which is a multi-
subspace. Thus each ( )F a is a multi-subspace of M
and so the soft set ( , )F A  is the parameterized collection
of multi-subspaces of M . Hence ( , )F A is a multi-soft
space over M .
 For converse, suppose that ( , )F A  is a multi-soft space 
over M . This implies that ( )F a  is a multi-subspace of
M  for all a A . Therefore, M  is a mutli-space.

This situation can be illustrated in the following Example. 

Example 3.4. Let 1 2 3 4 5 6 7{ , , , , , , }M u u u u u u u be an 

initial universe such that M  is a multi-space. Let 

1 1 2 3 8{ , , , }A a a a a , 2 2 4 5 6 8{ , , , , }A a a a a a and 

3 5 7 8{ , , }A a a a are set of parameters. Let 

1 1 2 2( , ),( , )F A F A and 3 3( , )F A respectively be the soft

sets over M  as following:

1 1 1 2 3( ) {m ,m ,m },F a 

1 2 4 5( ) {m ,m },F a 

 1 3 1 4 6 7{m ,m ,m ,m }F a  ,

 1 8 2 4 6 7{m ,m ,m ,m }F a  .
and 

2 2 1 2 3 6 7( ) {m ,m ,m ,m ,m },F a 

2 4 3 4 5 6( ) {m ,m ,m ,m },F a 

 2 5 2 4 5{m ,m ,m },F a 
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2 6 1 7F ( ) {m ,m }a  ,

 2 8 1 3 5 7{m ,m ,m ,m }F a  .
Also 

3 5 1 2 3 4 5( ) {m ,m ,m ,m ,m ,},F a 

3 7 4 5 7( ) {m ,m ,m }F a  , 

 3 8 2{m }F a  .

Let 1 2 3 1 2 3 4 5 6 7 8{ , , , , , , , }A A A A a a a a a a a a    . 

Then the multi-soft space of 1 1 2 2( , ),(F , )F A A and 

3 3( , )F A  is ( , )F A , where 

1 1 2 2 3 3( , ) ( , ) ( , ) ( , )E EF A F A F A F A    such that

1 1 1 1 2 3( ) ( ) {m ,m ,m },F a F a  as 

1 1 2 3a A A A   , 

2 1 2 2 2 1 2 3 4 5 6 7( ) ( ) F ( ) {m ,m ,m ,m ,m ,m ,m },F a F a a  

 as 2 1 2 3a A A A   , 

 3 1 3 1 4 6 7( ) {m ,m ,m ,m }F a F a  as

3 1 2 3a A A A   , 

4 2 4 3 4 5 6( ) ( ) {m ,m ,m ,m },F a F a  as 

4 2 1 3a A A A   , 

5 2 5 3 5 1 2 3 4 5( ) ( ) ( ) {m ,m ,m ,m ,m ,},F a F a F a  

as 5 2 3 1a A A A   , 

6 2 6 1 7F( ) F ( ) {m ,m }a a  as 6 2 1 3a A A A   , 

7 3 7 4 5 7( ) ( ) {m ,m ,m }F a F a  as 

7 3 1 2a A A A   , 

 8 1 8 2 8 3 8 1 2 3 4 5 6 7( ) ( ) ( ) {m ,m ,m ,m ,m ,m ,m }F a F a F a F a   

 as 8 1 2 3a A A A   . 

Definition 3.5.  Let ( , )F A  and  ( , )H B  be two multi-
soft spaces over  1 2 ... nM M M   . Then ( , )F A  is

called a multi-soft subspace  of  ( , )H B  if
1. A B and
2. ( ) ( )F a H a , for all  a A  .

This can be denoted by ( , ) ( , )F A H B .

Similarly ( , )F A  is called a multi-soft superspace of
( , )F A  if  ( , )F A  is a multi-soft subspace of ( , )F A
which is denoted by  ( , ) ( , )F A H B .

Definition 3.6.  Two multi-soft spaces ( , )F A  and

( , )H B over 1 2 ... nM M M   are called multi-soft

multi-equal if ( , )F A  is a multi-soft subspace of  ( , )H B
and ( , )H B  is a multi-soft subspace of ( , )F A .

Proposition 3.6.  Let ( , )F A  and ( , )K B  be two multi-
soft spaces over 1 2 ... nM M M   such that  
A B  . Then their restricted intersection 

( , ) ( , ) ( , )RF A K B H C  is also a multi-soft

space over 1 2 ... nM M M   . 

Proposition 3.7.  The extended intersection of two multi-
soft multi-spaces  ( , )F A  and  ( , )K B  over

1 2 ... nM M M   is again a multi-soft multi-space 

over 1 2 ... nM M M   . 

Proposition 3.8.  Let ( , )F A  and ( , )K B  be two multi-
soft multi-spaces over 1 2 ... nM M M   such that  
A B  . Then their restricted union 

( , ) ( , ) ( , )RF A K B H C is also a multi-soft muti-

space over 1 2 ... nM M M   . 

Proposition 3.9.  The extended union of two multi-soft 
multi-spaces  ( , )F A  and  ( , )K B  over

1 2 ... nM M M is again a multi-soft multi-space

over 1 2 ... nM M M   . 
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Proposition 3.10.  The AND operation of two multi-soft 
multi-spaces  ( , )F A  and  ( , )K B  over

1 2 ... nM M M   is again a multi-soft mulit-space 

over 1 2 ... nM M M   . 

Proposition 3.11.  The OR operation of two multi-soft 
multi-spaces  ( , )F A  and  ( , )K B  over

1 2 ... nM M M   is again a multi-soft multi-space 

over 1 2 ... nM M M   . 

Proposition 3.12. The complement of a multi-soft space 
over a multi-space M  is again a multi-soft space over
M .

Prof. This is straightforward. 

Definition 3.13. A multi-soft multi-space ( , )F A  over
1 2 ... nM M M   is called absolute multi-soft 

multi-space if ( )F a  = 1 2 ... nM M M   for all 
a A .

Proposition 3.14. Let ( , )F A , ( , )G B  and ( , )H C  are
three multi-soft multi-spaces over 1 2 ... nM M M   . 
Then 
1. ( , ) ( , ) ( , ) ( , ) ( , ) ( , )E E E EF A G B H C F A G B H C ,

2. ( , ) ( , ) ( , ) ( , ) ( , ) ( , )R R R RF A G B H C F A G B H C .

Proposition 3.15. Let ( , )F A , ( , )G B  and ( , )H C  are
three multi-soft multi-spaces over 1 2 ... nM M M   . 
Then 
1. ( , ) ( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A G B H C ,

2. ( , ) ( , ) ( , ) ( , ) ( , ) ( , )F A G B H C F A G B H C .

Conclusion 

  In this paper, we introduced multi-soft spaces 
which is a first attempt to study the multi-spaces 
in the context of soft sets. Multi-soft spaces are 
more rich structure than the multi-spaces which 
represent different fields in an approximated 
unifying field. We also studied some properties 
of multi-soft spaces. A lot of further research can 
do in the future in this area. In the future, one can 
define the algebraic structures of multi-soft 
spaces. 
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Soft  Interval-Valued Neutrosophic Rough Sets
Said Broumi, Florentin Smarandache

Abstract: In this paper, we first defined soft interval- 
valued neutrosophic rough sets(SIVN- rough sets for 
short)  which combines interval valued neutrosophic 
soft set and rough sets and studied some of its basic 
properties. This concept is an extension of soft interval 

valued intuitionistic fuzzy rough sets( SIVIF- rough 
sets). Finally an illustartive example is given to verfy 
the developped algorithm and to demonstrate its 
practicality and effectiveness. 

Keywords: Interval valued neutrosophic soft sets, rough set, soft Interval valued neutrosophic  rough sets 

1. Introduction
In 1999,  Florentin Smarandache introduced the concept of 
neutrosophic set (NS) [13]  which is a mathematical tool 
for handling problems involving imprecise, indeterminacy 
and inconsistent data. The concept of neutrosophic  set is 
the generalization of the classical sets, conventional fuzzy 
set [27], intuitionistic fuzzy set [24] and interval valued 
fuzzy set [45] and so on. A neutrosophic  sets is defined on 
universe U. x= x(T, I, F) ∈ A with T, I and F being the real 
standard or non –standard subset of  ] 0−,1+[ , T is the 
degree of truth membership of A, I is the degree of 
indeterminacy membership of A and F is the degree of 
falsity membership of A. In the neutrosophic set, 
indeterminacy is quantified explicitly and truth-
membership, indeterminacy membership and false –
membership are independent. 
Recently, works on the neutrosophic set theory is 
progressing rapidly. M. Bhowmik and M. Pal [28, 29] 
defined the concept “intuitionistic neutrosophic set”. Later 
on A. A. Salam and S. A.Alblowi [1] introduced another 
concept called “generalized neutrosophic set”. Wang et al 
[18] proposed another extension of neutrosophic set called
”single valued neutrosophic sets”. Also,  H.Wang et al. 
[17] introduced the notion of interval valued neutrosophic
sets  (IVNSs) which is an instance of neutrosophic set. The 
IVNSs is characterized by an interval membership 
degree,interval indeterminacy degree and interval non-
membership degree. K.Geogiev [25] explored some 
properties of the neutrosophic logic and proposed a general 
simplification of the neutrosophic sets into a subclass of 
theirs, comprising of elements of 𝑅3. Ye [20, 21] defined 

similarity measures between interval neutrosophic sets and 
their multicriteria decision-making method.  P. Majumdar 
and S.K. Samant [34] proposed some types of  similarity 
and entropy of neutrosophic sets. S.Broumi and F. 
Smarandache [38,39,40]  proposed several similarity 
measures of neutrosophic sets. P. Chi and L. Peid [33] 
extended TOPSIS to interval neutrosophic sets. 
In 1999,  Molodtsov [8 ]initiated the concept of soft set 
theory as  proposed  a  new mathematical for dealing with 
uncertainties. In soft set theory, the problem of setting the 
membership function does not arise, which makes the 
theory easily applied to many different fields including 
game theory, operations research, Riemmann integration, 
Perron integration. Recently, I. Deli [10] combined the 
concept of soft set and interval valued neutrosophic sets 
together by introducing anew concept called “ interval 
valued neutrosophic soft sets”  and gave an application of 
interval valued neutrosophic soft sets in decision making. 
This concept generalizes the concept of the soft sets, fuzzy 
soft sets [35], intuitionistic fuzzy soft sets [36], interval 
valued intuitionistic fuzzy soft sets [22], the concept of 
neutrosophic soft sets [37] and intuitionistic neutrosophic 
soft sets [41].  
The concept of  rough  set  was originally proposed    by  
Pawlak  [50]  as a formal tool for modeling and processing 
incomplete information in information systems. Rough set 
theory has been conceived as a tool to conceptualize, 
organize and analyze various types of data, in particular, to 
deal with inexact, uncertain or vague knowledge in 
applications related to artificial intelligence technique. 
Therefore, many models have been built upon different 
aspect, i.e, universe, relations, object, operators by many 
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scholars [6, 9, 23, 48, 49, 51] such as rough fuzzy sets, 
fuzzy rough sets, generalized fuzzy rough, rough 
intuitionistic fuzzy set, intuitionistic fuzzy rough sets [26]. 
The rough sets has been successfully applied in many 
fields such as attribute reduction [19, 30, 31, 46], feature 
selection [11, 18, 44], rule extraction [5, 7, 12, 47] and so 
on. The  rough sets theory approximates any subset of 
objects of the universe by two sets, called the lower and 
upper approximations. The lower approximation of a given 
set is the union of all the equivalence classes which are 
subsets of the set, and the upper approximation is the union 
of all the equivalence classes which have a non empty 
intersection with the set. 
Moreover, many new rough set models have also been 
established by combining the Pawlak rough set with other 
uncertainty theories such as soft set theory. Feng et al [14] 
provided a framework to combine fuzzy sets, rough sets, 
and soft sets all together, which gives rise to several 
interesting new concepts such as rough soft sets, soft rough 
sets, and soft rough fuzzy sets. The combination  of hybrid 
structures of soft sets and rough sets models was also 
discussed by some researchers [15,32,43]. Later on, J. 
Zhang, L. Shu, and S. Liao [22] proposed the notions of 
soft rough intuitionistic fuzzy sets and intuitionistic fuzzy 
soft rough sets, which can be seen as two new generalized 
soft rough set models, and investigated some properties of 
soft rough intuitionistic fuzzy sets and intuitionistic fuzzy 
soft rough sets in detail. A.Mukherjee and A. Saha [3] 
proposed the concept of interval valued intuitionistic fuzzy 
soft rough sets. Also A. Saha and A. Mukherjee [4] 
introduced the concept of Soft interval valued intuitionistic 
fuzzy rough sets. 
More recently, S.Broumi et al. [42] combined neutrosophic 
sets with rough sets in a new hybrid mathematical structure 
called “rough neutrosophic sets” handling incomplete and 
indeterminate information . The concept of rough 
neutrosophic sets generalizes rough fuzzy sets and rough 
intuitionistic fuzzy sets. Based on the equivalence relation 
on the universe of discourse, A. Mukherjee et al. [3] 
introduced soft lower and upper approximation of interval 
valued intuitionistic fuzzy set in Pawlak’s approximation 
space.  Motivated by the idea of soft interval valued 
intuitionistic fuzzy rough sets introduced in [4], we extend 
the  soft interval intuitionistic fuzzy rough to the case of an 
interval valued neutrosophic set. The concept of soft 
interval valued neutrosophic rough set is introduced by  
coupling both the  interval valued  neutrosophic soft sets 
and rough sets. 

The paper is structured as follows. In Section 2, we first 
recall the necessary background on soft sets, interval 
neutrosophic sets, interval neutrosophic soft sets,  rough 
set,  rough neutrosophic sets and soft interval valued 
intuitionistic fuzzy rough sets. Section 3 presents the 
concept of soft interval neutrosophic rough sets and 

examines their respective properties. Section 4 presents a 
multiciteria group decision making scheme under soft 
interval –valued neutrosophic rough sets. Section 5 
presents an application of multiciteria group decision 
making scheme regarding the candidate selection problem . 
Finally we concludes the paper. 

2. Preliminaries
Throughout this paper, let U be a universal set and E be the 
set of all possible parameters under consideration with 
respect to U, usually, parameters are attributes, 
characteristics, or properties of objects in U. We now recall 
some basic notions of soft sets, interval neutrosophic 
setsinterval neutrosophic soft set,  rough set,  rough 
neutrosophic sets and soft interval valued intuitionistic 
fuzzy rough sets.  For more details the reader may refer to 
[4, 8, 10, 13, 17, 50, 42].  
Definition 2.1 [13 ] : Let U be an universe of discourse 
then the neutrosophic set A is an object having the form  A 
= {< x:  μA(x), νA(x), ωA(x)>,x ∈ U}, where the
functions  𝛍𝐀(𝐱), 𝛎𝐀(𝐱), 𝛚𝐀(𝐱) : U→]−0,1+[ define
respectively the degree of membership , the degree of 
indeterminacy, and the degree of non-membership of the 
element x ∈ X to the set A with the condition.  

−0 ≤𝑠𝑢𝑝 μA(x)+ supνA(x)+ 𝑠𝑢𝑝ωA(x)) ≤ 3+.  (1)

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 
of ]−0,1+[. So instead of ]−0,1+[ we need to take the interval 
[0,1] for technical applications, because ]−0,1+[ will be 
difficult to apply in the real applications  such as in 
scientific and engineering problems. 
Definition 2.3 [13] 
Let X be a space of points (objects) with generic elements 
in X denoted by x. An interval valued neutrosophic set (for 
short IVNS) A in X is characterized by truth-membership 
function μA(x), indeterminacy-membership function νA(x)

and falsity-membership function ωA(x). For each point x
in X, we have that μA(x), νA(x), ωA(x) ∈ int([0 ,1]).
For two IVNS, 𝐴IVNS= {<x , [μA

L (x), μA
U(x)] ,

[νA
L (x), νA

U(x)] , [ωA
L (x), ωA

U(x)]  > | x ∈ X }   (2)
And 𝐵IVNS= {<x , [μB

L (x), μB
U(x)] ,

[νB
L (x), νB

U(x)] , [ωB
L (x), ωB

U(x)]> | x ∈ X } the two relations
are defined as follows: 
(1)𝐴IVNS ⊆  𝐵IVNSif and only if μA

L (x) ≤ μB
L (x), μA

U(x) ≤
μB

U(x) , νA
L (x) ≥ νB

L (x), ωA
U(x) ≥ ωB

U(x) , ωA
L (x) ≥ ωB

L (x)

,ωA
U(x) ≥ ωB

U(x).
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(2)𝐴IVNS =  𝐵IVNS  if and only if , μA(x) =μB(x) ,νA(x)
=νB(x) ,ωA(x) =ωB(x) for any x ∈ X

The complement of 𝐴IVNS is denoted by 𝐴𝐼𝑉𝑁𝑆
𝑜  and is

defined by

𝐴𝐼𝑉𝑁𝑆
𝑜 ={ <x , [ωA

L (x), ωA
U(x)],  [1 − νA

U(x), 1 − νA
𝐿 (x)] ,

[μA
L (x), μA

U(x)] | x ∈ X }

A∩B ={ <x , [min(μA
L (x),μ𝐵

L (x)), min(μA
U(x),μ𝐵

U(x))],
[max(νA

L (x),ν𝐵
L (x)),

max(νA
U(x),ν𝐵

U(x)],  [max(ωA
L (x),ω𝐵

L (x)),
max(ωA

U(x),ω𝐵
U(x))] >: x ∈ X }

A∪B ={ <x , [max(μA
L (x),μ𝐵

L (x)), max(μA
U(x),μ𝐵

U(x))],
[min(νA

L (x),ν𝐵
L (x)),min(νA

U(x),ν𝐵
U(x)], [min(ωA

L (x),ω𝐵
L (x)),

min(ωA
U(x),ω𝐵

U(x))] >: x ∈ X }

As an illustration, let us consider the following example. 
Example 2.4.Assume that the universe of discourse U={x1, 
x2, x3}, where x1 characterizes the capability, x2 

characterizes the trustworthiness and x3 indicates the prices 
of the objects. It may be further assumed that the values of 
x1, x2 and x3 are in [0, 1] and they are obtained from some 
questionnaires of some experts. The experts may impose 
their opinion in three components viz. the degree of 
goodness, the degree of indeterminacy and that of poorness 
to explain the characteristics of the objects. Suppose A is 
an interval valued neutrosophic set (IVNS) of U, such that, 
A = {< x1,[0.3 0.4],[0.5 0.6],[0.4 0.5] >,< x2, ,[0.1 
0.2],[0.3 0.4],[0.6 0.7]>,< x3, [0.2 0.4],[0.4 0.5],[0.4 
0.6] >}, where the degree of goodness of capability is 
[0.3, 0.4], degree of indeterminacy of capability is[0.5, 0.6] 
and degree of falsity of capability is [0.4, 0.5] etc. 

Definition 2.5 . [8]  
Let U be an initial universe set and E be a set of 
parameters. Let P(U) denote the power set of U. Consider a 
nonempty set A, A ⊂ E. A pair (K, A) is called a soft set 
over U, where K is a mapping given by K : A → P(U).  
As an illustration, let us consider the following example. 
Example 2.6 .Suppose that U is the set of houses under 
consideration, say U = {h1, h2, . . ., h5}. Let E be the set of 
some attributes of such houses, say E = {e1, e2, . . ., e8}, 
where e1, e2, . . ., e8 stand for the attributes “beautiful”, 
“costly”, “in the green surroundings’”, “moderate”, 
respectively.  
In this case, to define a soft set means to point out 

expensive houses, beautiful houses, and so on. For 
example, the soft set (K, A) that describes the 
“attractiveness of the houses” in the opinion of a buyer, say 
Thomas, may be defined like this:  
A={e1,e2,e3,e4,e5};  
K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = 
U, K(e5) = {h3, h5}.  

Definition 2.7. [10] 
Let U be an initial universe set and A ⊂ E be a set of 
parameters. Let IVNS (U) denote the set of all interval 
valued neutrosophic subsets of U. The collection (K, A) is 
termed to be the soft interval neutrosophic set over U, 
where F is a mapping given by K: A → IVNS(U).  
The interval valued neutrosophic soft set defined over an 
universe   is denoted by IVNSS. 
Here, 

1. Υ is an ivn-soft subset of Ψ, denoted by Υ ⋐ Ψ, if
K(e) ⊆L(e) for all e∈E.

2. Υ is an ivn-soft equals to Ψ, denoted by Υ = Ψ, if
K(e)=L(e) for all e∈E.

3. The complement of Υ is denoted by Υ𝑐 , and is
defined by Υ𝑐 = {(x, 𝐾𝑜 (x)): x∈E}

4. The union of Υ and Ψ is denoted by Υ ∪" Ψ, if
K(e) ∪L(e) for all e∈E.

5. The intersection of Υand Ψ is denoted by
Υ ∩" Ψ,if K(e) ∪ L(e) for all e∈E.

Example 2.8 : 
Let U be the set of houses under consideration and E is the 
set of parameters (or qualities). Each parameter is an 
interval neutrosophic word or sentence involving interval 
neutrosophic words. Consider E = { beautiful, costly, 
moderate, expensive }. In this case, to define an interval 
neutrosophic soft set means to point out beautiful houses, 
costly houses, and so on. Suppose that, there are four 
houses in the universe U given by, U = {h1,h2,h3,h4 } and 
the set of parameters A = {e1,e2,e3}, where each  ei  is a 
specific criterion for houses: 
e1 stands for ‘beautiful’, 
e2 stands for ‘costly’, 
e3 stands for ‘moderate’, 
Suppose that, 
K(beautiful)={< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< 
h2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3] >, < h3,[0.6, 0.7],[0.2 
,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >} 
.K(costly)={< h1,[0.3, 0.6], [0.2 0.7], [0.1, 0.4]>,< h2,[0.3, 
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0.5], [0.6 ,0.8], [0.2, 0.6] >, < h3,[0.3, 0.7],[0.1 ,0.3],[0.3, 
0.6] >,< h4,[0.6 ,0.8],[0.2, 0.4],[0.2, 0.5 >} 
K(moderate)={< h1,[0.5, 0.8], [0.4, 0.7], [0.3, 0.6]>,< 
h2,[0.3, 0.5], [0.7 ,0.9], [0.2, 0.4] >, < h3,[0.1, 0.7],[0.3 
,0.3],[0.3, 0.6] >,< h4,[0.3,0.8],[0.2, 0.4],[0.3, 0.6] >}. 

Defintion.2.9 [50] 
Let R be an  equivalence relation on the universal set U. 
Then the pair (U, R) is called a Pawlak approximation 
space. An equivalence class of R containing x will be 
denoted by [𝑥]𝑅. Now for X ⊆ U, the lower and upper
approximation of X with respect to (U, R) are denoted by 
respectively R∗X and 𝑹∗X and are defined by
R∗X={x ∈ U: [𝑥]𝑅 ⊆ X},
𝑅∗X={ x ∈ U: [𝑥]𝑅 ∩ 𝑋 ≠  ∅}.
Now if R∗X = 𝑅∗ X, then X is called definable; otherwise
X is called a rough set. 

Definition 2.10 [42] 
Let U be a non-null set and R be an equivalence relation on 
U. Let F be neutrosophic set in U with the membership
function µ

F
, indeterminacy function νF and non-

membership function ωF. Then, the lower and  upper rough 
approximations of F in (U, R) are denoted by R (F) and 
R(F) and respectively defined as follows: 
R(F) ={ <x, µ

𝑅(F) 
(x) , ν𝑅(F) (x) , ω𝑅(F) (x)> |  x∈ U},

𝑅(F) ={ <x, µ
𝑅(F)  

(x) , ν𝑅(F)  (x) , ω𝑅(F)  (x)> |  x∈ U},
Where: 
µ

𝑅(F) 
(x)  =⋁ µ

𝐹
(𝑦)𝑦 ∈[x]𝑅 , ν𝑅(F) (x)=⋀ ν𝐹(𝑦)𝑦 ∈[x]𝑅

, 
ω𝑅(F) =⋀ ω𝐹(𝑦)𝑦 ∈[x]𝑅

,
µ

𝑅(F)  
(x)=⋀ µ

𝐹
(𝑦)𝑦 ∈[x]𝑅 , ν𝑅(F)  (x)=⋁ ν𝐹(𝑦)𝑦 ∈[x]𝑅

, ω𝑅(F)  =⋁ ω𝐹(𝑦)𝑦 ∈[x]𝑅
,

It is easy to observe that  𝑅(F) and 𝑅(F) are two 
neutrosophic sets in U, thus NS mapping 
𝑅 , 𝑅 :R(U) → R(U) are, respectively, referred to as the 
upper and lower rough NS approximation operators, and 
the pair (𝑅(F), 𝑅(F)) is called the rough neutrosophic set. 
Definition 2.11[4] . Let  us consider an interval-valued 
intuitionstic fuzzy set  𝜎 defined by 
𝜎 = {x,  μ𝜎(x),  ν𝜎(x): x ∈ U} where  μ𝜎(x),  ν𝜎(x), ∈ int
([0, 1]) for each x ∈ U and 
0 ≤ μ𝜎(x)+ ν𝜎(x)  ≤ 1
Now Let Θ=(f,A) be an  interval-valued intuitionstic fuzzy 
soft set over U and the pair  SIVIF= (U, Θ) be the soft 
interval-valued intuitionistic fuzzy approximation space.  
Let f:A→  IVIFSU   be defined  f(a) ={ x,  μf(a)(x),
 νf(a)(x) : x ∈ U } for each a ∈ A. Then , the lower  and
upper soft interval-valued intuitionistic fuzzy rough 
approximations of σ with respect to SIVIF are  denoted by 
↓ AprSIVIF(𝜎) and ↑ AprSIVIF(𝜎) respectively, which are
interval valued intuitionistic fuzzy sets in U given by:  

↓ AprSIVIF(𝜎) ={<  x,
[ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎(x)),  ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜎(x)],  [ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎(x)),
 ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎(x)]>: x ∈ U }

↑ AprSIVIF(𝜎) ={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∨ inf μ𝜎(x)) ,
 ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∨ sup μ𝜎(x)],  [ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∧

inf ν𝜎(x)) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∧ sup ν𝜎(x)] >: x ∈ U}
The  operators ↓ AprSIVIF(𝜎) and  ↑ AprSIVIF(𝜎) are called
the lower and upper soft interval-valued intuitionistic fuzzy 
rough approximation operators on interval valued 
intuitionistic fuzzy sets. If ↓ AprSIVIF(𝜎)  = ↑ AprSIVIF(𝜎),
then 𝜎 is said to be soft interval  valued intuitionistic fuzzy 
definable; otherwise   is called a soft interval valued 
intuitionistic fuzzy rough set. 

Example 3.3 . Let U={x, y) and A={a, b}. Let (f, A) be
an interval –valued intuitionstic fuzzy soft set over U 
where f:A→  IVIFSU    be defined 
f(a)= { <𝑥,[0.2, 0. 5], [0.3, 0.4]>, <𝑦, [0.6, 0.7],[0.1, 0.2] 
>} 
f(b)= { <𝑥,[0.1, 0. 3], [0.4, 0.5>, <𝑦, [0.5, 0.8],[0.1, 0.2] >} 
Let 𝜎 = { <𝑥,[0.3, 0.4], [0.3, 0.4]>, <𝑦, [0.2, 0.4],[0.4, 0.5] 
>}. Then 

↓ AprSIVIF(𝜎)= { <𝑥,[0.1, 0.3],[0.3, 0.4] >, <𝑦,[0.2,
0.4],[0.4, 0.5]>} 
↑ AprSIVIF(𝜎) = { <𝑥,[0.3, 0.4],[0.3, 0.4] >, <𝑦,[0.5,
0.7],[0.1, 0.2]>}. Then 𝜎 is a soft interval-valued 
intuitionstic fuzzy rough set. 

3. Soft Interval Neutrosophic Rough Set.
A. Saha and A. Mukherjee [4] used the interval valued
intuitioinstic fuzzy soft set to granulate the universe of
discourse and obtained a mathematical model called soft
interval –valued intuitionistic fuzzy rough set. Because the
soft interval –valued intuitionistic fuzzy rough set cannot
deal with indeterminate and inconsistent data, in this
section, we attempt to develop an new concept called soft
interval –valued neutrosophic rough sets.

Definition 3.1. Let  us consider an interval-valued 
neutrosophic set  𝜎 defined by 
𝜎 = {x,  μ𝜎(x),  ν𝜎(x), ω𝜎(x) : x ∈ U} where  μ𝜎(x),
 ν𝜎(x), ω𝜎(x) ∈ int ([0, 1]) for each x ∈ U and

0 ≤ μ𝜎(x)+ ν𝜎(x) + ω𝜎(x) ≤ 3

Now Let Θ=(f,A) be an  interval-valued neutrosophic soft 
set over U and the pair  SIVN= (U, Θ) be the soft interval-
valued neutrosophic approximation space.  
Let f:A→  𝐼𝑉𝑁𝑆𝑈   be defined  f(a) ={ x,  μ𝑓(𝑎)(x),
 ν𝑓(𝑎)(x), ω𝑓(𝑎)(x) : x ∈ U } for each a ∈ A. Then , the
lower  and upper soft interval-valued neutrosophic rough 
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approximations of 𝜎 with respect to SIVN are  denoted by 
↓ AprSIVN(𝜎) and ↑ AprSIVN(𝜎) respectively, which are
interval valued neutrosophic sets in U given by:  

↓ AprSIVN(𝜎) ={<x,
[ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎(x)),  ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜎(x)],  [ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎(x)),
 ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎(x)], [ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨

inf ω𝜎(x)) ,   ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎(x)]>: x ∈ U }

↑ AprSIVN(𝜎) ={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∨ inf μ𝜎(x)) ,
 ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∨ sup μ𝜎(x)],  [ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∧

inf ν𝜎(x)) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∧ sup ν𝜎(x)],
[ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∧ inf ω𝜎(x)) ,   ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧

sup ω𝜎(x)]>: x ∈ U}
The  operators ↓ AprSIVN(𝜎) and  ↑ AprSIVN(𝜎) are called
the lower and upper soft interval-valued neutrosophic 
rough approximation operators on interval valued 
neutrosophic sets. If ↓ AprSIVN(𝜎)  = ↑ AprSIVN(𝜎), then 𝜎
is said to be soft interval  valued neutrosophic definable; 
otherwise   is called a soft interval valued neutrosophic 
rough set. 
Remark 3.2: it is to be noted that if μ𝜎(x),  ν𝜎(x),
ω𝜎(x) ∈ int ([0, 1]) and 0 ≤ μ𝜎(x)+ ν𝜎(x) + ω𝜎(x) ≤ 1,
then soft interval valued neutrosophic rough sets becomes 
soft interval valued intuitionistic fuzzy  rough sets. 

 Example 3.3 . Let U={x, y) and A={a, b}. Let (f, A) be an 
interval –valued neutrosophic soft se over U where f:A→  
𝐼𝑉𝑁𝑆𝑈    be defined 

f(a)= {<𝑥,[0.2, 0. 5],[0.3, 0.4],[0.4, 0.5]>,<𝑦,[0.6, 0.7],[0.1, 
0.2],[0.3 0.4]>} 
f(b)={<𝑥,[0.1, 0. 3],[0.4, 0.5],[0.1, 0.2]>, <𝑦,[0.5, 0.8],[0.1, 
0.2],[0.1 0.2]>} 
Let 𝜎 ={<𝑥,[0.3, 0.4],[0.3, 0.4],[0.1, 0.2]>, <𝑦,[0.2, 
0.4],[0.4, 0.5],[0.2 0.3]>}. Then 

↓ AprSIVN(𝜎)= { <𝑥,[0.1, 0.3],[0.3, 0.4],[0.1, 0.2]>,
<𝑦,[0.2, 0.4],[0.4, 0.5],[0.2, 0.3]>} 
↑ AprSIVN(𝜎) = { <𝑥,[0.3, 0.4],[0.3, 0.4],[0.1, 0.2]>,
<𝑦,[0.5, 0.7],[0.1, 0.2],[0.1, 0.2]>}. Then 𝜎 is a soft 
interval-valued neutrosophic rough set. 

Theorem 3.4 
Let Θ=(f,A) be an  interval-valued neutrosophic soft set 
over U and SIVN= (U, Θ) be the soft interval-valued 
neutrosophic approximation space. Then  for  𝜎, 𝜆 ∈ 
IVNSU , we have 

1) ↓ AprSIVN(∅) =  ∅ = ↑ AprSIVN(∅)
2) ↓ AprSIVN(𝑈) =  𝑈 = ↑ AprSIVN(𝑈)
3) 𝜎 ⊆  𝜆  ⟹↓ AprSIVN(𝜎) ⊆ ↓ AprSIVN(𝜆)
4) 𝜎 ⊆  𝜆  ⟹↑ AprSIVN(𝜎) ⊆↑ AprSIVN(𝜆)
5) ↓ AprSIVN(𝜎 ∩  𝜆) ⊆ ↓ AprSIVN(𝜎) ∩ ↓

AprSIVN(𝜆).
6) ↑ AprSIVN(𝜎 ∩  𝜆) ⊆↑ AprSIVN(𝜎) ∩↑ AprSIVN(𝜆).
7) ↓ AprSIVN(𝜎) ∪ ↓ AprSIVN(𝜆) ⊆ ↓ AprSIVN ( 𝜎 ∪

𝜆).
8) ↑ AprSIVN(𝜎) ∪ ↑ AprSIVN(𝜆) ⊆ ↑ AprSIVN(𝜎 ∪

𝜆)

Proof .(1)-(4) are straight forward. 
(5) We have
𝜎={<x,[ inf μ𝜎(x), sup μ𝜎(x)], [ inf ν𝜎(x), sup ν𝜎(x)], [ inf ω𝜎(x), sup ω𝜎(x)]>:x∈  U},
𝜆 ={<x,[ inf μ𝜆(x), sup μ𝜆(x)], [ inf ν𝜆(x), sup ν𝜆(x)], [ inf ω𝜆(x), sup ω𝜆(x)]>:x∈  U}
and

𝜎 ∩  𝜆= {<x,[ inf μ𝜎 ∩ 𝜆(x), sup μ𝜎 ∩ 𝜆(x)], [ inf ν𝜎 ∩ 𝜆(x), sup ν𝜎 ∩ 𝜆(x)], [ inf ω𝜎 ∩ 𝜆(x), sup ω𝜎 ∩ 𝜆(x)]>:x∈  U},
Now 
↓ AprSIVN(𝜎 ∩  𝜆)={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 ∩ 𝜆(x)) ,   ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜎 ∩ 𝜆(x)],

[ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 ∩ 𝜆(x)) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 ∩ 𝜆(x)], [ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 ∩ 𝜆(x)) ,
  ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 ∩ 𝜆(x)]>: x ∈ U }
={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ min(inf μ𝜎 (x) , inf μ 𝜆(x)) ,   ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ min(sup μ𝜎 (x) , sup μ 𝜆(x))],
[ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ max(inf ν𝜎 (x) , inf ν 𝜆(x))) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ max(sup ν𝜎 (x) , sup ν 𝜆(x))],
[ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ max(inf ω𝜎 (x) , inf ω 𝜆(x))) ,   ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ max(sup ω𝜎 (x) , sup ω 𝜆(x)]>: x ∈ U }

Now ↓ AprSIVN(𝜎) ∩ ↓ AprSIVN(𝜆).

= {<  x, [ min ( ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x)) , ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜆 (x)) ), min ( ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜎 (x)) , ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜆 (x)) )] ,[ max ( ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x)) , ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜆 (x))
), max( ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 (x)) , ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜆 (x)) )], [ max ( ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x))
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, ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜆 (x)) ), max( ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 (x)) , ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜆 (x)) )]> : x∈

U}. 

Since            min(inf μ𝜎 (y), infμ𝜆 (y)) ≤ inf μ𝜎(y)
and              min(inf μ𝜎 (y), infμ𝜆 (y)) ≤ inf μ𝜆(y)
we have 
⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ min(inf μ𝜎 (x) , inf μ 𝜆(x)) ≤ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x))
and ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ min(inf μ𝜎 (x) , inf μ 𝜆(x)) ≤ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜆 (x))

Hence  ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ min(inf μ𝜎 (x) , inf μ 𝜆(x))  ≤ 𝐦𝐢𝐧 ( ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x)) , ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧

inf μ𝜆 (x)) )

Similarly 
⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ min(sup μ𝜎 (x) , sup μ 𝜆(x))  ≤ 𝐦𝐢𝐧 ( ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜎 (x)) , ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜆 (x)) )
Again since 

max(inf ν𝜎 (y), infν𝜆 (y)) ≥ inf ν𝜎(y)
and         max(inf ν𝜎 (y), infν𝜆 (y)) ≥ inf ν𝜆(y)

we have 
⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ max(inf ν𝜎 (x) , inf ν 𝜆(x))  ≥ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x))

and ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ max(inf ν𝜎 (x) , inf ν 𝜆(x))  ≥ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜆 (x))

Hence  ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ max(inf ν𝜎 (x) , inf ν 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x)) , ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨

inf ν𝜆 (x)) )

Similarly 
⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ max(sup ν𝜎 (x) , sup ν 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 (x)) , ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨

sup ν𝜆 (x)) )

Again since 
max(inf ω𝜎 (y), infω𝜆 (y)) ≥ inf ω𝜎(y)

And    max(inf ω𝜎 (y), infω𝜆 (y)) ≥ inf ω𝜆(y)

we have 
⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ max(inf ω𝜎 (x) , inf ω 𝜆(x))  ≥ ⋀ (inf νω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x))

and ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ max(inf ω𝜎 (x) , inf ω 𝜆(x))  ≥ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∧ inf ω𝜆 (x))

Hence  
⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ max(inf ω𝜎 (x) , inf ν 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x)) , ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨

inf ω𝜆 (x)) )

Similarly 
⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ max(sup ω𝜎 (x) , sup ω 𝜆(x))  ≥ 𝐦𝐚𝐱  ( ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 (x)) , ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨

sup ω𝜆 (x)) )
Consequently, 
↓ AprSIVN(𝜎 ∩  𝜆) ⊆  ↓ AprSIVN(𝜎) ∩  ↓ AprSIVN(𝜆).

(6) Proof is similar to (5).
(7) we have
𝜎={<x,[ inf μ𝜎(x), sup μ𝜎(x)] ,[ inf ν𝜎(x), sup ν𝜎(x)] ,[ inf ω𝜎(x), sup ω𝜎(x)]>:x∈  U},
𝜆 ={<x,[ inf μ𝜆(x), sup μ𝜆(x)],[ inf ν𝜆(x), sup ν𝜆(x)] ,[ inf ω𝜆(x), sup ω𝜆(x)]>:x∈  U}
And
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𝜎 ∪  𝜆= {<x,[ inf μ𝜎 ∪ 𝜆(x), sup μ𝜎 ∪ 𝜆(x)], [ inf ν𝜎 ∪ 𝜆(x), sup ν𝜎 ∪ 𝜆(x)], [ inf ω𝜎 ∪ 𝜆(x), sup ω𝜎 ∪ 𝜆(x)]>:x∈  U},
↓ AprSIVN(𝜎 ∪  𝜆)={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 ∪ 𝜆(x)) ,   ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜎 ∪ 𝜆(x)],

[ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 ∪ 𝜆(x)) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 ∪ 𝜆(x)], [ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 ∪ 𝜆(x)) ,
  ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 ∪ 𝜆(x)]>: x ∈ U }
={<  x, [ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ max(inf μ𝜎 (x) , inf μ 𝜆(x)) ,   ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ max(sup μ𝜎 (x) , sup μ 𝜆(x))],
[ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ min(inf ν𝜎 (x) , inf ν 𝜆(x))) ,   ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ min(sup ν𝜎 (x) , sup ν 𝜆(x))],
[ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ min(inf ω𝜎 (x) , inf ω 𝜆(x))) ,   ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ min(sup ω𝜎 (x) , sup ω 𝜆(x)]>: x ∈ U }

Now ↓ AprSIVN(𝜎) ∪ ↓ AprSIVN(𝜆).

= {<  x, [ max ( ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x)) , ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜆 (x)) ), max( ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜎 (x)) , ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜆 (x)) )], [ min ( ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x)) , ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜆 (x))
), min ( ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 (x)) , ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜆 (x)) )], [ min ( ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x))
, ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜆 (x)) ), min ( ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜎 (x)) , ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ sup ω𝜆 (x)) )]> : x∈

U} 

Since            max(inf μ𝜎 (y), infμ𝜆 (y)) ≥ inf μ𝜎(y)
and              max(inf μ𝜎 (y), infμ𝜆 (y)) ≥ inf μ𝜆(y)
we have 
⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ max(inf μ𝜎 (x) , inf μ 𝜆(x)) ≥ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x))
and ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ max(inf μ𝜎 (x) , inf μ 𝜆(x)) ≥ ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜆 (x))

Hence  ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ max(inf μ𝜎 (x) , inf μ 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧ inf μ𝜎 (x)) , ⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧

inf μ𝜆 (x)) )

Similarly 
⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ max(sup μ𝜎 (x) , sup μ 𝜆(x))  ≥ 𝐦𝐚𝐱 ( ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧ sup μ𝜎 (x)) , ⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧

sup μ𝜆 (x)) )
Again since 

min(inf ν𝜎 (y), infν𝜆 (y)) ≤ inf ν𝜎(y)
and      min(inf ν𝜎 (y), infν𝜆 (y)) ≤ inf ν𝜆(y)

we have 
⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ min(inf ν𝜎 (x) , inf ν 𝜆(x))  ≤ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x))

and ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ min(inf ν𝜎 (x) , inf ν 𝜆(x))  ≤ ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜆 (x))

Hence  ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ min(inf ν𝜎 (x) , inf ν 𝜆(x))  ≤ 𝐦𝐢𝐧 ( ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨ inf ν𝜎 (x)) , ⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨

inf ν𝜆 (x)) )

Similarly 
⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ min(sup ν𝜎 (x) , sup ν 𝜆(x))  ≤ 𝐦𝐢𝐧𝐱 ( ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨ sup ν𝜎 (x)) , ⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨

sup ν𝜆 (x)) )

Again since 
min(inf ω𝜎 (y), infω𝜆 (y)) ≤ inf ω𝜎(y)

And    min(inf ω𝜎 (y), infω𝜆 (y)) ≤ inf ω𝜆(y)

we have 
⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ min(inf ω𝜎 (x) , inf ω 𝜆(x)) ≤ ⋀ (inf νω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x))

and ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ min(inf ω𝜎 (x) , inf ω 𝜆(x) ≤ ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜆 (x))
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Hence  ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ min(inf ω𝜎 (x) , inf ν 𝜆(x))  ≤ 𝐦𝐢𝐧 ( ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨ inf ω𝜎 (x)) , ⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨

inf ω𝜆 (x)) )

Similarly 
⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨ min(sup ω𝜎 (x) , sup ω 𝜆(x))  ≤ 𝐦𝐢𝐧( ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧ sup ω𝜎 (x)) , ⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧

sup ω𝜆 (x)) )
Consequently, 
↓ AprSIVN(𝜎) ∪ ↓ AprSIVN(𝜆) ⊆ ↓ AprSIVN( 𝜎 ∪  𝜆)
(8) Proof is similar to  (7).

Theorem 3.5. Every soft interval-valued neutrosophic 
rough set is an interval valued neutrosophic soft set. 
Proof. Let Θ=(f,A) be an interval-valued neutrosophic soft 
set over U and SIVN=(U, Θ) be the soft interval-valued 
neutrosophic approximation space. Let 𝜎 be a soft interval-
valued neutrosophic rough set. Let us define an interval-
valued neutrosophic set  𝜒 by: 

𝜒 ={( x, [ 
⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧inf μ𝜎 (x))

⋀ (inf μ𝑓(𝑎)(x)a ∈A ∨inf μ𝜎 (x))

, 
⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧sup μ𝜎 (x))

⋀ (sup μ𝑓(𝑎)(x)a ∈A ∨sup μ𝜎 (x))
] , [ 

⋀ (inf ν𝑓(𝑎)(x)a ∈A ∧inf ν𝜎 (x))

⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨inf ν𝜎 (x))
 , 

⋀ (sup ν𝑓(𝑎)(x)a ∈A ∧sup ν𝜎 (x))

⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨sup ν𝜎 (x))
] , 

[ 
⋀ (inf ω𝑓(𝑎)(x)a ∈A ∧inf ω𝜎 (x))

⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨inf ω𝜎 (x))

, 
⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧sup μω𝜎 (x))

⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨sup ω𝜎 (x))
]): x ∈ U } 

Now, for 𝜃 ∈ [0, 1], we consider the following six  
sets: 

𝐹1(𝜃)= { x ∈ U :
⋀ (inf μ𝑓(𝑎)(x)a ∈A ∧inf μ𝜎 (x))

⋀ (inf μ𝑓(𝑎)(x)a ∈A ∨inf μ𝜎 (x))
  ≥ 𝜃} 

𝐹2(𝜃)= { x ∈ U :
⋀ (sup μ𝑓(𝑎)(x)a ∈A ∧sup μ𝜎 (x))

⋀ (sup μ𝑓(𝑎)(x)a ∈A ∨sup μ𝜎 (x))
  ≥ 𝜃} 

𝐹3(𝜃)= { x ∈ U : ⋀
(inf ν𝑓(𝑎)(x)a ∈A ∧inf ν𝜎 (x))

⋀ (inf ν𝑓(𝑎)(x)a ∈A ∨inf ν𝜎 (x))
  ≥ 𝜃}

𝐹4(𝜃)= { x ∈ U :⋀ (sup ν𝑓(𝑎)(x)a ∈A ∧sup ν𝜎 (x))

⋀ (sup ν𝑓(𝑎)(x)a ∈A ∨sup ν𝜎 (x))
  ≥ 𝜃} 

𝐹5(𝜃)= { x ∈ U : ⋀
(inf ω𝑓(𝑎)(x)a ∈A ∧inf ω𝜎 (x))

⋀ (inf ω𝑓(𝑎)(x)a ∈A ∨inf ω𝜎 (x))
  ≥ 𝜃} 

𝐹6(𝜃)= { x ∈ U :⋀ (sup ω𝑓(𝑎)(x)a ∈A ∧sup μω𝜎 (x))

⋀ (sup ω𝑓(𝑎)(x)a ∈A ∨sup ω𝜎 (x))
  ≥ 𝜃} 

Then  𝜓(𝜃)= { (x, [inf{ 𝜃: x ∈ 𝐹1(𝜃)}, inf{ 𝜃: x ∈ 𝐹2(𝜃)}],
[inf{ 𝜃: x ∈ 𝐹3(𝜃)}, inf{ 𝜃: x ∈ 𝐹4(𝜃)}], [inf{ 𝜃: x ∈
𝐹5(𝜃)}, inf{ 𝜃: x ∈ 𝐹6(𝜃)}]) :x ∈ U}is an interval –valued
neutrosophic set over U for each 𝜃 ∈ [0, 1]. Consequently 
(𝜓, 𝜃) is an interval-valued neutrosophic soft set over U. 

4.A Multi-criteria Group Decision Making Problem
In this section, we extend the soft interval –valued
intuitionistic fuzzy rough set based multi-criteria group

decision making scheme [4] to the case of the soft interval- 
valued neutrosophic  rough set. 
Let U={𝑜1, 𝑜2, 𝑜3,…, 𝑜𝑟} be a set of objects and E be a set
of parameters and A = {𝑒1, 𝑒2, 𝑒3,…, 𝑒𝑚} ⊆ E and S=(F,
A) be an interval- neutrosophic soft set over U. Let us
assume that we have an expert group G =
{𝑇1, 𝑇2, 𝑇3,…, 𝑇𝑛} consisting of n specialists to evaluate
the objects in U. Each specialist will examine all the 
objects in U and will point out his/her evaluation result. 
Let 𝑋𝑖 denote the primary evaluation result of the specialist
𝑇𝑖. It is easy to see that the primary evaluation result of the
whole expert group G can be represented as an interval 
valued neutrosophic evaluation soft set 𝑆∗ = (𝐹∗, G) over 
U, where 𝐹∗: 𝐺 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by 𝐹∗(𝑇𝑖)= 𝑋𝑖, for
i=1,2,..n.  
Now we consider the soft interval valued neutrosophic 
rough approximations of the specialist 𝑇𝑖’s primary
evaluation result 𝑋𝑖 w.r.t the soft interval valued
neutrosophic approximation space SIVN = (U, S). Then we 
obtain two other interval valued neutrosophic  soft sets  
↓ 𝑆∗= (↓ 𝐹∗ ,G) and  ↑ 𝑆∗= (↑ 𝐹∗ ,G) over U, where ↓ 𝑆∗ 
: 𝐺 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by ↓ 𝐹∗ =↓ 𝑋𝑖  and
↑ 𝐹∗: 𝐺 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by ↑ 𝐹∗ (𝑇𝑖)= =↑ 𝑋𝑖  , for
i=1,2,..n. Here ↓ 𝑆∗ can be considered as the evaluation 
result for the whole expert group G with 'low confidence', 
 ↑ 𝑆∗ can be considered as the evaluation result for the 
whole expert group G with 'high confidence' and 𝑆∗ can be 
considered as the evaluation result for the whole expert 
group G with 'middle confidence' Let us define two 
interval valued neutrosophic sets 𝐼𝑉𝑁𝑆 ↓𝑆∗  and  𝐼𝑉𝑁𝑆 ↑𝑆∗

by  
𝐼𝑉𝑁𝑆 ↓𝑆∗ ={〈𝑜𝑘, [𝟏

𝒏
∑ 𝒊𝒏𝒇μ↓𝐹∗ (𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  
𝟏

𝒏
∑ 𝒔𝒖𝒑 μ↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ],  [𝟏

𝒏
∑ 𝒊𝒏𝒇ν↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,
𝟏

𝒏
∑ 𝒔𝒖𝒑ν↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ],  [𝟏

𝒏
∑ 𝒊𝒏𝒇ω↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  𝟏

𝒏

∑ 𝒔𝒖𝒑 ω↓𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏
𝒋=𝟏 ]>: 𝑘 = 1,2, . . 𝑟} 

And 
𝐼𝑉𝑁𝑆 ↑𝑆∗ ={〈𝑜𝑘, [𝟏

𝒏
∑ 𝒊𝒏𝒇μ↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏

𝒋=𝟏 ,  𝟏

𝒏

∑ 𝒔𝒖𝒑μ↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏
𝒋=𝟏 ],  [𝟏

𝒏
∑ 𝒊𝒏𝒇 ν↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏

𝒋=𝟏 ,
𝟏

𝒏
∑ 𝒔𝒖𝒑ν↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏

𝒋=𝟏 ],  [𝟏

𝒏
∑ 𝒊𝒏𝒇ω↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏

𝒋=𝟏 ,  𝟏

𝒏

∑ 𝒔𝒖𝒑 ω↑𝐹∗(𝑇𝑖)(𝑜𝑘)𝒏
𝒋=𝟏 ]>: 𝑘 = 1,2, . . 𝑟} 
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Now we define another interval valued neutrosophic set  
𝐼𝑉𝑁𝑆 𝑆∗ by

𝐼𝑉𝑁𝑆 𝑆∗ ={〈𝑜𝑘, [𝟏

𝒏
∑ 𝒊𝒏𝒇μ𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  𝟏

𝒏

∑ 𝒔𝒖𝒑μ𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏
𝒋=𝟏 ],  [𝟏

𝒏
∑ 𝒊𝒏𝒇 ν𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  𝟏

𝒏

∑ 𝒔𝒖𝒑ν𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏
𝒋=𝟏 ],  [𝟏

𝒏
∑ 𝒊𝒏𝒇ω𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏

𝒋=𝟏 ,  𝟏

𝒏

∑ 𝒔𝒖𝒑 ω𝐹∗(𝑇𝑗)(𝑜𝑘)𝒏
𝒋=𝟏 ]>: 𝑘 = 1,2, . . 𝑟} 

Then clearly,   
𝐼𝑉𝑁𝑆 ↓𝑆∗ ⊆ 𝐼𝑉𝑁𝑆 𝑆∗ ⊆ 𝐼𝑉𝑁𝑆 ↑𝑆∗ 

Let C={L (low confidence), M (middle confidence), H 
(high confidence)} be a set of parameters. Let us consider 
the interval valued neutrosophic soft set 𝑆∗∗= (f, C) over U, 
where f: 𝐶 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by f(L)= 𝐼𝑉𝑁𝑆 ↓𝑆∗,
f(M)= 𝐼𝑉𝑁𝑆 𝑆∗ ,  f(H)= 𝐼𝑉𝑁𝑆 ↑𝑆∗ . Now given a weighting
vector W= ( ω𝐿 , ω𝑀  , ω𝐻) such that ω𝐿 , ω𝑀  , ω𝐻 ∈ [0,
1], we define  𝛼: 𝑈 ⟶ 𝑃(𝑈)𝑏𝑦  𝛼(o𝑘) =  ω𝐿 ⋄ s𝑓(𝐿)(o𝑘)  +
 ω𝑀 ⋄ s𝑓(𝑀)(o𝑘) + ⋄ s𝑓(𝐻)(o𝑘) , o𝑘 ∈ U (⋄ represents
ordinary multiplication) where  
s𝑓(𝐿)(o𝑘) =

𝒊𝒏𝒇μ
↓𝐹∗(𝑇𝑗)

+𝒔𝒖𝒑μ
↓𝐹∗(𝑇𝑗)

−𝒊𝒏𝒇 ν↓𝐹∗(𝑇𝑗).𝒔𝒖𝒑 ν↓𝐹∗(𝑇𝑗)−𝒊𝒏𝒇ω↓𝐹∗(𝑇𝑗).𝒔𝒖𝒑ω↓𝐹∗(𝑇𝑗)

2

denotes  the score function, the same as s𝑓(𝑀)(o𝑘) and
s𝑓(𝐻)(o𝑘). Here α(ok) is called the weighted evaluation
value of the alternative o𝑘 ∈ U. Finally, we can select the
object o𝑝 =max{ 𝛼(o𝑘)}:k=1,2,…,r} as the most preferred
alternative. 

 Algorithm: 
(1) Input the original description Interval valued
neutrosophic soft set  (F, A).
(2) Construct the interval valued neutrosophic evaluation
soft set  𝑆∗ =( 𝐹∗, G) 
(3) Compute the soft interval valued neutrosophic rough
approximations and then construct the interval valued
neutrosophic soft sets ↓ 𝑆∗ and  ↑ 𝑆∗

(4) Construct the interval valued neutrosophic 𝐼𝑉𝑁𝑆 ↓𝑆∗   ,
𝐼𝑉𝑁𝑆 𝑆∗ , 𝐼𝑉𝑁𝑆 ↑𝑆∗

(5) Construct the interval valued neutrosophic soft set 𝑆∗∗.
(6) Input the weighting vector W and compute the
weighted evaluation values of each alternative 𝛼(o𝑘) of
each alternative o𝑘 ∈ U.
(7) Select the object o𝑝such that  object o𝑝

=max{ 𝛼(o𝑘)}:k=1,2,…,r}    as the most preferred
alternative.
5.An illustrative example
The following example is adapted from [4] with minor
changes.
Let us consider a staff selection problem to fill a position
in a private company.
Let U = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5} is the universe set consisting of
five candidates. Let us consider the soft set S=(F, A), 
which describes the "quality of the candidates", where 
A={𝑒1 (experience), 𝑒2 (computer knowledge), e3 (young
and efficient), e4 (good communication skill)}. Let the
tabular representation of the interval valued 
neutrosophicsoft set (F, A) be: 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 
𝑒1 ([.2, .3],[.4, .5],[.3, .4]) ([.5, .7],[.1, .3],[.2, .3]) ([.4, .5],[.2, .4],[.2, .5]) ([.1, .2],[.1, .3],[.1, .2]) ([.3, .5],[.3, .4],[.1, .2]) 
𝑒2 ([.3, .6],[.1, .2],[.2, .3]) ([.1, .3],[.2, .3],[.2, .4]) ([.3, .6],[.2, .4],[.2, .4]) ([.5, .6],[.2, .3],[.2, .4]) ([.1, .3],[.3, .6],[.2, .5]) 
𝑒3 ([.4, .5],[.2, .3],[.4, .5]) ([.2, .4],[.2, .5],[.1, .2]) ([1, .3],[.4, .6],[.3, .5]) ([.3, .4],[.3, .4],[.4, .6]) ([.4, .6],[.1, .3],[.2, .3]) 
𝑒4 ([.2, .4],[.6, .7],[.6, .7]) ([.6, .7],[.1, .2],[.4, .5]) ([.3, .4],[.3, .4],[.1, .2]) ([.2, .4],[.4, .6],[.1, .2]) ([.5, .7],[.1, .2],[.1, .5]) 

Let G = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇4} be the set of interviewers to
judge the quality of the candidate in U. Now if 𝑋𝑖  denote
the primary evaluation result of the interviewer 𝑇𝑖 (for i=1,
2, 3, 4,5), then the primary evaluation result of the whole 
expert group G can be represented as an interval valued 
neutrosophic evaluation soft set  𝑆∗= ( 𝐹∗,G) over U, 

where 𝐹∗: 𝐺 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by  𝐹∗ (𝑇𝑖  ) = 𝑋𝑖   for i=1,
2, 3, 4,5. 
Let the tabular representation of 𝑆∗  be given as: 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 

𝑇1 ([.4, .6],[.4, .5],[.3, .4]) ([.3, .4],[.1, .2],[.2, .3]) ([.2, 3],[.2, .3],[.2, .5]) ([.6, .8],[.1, .2],[.1, .2]) ([.1, .4],[.2, .3],[.1, .2]) 
𝑇2 ([.3, .5],[.2, .4],[.2, .3]) ([.5, .7],[.1, .3],[.2, .4]) ([.4, .6],[.1, .3],[.2, .4]) ([.3, .5],[.1, .3],[.2, .4]) ([.4, .5],[.2, .3],[.2, .5]) 
𝑇3 ([.1, .3],[.5, .6],[.4, .5]) ([.2, .3],[.4, .5],[.1, .2]) ([.1, .4],[.2, .4],[.3, .5]) ([.2, .3],[.5, .6],[.4, .6]) ([.3, .6],[.2, .3],[.2, .3]) 
𝑇4 ([.2, .3],[.3, .4],[.6, .7]) ([.4, .7],[.1, .2],[.4, .5]) ([.3, .5],[.4, .5],[.1, .2]) ([.4, .5],[.2, .4],[.1, .2]) ([.5, .7],[.1, .2],[.1, .5]) 

𝑇5
([.6, .7],[.1, .2],[.6, .7]) ([.3, .5],[.3, .4],[.4, .6]) ([.5, .6],[.3, .4],[.2, .3]) ([.1, .3],[.3, .6],[.4, .6]) ([.1, .2],[.6, .8],[.2, .5]) 
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Let us choose P=(U, S) as the soft interval valued 
neutrosophic approximation space. Let us consider the 
interval valued neutrosophic evaluation soft sets. 

↓ 𝑆∗ = (↓ 𝐹∗, G) and ↑ 𝑆∗ = (↑ 𝐹∗, G) over U. 
Then the tabular representation of these sets are:

 ↓ S∗ = (↓ F∗ , G): 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 
𝑇1 ([.2, .3],[.1, .2],[.3, .4]) ([.1, .3],[.3, .4],[.2, .3]) ([.1, .3],[.2, .4],[.2, .5]) ([.1, .2],[.1, .3],[.1, .2]) ([.1, .3],[.2, .4],[.1, .2]) 
𝑇2 ([.2, .3],[.2, .4],[.2, .3]) ([.1, .3],[.1, .3],[.2, .4]) ([.1, 3],[.2, .4],[.2, .4]) ([.1, .2],[.1, .3],[.2, .4]) ([.1, .3],[.2, .3],[.2, .5]) 
𝑇3 ([.1, .3],[.5, .6],[.4, .5]) ([.1, .3],[.4, .5],[.1, .2]) ([.1, .3],[.2, .4],[.3, .5]) ([.1, .2],[.5, .6],[.4, .6]) ([.1, .3],[.2, .3],[.2, .3]) 
𝑇4 ([.2, .3],[.3, .4],[.6, .7]) ([.1, .3],[.1, .2],[.4, .5]) ([.1, .3],[.4, .5],[.1, .2]) ([.1, .2],[.2, .4],[.1, .2]) ([.1, .3],[.1, .2],[.1, .5]) 
𝑇5 ([.2, .3],[.1, .2],[.6, .7]) ([.1, .3],[.2, .5],[.4, .6]) ([.1, .3],[.3, .4],[.2, .3]) ([.1, .2],[.3, 6],[.4, .6]) ([.1, .2],[.6, .8],[.2, .5]) 

↑ 𝑆∗ = (↑ 𝐹∗, G) 
c1 c2 c3 c4 c5 

T1 ([.4, .6],[.1, .2],[.2, .3]) ([.3, .4],[.1, .2],[.1, .2]) ([.2, .3],[.2, .3],[.1, .2]) ([.6, .8],[.1, .2],[.1, .2]) ([.1, .4],[.1, .2],[.1, .2]) 
T2 ([.3, .5],[1, .2],[.2, .3]) ([.5, .7],[.1, .2],[.1, .2]) ([.4, .6],[.1, .3],[.1, .2]) ([.3, .5],[.1, .3,[.1, .2]) ([.4, .5],[.1, .2],[.1, .2]) 
T3 ([.2, .3],[.1, .2],[.2, .3]) ([.2, .3],[.1, .2],[.1, .2]) ([.1, .4],[.2, .4],[.1, .2]) ([.2, .3],[.1 .3],[.1, .2]) ([.3, .6],[.1, .2],[.1, .2]) 
T4 ([.2, .3],[.1, .2],[.2, .3]) ([.4, .7],[.1, .2],[.1, .2]) ([.3, .5],[.2, .4],[.1, .2]) ([.4, .5],[.1, .3],[.1, .2]) ([.5, .7],[.1, .2],[.1, .2]) 
𝑇5 ([.6, .7],[.1, .2],[.2, .3]) ([.3, .5],[.1, .2],[.1, .2]) ([.5, .6],[.2, .4],[.1, .2]) ([.1, .3],[.1, 3],[.1, .2]) ([.1, .3],[.1, .2],[.1, .2]) 

Here, ↓ 𝑆∗ ⊆  𝑆∗ ⊆ ↑ 𝑆∗ 

𝐼𝑉𝑁𝑆 ↓𝑆∗   = { <𝑐1,[0.15, 0.35],[0.4, 0.625],[0.42, 0.52]>
<𝑐2,[0.175, 0.325],[0.375, 0.575],[0.26, 0.4]>, <𝑐3,[0.175,
0.375],[0.375, 0.575],[0.2, 0.38]>, <𝑐4,[0.175,
0.375],[0.375, 0.575],[0.24, 0.4]>, <𝑐5,[0.175,
0.375],[0.375, 0.575],[0.16, 0.4]>}. 

𝐼𝑉𝑁𝑆 ↑𝑆∗= { <𝑐1,[0.575, 0.75],[0.125, 0.225],[ 0.2, 0.3]>
<𝑐2,[0.575, 0.75],[0.125, 0.225], [ 0.1, 0.2]>, <𝑐3,[0.575,
0.725],[0.125, 0.225],[ 0.1, 0.2]>, <𝑐4,[0.525,
0.700],[0.125, 0.225],[ 0.1, 0.2]>, <𝑐5,[0.55, 0.700],[0.125,
0.225],[ 0.1, 0.2]>}. 

𝐼𝑉𝑁𝑆 𝑆∗= { <𝑐1,[0.25, 0.45],[0.375, 0.475],[ 0.42, 0.52]>
<𝑐2,[0.375, 0.525],[0.225, 0.35], [ 0.26, 0.4]>, <𝑐3,[0.350,
0.525],[0.2, 0.4],[ 0.2, 0.38]>, <𝑐4,[0.4, 0.6],[0.20, 0.35],[
0.24, 0.4]>, <𝑐5,[0.35, 0.55],[0.15, 0.375],[ 0.16, 0.4]>}.

Here, 𝐼𝑉𝑁𝑆 ↓𝑆∗ ⊆  𝐼𝑉𝑁𝑆 𝑆∗ ⊆ 𝐼𝑉𝑁𝑆 ↑𝑆∗ . Let
C={ L (low confidence), M (middle confidence),H( high 
confidence)} be a set of parameters. Let us consider the 
interval valued neutrosophic soft set  𝑆∗∗= (f, C) over U, 
where f: 𝐶 ⟶ 𝐼𝑉𝑁𝑆𝑈 is given by f(L) =  𝐼𝑉𝑁𝑆 ↓𝑆∗, f(M) =
𝐼𝑉𝑁𝑆 𝑆∗, f(H) = 𝐼𝑉𝑁𝑆 ↑𝑆∗. Now assuming the weighting
vector W =( ω𝐿,  ω𝑀,  ω𝐻) such that  ω𝐿=
0.7  ω𝑀=0.6,  ω𝐻=0.8, we have ,

𝛼(c1) = 0.7 ⋄  0.0158  +0.6 ⋄  0.15174  +0.8 ⋄ 0.6184
      =0.5968  

𝛼(c2)= 0.7 ⋄ 0.0901  +0.6 ⋄  0.3586  +0.8 ⋄ 0.6384
 = 0.7890   

𝛼(c3)= 0.7 ⋄  0.1041  +0.6 ⋄  0.3595 +0.8 ⋄ 0.6384

  =0.7993 
𝛼(c4)= 0.7 ⋄ 0.1191 +0.6 ⋄  0.4170  +0.8 ⋄ 0.6134

  =0.8243 
𝛼(c5)= 0.7 ⋄  0.1351  +0.6 ⋄ 0.3898 +0.8 ⋄ 0.600

 =0.8093 
Since max(𝛼(c1), 𝛼(c2), 𝛼(c3), 𝛼(c4), 𝛼(c5)} = 0.8243,
so the candidate  c4 will be selected as the most preferred
alternative. 

5.Conclusions

In this paper we have defined, for the first time, the notion 
of soft  interval valued neutrosophic rough sets which is a 
combination of interval valued neutrosophic rough  sets 
and soft sets. We have studied some of their basic  
properties. Thus our work is a generalization of SIVIF-
rough sets. We hope that this paper will promote the future 
study on soft interval valued neutrosophic rough sets to 
carry out a general framework for their application in 
practical life. 

References 
[1] A. A. Salama, S.A.Alblowi, “Generalized Neutrosophic Set
and Generalized Neutrosophic Topological Spaces” ,Computer
Science and Engineering, p-ISSN: 2163-1484    e-ISSN: 2163-
1492 DOI: 10.5923/j.computer.20120207.01, 2(7), (2012) 129-
132.
[2] A. Mukherjee, A.Saha and A.K. Das,”Interval valued
intuitionistic fuzzy soft set relations”,Annals of Fuzzy
Mathematics and Informatics,Volume x, No. x, (201x), pp. xx
[3] A. Mukherjee, A.Saha ,”Interval valued intuitionistic fuzzy
soft rough sets”,Annals of Fuzzy Mathematics and

Florentin Smarandache (author and editor) Collected Papers, XII

255



Informatics,Volume x, No. x, (201x), pp. xx, 
http://www.afmi.or.kr. 
[4] A. Saha, A. Mukherjee, Soft interval-valued intuitionistic
fuzzy rough sets, Annals of Fuzzy Mathematics and
Informatics,Volume x, No. x, (201x), pp. xx,
http://www.afmi.or.kr.
[5] Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using
neural network rule extraction and decision tables for credit-risk
evaluation. Management Science March 49 (2003) 312–329.
[6] B. Sun, Z. Gong, and D. Chen, “Fuzzy rough set theory for
the interval-valued fuzzy information systems,” Inf. Sci., vol.
178,(2008) 2794-2815.
[7] Cruz-Cano, R., Lee, M.L.T., Leung, M.Y.: Logic
minimization and rule extraction for identification of functional
sites in molecular sequences. BioData Mining 5 (2012)
[8] D. A. Molodtsov, “Soft Set Theory - First Result”, Computers
and Mathematics with Applications, Vol. 37, (1999) 19-31. 

[9] D. Dubios and H. Prade, “Rough fuzzy sets and fuzzy rough
sets,” Int. J. Gen. Syst., vol. 17, (1990191-208.
[10] Deli, I.Interval-valued neutrosophic soft sets and its decision
making http://arxiv.org/abs/1402.3130 
[11] Dash, M., Liu, H.: Consistency-based search in feature
selection. Artificial Intelligence 151(2003) 155–176.
[12] Du, Y., Hu, Q., Zhu, P., Ma, P.: Rule learning for
classification based on neighborhood covering reduction.
Information Sciences 181 (2011) 5457–5467.
[13] F. Smarandache,“A Unifying Field in Logics. Neutrosophy:
Neutrosophic  Probability, Set and Logic”. Rehoboth: American 
Research Press,(1999). 
[14] F. Feng, Soft rough sets applied to multi criteria group
decision making, Ann. Fuzzy Math.Inform. 2 (2011) 69-80.
[15] F. Feng, C. Li, B. Davvaz, and M. I.Ali, soft sets combined
with fuzzy sets and rough sets: a tentaive approch, soft
computing, Vol.14, No.9,(2010) 899-911
[16] H. Wang, F. Smarandache,, Y.Q. Zhang, R. Sunderraman,
”Single valued neutrosophic”,sets. Multispace and Multistructure,
4, (2010) 410–413.
[17] H. Wang, F. Smarandache,, Y.Q. Zhang, R.
Sunderraman.,”Interval Neutrosophic  Sets and Logic: Theory
and Applications in Computing”, Hexis, Phoenix, AZ, 2005.
[18] Hu, Q., Yu, D., Liu, J., Wu, C.: Neighborhood rough set bas
selection. Information Sciences 178, (2008) 3577–3594.
[19] He, Q., Wu, C., Chen, D., Zhao, S.: Fuzzy rough set based
attribute reduction for information systems with fuzzy decisions.
Knowledge-Based Systems 24 (2011) 689–696.
[20] J. Ye,” Single valued netrosophiqc minimum spanning tree
and its clustering method” De Gruyter  journal of intelligent
system , (2013) 1-24.
[21] J. Ye,”Similarity measures between interval neutrosophic
sets and their multicriteria decision-making method “Journal of
Intelligent & Fuzzy Systems, DOI: 10.3233/IFS-120724 , 2013.
[22] J. Zhang, L. Shu, and S. Liao, intuitionstic fuzzy soft rough
set and its application in decision making, Abstract and
Applied Analysis, (2014) 1-13,
http://dx.doi.org/10.1155/2014/287314.

[23] J.-S. Mi, Y. Leung, H.-Y. Zhao, and T. Feng, “Generalized
Fuzzy Rough Sets determined by a triangular norm,” Inf. Sci.,
vol. 178, (2008) 3203-3213.
[24] K.Atanassov. Intuitionistic fuzzy sets.Fuzzy Sets and
Systems,20.(1986) 87-96.
[25] K. Georgiev, “A simplification of the Neutrosophic Sets.
Neutrosophic Logic and Intuitionistic Fuzzy Sets”, 28  Ninth Int.
Conf. on IFSs, Sofia, NIFS, Vol. 11, 2,(2005) 28-31.
[26] K. V. Thomas, L. S. Nair, Rough intutionistic fuzzy
sets in a lattice, Int. Math. Forum 6(27) ,(2011) 1327–
1335.
[27] L.A.Zadeh. Fuzzy sets. Information and Control, 8.(1965)
338-353.
[28] M. Bhowmik and M. Pal ,” Intuitionistic Neutrosophic Set”,
ISSN 1746-7659, England, UK, Journal of Information and
Computing Science,Vol. 4, No. 2, (2009) 142-152.
[29] M. Bhowmik and M. Pal ,” Intuitionistic Neutrosophic Set
Relations and Some of  Its  Properties ,ISSN 1746-7659,
England, UK, Journal of Information and Computing Science,
Vol. 5, No. 3, (2010) 183-192.
[30] Min, F., Zhu, W.: Attribute reduction of data with error
ranges and test costs. Information Sciences 211 (2012) 48–67.
[31] Min, F., He, H., Qian, Y., Zhu, W.: Test-cost-sensitive
attribute reduction. Information Sciences 181 (2011) 4928–4942.
[32] M. Shabir, M. I. Ali, and T. Shaheen, Another approach to
soft rough sets, Knowledge-Based Systems, Vol 40, (2013) 72-80
[33] P.Chi and L.Peide, “An Extended TOPSIS Method for the
Multiple Attribute Decision Making Problems Based on Interval
Neutrosophic”, Neutrosophic Sets and Systems,VOL1 ,(2013)
63-70.
[34] P. Majumdar, S.K. Samant,” On similarity and entropy of
neutrosophic sets”,Journal of Intelligent and Fuzzy
Systems,1064-1246(Print)-1875
8967(Online),(2013),DOI:10.3233/IFS-130810, IOSPress.
[35] P. K. Maji, A. R. Roy and R. Biswas, “Fuzzy soft sets”
,Journal of Fuzzy Mathematics. 9 (3), (2001) 589-602.
[36] P. K. Maji, R. Biswas, A.  R. Roy, “Intuitionistic fuzzy soft
sets”, The journal of fuzzy mathematics 9(3), (2001) 677-692.
[37] P. K. Maji,” Neutrosophic Soft Set”, Annals of Fuzzy
Mathematics and Informatics,Vol 5, No. 1,ISSN: 2093-9310 ,
ISSN: 2287-623.
[38] S. Broumi, and F.Smarandache, Several Similarity Measures
of Neutrosophic Sets” ,Neutrosophic Sets and Systems,VOL1
,(2013) 54-62.
[39] S. Broumi, F. Smarandache , “Correlation Coefficient of
Interval Neutrosophic set”, Periodical of Applied Mechanics and
Materials, Vol. 436, 2013, with the title Engineering Decisions
and Scientific Research in Aerospace, Robotics, Biomechanics,
Mechanical Engineering and Manufacturing; Proceedings of the
International Conference ICMERA, Bucharest, October 2013.
[40] S. Broumi, F. Smarandache ,” New operations on interval
neutrosophic set”,2013 ,accepted
[41] S. Broumi and F. Smarandache, “Intuitionistic Neutrosophic
Soft Set”, Journal of Information and Computing Science,
England, UK ,ISSN 1746-7659,Vol. 8, No. 2, (2013) 130-140.

Florentin Smarandache (author and editor) Collected Papers, XII

256

http://www.afmi.or.kr/
http://www.afmi.or.kr/
http://arxiv.org/abs/1402.3130
http://dx.doi.org/10.1155/2014/287314
http://iospress.metapress.com/content/8342372573j42764/
http://iospress.metapress.com/content/8342372573j42764/


[42] S. Broumi, F  Smarandache,” Rough neutrosophic sets.
Italian journal of pure and applied mathematics,N.32,(2014) 493-
502.
[43] S. Broumi, F  Smarandache, Lower  and upper soft interval
valued neutrosophic rough approximations  of an IVNSS-relation.
SISOM & ACOUSTICS 2014,1-8
[44] T.seng, T.L.B., Huang, C.C.: Rough set-based approach to
feature selection in customer relationship management. Omega
35 (2007) 365–383.
[45] Turksen, “Interval valued fuzzy sets based on normal
forms”.Fuzzy Sets and Systems, 20,(1968) 191–210.
[46] Yao, Y., Zhao, Y.: Attribute reduction in decision-theoretic
rough set models. Information Sciences 178 (2008) 3356–3373.

[47] Wang, X., Tsang, E.C., Zhao, S., Chen, D., Yeung, D.S.:
Learning fuzzy rules from fuzzy samples based on rough set
technique. Information Sciences 177 (2007) 4493–4514.
[48 ] W.-Z. Wu, J.-S. Mi, and W.-X. Zhang, “Generalized  Fuzzy
Rough Sets,” Inf. Sci., vol. 151, (2003) 263-282.
[49] Z. Zhang, “On interval type-2 rough fuzzy sets,”
Knowledge-Based Syst., vol. 35, (2012) 1-13.
[50] Z. Pawlak , Rough Sets , Int. J. Comput. Inform. Sci. 11
,(1982) 341-356.
[51] Z. Gong, B. Sun, and D. Chen, “Rough set theory  for the
interval-valued fuzzy information systems,” Inf. Sci., vol. 178, ,
(2008) 1968-1985.

Florentin Smarandache (author and editor) Collected Papers, XII

257



An Extended TOPSIS Method for Multiple Attribute 
Decision Making based on Interval Neutrosophic 

Uncertain Linguistic Variables  

Said Broumi,  Jun Ye, Florentin Smarandache

Abstract: The interval neutrosophic uncertain 
linguistic variables can easily express the 
indeterminate and inconsistent information in real 
world, and TOPSIS is  a very effective decision 
making method more and more  extensive 
applications. In this paper, we will extend the 
TOPSIS method to deal with the interval 
neutrosophic uncertain linguistic information, and 
propose an extended TOPSIS method to solve the 
multiple attribute decision making problems in 
which the attribute value takes the form of the 
interval neutrosophic uncertain linguistic variables 

and attribute weight is unknown. Firstly, the 
operational rules and properties for the interval 
neutrosophic variables are introduced. Then the 
distance between two interval neutrosophic 
uncertain linguistic variables is proposed and the 
attribute weight is calculated by the maximizing 
deviation method, and the closeness coefficients to 
the ideal solution for each alternatives. Finally, an 
illustrative example is given to illustrate the 
decision making steps and the effectiveness of the 
proposed method.

Keywords: The interval neutrosophic  linguistic, multiple attribute decision making, TOPSIS,  maximizing deviation 
method 

I-Introduction
F. Smarandache [7] proposed the neutrosophic set (NS) by
adding an independent indeterminacy-membership
function. The concept of  neutrosophic set  is
generalization of classic set, fuzzy set [25], intuitionistic
fuzzy set [22], interval  intuitionistic fuzzy set [23,24] and
so on. In NS, the indeterminacy is quantified explicitly and
truth-membership, indeterminacy membership, and false-
membership are completely independent. From scientific
or engineering point of view, the neutrosophic set and set- 
theoretic view, operators need to be specified .Otherwise, it
will be difficult to apply in the real applications. Therefore,
H. Wang et al [8] defined a single valued neutrosophic set

(SVNS) and then provided the set theoretic operations and 
various properties of single valued neutrosophic sets. 
Furthermore, H. Wang et al.[9] proposed the set theoretic 
operations on an instance of neutrosophic set called 
interval valued neutrosophic set (IVNS) which is more 
flexible and practical than NS. The works on neutrosophic 
set (NS)  and interval valued neutrosophic set (IVNS), in 
theories and application have been progressing rapidly 
(e.g, [1,2,4,6,7,8,9,10,11,12,13,14,15,16,17, 
,18,19,20,21,27,28,29,30,31,32,33,35,36,37,38,39,40,41,42
,43,44,45,46,47,48,53]. 
Multiple attribute decision making (MADM) problem  are 
of importance in most kinds of fields such as engineering, 

Said Broumi, Jun Ye, Florentin Smarandache (2015). An Extended TOPSIS Method 
for Multiple Attribute Decision Making based on Interval Neutrosophic Uncertain 
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economics, and management. In many situations decision 
makers have incomplete , indeterminate and inconsistent 
information about alternatives  with respect to attributes. It 
is well known that the conventional and fuzzy or 
intuitionistic fuzzy decision making analysis [26, 50, 51,] 
using different techniques tools  have been found to be 
inadequate to handle indeterminate an inconsistent data. 
So, Recently, neutrosophic multicriteria decision making 
problems have been proposed to deal with such situation. 

TOPSIS (Technique for Order Performance by Similarity 
to Ideal Solution) method, initially introduced by C. L. 
Hwang and Yoon [3], is a  widely used method for dealing 
with  MADM problems, which focuses on choosing the 
alternative with the shortest distance from the positive 
ideal solution (PIS) and the farthest distance from the 
negative ideal solution (NIS). The traditional TOPSIS is 
only used to solve the decision making problems with crisp 
numbers, and many extended TOPSIS were proposed  to 
deal with fuzzy information. Z. Yue [55] extended TOPSIS 
to deal with interval numbers, G. Lee et al.[5] extend 
TOPSIS to deal wit fuzzy numbers, P. D. Liu and Su [34], 
Y. Q. Wei and Liu [49] extended  TOPSIS to linguistic 
information environments,  Recently, Z. Zhang and C. Wu 
[53] proposed  the single  valued neutrosophic or interval
neutrosophic TOPSIS method  to calculate the relative
closeness coefficient of each alternative to the single
valued neutrosophic or interval neutrosophic positive ideal
solution, based on which the considered alternatives are
ranked and then the most desirable one is selected. P.
Biswas et al. [32]  introduced single –valued neutrosophic
multiple attribute decision making problem with
incompletely known or completely unknown attribute
weight information based on modified GRA.

Based on the linguistic variable and  the concept of interval 
neutrosophic sets, J. Ye [19] defined interval neutrosophic 
linguistic variable, as well as its operation principles, and 
developed some new aggregation  operators for the interval 
neutrosophic linguistic  information, including interval 
neutrosophic linguistic arithmetic weighted average 
(INLAWA) operator,  linguistic geometric weighted 
average(INLGWA) operator and discuss some  properties. 
Furthermore, he proposed the decision making method for 
multiple attribute decision making (MADM) problems 
with an illustrated example to show the process of decision 
making and the effectiveness of the proposed method. In 
order to process incomplete, indeterminate and inconsistent 
information more efficiency and precisely J. Ye [20] 
further proposed the interval neutrosophic uncertain 
linguistic variables by combining uncertain linguistic 
variables and interval neutrosophic sets, and proposed the 
operational rules, score function , accuracy  functions ,and 
certainty function of interval neutrosophic uncertain 
linguistic variables. Then the interval neutrosophic 

uncertain linguistic weighted arithmetic averaging 
(INULWAA) and  the interval neutrosophic uncertain 
linguistic weighted arithmetic averaging (INULWGA) 
operator are developed, and a multiple attribute decision 
method with interval neutrosphic uncertain linguistic 
information was developed. 

To do so, the remainder of this paper is set out as follows. 
Section 2 briefly recall some basic concepts of neutrosphic 
sets, single valued neutrosophic sets (SVNSs), interval 
neutrosophic sets(INSs), interval neutrosophic linguistic 
variables and interval neutrosophic uncertain linguistic 
variables. In section 3, we develop an extended TOPSIS 
method for the interval neutrosophic uncertain linguistic 
variables, In section 4, we give an application example to 
show the decision making steps, In section 5, a comparison 
with existing methods are presented. Finally, section 6 
concludes the paper. 
II-Preliminaries
In the following, we shall introduce some basic concepts
related to uncertain linguistic variables, single valued
neutrosophic set, interval neutrosophic sets, interval
neutrosophic uncertain linguistic sets, and interval
neutrosophic uncertain linguistic set.
2.1 Neutrosophic sets

Definition 2.1 [7]
Let U be a universe of discourse then the neutrosophic set
A is an object having the form
A = {< x: TA(x), IA(x), FA(x) >, x ∈ X },
Where the functions TA(x), IA(x), FA(x): U→]-0,1+[define
respectively the degree of membership, the degree of
indeterminacy, and the degree of non-membership of the
element x ∈ X to the set A with the condition.

 −0 ≤ 𝑠upTA(x)  +sup IA(x) +sup FA(x) ≤ 3+.     (1)
 From philosophical point of view, the 

neutrosophic set takes the value from real standard or non-
standard subsets of ]−0,1+[. So instead of ]−0,1+[ we need to 
take the interval [0,1] for 
technical applications, because ]−0,1+[will be difficult to 
apply in the real applications such as in scientific and 
engineering problems. 
2.2 Single valued Neutrosophic Sets 

Definition 2.2 [8] 
Let X be an universe of discourse, then the neutrosophic 
set A is an object having the form 
A = {< x: TA(x), IA(x), FA(x) >, x ∈ X }, 
where the functions TA(x),IA(x), FA(x) : U→[0,1]define
respectively the degree of membership , the degree of 
indeterminacy, and the degree of non-membership of the 
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element x ∈ X to the set A with the condition. 
   0 ≤ TA(x)  + IA(x) + FA(x) ≤ 3     (2) 

Definition 2.3 [8 ] 
 A single valued neutrosophic set A is contained in 
another single valued neutrosophic set B i.e. A ⊆ B if ∀x 
∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x).
(3) 
2.3 Interval Neutrosophic Sets 
Definition 2.4[9] 
Let X be a space of points (objects) with generic elements 
in X denoted by x. An interval valued neutrosophic set (for 
short IVNS) A in X is characterized by truth-membership 
function TA(x), indeteminacy-membership function IA(x)
and falsity-membership function FA(x). For each point x in
X, we have that TA(x), IA(x), FA(x) ⊆ [0 ,1].
For two IVNS,     𝐴IVNS= {<x, [𝑇AL(x),𝑇AU(x)],
[𝐼A
L(x), 𝐼A

U(x)] , [𝐹A
L(x), 𝐹A

U(x)]  > | x ∈ X }  (4)
And 𝐵IVNS= {<x, [TBL(x),TBU(x)],
[IB
L(x), IB

U(x)] , [FB
L(x), FB

U(x)]> | x ∈ X } the two relations
are defined as follows: 
(1) 𝐴IVNS ⊆ 𝐵IVNS If and only if TAL(x) ≤ TB

L(x),TAU(x) ≤
TB
U(x) , IA

L(x) ≥ IB
L(x) ,IAU(x) ≥ IBU(x) , FAL(x) ≥ FB

L(x)

,FAU(x) ≥ FBU(x)
(2)𝐴IVNS = 𝐵IVNS  if and only if , TA(x) =TB(x) ,IA(x)
=IB(x) ,FA(x) =FB(x) for any x ∈ X
The complement of 𝐴IVNS is denoted by 𝐴𝐼𝑉𝑁𝑆𝑜  and is
defined by
𝐴𝐼𝑉𝑁𝑆
𝑜 = {<x, [FAL(x), FAU(x)]>, [1 − IAU(x), 1 − IA𝐿(x)]

,[TAL(x),TAU(x)] | x ∈ X }

A∩B ={ <x , [min(TAL(x),T𝐵L(x)), min(TAU(x),T𝐵U(x))],
[max(IAL(x),I𝐵L(x)), max(IAU(x),I𝐵U(x)],  [max(FAL(x),F𝐵L(x)),
max(F(x),F𝐵U(x))] >: x ∈ X }
A∪B ={ <x , [max(TAL(x),T𝐵L(x)), max(TAU(x),T𝐵U(x))],
[min(IAL(x),I𝐵L(x)), min(IAU(x),I𝐵U(x)], [min(FAL(x),F𝐵L(x)),
min(FAU(x),F𝐵U(x))] >: x ∈ X }

2.4 Uncertain linguistic variable. 
A linguistic set is defined as a finite and completely 
ordered discreet term set, 
𝑆=(𝑠0, 𝑠1,…, 𝑠𝑙−1), where l is the odd value. For example,
when l=7, the linguistic term set S can be defined as 
follows: S={𝑠0(extremely low); 𝑠1(very
low); 𝑠2(low); 𝑠3(medium); 𝑠4(high); 𝑠5(very
high); 𝑠6(extermley high)}

Definition 2.5. Suppose �̃� = [𝑠𝑎, 𝑠𝑏], where 𝑠𝑎, 𝑠𝑏 ∈ �̃� with
a ≤ b are the lower limit and the upper limit of  𝑆, 

respectively. Then �̃� is called an uncertain linguitic 
varaible. 

Definition 2.6. Suppose �̃�1 = [𝑠𝑎1, 𝑠𝑏1]  and �̃�2 = [𝑠𝑎2, 𝑠𝑏2]
are two uncertain linguistic variable ,then the distance 
between �̃�1 and �̃�2 is defined as follows.
𝑑 (�̃�1, �̃�2)  = 1

2(𝑙−1)
(|𝑎2 − 𝑎1|+|𝑏2 − 𝑏1|)   (5)       

2.5 Interval neutrosophic linguistic set 
Based on interval neutrosophic set and linguistic variables, 
J. Ye [18] presented the extension form of the linguistic
set, i.e, interval neutroosphic linguistic set, which is shown
as follows:
Definition 2.7 :[19] An interval neutrosophic linguistic set
A in X can be defined as
A ={<x, 𝑠𝜃(𝑥), (𝑇𝐴(x), 𝐼𝐴(x), 𝐹𝐴(x))>| x ∈ X}
(6)
Where 𝑠𝜃(𝑥) ∈ �̂�, 𝑇𝐴(x) = [𝑇𝐴𝐿(x), 𝑇𝐴𝑈(x)] ⊆ [0.1], 𝐼𝐴(x) =
[𝐼𝐴𝐿(x), 𝐼𝐴𝑈(x)] ⊆ [0.1], and 𝐹𝐴(x) = [𝐹𝐴𝐿(x), 𝐹𝐴𝑈(x)] ⊆ [0.1]
with the condition 0 ≤ 𝑇𝐴

𝑈(x)+ 𝐼𝐴𝑈(x)+ 𝐹𝐴𝑈(x) ≤3 for any x
∈ X. The  function 𝑇𝐴(x), 𝐼𝐴(x) and 𝐹𝐴(x) express,
respectively, the truth-membership degree, the
indeterminacy –membership degree, and the falsity-
membership degree with interval values of the element x in
X to the   linguistic variable 𝑠𝜃(𝑥).

2.6 Interval neutrosophic uncertain linguistic set. 

Based on interval neutrosophic set and uncertain linguistic 
variables, J.Ye [20] presented the extension form of the 
uncertain linguistic set, i.e, interval neutrosphic uncertain  
linguistic set, which is shown as follows: 

Definition 2.8 :[20] An interval neutrosophic uncertain 
linguistic set A in X can be defined as 
A ={<x,[ 𝑠𝜃(𝑥), 𝑠𝜌(𝑥)], (𝑇𝐴(x), 𝐼𝐴(x), 𝐹𝐴(x))>| x ∈ X}    (7)

Where 𝑠𝜃(𝑥) ∈ �̂�, 𝑇𝐴(x) = [𝑇𝐴𝐿(x), 𝑇𝐴𝑈(x)] ⊆ [0.1], 𝐼𝐴(x) =
[𝐼𝐴𝐿(x), 𝐼𝐴𝑈(x)] ⊆ [0.1], and 𝐹𝐴(x) = [𝐹𝐴𝐿(x), 𝐹𝐴𝑈(x)] ⊆ [0.1]
with the condition 0 ≤ 𝑇𝐴

𝑈(x)+ 𝐼𝐴𝑈(x)+ 𝐹𝐴𝑈(x) ≤3 for any x
∈ X. The  function 𝑇𝐴(x), 𝐼𝐴(x) and 𝐹𝐴(x) express,
respectively, the truth-membership degree, the 
indeterminacy–membership degree, and the falsity-
membership degree with interval values of the element x in 
X to the  uncertain linguistic variable [ 𝑠𝜃(𝑥), 𝑠𝜌(𝑥)].
Definition 2.9 Let ã1=< [sθ(ã1), sρ(ã1)], ([T

L(ã1),TU(ã1)],
[IL(ã1),IU(ã1)], [FL(ã1),FU(ã1)])> and ã2={<x,
[sθ(ã2), sρ(ã2)], ([TL(ã2),TU(ã2)], [IL(ã2),IU(ã2)],
[FL(ã2),FU(ã2)])>
be two INULVs and λ ≥ 0, then the operational laws of 
INULVs are defined as follows: 
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ã1 ⨁ ã2 =< [sθ(ã1)+θ(ã2), sρ(ã1)+ρ(ã2)], ([T
L(ã1)+ TL(ã2)-

TL(ã1) TL(ã2),TU(ã1)+ TU(ã2)- TU(ã1) TU(ã2)],
[IL(ã1) IL(ã2)  ,IU(ã1) IU(ã2)], [FL(ã1) F(ã2),FU(ã1)
FL(ã2)])>                                                                     (8)

ã1 ⨂ ã2 =< [sθ(ã1)×θ(ã2)], ([T
L(ã1) TL(ã2), TU(ã1) TU(ã2)],

[IL(ã1)+ IL(ã2) - IL(ã1) IL(ã2), IU(ã1)+ IU(ã2)-
IU(ã1) IU(ã2)], [FL(ã1)+ FL(ã2) - FL(ã1) F(ã2),
FU(ã1)+ FU(ã2) - FU(ã1) FU(ã2)])>                         (9)                                                                                               

λã1=<[sλθ(ã1), sλρ(ã1)],([1-(1 − TL(ã1))λ,1-(1 −
TU(ã1))

λ], [(IL(ã1))λ,(IU(ã1))λ], [(FL(ã1))λ,(FU(ã1))λ]>
            

(10) 
ã1
λ=< [sθλ(ã1), sρλ(ã1)], ([(T

L(ã1))
λ,(TU(ã1))λ], [1-

(1 − IL(ã1))
λ, 1-(1 − IU(ã1))λ], [1-(1 − FL(ã1))λ, 1-

(1 − FU(ã1))
λ]>                                                 (11)

                              
Obviously, the above operational results are still INULVs. 
III. The Extended TOPSIS for the Interval
Neutrosophic Uncertain Linguistic Variables
A. The description  of decision making problems with
interval neutrosphic uncertain linguistic information.
For the MADM problems with interval neutrosophic
uncertain variables, there are m alternatives A=
(𝐴1, 𝐴2,…, 𝐴𝑚) which can be evaluated by n attributes
C=(𝐶1, 𝐶2,…, 𝐶𝑛) and the weight of attributes  𝐴𝑖 is 𝑤𝑖,
and meets the conditions  0 ≤ 𝑤𝑖 ≤1, ∑ 𝑤𝑗

𝑛
𝑗=1 =1.Suppose

𝑧𝑖𝑗 (i=1, 2,…, n; j=1, 2,…, m) is the evaluation values of
alternative 𝐴𝑖 with respect to attribute 𝐶𝑗
And it can be represented by interval neutrosophic 
uncertain  linguistic variable 𝑧𝑖𝑗= <[𝑥𝑖𝑗𝐿 , 𝑥𝑖𝑗𝑈],([ 𝑇𝑖𝑗𝐿 , 𝑇𝑖𝑗𝑈],
[ 𝐼𝑖𝑗𝐿 , 𝐼𝑖𝑗𝑈], [ 𝐹𝑖𝑗𝐿 , 𝐹𝑖𝑗𝑈])>, where [𝑥𝑖𝑗𝐿 , 𝑥𝑖𝑗𝑈] is the uncertain 
linguistic variable, and 𝑥𝑖𝑗

𝐿 , 𝑥𝑖𝑗𝑈 ∈ S, S 
=(𝑠0, 𝑠1,…, 𝑠𝑙−1), 𝑇𝑖𝑗𝐿 , 𝑇𝑖𝑗𝑈, 𝐼𝑖𝑗𝐿 , 𝐼𝑖𝑗𝑈 and 𝐹𝑖𝑗𝐿 , 𝐹𝑖𝑗𝑈 ∈ [0, 1] and
0 ≤ 𝑇𝑖𝑗𝑈 + 𝐼𝑖𝑗𝑈 + 𝐹𝑖𝑗𝑈 ≤3. Suppose attribute weight vector
W=(𝑤1, 𝑤2,… 𝑤𝑛) is completely unknown, according to
these condition, we can rank the alternatives 
(𝐴1, 𝐴2,…, 𝐴𝑚)

B. Obtain the attribute weight vector by the
maximizing deviation.

In order to obtain the attribute weight vector, we firstly 
define the distance between two interval neutrosophic 
uncertain variables. 

Definition 3.1 
Let �̃�1 =  <[𝑠𝑎1, 𝑠𝑏1],([ 𝑇𝐴𝐿, 𝑇𝐴𝑈], [ 𝐼𝐴𝐿, 𝐼𝐴𝑈], [ 𝐹𝐴𝐿, 𝐹𝐴𝑈])>,
�̃�2 =  <[𝑠𝑎2, 𝑠𝑏2],([ 𝑇𝐵𝐿, 𝑇𝐵𝑈], [ 𝐼𝐵𝐿, 𝐼𝐵𝑈], [ 𝐹𝐵𝐿, 𝐹𝐵𝑈])> and
�̃�3 =  <[𝑠𝑎3, 𝑠𝑏3],([ 𝑇𝐶𝐿, 𝑇𝐶𝑈], [ 𝐼𝐶𝐿, 𝐼𝐶𝑈], [ 𝐹𝐶𝐿, 𝐹𝐶𝑈])>, be any

three interval neutrosophic  uncertain  linguistic variables, 
and �̃� be the set of  linguistic  variables, 𝑓 is a map, and 
𝑓: �̃� × �̃� ⟶ R. If  d(�̃�1, �̃�2) meets the following conditions

(1) 0 ≤ 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2) ≤  1,  𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�1)= 0
(2) 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2) = 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�2, �̃�1)
(3) 𝑑𝐼𝑉𝑁𝑆 (�̃�1, �̃�2) + 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�2, �̃�3) ≥ 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�3)

then 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2) is called the distance between two
interval neutrosophic uncertain linguistic variables �̃�1

Definition 3.2: 
Let �̃�1 =  <[𝑠𝑎1, 𝑠𝑏1],([ 𝑇𝐴𝐿, 𝑇𝐴𝑈], [ 𝐼𝐴𝐿, 𝐼𝐴𝑈], [ 𝐹𝐴𝐿, 𝐹𝐴𝑈])>, and
�̃�2 =  <[𝑠𝑎2, 𝑠𝑏2],([ 𝑇𝐵𝐿, 𝑇𝐵𝑈], [ 𝐼𝐵𝐿, 𝐼𝐵𝑈], [ 𝐹𝐵𝐿, 𝐹𝐵𝑈])>, be any
two interval neutrosophic  uncertain  linguistic variables, 
then the Hamming distance between �̃�1 and �̃�2 can be
defined as follows. 

𝑑𝐼𝑁𝑈𝐿𝑉(�̃�1, �̃�2)  = 1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴𝐿 − 𝑎2 × 𝑇𝐵𝐿|+|𝑎1 × 𝑇𝐴𝑈 −

𝑎2 × 𝑇𝐵
𝑈|+|𝑎1 × 𝐼𝐴𝐿 − 𝑎2 × 𝐼𝐵𝐿|+

|𝑎1 × 𝐼𝐴
𝑈 − 𝑎2 × 𝐼𝐵

𝑈|+|𝑎1 × 𝐹𝐴𝐿 − 𝑎2 × 𝐹𝐵𝐿|+|𝑎1 × 𝐹𝐴𝑈 −
𝑎2 × 𝐹𝐵

𝑈|+
+|𝑏1 × 𝑇𝐴𝐿 − 𝑏2 × 𝑇𝐵𝐿|+|𝑏1 × 𝑇𝐴𝑈 − 𝑏2 × 𝑇𝐵𝑈|+|𝑏1 × 𝐼𝐴𝐿 −
𝑏2 × 𝐼𝐵

𝐿|+
|𝑏1 × 𝐼𝐴

𝑈 − 𝑏2 × 𝐼𝐵
𝑈|+|𝑏1 × 𝐹𝐴𝐿 − 𝑏2 × 𝐹𝐵𝐿|+|𝑏1 × 𝐹𝐴𝑈 −

𝑏2 × 𝐹𝐵
𝑈|)                                                            (12)

In order to illustrate the effectiveness of definition 3.2, the 
distance defined above must meet the three conditions in 
definition 3.1 
Proof 
Obviously, the distance defined in (12) can meets the 
conditions (1) and (2) in definition 3.1 
In the following, we will prove that the distance defined in 
(12) can also meet the condition (3) in definition 3.1

For any one interval neutrosophic uncertain linguistic 
variable �̃�3 =  <[𝑠𝑎3, 𝑠𝑏3],([ 𝑇𝐶𝐿, 𝑇𝐶𝑈], [ 𝐼𝐶𝐿, 𝐼𝐶𝑈], [ 𝐹𝐶𝐿, 𝐹𝐶𝑈])>,

𝑑𝐼𝑉𝑁𝑆(�̃�1, �̃�3)  = 1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴𝐿 − 𝑎3 × 𝑇𝐶𝐿|+|𝑎1 × 𝑇𝐴𝑈 − 𝑎3 × 𝑇𝐶𝑈|+|𝑎1 × 𝐼𝐴𝐿 − 𝑎3 × 𝐼𝐶𝐿|+|𝑎1 × 𝐼𝐴𝑈 − 𝑎3 × 𝐼𝐶𝑈|+|𝑎1 ×

𝐹𝐴
𝐿 − 𝑎3 × 𝐹𝐶

𝐿|+|𝑎1 × 𝐹𝐴𝑈 − 𝑎3 × 𝐹𝐶𝑈|+|𝑏1 × 𝑇𝐴𝐿 − 𝑏3 × 𝑇𝐶𝐿|+|𝑏1 × 𝑇𝐴𝑈 − 𝑏3 × 𝑇𝐶𝑈|+|𝑏1 × 𝐼𝐴𝐿 − 𝑏3 × 𝐼𝐶𝐿|+|𝑏1 × 𝐼𝐴𝑈 − 𝑏3 ×
𝐼𝐶
𝑈|+|𝑏1 × 𝐹𝐴𝐿 − 𝑏3 × 𝐹𝐶𝐿|+|𝑏1 × 𝐹𝐴𝑈 − 𝑏3 × 𝐹𝐶𝑈|)

Florentin Smarandache (author and editor) Collected Papers, XII

261



   = 1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴𝐿 − 𝑎2 × 𝑇𝐵𝐿 + 𝑎2 × 𝑇𝐵𝐿 − 𝑎3 × 𝑇𝐶𝐿|+|𝑎1 × 𝑇𝐴𝑈 − 𝑎2 × 𝑇𝐵𝑈 + 𝑎2 × 𝑇𝐵𝑈 − 𝑎3 × 𝑇𝐶𝑈|+|𝑎1 × 𝐼𝐴𝐿 − 𝑎2 ×

𝐼𝐵
𝐿 + 𝑎2 × 𝐼𝐵

𝐿 − 𝑎3 × 𝐼𝐶
𝐿|+|𝑎1 × 𝐼𝐴𝑈 − 𝑎2 × 𝐼𝐵𝑈 + 𝑎2 × 𝐼𝐵𝑈 − 𝑎3 × 𝐼𝐶𝑈|

+|𝑎1 × 𝐹𝐴𝐿 − 𝑎2 × 𝐹𝐵𝐿 + 𝑎2 × 𝐹𝐵𝐿 − 𝑎3 × 𝐹𝐶𝐿|+|𝑎1 × 𝐹𝐴𝑈 − 𝑎2 × 𝐹𝐵𝑈 + 𝑎2 × 𝐹𝐵𝑈 − 𝑎3 × 𝐹𝐶𝑈|

+|𝑏1 × 𝑇𝐴𝐿 − 𝑏2 × 𝑇𝐵𝐿 + 𝑏2 × 𝑇𝐵𝐿 − 𝑏3 × 𝑇𝐶𝐿|+|𝑏1 × 𝑇𝐴𝑈 − 𝑏2 × 𝑇𝐵𝑈 + 𝑏2 × 𝑇𝐵𝑈 − 𝑏3 × 𝑇𝐶𝑈|+|𝑏1 × 𝐼𝐴𝐿 − 𝑏2 × 𝐼𝐵𝐿 + 𝑏2 × 𝐼𝐵𝐿 −
𝑏3 × 𝐼𝐶

𝐿|+|𝑏1 × 𝐼𝐴𝑈 − 𝑏2 × 𝐼𝐵𝑈 + 𝑏2 × 𝐼𝐵𝑈 − 𝑏3 × 𝐼𝐶𝑈|
+|𝑏1 × 𝐹𝐴𝐿 − 𝑏2 × 𝐹𝐵𝐿 + 𝑏2 × 𝐹𝐵𝐿 − 𝑎3 × 𝐹𝐶𝐿|+|𝑏1 × 𝐹𝐴𝑈 − 𝑏2 × 𝐹𝐵𝑈 + 𝑏2 × 𝐹𝐵𝑈 − 𝑏3 × 𝐹𝐶𝑈|

And 
1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴

𝐿 − 𝑎2 × 𝑇𝐵
𝐿|+|𝑎2 × 𝑇𝐵𝐿 − 𝑎3 × 𝑇𝐶𝐿|+|𝑎1 × 𝑇𝐴𝑈 − 𝑎2 × 𝑇𝐵𝑈|+|𝑎2 × 𝑇𝐵𝑈 − 𝑎3 × 𝑇𝐶𝑈|+|𝑎1 × 𝐼𝐴𝐿 − 𝑎2 ×

𝐼𝐵
𝐿|+|𝑎2 × 𝐼𝐵𝐿 − 𝑎3 × 𝐼𝐶𝐿|+|𝑎1 × 𝐼𝐴𝑈 − 𝑎2 × 𝐼𝐵𝑈|+|𝑎2 × 𝐼𝐵𝑈 − 𝑎3 × 𝐼𝐶𝑈|+

|𝑎1 × 𝐹𝐴
𝐿 − 𝑎2 × 𝐹𝐵

𝐿|+|𝑎2 × 𝐹𝐵𝐿 − 𝑎3 × 𝐹𝐶𝐿|+|𝑎1 × 𝐹𝐴𝑈 − 𝑎2 × 𝐹𝐵𝑈|+|𝑎2 × 𝐹𝐵𝑈 − 𝑎3 × 𝐹𝐶𝑈|+

+|𝑏2 × 𝑇𝐵𝐿 − 𝑏3 × 𝑇𝐶𝐿|+|𝑏1 × 𝑇𝐴𝑈 − 𝑏2 × 𝑇𝐵𝑈|+|𝑏2 × 𝑇𝐵𝑈 − 𝑏3 × 𝑇𝐶𝑈|+|𝑏1 × 𝐼𝐴𝐿 − 𝑏2 × 𝐼𝐵𝐿|+|𝑏2 × 𝐼𝐵𝐿 − 𝑏3 × 𝐼𝐶𝐿|+|𝑏1 × 𝐼𝐴𝑈 −
𝑏2 × 𝐼𝐵

𝑈|+|𝑏2 × 𝐼𝐵𝑈 − 𝑏3 × 𝐼𝐶𝑈|+|𝑏1 × 𝐹𝐴𝐿 − 𝑏2 × 𝐹𝐵𝐿|+|𝑏2 × 𝐹𝐵𝐿 − 𝑏3 × 𝐹𝐶𝐿|+|𝑏1 × 𝐹𝐴𝑈 − 𝑏2 × 𝐹𝐵𝑈|+|𝑏2 × 𝐹𝐵𝑈 − 𝑏3 × 𝐹𝐶𝑈|)

= 1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴𝐿 − 𝑎2 × 𝑇𝐵𝐿|+|𝑎1 × 𝑇𝐴𝑈 − 𝑎2 × 𝑇𝐵𝑈|+|𝑎1 × 𝐼𝐴𝐿 − 𝑎2 × 𝐼𝐵𝐿|+|𝑎1 × 𝐼𝐴𝑈 − 𝑎2 × 𝐼𝐵𝑈|+|𝑎1 × 𝐹𝐴𝐿 − 𝑎2 × 𝐹𝐵𝐿|

+|𝑎1 × 𝐹𝐴𝑈 − 𝑎2 × 𝐹𝐵𝑈|+|𝑏1 × 𝑇𝐴𝐿 − 𝑏2 × 𝑇𝐵𝐿|+|𝑏1 × 𝑇𝐴𝑈 − 𝑏2 × 𝑇𝐵𝑈|+|𝑏1 × 𝐼𝐴𝐿 − 𝑏2 × 𝐼𝐵𝐿|+|𝑏1 × 𝐼𝐴𝑈 − 𝑏2 × 𝐼𝐵𝑈| +|𝑏1 ×
𝐹𝐴
𝐿 − 𝑏2 × 𝐹𝐵

𝐿|+|𝑏1 × 𝐹𝐴𝑈 − 𝑏2 × 𝐹𝐵𝑈|+
|𝑎2 × 𝑇𝐵

𝐿 − 𝑎3 × 𝑇𝐶
𝐿|+|𝑎2 × 𝑇𝐵𝑈 − 𝑎3 × 𝑇𝐶𝑈|+|𝑎2 × 𝐼𝐵𝐿 − 𝑎3 × 𝐼𝐶𝐿|+|𝑎2 × 𝐼𝐵𝑈 − 𝑎3 × 𝐼𝐶𝑈|+|𝑎2 × 𝐹𝐵𝐿 − 𝑎3 × 𝐹𝐶𝐿|+|𝑎2 × 𝐹𝐵𝑈 −

𝑎3 × 𝐹𝐶
𝑈|+|𝑏2 × 𝑇𝐵𝐿 − 𝑏3 × 𝑇𝐶𝐿|+|𝑏2 × 𝑇𝐵𝑈 − 𝑏3 × 𝑇𝐶𝑈|+|𝑏2 × 𝐼𝐵𝐿 − 𝑏3 × 𝐼𝐶𝐿|+|𝑏2 × 𝐼𝐵𝑈 − 𝑏3 × 𝐼𝐶𝑈|+|𝑏2 × 𝐹𝐵𝐿 − 𝑏3 ×

𝐹𝐶
𝐿|+|𝑏2 × 𝐹𝐵𝑈 − 𝑏3 × 𝐹𝐶𝑈|)

= 1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴𝐿 − 𝑎2 × 𝑇𝐵𝐿|+|𝑎1 × 𝑇𝐴𝑈 − 𝑎2 × 𝑇𝐵𝑈|+|𝑎1 × 𝐼𝐴𝐿 − 𝑎2 × 𝐼𝐵𝐿|+|𝑎1 × 𝐼𝐴𝑈 − 𝑎2 × 𝐼𝐵𝑈|+|𝑎1 × 𝐹𝐴𝐿 − 𝑎2 × 𝐹𝐵𝐿|

+|𝑎1 × 𝐹𝐴𝑈 − 𝑎2 × 𝐹𝐵𝑈|+|𝑏1 × 𝑇𝐴𝐿 − 𝑏2 × 𝑇𝐵𝐿|+|𝑏1 × 𝑇𝐴𝑈 − 𝑏2 × 𝑇𝐵𝑈|+|𝑏1 × 𝐼𝐴𝐿 − 𝑏2 × 𝐼𝐵𝐿|+|𝑏1 × 𝐼𝐴𝑈 − 𝑏2 × 𝐼𝐵𝑈| +|𝑏1 ×
𝐹𝐴
𝐿 − 𝑏2 × 𝐹𝐵

𝐿|+|𝑏1 × 𝐹𝐴𝑈 − 𝑏2 × 𝐹𝐵𝑈|)+
1

12(𝑙−1)
(|𝑎2 × 𝑇𝐵𝐿 − 𝑎3 × 𝑇𝐶𝐿|+|𝑎2 × 𝑇𝐵𝑈 − 𝑎3 × 𝑇𝐶𝑈|+|𝑎2 × 𝐼𝐵𝐿 − 𝑎3 × 𝐼𝐶𝐿|+|𝑎2 × 𝐼𝐵𝑈 − 𝑎3 × 𝐼𝐶𝑈|+|𝑎2 × 𝐹𝐵𝐿 − 𝑎3 ×

𝐹𝐶
𝐿|+|𝑎2 × 𝐹𝐵𝑈 − 𝑎3 × 𝐹𝐶𝑈|+|𝑏2 × 𝑇𝐵𝐿 − 𝑏3 × 𝑇𝐶𝐿|+|𝑏2 × 𝑇𝐵𝑈 − 𝑏3 × 𝑇𝐶𝑈|+|𝑏2 × 𝐼𝐵𝐿 − 𝑏3 × 𝐼𝐶𝐿|+|𝑏2 × 𝐼𝐵𝑈 − 𝑏3 × 𝐼𝐶𝑈|+|𝑏2 ×
𝐹𝐵
𝐿 − 𝑏3 × 𝐹𝐶

𝐿|+|𝑏2 × 𝐹𝐵𝑈 − 𝑏3 × 𝐹𝐶𝑈|)

=𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2)  + 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�2, �̃�3)
So , 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2)  + 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�2, �̃�3)  ≥ 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�3)

Especially, when 𝑇𝐴𝐿=𝑇𝐴𝑈, 𝐼𝐴𝐿=𝐼𝐴𝑈,  𝐹𝐴𝐿=𝐹𝐴𝑈,and 𝑇𝐵𝐿=𝑇𝐵𝑈,
𝐼𝐵
𝐿=𝐼𝐵𝑈, and  𝐹𝐵𝐿=𝐹𝐵𝑈the interval neutrosophic uncertain

linguistic variables �̃�1, �̃�2  can be reduced to single valued
uncertain linguistic variables. So the single valued 
neutrosophic uncertain linguistic variables are the special 
case of the interval neutrosophic uncertain linguistic 
variables.  

Because the attribute weight is fully unknown, we can 
obtain the attribute weight vector by the maximizing 
deviation method. Its main idea can be described as 
follows. If all attribute values  𝑧𝑖𝑗 (j=1, 2,…, n)  in the
attribute 𝐶𝑗 have a small difference for all alternatives, it
shows that the attribute 𝐶𝑗 has a small importance in
ranking all alternatives, and it can be assigned  a small 
attribute weight, especially, if all attribute values 𝑧𝑖𝑗 (j=1,

2,…,n) in the attribute 𝐶𝑗 are equal, then the attribute  𝐶𝑗
has no effect on sorting, and we can set zero to the weight 
of attribute 𝐶𝑗. On the contrary, if all attribute values 𝑧𝑖𝑗
(j=1, 2,…, n) in the attribute 𝐶𝑗 have  a big difference, the
attribute  𝐶𝑗 will have a big importance in ranking all
alternatives, and its weight can be assigned  a big value. 
Here, based on the maximizing deviation method, we 
construct an optimization model to determine the optimal 
relative weights of criteria under interval neutrosophic 
uncertain linguistic environment. For the criterion 𝐶𝑖 ∈ C,
we can use the distance 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗) to represent the
deviation between attribute values  𝑧𝑖𝑗  and 𝑧𝑘𝑗, and 𝐷𝑖𝑗
=∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗 can present the weighted deviation

sum for the alternative 𝐴𝑖 to all alternatives, then
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𝐷𝑗 (𝑤𝑗)=∑ 𝐷𝑖𝑗(
𝑚
𝑖=1 𝑤𝑗)= ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1  presents

the weighted deviation sum for all alternatives, 𝐷 
(𝑤𝑗)= ∑ 𝐷𝑗(

𝑛
𝑗=1 𝑤𝑗)= ∑ ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1

𝑛
𝑗=1 ,

presents total weighted deviations for all alternatives with 
respect to all attributes. 
Based on the above analysis, we can construct a non linear 
programming model to select the weight vector w by 
maximizing D (w),as follow: 

{
 Max D(𝑤𝑗) =  ∑ ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1

𝑛
𝑗=1

𝑠. 𝑡 ∑ 𝑤𝑗
2𝑛

𝑗=1 , 𝑤𝑗 ∈ [0 ,1], 𝑗 = 1,2, … , 𝑛
  (13) 

Then we can build Lagrange multiplier function, and get 

L(𝑤𝑗,𝜆)= ∑ ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)
𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1

𝑛
𝑗=1  + 𝜆 (∑ 𝑤𝑗

2𝑛
𝑗=1 -1)

Let {

∂L(𝑤𝑗,𝜆)

∂𝑤𝑗
= ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1 + 2𝜆𝑤𝑗 = 0

∂L(𝑤𝑗,𝜆)

∂𝑤𝑗
= ∑ 𝑤𝑗

2𝑛
𝑗=1 − 1 = 0

                                        

We can get 

{

2𝜆 =  √∑ (∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1 )2n

j  

𝑤𝑗   =  
∑ ∑ 𝑑(𝑧𝑖𝑗,𝑧𝑘𝑗)

𝑚
𝑘=1

𝑚
𝑖=1

√∑ (∑ ∑ 𝑑(𝑧𝑖𝑗,𝑧𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1 )2n

j

      (14) 
Then we can get the normalized attribute weight, and have 

𝑤𝑗   =  
∑ ∑ 𝑑(𝑧𝑖𝑗,𝑧𝑘𝑗)

𝑚
𝑘=1

𝑚
𝑖=1

∑ ∑ ∑ 𝑑(𝑧𝑖𝑗,𝑧𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1

𝑛
𝑗=1

 (15) 

C. The Extended TOPSIS Method for the Interval
Neutrosophic Uncertain linguistic Information.
The standard TOPSIS method can only process the real
numbers, and cannot deal with the interval neutrosophic
uncertain linguistic information. In the following, we will
extend TOPSIS to process the interval neutrosophic
uncertain linguistic variables. The steps are shown as
follows

(1) Normalize the decision matrix
Considering the benefit or cost type of the attribute values, 
we can give the normalized matrix R=(𝑟𝑖𝑗), where 𝑟𝑖𝑗=<[𝑟𝑖𝑗𝐿

, 𝑟𝑖𝑗𝑈], ],([ �̇�𝑖𝑗𝐿 , �̇�𝑖𝑗𝑈], [ 𝐼�̇�𝑗𝐿 , 𝐼�̇�𝑗𝑈], [ �̇�𝑖𝑗𝐿 , �̇�𝑖𝑗𝑈])>,The normalization
can be made shown as follows. 

(i) For benefit type,

{
𝑟𝑖𝑗
𝐿 = 𝑥𝑖𝑗

𝐿 , 𝑟𝑖𝑗
𝑈 = 𝑥𝑖𝑗

𝑈  for (1 ≤ i ≤ m,   1 ≤ j ≤ n) 

�̇�𝑖𝑗
𝐿   = 𝑇𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈 = 𝑇𝑖𝑗

𝑈 , 𝐼�̇�𝑗
𝐿 = 𝐼𝑖𝑗

𝐿 , 𝐼�̇�𝑗
𝑈 = 𝐼𝑖𝑗

𝑈 ,     �̇�𝑖𝑗
𝐿 = 𝐹𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈 = 𝐹𝑖𝑗

𝑈  (16) 

(ii) For cost type,

{
𝑟𝑖𝑗
𝐿 =  neg(𝑥𝑖𝑗

𝑈), 𝑟𝑖𝑗
𝑈 = neg( 𝑥𝑖𝑗

𝐿  )     for (1 ≤ i ≤ m,   1 ≤ j ≤ n)

�̇�𝑖𝑗
𝐿 = 𝑇𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈 = 𝑇𝑖𝑗

𝑈 , 𝐼�̇�𝑗
𝐿 = 𝐼𝑖𝑗

𝐿 , 𝐼�̇�𝑗
𝑈 = 𝐼𝑖𝑗

𝑈 ,     �̇�𝑖𝑗
𝐿 = 𝐹𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈 = 𝐹𝑖𝑗

𝑈
(17) 

(2) Construct the weighted normalize matrix
Y=[𝑦𝑖𝑗]𝑚×𝑛

[

< [𝑦11
𝐿   , 𝑦11

𝑈 ], ], ([ �̈�11
𝐿 , �̈�11

𝑈 ], [ 𝐼1̈1
𝐿 , 𝐼1̈1

𝑈 ], [ �̈�11
𝐿 , �̈�11

𝑈 ]) > … < [𝑦11
𝐿   , 𝑦11

𝑈 ], ], ([ �̈�1𝑛
𝐿 , �̈�1𝑛

𝑈 ], [ 𝐼1̈𝑛
𝐿 , 𝐼1̈𝑛

𝑈 ], [ �̈�1𝑛
𝐿 , �̈�1𝑛

𝑈 ]) >

< [𝑦21
𝐿   , 𝑦21

𝑈 ], ], ([ �̈�21
𝐿 , �̈�21

𝑈 ], [ 𝐼2̈1
𝐿 , 𝐼2̈1

𝑈 ], [ �̈�21
𝐿 , �̈�21

𝑈 ]) > … . < [𝑦2𝑛
𝐿   , 𝑦2𝑛

𝑈 ], ], ([ �̈�2𝑛
𝐿 , �̈�2𝑛

𝑈 ], [ 𝐼2̈𝑛
𝐿 , 𝐼2̈𝑛

𝑈 ], [ �̈�2𝑛
𝐿 , �̈�2𝑛

𝑈 ]) >
…

< [𝑦𝑚𝑛
𝐿   , 𝑦𝑚𝑛

𝑈 ], ], ([ �̈�𝑚𝑛
𝐿 , �̈�𝑚𝑛

𝑈 ], [ 𝐼�̈�𝑛
𝐿 , 𝐼�̈�𝑛

𝑈 ], [ �̈�𝑚𝑛
𝐿 , �̈�𝑚𝑛

𝑈 ]) >…
……

< [𝑦𝑚𝑛
𝐿   , 𝑦𝑚𝑛

𝑈 ], ], ([ �̈�𝑚𝑛
𝐿 , �̈�𝑚𝑛

𝑈 ], [ 𝐼�̈�𝑛
𝐿 , 𝐼�̈�𝑛

𝑈 ], [ �̈�𝑚𝑛
𝐿 , �̈�𝑚𝑛

𝑈 ]) >

] 

Where 

{
𝑦𝑖𝑗
𝐿  =  𝑤𝑗𝑟𝑖𝑗

𝐿 , 𝑦𝑖𝑗
𝑈 = 𝑤𝑗𝑟𝑖𝑗

𝑈

�̈�𝑖𝑗
𝐿   = 1 − (1 − �̇�𝑖𝑗

𝐿)𝑤𝑗 , �̈�𝑖𝑗
𝑈   = 1 − (1 − �̇�𝑖𝑗

𝑈)𝑤𝑗 , 𝐼�̈�𝑗
𝐿 = (𝐼�̇�𝑗

𝐿 )𝑤𝑗 , 𝐼�̈�𝑗
𝑈 = (𝐼�̇�𝑗

𝑈)𝑤𝑗 ,   �̈�𝑖𝑗
𝐿 = (�̇�𝑖𝑗

𝐿)𝑤𝑗 , �̈�𝑖𝑗
𝑈 = (�̇�𝑖𝑗

𝑈)𝑤𝑗  
(18)

(3) Identify, the sets of the positive ideal solution   𝑌+= (𝑦1+, 𝑦2+,…, 𝑦𝑚+) and the negative ideal solution 𝑌−=
(𝑦1−, 𝑦2−,…, 𝑦𝑚−)  , then we can get

𝑌+= 
(𝑦1+, 𝑦2+,…, 𝑦𝑚+)=(< [𝑦1𝐿+  , 𝑦1𝑈+], ([ �̈�1𝐿+, �̈�1𝑈+], [ 𝐼1̈𝐿+, 𝐼1̈𝑈+], [ �̈�1𝐿+, �̈�1𝑈+]) >,<
[𝑦2
𝐿+  , 𝑦2

𝑈+], ([ �̈�2
𝐿+, �̈�2

𝑈+], [ 𝐼2̈
𝐿+, 𝐼2̈

𝑈+], [ �̈�2
𝐿+, �̈�2

𝑈+]) >,…, < [𝑦𝑛𝐿+  , 𝑦𝑛𝑈+], ([ �̈�𝑛𝐿+, �̈�𝑛𝑈+], [ 𝐼�̈�𝐿+, 𝐼�̈�𝑈+], [ �̈�𝑛𝐿+, �̈�𝑛𝑈+]) >   (19)
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𝑌−= (𝑦1−, 𝑦2−,…, 𝑦𝑚−)=
)=( < [𝒚𝟏𝑳−  , 𝒚𝟏𝑼−], ([ �̈�𝟏𝑳−, �̈�𝟏𝑼−], [�̈�𝟏𝑳−, �̈�𝟏𝑼−], [ �̈�𝟏𝑳−, �̈�𝟏𝑼−]) >, < [𝒚𝟐𝑳−  , 𝒚𝟐𝑼−], ([ �̈�𝟐𝑳−, �̈�𝟐𝑼−], [�̈�𝟐𝑳−, �̈�𝟐𝑼−], [ �̈�𝟐𝑳−, �̈�𝟐𝑼−]) >,…, <
[𝒚𝒏
𝑳−  , 𝒚𝒏

𝑼−], ([ �̈�𝒏
𝑳−, �̈�𝒏

𝑼−], [�̈�𝒏
𝑳−, �̈�𝒏

𝑼−], [ �̈�𝒏
𝑳−, �̈�𝒏

𝑼−]) >  (20) 

    Where 

{

𝒚𝒋
𝑳+ = 𝐦𝐚𝐱𝒊(𝒚𝒊𝒋

𝑳 ), 𝒚𝒋
𝑼+ = 𝐦𝐚𝐱𝒊(𝒚𝒊𝒋

𝑼),

�̈�𝒋
𝑳+ = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼+ = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑼), �̈�𝒋
𝑳+ = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼+ = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑼), �̈�𝒋
𝑳+ = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼+ = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑼),

𝒚𝒋
𝑳− = 𝐦𝐢𝐧𝒊(𝒚𝒊𝒋

𝑳 ), 𝒚𝒋
𝑼− = 𝐦𝐢𝐧𝒊(𝒚𝒊𝒋

𝑼),

�̈�𝒋
𝑳− = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼− = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑼), �̈�𝒋
𝑳− = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼− = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑼), �̈�𝒋
𝑳− = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼− = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑼),

(21) 

(4) Obtain the distance between each alternative and the
positive ideal solution, and between each alternative
and the negative ideal solution, then we can get

𝐷+= (𝑑1+, 𝑑2+,…, 𝑑𝑚+ )
𝐷−= (𝑑1−, 𝑑2−,…, 𝑑𝑚− )     (22)

                                   
Where, 

{
𝑑𝑖
+ = [∑ (𝑑(𝑦𝑖𝑗 , 𝑦𝑗

+))
2𝑛

𝑗=1 ]

1

2

𝑑𝑖
− = [∑ (𝑑(𝑦𝑖𝑗 , 𝑦𝑗

−))
2𝑛

𝑗=1 ]

1

2

    (23)                                                

Where , 𝑑(𝑦𝑖𝑗 , 𝑦𝑗+)is the distance between the interval
valued neutrosophic uncertain linguistic variables 𝑦𝑖𝑗 and
𝑦𝑗
+ and 𝑑(𝑦𝑖𝑗 , 𝑦𝑗−) is the distance between the interval

valued neutrosophic uncertain linguistic variables 𝑦𝑖𝑗 and
𝑦𝑗
− which can be calculated by (12)

(5) Obtain the closeness coefficients of each alternative to
the ideal solution, and then we can get

𝑐𝑐𝑖=
𝑑𝑖
+

𝑑𝑖
++𝑑𝑖

−  (i=1,2,…,m)       (24) 

(6) Rank the alternatives
According to the closeness coefficient above, we can
choose an alternative with minimum 𝑐𝑐𝑖 or rank
alternatives according to  𝑐𝑐𝑖 in ascending order
IV. An illustrative example

In this part, we give an illustrative example adapted from J. 
Ye [20] for the extended TOPSIS method to multiple 

attribute decision making problems in which the attribute 
values are the interval neutrosophic uncertain linguistic 
variables. 
Suppose that an investment company, wants to invest a 
sum of money in the best option. To invest the money, 
there is a panel with four possible alternatives: (1) 𝐴1 is car
company; (2) 𝐴2 is food company; (3) 𝐴3 is a computer
company; (4) 𝐴4 is an arms company. The investement
company must take a decision according to the three 
attributes: (1) 𝐶1 is the risk; (2) 𝐶2 is the growth; (3) 𝐶3 is a
the environmental impact. The weight vector of the 
attributes is ω= (0.35, 0.25, 0.4)T.The expert evaluates the 
four possible alternatives of Ai (i=1,2,3,4) with respect to
the three attributes of Cj (i=1,2,3), where the evaluation
information is expressed by the form of INULV values 
under the linguistic term set S={𝑠0=extremely poor,
𝑠1=very poor, 𝑠2= poor, 𝑠3= medium, 𝑠4= good, 𝑠5= very
good, 𝑠6= extermely good}.
The evaluation information of an alternative Ai (i=1, 2, 3)
with respect to an attribute Cj (j=1, 2, 3) can be given by
the expert. For example, the INUL value of an alternative 
A1 with respect to an attribute C1 is given as <[𝑠4, 𝑠5],
([0.4, 0.5 ],[0.2, 0.3 ], [0.3, 0.4 ])> by the expert, which 
indicates that the mark of the alternative A1 with respect to
the attribute C1  is about the  uncertain linguistic value
[𝑠4, 𝑠5,] with the satisfaction degree interval [0.4 ,0.5],
indeterminacy degree interval [0.2, 0.3], and dissatisfaction 
degree interval [0.3, 0.4]. similarly, the four possible 
alternatives with respect to the three attributes can be 
evaluated by the expert, thus we can obtain the following 
interval neutrosophic uncertain linguistic decision matrix: 

(𝑅)m×n=

[

< ([𝑠4, 𝑠5], ([0.4, 0.5 ], [0.2, 0.3 ], [0.3, 0.4 ]) > < ([𝑠5, 𝑠6], ([0.4, 0.6 ], [0.1, 0.2 ], [0.2, 0.4 ]) > < ([𝑠4, 𝑠5], ([0.2, 0.3 ], [0.1, 0.2 ], [0.5, 0.6 ]) >

< ([𝑠5, 𝑠6], ([0.5, 0.7 ], [0.1, 0.2 ], [0.2, 0.3 ]) > < ([𝑠4, 𝑠5], ([0.6, 0.7 ], [0.1, 0.2 ], [0.2, 0.3 ]) > < ([𝑠4, 𝑠5], ([0.5, 0.7 ], [0.2, 0.2 ], [0.1, 0.2 ]) >

< ([𝑠5, 𝑠6], ([0.3, 0.5 ], [0.1, 0.2 ], [0.3, 0.4 ]) >

< ([𝑠3, 𝑠4], ([0.7, 0.8 ], [0.0, 0.1 ], [0.1, 0.2 ]) >

< ([𝑠5, 𝑠6], ([0.5, 0.6 ], [0.1, 0.3 ], [0.3, 0.4 ]) >

< ([𝑠3, 𝑠4], ([0.5, 0.7 ], [0.1, 0.2 ], [0.2, 0.3 ]) >

< ([𝑠4, 𝑠4], ([0.5, 0.6 ], [0.1, 0.3 ], [0.1, 0.3 ]) >

< ([𝑠5, 𝑠6], ([0.3, 0.4 ], [0.1, 0.2 ], [0.1, 0.2 ]) >]

A. Decision steps To get the best an alternatives, the following steps are 
involved: 
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Step 1: Normalization 
Because the attributes  are all the benefit types, we don’t 
need the normalization of the decision matrix X 
Step 2: Determine the attribute weight vector W, by 
formula (24), we can get 

𝑤1=  0.337  , 𝑤2=  0.244    , 𝑤3=0.379
Step 3: Construct the weighted normalized matrix, by 
formula (18), we can get 

Y =⟦
< ([𝑠1.508, 𝑠1.885], ([0.175, 0.229], [0.545, 0.635 ], [0.635, 0.708 ]) > < ([𝑠1.225, 𝑠1.467], ([0.117, 0.201 ], [0.570, 0.675 ], [0.675, 0.800 ]) >

< ([𝑠1.885, 𝑠2.262], ([0.229, 0.365 ], [0.42, 0.545 ], [0.545, 0.635 ]) > < ([𝑠0.98, , 𝑠1.225], ([0.201, 0.255 ], [0.570, 0.675 ], [0.675, 0.745 ]) >

< ([𝑠1.885, 𝑠2.262], ([0.125, 0.23 ], [0.42, 0.545 ], [0.635, 0.708 ]) >

< ([𝑠1.131, 𝑠1.508] , ([0.364, 0.455 ], [0.0, 0.42 ], [0.42, 0.545 ]) >

< ([𝑠0.98, 𝑠1.225], ([0.156, 0.201 ], [0.570, 0.745 ], [0.745, 0.800 ]) >

< ([𝑠0.735, 𝑠0.98], ([0.156, 0.255 ], [0.570, 0.674 ], [0.675, 0.745 ]) >

< ([𝑠1.508, 𝑠1.885], ([0.081, 0.126], [0.420, 0.545 ], [0.77, 0.825 ]) >

< ([𝑠1.508, 𝑠1.885], ([0.231, 0.365 ], [0.545, 0.545 ], [0.420, 0.545 ]) >

< ([𝑠1.508, 𝑠1.508], ([0.231, 0.292 ], [0.420, 0.635 ], [0.420, 0.635 ]) >

< ([𝑠1.885, 𝑠2.262], ([0.126, 0.175 ], [0.420, 0.545 ], [0.420, 0.545 ]) >

⟧ 

Step 4: Identify the sets of the positive ideal solution 
𝑌+= (𝑦1+, 𝑦2+, 𝑦3+) and the negative ideal solution
𝑌−= (𝑦1−, 𝑦2−, 𝑦3−), by formulas (19)- (21), we can get then

we can get 

𝑌+= (< ([s1.885, s2.262], ([0.365, 0.455 ], [0, 0.42 ], [0.42, 0.545 ]) >
, < ([s1.225, s1.47], ([0.201, 0.255 ], [0.569, 0.674 ], [0.674, 0.745 ]) >, 
< ([s1.885, s2.262], ([0.230, 0.365 ], [0.420, 0.545 ], [0.420, 0.545 ]) >) 

𝑌−=(< ([𝑠1.131, 𝑠1.508], ([0.126, 0.230 ], [0.545, 0.635 ], [0.635, 0.708 ]) >
, < ([s0.735, s0.98], ([0.117, 0.201], [0.569, 0.745 ], [0.745, 0.799]) >, <
([s1.508, s1.508], ([0.081, 0.126 ], [0.545, 0.635 ], [0.770, 0.825 ]) >) 

Step 5: Obtain the distance between each alternative and 
the positive ideal solution, and between each alternative 
and the negative ideal solution, by formulas (22)-(23), we 
can get 
𝐷+= (0.402, 0.065, 0.089, 0.066) 

𝐷−= (0.052, 0.073, 0.080, 0.065) 

Step 6: Calculate  the closeness coefficients of each 
alternative to the ideal solution, by formula (24) and then 
we can get 

𝑐𝑐𝑖 = (0.885, 0.472, 0.527, 0.503)
Step 7: Rank the alternatives 
According to the closeness coefficient above, we can 
choose an alternative with minimum to 𝑐𝑐𝑖 in ascending
order. We can get 

𝐴2 ≥ 𝐴4 ≥ 𝐴3 ≥ 𝐴1

So, the most desirable alternative is 𝐴2

V-Comparison analysis with the existing interval
neutrosophic uncertain linguistic multicriteria
decision making method.

Recently, J. Ye [20] developed a new method for solving 
the MCDM problems with interval neutrosophic uncertain 
linguistic information. In this section, we will perform a 

comparison analysis between our new method and the 
existing method, and then highlight the advantages of the 
new method over the existing method. 

(1) Compared with  method proposed proposed by J. Ye
[20], the method in this paper can solve the MADM
problems with unknown weight, and rank the alternatives
by the closeness coefficients. However, the method
proposed by J. Ye [20] cannot deal with the unknown
weight It can be seen that the result of the proposed
method is same to the method proposed in [20].

(2) Compared with other extended TOPSIS method
Because the interval neutrosophic uncertain linguistic
variables are the generalization of interval neutrosophic
linguistic variables (INLV), interval neutrosophic variables
(INV),and  intuitionistic uncertain linguistic variable.
Obviously, the extended TOPSIS method proposed by J.
Ye [19], Z. Wei [54], Z. Zhang and C. Wu [3], are the
special cases of the proposed method in this paper.
In  a word, the method proposed in this paper is more
generalized. At the same time, it is also simple and easy to
use.

VI-Conclusion
In real decision  making, there is great deal of qualitative
information which can be expressed by uncertain linguistic
variables. The interval neutrosophic uncertain linguistic
variables were produced by combining the uncertain
linguistic variables and interval neutrosophic set, and could
easily express the indeterminate and inconsistent
information in real world. TOPSIS had been proved to be a
very effective decision making method and has been
achieved more and more extensive applications. However,
the standard TOPSIS method can only process the real
numbers. In this paper, we extended TOPSIS method to
deal with the interval neutrosophic uncertain linguistic
variables information, and proposed an extended TOPSIS
method with respect to the MADM problems in which the
attribute values take the form of the interval neutrosophic
and attribute weight unknown. Firstly, the operational rules
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and properties for the interval neutrosophic uncertain 
linguistic variables were presented. Then the distance 
between two interval neutrosophic uncertain linguistic 
variables was proposed and the attribute weight was 
calculated by the maximizing deviation method, and the 
closeness coefficient to the ideal solution for each 
alternative  used to rank the alternatives. Finally, an 
illustrative example was given to illustrate the decision 
making steps, and compared with the existing method and 
proved the effectiveness of the proposed method. 
However, we hope that the concept presented here will 
create new avenue of research in current neutrosophic 
decision making area. 
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Thesis-Antithesis-Neutrothesis, and Neutrosynthesis 
Florentin Smarandache 

Abstract. In this short paper we extend the dialectical 
triad thesis-antithesis-synthesis (dynamics of <A> and 
<antiA>, to get a synthesis) to the neutrosophic tetrad 
thesis-antithesis-neutrothesis-neutrosynthesis (dynamics 
of <A>, <antiA>, and <neutA>, in order to get a neutro-
synthesis). We do this for better reflecting our world, 

since the neutralities between opposites play an important 
role. The neutrosophic synthesis (neutrosynthesis) is 
more refined that the dialectical synthesis. It carries on 
the unification and synthesis regarding the opposites and 
their neutrals too. 

Keywords: Thesis, Antithesis, Synthesis, Thesis-Antithesis-Neutrothesis, and Neutrosynthesis.

1. Introduction.

In neutrosophy, <A>, <antiA>, and <neutA> combined 
two by two, and also all three of them together form the 
NeutroSynthesis. Neutrosophy establishes the universal 
relations between <A>, <antiA>, and <neutA>. 
<A> is the thesis, <antiA> the antithesis, and <neutA> the
neutrothesis (neither <A> nor <antiA>, but the neutrality
in between them).
In the neutrosophic notation, <nonA> (not <A>, outside of
<A>) is the union of <antiA> and <neutA>.
<neutA> may be from no middle (excluded middle), to one
middle (included middle), to many finite discrete middles
(finite multiple included-middles), and to an infinitude of
discrete or continuous middles (infinite multiple included-
middles) [for example, as in color for the last one, let’s say
between black and white there is an infinite spectrum of
middle/intermediate colors].

2. Thesis, Antithesis, Synthesis.

The classical reasoning development about evidences, 
popularly known as thesis-antithesis-synthesis from 
dialectics, was attributed to the renowned philosopher 
Georg Wilhelm Friedrich Hegel (1770-1831) and later it 
was used by Karl Marx (1818-1883) and Friedrich Engels 
(1820-1895). About thesis and antithesis have also written 
Immanuel Kant (1724-1804), Johann Gottlieb Fichte 
(1762-1814), and Thomas Schelling (born 1921). While in 
ancient Chinese philosophy the opposites yin [feminine, 
the moon] and yang [masculine, the sun] were considered 
complementary. 

Thesis, Antithesis, Neutrothesis, 
Neutrosynthesis. 

Neutrosophy is a generalization of dialectics (which is 
based on contradictions only, <A> and <antiA>), because 
neutrosophy is based on contradictions and on the 
neutralities between them (<A>, <antiA>, and <neutA>). 
Therefore, the dialectical triad thesis-antithesis-synthesis is 
extended to the neutrosophic tetrad thesis-antithesis-
neutrothesis-neutrosynthesis. We do this not for the sake of 
generalization, but for better reflecting our world. A 
neutrosophic synthesis (neutrosynthesis) is more refined 
that the dialectical synthesis. It carries on the unification 
and synthesis regarding the opposites and their neutrals too. 

Neutrosophic Dynamicity. 

We have extended in [1] the Principle of Dynamic 
Opposition [opposition between <A> and <antiA>] to the 
Principle of Dynamic Neutropposition [which means 
oppositions among <A>, <antiA>, and <neutA>]. 
Etymologically “neutropposition” means “neutrosophic 
opposition”. 
This reasoning style is not a neutrosophic scheme, but it is 
based on reality, because if an idea (or notion) <A> arises, 
then multiple versions of this idea are spread out, let’s 
denote them by <A>1, <A>2, …, <A>m. Afterwards, the 
opposites (in a smaller or higher degree) ideas are born, as 
reactions to <A> and its versions <A>i. Let’s denote these 
versions of opposites by <antiA>1, <antiA>2, …, <antiA>n. 
The neutrality <neutA> between these contradictories 
ideas may embrace various forms, let’s denote them by 
<neutA>1, <neutA>2, …, <neutA>p, where m, n, p are 
integers greater than or equal to 1. 

Florentin Smarandache (2015). Thesis-Antithesis-Neutrothesis, and Neutrosynthesis. 
Neutrosophic Sets and Systems 8, 57-58
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In general, for each <A> there may be corresponding many 
<antiA>’s and many <neutA>’s. Also, each <A> may be 
interpreted in many different versions of <A>’s too. 
Neutrosophic Dynamicity means the interactions among all 
these multi-versions of <A>’s  
with their multi-<antiA>’s and their multi-<neutA>’s, 
which will result in a new thesis, let’s call it <A’> at a 
superior level. And a new cycle of <A’>, <antiA’>, and 
<neutA’> restarts its neutrosophic dynamicity. 

Practical Example 

Let’s say <A> is a country that goes to war with another 
country, which can be named <antiA> since it is 
antagonistic to the first country. But many neutral 
countries <neutA> can interfere, either supporting or 
aggressing one of them, in a smaller or bigger degree. 
Other neutral countries <neutA> can still remain neutral in 
this war. Yet, there is a continuous dynamicity between the 
three categories (<A>, <antiA>, <neutA.), for countries 
changing sides (moving from a coalition to another 
coalition), or simply retreating from any coalition.  
In our easy example, we only wanted to emphasize the fact 
that <neutA> plays a role in the conflict between the 
opposites <A> and <antiA>, role which was ignored by 
dialectics. 
So, the dialectical synthesis is extended to a neutrosophic 
synthesis, called neutrosynthesis,  which combines thesis, 
antithesis, and neutrothesis. 

Theoretical Example. 

Suppose <A> is a philosophical school, and its opposite 
philosophical school is <antiA>. In the dispute between 
<A> and <antiA>, philosophers from the two contradictory
groups may bring arguments against the other
philosophical school from various neutral philosophical
schools’ ideas (<neutA>, which were neither for <A> nor
<antiA>) as well.
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Refined Literal Indeterminacy and the Multiplication Law 
of Sub-Indeterminacies 

Florentin Smarandache

Abstract. In this paper, we make a short history about: the 
neutrosophic set, neutrosophic numerical components and 
neutrosophic literal components, neutrosophic numbers, 
neutrosophic intervals, neutrosophic hypercomplex num-
bers of dimension n, and elementary neutrosophic alge-
braic structures. Afterwards, their generalizations to re-
fined neutrosophic set, respectively refined neutrosophic 
numerical and literal components, then refined neutro-
sophic numbers and refined neutrosophic algebraic struc-
tures. The aim of this paper is to construct examples of 

splitting the literal indeterminacy ሺࡵሻ into literal sub-inde-
terminacies ሺࡵ, ,ࡵ … ,  ሻ, and to define a multiplication࢘ࡵ
law of these literal sub-indeterminacies in order to be able 
to build refined ࡵ െ neutrosophic algebraic structures. 
Also, examples of splitting the numerical indeterminacy 
ሺሻ into numerical sub-indeterminacies, and examples of 
splitting neutrosophic numerical components into neutro-
sophic numerical sub-components are given. 

Keywords: neutrosophic set, elementary neutrosophic algebraic structures, neutrosophic numerical components, neutrosophic literal 
components, neutrosophic numbers, refined neutrosophic set, refined elementary neutrosophic algebraic structures, refined neutrosophic 
numerical components, refined neutrosophic literal components, refined neutrosophic numbers, literal indeterminacy, literal sub-inde-
terminacies, ࡵ-neutrosophic algebraic structures.

1 Introduction 
Neutrosophic Set was introduced in 1995 by 
Florentin Smarandache, who coined the words   
"neutrosophy” and its derivative „neutrosophic”. The first 
published work on neutrosophics was in 1998 see [3]. 

There exist two types of neutrosophic components: numeri-
cal and literal. 
2 Neutrosophic Numerical Components 

Of course, the neutrosophic numerical components 
ሺݐ, ݅, ݂ሻ are crisp numbers, intervals, or in general subsets of 
the unitary standard or nonstandard unit interval. 

Let ࣯ be a universe of discourse, and ܯ a set included 
in ࣯. A generic element ݔ from ࣯ belongs to the set ܯ in 
the following way: ݔሺݐ, ݅, ݂ሻ ∈  s degree’ݔ meaning that ,ܯ
of membership/truth with respect to the set ܯ is ݔ ,ݐ’s de-
gree of indeterminacy with respect to the set ܯ is ݅, and ݔ’s 
degree of non-membership/falsehood with respect to the set 
,ݐ is ݂, where ܯ ݅, ݂ are independent standard subsets of the 
interval ሾ0, 1ሿ, or non-standard subsets of the non-standard 
interval	ሿ 0, 1ାି

ି ሾ in the case when one needs to make dis-
tinctions between absolute and relative truth, indeterminacy, 
or falsehood. 

Many papers and books have been published for the 
cases when ݐ, ݅, ݂  were single values (crisp numbers), or 

,ݐ ݅, ݂ were intervals. 

3 Neutrosophic Literal Components 
In 2003, W. B. Vasantha Kandasamy and Florentin Smaran-
dache [4] introduced the literal indeterminacy “ܫ”, such that 
ଶܫ ൌ ܫ  (whence ܫ ൌ ܫ  for ݊  1,  ݊  integer). They 
extended this to neutrosophic numbers of the form: ܽ   ,ܫܾ
where ܽ, ܾ are real or complex numbers, and  

ሺܽଵ  ܾଵܫሻ  ሺܽଶ  ܾଶܫሻ ൌ ሺܽଵ  ܽଶሻ  ሺܾଵ  ܾଶሻ(1) ܫ 

1 1 2 2 1 2 1 2 2 1 1 2( )( ) ( ) ( )a b I a b I a a a b a b b b I      (2) 

and developed many ܫ -neutrosophic algebraic structures 
based on sets formed of neutrosophic numbers. 

Working with imprecisions, Vasantha Kandasamy & 
Smarandache have proposed (approximated) I2 by I;  yet dif-
ferent approaches may be investigated by the interested re-
searchers where I2 ≠ I (in accordance with their believe and 
with the practice), and thus a new field would arise in the 
neutrosophic theory. 

The neutrosophic number ܰ ൌ ܽ  ܫܾ  can be inter-
preted as: “ܽ” represents the determinate part of number ܰ, 
while “ܾܫ” the indeterminate part of number ܰ.  

For example, 7 2.6457... that is irrational has infi-
nitely many decimals. We cannot work with this exact num-
ber in our real life, we need to approximate it. Hence, we 

Florentin Smarandache (2015). Refined Literal Indeterminacy and the Multiplication Law 
of Sub-Indeterminacies. Neutrosophic Sets and Systems 9, 58-63
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may write it as 2 + I with I ∈ (0.6, 0.7), or as 2.6 + 3I with 
I ∈ (0.01, 0.02), or 2.64 + 2I with I ∈ (0.002, 0.004), etc. 
depending on the problem to be solved and on the needed 
accuracy. 

Jun Ye [9] applied the neutrosophic numbers to decision 
making in 2014. 

4 Neutrosophic Intervals 

We now for the first time extend the neutrosophic num-
ber to (open, closed, or half-open half-closed) neutrosophic 
interval. A neutrosophic interval A is an (open, closed, or 
half-open half-closed) interval that has some indeterminacy 
in one of its extremes, i.e. it has the form A = [a, b] {cI}, 
or A ={cI} [a, b], where [a, b] is the determinate part of 
the neutrosophic interval A, and I is the indeterminate part 
of it (while a, b, c are real numbers, andmeans union). 
(Herein I is an interval.) 
We may even have neutrosophic intervals with double inde-
terminacy (or refined indeterminacy): one to the left (I1), and 
one to the right (I2): 

A = {c1I1} [a, b] {c2I2}.    (3) 

A classical real interval that has a neutrosophic number as 
one of its extremes becomes a neutrosophic interval. For ex-
ample: [0, 7 ] can be represented as [0, 2] I with I ൌ 
(2.0, 2.7), or [0, 2] {10I} with I ൌ (0.20, 0.27), or [0, 2.6]
 {10I} with I ൌ (0.26, 0.27), or [0, 2.64] {10I} with I ൌ 
(0.264, 0.265), etc. in the same way depending on the prob-
lem to be solved and on the needed accuracy. 

We gave examples of closed neutrosophic intervals, but the 
open and half-open half-closed neutrosophic intervals are 
similar. 

5 Notations 

In order to make distinctions between the numerical and 
literal neutrosophic components, we start denoting the nu-
merical indeterminacy by lower case letter “݅” (whence con-
sequently similar notations for numerical truth “ݐ”, and for 
numerical falsehood “݂”), and literal indeterminacy by up-
per case letter “ܫ” (whence consequently similar notations 
for literal truth “ܶ”, and for literal falsehood “ܨ”). 

6 Refined Neutrosophic Components 
In 2013, F. Smarandache [3] introduced the refined neu-

trosophic components in the following way: the neutro-
sophic numerical components ݐ, ݅, ݂  can be refined (split) 
into respectively the following refined neutrosophic numer-
ical sub-components: 

,ଵݐ〉 ݐ ଶ, … ݐ ; 	݅ଵ, ݅ ଶ, …  ݅ ; 	݂ଵ, ݂ ଶ, … ݂ ௦ 〉,    (4) 

where , ,ݎ are integers  ݏ 1 and maxሼ, ,ݎ ሽݏ  2, mean-
ing that at least one of , ,ݎ is  ݏ 2; and ݐ represents types 
of numeral truths, ݅ represents types of numeral indetermi-
nacies, and ݂  represents types of numeral falsehoods, for 
݆ ൌ 1, 2, … , ݇ ; ൌ 1, 2, … , ݈ ;ݎ ൌ 1, 2, … ,  .ݏ

,ݐ ݅, ݂ are called numerical subcomponents, or respec-
tively numerical sub-truths, numerical sub-indeterminacies, 
and numerical sub-falsehoods. 

Similarly, the neutrosophic literal components ܶ, ,ܫ  ܨ
can be refined (split) into respectively the following neutro-
sophic literal subcomponents: 

〈ܶଵ, ܶ ଶ, … ܶ ; ,ଵܫ	 ܫ ଶ, … ܫ ; ,ଵܨ	 ܨ ଶ, … ܨ ௦ 〉,  (5) 

where , ,ݎ ݏ  are integers  1  too, and maxሼ, ,ݎ ሽݏ  2 , 
meaning that at least one of , ,ݎ is  ݏ 2; and similarly ܶ 
represent types of literal truths, ܫ represent types of literal 
indeterminacies, and ܨ represent types of literal falsehoods, 
for ݆ ൌ 1, 2, … , ݇ ; ൌ 1, 2, … , ݈ ;ݎ ൌ 1, 2, … ,  .ݏ

ܶ , ,ܫ ܨ  are called literal subcomponents, or respec-
tively literal sub-truths, literal sub-indeterminacies, and lit-
eral sub-falsehoods. 

Let consider a simple example of refined numerical com-
ponents. 

Suppose that a country ܥ is composed of two districts 
-ଶ, and a candidate John Doe competes for the posiܦ ଵ andܦ
tion of president of this country ܥ . Per whole country, 
ൌ (Joe Doe)ܮܰ ሺ0.6, 0.1, 0.3ሻ, meaning that 60% of people 
voted for him, 10% of people were indeterminate or neutral 
– i.e. didn’t vote, or gave a black vote, or a blank vote –, and
30% of people voted against him, where ܰܮ means the neu-
trosophic logic values.

But a political analyst does some research to find out 
what happened to each district separately. So, he does a re-
finement and he gets: 

  (6) 

which means that 40% of people that voted for Joe Doe were 
from district ܦଵ, and 20% of people that voted for Joe Doe 
were from district ܦଶ; similarly, 8% from ܦଵ and 2% from 
 ଵ and 25%ܦ ଶ were indeterminate (neutral), and 5% fromܦ
from ܦଶ were against Joe Doe. 

It is possible, in the same example, to refine (split) it in 
a different way, considering another criterion, namely: what 
percentage of people did not vote ሺ݅ଵሻ, what percentage of 
people gave a blank vote – cutting all candidates on the bal-
lot – ሺ݅ଶሻ, and what percentage of people gave a blank vote 
– not selecting any candidate on the ballot ሺ݅ଷሻ. Thus, the
numerical indeterminacy ሺ݅ሻ	is refined into ݅ଵ,	݅ଶ, and ݅ଷ:

(7)
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In 2015, F. Smarandache [6] introduced the refined lit-
eral indeterminacy ሺܫሻ, which	was	split	ሺrefinedሻ  as 
,ଵܫ ,ଶܫ … , ܫ , with ݎ  2, where ܫ , for ݇ ൌ 1, 2, … , -repre ݎ
sent types of literal sub-indeterminacies. A refined neutro-
sophic number has the general form: 

ܰ ൌ ܽ  ܾଵܫଵ  ܾଶܫଶ  ⋯ ܾܫ,    (8) 

where ܽ, ܾଵ, ܾଶ,… , ܾ are real numbers, and in this case ܰ 
is called a refined neutrosophic real number; and if at least 
one of ܽ, ܾଵ, ܾଶ,… , ܾ is a complex number (i.e. of the form 
ߙ  ߚ െ1, with√ߚ ് 0, and	α, β	real	numbers), then ܰ is 
called a refined neutrosophic complex number. 
      An example of refined neutrosophic number, with three 
types of indeterminacies resulted from the cubic root (I1), 
from Euler’s constant e (I2), and from number π (I3): 

3
3 6 59 2 11N e         (9) 

Roughly  
N3 = -6  + (3 + I1) – 2(2 + I2) + 11(3 + I3)  
    = (-6 + 3 - 4 + 33) + I1 – 2I2 + 11I3 = 26 + I1 – 2I2 + 11I3 
where I1 ∈ (0.8, 0.9), I2 ∈ (0.7, 0.8), and I3 ∈ (0.1, 0.2), 
since 3 59 = 3.8929…, e = 2.7182…, π = 3.1415… . 
Of course, other 3-valued refined neutrosophic number rep-
resentations of N3 could be done depending on accuracy. 

Then F. Smarandache [6] defined the refined ܫ-neutro-
sophic algebraic structures in 2015 as algebraic structures 
based on sets of refined neutrosophic numbers. 

Soon after this definition, Dr. Adesina Agboola wrote a 
paper on refined I-neutrosophic algebraic structures [7]. 

They were called “ܫ-neutrosophic” because the refine-
ment is done with respect to the literal indeterminacy ሺܫሻ, in 
order to distinguish them from the refined ሺݐ, ݅, ݂ሻ-neutro-
sophic algebraic structures, where “ሺݐ, ݅, ݂ሻ-neutrosophic” is 
referred to as refinement of the neutrosophic numerical 
components ݐ, ݅, ݂. 

Said Broumi and F. Smarandache published a paper [8] 
on refined neutrosophic numerical components in 2014. 

8 Neutrosophic Hypercomplex Numbers of Dimension n 

      The Hypercomplex Number of Dimension n (or n-Com-
plex Number) was defined by S. Olariu [10] as a number of 
the form: 
u = xo +h1x1 + h2x2 + … + hn-1xn-1  (10) 
where n ≥ 2,  and the variables x0, x1, x2, …, xn-1 are real 
numbers, while h1, h2, …, hn-1 are the complex units, ho = 1,  
and they are multiplied as follows: 
hjhk = hj+k if 0 ≤ j+k≤ n-1, and hjhk = hj+k-n if n ≤ j+k≤ 2n-2. 

        (11) 
We think that the above (11) complex unit multiplication 
formulas can be written in a simpler way as: 
hjhk = hj+k (mod n)  (12) 
where mod n means modulo n. 
For example, if n =5, then h3h4 = h3+4(mod 5) = h7(mod5) = h2. 
Even more, formula (12) allows us to multiply many com-
plex units at once, as follows: 

hj1hj2…hjp = hj1+j2+…+jp (mod n), for p ≥ 1.   (13) 

We now define for the first time the Neutrosophic Hyper-
complex Number of Dimension n (or Neutrosophic n-Com-
plex Number), which is a number of the form: 
u+vI,                                                                              (14) 
where u and v are n-complex numbers and I = indetermi-
nacy. 
We also introduce now the Refined Neutrosophic Hyper-
complex Number of Dimension n (or Refined Neutrosophic 
n-Complex Number) as a number of the form:
u+v1I1+v2I2+…+vrIr    (15) 
where u, v1, v2, …, vr are n-complex numbers, and I1, I2, …, 
Ir are sub-indeterminacies, for r ≥ 2. 

Combining these, we may define a Hybrid Neutrosophic 
Hypercomplex Number (or Hybrid Neutrosophic n-Complex 
Number), which is a number of the form u+vI, where either 
u or v is a n-complex number while the other one is different 
(may be an m-complex number, with m ≠ n, or a real number, 
or another type of number).
And a Hybrid Refined Neutrosophic Hypercomplex Num-
ber (or Hybrid Refined Neutrosophic n-Complex Number),
which is a number of the form u+v1I1+v2I2+…+vrIr, where
at least one of u, v1, v2, …, vr is a n-complex number, while
the others are different (may be m-complex numbers, with
m ≠ n, and/or a real numbers, and/or other types of num-
bers).

9 Neutrosophic Graphs 
We now introduce for the first time the general defini-

tion of a neutrosophic graph [12], which is a (directed or 
undirected) graph that has some indeterminacy with respect 
to its edges, or with respect to its vertexes (nodes), or with 
respect to both (edges and vertexes simultaneously). We 
have four main categories of neutrosophic graphs: 

1) The ሺݐ, ݅, ݂ሻ-Edge Neutrosophic Graph.
In such a graph, the connection between two vertexes ܣ

and ܤ, represented by edge ܤܣ: 
A       B 

has the neutroosphic value of ሺݐ, ݅, ݂ሻ. 

2) .Edge Neutrosophic Graph-ܫ
This one was introduced in 2003 in the book “Fuzzy 

Cognitive Maps and Neutrosophic Cognitive Maps”, by Dr. 
Vasantha Kandasamy and F. Smarandache, that used a dif-
ferent approach for the edge: 

 A                                              B 
which can be just ܫ	 ൌ literal indeterminacy of the edge, 
with ܫଶ ൌ ܫ	  (as in ܫ -Neutrosophic algebraic structures). 
Therefore, simply we say that the connection between ver-
tex ܣ and vertex ܤ is indeterminate. 

3) Orientation-Edge Neutrosophic Graph.
At least one edge, let’s say AB, has an unknown orientation 
(i.e. we do not know if it is from A to B, or from B to A). 

7 Refined Neutrosophic Numbers 
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4) .Vertex Neutrosophic Graph-ܫ
Or at least one literal indeterminate vertex, meaning we

do not know what this vertex represents. 

5) ሺݐ, ݅, ݂ሻ-Vertex Neutrosophic Graph.
We can also have at least one neutrosophic vertex, for

example vertex ܣ only partially belongs to the graph ሺݐሻ, in-
determinate appurtenance to the graph ሺ݅ሻ, does not partially 
belong to the graph ሺ݂ሻ, we can say ܣሺݐ, ݅, ݂ሻ. 

And combinations of any two, three, four, or five of the 
above five possibilities of neutrosophic graphs.  

If ሺݐ, ݅, ݂ሻ or the literal ܫ are refined, we can get corre-
sponding refined neurosophic graphs. 

10 Example of Refined Indeterminacy and Multi-
plication Law of Sub-Indeterminacies 

Discussing the development of Refined ܫ-Neutrosophic 
Structures with Dr. W.B. Vasantha Kandasamy, Dr. A.A.A. 
Agboola, Mumtaz Ali, and Said Broumi, a question has 
arisen: if ܫ is refined into ܫଵ, ,ଶܫ … , ݎ , withܫ  2, how to de-
fine (or compute) ܫ ∗ ݆ , forܫ ് ݇? 

We need to design a Sub-Indeterminacy ∗ Law Table. 
Of course, this depends on the way one defines the alge-

braic binary multiplication law ∗ on the set: 

ሼ ܰ ൌ ܽ  ܾଵܫଵ  ܾଶܫଶ ⋯ ܾܫ|ܽ, ܾଵ, ܾଶ,… , ܾ ∈      ,ሽܯ
(16) 

where ܯ can be Թ	(the set of real numbers), or ԧ (the set of 
complex numbers). 

We present the below example. 
But, first, let’s present several (possible) interconnec-

tions between logic, set, and algebra. 

op
er

at
or

s 

Logic Set Algebra
Disjunction 

(or) ∨ 
Union 
∪ 

Addition 
+

Conjunction 
(and) ∧ 

Intersection 
∩ 

Multiplication 
∙ 

Negation 
 

Complement 
∁ 

Subtraction 
െ

Implication 
→ 

Inclusion 
⊆ 

Subtraction, 
Addition 
െ, +

Equivalence 
↔ 

Identity 
≡ 

Equality 
=

 Table 1: Interconnections between logic, set, and algebra. 

In general, if a Venn Diagram has ݊ sets, with ݊  1,  
the number of disjoint parts formed is 2. Then, if one  
combines the 2 parts either by none, or by one, or by 

2,…, or by 2, one gets: 

ଶܥ
  ଶܥ

ᇱ  ଶܥ
ଶ  ⋯ ଶܥ

ଶ ൌ ሺ1  1ሻଶ

ൌ 2ଶ


.    (17)

Hence, for ݊ ൌ 2, the Venn diagram, with literal truth 

ሺܶሻ, and literal falsehood ሺܨሻ, will make 2ଶ ൌ 4 disjoint 
parts, where the whole rectangle represents the whole uni- 

    Venn Diagram for n =2. 

verse of discourse (࣯).  
Then, combining the four disjoint parts by none, by one, 

by two, by three, and by four, one gets 

ସܥ
  ସଵܥ  ସଶܥ  ସܥ

ଷ  ସସܥ ൌ ሺ1  1ሻସ ൌ 2ସ ൌ 16
ൌ 2ଶ

మ
.	 	ሺ18ሻ 

For ݊ ൌ 3, one has 2ଷ ൌ 8 disjoint parts, 

   Venn Diagram for n = 3. 

and combining them by none, by one, by two, and so on, by  
eight, one gets 2଼ ൌ 256, or 2ଶయ ൌ 256. 

For the case when ݊ ൌ 2 ൌ ሼܶ,  ሽ one can make up toܨ
16 sub-indeterminacies, such as: 

ଵܫ			 ൌ ܥ ൌ ܖܗܑܜ܋ܑ܌܉ܚܜܖܗ܋ ൌ True	and	False ൌ ܶ ∧  ܨ
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ଶܫ		 ൌ ܻ ൌ ܡܜܖܑ܉ܜܚ܍܋ܖܝ ൌ True	or	False ൌ ܶ ∨  ܨ

ଷܫ			 ൌ ܵ ൌ ܛܛ܍ܖ܍ܚܝܛܖܝ ൌ either	True	or	False ൌ ܶ ∨  ܨ

ସܫ ൌ ܪ ൌ ܛܛ܍ܖܔܑܐܑܖ ൌ neither	True	nor	False
ൌ ܶ ∧ ܨ 

ହܫ ൌ ܸ ൌ ܛܛ܍ܖ܍ܝ܉ܞ ൌ not	True	or	not	False
ൌ ܶ ∨ ܨ 

ܫ		 ൌ ܧ ൌ ܛܛ܍ܖܑܜܘܕ܍ ൌ neither	True	nor	not	True
ൌ ܶ ∧ ሺܶሻ ൌ ܶ ∧ ܶ 

Let’s consider the literal indeterminacy ሺܫሻ refined into 

only six literal sub-indeterminacies as above. 
The binary multiplication law 
∗:  ሼܫଵ, ,ଶܫ ,ଷܫ ,ସܫ ,ହܫ ሽଶܫ → ሼܫଵ, ,ଶܫ ,ଷܫ ,ସܫ ,ହܫ  ሽ     (19)ܫ

defined as:  
ܫ ∗  ; = intersections of their Venn diagram representationsܫ
or ܫ ∗ ܫ . = application of ∧ operator, i.eܫ ∧  .ܫ

We make the following:  

 Table 2: Sub-Indeterminacies Multiplication Law 

11 Remark on the Variety of Sub-Indeterminacies 
Diagrams 

One can construct in various ways the diagrams that 
represent the sub-indeterminacies and similarly one can 
define in many ways the ∗ algebraic multiplication law, ܫ ∗
 ., depending on the problem or application to solveܫ

What we constructed above is just an example, not a 
general procedure. 

Let’s present below several calculations, so the reader 
gets familiar: 

ଵܫ ∗ ଶܫ ൌ ሺshaded	area	of	ܫଵሻ ∩ ሺshaded	area	of	ܫଶሻ ൌ
shaded	area	of	ܫଵ, 
or ܫଵ ∗ ଶܫ ൌ ሺܶ ∧ ሻܨ ∧ ሺܶ ∨ ሻܨ ൌ ܶ ∧ ܨ ൌ  .ଵܫ
ଷܫ ∗ ସܫ ൌ ሺshaded	area	of	ܫଷሻ ∩ ሺshaded	area	of	ܫସሻ ൌ
empty	set ൌ  ,ܫ
or ܫଷ ∗ ସܫ ൌ ൫ܶ ∨ ൯ܨ ∧ ሺܶ ∧ ܨሻ ൌ ሾܶ ∧ ሺܶ ∧
ܨሻሿ ∨ ሾܨ ∧ ሺܶ ∧ ܨሻሿ ൌ ሺܶ ∧ ܶ ∧ ܨሻ ∨ ሺܨ ∧
ܶ ∧ ܨሻ ൌ ሺimpossibleሻ ∨ ሺimpossibleሻ  
because of ܶ ∧ ܶ in the first pair of parentheses and be-
cause of ܨ ∧ ܨ in the second pair of parentheses 
ൌ ሺimpossibleሻ ൌ   .ܫ
ହܫ ∗ ହܫ ൌ ሺshaded	area	of	ܫହሻ ∩ ሺshaded	area	of	ܫହሻ ൌ
ሺshaded	area	of	ܫହሻ = ܫହ, 
or ܫହ ∗ ହܫ ൌ ሺܶ ∨ ܨሻ ∧ ሺܶ ∨ ܨሻ ൌ ܶ ∨ ܨ ൌ
 .ହܫ

Now we are able to build refined ܫ-neutrosophic alge-
braic structures on the set 

ܵ ൌ ሼܽ  ܽଵܫଵ  ܽଶܫଶ  ⋯ ܽܫ, for	ܽ, ܽଵ, ܽଶ, …	ܽ ∈
Թ	ሽ,                                                                                 (20) 

by defining the addition of refined I-neutrosophic numbers: 

ሺܽ  ܽଵܫଵ  ܽଶܫଶ  ⋯ ܽܫሻ  ሺܾ  ܾଵܫଵ  ܾଶܫଶ 
⋯ ܾܫሻ ൌ ሺܽ  ܾሻ  ሺܽଵ  ܾଵሻܫଵ  ሺܽଶ  ܾଶሻܫଶ 
⋯ ሺܽ  ܾሻܫ ∈ ܵ.                                              (21) 
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And the multiplication of refined neutrosophic numbers: 

ሺܽ  ܽଵܫଵ  ܽଶܫଶ  ⋯ ܽܫሻ ∙ ሺܾ  ܾଵܫଵ  ܾଶܫଶ 
⋯ ܾܫሻ ൌ ܾܽ  ሺܾܽଵ  ܽଵܾሻܫଵ  ሺܾܽଶ 
ܽଶܾሻܫଶ  ⋯ ሺܾܽ  ܾܽሻܫ   

∑ ܾܽ

,ୀଵ ൫ܫ ∗ ൯ܫ ൌ ܾܽ  ∑ ሺܾܽ 


ୀଵ

ܾܽሻܫ  ∑ ܾܽ൫ܫ ∗ ൯ܫ

,ୀଵ ∈ ܵ,    (22) 

where the coefficients (scalars) ܽ ∙ ܾ , for ݉ ൌ
0, 1, 2, … ,6 and ݊ ൌ 0, 1, 2, … , 6, are multiplied as any real 
numbers, while ܫ ∗ - are calculated according to the previܫ
ous Sub-Indeterminacies Multiplication Law (Table 2). 

Clearly, both operators (addition and multiplication of 
refined neutrosophic numbers) are well-defined on the set 
ܵ. 
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Taylor Series Approximation to Solve Neutrosophic 
Multiobjective Programming Problem 

Ibrahim M. Hezam,   Mohamed Abdel-Baset, Florentin Smarandache

Abstract. In this paper, Taylor series is used to solve 
neutrosophic multi-objective programming problem 
(NMOPP).  In the proposed approach, the truth membership, 
Indeterminacy membership, falsity membership functions 
associated with each objective of multi-objective 
programming problems are transformed into a single objective 

linear programming problem by using a first order Taylor 
polynomial series. Finally, to illustrate the efficiency of the 
proposed method, a numerical experiment for supplier 
selection is given as an application of Taylor series method for 
solving  neutrosophic   multi-objective programming problem 
at end of this paper. 

Keywords: Taylor series; Neutrosophic optimization; Multiobjective programming problem. 

1 Introduction
In 1995,Smarandache [1] starting from philosophy 
(when he fretted to distinguish between absolute truth 
and relative truth or between absolute falsehood and 
relative falsehood in logics, and respectively between 
absolute membership and relative membership or 
absolute non-membership and relative non-membership 
in set theory) [1] began to use the non-standard analysis. 
Also, inspired from the sport games (winning, 
defeating, or tie scores), from votes (pro, contra, 
null/black votes), from positive/negative/zero numbers, 
from yes/no/NA, from decision making and control 
theory (making a decision, not making, or hesitating), 
from accepted/rejected/pending, etc. and guided by the 
fact that the law of excluded middle did not work any 
longer in the modern logics. [1] combined the non-
standard analysis with a tri-component 
logic/set/probability theory and with philosophy .How 
to deal with all of them at once, is it possible to unity 
them? [1]. 
The words “neutrosophy” and “neutrosophic” were 
invented by F. Smarandache in his 1998 book [1]. 
Etymologically, “neutro-sophy” (noun) [French neutre 
< Latin neuter, neutral, and Greek sophia, skill / 
wisdom] means knowledge of neutral thought. While 
“neutrosophic” (adjective), means having the nature of, 
or having the characteristic of Neutrosophy. 
Netrosophic theory means Neutrosophy applied in many 
fields in order to solve problems related to 

indeterminacy. Neutrosophy is a new branch of 
philosophy that studies the origin, nature, and scope of 
neutralities, as well as their interactions with different 
ideational spectra. This theory considers every entity 
<A> together with its opposite or negation <antiA> and
with their spectrum of neutralities <neutA> in between
them (i.e. entities supporting neither <A> nor<antiA>).
The <neutA> and <antiA> ideas together are referred to
as <nonA>.
Neutrosophy is a generalization of Hegel's dialectics
(the last one is based on <A> and <antiA> only).
According to this theory every entity <A> tends to be
neutralized and balanced by <antiA> and <nonA>
entities - as a state of equilibrium. In a classical way
<A>, <neutA>, <antiA> are disjoint two by two. But,
since in many cases the borders between notions are
vague, imprecise, Sorites, it is possible that <A>,
<neutA>, <antiA> (and <nonA> of course) have
common parts two by two, or even all three of them as
well. Hence, in one hand, the Neutrosophic Theory is
based on the triad <A>, <neutA>, and <antiA>. In the
other hand, Neutrosophic Theory studies the
indeterminacy, labeled as I, with In = I for n ≥ 1, and mI
+ nI = (m+n)I, in neutrosophic structures developed in
algebra, geometry, topology etc.
The most developed fields of Neutrosophic theory are
Neutrosophic Set, Neutrosophic Logic, Neutrosophic
Probability, and Neutrosophic Statistics - that started in
1995, and recently Neutrosophic Precalculus and
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Neutrosophic Calculus, together with their applications 
in practice. Neutrosophic Set and  Neutrosophic Logic 
are generalizations of the fuzzy set and respectively 
fuzzy logic (especially of intuitionistic fuzzy set and 
respectively intuitionistic fuzzy logic). In neutrosophic 
logic a proposition has a degree of truth (T), a degree of 
indeterminacy (I), and a degree of falsity (F), where 
T,I,F are standard or non-standard subsets of ]-0, 1+[. 
Multi-objective linear programming problem (MOLPP) 
a prominent tool for solving many real decision making 
problems like game theory, inventory problems, 
agriculture based management systems, financial and 
corporate planning, production planning, marketing and 
media selection, university planning and student 
admission, health care and hospital planning, air force 
maintenance units, bank branches etc.  

Our objective in this paper is to propose an algorithm to 
the solution of neutrosophic multi-objective 
programming problem (NMOPP) with the help of the 
first order Taylor’s theorem. Thus, neutrosophic multi-
objective linear programming problem is reduced to an 
equivalent multi-objective linear programming problem. 
An algorithm is proposed to determine a global 
optimum to the problem in a finite number of steps. The 
feasible region is a bounded set. In the proposed 
approach, we have attempted to reduce computational 
complexity in the solution of (NMOPP). The proposed 
algorithm is applied to supplier selection problem . 

The rest of this article is organized as follows. Section 2 
gives brief some preliminaries. Section 3 describes the 
formation of the problem. Section 4 presents the 
implementation and validation of the algorithm with 
practical application. Finally, Section 5 presents the 
conclusion and proposals for future work. 

2 Some preliminaries

Definition 1. [1] A triangular fuzzy number J  is a 
continuous fuzzy subset from the real line R whose 
triangular  membership function  J J  is defined by a
continuous mapping from R  to the closed interval [0,1], 
where  
(1)   0J J  for all  1,J a  ,
(2)  J J is strictly increasing on  1,J a m ,
(3)   1J J        for J m , 
(4)  J J is strictly decreasing on  2,J m a ,
(5)   0J J  for all  2 , .J a 

     This will be elicited by: 

 

1
1

1

2
2

2

, ,

, ,

0, .

J

J a a J m
m a
a JJ m J a
a m

otherwise




  


 

  






 (1) 

Figure 1: Membership Function of Fuzzy Number J. 

where m is a given value and  a1 , a2 denote the 
lower and upper bounds. Sometimes, it is more 
convenient to use the notation explicitly highlighting 
the membership function parameters.  In this case, we 
obtain  

  1 2
1 2

1 2
; , , Max Min , ,0J a a JJ a m a

m a a m


    
   

    

    (2)

In what follows, the definition of the α-level set or 
α-cut of the fuzzy number J is introduced.

Definition 2. [1] Let X = {x1, x2 ,…, xn} be a fixed non-
empty universe. An intuitionistic fuzzy set IFS A in X is 
defined as 

    , ,A AA x x x x X      (3) 

which is characterized by a membership function 
 : 0,1A X    and a non-membership function

 : 0,1A X  with the condition 

   0 1A Ax x    for all x X where A and

A represent ,respectively, the degree of membership and
non-membership of the element x to the set A. In addition,
for each IFS A in X ,      1A A Ax x x     for all
x X     is called the degree of hesitation of the 
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element x to the set A . Especially, if   0,A x  , then
the IFS A is degraded to a fuzzy set. 

Definition 3. [4] The α-level set of the fuzzy 
parameters J  in problem (1) is defined as the ordinary 
set  L J for which the degree of membership

function exceeds the level, α,  α 0,1 , where:

    JL J J R J      (4) 

For certain values  j  to be in the unit interval,

Definition 4. [1] Let 𝑋 be a space of points (objects) 
and 𝑥∈𝑋. A neutrosophic set 𝐴 in 𝑋 is defined by a 
truth-membership function 𝑇𝐴(𝑥), an indeterminacy-
membership function 𝐼𝐴(𝑥) and a falsity-membership 
function 𝐹𝐴(𝑥). It has been shown in figure 2. 𝑇𝐴(𝑥), 
𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) are real standard or real nonstandard 
subsets of ]0−,1+[. That is 𝑇𝐴(𝑥):𝑋→]0−,1+[, 
I𝐴(𝑥):𝑋→]0−,1+[ and F𝐴(𝑥):𝑋→]0−,1+[.  There is not 
restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), so 
0−≤sup𝑇𝐴(𝑥)≤sup𝐼𝐴(𝑥)≤𝐹𝐴(𝑥)≤3+.  
In the following, we adopt the notations μ𝐴(𝑥), σ𝐴(𝑥) 
and 𝑣𝐴(𝑥) instead of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), 
respectively. Also we write SVN numbers instead of 
single valued neutrosophic numbers. 

Definition 5. [10] Let 𝑋 be a universe of discourse. A 
single valued neutrosophic set 𝐴 over 𝑋 is an object 
having the form  
𝐴={〈𝑥, μ𝐴(𝑥), σ𝐴(𝑥),𝑣𝐴(𝑥)〉:𝑥∈𝑋}      
where μ𝐴(𝑥):𝑋→[0,1], σ𝐴(𝑥):𝑋→[0,1] and 
𝑣𝐴(𝑥):𝑋→[0,1] with 0≤μ𝐴(𝑥)+ σ𝐴(𝑥)+𝑣𝐴(𝑥)≤3 for all 
𝑥∈𝑋. The intervals μ𝐴(𝑥), σ𝐴(𝑥) and 𝑣𝐴(𝑥) denote the 
truth- membership degree, the indeterminacy-
membership degree and the falsity membership degree 
of 𝑥 to 𝐴, respectively.  
For convenience, a SVN number is denoted by 
𝐴=(𝑎,𝑏,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 𝑎+𝑏+𝑐≤3. 

Definition 6 
Let J  be a neutrosophic triangular number in the set 
of real numbers R, then its truth-membership function is 
defined as 
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its indeterminacy-membership function is defined as 
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and its falsity-membership function is defined as 
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2 3
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,
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cF J c J c
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otherwise
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Figure 2: Neutrosophication process [11] 
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3  Formation of The Problem 
The multi-objective linear programming problem and 

the multi- objective neutrosophic linear programming 
problem are described in this section. 

A. Multi-objective Programming Problem 
(MOPP)

In this paper, the general mathematical model of the 
MOPP is as follows[6]:  

     1 1 2 1 1min/ max ,..., , ,..., ,..., ,...,n n p nz x x z x x z x x 
 

  (8) 
,

, 0.n

subject to x S x

S x R AX b X



 
 

     
   

(9) 

B. Neutrosophic Multi-objective Programming
Problem (NMOPP)

If an imprecise aspiration level is introduced to each of 
the objectives of MOPP, then these neutrosophic 
objectives are termed as neutrosophic goals. 
Let , U

i i iz z z 


denote the imprecise lower and 

upper bounds respectively for the ith neutrosophic 
objective function.  
For maximizing objective function, the truth 
membership, indeterminacy membership, falsity 
membership functions can be expressed as follows: 

 

1, ,

, ,

0,

U
i i

L
I L Ui
i i i i iU

i i
L

i

if z z

z zz if z z z
z z

if z z



 

 

  





(10) 

 

1, ,

, ,

0,

U
i i

L
I L Ui
i i i i iU

i i
L

i

if z z

z zz if z z z
z z

if z z



 

 

  





(11)

 

0, ,

, ,

1,

U
i i

L
I L Ui
i i i i iU

i i
L

i

if z z

z zz if z z z
z z

if z z



 

 

  





     (12) 

for minimizing objective function, the truth 
membership, Indeterminacy membership, falsity 
membership functions can be expressed as follows: 
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4 Algorithm for Neutrosophic Multi-Objective 
Programming Problem 
The computational procedure and proposed algorithm of 
presented model is given as follows: 

Step 1. Determine  1 2, ,...,i i i inx x x x     that is used to 

maximize or minimize the ith truth membership function 
 I

i X , the indeterminacy membership  I
i X , and 
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the falsity membership functions  I
i X . i=1,2,..,p

and n is the number of variables. 
Step 2. Transform the truth membership, indeterminacy 
membership, falsity membership functions by using 
first-order Taylor polynomial series 

     
 

1

In iI I
i i i j ij

jj

x
x x x x

x
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Step 3. Find satisfactory  1 2, ,...,i i i inx x x x    by 

solving the reduced problem to a single objective for the 
truth membership, indeterminacy membership, falsity 
membership functions respectively. 
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(19) 

Thus neutrosophic multiobjective linear programming 
problem  is converted into a new mathematical model 
and is given below: 
Maximize or Minimize  p(x) 
Maximize or Minimize  q(x) 
Maximize or Minimize  h(x) 
Where  I

i X ,  I
i X and  I

i X calculate using
equations (10), (11), and (12) or equations (13), (14), 
and (15) according to type functions maximum or 
minimum respectively. 

4.1 Illustrative Example 
A multi-criteria supplier selection is selected from [2]. 
For supplying a new product to a market assume that 
three suppliers should be managed. The purchasing 
criteria are net price, quality and service. The capacity 
constraints of suppliers are also considered. 
It is assumed that the input data from suppliers’ 
performance on these criteria are not known precisely. 

The neutrosophic values of their cost, quality and 
service level are presented in Table 1. 
The multi-objective linear formulation of numerical 
example is presented as : 

1 1 2 3

2 1 2 3

3 1 2 3

1 2 3

1

2

3

min 5 7 4 ,
max 0.80 0.90 0.85 ,
max 0.90 0.80 0.85 ,
. . :

800,
400,
450,
450,
0, 1,2,3.i

z x x x
z x x x
z x x x

s t
x x x
x
x
x
x

  

  

  

  







 

Table 1:  Suppliers quantitative information 
Z1 Cost Z2Quality (%) Z3 Service (%) Capacity 

Supplier 1 5 0.80 0.90 400 
Supplier 2 7 0.90 0.80 450 
Supplier 3 4 0.85 0.85 450 

The truth membership, Indeterminacy membership, 
falsity membership functions were considered to be 
neutrosophic triangular. When they depend on three 
scalar parameters (a1,m,a2). z1 depends on neutrosophic
aspiration levels (3550,4225,4900),  when z2 depends on 
neutrosophic aspiration levels (660,681.5,702.5), and z3 
depends on neutrosophic aspiration levels
(657.5,678.75,700). 
The truth membership functions of the goals are 
obtained as follows: 

 

1
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1 1
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     1 2 3350,0,450 , 0,450,350 , 400,0,400I I I    

The truth membership functions are transformed by 
using first-order Taylor polynomial series 
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 1 1 2 30.00741 0.0104 0.00593 5.2611I x x x x    

In the similar way, we get 
 2 1 2 30.0381 0.0429 0.0405 33.405I x x x x   

 3 1 2 30.042 0.037 0.0395 32.512I x x x x   

The the p(x) is 
       1 2 3

I I Ip x x x x      

  1 2 30.07259 0.0695 0.0741 60.6559p x x x x  

1 2 3

1

2

3

. . :
800,

400,
450,
450,
0, 1,2,3.i

s t
x x x
x
x
x
x i

  







 

The linear programming software LINGO 15.0 is used 
to solve this problem. The problem is solved and the 
optimal solution for the truth membership model is 
obtained is as follows: (x1, x2, x3) = (350,0,450)  
z1=3550, z2=662. 5, z3=697. 5.  
The truth membership values are 

1 2 31, 0.1163, 0.894.     The truth membership
function values show that both goals z1 , z3and z2 are 
satisfied with 100% , 11.63% and 89.4% respectively 
for the obtained solution which is 𝑥1=350; 𝑥2= 0, 
x3=450. 
In the similar way, we get  I

i X , q(x) Consequently
we get the optimal solution for the Indeterminacy 
membership model is obtained is as follows: 
(x1,x2,x3)=(350,0,450)  z1=3550, z2=662.5, z3=697.5 
and the Indeterminacy membership values are 

1 2 31, 0.1163, 0.894.     The Indeterminacy
membership function values show that both goals z1 , 
z3and z2 are satisfied with 100% , 11.63% and 89.4% 
respectively for the obtained solution which is 𝑥1=350; 
𝑥2= 0, x3=450. 
In the similar way, we get  I

i X and h(x)
Consequently we get the optimal solution for the falsity 
membership model is obtained is as follows: 
(x1,x2,x3)=(350,0,450)  z1=3550, z2=662.5, z3=697.5 
and the falsity membership values are 

1 2 30, 0.8837, 0.106.      The falsity 
membership function values show that both goals z1 , 
z3and z2 are satisfied with 0% , 88.37% and 10.6% 
respectively for the obtained solution which is 𝑥1=350; 
𝑥2= 0, x3=450. 

5 Conclusions and Future Work 
In this paper, we have proposed a solution to 
Neutrosophic Multiobjective programming problem 
(NMOPP). The truth membership, Indeterminacy 
membership, falsity membership functions associated 
with each objective of the problem are transformed by 
using the first order Taylor polynomial series. The 
neutrosophic multi-objective programming problem is 
reduced to an equivalent multiobjective programming 
problem by the proposed method. The solution obtained 
from this method is very near to the solution of MOPP. 
Hence this method gives a more accurate solution as 
compared  with other methods. Therefore the 
complexity in solving NMOPP, has reduced to easy 
computation. In the future studies, the proposed 
algorithm can be solved by metaheuristic algorithms. 
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Neutrosophic Quadruple Numbers, Refined 
Neutrosophic Quadruple Numbers, Absorbance Law, 

and the Multiplication of Neutrosophic Quadruple 
Numbers 

Florentin Smarandache

Abstract. In this paper, we introduce for the first time 
the neutrosophic quadruple numbers (of the form 
𝒂 + 𝒃𝑻 + 𝒄𝑰 + 𝒅𝑭) and the refined neutrosophic quad-
ruple numbers. 
Then we define an absorbance law, based on a preva-

lence order, both of them in order to multiply the neutro-
sophic components 𝑻, 𝑰, 𝑭  or their sub-components 
𝑻𝒋, 𝑰𝒌, 𝑭𝒍 and thus to construct the multiplication of neu-
trosophic quadruple numbers. 

Keywords: neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, multiplication of neutro-
sophic quadruple numbers, multiplication of refined neutrosophic quadruple numbers.

1  Neutrosophic Quadruple Numbers
Let’s consider an entity (i.e. a number, an idea, an ob-

ject, etc.) which is represented by a known part (a) and an 
unknown part (𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹). 

Numbers of the form: 

𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹, (1) 

where a, b, c, d are real (or complex) numbers (or intervals 
or in general subsets), and  

T = truth / membership / probability, 
I = indeterminacy, 
F = false / membership / improbability, 

are called Neutrosophic Quadruple (Real respectively 
Complex) Numbers (or Intervals, or in general Subsets). 

“a” is called the known part of NQ, while “𝑏𝑇 + 𝑐𝐼 +
𝑑𝐹” is called the unknown part of NQ. 

2  Operations 
Let 

𝑁𝑄1 = 𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹, (2) 

𝑁𝑄2 = 𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹 (3) 

and 𝛼 ∈ ℝ (or 𝛼 ∈ ℂ) a real (or complex) scalar. 
Then: 

2.1 Addition 
𝑁𝑄1 + 𝑁𝑄2 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝑇 +

(𝑐1 + 𝑐2)𝐼 + (𝑑1 + 𝑑2)𝐹. (4) 

2.2 Substraction 

𝑁𝑄1 − 𝑁𝑄2 = (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2)𝑇 +

(𝑐1 − 𝑐2)𝐼 + (𝑑1 − 𝑑2)𝐹.   (5)

2.3 Scalar Multiplication 
𝛼 ∙ 𝑁𝑄 = 𝑁𝑄 ∙ 𝛼 = 𝛼𝑎 + 𝛼𝑏𝑇 + 𝛼𝑐𝐼 + 𝛼𝑑𝐹. (6)

One has: 
0 ∙ 𝑇 = 0 ∙ 𝐼 = 0 ∙ 𝐹 = 0, (7) 

and 𝑚𝑇 + 𝑛𝑇 = (𝑚 + 𝑛)𝑇, (8) 
𝑚𝐼 + 𝑛𝐼 = (𝑚 + 𝑛)𝐼, (9) 
𝑚𝐹 + 𝑛𝐹 = (𝑚 + 𝑛)𝐹. (10) 

3 Refined Neutrosophic Quadruple Numbers 
Let us consider that Refined Neutrosophic Quadruple 

Numbers are numbers of the form: 

𝑅𝑁𝑄 = 𝑎 + ∑ 𝑏𝑖 𝑇𝑖 +
𝑝
𝑖=1 ∑ 𝑐𝑗  𝐼𝑗 +𝑟

𝑗=1 ∑ 𝑑𝑘 𝐹𝑘
𝑠
𝑘=1 ,  (11) 

where a, all 𝑏𝑖 , all 𝑐𝑗 , and all 𝑑𝑘  are real (or complex)
numbers, intervals, or, in general, subsets, 
while 𝑇1, 𝑇2, … , 𝑇𝑝 are refinements of 𝑇;

𝐼1, 𝐼2, … , 𝐼𝑟 are refinements of 𝐼;
and   𝐹1, 𝐹2, … , 𝐹𝑠 are refinements of 𝐹.

There are cases when the known part (a) can be refined 
as well as a1, a2, … . 

The operations are defined similarly. 
Let 
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𝑅𝑁𝑄(𝑢) = 𝑎(𝑢) + ∑ 𝑏𝑖
(𝑢)

𝑇𝑖
𝑝
𝑖=1 + ∑ 𝑐𝑗

(𝑢)
𝐼𝑗

𝑟
𝑗=1 +

∑ 𝑑𝑘
(𝑢)

𝐹𝑘
𝑠
𝑘=1 , (12)

for 𝑢 = 1 or 2. 
Then: 

3.1 Addition 

𝑅𝑁𝑄(1) + 𝑅𝑁𝑄(2)

= [𝑎(1) + 𝑎(2)] + ∑[𝑏𝑖
(1)

+ 𝑏𝑖
(2)

]

𝑝

𝑖=1

𝑇𝑖

+ ∑[𝑐𝑗
(1)

+ 𝑐𝑗
(2)

]

𝑟

𝑗=1

𝐼𝑗

+ ∑[𝑑𝑘
(1)

+ 𝑑𝑘
(2)

]

𝑠

𝑘=1

𝐹𝑘. 

(13)

3.2 Substraction 

𝑅𝑁𝑄(1) − 𝑅𝑁𝑄(2)

= [𝑎(1) − 𝑎(2)] + ∑[𝑏𝑖
(1)

− 𝑏𝑖
(2)

]

𝑝

𝑖=1

𝑇𝑖

+ ∑[𝑐𝑗
(1)

− 𝑐𝑗
(2)

]

𝑟

𝑗=1

𝐼𝑗

+ ∑[𝑑𝑘
(1)

− 𝑑𝑘
(2)

]

𝑠

𝑘=1

𝐹𝑘. 

(14)

3.3 Scalar Multiplication 
For 𝛼 ∈ ℝ (or 𝛼 ∈ ℂ) one has: 

𝛼 ∙ 𝑅𝑁𝑄(1) = 𝛼 ∙ 𝑎(1) + 𝛼 ∙ ∑ 𝑏𝑖
(1)

𝑇𝑖

𝑝

𝑖=1

+ 𝛼 ∙ ∑ 𝑐𝑗
(1)

𝐼𝑗

𝑟

𝑗=1

+ 𝛼

∙ ∑ 𝑑𝑘
(1)

𝐹𝑘

𝑠

𝑘=1

.

(15) 

4 Absorbance Law 
Let 𝑆  be a set, endowed with a total order 𝑥 ≺ 𝑦 , 

named “x prevailed by y” or “x less stronger than y” or “x 
less preferred than y”. We consider 𝑥 ≼ 𝑦 as “x prevailed 
by or equal to y” “x less stronger than or equal to y”, or “x 
less preferred than or equal to y”. 

For any elements 𝑥, 𝑦 ∈ 𝑆 , with 𝑥 ≼ 𝑦 , one has the 
absorbance law: 

𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥 = absorb (𝑥, 𝑦) = max{𝑥, 𝑦} = 𝑦,

(16) 
which means that the bigger element absorbs the smaller 
element (the big fish eats the small fish!). 

Clearly, 
𝑥 ∙ 𝑥 = 𝑥2 = absorb (𝑥, 𝑥) = max{𝑥, 𝑥} = 𝑥,    (17) 

and 
𝑥1 ∙ 𝑥2 ∙ … ∙ 𝑥𝑛

= absorb(… absorb(absorb(𝑥1, 𝑥2), 𝑥3) … , 𝑥𝑛)
= max{… max{max{𝑥1, 𝑥2}, 𝑥3} … , 𝑥𝑛}
= max{𝑥1, 𝑥2, … , 𝑥𝑛}.

(18) 
Analougously, we say that “𝑥 ≻ 𝑦” and we read: “x 

prevails to y” or “x is stronger than y” or “x is preferred to 
y”.  

Also, 𝑥 ≽ 𝑦, and we read: “x prevails or is equal to y” 
“x is stronger than or equal to y”, or “x is preferred or equal 
to y”. 

5 Multiplication of Neutrosophic Quadruple Num-
bers  

It depends on the prevalence order defined on {𝑇, 𝐼, 𝐹}. 
Suppose in an optimistic way the neutrosophic expert 

considers the prevalence order 𝑇 ≻ 𝐼 ≻ 𝐹. Then: 

𝑁𝑄1 ∙ 𝑁𝑄2 = (𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹)
∙ (𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹)
= 𝑎1𝑎2

+ (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑏1𝑏2 + 𝑏1𝑐2 + 𝑐1𝑏2

+ 𝑏1𝑑2 + 𝑑1𝑏2)𝑇
+ (𝑎1𝑐2 + 𝑎2𝑐1 + 𝑐1𝑑2 + 𝑐2𝑑1)𝐼
+ (𝑎1𝑑2 + 𝑎2𝑑1 + 𝑑1𝑑2)𝐹,

(19) 
since 𝑇𝐼 = 𝐼𝑇 = 𝑇, 𝑇𝐹 = 𝐹𝑇 = 𝑇, 𝐼𝐹 = 𝐹𝐼 = 𝐼,
while 𝑇2 = 𝑇, 𝐼2 = 𝐼, 𝐹2 = 𝐹.  
Suppose in an pessimistic way the neutrosophic expert 

considers the prevalence order 𝐹 ≻ 𝐼 ≻ 𝑇. Then: 

𝑁𝑄1 ∙ 𝑁𝑄2 = (𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹)
∙ (𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹)
= 𝑎1𝑎2 + (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑏1𝑏2)𝑇
+ (𝑎1𝑐2 + 𝑎2𝑐1 + 𝑏1𝑐2 + 𝑏2𝑐1 + 𝑐1𝑐2)𝐼
+ (𝑎1𝑑2 + 𝑎2𝑑1 + 𝑏1𝑑2 + 𝑏2𝑑1 + 𝑐1𝑑2

+ 𝑐2𝑑1 + 𝑑1𝑑2)𝐹,
(20) 

since 
𝐹 ∙ 𝐼 = 𝐼 ∙ 𝐹 = 𝐹, 𝐹 ∙ 𝑇 = 𝑇 ∙ 𝐹 = 𝐹, 𝐼 ∙ 𝑇 = 𝑇 ∙ 𝐼 = 𝐼

while similarly 𝐹2 = 𝐹, 𝐼2 = 𝐼, 𝑇2 = 𝑇. 

5.1 Remark 
Other prevalence orders on {𝑇, 𝐼, 𝐹} can be proposed, 

depending on the application/problem to solve, and on 
other conditions. 
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6 Multiplication of Refined Neutrosophic Quadru-
ple Numbers 

Besides a neutrosophic prevalence order defined on 
{𝑇, 𝐼, 𝐹} , we also need a sub-prevalence order on 
{𝑇1, 𝑇2, … , 𝑇𝑝}, a sub-prevalence order on {𝐼1, 𝐼2, … , 𝐼𝑟}, and
another sub-prevalence order on {𝐹1, 𝐹2, … , 𝐹𝑠}.

We assume that, for example, if 𝑇 ≻ 𝐼 ≻ 𝐹 , then 
𝑇𝑗 ≻ 𝐼𝑘 ≻ 𝐹𝑙  for any 𝑗 ∈ {1, 2, … , 𝑝}, 𝑘 ∈ {1, 2, … , 𝑟}, and
𝑙 ∈ {1, 2, … , 𝑠} . Therefore, any prevalence order on 
{𝑇, 𝐼, 𝐹}  imposes a prevalence suborder on their 
corresponding refined components.  

Without loss of generality, we may assume that 
𝑇1 ≻ 𝑇2 ≻ ⋯ ≻ 𝑇𝑝

(if this was not the case, we re-number the subcomponents 
in a decreasing order). 

Similarly, we assume without loss of generality that: 
𝐼1 ≻ 𝐼2 ≻ ⋯ ≻ 𝐼𝑟 , and
𝐹1 ≻ 𝐹2 ≻ ⋯ ≻ 𝐹𝑠.

6.1 Exercise for the Reader 
Let’s have the neutrosophic refined space 

𝑁𝑆 = {𝑇1, 𝑇2, 𝑇3, 𝐼, 𝐹1, 𝐹2},
with the prevalence order 𝑇1 ≻ 𝑇2 ≻ 𝑇3 ≻ 𝐼 ≻ 𝐹1 ≻ 𝐹2.

Let’s consider the refined neutrosophic quadruples 
𝑁𝐴 = 2 − 3𝑇1 + 2𝑇2 + 𝑇3 − 𝐼 + 5𝐹1 − 3𝐹2, and
𝑁𝐵 = 0 + 𝑇1 − 𝑇2 + 0 ∙ 𝑇3 + 5𝐼 − 8𝐹1 + 5𝐹2.

By multiplication of sub-components, the bigger 
absorbs the smaller. For example:  

𝑇2 ∙ 𝑇3 = 𝑇2,
𝑇1 ∙ 𝐹1 = 𝑇1,
𝐼 ∙ 𝐹2 = 𝐼,
𝑇2 ∙ 𝐹1 = 𝑇2, etc.

Multiply NA with NB. 
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Isolated Single Valued Neutrosophic Graphs 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache

Abstract: Many results have been obtained on isolated 
graphs and complete graphs. In this paper, a necessary 
and sufficient condition will be proved for a single valued 

neutrosophic graph to be an isolated single valued 
neutrosophic graph.  

Keywords: Single valued neutrosophic graphs, complete single valued neutrosophic graphs, isolated single valued neutrosophic 
graphs. 

1. Introduction
The notion of neutrosophic sets (NSs) was proposed by

Smarandache [8] as a generalization of the fuzzy sets [14], 
intuitionistic fuzzy sets [12], interval valued fuzzy set [11] 
and interval-valued intuitionistic fuzzy sets [13] theories. 
The neutrosophic set is a powerful mathematical tool for 
dealing with incomplete, indeterminate and inconsistent 
information in real world. The neutrosophic sets are 
characterized by a truth-membership function (t), an 
indeterminacy-membership function (i) and a falsity-
membership function (f) independently, which are within 
the real standard or nonstandard unit interval ]−0, 1+[. In 
order to conveniently use NS in real life applications, 
Wang et al. [9] introduced the concept of the single-valued 
neutrosophic set (SVNS), a subclass of the neutrosophic 
sets. The same authors [10] introduced the concept of the 
interval valued neutrosophic set (IVNS), which is more 
precise and flexible than the single valued neutrosophic 
set. The IVNS is a generalization of the single valued 
neutrosophic set, in which the three membership functions 
are independent and their value belong to the unit interval 
[0, 1]. More works on single valued neutrosophic sets, 
interval valued neutrosophic sets and their applications can 
be found on http://fs.gallup.unm.edu/NSS/ [38]. 

Graph theory has now become a major branch of 
applied mathematics and it is generally regarded as a 
branch of combinatorics. Graph is a widely used tool for 
solving combinatorial problems in different areas such as 
geometry, algebra, number theory, topology, optimization 
and computer science.  

If one has uncertainty regarding either the set of 
vertices or edges, or both, the model becomes a fuzzy 

graph. The extension of fuzzy graph [2, 4, 25] theory have 
been developed by several researchers, e.g. vague graphs 
[27], considering the vertex sets and edge sets as vague 
sets; intuitionistic fuzzy graphs [3, 15, 26], considering the 
vertex sets and edge sets as intuitionistic fuzzy sets; 
interval valued fuzzy graphs [16, 17, 23, 24], considering 
the vertex sets and edge sets as interval valued fuzzy sets; 
interval valued intuitionistic fuzzy graphs [35], considering 
the vertex sets and edge sets as interval valued 
intuitionistic fuzzy sets; bipolar fuzzy graphs [18, 19, 21, 
22], considering the vertex sets and edge sets as bipolar 
fuzzy sets; m-polar fuzzy graphs [20], considering the 
vertex sets and edge sets as m-polar fuzzy sets.  

But, if the relations between nodes (or vertices) in 
problems are indeterminate, the fuzzy graphs and their 
extensions fail. For this purpose, Smarandache [5, 6, 7, 37] 
defined four main categories of neutrosophic graphs; two 
are based on literal indeterminacy (I), called: I-edge 
neutrosophic graph and I-vertex neutrosophic graph, 
deeply studied and gaining popularity among the 
researchers due to their applications via real world 
problems [1, 38]; the two others are based on (t, i, f) 
components, called: (t, i, f)-edge neutrosophic graph and (t, 
i, f)-vertex neutrosophic graph, concepts not developed at 
all by now.  

Later on, Broumi et al. [29] introduced a third 
neutrosophic graph model, which allows the attachment of 
truth-membership (t), indeterminacy-membership (i) and 
falsity-membership degrees (f) both to vertices and edges, 
and investigated some of their properties. The third 
neutrosophic graph model is called the single valued 
neutrosophic graph (SVNG for short). The single valued 
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neutrosophic graph is a generalization of fuzzy graph and 
intuitionistic fuzzy graph. Also, the same authors [28] 
introduced neighborhood degree of a vertex and closed 
neighborhood degree of a vertex in single valued 
neutrosophic graph as a generalization of neighborhood 
degree of a vertex and closed neighborhood degree of a 
vertex in fuzzy graph and intuitionistic fuzzy graph. 
Recently, Broumi et al. [31, 33, 34] introduced the concept 
of interval valued neutrosophic graph as a generalization of 
fuzzy graph, intuitionistic fuzzy graph and single valued 
neutrosophic graph and discussed some of their properties 
with proof and examples. 

The aim of this paper is to prove a necessary and 
sufficient condition for a single valued neutrosophic graph 
to be a single valued neutrosophic graph.  

2. Preliminaries
In this section, we mainly recall some notions related to

neutrosophic sets, single valued neutrosophic sets, single 
valued neutrosophic graphs, relevant to the present article. 
See [8, 9] for further details and background. 

Definition 2.1 [8] 

Let X be a space of points (objects) with generic 
elements in X denoted by x; then, the neutrosophic set A 
(NS A) is an object having the form A = {< x: TA(x),
IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X →
]−0,1+[ define respectively a truth-membership function, an 
indeter-minacy-membership function and a falsity-
membership function of the element x ∈ X to the set A 
with the condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+. (1) 

The functions TA(x), IA(x) and FA(x) are real standard
or nonstandard subsets of ]−0,1+[. 

Since it is difficult to apply NSs to practical problems, 
Wang et al. [9] introduced the concept of SVNS, which is 
an instance of a NS, and can be used in real scientific and 
engineering applications. 

Definition 2.2 [9] 

Let X be a space of points (objects) with generic 
elements in X denoted by x. A single valued neutrosophic 
set A (SVNS A) is characterized by a truth-membership 
function TA(x), an indeterminacy-membership function
IA(x), and a falsity-membership function FA(x). For each
point x in X  TA(x), IA(x), FA(x) ∈ [0, 1]. A SVNS A can
be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}. (2) 

Definition 2.3 [29] 

A single valued neutrosophic graph (SVN-graph) with 
underlying set V is defined to be a pair G= (A, B), where:  

1. The functions 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and
𝐹𝐴:V→[0, 1] denote the degree of truth-membership,

degree of indeterminacy-membership and falsity-
membership of the element 𝑣𝑖 ∈ V, respectively, and:

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3,

for all  𝑣𝑖 ∈ V.
2. The functions TB: E ⊆ V x V →[0, 1], IB:E ⊆ V x V

→[0, 1] and FB: E ⊆ V x V →[0, 1] are defined
by 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max
[𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and  𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)],
denoting the degree of truth-membership, indeterminacy-
membership and falsity-membership of the edge (𝑣𝑖, 𝑣𝑗) ∈
E respectively, where: 

0≤ 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) + 𝐼𝐵(𝑣𝑖 , 𝑣𝑗)+ 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≤ 3,

for all  (𝑣𝑖 , 𝑣𝑗) ∈ E (i, j = 1, 2, …, n)
We call A the single valued neutrosophic vertex set of 

V, and B the single valued neutrosophic edge set of E, 
respectively. 

        

Figure 1: Single valued neutrosophic graph. 

Definition 2.4 [29] 

A partial SVN-subgraph of SVN-graph G= (A, B) is a 
SVN-graph H = ( V′, E′), such that: 

- V′ ⊆ V,

where  TA
′ (vi) ≤ TA(vi),  IA

′ (vi) ≥ IA(vi),  FA
′ (vi) ≥

FA(vi),   for all  vi ∈ V;

- E′ ⊆ E,

where TB
′ (vi, vj) ≤ TB(vi, vj),  IBij

′  ≥ IB(vi, vj), FB
′ (vi, vj) ≥

FB(vi, vj),  for all (vi vj) ∈ E.

Definition 2.8 [29] 

A single valued neutrosophic graph G = (A, B) of G∗ = 
(V, E) is called complete single valued neutrosophic graph, 
if: 

TB(vi, vj) = min [TA(vi),  TA(vj)],
IB(vi, vj) = max [IA(vi),  IA(vj)],
FB(vi, vj) = max [FA(vi), FA(vj)],
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for all vi, vj ∈ V.

Definition 2.9 [29] 

The complement of a single valued neutrosophic graph 
G (A, B) on  G∗ is a single valued neutrosophic graph G̅ on 
G∗, where: 

1. A̅ =A= (TA, IA, FA);

2. TA
̅̅ ̅(vi)= TA(vi),  IA̅(vi)= IA(vi),  FA

̅̅ ̅(vi) = FA(vi),

for all vj ∈ V.

3. TB
̅̅ ̅(vi, vj)= min [TA(vi), TA(vj)] − TB(vi, vj),

IB̅(vi, vj)= max [IA(vi), IA(vj)] − IB(vi, vj)

and 

FB
̅̅ ̅(vi, vj)= max [FA(vi), FA(vj)] − FB(vi, vj),

for all (vi, vj) ∈ E.

3. Main Result
Theorem 3.1

A single valued neutrosophic graph G = (A, B) is an 
isolated single valued graph if and only if its complement 
is a complete single valued neutrosophic graph. 

Proof 
Let G : (𝐴, 𝐵) be a  single valued neutrosophic graph, 

𝐺 ̅= (𝐴, �̅� ) be its complement, and G : (A, B) be an
isolated single valued neutrosophic graph. 

Then, 

𝑇𝐵(u, v) = 0,

𝐼𝐵(u, v) = 0

and 

𝐹𝐵(u, v) = 0,

for all (u, v) ∈ V× V. 
Since 

𝑇𝐵
̅̅ ̅(u, v) = min (𝑇𝐴(𝑢), 𝑇𝐴(𝑣))  − 𝑇𝐵(u, v),

for all (u, v) ∈ V× V, 

𝑇𝐵
̅̅ ̅(u, v) =  min(𝑇𝐴(𝑢), 𝑇𝐴(𝑣))

and 

𝐼�̅�(u, v) =  max(𝐼𝐴(𝑢), 𝐼𝐴(𝑣)) − 𝐼𝐵(u, v),

for all (u, v) ∈ V× V, 

𝐼�̅�(u, v) = max(𝐼𝐴(𝑢), 𝐼𝐴(𝑣))

and 

𝐹𝐵
̅̅ ̅(u, v) =  max(𝐹𝐴(𝑢), 𝐹𝐴(𝑣))   − 𝐹𝐵(u, v),

for all (u, v) ∈ V× V, 

𝐹𝐵
̅̅ ̅(u, v) =  max(𝐹𝐴(𝑢), 𝐹𝐴(𝑣),

hence �̅� = (𝐴, �̅�)  is a complete single valued neutrosophic 
graph. 

Conversely, let  �̅� = (𝐴, �̅�) be a complete single valued 
neutrosophic graph 

𝑇𝐵
̅̅ ̅(u, v) =  min(𝑇𝐴(𝑢), 𝑇𝐴(𝑣)),

for all (u, v) ∈ V× V. 
Since 

𝑇𝐵
̅̅ ̅(u, v) =  min(𝑇𝐴(𝑢), 𝑇𝐴(𝑣))   −  𝑇𝐵

̅̅ ̅(u, v),

for all (u, v) ∈ V× V, 

= 𝑇𝐵
̅̅ ̅(u, v) −𝑇𝐵

̅̅ ̅(u, v),

for all (u, v) ∈ V× V, 

= 0,  

for all (u, v) ∈ V× V, 

𝑇𝐵(u, v) =  0,

for all (u, v) ∈ V× V. 

𝐼�̅�(u, v) = max(𝐼𝐴(𝑢), 𝐼𝐴(𝑣)),

for all (u, v) ∈ V× V. 
Since 

𝐼�̅�(u, v) =  max(𝐼𝐴(𝑢), 𝐼𝐴(𝑣)) −  𝐼�̅�(u, v),

for all (u, v) ∈ V× V 

=𝐼�̅�(u, v) −𝐼�̅�(u, v),

for all (u, v) ∈ V× V 

= 0, 

for all (u, v) ∈ V× V, 

𝐼𝐵(u, v) =  0,

for all (u, v) ∈ V× V. 
Also, 

𝐹𝐵
̅̅ ̅(u, v) =  max(𝐹𝐴(𝑢), 𝐹𝐴(𝑣)),

for all (u, v) ∈ V× V. 
Since 

𝐹𝐵
̅̅ ̅(u, v) =  max(𝐹𝐴(𝑢), 𝐹𝐴(𝑣)) −  𝐹𝐵

̅̅ ̅(u, v),

for all (u, v) ∈ V× V, 

=𝐹𝐵
̅̅ ̅(u, v) −𝐹𝐵

̅̅ ̅(u, v),

for all (u, v) ∈ V× V 

=0, 

for all (u, v) ∈ V× V 
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𝐹𝐵(u, v) =  0 for all (u, v) ∈ V× V,

hence G = (𝐴, 𝐵) is an isolated single valued neutrosophic 
graph.  

4. Conclusion
Many problems of practical interest can be represented

by graphs. In general, graph theory has a wide range of 
applications in various fields. In this paper, we defined for 
the first time the notion of an isolated single valued 
neutrosophic graph. In future works, we plan to study the 
concept of an isolated interval valued neutrosophic graph. 
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Degree of Dependence and Independence of the 
(Sub)Components of Fuzzy Set and Neutrosophic Set

Florentin Smarandache

Abstract. We have introduced for the first time the 
degree of dependence (and consequently the degree of 
independence) between the components of the fuzzy set, 
and also between the components of the neutrosophic set 

in our 2006 book’s fifth edition [1]. Now we extend it for 
the first time to the refined neutrosophic set considering 
the degree of dependence or independence of 
subcomponets.

Keywords: neutrosophy, neutrosophic set, fuzzy set, degree of dependence of (sub)components, degree of independence of 
(sub)components. 

1    Refined Neutrosophic Set. 
We start with the most general definition, that of  a 

n-valued refined neutrosophic set 𝐴. An element 𝑥 from
𝐴 belongs to the set in the following way:

𝑥(𝑇1, 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟;  𝐹1, 𝐹2, … , 𝐹𝑠) ∈ 𝐴,    (1)

where 𝑝, 𝑟, 𝑠 ≥ 1 are integers, and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 3, 
where 

𝑇1, 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟;  𝐹1, 𝐹2, … , 𝐹𝑠 (2) 

are respectively sub-membership degrees, sub-indeter-
minacy degrees, and sub-nonmembership degrees of 
element x with respect to the n-valued refined 
neutrosophic set A. 

Therefore, one has n (sub)components. 
Let’s consider all of them being crisp numbers in 

the interval [0, 1]. 

2 General case. 

Now, in general, let’s consider n crisp-components 
(variables): 

𝑦1, 𝑦2, … , 𝑦𝑛 ∈ [0, 1]. (3)

If all of them are 100% independent two by two, 
then their sum: 

0 ≤ 𝑦1 + 𝑦2 + … + 𝑦𝑛 ≤ 𝑛. (4)

But if all of them are 100% dependent (totally 
interconnected), then 

0 ≤ 𝑦1 + 𝑦2 + … + 𝑦𝑛 ≤ 1. (5) 

When some of them are partially dependent and 
partially independent, then 

𝑦1 + 𝑦2 + … + 𝑦𝑛 ∈ (1, 𝑛). (6) 

For example, if 𝑦1 and 𝑦2 are 100% dependent, then

0 ≤ 𝑦1 + 𝑦2 ≤ 1, (7) 

while other variables 𝑦3, … , 𝑦𝑛 are 100% independent of
each other and also with respect to 𝑦1 and 𝑦2, then

0 ≤ 𝑦_3 + ⋯ + 𝑦_𝑛 ≤ 𝑛 − 2, (8) 

thus 

0 ≤ 𝑦1 + 𝑦2 + 𝑦3 + ⋯ + 𝑦𝑛 ≤ 𝑛 − 1. (9) 

3 Fuzzy Set. 
Let 𝑇 and 𝐹 be the membership and respectively the 

nonmembership of an element 𝑥(𝑇, 𝐹) with respect to a 
fuzzy set 𝐴, where 𝑇, 𝐹 are crisp numbers in [0, 1]. 

If 𝑇 and 𝐹 are 100% dependent of each other, then 
one has as in classical fuzzy set theory 

0 ≤ 𝑇 + 𝐹 ≤ 1.         (10) 

But if 𝑇 and 𝐹 are 100% independent of each other 
(that we define now for the first time in the domain of 
fuzzy setand logic), then 

0 ≤ 𝑇 + 𝐹 ≤ 2.         (11) 

We consider that the sum 𝑇 + 𝐹 = 1  if the 
information about the components is complete, and 
𝑇 + 𝐹 < 1 if the information about the components is 
incomplete. 

Similarly, 𝑇 + 𝐹 = 2 for complete information, and 
𝑇 + 𝐹 < 2 for incomplete information. 

For complete information on T and F, one has 
𝑇 + 𝐹 ∈ [1, 2]. 

4 Degree of Dependence and Degree 
 of Independence for two Components. 

Florentin Smarandache (2016). Degree of Dependence and Independence of the (Sub) 
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In general (see [1], 2006, pp. 91-92), the sum of two 
components x and y that vary in the unitary interval [0, 
1] is:

0 ≤  𝑥 + 𝑦 ≤  2 –  𝑑°(𝑥, 𝑦),         (12) 

where 𝑑°(𝑥, 𝑦) is the degree of dependence between x 
and y.  

Therefore 2 –  𝑑°(𝑥, 𝑦) is the degree of 
independence between x and y.  

Of course, 𝑑°(𝑥, 𝑦)  ∈  [0, 1], and it is zero when x 
and y are 100% independent, and 1 when x and y are 
100% dependent. 

In general, if T and F are 𝑑%  dependent [and 
consequently (100 − 𝑑)% independent], then 

0 ≤ 𝑇 + 𝐹 ≤ 2 − 𝑑/100.           (13) 

5 Example of Fuzzy Set with Partially
 Dependent and Partially Independent 
Components.

As an example, if 𝑇  and 𝐹  are 75% (= 0.75) 
dependent, then 

0 ≤ 𝑇 + 𝐹 ≤ 2 − 0.75 = 1.25.         (14) 

6 Neutrosophic Set 
Neutrosophic set is a general framework for 

unification of many existing sets, such as fuzzy set 
(especially intuitionistic fuzzy set), paraconsistent set, 
intuitionistic set, etc.  The main idea of NS is to 
characterize each value statement in a 3D-Neutrosophic 
Space, where each dimension of the space represents 
respectively the membership/truth (T), the 
nonmembership/falsehood (F), and the indeterminacy 
with respect to membership/nonmembership (I) of the 
statement under consideration, where T, I, F are 
standard or non-standard real subsets of ]-0, 1+[ with not 
necessarily any connection between them.  

For software engineering proposals the classical 
unit interval [0, 1] is used. 

For single valued neutrosophic set, the sum of the 
components (T+I+F) is (see [1], p. 91):  

0 ≤ T+I+F ≤ 3,         (15) 

when all three components are independent; 

0 ≤ T+I+F ≤ 2,  (16) 

when two components are dependent, while the third 
one is independent from them; 

0 ≤ T+I+F ≤ 1,  (17) 

when all three components are dependent. 
When three or two of the components T, I, F are 

independent, one leaves room for incomplete 
information (sum < 1), paraconsistent and contradictory 

information (sum > 1), or complete information (sum = 
1). 

If all three components T, I, F are dependent, then 
similarly one leaves room for incomplete information 
(sum < 1), or complete information (sum = 1).  

The dependent components are tied together. 
Three sources that provide information on T, I, and 

F respectively are independent if they do not 
communicate with each other and do not influence each 
other. 

Therefore, max{T+I+F} is in between 1 (when the 
degree of independence is zero) and 3 (when the degree 
of independence is 1).  

7 Examples of Neutrosophic Set with 
Partially Dependent and Partially 
Independent Components. 

The max{T+I+F} may also get any value in (1, 3). 
a) For example, suppose that T and F are 30%

dependent and 70% independent (hence T + F ≤ 2-0.3 = 
1.7), while I and F are 60% dependent and 40% 
independent (hence I + F ≤ 2-0.6 = 1.4). Then max{T + 
I + F} = 2.4 and occurs for T = 1, I = 0.7, F = 0.7.   

b) Second example: suppose T and I are 100%
dependent, but I and F are 100% independent. Therefore 
T + I ≤ 1 and I + F ≤ 2, then T + I + F ≤ 2. 

8 More on Refined Neutrosophic Set 

The Refined Neutrosophic Set [4], introduced for 
the first time in 2013. In this set the neutrosophic 
component (T) is split into the subcomponents (T1, T2, 
…, Tp) which represent types of truths (or sub-truths), 
the neutrosophic component (I) is split into the 
subcomponents (I1, I2, …, Ir) which represents types of 
indeterminacies (or sub-indeterminacies), and the 
neutrosophic components (F) is split into the 
subcomponents (F1, F2, …, Fs) which represent types of 
falsehoods (or sub-falsehoods), such that p, r, s are 
integers ≥ 1 and p + r + s = n ≥ 4.       (18) 

When n = 3, one gets the non-refined neutrosophic 
set. All Tj, Ik, and Fl subcomponents are subsets of [0, 
1]. 

Let’s consider the case of refined single-valued 
neutrosophic set, i.e. when all n subcomponents are 
crisp numbers in [0, 1]. 

Let the sum of all subcomponents be: 

1 1 1

p r s

j k lS T I F       (19) 

When all subcomponents are independent two by 
two, then 

0 ≤ S ≤ n.                                                        (20) 
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If m subcomponents are 100% dependent, 2 ≤ m ≤ 
n, no matter if they are among Tj, Ik, Fl or mixed, then  

0 ≤ S ≤ n – m +1                                             (21) 
and one has S = n – m + 1 when the information is 
complete, while S < n – m + 1 when the information is 
incomplete. 

9 Examples of Refined Neutrosophic Set 
with Partially Dependent and Partially 
Independent Components. 

Suppose T is split into T1, T2, T3, and I is not split, 
while F is split into F1, F2. Hence one has: 

{T1, T2, T3; I; F1, F2}.                                       (22) 
Therefore a total of 6 (sub)components.  

a) If all 6 components are 100% independent two
by two, then:

0 ≤ T1 + T2 + T3 + I + F1 +F2 ≤ 6    (23) 
b) Suppose the subcomponets T1, T2, and F1 are

100% dependent all together, while the others
are totally independent two by two and
independent from T1, T2, F1, therefore:

0 ≤ T1 + T2 + F1 ≤ 1                                        (24) 
 whence 

0 ≤ T1 + T2 + T3 + I + F1 +F2 ≤ 6 – 3 + 1 = 4.  (25) 
One gets equality to 4 when the information is 
complete, or strictly less than 4 when the information is 
incomplete. 

c) Suppose in another case that T1 and I are 20%
dependent, or d°(T1, I) = 20%, while the others
similarly totally independent two by two and
independent from T1 and I, hence

0 ≤ T1 + I ≤ 2 – 0.2 = 1.8     (26) 
whence 
0 ≤ T1 + T2 + T3 + I + F1 +F2 ≤ 1.8 + 4 = 5.8,       (27) 
since 0 ≤ T2 + T3 + F1 +F2 ≤ 4.           (28) 
Similarly, to the right one has equality for complete 
information, and strict inequality for incomplete 
information. 

Conclusion. 

We have introduced for the first time the degree of 
dependence/independence between the components of 
fuzzy set and neutrosophic set. We have given easy 
examples about the range of the sum of components, 
and how to represent the degrees of dependence and 
independence of the components. Then we extended it 
to the refined neutrosophic set considering the degree of 
dependence or independence of subcomponets. 
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Degrees of Membership > 1 and < 0 of the Elements 
with Respect to a Neutrosophic OffSet 

Florentin Smarandache 

Abstract. We have defined the Neutrosophic Over-
/Under-/Off-Set and -Logic for the first time in 1995 and 
published in 2007. During 1995-2016 we presented them 
to various national and international conferences and 
seminars ([16]-[37]) and did more publishing during 
2007-2016 ([1]-[15]). These new notions are totally dif-
ferent from other sets/logics/probabilities. 
We extended the neutrosophic set respectively to Neutro-

sophic Overset {when some neutrosophic component is > 
1}, to Neutrosophic Underset {when some neutrosophic 
component is < 0}, and to Neutrosophic Offset {when 
some neutrosophic components are off the interval [0, 1], 
i.e. some neutrosophic component > 1 and other neutro-
sophic component < 0}. This is no surprise since our re-
al-world has numerous examples and applications of
over-/under-/off-neutrosophic components.

Keywords: Neutrosophic overset, neutrosophic underset, neutrosophic offset, neutrosophic overlogic, neutrosophic underlogic, 
neutrosophic offlogic, neutrosophic overprobability, neutrosophic underprobability, neutrosophic offprobability, overmembership 
(membership degree > 1), undermembership (membership degree < 0), offmembership (membership degree off the interval [0, 1]).

1. Introduction

In the classical set and logic theories, in the fuzzy set and 
logic, and in intuitionistic fuzzy set and logic, the degree of 
membership and degree of nonmembership have to belong 
to, or be included in, the interval [0, 1]. Similarly, in the 
classical probability and in imprecise probability the 
probability of an event has to belong to, or respectively be 
included in, the interval [0, 1]. 
Yet, we have observed and presented to many conferences 
and seminars around the globe {see [16]-[37]} and 
published {see [1]-[15]} that in our real world there are 
many cases when the degree of membership is greater than 
1. The set, which has elements whose membership is over
1, we called it Overset.
Even worst, we observed elements whose membership
with respect to a set is under 0, and we called it Underset.
In general, a set that has elements whose membership is
above 1 and elements whose membership is below 0, we
called it Offset (i.e. there are elements whose memberships
are off (over and under) the interval [0, 1]).

“Neutrosophic” means based on three components T
(truth-membership), I (indeterminacy), and F (falsehood-
nonmembership). And “over” means above 1, “under” 
means below 0, while “offset” means behind/beside the set 
on both sides of the interval [0, 1], over and under, more 
and less, supra and below, out of, off the set. Similarly, for 

“offlogic”, “offmeasure”, “offprobability”, “offstatistics” 
etc. 

It is like a pot with boiling liquid, on a gas stove, when 
the liquid swells up and leaks out of pot. The pot (the 
interval [0, 1]) can no longer contain all liquid (i.e., all 
neutrosophic truth / indeterminate / falsehood values), and 
therefore some of them fall out of the pot (i.e., one gets 
neutrosophic truth / indeterminate / falsehood values which 
are > 1), or the pot cracks on the bottom and the liquid 
pours down (i.e., one gets neutrosophic truth / 
indeterminate / falsehood values which are < 0). 

Mathematically, they mean getting values off the 
interval [0, 1]. 

The American aphorism “think outside the box” has a 
perfect resonance to the neutrosophic offset, where the box 
is the interval [0, 1], yet values outside of this interval are 
permitted. 

2. Example of Overmembership and Undermember-
ship.

In a given company a full-time employer works 40
hours per week. Let’s consider the last week period. 
Helen worked part-time, only 30 hours, and the other 
10 hours she was absent without payment; hence, her 
membership degree was 30/40 = 0.75 < 1. 
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John worked full-time, 40 hours, so he had the 
membership degree 40/40 = 1, with respect to this 
company.  

But George worked overtime 5 hours, so his mem-
bership degree was (40+5)/40 = 45/40 = 1.125 > 1. 
Thus, we need to make distinction between employ-
ees who work overtime, and those who work full-
time or part-time. That’s why we need to associate a 
degree of membership strictly greater than 1 to the 
overtime workers. 

Now, another employee, Jane, was absent without 
pay for the whole week, so her degree of membership 
was 0/40 = 0. 

Yet, Richard, who was also hired as a full-time, not 
only didn’t come to work last week at all (0 worked 
hours), but he produced, by accidentally starting a 
devastating fire, much damage to the company, 
which was estimated at a value half of his salary (i.e. 
as he would have gotten for working 20 hours that 
week). Therefore, his membership degree has to be 
less that Jane’s (since Jane produced no damage). 
Whence, Richard’s degree of membership, with re-
spect to this company, was - 20/40 = - 0.50 < 0.  

Consequently, we need to make distinction be-
tween employees who produce damage, and those 
who produce profit, or produce neither damage no 
profit to the company. 

Therefore, the membership degrees > 1 and < 0 are real 
in our world, so we have to take them into consideration. 

Then, similarly, the Neutrosophic Log-
ic/Measure/Probability/Statistics etc. were extended to re-
spectively Neutrosophic Over-/Under-/Off-Logic, -
Measure, -Probability, -Statistics etc. [Smarandache, 
2007]. 

Another Example of Membership Above 1 and 
Membership Below 0. 

Let’s consider a spy agency S = {S1, S2, …, S1000} 
of a country Atara against its enemy country Batara. Each 
agent Sj, j ∈ {1, 2, …, 1000}, was required last week to 
accomplish 5 missions, which represent the full-time 
contribution/membership.  

Last week agent S27 has successfully 
accomplished his 5 missions, so his membership was 
T(A27) = 5/5 = 1 = 100% (full-time membership). 

Agent S32 has accomplished only 3 missions, so 
his membership is T(S32) = 3/5 = 0.6 = 60% (part-time 
membership). 

Agent S41 was absent, without pay, due to his 
health problems; thus T(S41) = 0/5 = 0 = 0% (null-
membership).  

Agent S53 has successfully accomplished his 5 
required missions, plus an extra mission of another agent 
that was absent due to sickness, therefore T(S53) = (5+1)/5 
= 6/5 = 1.2 > 1 (therefore, he has membership above 1, 
called over-membership). 

Yet, agent S75 is a double-agent, and he leaks 
highly confidential information about country Atara to the 
enemy country Batara, while simultaneously providing 
misleading information to the country Atara about the 
enemy country Batara. Therefore S75 is a negative agent 
with respect to his country Atara,  since he produces 
damage to Atara, he was estimated to having intentionally 
done wrongly all his 5 missions, in addition of 
compromising a mission of another agent  of country Atara, 
thus his membership T(S75) = - (5+1)/5 = - 6/5 = -1.2 < 0 
(therefore, he has a membership below 0, called under-
membership). 

3. Definitions and the main work
1. Definition of Single-Valued Neutrosophic

Overset.
Let U be a universe of discourse and the neutrosophic set 
A1   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the neutrosophic set A1: 
T(x), I(x), F(x) : U  [0, ]  
where 0  < 1 <  , and  is called overlimit, 
T(x), I(x), F(x) ∈ [0, ] . 
A Single-Valued Neutrosophic Overset A1 is defined as: 
A1 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exists at least one element in A1 that has at 
least one neutrosophic component that is > 1, and no 
element has neutrosophic components that are < 0. 
For example: A1 = {(x1, <1.3, 0.5, 0.1>), (x2, <0.2, 1.1, 
0.2>)}, since T(x1) = 1.3 > 1, I(x2) = 1.1 > 1, and no 
neutrosophic component is < 0. 
Also O2 = {(a, <0.3, -0.1, 1.1>)}, since I(a) = - 0.1 < 0 and 
F(a) = 1.1 > 1. 

2. Definition of Single-Valued Neutrosophic
Underset.

Let U be a universe of discourse and the neutrosophic set 
A2   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the neutrosophic set A2: 
T(x), I(x), F(x) : U  [ ,1]  
where  < 0  < 1, and   is called underlimit, 
T(x), I(x), F(x) ∈ [ ,1] . 
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A Single-Valued Neutrosophic Underset A2 is defined as: 
A2 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exists at least one element in A2 that has at 
least one neutrosophic component that is < 0, and no 
element has neutrosophic components that are > 1. 
For example: A2 = {(x1, <-0.4, 0.5, 0.3>), (x2, <0.2, 0.5, -
0.2>)}, since T(x1) = -0.4 < 0, F(x2) = -0.2 < 0, and no 
neutrosophic component is > 1. 

3. Definition of Single-Valued Neutrosophic
Offset.

Let U be a universe of discourse and the neutrosophic set 
A3   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the set A3: 
T(x), I(x), F(x) : U  [ , ]   
where  < 0  < 1 <  , and   is called underlimit, 
while   is called overlimit, 
T(x), I(x), F(x) ∈ [ , ]  . 
A Single-Valued Neutrosophic Offset A3 is defined as: 
A3 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exist some elements in A3 that have at least 
one neutrosophic component that is > 1, and at least 
another neutrosophic component that is < 0. 
For examples: A3 = {(x1, <1.2, 0.4, 0.1>), (x2, <0.2, 0.3, -
0.7>)}, since T(x1) = 1.2 > 1 and F(x2) = -0.7 < 0. 
Also B3 = {(a, <0.3, -0.1, 1.1>)}, since I(a) = - 0.1 < 0 and 
F(a) = 1.1 > 1. 

4. Single Valued Neutrosophic Overset / Underset
/ Offset Operators.

Let U be a universe of discourse and A = {(x, <TA(x), IA(x), 
FA(x)>), x ∈ U} and  
and B = {(x, <TB(x), IB(x), FB(x)>), x ∈ U} be two single-
valued neutrosophic oversets / undersets / offsets. 
TA(x), IA(x), FA(x), TB(x), IB(x), FB(x): U  [ , ]   
where  ≤ 0  < 1 ≤  , and   is called underlimit, 
while   is called overlimit, 
TA(x), IA(x), FA(x), TB(x), IB(x), FB(x) ∈ [ , ]  . 
We take the inequality sign ≤ instead of < on both 
extremes above, in order to comprise all three cases: 
overset {when = 0, and 1 <  }, underset {when < 0, 
and 1 =  }, and offset {when < 0, and 1 <  }. 

4.1. Single Valued Neutrosophic Overset / Underset / 
Offset Union. 
Then A∪B = {(x, <max{TA(x), TB(x)}, min{IA(x), IB(x)}, 
min{FA(x), FB(x)}>), x∈ U} 

4.2. Single Valued Neutrosophic Overset / Underset / 
Offset Intersection. 
Then A∩B = {(x, <min{TA(x), TB(x)}, max{IA(x), IB(x)}, 
max{FA(x), FB(x)}>), x∈ U} 

4.3. Single Valued Neutrosophic Overset / Underset / 
Offset Complement. 
The neutrosophic complement of the neutrosophic set A is  
C(A) = {(x, <FA(x),  +   - IA(x), TA(x)>), x ∈ U}.

5. Definition of Interval-Valued Neutrosophic
Overset.

Let U be a universe of discourse and the neutrosophic set 
A1   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the neutrosophic set A1: 
T(x), I(x), F(x) : U  P( [0, ] ), 
where 0  < 1 <  , and  is called overlimit,  
T(x), I(x), F(x) ⊆[0, ] , and P( [0, ] ) is the set of all 
subsets of [0, ] . 
An Interval-Valued Neutrosophic Overset A1 is defined as: 
A1 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exists at least one element in A1 that has at 
least one neutrosophic component that is partially or totally 
above 1, and no element has neutrosophic components that 
is partially or totally below 0. 
For example: A1 = {(x1, <(1, 1.4], 0.1, 0.2>), (x2, <0.2, 
[0.9, 1.1], 0.2>)}, since T(x1) = (1, 1.4] is totally above 1, 
I(x2) = [0.9, 1.1] is partially above 1, and no neutrosophic 
component is partially or totally below 0. 

6. Definition of Interval-Valued Neutrosophic
Underset.

Let U be a universe of discourse and the neutrosophic set 
A2   U.
Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the neutrosophic set A2: 
T(x), I(x), F(x) : U  [ ,1] , 
where  < 0  < 1, and   is called underlimit, 
T(x), I(x), F(x) ⊆[ ,1] , and P([ ,1] ) is the set of all 
subsets of [ ,1] . 
An Interval-Valued Neutrosophic Underset A2 is defined 
as: 
A2 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exists at least one element in A2 that has at 
least one neutrosophic component that is partially or totally 
below 0, and no element has neutrosophic components that 
are partially or totally above 1. 
For example: A2 = {(x1, <(-0.5,-0.4), 0.6, 0.3>), (x2, <0.2, 
0.5, [-0.2, 0.2]>)}, since T(x1) = (-0.5, -0.4) is totally 
below 0, F(x2) = [-0.2, 0.2] is partially below 0, and no 
neutrosophic component is partially or totally above 1. 

7. Definition of Interval-Valued Neutrosophic
Offset.

Let U be a universe of discourse and the neutrosophic set 
A3   U.
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Let T(x), I(x), F(x) be the functions that describe the 
degrees of membership, indeterminate-membership, and 
nonmembership respectively, of a generic element x ∈ U, 
with respect to the set A3: 
T(x), I(x), F(x) : U  P( [ , ]  ), 
where  < 0  < 1 <  , and   is called underlimit, 
while   is called overlimit, 
T(x), I(x), F(x) ⊆[ , ]  , and P( [ , ]  ) is the set of 
all subsets of [ , ]  . 
An Interval-Valued Neutrosophic Offset A3 is defined as: 
A3 = {(x, <T(x), I(x), F(x)>), x ∈ U}, 
such that there exist some elements in A3 that have at least 
one neutrosophic component that is partially or totally 
above 1, and at least another neutrosophic component that 
is partially or totally below 0. 
For examples: A3 = {(x1, <[1.1, 1.2], 0.4, 0.1>), (x2, <0.2, 
0.3, (-0.7, -0.3)>)}, since T(x1) = [1.1, 1.2] that is totally 
above 1, and F(x2) = (-0.7, -0.3) that is totally below 0. 
Also B3 = {(a, <0.3, [-0.1, 0.1], [1.05, 1.10]>)}, since I(a) 
= [- 0.1, 0.1] that is partially below 0, and F(a) = [1.05, 
1.10] that is totally above 1. 

8. Interval-Valued Neutrosophic Overset /
Underset / Offset Operators.

Let U be a universe of discourse and A = {(x, <TA(x), IA(x), 
FA(x)>), x ∈ U}   
and B = {(x, <TB(x), IB(x), FB(x)>), x ∈ U} be two 
interval-valued neutrosophic oversets / undersets / offsets. 
TA(x), IA(x), FA(x), TB(x), IB(x), FB(x): U P( [ , ]  ), 
where P( [ , ]  ) means the set of all subsets of 
[ , ]  , 
and TA(x), IA(x), FA(x), TB(x), IB(x), FB(x) ⊆ [ , ]  , 
with  ≤ 0  < 1 ≤  , and  is called underlimit, while
 is called overlimit.
We take the inequality sign ≤ instead of < on both
extremes above, in order to comprise all three cases:
overset {when = 0, and 1 <  }, underset {when < 0,
and 1 =  }, and offset {when < 0, and 1 <  }.

8.1. Interval-Valued Neutrosophic Overset / Underset / 
Offset Union. 
Then A∪B =  
{(x, <[max{inf(TA(x)), inf(TB(x))}, max{sup(TA(x)), 
sup(TB(x)}],   

      [min{inf(IA(x)), inf(IB(x))}, min{sup(IA(x)), 
sup(IB(x)}], 

      [min{inf(FA(x)), inf(FB(x))}, min{sup(FA(x)), 
sup(FB(x)}]>, x ∈ U}. 

8.2. Interval-Valued Neutrosophic Overset / Underset / 
Offset Intersection. 
Then A∩B =  
{(x, <[min{inf(TA(x)), inf(TB(x))}, min{sup(TA(x)), 
sup(TB(x)}],   

      [max{inf(IA(x)), inf(IB(x))}, max{sup(IA(x)), 
sup(IB(x)}], 

      [max{inf(FA(x)), inf(FB(x))}, max{sup(FA(x)), 
sup(FB(x)}]>, x ∈ U}. 

8.3. Interval-Valued Neutrosophic Overset / Underset / 
Offset Complement. 
The complement of the neutrosophic set A is  
C(A) = {(x, <FA(x),  [ +   - sup{IA(x)},  +   -
inf{IA(x)}],  TA(x)>), x ∈ U}. 

Conclusion
The membership degrees over 1 (overmembership), or 

below 0 (undermembership) are part of our real world, so 
they deserve more study in the future. 

The neutrosophic overset / underset / offset together 
with neutrosophic overlogic / underlogic / offlogic and es-
pecially neutrosophic overprobability / underprobability / 
and offprobability have many applications in technology, 
social science, economics and so on that the readers may 
be interested in exploring. 

After designing the neutrosophic operators for single-
valued neutrosophic overset/underset/offset, we extended 
them to interval-valued neutrosophic over-
set/underset/offset operators. We also presented another 
example of membership above 1 and membership below 0. 

Of course, in many real world problems the neutro-
sophic union, neutrosophic intersection, and neutrosophic 
complement for interval-valued neutrosophic over-
set/underset/offset can be used. Future research will be fo-
cused on practical applications. 
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A Neutrosophic Binomial Factorial Theorem 
with their Refrains  

Abstract. The Neutrosophic Precalculus and the 
Neutrosophic Calculus can be developed in many 
ways, depending on the types of indeterminacy one 
has and on the method used to deal with such 
indeterminacy. This article is innovative since the 
form of neutrosophic binomial factorial theorem was 
constructed in addition to its refrains.  

Two other important theorems were proven with their 
corollaries, and numerical examples as well. As a 
conjecture, we use ten (indeterminate) forms in 
neutrosophic calculus taking an important role in 
limits. To serve article's aim, some important 
questions had been answered.  

Keyword: Neutrosophic Calculus, Binomial Factorial Theorem, Neutrosophic Limits, Indeterminate forms in 
Neutrosophic Logic, Indeterminate forms in Classical Logic. 

1 Introduction (Important questions) 

Q 1 What are the types of indeterminacy? 
There exist two types of indeterminacy 
a. Literal indeterminacy (I).

As example:   

2 + 3𝐼  (1) 

b. Numerical indeterminacy.
As example: 

𝑥(0.6,0.3,0.4) ∈ 𝐴, (2) 

meaning that the indeterminacy membership = 0.3.         
Other examples for the indeterminacy com-

ponent can be seen in functions: 𝑓(0) = 7 𝑜𝑟 9  or  
𝑓(0  𝑜𝑟  1) = 5  or 𝑓(𝑥) = [0.2, 0.3] 𝑥2 … etc. 

Q 2 What is the values of 𝐼 to the rational power? 
1. Let

√𝐼 = 𝑥 + 𝑦 𝐼

0 + 𝐼 = 𝑥2 + (2𝑥𝑦 + 𝑦2)𝐼

𝑥 = 0, 𝑦 = ±1. (3) 

In general, 

√𝐼
2𝑘

= ±𝐼 (4) 

where 𝑘 ∈ 𝑧+ = {1,2,3, … }. 

2. Let
√𝐼
3

= 𝑥 + 𝑦 𝐼 
0 + 𝐼 = 𝑥3 + 3𝑥2𝑦 𝐼 + 3𝑥𝑦2 𝐼2 + 𝑦3𝐼3 
0 + 𝐼 = 𝑥3 + (3𝑥2𝑦 + 3𝑥𝑦2  + 𝑦3)𝐼 
 𝑥 = 0, 𝑦 = 1 →  √𝐼

3
= 𝐼. (5) 

In general, 

√𝐼
2𝑘+1

= 𝐼, (6) 

where 𝑘 ∈ 𝑧+ = {1,2,3, … }. 

Basic Notes  
1. A component I to the zero power is

undefined value, (i.e. 𝐼0 is undefined),
since 𝐼0 = 𝐼1+(−1) = 𝐼1 ∗ 𝐼−1 =

𝐼

𝐼
which is

impossible case (avoid to divide by 𝐼).
2. The value of 𝐼 to the negative power is

undefined value (i.e. 𝐼−𝑛  , 𝑛 > 0 is
undefined).

Q 3 What are the indeterminacy forms in neutros-
ophic calculus? 

In classical calculus, the indeterminate forms 
are [4]: 

0

0
,

∞

∞
, 0 ∙ ∞ , ∞0, 00, 1∞, ∞ − ∞. (7)
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The form 0 to the power 𝐼  (i.e. 0𝐼 ) is an 
indeterminate form in Neutrosophic calculus; it is 
tempting to argue that an indeterminate form of 
type 0𝐼 has zero value since "zero to any power is 
zero". However, this is fallacious, since 0𝐼 is not a 
power of number, but rather a statement about 
limits. 

Q 4 What about the form 1𝐼? 
The base "one" pushes the form 1𝐼 to one 

while the power 𝐼 pushes the form 1𝐼 to I, so 1𝐼 is
an indeterminate form in neutrosophic calculus. 
Indeed, the form 𝑎𝐼, 𝑎 ∈ 𝑅 is always an 
indeterminate form. 
Q 5 What is the value of 𝑎𝐼  , 𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ 𝑅? 

Let 𝑦1 = 2𝑥 , 𝑥 ∈ 𝑅 , 𝑦2 = 2𝐼; it is obvious that
lim
𝑥→∞

2𝑥 = ∞  , lim
𝑥→−∞

2𝑥 = 0  , lim
𝑥→0

2𝑥 = 1; while 

we cannot determine if 2𝐼 → ∞ 𝑜𝑟 0 𝑜𝑟 1, 
therefore we can say that  𝑦2 = 2𝐼 indeterminate
form in Neutrosophic calculus. The same for 𝑎𝐼 ,

where 𝑎 ∈ 𝑅 [2]. 

2 Indeterminate forms in Neutrosophic 
Logic 

It is obvious that there are seven types 
of indeterminate forms in classical calculus [4],

0

0
,

∞

∞
, 0. ∞, 00, ∞0, 1∞, ∞ − ∞.  

As a conjecture, we can say that there are ten 
forms of the indeterminate forms in Neutrosophic 
calculus  

𝐼0 , 0𝐼 ,
𝐼

0
, 𝐼 ∙ ∞,

∞

𝐼
 , ∞𝐼 , 𝐼∞, 𝐼𝐼 , 

𝑎𝐼(𝑎 ∈ 𝑅), ∞ ± 𝑎 ∙ 𝐼  . 

Note that:   

𝐼

0
= 𝐼 ∙

1

0
= 𝐼 ∙ ∞ = ∞ ∙ 𝐼. 

3 Various Examples 
Numerical examples on neutrosophic limits 

would be necessary to demonstrate the aims of this 
work. 
Example (3.1) [1], [3]
The neutrosophic (numerical indeterminate) values 
can be seen in the following function: 
Find lim

𝑥→0
𝑓(𝑥), where 𝑓(𝑥) = 𝑥[2.1,2.5].

Solution: 
Let 𝑦 = 𝑥[2.1,2.5]   → ln 𝑦 = [2.1, 2.5] ln 𝑥

∴ lim
𝑥→0

ln 𝑦 = lim
𝑥→0

[2.1, 2.5]

1
ln 𝑥

=
[2.1, 2.5]

1
ln 0

=
[2.1, 2.5]

1
−∞

=
[2.1, 2.5]

−0

= [
2.1

−0
,
2.5

−0
] = (−∞, −∞)

= −∞ 
Hence 𝑦 = 𝑒−∞ = 0 
OR it can be solved briefly by 
𝑦 = 𝑥[2.1,2.5] = [02.1, 02.5] = [0,0] = 0.

 Example (3.2) 
lim

𝑥→[9,11]
[3.5,5.9]𝑥[1,2] =  [3.5,5.9] [9,11][1,2] =

[3.5,5.9] [91, 112] =  [(3.5)(9), (5.9)(121)] =

 [31.5,713.9]. 

Example (3.3) 
lim
𝑥→∞

[3.5,5.9] 𝑥[1,2] = [3.5,5.9]  ∞[1,2]

= [3.5,5.9] [∞1, ∞2]

=  [3.5 ∙ (∞) ,5.9 ∙ (∞)]

= (∞, ∞) = ∞. 

Example (3.4) 
Find the following limit using more than one 

technique lim
𝑥→0

√[4,5]∙𝑥+1−1

𝑥
 . 

Solution: 
The above limit will be solved firstly by using the 
L'Hôpital's rule and secondly by using the 
rationalizing  technique. 

Using L'Hôpital's rule 

lim
𝑥→0

1

2
([4, 5] ∙ 𝑥 + 1)

−1
2⁄  [4,5]

= lim
𝑥→0

 [4,5]

2√([4, 5] ∙ 𝑥 + 1)

=
 [4,5]

2
=  [

4

2
,
5

2
] =  [2,2.5] 

Rationalizing technique [3] 

lim
𝑥→0

√[4,5] ∙ 𝑥 + 1 − 1

𝑥
=

√[4,5] ∙ 0 + 1 − 1

0

=
√[4 ∙ 0, 5 ∙ 0] + 1 − 1

0
=

√[0, 0] + 1 − 1

0

=
√0 + 1 − 1

0
=

0

0
= undefined. 

Multiply with the conjugate of the numerator: 
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lim
𝑥→0

√[4, 5]𝑥 + 1 − 1

𝑥
∙

√[4, 5]𝑥 + 1 + 1

√[4, 5]𝑥 + 1 + 1

= lim
𝑥→0

(√[4, 5]𝑥 + 1)
2

− (1)2

𝑥 (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5] ∙ 𝑥 + 1 − 1

𝑥 ∙ (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5] ∙ 𝑥

𝑥 ∙ (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5]

(√[4, 5]𝑥 + 1 + 1)

=
[4, 5]

(√[4, 5] ∙ 0 + 1 + 1)
=

[4, 5]

√1 + 1

=
[4, 5]

2
= [

4

2
,
5

2
] = [2, 2.5]. 

Identical results. 

Example (3.5) 
Find the value of  the following neutrosophic limit    

lim
𝑥→−3

𝑥2+3𝑥−[1,2]𝑥−[3,6]

𝑥+3
using more than one

technique . 

Analytical technique [1], [3]

lim
𝑥→−3

𝑥2+3𝑥−[1,2]𝑥−[3,6]

𝑥+3

By  substituting  𝑥= -3 , 

lim
𝑥→−3

(−3)2 + 3 ∙ (−3) − [1, 2] ∙ (−3) − [3, 6]

−3 + 3

=
9 − 9 − [1 ∙ (−3), 2 ∙ (−3)] − [3, 6]

0

=
0 − [−6, −3] − [3, 6]

0
=

[3, 6] − [3,6]

0

=
[3 − 6, 6 − 3]

0
=

[−3, 3]

0
, 

which has  undefined operation
0

0
, since 0 ∈

[−3, 3]. Then we factor out the numerator, and 
simplify: 

lim
𝑥→−3

𝑥2 + 3𝑥 − [1, 2]𝑥 − [3, 6]

𝑥 + 3
= 

lim
𝑥→−3

(𝑥 − [1, 2]) ∙ (𝑥 + 3)

(𝑥 + 3)
= lim

𝑥→−3
(𝑥 − [1,2]) 

= −3 − [1,2] = [−3, −3] − [1,2] 
=  −([3,3] + [1,2]) = [−5, −4]. 

Again, Solving by using L'Hôpital's rule 

lim
𝑥→−3

𝑥2 + 3𝑥 − [1, 2]𝑥 − [3, 6]

𝑥 + 3

= lim
𝑥→−3

2 𝑥 + 3 − [1, 2]

1

= lim
𝑥→−3

2 (−3) + 3 − [1, 2]

1
= −6 + 3 − [1, 2]

= −3 − [1, 2]

= [−3 − 1, −3 − 2]

= [−5, −4] 

The above two methods are identical in results. 

4 New Theorems in Neutrosophic Limits 

Theorem (4.1) (Binomial  Factorial ) 
lim
𝑥→∞

(𝐼 +
1

𝑥
)𝑥 = 𝐼𝑒  ;  I is the literal indeterminacy, 

e = 2.7182828 
Proof 

(𝐼 +
1

𝑥
)

𝑥

= (
𝑥
0

) 𝐼𝑋 (
1

𝑥
)

0

+ (
𝑥
1

) 𝐼𝑋−1 (
1

𝑥
)

1

+ (
𝑥
2

) 𝐼𝑋−2 (
1

𝑥
)

2

+ (
𝑥
3

) 𝐼𝑋−3 (
1

𝑥
)

3

+ (
𝑥
4

) 𝐼𝑋−4 (
1

𝑥
)

4

+ ⋯

= 𝐼 + 𝑥. 𝐼.
1

𝑥
+

𝐼

2!
(1 −

1

𝑥
) 

+
𝐼

3!
(1 −

1

𝑥
) (1 −

2

𝑥
) +

𝐼

4!
(1 −

1

𝑥
) (1 −

2

𝑥
) 

(1 −
3

𝑥
) + ⋯ 

It is clear that  1

𝑥
→ 0  𝑎𝑠  𝑥  → ∞

∴ lim
𝑥→∞

(𝐼 −
1

𝑥
)𝑥 = 𝐼 + 𝐼 +

𝐼

2!
+

𝐼

3!
+

𝐼

4!
+ ⋯ = 𝐼 +

∑
𝐼𝑛

𝑛!
∞
𝑛=1

∴ lim
𝑥→∞

(𝐼 +
1

𝑥
)𝑥 = 𝐼𝑒, where e = 1 + ∑ 1

𝑛!
∞
𝑛=1  , I is the

literal indeterminacy. 

Corollary (4.1.1) 

lim
𝑥→0

(𝐼 + 𝑥)
1
𝑥 = 𝐼𝑒 

Proof:- 
Put 𝑦 =

1

𝑥

It is obvious that   𝑦 → ∞ , as 𝑥 → 0 

∴ lim
𝑥→0

(𝐼 + 𝑥)
1

𝑥 = lim
𝑦→∞

(𝐼 +
1

𝑦
)𝑦 = 𝐼𝑒 

( using Th. 4.1 )

Corollary (4.1.2) 
lim
𝑥→∞

(𝐼 +
𝑘

𝑥
)𝑥 = 𝐼𝑒𝑘  , where k > 0 & 𝑘 ≠ 0 , I is the

literal indeterminacy. 
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Proof 

lim
𝑥→∞

(𝐼 +
𝑘

𝑥
)𝑥 = lim

𝑥→∞
[(𝐼 +

𝑘

𝑥
)

𝑥
𝑘]

𝑘

Put 𝑦 =
𝑘

𝑥
→ 𝑥𝑦 = 𝑘 → 𝑥 =

𝑘

𝑦

Note that     𝑦 → 0 𝑎𝑠 𝑥 → ∞ 

 ∴  lim
𝑥→∞

(𝐼 +
𝑘

𝑥
)

𝑥

= lim
𝑦→0

[(𝐼 + 𝑦)
1

𝑦]
𝑘

(using corollary 4.1.1 ). 

= [lim
𝑦→0

(𝐼 + 𝑦)
1

𝑦]
𝑘

= (𝐼𝑒)𝑘 = 𝐼𝑘𝑒𝑘 = 𝐼𝑒𝑘 

Corollary (4.1.3) 

lim(𝐼 +
𝑥
)

1

𝑥 = (𝐼𝑒)
1

𝑘 = √𝐼𝑒
𝑘   , 

𝑥→0 𝑘
where 𝑘 ≠ 1 & 𝑘 > 0.
Proof 
The immediate substitution of the value of 𝑥 in the 
above limit gives indeterminate form 𝐼∞, 

i.e. lim
𝑥→0

(𝐼 +
𝑥

𝑘
)

1

𝑥 = lim
𝑥→0

(𝐼 +
0

𝑘
)

1

0 = 𝐼∞

So we need to treat this value as follow:- 

lim
𝑥→0

(𝐼 +
𝑥

𝑘
)

1
𝑥 = lim

𝑥→0
[(𝐼 +

𝑥

𝑘
)

𝑘
𝑥]

1
𝑘

= [lim
𝑥→0

(𝐼 +
𝑥

𝑘
)

𝑘
𝑥]

1
𝑘

put 𝑦 =
𝑥

𝑘
→ 𝑥 = 𝑘𝑦 →

1

𝑥
=

1

𝑘𝑦

As 𝑥 → 0  , 𝑦 → 0 

lim
𝑥→0

(𝐼 +
𝑥

𝑘
)

1
𝑥

= lim
𝑦→0

[(𝐼 + 𝑦)
1
𝑦]

1
𝑘

= [lim
𝑦→0

(𝐼 + 𝑦)
1
𝑦]

1
𝑘

Using corollary (4.1.1) 

= (𝐼𝑒)
𝐼
𝑘 = √𝐼𝑒

𝑘  

Theorem (4.2)

 lim
𝑥→0

(𝑙𝑛𝑎)[𝐼𝑎𝑥−𝐼]

𝑥𝑙𝑛𝑎+𝑙𝑛𝐼
=

𝑙𝑛𝑎

1+𝑙𝑛𝐼

Where     𝑎 > 0, 𝑎 ≠ 1 

Note that         lim
𝑥→0

(𝑙𝑛𝑎)[𝐼𝑎𝑥−𝐼]

𝑥𝑙𝑛𝑎+𝑙𝑛𝐼
= lim

𝑥→0

𝐼𝑎𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑙𝑛𝑎

Proof
Let 𝑦 = 𝐼𝑎𝑥 − 𝐼 → 𝑦 + 𝐼 = 𝐼𝑎𝑥 → ln(𝑦 + 𝐼) = 
ln 𝐼 + ln 𝑎𝑥 

→ ln(𝑦 + 𝐼) = ln 𝐼 + 𝑥𝑙𝑛𝑎 →

𝑥 =  
ln(𝑦 + 𝐼) − 𝑙𝑛𝐼

𝑙𝑛𝑎
(ln 𝑎)(𝐼𝑎𝑥 − 𝐼)

𝑥𝑙𝑛𝑎 + 𝑙𝑛𝐼
=

(𝐼𝑎𝑥 − 𝐼)

𝑥 +
𝑙𝑛𝐼
𝑙𝑛𝑎

=
𝑦

ln(𝑦 + 𝐼) − 𝑙𝑛𝐼
𝑙𝑛𝑎

+
𝑙𝑛𝐼
𝑙𝑛𝑎

= 𝑙𝑛𝑎.
𝑦

ln(𝑦 + 𝐼)
= 𝑙𝑛𝑎.

1

1
𝑦

ln(𝑦 + 𝐼)

= 𝑙𝑛𝑎.
1

ln(𝑦 + 𝐼)
1
𝑦

∴ lim
𝑥→0

 
(ln 𝑎)(𝐼𝑎𝑥 − 𝐼)

𝑥𝑙𝑛𝑎 + 𝑙𝑛𝐼
= 𝑙𝑛𝑎 

1

lim
𝑦→0

𝑙𝑛(𝑦 + 𝐼)
1
𝑦

= 𝑙𝑛𝑎 .
1

𝑙𝑛 lim
𝑦→0

(𝑦 + 𝐼)
1
𝑦

= 𝑙𝑛𝑎 
1

𝑙𝑛(𝐼𝑒)
 using corollary (4.1.1) 

=  
𝑙𝑛𝑎

𝑙𝑛 𝐼 +  𝑙𝑛𝑒
=

𝑙𝑛𝑎

𝑙𝑛𝐼 + 1

Corollary (4.2.1) 

lim
𝑥→0

𝐼𝑎𝑘𝑥 − 𝐼

𝑥 +
𝑙𝑛𝐼

𝑙𝑛𝑎𝑘

=
𝑘 𝑙𝑛𝑎

1 + 𝑙𝑛𝐼

Proof  
Put 𝑦 = 𝑘𝑥 → 𝑥 = 𝑦

𝑘

𝑦 → 0  𝑎𝑠 𝑥 → 0 

lim
𝑥→0

𝐼𝑎𝑘𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑙𝑛𝑎𝑘

= lim
𝑦→0

𝐼𝑎𝑦−𝐼
𝑦

𝑘
+

𝑙𝑛𝐼

𝑘 𝑙𝑛𝑎

= 𝑘. lim
𝑦→0

𝐼𝑎𝑦−𝐼

𝑦+
𝑙𝑛𝐼

 𝑙𝑛𝑎

using Th. (4.2) 

= 𝑘. (
𝑙𝑛𝑎

1 + 𝑙𝑛𝐼
) 

Corollary (4.2.2) 

lim
𝑥→0

𝐼𝑒𝑥 − 𝐼

𝑥 + 𝑙𝑛𝐼
=

1

1 + 𝑙𝑛𝐼
Proof 
Let 𝑦 =  𝐼𝑒𝑥 − 𝐼   , 𝑦 → 0  𝑎𝑠 𝑥 → 0 
𝑦 + 𝐼 =  𝐼𝑒𝑥 → ln(𝑦 + 𝐼) = 𝑙𝑛𝐼 + 𝑥 𝑙𝑛𝑒 
𝑥 = ln(𝑦 + 𝐼) − 𝑙𝑛𝐼 

∴  
𝐼𝑒𝑥 − 𝐼 

𝑥 +  𝑙𝑛𝐼
=

𝑦

ln(𝑦 + 𝐼) − 𝑙𝑛𝐼 + 𝑙𝑛𝐼

=
1

1
𝑦

ln(𝑦 + 𝐼)

=
1

ln(𝑦 + 𝐼)
1
𝑦

∴ lim
𝑥→0

𝐼𝑒𝑥 − 𝐼

𝑥 + 𝑙𝑛𝐼
= lim

𝑦→0

1

ln(𝑦 + 𝐼)
1
𝑦

=
1

ln lim
𝑦→0

(𝑦 + 𝐼)
1
𝑦

using corollary (4.1.1) 
1

ln (𝐼𝑒)
=

1

𝑙𝑛𝐼 + 𝑙𝑛𝑒
=

1

𝑙𝑛𝐼 + 1
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Corollary (4.2.3) 

lim
𝑥→0

𝐼𝑒𝑘𝑥 − 𝐼

𝑥 +
𝑙𝑛𝐼
𝑘

=
𝑘 

1 + 𝑙𝑛𝐼

Proof  
let 𝑦 = 𝑘𝑥 → 𝑥 =

𝑦

𝑘

𝑦 → 0  𝑎𝑠 𝑥 → 0 

lim
𝑥→0

𝐼𝑒𝑘𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑘

= lim
𝑦→0

𝐼𝑒𝑦−𝐼
𝑦

𝑘
+

𝑙𝑛𝐼

𝑘 

= 𝑘. lim
𝑦→0

𝐼𝑒𝑦−𝐼

𝑦+𝑙𝑛𝐼
   using 

Corollary (4.2.2) to  get 

= 𝑘. (
1

1 + 𝑙𝑛𝐼
) =

𝑘

1 + 𝑙𝑛𝐼

Theorem (4.3) 

lim
𝑥→0

ln (𝐼 + 𝑘𝑥)

𝑥
= 𝑘(1 + 𝑙𝑛𝐼) 

Proof 

lim
𝑥→0

ln (𝐼 + 𝑘𝑥)

𝑥
= lim

𝑥→0

ln(𝐼 + 𝑘𝑥) − 𝑙𝑛𝐼 + 𝑙𝑛𝐼

𝑥
Let 𝑦 = ln(𝐼 + 𝑘𝑥) − 𝑙𝑛𝐼 → 𝑦 + 𝑙𝑛𝐼 = ln(𝐼 +

𝑘𝑥) 

𝑒𝑦+𝑙𝑛𝐼 = 𝐼 + 𝑘𝑥 → 𝑥 =
𝑒𝑦𝑒𝑙𝑛𝐼 − 𝐼

𝑘
=

𝐼 𝑒𝑦 − 𝐼

𝑘
𝑦 → 0  𝑎𝑠 𝑥 → 0 

lim
𝑥→0

ln(𝐼 + 𝑘𝑥) − 𝑙𝑛𝐼 + 𝑙𝑛𝐼

𝑥

= lim
𝑦→0

𝑦 + 𝑙𝑛𝐼

𝐼 𝑒𝑦 − 𝐼
𝑘

 

lim
𝑦→0

𝑘

𝑦+𝑙𝑛𝐼
𝐼 𝑒𝑦−𝐼

=
𝑘

lim
𝑦→0( )

using corollary (4.2.2)  to get the result   

=
𝑘

1
1 + 𝑙𝑛𝐼

= 𝑘(1 + 𝑙𝑛𝐼) 

Theorem  (4.4) 
Prove that, for any two real numbers 𝑎, 𝑏 

lim
𝑥→0

𝐼a𝑥−𝐼

𝐼b𝑥−𝐼
= 1 , where 𝑎, 𝑏 > 0 & 𝑎, 𝑏 ≠ 1 

Proof 
The direct substitution of the value 𝑥 in the above 
limit conclude that  0

0
 ,so we need to treat it as

follow: 

lim
𝑥→0

𝐼a𝑥 − 𝐼

𝐼b𝑥 − 𝐼
= lim

𝑥→0

𝑙𝑛a[𝐼a𝑥 − 𝐼]
𝑥𝑙𝑛a + 𝑙𝑛𝐼

∗
𝑥𝑙𝑛a + 𝑙𝑛𝐼

𝑙𝑛a
𝑙𝑛b[𝐼b𝑥 − 𝐼]
𝑥𝑙𝑛b + 𝑙𝑛𝐼

∗
𝑥𝑙𝑛b + 𝑙𝑛𝐼

𝑙𝑛b

=
lim
𝑥→𝑥

𝑙𝑛a[𝐼a𝑥 − 𝐼]
𝑥𝑙𝑛a + 𝑙𝑛𝐼

lim
𝑥→𝑥

𝑙𝑛b[𝐼b𝑥 − 𝐼]
𝑥𝑙𝑛b + 𝑙𝑛𝐼

∗
lim
𝑥→0

( 𝑥𝑙𝑛a + 𝑙𝑛𝐼)

lim (
𝑥→0

𝑥𝑙𝑛b + 𝑙𝑛𝐼)
∗

𝑙𝑛b

𝑙𝑛a

(using Th.(4.2) twice (first in numerator second in 
denominator )) 

=
𝑙𝑛a

1+𝑙𝑛𝐼
𝑙𝑛b

1+𝑙𝑛𝐼

∗
𝑙𝑛𝐼

𝑙𝑛𝐼
∗

𝑙𝑛b

𝑙𝑛a
 = 1. 

5 Numerical Examples 

Example (5.1) 

Evaluate the limit lim
𝑥→0

𝐼54𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑙𝑛54

Solution 

lim
𝑥→0

𝐼54𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑙𝑛54

=
4𝑙𝑛5

1+𝑙𝑛𝐼
  (using corollary 4. 2.1) 

Example (5.2) 

Evaluate the limit lim
𝑥→0

𝐼𝑒4𝑥−𝐼

𝐼32𝑥−𝐼

Solution 

lim
𝑥→0

𝐼𝑒4𝑥 − 𝐼

𝐼32𝑥 − 𝐼
= lim

𝑥→0

𝑙𝑛3[𝐼𝑒4𝑥 − 𝐼]

(𝑥 +
𝑙𝑛𝐼
4

)
∗ (𝑥 +

𝑙𝑛𝐼
4

)

𝑙𝑛3[𝐼32𝑥 − 𝐼]

(𝑥 +
𝑙𝑛𝐼

𝑙𝑛32)
∗ (𝑥 +

𝑙𝑛𝐼
𝑙𝑛32)

=

lim
𝑥→0

𝑙𝑛3[𝐼𝑒4𝑥 − 𝐼]

(𝑥 +
𝑙𝑛𝐼
4

)

lim
𝑥→0

𝑙𝑛3[𝐼32𝑥 − 𝐼]

(𝑥 +
𝑙𝑛𝐼

𝑙𝑛32)

∗
lim
𝑥→0

(𝑥 +
𝑙𝑛𝐼
4

)

lim
𝑥→0

(𝑥 +
𝑙𝑛𝐼

𝑙𝑛32)

(using corollary (4.2.3) on numerator & corollary 
(4.2.1) on denominator ) 

=

4
1 + 𝑙𝑛𝐼

2𝑙𝑛3
1 + 𝑙𝑛𝐼

∗

𝑙𝑛𝐼
4

𝑙𝑛𝐼
𝑙𝑛32

= 1. 

5 Conclusion 

In this article, we introduced for the first time 
a new version of binomial factorial theorem 
containing the literal indeterminacy (I). This 
theorem enhances three corollaries. As a 
conjecture for indeterminate forms in classical 
calculus, ten of new indeterminate forms in 
Neutrosophic calculus had been constructed. 
Finally, various examples had been solved. 
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Neutrosophic Integer Programming Problem 
Mai Mohamed, Mohamed Abdel-Basset, Abdel Nasser H Zaied, Florentin Smarandache

Abstract. In this paper, we introduce the integer 
programming in neutrosophic environment, by consi-
dering coffecients of problem as a triangulare neutros-
ophic numbers. The degrees of acceptance, indeterminacy 
and rejection of objectives are simultaneously considered. 

The Neutrosophic Integer Programming Problem (NIP) is 
transformed into a crisp programming model, using truth 
membership (T), indeterminacy membership (I), and fal-
sity membership (F) functions as well as single valued 
triangular neutrosophic numbers. To measure the effic-
iency of the model, we solved several numerical examples.

Keywords : Neutrosophic; integer programming; single valued triangular neutrosophic number. 

1 Introduction 

   In linear programming models, decision variables are al-
lowed to be fractional. For example, it is reasonable to ac-
cept a solution giving an hourly production of automobiles 
at 641

2
 , if the model were based upon average hourly pro-

duction. However, fractional solutions are not realistic in 
many situations and to deal with this matter, integer pro-
gramming problems are introduced. We can define integer 
programming problem as a linear programming problem 
with integer restrictions on decision variables. When some, 
but not all decision variables are restricted to be integer, this 
problem called a mixed integer problem and when all deci-
sion variables are integers, it’s a pure integer program. Inte-
ger programming plays an important role in supporting 
managerial decisions. In integer programming problems the 
decision maker may not be able to specify the objective 
function and/or constraints functions precisely. In 1995, 
Smarandache [1-3] introduce neutrosophy which is the 
study of neutralities as an extension of dialectics. Neutro-
sophic is the derivative of neutrosophy and it includes neu-
trosophic set, neutrosophic probability, neutrosophic statis-
tics and neutrosophic logic. Neutrosophic theory means 
neutrosophy applied in many fields of sciences, in order to 
solve problems related to indeterminacy. Although intui-
tionistic fuzzy sets can only handle incomplete information 
not indeterminate, the neutrosophic set can handle both  in-
complete and indeterminate information.[4] Neutrosophic 
sets characterized by three independent degrees as in Fig.1., 
namely truth-membership degree (T), indeterminacy-mem-
bership degree(I),  and falsity-membership degree (F), 

where T,I,F are standard or non-standard subsets of ]-0, 1+[. 
The decision makers in neutrosophic set want to increase the 
degree of truth-membership and decrease the degree of in-
determinacy and falsity membership.  

The structure of the paper is as follows: the next section is a 
preliminary discussion; the third section describes the 
formulation of integer programing problem using the 
proposed model; the fourth section presents some 
illustrative examples to put on view how the approach can 
be applied; the last section summarizes the conclusions and 
gives an outlook for future research. 

2 Some Preliminaries 

2.1 Neutrosophic Set [4] 

Let 𝑋 be a space of points (objects) and 𝑥∈𝑋. A neutro-
sophic set 𝐴 in 𝑋 is defined by a truth-membership function 
(𝑥), an indeterminacy-membership function (𝑥) and a fal-
sity-membership function 𝐹𝐴(𝑥).  (𝑥), 𝐼(𝑥) and 𝐹(𝑥) are real 
standard or real nonstandard subsets of ]0−,1+[. That is 
𝑇𝐴(𝑥):𝑋→]0−,1+[, I𝐴(𝑥):𝑋→]0−,1+[ and F𝐴(𝑥):𝑋→]0−,1+[.  
There is no restriction on the sum of (𝑥), (𝑥) and 𝐹𝐴(𝑥), so 

 0−≤sup(𝑥)≤sup𝐼𝐴(𝑥)≤𝐹𝐴(𝑥)≤3+. 

2.2 Single Valued Neutrosophic Sets (SVNS) [3-4] 
Let 𝑋 be a universe of discourse. A single valued neu-

trosophic set 𝐴 over 𝑋 is an object having the form  
𝐴= {〈𝑥, T(𝑥), I𝐴(𝑥),F𝐴(𝑥)〉:𝑥∈𝑋},          
where T𝐴(𝑥):𝑋→[0,1], I𝐴(𝑥):𝑋→[0,1] and F𝐴(𝑥):𝑋→[0,1] 
with 0≤T𝐴(𝑥)+ I𝐴(𝑥)+F𝐴(𝑥)≤3 for all 𝑥∈𝑋. The intervals T(𝑥), 

Mai Mohamed, Mohamed Abdel-Basset, Abdel Nasser H Zaied, Florentin Smarandache 
(2017). Neutrosophic Integer Programming Problem. Neutrosophic Sets and Systems 15, 3-7 
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I(𝑥) and F𝐴(𝑥) denote the truth-membership degree, the in-
determinacy-membership degree and the falsity member-
ship degree of 𝑥 to 𝐴, respectively.  

In the following, we write SVN numbers instead of sin-
gle valued neutrosophic numbers. For convenience, a SVN 
number is denoted by 𝐴= (𝑎,b,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 
𝑎+𝑏+𝑐≤3. 

Figure 1: Neutrosophication process  

2.3 Complement [5] 

The complement of a single valued neutrosophic set 𝐴 

is denoted by C (𝐴) and is defined by 

𝑇𝑐(𝐴)(𝑥) = 𝐹(𝐴)(𝑥) , 

𝐼𝑐(𝐴)(𝑥)  = 1 − 𝐼(𝐴)(𝑥) , 

  𝐹𝑐(𝐴)(𝑥) = 𝑇(𝐴)(𝑥)              for all 𝑥 in 𝑋 

2.4 Union [5] 

      The union of two single valued neutrosophic sets A and 
B is a single valued neutrosophic set C, written as C = AUB, 
whose truth-membership, indeterminacy membership and
falsity-membership functions are given by 
    𝑇(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝑇(𝐴)(𝑥) ,𝑇(𝐵)(𝑥) ) ,     

  𝐼(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝐼(𝐴)(𝑥) ,𝐼(𝐵)(𝑥) ) , 
 𝐹(𝐶)(𝑥) =  𝑚𝑖𝑛((𝐴)(𝑥) ,𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋   

2.5 Intersection [5] 
      The intersection of two single valued neutrosophic sets 
A and B is a single valued neutrosophic set C, written as  
C = A∩B, whose truth-membership, indeterminacy mem-
bership and falsity-membership functions are given by 
   𝑇(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝑇(𝐴)(𝑥) ,𝑇(𝐵)(𝑥) ) ,        

  𝐼(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝐼(𝐴)(𝑥) ,𝐼(𝐵)(𝑥) ) , 
 𝐹(𝐶)(𝑥) =  𝑚𝑎𝑥((𝐴)(𝑥) ,𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋 

 3 Neutrosophic Integer Programming Problems 
 Integer programming problem with neutrosophic coef-

ficients (NIPP) is defined as the following: 

Maximize Z= ∑ 𝑐�̃�𝑥𝑗
𝑛
𝑗=1

Subject to 

 ∑ aij
~n𝑥𝑗

n
j=1 ≤ 𝑏i     𝑖 = 1,… ,𝑚 ,   (1) 

 𝑥𝑗 ≥ 0,  𝑗 = 1,…𝑛 , 

𝑥𝑗   integer for   𝑗 ∈ {0,1, …𝑛}.

Where 𝑐�̃� , aij~n  are  neutrosophic numbres.

The single valued neutrosophic number (aij~n) is donated by

A=(a,b,c) where a,b,c ∈ [0,1] And a,b,c ≤ 3 

The truth- membership function of  neutrosophic number 

aij
~n is defined as: 

T aij~n(x)={

𝑥−𝑎1 

𝑎2−𝑎1
 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎2−𝑥

𝑎3−𝑎2
 𝑎2 ≤ 𝑥 ≤ 𝑎3

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (2) 

The indeterminacy- membership function of  neutrosophic 

number 𝑎𝑖𝑗𝑛 is defined as: 

I aij~n(x)=

{

𝑥−𝑏1 

𝑏2−𝑏1
 𝑏1 ≤ 𝑥 ≤ 𝑏2

𝑏2−𝑥

𝑏3−𝑏2
 𝑏2 ≤ 𝑥 ≤ 𝑏3

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3) 

And its falsity- membership function of  neutrosophic 
number 𝑎𝑖𝑗~𝑛 is defined as: 

F aij~n(x)=

{

𝑥−𝐶1 

𝐶2−𝐶1
 𝐶1 ≤ 𝑥 ≤ 𝐶2 

𝑏2−𝑥

𝑏3−𝑏2
 𝐶2 ≤ 𝑥 ≤ 𝐶3 

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (4) 

Then we find the maximum and minimum values of the 
objective function for truth-membership, indeterminacand 
falsity membership as follows: 

𝑓𝑚𝑎𝑥 = max{𝑓(𝑥𝑖
∗  )} and 𝑓𝑚𝑖𝑛 =min{𝑓(𝑥𝑖∗  )} where 1≤

𝑖 ≤ 𝑘 
𝑓𝑚𝑖𝑛=
𝐹 𝑓𝑚𝑖𝑛

𝑇 and  𝑓𝑚𝑎𝑥=𝐹 𝑓𝑚𝑎𝑥
𝑇 − 𝑅(𝑓𝑚𝑎𝑥

𝑇 − 𝑓𝑚𝑖𝑛
𝑇 )
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𝑓𝑚𝑎𝑥=
𝐼 𝑓𝑚𝑎𝑥

𝐼 𝑎𝑛𝑑 𝑓𝑚𝑖𝑛=
𝐼 𝑓𝑚𝑖𝑛

𝐼 − 𝑆(𝑓𝑚𝑎𝑥
𝑇 − 𝑓𝑚𝑖𝑛

𝑇 )
Where R ,S are predetermined real number in (0,1) 
The truth membership, indeterminacy membership, falsity 
membership of objective function as follows: 
𝑇𝑓(𝑥) = 

{

1  𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛 
𝑓𝑚𝑎𝑥−𝑓(𝑥)

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
      𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥 

0  𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥       

  (5) 

𝐼𝑓(𝑥) = 

{

0   𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛       

𝑓(𝑥) − 𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛
 𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥  (6) 

0   𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥       

𝐹𝑓(𝑥) =

 {

0  𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛 
𝑓(𝑥)−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
 𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥 

 1  𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥 

 (7) 

The neutrosophic set of the 𝑗𝑡ℎ  decision variable 𝑥𝑗 is
defined as: 

𝑇𝑥𝑗
(𝑥) =

 { 

 1        𝑖𝑓     𝑥𝑗 ≤ 0                      
𝑑𝑗−𝑥𝑗

𝑑𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗    (8)                        

0  𝑖𝑓   𝑥𝑗  > 𝑑𝑗        

           

𝐹𝑥𝑗
(𝑥)

=

{

0        𝑖𝑓     𝑥𝑗 ≤ 0 
𝑥𝑗

𝑑𝑗 + 𝑏𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗      (9)  

1  𝑖𝑓   𝑥𝑗  > 𝑑𝑗  

 

𝐼𝑗 
(𝑥)

=

{

0  𝑖𝑓    𝑥𝑗 ≤ 0  (10) 

𝑥𝑗 − 𝑑𝑗

𝑑𝑗 + 𝑏𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗

 0  𝑖𝑓   𝑥𝑗  > 𝑑𝑗  

Where 𝑑𝑗 , 𝑏𝑗 are integer numbers.

4 Neutrosophic Optimization Model of integer pro-
gramming problem 

In our neutrosophic model we want to maximize the de-
gree of acceptance and minimize the degree of rejection and 
indeterminacy of the neutrosophic objective function and 
constraints. Neutrosophic optimization model can be de-
fined as: 

 𝑚𝑎𝑥𝑇(𝑥)

 𝑚𝑖𝑛𝐹(𝑥)

 𝑚𝑖𝑛𝐼(𝑥)

  Subject to 
 𝑇(𝑋) ≥ 𝐹(𝑥)

  𝑇(𝑋) ≥ 𝐼(𝑥)

 0 ≤ 𝑇(𝑋) + 𝐼(𝑥) + 𝐹(𝑥) ≤ 3          (11) 
  𝑇(𝑋),     𝐼(𝑋) ,    𝐹(𝑋) ≥ 0       

 𝑥 ≥ 0  , integer. 
Where 𝑇(𝑥). 𝐹(𝑥), 𝐼(𝑥)denotes the degree of acceptance,
 rejection and indeterminacy of 𝑥 respectively. 

The above problem is equivalent to the following: 
𝑚𝑎𝑥 𝛼,  𝑚𝑖𝑛 𝛽 , 𝑚𝑖𝑛 𝜃 
Subject to      
𝛼 ≤ 𝑇(𝑥)
𝛽 ≤ 𝐹(𝑥)
𝜃 ≤ 𝐼(𝑥)
 𝛼 ≥ 𝛽 
 𝛼 ≥ 𝜃 
0≤  𝛼 +  𝛽 +  𝜃 ≤ 3                                                 (12) 
 𝑥 ≥ 0  , integer. 

Where  𝛼 denotes the minimal acceptable degree, 𝛽 denote 
the maximal degree of rejection and 𝜃 denote maximal de-
gree of indeterminacy. 

The neutrosophic optimization model can be changed 
into the following optimization model: 

𝑚𝑎𝑥(𝛼 −  𝛽 −  𝜃)        
Subject to 
𝛼 ≤ 𝑇(𝑥)                                                                    (13)
𝛽 ≥ 𝐹(𝑥)
𝜃 ≥ 𝐼(𝑥)
 𝛼 ≥ 𝛽 
  𝛼 ≥ 𝜃 
0≤  𝛼 +  𝛽 +  𝜃 ≤ 3 
𝛼, 𝛽, 𝜃 ≥ 0      
  𝑥 ≥ 0  , integer. 
The previous model can be written as: 
𝑚𝑖𝑛 (1-  𝛼) 𝛽 𝜃 
Subject to 
𝛼 ≤ 𝑇(𝑥)
𝛽 ≥ 𝐹(𝑥)
𝜃 ≥ 𝐼(𝑥)
 𝛼 ≥ 𝛽 
  𝛼 ≥ 𝜃 
0≤  𝛼 +  𝛽 +  𝜃 ≤ 3                                               (14) 

 𝑥 ≥ 0 , integer. 

Florentin Smarandache (author and editor) Collected Papers, XII

306



 5 The Algorithms for Solving Neutrosophic inte-
ger Programming Problem (NIPP) 

5.1 Neutrosophic Cutting Plane Algorithm 

Step 1: Convert neutrosophic integer programming problem 
to its crisp model by using the following method: 
By defining a method to compare any two single valued triangular 
neutrosophic numbers which is based on the score function and the 
accuracy function. Let �̃� = 〈(𝑎1, 𝑏1, 𝑐1 ), 𝑤�̃� , 𝑢�̃�, 𝑦�̃� 〉 be a single
valued triangular neutrosophic number, then 

𝑆(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� − 𝜆�̃�)  (15) 

and 
𝐴(�̃�) =

1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� + 𝜆�̃�)  (16) 

is called the score and accuracy degrees of �̃�, respectively. The 
neutrosophic integer programming NIP can be represented by crisp 
programming model using truth membership, indeterminacy 
membership, and falsity membership functions and the score and 
accuracy degrees of ã, at equations (15) or (16). 

Step 2: Create the decision set which include the highest 
degree of truth-membership and the least degree of falsity 
and indeterminacy memberships. 

Step 3:  Solve the problem as a linear programming problem 
and ignore integrality. 

Step 4:  If the optimal solution is integer, then it’s right. 
Otherwise, go to the next step. 

Step 5: Generate a constraint which is satisfied by all inte-
ger solutions and add this constraint to the problem. 

Step 6: Go to step 1. 

5.2 Neutrosophic Branch and Bound Algorithm 

Step 1: Convert neutrosophic integer programming problem 
to its crisp model by using the following method: 
By defining a method to compare any two single valued triangular 
neutrosophic numbers which is based on the score function and the 
accuracy function. Let �̃� = 〈(𝑎1, 𝑏1, 𝑐1 ), 𝑤�̃� , 𝑢�̃�, 𝑦�̃� 〉 be a single
valued triangular neutrosophic number, then 

𝑆(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� − 𝜆�̃�)  (15) 

and 
𝐴(�̃�) =

1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� + 𝜆�̃�)  (16) 

is called the score and accuracy degrees of �̃�, respectively. The 
neutrosophic integer programming NIP can be represented by crisp 
programming model using truth membership, indeterminacy 

membership, and falsity membership functions and the score and 
accuracy degrees of ã, at equations (15) or (16). 

Step 2: Create the decision set which include the highest 
degree of truth-membership and the least degree of falsity 
and indeterminacy memberships. 

Step 3:  At the first node let the solution of linear program-
ming model with integer restriction as an upper bound and 
the rounded-down integer solution as a lower bound. 

Step 4: For branching process, we select the variable with 
the largest fractional part.  Two constrains are obtained after 
the branching process, one for≤ and the other is ≥ con-
straint. 

Step 5: Create two nodes for the two new constraints. 

Step 6: Solve the model again, after adding new constraints 
at each node. 

Step 7: The optimal integer solution has been reached, if the 
feasible integer solution has the largest upper bound value 
of any ending node. Otherwise return to step 4. 

The previous algorithm is for a maximization model.  For a 
minimization model, the solution of linear programming 
problem with integer restrictions are rounded up and upper 
and lower bounds are reversed. 

6 Numerical Examples 

To measure the efficiency of our proposed model we 
solved many numerical examples. 

6.1 Illustrative Example #1 

𝑚𝑎𝑥 5̃𝑥1 + 3̃𝑥2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

4̃𝑥1 + 3̃𝑥2 ≤ 12̃

1̃𝑥1 + 3̃𝑥2 ≤ 6̃
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

where 
5̃ =  〈(4,5,6 ), 0.8, 0.6, 0.4 〉 
3̃ =  〈(2.5,3,3.5 ), 0.75, 0.5, 0.3 〉 
4̃ =  〈(3.5,4,4.1 ), 1, 0.5, 0.0 〉 
3̃ =  〈(2.5,3,3.5 ), 0.75, 0.5, 0.25 〉 
1̃ =  〈(0,1,2 ), 1, 0.5, 0 〉 
3̃ =  〈(2.8,3,3.2 ), 0.75, 0.5, 0.25 〉 
12̃ =  〈(11,12,13 ), 1, 0.5, 0 〉

6̃ =  〈(5.5,6,7.5 ), 0.8, 0.6, 0.4 〉 

Then the neutrosophic model converted to the crisp model 
by using Eq.15 , Eq.16.as follows : 
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max    5.6875𝑥1 + 3.5968𝑥2

subject to     

4.3125𝑥1 + 3.625𝑥2 ≤ 14.375
0.2815𝑥1 + 3.925𝑥2 ≤ 7.6375

𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

The optimal solution of the problem is 𝑥∗ = (3,0)   with 
optimal objective value 17.06250. 

6.2 Illustrative Example #2 
𝑚𝑎𝑥    25̃𝑥1 + 48̃𝑥2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     

15𝑥1 + 30𝑥2 ≤ 45000
24𝑥1 + 6𝑥2 ≤ 24000
21𝑥1 + 14𝑥2 ≤ 28000
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

where 
25̃ =  〈(19,25,33 ), 0.8,0.5,0 〉; 
48̃ =  〈(44,48,54 ), 0.9,0.5,0 〉

Then the neutrosophic model converted to the crisp model 
as : 
max    27.8875𝑥1 + 55.3𝑥2

subject to     

15𝑥1 + 30𝑥2 ≤ 45000
24𝑥1 + 6𝑥2 ≤ 24000
21𝑥1 + 14𝑥2 ≤ 28000
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

The optimal solution of the problem is 𝑥∗ = (500,1250)  
with optimal objective value 83068.75. 

7 Conclusions and Future Work 

     In this paper, we proposed an integer programming 
model based on  neutrosophic environment, simultaneously 
considering the degrees of acceptance, indeterminacy and 
rejection of objectives, by proposed model for solving 
neutrosophic integer programming problems (NIPP). In the 
model, we maximize the degrees of acceptance and 
minimize indeterminacy and rejection of objectives. NIPP 
was transformed into a crisp programming model using 
truth membership, indeterminacy membership, falsity 
membership and score functions.  We also give numerical 
examples to show the efficiency of the proposed method. 
Future research directs to studying the duality theory of 
integer programming problems based on Neutrosophic. 
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1 Introduction.

The paper extends the fuzzy modal logic [1, 2, and 
4], fuzzy environment [3] and neutrosophic sets, 
numbers and operators [5 – 12], together with the last 
developments of the neutrosophic environment 
{including (t, i, f)-neutrosophic algebraic structures, 
neutrosophic triplet structures, and neutrosophic 
overset / underset / offset} [13 - 15] passing through 
the symbolic neutrosophic logic [16], ultimately to 
neutrosophic modal logic. 

All definitions, sections, and notions introduced in 
this paper were never done before, neither in my 
previous work nor in other researchers’. 

Therefore, we introduce now the Neutrosophic 
Modal Logic and the Refined Neutrosophic Modal 
Logic.  

Then we can extend them to Symbolic 
Neutrosophic Modal Logic and Refined Symbolic 
Neutrosophic Modal Logic, using labels instead of 
numerical values. 

There is a large variety of neutrosophic modal 
logics, as actually happens in classical modal logic too. 
Similarly, the neutrosophic accessibility relation and 
possible neutrosophic worlds have many 
interpretations, depending on each particular 
application. Several neutrosophic modal applications 
are also listed. 

Due to numerous applications of neutrosophic 
modal logic (see the examples throughout the paper), 
the introduction of the neutrosophic modal logic was 
needed. 

Neutrosophic Modal Logic is a logic where some 
neutrosophic modalities have been included. 

Let 𝒫 be a neutrosophic proposition. We have the 
following types of neutrosophic modalities: 

A) Neutrosophic Alethic Modalities (related to
truth) has three neutrosophic operators: 

i. Neutrosophic Possibility: It is neutrosophic-
ally possible that 𝒫. 

ii. Neutrosophic Necessity: It is neutrosophic-
ally necessary that 𝒫. 

iii. Neutrosophic Impossibility: It is neutrosoph-
ically impossible that 𝒫. 

B) Neutrosophic Temporal Modalities (related
to time) 

It was the neutrosophic case that 𝒫. 
It will neutrosophically be that 𝒫. 
And similarly: 
It has always neutrosophically been that 𝒫. 
It will always neutrosophically be that 𝒫. 
C) Neutrosophic Epistemic Modalities (related

to knowledge): 
It is neutrosophically known that 𝒫. 
D) Neutrosophic Doxastic Modalities (related

to belief): 
It is neutrosophically believed that 𝒫. 
E) Neutrosophic Deontic Modalities:
It is neutrosophically obligatory that 𝒫.
It is neutrosophically permissible that 𝒫.

2 Neutrosophic Alethic Modal Operators 
The modalities used in classical (alethic) modal 

logic can be neutrosophicated by inserting the indeter-
minacy. We insert the degrees of possibility and 
degrees of necessity, as refinement of classical modal 
operators. 

3 Neutrosophic Possibility Operator 
The classical Possibility Modal Operator « ◊ 𝑃 » 

meaning «It is possible that P» is extended to 
Neutrosophic Possibility Operator: ◊𝑁 𝒫  meaning

Neutrosophic Modal Logic
Florentin Smarandache

Abstract: We introduce now for the first time the 
neutrosophic modal logic. The Neutrosophic Modal Logic 
includes the neutrosophic operators that express the 
modalities. It is an extension of neutrosophic predicate 
logic and of neutrosophic propositional logic.  

Applications of neutrosophic modal logic are to 
neutrosophic modal metaphysics. Similarly to classical 
modal logic, there is a plethora of neutrosophic modal 
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«It is (t, i, f)-possible that 𝒫  », using Neutrosophic 
Probability, where «(t, i, f)-possible» means t % 
possible (chance that 𝒫  occurs), i % indeterminate 
(indeterminate-chance that 𝒫  occurs), and f % 
impossible (chance that 𝒫 does not occur). 

If 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) is a neutrosophic proposition, with 
𝑡𝑝, 𝑖𝑝, 𝑓𝑝 subsets of [0, 1], then the neutrosophic truth-
value of the neutrosophic possibility operator is: 

◊𝑁 𝒫 = (sup(𝑡𝑝), inf(𝑖𝑝), inf(𝑓𝑝)),

which means that if a proposition P is 𝑡𝑝  true, 𝑖𝑝 
indeterminate, and 𝑓𝑝  false, then the value of the 
neutrosophic possibility operator ◊𝑁 𝒫  is: sup(𝑡𝑝) 
possibility, inf(𝑖𝑝)  indeterminate-possibility, and 
inf(𝑓𝑝) impossibility. 

For example. 

Let P = «It will be snowing tomorrow». 

According to the meteorological center, the 
neutrosophic truth-value of 𝒫 is: 

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}), 

i.e. [0.5, 0.6]  true, (0.2, 0.4)  indeterminate, and
{0.3, 0.5} false.

Then the neutrosophic possibility operator is: 

◊𝑁 𝒫 =
(sup[0.5, 0.6], inf(0.2, 0.4), inf{0.3, 0.5}) =
(0.6, 0.2, 0.3), 

i.e. 0.6 possible, 0.2 indeterminate-possibility, and 0.3
impossible.

4 Neutrosophic Necessity Operator 
The classical Necessity Modal Operator « □𝑃 » 

meaning «It is necessary that P» is extended to 
Neutrosophic Necessity Operator: □𝑁𝒫 meaning «It 
is (t, i, f)-necessary that 𝒫  », using again the 
Neutrosophic Probability, where similarly «(t, i, f)-
necessity» means t % necessary (surety that 𝒫 occurs), 
i % indeterminate (indeterminate-surety that 𝒫 occurs), 
and f % unnecessary (unsurely that 𝒫 occurs). 

If 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) is a neutrosophic proposition, with 
𝑡𝑝, 𝑖𝑝, 𝑓𝑝 subsets of [0, 1], then the neutrosophic truth 
value of the neutrosophic necessity operator is: 

□𝑁𝒫 = (inf(𝑡𝑝), sup(𝑖𝑝), sup(𝑓𝑝)),

which means that if a proposition 𝒫  is 𝑡𝑝  true, 𝑖𝑝 
indeterminate, and 𝑓𝑝  false, then the value of the 
neutrosophic necessity operator □𝑁𝒫  is: inf(𝑡𝑝) 
necessary, sup(𝑖𝑝)  indeterminate-necessity, and 
sup(𝑓𝑝) unnecessary. 

Taking the previous example: 

𝒫  = «It will be snowing tomorrow»,  with 
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) , then the 
neutrosophic necessity operator is: 

□𝑁𝒫 =
(inf[0.5, 0.6], sup(0.2, 0.4), sup{0.3, 0.5}) =
(0.5, 0.4, 0.5), 

i.e. 0.5 necessary, 0.4 indeterminate-necessity, and
0.5 unnecessary. 

5 Connection between Neutrosophic
Possibility Operator and Neutrosophic
Necessity Operator. 

In classical modal logic, a modal operator is 
equivalent to the negation of the other: 

◊ 𝑃 ↔ ¬□¬𝑃,

□𝑃 ↔ ¬ ◊ ¬𝑃.

In neutrosophic logic one has a class of
neutrosophic negation operators. The most used one is: 

¬
𝑁𝑃(𝑡, 𝑖, 𝑓) = �̅�(𝑓, 1 − 𝑖, 𝑡),

where t, i, f are real subsets of the interval [0, 1]. 

Let’s check what’s happening in the neutrosophic 
modal logic, using the previous example. 

One had: 

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}), 

then 
¬
𝑁𝒫 = �̅�({0.3, 0.5}, 1 − (0.2, 0.4), [0.5, 0.6]) =

�̅�({0.3, 0.5}, 1 − (0.2, 0.4), [0.5, 0.6]) =
�̅�({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]). 

Therefore, denoting by ↔
𝑁

 the neutrosophic equiv-
alence, one has: 
¬
𝑁

□
𝑁

¬
𝑁𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

↔
𝑁

 It is not neutrosophically necessary that «It will 
not be snowing tomorrow» 

↔
𝑁

 It is not neutrosophically necessary that 
�̅�({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6])

↔
𝑁

 It is neutrosophically possible that 
¬
𝑁�̅�({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6])

↔
𝑁

 It is neutrosophically possible that 
𝒫([0.5, 0.6], 1 − (0.6, 0.8), {0.3, 0.5})

↔
𝑁

 It is neutrosophically possible that 
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

◊
𝑁

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) =

(0.6, 0.2, 0.3). 
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Let’s check the second neutrosophic equivalence. 
¬
𝑁

◊
𝑁

¬
𝑁𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

↔
𝑁

 It is not neutrosophically possible that «It will 
not be snowing tomorrow» 

↔
𝑁

 It is not neutrosophically possible that 
�̅�({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6])

↔
𝑁

 It is neutrosophically necessary that 
¬
𝑁�̅�({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6])

↔
𝑁

 It is neutrosophically necessary that 
𝒫([0.5, 0.6], 1 − (0.6, 0.8), {0.3, 0.5})

↔
𝑁

 It is neutrosophically necessary that 
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

□
𝑁

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) =

(0.6, 0.2, 0.3). 

6 Neutrosophic Modal Equivalences
Neutrosophic Modal Equivalences hold within a 

certain accuracy, depending on the definitions of 
neutrosophic possibility operator and neutrosophic 
necessity operator, as well as on the definition of the 
neutrosophic negation – employed by the experts 
depending on each application. Under these conditions, 
one may have the following neutrosophic modal 
equivalences: 

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)
↔
𝑁

¬
𝑁

□
𝑁

¬
𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) 

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)
↔
𝑁

¬
𝑁

◊
𝑁

¬
𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) 

For example, other definitions for the neutrosophic 
modal operators may be: 

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (sup(𝑡𝑝), sup(𝑖𝑝), inf(𝑓𝑝)), or

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (sup(𝑡𝑝),
𝑖𝑝

2
, inf(𝑓𝑝))  etc., 

while 

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (inf(𝑡𝑝), inf(𝑖𝑝), sup(𝑓𝑝)), or

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (inf(𝑡𝑝), 2𝑖𝑝 ∩ [0,1], sup(𝑓𝑝))

etc. 

7 Neutrosophic Truth Threshold 
In neutrosophic logic, first we have to introduce a 

neutrosophic truth threshold, 𝑇𝐻 = 〈𝑇𝑡ℎ, 𝐼𝑡ℎ, 𝐹𝑡ℎ〉 , 
where 𝑇𝑡ℎ, 𝐼𝑡ℎ, 𝐹𝑡ℎ are subsets of [0, 1]. We use upper-
case letters (T, I, F) in order to distinguish the 
neutrosophic components of the threshold from those 
of a proposition in general. 

We can say that the proposition 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)  is 
neutrosophically true if: 

inf(𝑡𝑝) ≥ inf(𝑇𝑡ℎ) and sup(𝑡𝑝) ≥ sup(𝑇𝑡ℎ); 

inf(𝑖𝑝) ≤ inf(𝐼𝑡ℎ) and sup(𝑡𝑝) ≤ sup(𝐼𝑡ℎ); 

inf(𝑓𝑝) ≤ inf(𝐹𝑡ℎ) and sup(𝑓𝑝) ≤ sup(𝐹𝑡ℎ). 

For the particular case when all 𝑇𝑡ℎ, 𝐼𝑡ℎ, 𝐹𝑡ℎ  and 
𝑡𝑝, 𝑖𝑝, 𝑓𝑝 are single-valued numbers from the interval 
[0, 1], then one has: 

The proposition 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)  is neutrosophically 
true if: 

𝑡𝑝 ≥ 𝑇𝑡ℎ; 

𝑖𝑝 ≤ 𝐼𝑡ℎ; 

𝑓𝑝 ≤ 𝐹𝑡ℎ. 

The neutrosophic truth threshold is established by 
experts in accordance to each applications. 

8 Neutrosophic Semantics 
Neutrosophic Semantics of the Neutrosophic 

Modal Logic is formed by a neutrosophic frame 𝐺𝑁, 
which is a non-empty neutrosophic set, whose 
elements are called possible neutrosophic worlds, 
and a neutrosophic binary relation ℛ𝑁 , called 
neutrosophic accesibility relation, between the 
possible neutrosophic worlds. By notation, one has: 

〈𝐺𝑁, ℛ𝑁〉. 

A neutrosophic world 𝑤′𝑁 that is neutrosophically 
accessible from the neutrosophic world 𝑤𝑁  is 
symbolized as: 

𝑤𝑁ℛ𝑁𝑤′𝑁. 

In a neutrosophic model each neutrosophic 
proposition 𝒫  has a neutrosophic truth-value 
(𝑡𝑤𝑁

, 𝑖𝑤𝑁
, 𝑓𝑤𝑁

)  respectively to each neutrosophic 
world 𝑤𝑁 ∈ 𝐺𝑁, where 𝑡𝑤𝑁

, 𝑖𝑤𝑁
, 𝑓𝑤𝑁

 are subsets of [0, 
1]. 

A neutrosophic actual world can be similarly 
noted as in classical modal logic as 𝑤𝑁 ∗ . 

Formalization. 

Let 𝑆𝑁  be a set of neutrosophic propositional 
variables. 

9 Neutrosophic Formulas
1) Every neutrosophic propositional variable

𝒫 ∈ 𝑆𝑁 is a neutrosophic formula. 

2) If A, B are neutrosophic formulas, then 
¬
𝑁𝐴,

𝐴
∧
𝑁

𝐵 , 𝐴
∨
𝑁

𝐵 , 𝐴
→
𝑁

𝐵 , 𝐴
↔
𝑁

𝐵 , and ◊
𝑁

𝐴 , □
𝑁

𝐴 , are also 

neutrosophic formulas, where 
¬
𝑁, ∧

𝑁
, ∨

𝑁
, →

𝑁
, ↔

𝑁
, and ◊

𝑁
,
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□
𝑁

represent the neutrosophic negation, neutrosophic 
intersection, neutrosophic union, neutrosophic 
implication, neutrosophic equivalence, and 
neutrosophic possibility operator, neutrosophic 
necessity operator respectively. 

10 Accesibility Relation in a Neutrosophic 
Theory 

Let 𝐺𝑁 be a set of neutrosophic worlds 𝑤𝑁 such that 
each 𝑤𝑁 chracterizes the propositions (formulas) of a 
given neutrosophic theory 𝜏. 

We say that the neutrosophic world 𝑤′𝑁 is accesible 
from the neutrosophic world 𝑤𝑁 , and we write: 
𝑤𝑁ℛ𝑁𝑤′𝑁  or ℛ𝑁(𝑤𝑁, 𝑤′𝑁) , if for any proposition 
(formula) 𝒫 ∈ 𝑤𝑁 , meaning the neutrosophic truth-
value of 𝒫 with respect to 𝑤𝑁 is 

𝒫(𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁), 

one has the neutrophic truth-value of 𝒫 with respect to 
𝑤′𝑁 

𝒫(𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁), 

where 

inf(𝑡𝑝
𝑤′𝑁) ≥ inf(𝑡𝑝

𝑤𝑁)  and sup(𝑡𝑝
𝑤′𝑁) ≥

sup(𝑡𝑝
𝑤𝑁); 

inf(𝑖𝑝
𝑤′𝑁) ≤ inf(𝑖𝑝

𝑤𝑁) and sup(𝑖𝑝
𝑤′𝑁) ≤ sup(𝑖𝑝

𝑤𝑁); 

inf(𝑓𝑝
𝑤′𝑁) ≤ inf(𝑓𝑝

𝑤𝑁)  and sup(𝑓𝑝
𝑤′𝑁) ≤

sup(𝑓𝑝
𝑤𝑁) 

(in the general case when 𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁  and 

𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁 are subsets of the interval [0, 1]). 

But in the instant of 𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁  and 

𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁  as single-values in [0, 1], the above 

inequalities become: 

𝑡𝑝
𝑤′𝑁 ≥ 𝑡𝑝

𝑤𝑁, 

𝑖𝑝
𝑤′𝑁 ≤ 𝑖𝑝

𝑤𝑁, 

𝑓𝑝
𝑤′𝑁 ≤ 𝑓𝑝

𝑤𝑁. 

11 Applications
If the neutrosophic theory 𝜏  is the Neutrosophic 

Mereology, or Neutrosophic Gnosisology, or 
Neutrosophic Epistemology etc., the neutrosophic 
accesibility relation is defined as above. 

12 Neutrosophic n-ary Accesibility Relation
We can also extend the classical binary accesibility 

relation ℛ  to a neutrosophic n-ary accesibility 
relation 

ℛ𝑁
(𝑛), for n integer ≥ 2. 

Instead of the classical 𝑅(𝑤, 𝑤′), which means that 
the world 𝑤′  is accesible from the world 𝑤 , we 
generalize it to: 

ℛ𝑁
(𝑛)

(𝑤1𝑁
, 𝑤2𝑁

, … , 𝑤𝑛𝑁
; 𝑤𝑁

′ ), 

which means that the neutrosophic world 𝑤𝑁
′  is 

accesible from the neutrosophic worlds 
𝑤1𝑁

, 𝑤2𝑁
, … , 𝑤𝑛𝑁

 all together. 

13 Neutrosophic Kripke Frame
𝑘𝑁 = 〈𝐺𝑁, 𝑅𝑁〉  is a neutrosophic Kripke frame, 

since: 
𝑖. 𝐺𝑁 is an arbitrary non-empty neutrosophic set of 

neutrosophic worlds, or neutrosophic states, or 
neutrosophic situations. 

𝑖𝑖. 𝑅𝑁 ⊆ 𝐺𝑁×𝐺𝑁  is a neutrosophic  accesibility 
relation of the neutrosophic Kripke frame. Actually, 
one has a degree of accesibility, degree of 
indeterminacy, and a degree of non-accesibility. 

14 Neutrosophic (t, i, f)-Assignement
The Neutrosophic (t, i, f)-Assignement is a 

neutrosophic mapping 

𝑣𝑁: 𝑆𝑁×𝐺𝑁 → [0,1] ⨯ [0,1] ⨯ [0,1] 

where, for any neutrosophic proposition 𝒫 ∈ 𝑆𝑁  and 
for any neutrosophic world 𝑤𝑁 , one defines:  

𝑣𝑁(𝑃,  𝑤𝑁) = (𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁) ∈ [0,1] ⨯ [0,1] ⨯ [0,1] 

which is the neutrosophical logical truth value of the 
neutrosophic proposition 𝒫 in the neutrosophic world 
𝑤𝑁. 

15 Neutrosophic Deducibility
We say that the neutrosophic formula 𝒫  is 

neutrosophically deducible from the neutrosophic 
Kripke frame 𝑘𝑁, the neutrosophic (t, i, f) – assignment 
𝑣𝑁, and the neutrosophic world 𝑤𝑁, and we write as: 

𝑘𝑁, 𝑣𝑁, 𝑤𝑁 
⊨
𝑁

𝒫. 

Let’s make the notation: 

𝛼𝑁(𝒫; 𝑘𝑁, 𝑣𝑁, 𝑤𝑁) 

that denotes the neutrosophic logical value that the 
formula 𝒫  takes with respect to the neutrosophic 
Kripke frame 𝑘𝑁, the neutrosophic (t, i, f)-assignement 
𝑣𝑁, and the neutrosphic world 𝑤𝑁. 

We define 𝛼𝑁 by neutrosophic induction: 

1. 𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=
𝑣𝑁(𝒫, 𝑤𝑁) if 𝒫 ∈ 𝑆𝑁  and 

𝑤𝑁 ∈ 𝐺𝑁. 

2. 𝛼𝑁 (
¬
𝑁𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)

𝑑𝑒𝑓
=

 
¬
𝑁

[𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁, 𝑤𝑁)]. 

3. 𝛼𝑁 (𝒫
∧
𝑁

𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=

 [𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)]
∧
𝑁

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)] 
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4. 𝛼𝑁 (𝒫
∨
𝑁

𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=

[𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁, 𝑤𝑁)]
∨
𝑁

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁, 𝑤𝑁)] 

5. 𝛼𝑁 (𝒫
→
𝑁

𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=

 [𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)]
→
𝑁

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)] 

6. 𝛼𝑁 (
◊
𝑁

𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)
𝑑𝑒𝑓

=
〈sup, inf, inf〉{𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤′

𝑁), 𝑤′ ∈ 𝐺𝑁 and 𝑤𝑁𝑅𝑁𝑤′𝑁}. 

7. 𝛼𝑁 (
𝑁

𝒫; 𝑘𝑁 , 𝑣𝑁, 𝑤𝑁)
𝑑𝑒𝑓

=
〈inf, sup, sup〉{𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤′

𝑁), 𝑤𝑁
′ ∈ 𝐺𝑁 and 𝑤𝑁𝑅𝑁𝑤′𝑁}. 

8. ⊨
𝑁

𝒫 if and only if 𝑤𝑁 ∗⊨ 𝒫 (a formula 𝒫 is 
neutrosophically deducible if and only if 𝒫  is 
neutrosophically deducible in the actual neutrosophic 
world). 

We should remark that 𝛼𝑁  has a degree of truth 
(𝑡𝛼𝑁

), a degree of indeterminacy (𝑖𝛼𝑁
), and a degree 

of falsehood (𝑓𝛼𝑁
) , which are in the general case 

subsets of the interval [0, 1]. 
Applying 〈sup, inf, inf〉  to 𝛼𝑁  is equivalent to 

calculating: 

〈sup(𝑡𝛼𝑁
), inf(𝑖𝛼𝑁

), inf(𝑓𝛼𝑁
)〉, 

and similarly 

〈inf, sup, sup〉𝛼𝑁 =
〈inf(𝑡𝛼𝑁

), sup(𝑖𝛼𝑁
), sup(𝑓𝛼𝑁

)〉. 

16 Refined Neutrosophic Modal Single-
Valued Logic 

Using neutrosophic (t, i, f) - thresholds, we refine 
for the first time the neutrosophic modal logic as: 

a) Refined Neutrosophic Possibility Operator.

◊1

𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is very little possible (degree of 

possibility 𝑡1) that 𝒫», corresponding to the threshold 
(𝑡1, 𝑖1, 𝑓1), i.e. 0 ≤ 𝑡 ≤ 𝑡1, 𝑖 ≥ 𝑖1, 𝑓 ≥ 𝑓1, for 𝑡1 a very 
little number in [0, 1]; 

◊2

𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is little possible (degree of 

possibility 𝑡2) that 𝒫», corresponding to the threshold 
(𝑡2, 𝑖2, 𝑓2), i.e. 𝑡1 < 𝑡 ≤ 𝑡2, 𝑖 ≥ 𝑖2 > 𝑖1, 𝑓 ≥ 𝑓2 > 𝑓1; 

… … … 

and so on; 
◊𝑚

𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is possible (with a degree of 

possibility 𝑡𝑚) that 𝒫», corresponding to the threshold 
(𝑡𝑚, 𝑖𝑚, 𝑓𝑚), i.e. 𝑡𝑚−1 < 𝑡 ≤ 𝑡𝑚 , 𝑖 ≥ 𝑖𝑚 > 𝑖𝑚−1, 𝑓 ≥
𝑓𝑚 > 𝑓𝑚−1. 

b) Refined Neutrosophic Necessity Operator.

□1

𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is a small necessity (degree of 

necessity 𝑡𝑚+1)  that  𝒫 », i.e. 𝑡𝑚 < 𝑡 ≤ 𝑡𝑚+1 , 𝑖 ≥
𝑖𝑚+1 ≥ 𝑖𝑚, 𝑓 ≥ 𝑓𝑚+1 > 𝑓𝑚; 

□2

𝑁
𝒫(𝑡,𝑖,𝑓) = «It is a little bigger necessity (degree of 

necessity 𝑡𝑚+2)  that  𝒫 », i.e. 𝑡𝑚+1 < 𝑡 ≤ 𝑡𝑚+2 , 𝑖 ≥
𝑖𝑚+2 > 𝑖𝑚+1, 𝑓 ≥ 𝑓𝑚+2 > 𝑓𝑚+1; 

… … … 

and so on; 
□𝑘

𝑁
𝒫(𝑡,𝑖,𝑓) = «It is a very high necessity (degree of 

necessity 𝑡𝑚+𝑘) that 𝒫», i.e. 𝑡𝑚+𝑘−1 < 𝑡 ≤ 𝑡𝑚+𝑘 = 1, 
𝑖 ≥ 𝑖𝑚+𝑘 > 𝑖𝑚+𝑘−1, 𝑓 ≥ 𝑓𝑚+𝑘 > 𝑓𝑚+𝑘−1. 

17 Application of the Neutrosophic 
Threshold 

We have introduced the term of (t, i, f)-physical law, 
meaning that a physical law has a degree of truth (t), a 
degree of indeterminacy (i), and a degree of falsehood 
(f). A physical law is 100% true, 0% indeterminate, 
and 0% false in perfect (ideal) conditions only, maybe 
in laboratory. 

But our actual world (𝑤𝑁 ∗) is not perfect and not 
steady, but continously changing, varying, fluctuating. 

For example, there are physicists that have proved a 
universal constant (c) is not quite universal (i.e. there 
are special conditions where it does not apply, or its 
value varies between (𝑐 − 𝜀, 𝑐 + 𝜀), for 𝜀 > 0 that can 
be a tiny or even a bigger number). 

Thus, we can say that a proposition 𝒫  is 
neutrosophically nomological necessary, if 𝒫  is 
neutrosophically true at all possible neutrosophic 
worlds that obey the (t, i, f)-physical laws of the actual 
neutrosophic world 𝑤𝑁 ∗. 

In other words, at each possible neutrosophic world 
𝑤𝑁, neutrosophically accesible from 𝑤𝑁 ∗, one has: 

𝒫(𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁) ≥ 𝑇𝐻(𝑇𝑡ℎ, 𝐼𝑡ℎ, 𝐹𝑡ℎ), 

i.e. 𝑡𝑝
𝑤𝑁 ≥ 𝑇𝑡ℎ, 𝑖𝑝

𝑤𝑁 ≤ 𝐼𝑡ℎ, and 𝑓𝑝
𝑤𝑁 ≥ 𝐹𝑡ℎ.

18 Neutrosophic Mereology
Neutrosophic Mereology means the theory of the 

neutrosophic relations among the parts of a whole, and 
the neutrosophic relations between the parts and the 
whole. 

A neutrosophic relation between two parts, and 
similarly a neutrosophic relation between a part and 
the whole, has a degree of connectibility (t), a degree 
of indeterminacy (i), and a degree of disconnectibility 
(f). 

19 Neutrosophic Mereological Threshold
Neutrosophic Mereological Threshold is defined 

as: 

(min( ),max( ),max( ))M M M MTH t i f

where 𝑡𝑀 is the set of all degrees of connectibility 
between the parts, and between the parts and the 
whole; 
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𝑖𝑀 is the set of all degrees of indeterminacy between 
the parts, and between the parts and the whole; 

𝑓𝑀  is the set of all degrees of disconnectibility 
between the parts, and between the parts and the whole. 

We have considered all degrees as single-valued 
numbers. 

20 Neutrosophic Gnosisology 
Neutrosophic Gnosisology  is the theory of (t, i, f)-

knowledge, because in many cases we are not able to 
completely (100%) find whole knowledge, but only a 
part of it (t %), another part remaining unknown (f %), 
and a third part indeterminate (unclear, vague, 
contradictory) (i %), where t, i, f are subsets of the 
interval [0, 1]. 

21 Neutrosophic Gnosisological Threshold
Neutrosophic Gnosisological Threshold is 

defined, similarly, as: 

(min( ),max( ),max( ))G G G GTH t i f , 

where 𝑡𝐺 is the set of all degrees of knowledge of all 
theories, ideas, propositions etc., 
𝑖𝐺 is the set of all degrees of indeterminate-knowledge 
of all theories, ideas, propositions etc., 
𝑓𝐺  is the set of all degrees of non-knowledge of all 
theories, ideas, propositions etc. 

We have considered all degrees as single-valued 
numbers. 

22 Neutrosophic Epistemology 
And Neutrosophic Epistemology, as part of the 

Neutrosophic Gnosisology, is the theory of (t, i, f)-
scientific knowledge. 

Science is infinite. We know only a small part of it 
(t %), another big part is yet to be discovered (f %), and 
a third part indeterminate (unclear, vague, 
contradictort) (i %). 

Of course, t, i, f are subsets of [0, 1]. 

23 Neutrosophic Epistemological Threshold
It is defined as: 

(min( ),max( ),max( ))E E E ETH t i f

where 𝑡𝐸  is the set of all degrees of scientific 
knowledge of all scientific theories, ideas, propositions 
etc., 
𝑖𝐸 is the set of all degrees of indeterminate scientific 
knowledge of all scientific theories, ideas, propositions 
etc., 
𝑓𝐸 is the set of all degrees of non-scientific knowledge 
of all scientific theories, ideas, propositions etc. 

We have considered all degrees as single-valued 
numbers. 

24 Conclusions 
We have introduced for the first time the 

Neutrosophic Modal Logic and the Refined 
Neutrosophic Modal Logic.  

Symbolic Neutrosophic Logic can be connected to 
the neutrosophic modal logic too, where instead of 
numbers we may use labels, or instead of quantitative 
neutrosophic logic we may have a quantitative 
neutrosophic logic. As an extension, we may introduce 
Symbolic Neutrosophic Modal Logic and Refined 
Symbolic Neutrosophic Modal Logic, where the 
symbolic neutrosophic modal operators (and the 
symbolic neutrosophic accessibility relation) have 
qualitative values (labels) instead on numerical values 
(subsets of the interval [0, 1]). 

Applications of neutrosophic modal logic are to 
neutrosophic modal metaphysics. Similarly to classical 
modal logic, there is a plethora of neutrosophic modal 
logics. Neutrosophic modal logics is governed by a set 
of neutrosophic axioms and neutrosophic rules. The 
neutrosophic accessibility relation has various 
interpretations, depending on the applications. 
Similarly, the notion of possible neutrosophic worlds 
has many interpretations, as part of possible 
neutrosophic semantics. 
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Uniform Single Valued Neutrosophic Graphs 

S. Broumi, A. Dey, A. Bakali, M. Talea, F. Smarandache, H. Son, D. Koley

Abstract. In this paper, we propose a new concept named the 

uniform single valued neutrosophic graph. An illustrative examp-

le and some properties are examined. Next, we develop an algo-

rithmic approach for computing the complement of the single va-

lued neutrosophic graph. A numerical example is demonstrated 

for computing the complement of single valued neutrosophic 

graphs and uniform single valued neutrosophic graph. 

 Keywords: Single valued neutrosophic sets; Uniform single valued neutrosophic graph; Complement operators 

1   Introduction 

In 1965, Zadeh [7] originally introduced the concept 

of fuzzy set(FSs) which is characterized by a membership 
degree in [0, 1] for each element in the dataset. It may not 

always be true that the degree of non-membership of an 
element in a fuzzy set is equal to 1 minus the truth- mem-

bership degree because there is some kind of hesitation 

degree. On the basis of fuzzy sets, Atanassov [4] added a 
non-membership in the definition of intuitionistic fuzzy 

sets (IFSs) and later Smarandache [2] introduced the neut-
rosophic sets (NSs) with the appearance of the truth-

membership degree (T), the falsehood-membership degree 

(F), and the indeterminacy degree (I).  Wang et al. [3] pro-
posed various set theoretical operators and linked to single 

valued neutrosophic sets The concept of neutrosophic sets 

have been successfully applied to many fields [16]. 

Fuzzy graph has been studied extensively in the past 

years [5,8,9]. Later on, Smarandache [1] proposed neutro-

sophic graphs in some special types such as neutrosophic 
offgraph, neutrosophic bipolar/tripolar/ multipolar graph. 

Presently, works on neutrosophic vertex-edge graphs and 

neutrosophic edge graphs are progressing rapidly. Broumi 

et al.[13] introduced certain types of single valued neutro-

sophic graphs ( in short SVNG) such as strong single va-
lued neutrosophic graph, constant single valued neutroso-

phic graph, complete single valued neutrosophic graph 

with their properties and examples. Neighborhood degree 

of a vertex and closed neighborhood degree of vertex in 
single valued neutrosophic graph were introduced in [15]. 

The necessary and sufficient condition for a single valued  

neutrosophic graph to be an isolated single valued 

neutrosophic graph has been presented in [10]. Other ex-

tensions of the neutrosophic graph have been described in 

[11,12, 14]. 

Up to now, to the best of our knowledge, there has 
been no study on the uniform single valued neutrosophic 

graph. Thus, we propose in this paper a new concept na-

med the uniform single valued neutrosophic graph. An il-
lustrative example and some properties are examined. Next, 

we develop an algorithmic approach for computing the 
complement of the single valued neutrosophic graph. 

The remainder of this paper is organized as follows. In 

Section 2, we present the basic definitions. In section 3, we 

introduce the concept of uniform single valued neutroso-

phic graph and investigate its properties. Section 4 introdu-

ces an algorithm for computing the complement of single 

valued neutrosophic graphs. A numerical example is pre-

sented in Section 5. Finally, Section 6 outlines the conclu-

sion of this paper and suggests several directions for future 

research.  

2 Preliminaries 

 In this section, we have present the basic definitions 

of fuzzy sets, neutrosophic sets, single valued neutrosophic 

sets, fuzzy graphs, uniform fuzzy graphs, complement of 

single valued neutrosophic graph which will be useful to 
our main work in the next sections. 

Definition 1[1]. Let X be the universe of discourse 
and its elements denoted by x. In fuzzy theory, a fuzzy set 

S. Broumi, A. Dey, A. Bakali, M. Talea, F. Smarandache, L. H. Son, D. Koley (2017). 
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A of universe X is defined by the function �����, called

the membership function of set A. 
��: �→[0, 1]  (1) 

For any element x of universe X,�����  equals the

degree, between 0 and 1, to which x is an element of set A, 

This degree represents the membership value or degree of 

membership of element x in set  A. 

Definition 2[1]. Let X  be a space of points  and let x 
∈X. A neutrosophic set A in X is characterized by a truth

membership function T, an indeterminacy membership

function I, and a falsehood membership function F which

are real standard or nonstandard subsets of ]−0,1+[, and T,

I, F: X→]−0,1+[. The neutrosophic set can be represented

as,

A=�	x, T�x�, I�x�, F�x��: x ∈ X�  (4) 

 There is no restriction on the sum of T, I, F, So 

−
0 ≤T�x�+ I�x�+F�x�≤ 3

+
.  (5) 

From philosophical point of view, the neutrosophic 
set takes the value from real standard or non-standard sub-

sets of ]
−
0,1

+
[. Thus it is necessary to take the interval [0,1] 

instead of ]
−
0,1

+
[. For practical applications, it is difficult 

to apply]
−
0,1

+
[ in the real life applications such as enginee-

ring and scientific problems. 

Definition 3[3]. Let X be a space of objects with ge-
neric elements in X denoted by x. A single valued neutro-

sophic set A (SVNS) is characterized by truth-membership 

function T�x� , an indeterminate-membership function
I�x� , and a falsehood-membership function F�x� . For

each point x in X, T�x�, I�x�, F�x�∈[0, 1]. A SVNS A
can be written as, 

A=�	x, T�x�, I�x�, F�x��: x ∈ X�  (6)

Definition 4 [5]. A fuzzy graph is a pair of functions 
G = (σ, µ) where σ is a fuzzy subset of a non empty set V

and μ is a symmetric fuzzy relation on σ. i.e  σ : V → [

0,1] and μ: VxV→[0,1] such that  μ(uv) ≤ σ(u) ⋀ σ(v)  for

all u, v ∈ V where uv denotes the edge between u and v 

and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). σ
is called the fuzzy vertex set of V and μ is called the fuzzy

edge set of E. 

Fig.1. Fuzzy graph 

Remark: The crisp graph �∗ =  (V, E) is a special ca-

se of the fuzzy graph G with each vertex and edge of ( V, 

E) having degree of membership 1 (Fig. 1).

Definition5[6,8]. The complement of a fuzzy graph

G = (σ, µ) is a fuzzy graph �̅  = (��, μ� ) where ��  =σ and
μ�(u,v) = σ(u)∧σ(v)-µ(u,v), ∀ u,v ∈ V.

Definition 6[6,8]. Let G = (σ, µ) be a fuzzy graph on
a crisp graph �∗ = (V, E). Let σ∗={x∈ V	|	σ���> 0}.Then

G is called a uniform fuzzy graph of level %if & (x,y) = %, ∀
(x,y) ∈  (σ∗ × σ∗� and σ���  = %  where % isa positive real
such that  0 <%( ≤1.

Definition 7[15].Let G = (V, E) be a single valued 

neutrosophic graph, then the degree of a vertex�	* is defi-

ned by +,��	*�=+,���=(+-��� ,+.��� ,+/��� ), +,��	*� =
�∑ �2 	�x, y�456 , ∑ 72�x, y�, ∑ 72�x, y�	�	456456 .

Definition 8[15].Let G = (V, E) be a single valued 
neutrosophic graph, then the total degree of a vertex �	* is
defined by 8+,��	*� = +,��� =( 8+-��� , 8+.��� , 8+/��� ),
8+,��	*� = �∑ �2 	�x, y�456 + �����, ∑ 72�x, y� +456
7����, ∑ 72�x, y� + :����	�	456 .

Definition 9[13]. Let G = (V, E) be a single valued 
neutrosophic graph, then the complement of single valued 

neutrosophic graph is defined as 

1. ;�   =V

2.��� (x)=T�x�,  7�<���	= 7����, F���(x�	=F�x� for all x∈V.

3.T=����x, y�=	min	AT�x�, T�y�B − 	T=�x, y�
I=< (x, y)=	max	AI�x�, I�y�B − I=�x, y�and

F=���(x,y)=	max	A	F�x�, F�y�B − F=�x, y�, for all �x, y� ∈ E

 Definition 10[13]. Let G = (V, E) be a single valued 

neutrosophic graph. If +,��	*�= (%(, %E, %F)  for all �	* ∈
V, then the single valued neutrosophic graph is called re-

gular SVNG of degree (%(, %E, %F)
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 Definition 11[13]. Let G = (V, E) be a single valued 
neutrosophic graph. If 8+,��	*�= (%(, %E, %F)  for all �	* ∈
V, then the single valued neutrosophic graph is called To-
tally regular SVNG of degree (%(, %E, %F)

III. Uniform Single Valued Neutrosophic Graph

In this section, we define the concept of uniform sing-

le valued neutrosophic graphs( in short USVNGs). 

Definition 8. Let G = (A, B) be a single valued neut-

rosophic graph where A =(�� , 7� , :�) is a single valued

neutrosophic vertex of G and B is a single valued  neutro-

sophic edge set of G. Let A={x∈ V	|	�����> 0,7����> 0

and :���� > 0}.Then G is called Uniform single valued

neutrosophic  graph of level (%( , %E , %F ) if �2  (x,y) =

%(,7����=%Eand :2(x,y) = %F∀ (x,y) ∈ (V× ;�	and ����� =%(,7���� = %Eand :���� = %F where %(, %Eand %F are some

positive real such that  0 <%(, %E, %F ≤1.

Example 1. Consider an USVNG G= (A,B) on 

V={G(,G(,GF,GH} as shown in Fig.2.

  Fig. 2. USVNG. 

Remark: The complement of an uniform single va-

lued neutrosophic graph is always an empty graph. 

Theorem1. If G = (A, B) is an uniform single valued 

neutrosophic graph of level (%(, %E, %F) then  G is a regu-

lar-USVNG. 

Proof. Let A={x ∈ V	|	����� > 0, 7���� > 0 and

:���� > 0} . Suppose that G is a uniform single valued
neutrosophic graph. Then �2 (x, y) = %(,72 (x, y) = %E and

:2 (x,y) = %F∀  (x,y) ∈  Eand ���K�  = %( , 7��K�  = %E and

:��K� = %F∀ z ∈ V for some real %(, %Eand %F where  0

<%(, %E, %F ≤1.

Let  x ∈ V. Now +,���=(+-���,+.���, +/���)
+,��� = �L �2�x, y�456

,L 72�x, y�,456
L :2�x, y�	�	456

=�∑ %(456 , ∑ %E,456 ∑ %F456 )

=((n-1) %(, (n-1) %E, (n-1) %F)

+,���=((n-1) %(, (n-1) %E, (n-1) %F) ∀ x ∈ V

Therefore, G is regular uniform single valued neutro-

sophic graph. 

Theorem 2. If G = (A, B) is a uniform single valued 

neutrosophic graph of level (%(, %E, %F) then  G is a totally

regular- USVNG. 

Proof. Let A={x ∈ V	|	����� > 0, 7���� > 0 and

:���� > 0} . Suppose that G is a uniform single valued

neutrosophic graph. Then �2 (x, y) = %( ,72 (x, y) = %E and

:2 (x,y) = %F∀  (x,y) ∈  Eand ���K�  = %(  , 7��K�  = %E  and

:��K� = %F∀ z ∈ V for some real %(, %E and %F where  0

<%(, %E, %F ≤1.Let  x ∈ V. Now,

8+,���=(+-��� + �����,+.��� + 7����,+/��� + :����)
8+,��� = �L �2 	�x, y� + �����456

,L 72�x, y�456
+ 7����,L :2 	�x, y� + :����456

�	
=��∑ %(456 � + %(, �∑ %E� + %E,456 �∑ %F� + %F456 )

=((n-1) %(+%(, (n-1) %E+%E, (n-1) %F+%F)

8+,���=(n%(, n %E, n %F) ∀ x ∈ V.

Therefore, G is totally-regular uniform single valued 
neutrosophic graph. 

Theorem 3. If G = (A, B) is a uniform single valued 

neutrosophic graph of level (%(, %E, %F) on �∗=(V, E), then

the order of  G is O(G)= (M%(, M%E,M%F).

Proof: Let A={x ∈ V	|	����� > 0, 7���� > 0 and
:���� > 0} . Suppose that G is a uniform single valued

neutrosophic graph. Then �2 (x, y) = %( ,72 (x, y) = %E and

:2 (x,y) = %F∀  (x,y) ∈  Eand ���K�  = %(  , 7��K�  = %E  and
:��K� = %F∀ z ∈ V for some real %(, %E and %F where  0

< %(, %E, %F ≤1.Let x ∈ V. Now

O���=(O-���,O.���,O/���)

O��� = �L ��	�x�	4∈P
,L 7��x�,L Q�	�x�	4∈P

�	
4∈P

=�∑ %(4∈P , ∑ %E, ∑ %F4∈P4∈P )

Then,O���=(n%(, n %E, n %F).

=�∑ k(S∈T , ∑ kE, ∑ kFS∈TS∈T )

Then,O���=(n%(, n %E, n %F).

Theorem 4.The uniform single valued neutrosophic 

graph is a generalization of uniform fuzzy graph.  

Proof: Straightforward. 
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IV. Computing Complement of Single Valued Neu-
trosophic Graph

     In this section, we present in the last paper, a peudo-

code of an algorithm computing the complement of single 

valued neutrosophic graph. This algorithm has the ability 

of computing the complement of fuzzy graphs, strong in-

tuitionistic fuzzy   graphs, uniform fuzzy graphs and also 

uniform single valued neutrosophic graphs. 

The following flowchart demonstrates the algorithm 

to compute the complement operator is presented in 

Fig.3V.Numerical Example 

In this section, we present an example to compute the 

complements of the uniform single valued neutrosophic 

graph. Consider a graph in Fig.4. 

Fig. 4.A uniform single valued neutrosophic graph 

Using the above pseudo code, the output result for the 
complement of a uniform single valued neutrosophic graph 

is in Fig. 5. 

Fig. 5. The outputs 

 Example 2 Consider a fuzzy graph as shown in Fig.6 

     Fig. 6.Fuzzy graph 

Using the above pseudo code, the output result for the 

complement of fuzzy graph is as follows: 

Example 3 Consider  an uniform intuitionistic  fuzzy 

graph as shown in Fig.7 
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 Fig.7. Uniform Intuitionistic fuzzy graph 

Using the above pseudo code, the output result for the 

complement of uniform intuitionistic fuzzy graph is as fol-

lows 

VI. CONCLUSION

In this paper, we propose a new uniform single va-

lued neutrosophic graph and an algorithm for computing 

its complement. Some theorems of the uniform single va-

lued neutrosophic graph have been examined. The algo-

rithm in this research also enables us to compute the com-

plement of uniform single valued neutrosophic graph. In 

the future, we plan to extended this algorithm for compu-

ting the complement of others variants of single valued 

neutrosophic graphs. 
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 Appendix 

#include<stdio.h> 

#include<conio.h> 

#define max 100 

typedef struct { 

float 

Truth_membership,Indterminate_membership,False_mem

bership; 

}fuzzy; 

fuzzy  

element[max][max],compliment[max][max];//element sto-

re the membership value of vertex.Compliment store the 

value of complimented graph. 

int vertex;//store total number of vertex. 

Florentin Smarandache (author and editor) Collected Papers, XII

320



Florentin Smarandache (author and editor) Collected Papers, XII

321



float vertex_membership[max][6];//store membership va-

lue of vertex. 

void input() 

{ 

int i,origin,destiny;//origin & destiny store the no. of ver-

tex.And i for iteration. 

printf("Please enter no of vertex:"); 

scanf("%d",&vertex); 

for(i=0;i<vertex;i++) 

{ 

printf("Please enter (T,I,F)menbership values of 

vertex:"); 

scanf("%f%f%f",&vertex_membership[i][0],&ver

tex_membership[i][1],&vertex_membership[i][2]);//store 

the membership value of vertex 

if(vertex_membership[i][0]+vertex_membership[i

][1]+vertex_membership[i][2]>=3&&(vertex_membership

[i][0]<=3&&vertex_membership[i][1]&&vertex_members

hip[i][2])) 

{ 

printf("Error Invalid input\n"); 

i--; 

} 

} 

for(i=0;i<vertex*(vertex-1)/2;i++) 

{ 

printf("Please enter the edges (x to y):"); 

scanf("%d%d",&origin,&destiny); 

if(origin>vertex||destiny>vertex||origin<=0||destin

y<=0||destiny==origin) 

{ 

 printf("Error! Invalid input\n"); 

 i--; 

} 

else 

{ 

printf("Please enter (T,I,F)membership values of 

edge:"); 

scanf("%f%f%f",&element[origin-1][destiny-

1].Truth_membership,&element[origin-1][destiny-

1].Indterminate_membership,&element[origin-1][destiny-

1].False_membership);//store th membership value of ed-

ge. 

element[destiny-1][origin 

1].Truth_membership=element[origin-1][destiny-

1].Truth_membership;//store the truth-membership value 

of edge. 

element[destiny-1][origin-

1].Indterminate_membership=element[origin-1][destiny-

1].Indterminate_membership;//store the indterminate-

membership value of edge. 

element[destiny-1][origin-

1].False_membership=element[origin-1][destiny-

1].False_membership;//store the False-membership value 

of edge. 

if(element[origin-1][destiny-

1].Truth_membership+element[origin-1][destiny-

1].Indterminate_membership+element[origin-1][destiny-

1].False_membership>3)//store the membership value of 

edge. 

{ 

printf("Error! Invalid input\n"); 

i--; 

} 

} 

} 

} 

void output() 

{ 

int i,j; 

float maximum,minimum,maximuma; 

printf("The complement of Single valued neutro-

sophic graphs is:\n"); 

for(i=0;i<vertex;i++) 

{ 

for(j=0;j<vertex;j++) 

{ 

if(i==j) 

j++; 

if(vertex_membership[i][0]>vertex_membership[j][0]) 

minimum=vertex_membership[j][0];//find minimum value 

between two vertex. 

else 

minimum=vertex_membership[i][0];//find minimum value 

between two vertex. 

if(vertex_membership[i][1]>vertex_membership[j][1]) 

maximum=vertex_membership[i][1];//find maximum va-

lue between two vertex. 

else 

maximum=vertex_membership[j][1];//find maximum va-

lue between two vertex. 
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if(vertex_membership[i][2]>vertex_membership[j][2]) 

maximuma=vertex_membership[i][2];//find maximum va-

lue between two vertex. 

else 

maximuma=vertex_membership[j][2];//find maximum va-

lue between two vertex. 

compliment[i][j].Truth_membership=minimum-

element[i][j].Truth_membership;//calculating compliment. 

compliment[i][j].Indterminate_membership=maximum-

element[i][j].Indterminate_membership;//calculating 

compliment. 

compliment[i][j].False_membership=maximuma-

element[i][j].False_membership;//calculating compliment. 

} 

 } 

for(i=0;i<vertex-1;i++) 

{ 

for(j=0;j<vertex;j++) 

{ 

if(i==j) 

 j++; 

printf("%d - %d edge membership value= %f %f %f 

\n",i+1,j+1,compliment[i][j].Truth_membership,complime

nt[i][j].Indterminate_membership,compliment[i][j].False_

membership);//printing complimented graph. 

} 

} 

} 

void main() 

{ 

input(); 

output(); 

getch(); 

 } 
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Extension of Crisp Functions on Neutrosophic Sets
Sabu Sebastian, Florentin Smarandache

Abstract. In this paper, we generalize the definition of 
Neutrosophic sets and present a method for extending 

crisp functions on Neutrosophic sets and study some prop-
erties of such extended functions. 

Keywords: Neutrosophic set, Multi-fuzzy set, Bridge function..

1 Introduction

L-fuzzy sets constitute a generalization of the notion of
Zadeh's [26] fuzzy sets and were introduced by Goguen [8] 
in 1967, later Atanassov introduced the notion of the intui-
tionistic fuzzy sets [1] Gau and Buehrer [7] defined vague 
sets. Bustince and Burillo [2] showed that the notion of 
vague sets is the same as that of intuitionistic fuzzy sets. 
Deschrijver and Kerre [5] established the interrelationship 
between the theories of fuzzy sets, L-fuzzy sets, interval val-
ued fuzzy sets, intuitionistic fuzzy sets, intuitionistic L-
fuzzy sets, interval valued intuitionistic fuzzy sets, vague 
sets and gray sets [4]. 

The neutrosophic set (NS) was introduced by F. 
Smarandache [22] who introduced the degree of indetermi-
nacy (i) as independent component in his manuscripts that 
was published in 1998. 

Multi-fuzzy sets [12, 13, 16] was proposed in 2009 by 
Sabu Sebastian as an extension of fuzzy sets [8, 26] in terms 
of multi membership functions. In this paper we generalize 
the definition of neutrosophic sets and introduce extension 
of crisp functions on neutrosophic sets. 

2 Preliminaries

Definition 2.1. [26] Let X be a nonempty set.

A fuzzy set A of X is a mapping A : X → [0, 1],

that is,
A = {(x, µA(x)) : µA(x) is the grade of member-
ship of x in A, x ∈ X}. The set of all the fuzzy
sets on X is denoted by F(X).

Definition 2.2. [8] Let X be a nonempty

ordinary set, L a complete lattice. An L-fuzzy set

on X is a mapping A : X → L, that is the family

of all the L-fuzzy sets on X is just LX consisting of 
all the mappings from X to L.
Definition 2.3. [1] An Intuitionistic Fuzzy Set

on X is a set

A = {〈x, µA(x), νA(x)〉 : x ∈ X},
where µA(x) ∈ [0, 1] denotes the membership 
degree and νA(x) ∈ [0, 1] denotes the non-

membership degree of x in A and

µA(x) + νA(x) ≤ 1,∀x ∈ X.

Definition 2.4. [22]A Neutrosophic Set on X is a
set

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X},
where TA(x) ∈ [0, 1] denotes the truth 
membership degree, IA(x) ∈ [0, 1] denotes the 
indetermi-nancy membership degree and FA(x) ∈ 
[0, 1] denotes the falsity membership degree of x
in A respectively and

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3, ∀x ∈ X.
For single valued neutrosophic logic (T, I, F ),

the sum of the components is: 0 ≤ T +I+F ≤ 3
when all three components are independent; 0 ≤ T
+ I + F ≤ 2 when two components are dependent,

while the third one is independent from them; 0 ≤
T + I + F ≤ 1 when all three components are

dependent.

Definition 2.5. [12, 13, 16]Let X be a nonempty

set, J be an indexing set and {Lj : j ∈ J} a family 
of partially ordered sets. A multi-fuzzy set A in
X is a set :

A = {〈x, (µj (x))j∈J 〉 : x ∈ X, µj ∈ Lj
X , j ∈ J}.

Sabu Sebastian, Florentin Smarandache (2017). Extension of Crisp Functions on Neutrosophic Sets. 
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The indexing set J may be uncountable. The
function µA = (µj )j∈J is called the membership

function of the multi-fuzzy set A and∏
j∈J Lj is called the value domain. 

If  J = {1, 2, ..., n} or the set of all natural numbers, 
then the membership function µA = 〈µ1, µ2, ...〉 is 
a sequence.

In particular, if the sequence of the membership 
function having precisely n-terms and Lj = [0, 
1], for J = {1, 2, ..., n}, then n is called the

dimension and MnFS(X) denotes the set of all 
multi-fuzzy sets in X.

Properties of multi-fuzzy sets, relations on

multi-fuzzy sets and multi-fuzzy extensions of

crisp functions are depend on the order relations

defined in the membership functions. Most of the

results in the initial papers [12, 13, 15, 16, 18] are

based on product order in the membership

functions. The paper [21] discussed other order

relations like dictionary order, reverse dictionary

order on their membership functions.

Let {Lj : j ∈ J} be a family of partially ordered 
sets, and
A = {〈x, (µj (x))j∈J 〉 : x ∈ X,
µj ∈ Lj

X , j ∈ J} and B = {〈x, (νj (x))j∈J 〉 : x ∈ 
X, νj ∈ Lj

X , j ∈ J} be multi-fuzzy sets in a 
nonempty set X. Note that, if the order relation

in their membership functions are either product

order, dictionary order or reverse dictionary

order[16, 21], then;

•A = B if and only if µj (x) = νj (x), ∀x ∈ X and
for all j ∈ J
• A tB = {〈x, (µj(x) ∨j νj(x))j∈J〉 : x ∈ X} and

• A uB = {〈x, (µj(x) ∧j νj(x))j∈J〉 : x ∈ X},

where ∨j and ∧j are the supremum and infimum 
defined in Lj with partial order relation ≤j . Set 
inclusion defined as follows:

• In product order, A ⊂ B if and only if µj (x) <
νj (x), ∀x ∈ X and for all j ∈ J.
• In dictionary order, A ⊂ B if and only if µ1(x) <
ν1(x) or if µ1(x) = ν1(x) and
µ2(x) < ν2(x),∀x ∈ X.

Definition 2.6. Let L be a lattice. A mapping ′ : 
L → L is called an order reversing involution [25],
if for all a, b ∈ L :

1. a ≤ b⇒ b′ ≤ a′;
2. (a′)′ = a.

Definition 2.7. [23] Let ′ : M → M and ′ : L → L 
be order reversing involutions. A mapping h : M
→ L is called an order homomorphism, if it

satisfies the conditions:

1. h(0M ) = 0L;

2. h(∨ai) = ∨h(ai);

3. h−1(b′) = (h−1(b))′,

where h−1 : L→M is defined by, for every b ∈ L,
h−1(b) = ∨{a ∈M : h(a) ≤ b}.

Generalized Zadeh extension of crisp functions

[24] have prime importance in the study of fuzzy

mappings. Sabu Sebastian [16, 13]generalized this

concept as multi-fuzzy extension of crisp

functions and it is useful to map a multi-fuzzy set

into another multi-fuzzy set. In the case of a crisp

function, there exists infinitely many multi-fuzzy

extensions, even though the domain and range of

multi-fuzzy extensions are same.

Definition 2.8. [16] Let f : X → Y and h :
∏
Mi →

∏
Lj be a functions. The multi-fuzzy

extension of f and the inverse of the extension are f :
∏
MX

i → Lj
Y and f−1 : Lj

Y →
∏ ∏ ∏

MX
i

defined by

f(A)(y) =
∨

y=f(x)

h(A(x)), A ∈
∏

Mi
X , y ∈ Y

and ∏
Lj
Y , x ∈ X;∏
Mi →

∏
Lj is called the bridge

f−1(B)(x) = h−1(B(f(x))), B ∈

where h−1 is the upper adjoint [23] of h. The function h :

function of the multi-fuzzy extension of f .
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Remark 2.9. In particular, the multi-fuzzy

extension of a crisp function f : X → Y based on

the bridge function h : Ik → In can be written as f : 
MkFS(X) → MnFS(Y ) and f−1 : MnFS(Y ) → 
MkFS(X), where

f(A)(y) = sup
y=f(x)

h(A(x)), A ∈MkFS(X), y ∈ Y

and

f−1(B)(x) = h−1(B(f(x))), B ∈ MnFS(Y ), x ∈ X. 

In the following section
∏
Mi = 

∏ 
Lj = I3.

Remark 2.10. There exists infinitely many

bridge functions. Lattice homomorphism, order

homomorphism, lattice valued fuzzy lattices and

strong L-fuzzy lattices are examples of bridge

functions.

Definition 2.11. [10] A function t : [0, 1] × [0,

1]→ [0, 1] is a t-norm if ∀a, b, c ∈ [0, 1]:(1) t(a, 1)

= a;

(2) t(a, b) = t(b, a);

(3) t(a, t(b, c)) = t(t(a, b), c);

(4) b ≤ c implies t(a, b) ≤ t(a, c).

Similarly, a t-conorm (s-norm) is a commutative,

associative and non-decreasing mapping s :[0, 1]

× [0, 1] → [0, 1] that satisfies the boundary

condition:

s(a, 0) = a, for all a ∈ [0, 1].

Definition 2.12. [9] A function c : [0, 1] → [0, 1]

is called a complement (fuzzy) operation, if it

satisfies the following conditions:

(1) c(0) = 1 and c(1) = 0,

(2) for all a, b ∈ [0, 1], if a ≤ b, then c(a) ≥ c(b).

Definition 2.13. [9] A t-norm t and a t-conorm

s are dual with respect to a fuzzy complement

operation c if and only if
c(t(a, b)) = s(c(a), c(b))

and

c(s(a, b)) = t(c(a), c(b)),

for all a, b ∈ [0, 1].

Definition 2.14. [9] Let n be an integer greater

than or equal to 2. A function m : [0, 1]n → [0, 1] 
is said to be an aggregation operation for fuzzy

sets, if it satisfies the following conditions:

1. m is continuous;

2. m is monotonic increasing in all its arguments;

3. m(0, 0, ..., 0) = 0;

4. m(1, 1, ..., 1) = 1.

In this section, we generalize the definition of

neutrosophic sets on [0, 1]. Throughout the fol-

lowing sections Xis the universe of discourse and

A ∈ M3FS(X) means A is a multi-fuzzy sets of 
dimension 3 with value domain I3, where I3 = [0, 
1]× [0, 1] × [0, 1]. That is, A ∈ (I3)X .

3 Neutrosophic Sets

Definition 3.1. Let X be a nonempty crisp set

and 0 ≤ α ≤ 3. A multi-fuzzy set A ∈ M3FS(X)is 
called a neutrosophic set of order α, if

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X, 
0 ≤ TA(x) + IA(x) + FA(x) ≤ α}.

Definition 3.2. Let A, B be neutrosophic sets

in X of order 3 and let t, s, m, c be the t-norm, s-
norm, aggregation operation and complement

operation respectively. Then the union,

intersection and complement are given by

1. A
⋃

2. A
⋂B = {〈x, s(TA(x), TB(x)),m(IA(x), IB(x)), t(FA(x), FB(x))〉 : x ∈ X};

B = {〈x, t(TA(x), TB(x)),m(IA(x), IB(x)), s(FA(x), FB(x))〉 : x ∈ X};

3. Ac = {〈x, c(TA(x)), c(IA(x)), c(FA(x))〉 : x ∈ X}.
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4 Extension of crisp functions on neutrosophic 
set using order homomorphism as bridge 
function 

Theorem 4.1. If an order homomorphism h : I3 

→ I3 is the bridge function for the multi-fuzzy

extension of a crisp function f : X → Y , then for

every k ∈ K neutrosophic sets Ak in X and Bk in Y
of order 3;

1. A1 ⊆ A2 implies f(A1) ⊆ f(A2);

2. f(∪Ak) = ∪f(Ak);

3. f(∩Ak) ⊆ ∩f(Ak);

4. B1 ⊆ B2 implies f−1(B1) ⊆ f−1(B2);

5. f−1(∪Bk) = ∪f−1(Bk);

6. f−1(∩Bk) = ∩f−1(Bk);

7. (f−1(B))′ = f−1(B′);

8. A ⊆ f−1(f(A));

9. f(f−1(B)) ⊆ B.

Proof.

1. A1 ⊆ A2 implies A1(x) ≤ A2(x), ∀x ∈ X
and implies

h(A1(x)) ≤ h(A2(x)),∀x ∈ X.
Hence

∨{h(A1(x)) : x ∈ X, 

y = f(x)} ≤ ∨{h(A2(x)) : x ∈ X, 

y = f(x)} and f(A1)(y) ≤ f(A2)(y), 

∀y ∈ Y. That is, f(A1) ⊆ f(A2).

2. For every y ∈ Y,
f(∪Ak)(y) = ∨{h((∪Ak)(x)) : x ∈ X, 
y = f(x)}

= ∨{h(∨Ak(x)) : x ∈ X, y = f(x)}

= ∨{∨k∈Kh(Ak(x)) : x ∈ X, y = f(x)}

= ∨k∈K ∨ {h(Ak(x)) : x ∈ X, y = f(x)}

= ∨k∈Kf(Ak)(y),

thus f(∪Ak) = ∪f(Ak).

3. For every y ∈ Y,
f(∩Ak)(y) = ∨{h((∩Ak)(x)) : x ∈ X,
y = f(x)}

= ∨{h(∧k∈KAk(x)) : x ∈ X, y = f(x)}

≤ ∨{h(Ak(x)) : x ∈ X, y = f(x)},
for each k ∈ K. Hence

f(∩Ak)(y) ≤ ∧k∈K ∨ {h(Ak(x)) : x ∈ X, 
y = f(x)} = ∧k∈Kf(Ak)(y),

thus f(∩Ak) ⊆ ∩f(Ak).

4. B1 ⊆ B2 implies B1(y) ≤ B2(y), ∀y ∈ Y.
Hence

f−1(B1)(x) = h−1(B1(f(x))) ≤ h−1(B2(f(x))) =

 f−1(B2)(x), ∀x ∈ X. 

Therefore, f−1(B1) ⊆ f−1(B2).

5. For every x ∈ X, we have

f−1(∪Bk)(x) = h−1((∪Bk)(f(x))) = h−1(sup Bk(f(x)))

= sup
k∈K

h−1(Bk(f(x))) = sup
k∈K

k∈K

f−1(Bk)(x)

= (∪f−1(Bk))(x).

Hence f−1(∪Bk) = ∪f−1(Bk).

f−1(∩Bk)(x) = h−1((∩Bk)(f(x))) = h−1( inf Bk(f(x)))

= inf
k∈K

h−1(Bk(f(x))) = inf
k∈K

k∈K

f−1(Bk)(x)

= (∩f−1(Bk))(x).

6. For every x ∈ X, we have

Hence f−1(∩Bk) = ∩f−1(Bk).

7. For every x ∈ X,

f−1(B′)(x) = h−1(B′(f(x))) = h−1(B(f(x)))′ = 

(f−1(B))′(x), since f−1(B)(x) = h−1(B(f(x))). 

That is, f−1(B′) = (f−1(B))′.

8. For every x0 ∈ X,

A(x0) ≤ ∨{A(x) : x ∈ X, x ∈ f−1(f(x0)}

≤ h−1(h(∨{A(x) : x ∈ X, x ∈ f−1(f(x0)}))

= h−1(∨{h(A(x)) : x ∈ X, x ∈ f−1(f(x0))})

= h−1(f(A)(f(x0)))

= f−1(f(A))(x0).

9. For every y ∈ Y
f(f−1(B))(y) = sup

y=f(x)

= sup
y=f(x)

h(f−1(B)(x))

h(h−1(B(f(x))))
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Proposition 4.2. If an order homomorphism

h : I3 → I3 is the bridge function for the extension 
of a crisp function f : X → Y , then for any k ∈ K
neutrosophic sets Ak in X and B in Y :

1. f(0X) = 0Y ;

2. f(∪Ak) = ∪f(Ak); and

3. (f−1(B))′ = f−1(B′),

that is, the extension map f is an order
homomorphism.

= h(h−1(B(y)))

≤ B(y).

Hence f(f−1(B)) ⊆ B.
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Computing Operational Matrices in Neutrosophic 
Environments: A Matlab Toolbox 

1 Introduction

Said Broumi, Le Hoang Son, Assia Bakali, Mohamed Talea, Florentin Smarandache, 
Ganeshsree Selvachandran

Said Broumi, Le Hoang Son, Assia Bakali, Mohamed Talea, Florentin Smarandache, 
Ganeshsree Selvachandran (2017). Computing Operational Matrices in Neutrosophic 
Envioraments: A Matlab Toolbox. Neutrosophic Sets and Systems 18, 58-66
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2 Fundamental and Basic Concepts 

∠

0 .  

+ , + , + ,+ ,∼ ϒ≅ ∠
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+ , + , + ,
+ , + , + ,0 .∞ . . ∞

⊥ 
0 .  

≅ ≅

∩ ≅ . 0

∅ ≅ . 0 . 0
ο ο οο ≅ 0 0

ο ο ο ο≅ 0 0 0 0ο ο ο Α

≅

. 0 0
≅

.
≅

≅ 0

≅

≅ ≅

≅ ≅

≅ ? Α ∠
≅ ? Α ∠
≅ ? Α ∠
≅ ? Α ∠

≅ ? Α ∠
≅ ? Α ∠
≅ ? Α ∠

≅ ? Α ∠

III. Computing procedures for set-theoretic opera-
tions 

≠
≠
≠

Function nm_out=nm(varargin); %single 
valued neutrosophic matrix class con-
structor. 

%A = nm(Am,Ai,An) creates a single val-
ued neutrosophic matrix 

% with membership degrees from matrix 
Am 

% indeterminate membership degrees from 
matrix Ai 

%   and non-membership degrees from Ma-
trix An. 

% If the new matrix is not neutrosophic 
i.e. Am(i,j)+Ai(i,j+An(i,j)>3

% appears warning message, but the new 
object will be constructed. 

If 

length(varargin)==3 

Am = varargin{1}; % Cell array indexing 

Ai = varargin{2}; 

An = varargin{3}; 

end 

nm_.m=Am; 

nm_.i=Ai; 

nm_.n=An; 

nm_out=class(nm_,'im'); 

if ~checknm(nm_out) 
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disp('Warning! The created new object 
is NOT a Single valued neutrosophic ma-
trix') 

end

3.2. Determining complement of a single-valued 
neutrosophic matrix 

Function At=complement1(A); 

% complement of type1 single valued 
neutrosophic matrix A  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=A.n;

a.i=A.i;

a.n=A.m;

At=nm(a.m,a.i,a.n);

Function At=complement2(A); 

% complement of type2 single valued 
neutrosophic matrix A  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=1-A.m;

a.i=1-A.i;

a.n=1-A.n;

At=nm(a.m,a.i,a.n); 

Function At=maxminmin(A,B); 

% maxminmin of two single valued neu-
trosophic matrix A and B  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

%"B" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=max(A.m,B.m);

a.i=min(A.i,B.i);

a.n=min(A.n,B.n);

At=nm(a.m,a.i,a.n); 

Function At=minmaxmax(A,B); 

% minmaxmax of two single valued neu-
trosophic matrix A and B  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

%"B" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=min(A.m,B.m);

a.i=max(A.i,B.i);

a.n=max(A.n,B.n);

At=nm(a.m,a.i,a.n); 

Function At=power(A,k); 
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%power of single valued neutrosophic 
matrix A  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

for i =2 :k 

a.m=(A.m).^k;

a.i=(A.i).^k;

a.m=(A.m).^k;

At=nm(a.m,a.i,a.m); 

end 

Function At=softadd(A,B); 

% addition operations of two single 
valued neutrosophic soft  matrix A and 
B 

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=max(A.m,B.m);

a.i=(A.i+B.i)/2;

a.n=min(A.n,B.n);

At=nm(a.m,a.i,a.n); 

softsub

Function At=softsub(A,B); 

% function st=disp_intui(A); 

% substraction operations of two single 
valued neutrosophic soft  matrix A and 
B 

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=min(A.m,B.n);

a.i=(A.i+B.i)/2;

a.n=max(A.n,B.m);

At=nm(a.m,a.i,a.n);

Function At=transpose(A); 

% transpose Single valued neutrosophic 
matrix A  

% "A" have to be single valued neutro-
sophic matrix - "nm" object: 

a.m=(A.m)';

a.i=(A.i)';

a.n=(A.n)';

At=nm(a.m,a.i,a.n);

VI. NUMERICAL EXAMPLES
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A=

>>complement2(A)

% This command returns the complement2 

ans = 

<1.00, 0.00, 1.00><0.50, 0.70, 0.80><0.50, 0.80, 0.70> 

<0.70, 0.70, 0.60><1.00, 0.00, 1.00><0.90, 0.60, 0.50> 

<0.70, 0.90, 0.40><0.90, 0.50, 0.90><1.00, 0.00, 1.00> 

<0.90, 0.90, 0.70><0.80, 0.50, 0.50><0.90, 0.30, 0.50>

A=

B=
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>>softadd(A,B)

ans = 

<0.00, 0.50, 0.00><0.50, 0.40, 0.20><0.50, 0.30, 0.30> 

<0.40, 0.30, 0.30><0.00, 0.50, 0.00><0.10, 0.45, 0.40> 

<0.30, 0.45, 0.10><0.20, 0.30, 0.10><0.00, 0.50, 0.00> 

<0.30, 0.20, 0.10><0.30, 0.35, 0.30><0.10, 0.55, 0.50> 

>>softsub(A,B)

 % 
 

ans = 

<0.00, 0.50, 0.00><0.40, 0.40, 0.40><0.30, 0.30, 0.30> 

<0.30, 0.30, 0.40><0.00, 0.50, 0.00><0.10, 0.45, 0.50> 

<0.10, 0.45, 0.60><0.10, 0.30, 0.20><0.00, 0.50, 0.00> 

<0.10, 0.20, 0.30><0.20, 0.35, 0.50><0.10, 0.55, 0.50>

>>transpose(A)

ans = 

<0.00, 1.00, 0.00><0.30, 0.30, 0.40><0.30, 0.10, 0.60><0.10, 0.10, 0.30> 

<0.50, 0.30, 0.20><0.00, 1.00, 0.00><0.10, 0.50, 0.10><0.20, 0.50, 0.50> 

<0.50, 0.20, 0.30><0.10, 0.40, 0.50><0.00, 1.00, 0.00><0.10, 0.70, 0.50
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 The Basic Notions for (over, off, under) 
Neutrosophic Geometric Programming 

Problems 
Huda E. Khalid, Florentin Smarandache, Ahmed K. Essa     

Abstract. Neutrosophic (over, off, under) set and logic were defined for the first time in 1995 by 
Florentin Smarandache, and presented during 1995-2018 to various national and international 
conferences and seminars. The (over, off, under) neutrosophic geometric programming was put forward 
by Huda et al. in (2016) [8], in an attempt to define a new type of geometric programming using (over, 
off, under) neutrosophic less than or equal to. This paper completes the basic notions of (over, off, 
under) neutrosophic geometric programming illustrating its convexity condition, and its 
decomposition 
theorems. The definitions of (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 and strong (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 are introduced, and some of
their important properties are proved. 

Keyword: Neutrosophic Set (NS), Neutrosophic Geometric Programming (NGP), (Over, Off, Under) 
Neutrosophic Convex Set, (sleeves, neut-sleeves, anti-sleeves) of Neutrosophic Sets, Ideal Sleeves, 
(α, β, γ) − cut, Strong (α, β, γ) − cut , Excluded Middle Law, Decomposition Theorems; 

Introduction 
B. Y. Cao set up the mathematical fundamentals of fuzzy geometric programming (FGP) [1], and 
introduced it at the second IFSA conference, in 1987, in (Tokyo). The formulation and uniqueness of 
the maximum solution of fuzzy neutrosophic geometric programming in the type of relational equations 
were firstly introduced by H.E. Khalid [14], later there was a novel method for finding the minimum 
solution in the same fuzzy neutrosophic relational equations on geometric programming presented on 
2016  [15]. The most important paper which related with the basic role of this paper which regarded as 
the first attempt to present the notion of (over, off, under) neutrosophic less than or equal in geometric 
programming was established by Florentin S. and Huda E. [8]. The NGP method has been admitted by 
specialists and created a new branch of neutrosophic mathematics. Inspired by Smarandache’s 
neutrosophic sets theory and (over, off, under) neutrosophic set theory [2, 5, 6], neutrosophic geometric 
programming emerges from the combination of neutrosophic sets with geometric programming. The 
present paper intends to discuss the (over, off, under) convexity in neutrosophic sets, introducing a new 
definition for convexity, and graphing the geometrical representations for (over, off, under) convexity 
property. Neutrosophic sleeves, neutrosophic neut-sleeves and neutrosophic anti-sleeves are also 
introduced in this research. Because each neutrosophic set can uniquely be represented by the family of 
all its (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡, it is useful to enunciate the definition of (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 and prove some of its 
properties, similarly talking for strong (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡. Any neutrosophic mathematical programming 
cannot be generated from the womb of fuzzy mathematical programming without the passage through 
intuitionistic fuzzy mathematical programming [17, 18], so we should be familiar with all aspects of 
intuitionistic mathematical programming fundamentals from the point of view of K. T. Atanassov [13, 
16]. 

1 (Over, Off, Under) Convexity Property in Neutrosophic Sets 

In this section, a new convexity behavior of the neutrosophic set will be given. Let X be an ordinary 
set whose generic elements are denoted by x.  N(X) is the set of all neutrosophic sets included in X. 

Huda E. Khalid, Florentin Smarandache, Ahmed K. Essa (2018). The Basic Notions for 
(over, off, under) Neutrosophic Geometric Programming Problems. Neutrosophic Sets and 
Systems 22, 50-62
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1.1 Definition [19] 
A neutrosophic set A ∈ N(x) is defined as A = {< μA(x), σA(x), vA(x) >: x ∈ X} where

μA(x), σA(x), vA(x) represent the membership function, the indeterminacy function, the non-
membership function respectively. 

1.2 Definition [4] 
A mapping A: X → [0,1],   x → μA(x),   x → σA(x) , x → vA(x) is called a collection of

neutrosophic elements, where μA a membership x corresponding to a neutrosophic set A, σA(x) an
indeterminacy membership x corresponding to a neutrosophic set A, vA(x) a non-membership x

corresponding to a neutrosophic set A. 

1.3 Definition 
Suppose A ∈ N(x). If  ∀x1, x2 ∈ X, we call that A is an (over, off, under) convex neutrosophic set,

iff the following  conditions hold together: 

1- μA(λ x1 + (1 − λ )x2) > min(μA(x1) , μA(x2) ∀x1, x2 ∈ X.

2- Let σA(x) = μA(x) ∩ vA(x) and
a- σA(x) satisfies the convex condition,

i.e. 𝜎𝐴(λ x1 + (1 − λ )x2) > min(𝜎𝐴(x1) , 𝜎𝐴(x2)  for some x1, x2 ∈ X.

b- σA(x) satisfies the concave condition,
i.e.σA(λ x1 + (1 − λ )x2) < max(σA(x1),  σA(x2)) for some x1, x2 ∈ X.

c- σA(x) is neither convex nor concave at  𝑡1 ∈ 𝑋, where 𝑡1 = λ x2 + (1 − λ )x1, and λ = 0.5,
( i.e.  σA(x1) = σA(x2) = 𝜎𝐴(𝑡1) = 0) .

3- vA(λ x1 + (1 − λ )x2) < max(vA(x1),  vA(x2))  ∀x1, x2 ∈ X.

For more details, see Figures 1, 2, and 3.  

2 Geometrical Representation 

This section illustrates the geometrical representation of the (over, off, under) convexity 
behavior in neutrosophic sets. Figures 1,2 and 3 illustrate the given notion as follow: 

Figure 1: The convex condition of the truth membership function μA(x).

Here, μA(t) > min(μA(x1) , μA(x2) , where t = (λ x1 + (1 − λ )x2) ;  λ ∈ [0,1], satisfying the condition
for all x1, x2 ∈ X .
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Figure 2:  The concave condition of the falsehood membership function vA(x)

Here, vA(t) < max  (vA(x1) , vA(x2)) , where t = (λ x1 + (1 − λ )x2) ;  λ ∈ [0,1]  the condition is
happening for all  x1, x2 ∈ X.

Figure 3: Here the indeterminate function is constructed from the intersection between the truth and 
falsehood membership functions; i.e. 𝜎𝐴(𝑥) = 𝜇𝐴(𝑥) ∩ 𝑣𝐴(𝑥). In this figure, the dashed point lines (i.e.
shaded with green points represent the indeterminate region, here 𝜎𝐴(𝑥) is neither convex nor concave
at 𝜎𝐴(𝑥1) = 𝜎𝐴(𝑥2) = 𝜎𝐴(𝑡1) = 0, where 𝑡1 = λ x2 + (1 − λ )x1, and  λ = 0.5.

3 Neutrosophic Sleeves, Neutrosophic Anti-sleeves, Neutrosophic Neut-sleeves 

This section introduces for the first time the notion of neutrosophic sleeves, its contradiction and its 
neutrality. Together with the definitions of the neutrosophic sleeve, neutrosophic anti-sleeve, 
neutrosophic unit-sleeve, we provided graphs; however, the graphs are imprecise, offering an illustration 
of the meaning of composite sleeves. 
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3.1 Definition 
If a set-valued mapping H: [0,1] → N(x) satisfies ∀ α1, α2  ∈ [0,1] ,   α1 < α2 ⇒ H(α1) ⊇ H(α2), then
𝐻 is called a collection neutrosophic sleeve on 𝑋 . A set composed of all the collections of neutrosophic 
sleeves on 𝑋 is written as (𝑋) . The ideal sleeve occurs when 𝐻(𝛼1) = 𝐻(𝛼2).

Figure 5: Neutrosophic ideal sleeve 

3.2 Definition 
If a set-valued mapping 𝐻: [0,1] → 𝑁(𝑥) satisfies ∀ 𝛼1, 𝛼2, 2𝛼2 − 𝛼1  ∈ [0,1] , 𝛼2 < 2𝛼2 − 𝛼1  ⇒

𝐻(𝛼2) ⊇ 𝐻(2𝛼2 − 𝛼1), then  𝐻 is called a collection of neutrosophic anti-sleeves on 𝑋. A set composed
of all the collection of neutrosophic anti-sleeves on 𝑋 is written as 𝑎𝑛𝑡𝑖 𝑈(𝑋). The ideal neutrosophic 
anti-sleeve on 𝑋 occures when 𝐻(𝛼2) = 𝐻(2𝛼2 − 𝛼1).

Figure 4: Neutrosophic sleeve 
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Figure 7: Neutrosophic ideal anti-sleeve 

3.3 Definition 
If a set-valued mapping 𝐻: [0,1] → 𝑁(𝑥) satisfies  ∀ 𝛼1, 𝛼2, 2𝛼2 − 𝛼1 ∈ [0,1] , 𝛼1 < 𝛼2 < 2𝛼2 − 𝛼1 ⇒

𝐻(𝛼1) ∧ 𝐻(2𝛼2 − 𝛼1) = min{ 𝐻(𝛼1), 𝐻(2𝛼2 − 𝛼1)} = 𝐻(𝛼2), then 𝐻 is called a collection of
neutrosophic neut-sleeves on 𝑋 . A set composed of all the collection of neutrosophic neut-sleeves on 𝑋 
is written as 𝑛𝑒𝑢𝑡 𝑈(𝑋). The ideal neutrosophic neut-sleeve on 𝑋 occurs in the case of  0 < 𝛼1 < 𝛼2 <

2𝛼2 − 𝛼1 < 1 ⇒ 𝐻(𝛼1) = 𝐻(𝛼2) = 𝐻(2𝛼2 − 𝛼1) .

Figure 6: Neutrosophic anti-sleeve 
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Note that:

The ideal case of neutrosophic neut-sleeve is composed from the ideal case of the neutrosophic sleeve 
combined with the ideal case of the neutrosophic anti-sleeve. 

Figure 8: Neutrosophic neut-sleeve 

Figure 9: Neutrosophic ideal neut-sleeve 

Note that:  

All figures from 4 to 9 are just indicative graphs employed to understand the meaning of neutrosophic 
sleeves, neutrosophic anti-sleeves and neutrosophic neut-sleeves, but are not necessary accurate. 
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4 A new insight of the excluded-middle law in neutrosophic theory 
4.1 The excluded-middle law in classical and fuzzy logics 

In classical dialectics, the excluded middle law is the third of the three classic laws of thought. 
It states that for any proposal, either that proposal is true, or its contradictory is true. The earliest known 
formulation was in Aristotle’s discussion of the principle of non-contradiction, where he said that of two 
contradictory suggestions, one of them must be true, and the other is false. Aristotle 384 BC, said that it 
is necessary for every claim there are two opposite parts, either confirm or deny and it is unattainable 
that there should be anything between the two parts of an opposition. We point out that fuzzy logic, 
intuitionistic fuzzy logic and neutrosophic logic no longer satisfy the excluded-middle law [3]. 
 Let 𝑋 be an ordinary fuzzy set, whose generic elements are denoted by 𝑥, a mapping 𝐴: 𝑋 →

[0,1],   𝑥 → 𝜇𝐴(𝑥) called a fuzzy set 𝐴, and let the complement of 𝐴 be 𝐴𝑐  with its membership function

meaning 𝜇𝐴𝑐(𝑥) = 1 − 𝜇𝐴(𝑥),  then it is obvious that the excluded-middle law is not satisfied. 𝜇𝐴(𝑥) ∪

𝜇𝐴𝑐(𝑥) ≠ 𝑋                                                                                                                                             (1) 

𝜇𝐴(𝑥) ∩ 𝜇𝐴𝑐(𝑥) ≠ ∅                                                                                                                                             (2) 

Example: 

Let 𝑋 = [0,1], 𝜇𝐴(𝑥) = 𝑥 , then 𝜇𝐴𝑐(𝑥) = 1 − 𝑥, while 

(𝜇𝐴 ∪ 𝜇𝐴𝑐)(𝑥) = {
1 − 𝑥  𝑥 ≤

1

2

𝑥  𝑥 >
1

2

 (3) 

(𝜇𝐴 ∩ 𝜇𝐴𝑐)(𝑥) = {
𝑥  𝑥 ≤

1

2

1 − 𝑥  𝑥 >
1

2

  (4) 

Hence  

𝜇𝐴 ∪ 𝜇𝐴𝑐 ≠ 𝑋        & 𝜇𝐴 ∩ 𝜇𝐴𝑐 ≠ ∅

Especially, 

(𝜇𝐴 ∪ 𝜇𝐴𝑐) (
1

2
) = (𝜇𝐴 ∩ 𝜇𝐴𝑐) (

1

2
) =

1

2
 (5) 

A fuzzy set operation does not satisfy the excluded-middle law, which complicates the study of 
fuzzy sets. The fuzzy sets can provide more objective properties than the classical sets [1].  

4.2 The excluded middle law with the perspective of (over, off, under) neutrosophic 
geometric programming 

In the two-valued logic, all the designated values as types of truth and all the anti-designated values 
as types of untruth with gaps between truth-value (or falsehood-value). In the neutrosophic theory, one 
specifies the non-designated values as types of indeterminacy and thus, each neutrosophic consequences 
have degrees of designated, non-designated, and anti-designated values. However, the excluded middle 
law in the neutrosophic system does no longer work [7]. 

Even more, Smarandache (2014) [3] generalized the Law of Included Middle to the Law of Included 
Multiple-Middles, showing that in refined neutrosophic logic (2013), between truth (T) and falsehood 
(F) there are multiple types of sub-indeterminacies (I1, I2, …) [10,11,12].
In upcoming definitions, the authors affirm that  𝜇𝐴(𝑥) ∩ 𝜇𝐴𝑐(𝑥) ≠ ∅ in neutrosophic environment; for
example but not limited to, the nonlinear neutrosophic programming ( i.e. example of neutrosophic
geometric programming (NGP)).
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4.2.1 Definition 

Let 𝑁(X) be the set of all neutrosophic variable vectors 𝑥𝑖  , 𝑖 = 1,2, … , 𝑚 , i.e. 𝑁(𝑋) =

{(𝑥1, 𝑥2, … , 𝑥𝑚)𝑇│𝑥𝑖 ∈ 𝑋}. The function g(x): N(X)  →  R ∪ 𝐼 is said to be neutrosophic GP function of
𝑥, where 𝑔(𝑥) = ∑ 𝑐𝑘

𝐽
𝑘=1 ∏ 𝑥𝑙

𝛾𝑘𝑙𝑚
𝑙=1 ,   𝑐𝑘 ≥ 0 is a constant , 𝛾𝑘𝑙 being an arbitrary real number.

4.2.2 Definition   

Let 𝑔(𝑥) be a neutrosophic geometric function in any neutrosophic geometric programming, and let 𝐴0

be the neutrosophic set for all functions 𝑔(𝑥) that are neutrosophically less than or equal to one. 

𝐴0 = {𝑥𝑖 ∈ X ∶  𝑔(𝑥) < ₦ 1} = {𝑥𝑖 ∈ X ∶  𝑔(𝑥) < 1, 𝑎𝑛𝑡𝑖( 𝑔(𝑥)) > 1, 𝑛𝑒𝑢𝑡( 𝑔(𝑥)) = 1}  (6) 

4.2.3 Definition  

Let 𝑔(𝑥) be any neutrosophic geometric function written as a constraint in any neutrosophic geometric 
programming (NGP), where 𝑥𝑖 ∈ 𝑋 = [0,1] ∪ [0, 𝑛𝐼] and 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚)𝑇 is an m-dimensional
neutrosophic variable vector. 
Call the inequality 
 𝑔(𝑥) < ₦ 1                                                                                                                                                             (7)    
where " < ₦" denotes the neutrosophied version of " ≤ " with the linguistic  interpretation being "less 
than (the original claimed), greater than (the anti-claim of the original less than), or equal (neither the 
original claim nor the anti-claim)" 
The constraint  (7) can be redefined into three constraints as follow:- 

   
𝑔(𝑥) < 1

𝑎𝑛𝑡𝑖 (𝑔(𝑥)) > 1

𝑛𝑒𝑢𝑡( 𝑔(𝑥)) = 1

}                                                                                                                                             (8) 

4.2.4 Definition  

Let 𝐴0 be the set of all neutrosophic geometric functions that neutrosophically less than or equal to one,

i.e.   𝐴0 = {𝑥𝑖 ∈ X, 𝑔(𝑥) < ₦ 1} ⇔ 𝐴0 = {𝑥𝑖 ∈ X: 𝑔(𝑥) < 1, 𝑎𝑛𝑡𝑖( 𝑔(𝑥)) > 1, 𝑛𝑒𝑢𝑡( 𝑔(𝑥)) = 1}

It is significant to define the following membership functions: 

𝜇𝐴𝑜
( 𝑔(𝑥)) = {

1                                                       ,        0 ≤ 𝑔(𝑥) ≤ 1

(𝑒
−1
𝑑𝑜

(𝑔(𝑥)−1)
+ 𝑒

−1
𝑑𝑜

(𝑎𝑛𝑡𝑖( 𝑔(𝑥))−1)
− 1) ,  1 < 𝑔(𝑥) ≤ 1 − 𝑑𝑜 ln 0.5

 (9) 

𝜇𝐴𝑜
(𝑎𝑛𝑡𝑖( 𝑔(𝑥))) = {

0   ,         0 ≤ 𝑔(𝑥) ≤ 1

(1 − 𝑒
−1
𝑑𝑜

(𝑎𝑛𝑡𝑖( 𝑔(𝑥))−1)
− 𝑒

−1
𝑑𝑜

(𝑔(𝑥)−1)
) ,    1 − 𝑑𝑜 ln 0.5 ≤ 𝑔(𝑥) ≤ 1 + 𝑑𝑜

 (10) 

It is clear that 𝜇𝐴𝑜
(𝑛𝑒𝑢𝑡( 𝑔(𝑥))) consists from the intersection of the following functions:

 𝑒
−1

𝑑𝑜
(𝑔(𝑥)−1)

 ,    1 − 𝑒
−1

𝑑𝑜
(𝑎𝑛𝑡𝑖( 𝑔(𝑥))−1)

i.e.

𝜇𝐴𝑜
(𝑛𝑒𝑢𝑡( 𝑔(𝑥))) = {

1 − 𝑒
−1
𝑑𝑜

(𝑎𝑛𝑡𝑖( 𝑔(𝑥))−1)
  ,         1 ≤ 𝑔(𝑥) ≤ 1 − 𝑑𝑜 ln 0.5

𝑒
−1
𝑑𝑜

(𝑔(𝑥)−1)
 , 1 − 𝑑𝑜 ln 0.5 < 𝑔(𝑥) ≤ 1 + 𝑑𝑜

(11)
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Note that 𝑑𝑜 > 0 is a constant expressing a limit of the admissible violation of the neutrosophic geometric
function 𝑔(𝑥).  

Consequently, 

𝜇𝐴𝑜
( 𝑔(𝑥)) ∩ 𝜇𝐴𝑜

(𝑎𝑛𝑡𝑖( 𝑔(𝑥))) ≠ ∅ ,

Here 𝜇𝐴𝑜
( 𝑔(𝑥)) ∩ 𝜇𝐴𝑜

(𝑎𝑛𝑡𝑖( 𝑔(𝑥))) = 𝜇𝐴𝑜
(𝑛𝑒𝑢𝑡( 𝑔(𝑥))).

5  (𝛂, 𝛃, 𝛄) − 𝐜𝐮𝐭  and strong (𝛂, 𝛃, 𝛄) − 𝐜𝐮𝐭  of Neutrosophic sets 

We put the following definitions as an initial step to prepare to prove  the properties of 
(𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 and strong  (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 of neutrosophic sets.  

5.1 Definition 

Let 𝐴 ∈ 𝑁(𝑥), ∀  (𝛼, 𝛽, 𝛾) ∈ [0,1] , written  𝐴(𝛼,𝛽,𝛾) = {𝑥: 𝜇𝐴(𝑥) ≥ 𝛼, 𝜎𝐴(𝑥) ≥ 𝛽, 𝑣𝐴(𝑥) ≤ 𝛾},  𝐴(𝛼,𝛽,𝛾)

is said to be an (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 set of a neutrosophic set 𝐴 . Again, we write 
𝐴(𝛼,𝛽,𝛾)+ = {𝑥: 𝜇𝐴(𝑥) > 𝛼, 𝜎𝐴(𝑥) > 𝛽, 𝑣𝐴(𝑥) < 𝛾}, 𝐴(𝛼,𝛽,𝛾)+ is said to be a strong  (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 set of
a neutrosophic set 𝐴, (𝛼, 𝛽, 𝛾) are confidence levels and 𝛼 + 𝛽 + 𝛾 ≤ 3.  

5.2 Definition 

Let 𝐴 ∈ 𝑁(𝑥), written  𝐴(0,0,1)+ = {𝑥: 𝜇𝐴(𝑥) > 0, 𝜎𝐴(𝑥) > 0, 𝑣𝐴(𝑥) < 1} = 𝑠𝑢𝑝𝑝 𝐴, 𝐴(0,0,1)+ is called a
support of a neutrosophic set 𝐴. Again, 𝑘𝑒𝑟 𝐴 = {𝑥: 𝜇𝐴(𝑥) = 1, 𝜎𝐴(𝑥) = 0, 𝑣𝐴(𝑥) = 0} is called a kernel
of neutrosophic set 𝐴, and 𝐴 is a normal neutrosophic set for ker 𝐴 ≠ ∅. 

5.3 Definition 

Let 𝐴 ∈ 𝑁(𝑥), written 𝐴 ∪ 𝐵 = {⟨𝑥, max (𝜇
𝐴
(𝑥), 𝜇

𝐵
(𝑥)) ,

max(𝜎𝐴(𝑥), 𝜎𝐵(𝑥)),  min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))⟩: 𝑥 ∈ 𝑋}, the union of 𝐴&𝐵

𝐴 ∩ 𝐵 = {⟨𝑥, min (𝜇
𝐴
(𝑥), 𝜇

𝐵
(𝑥)) , min(𝜎𝐴(𝑥), 𝜎𝐵(𝑥)), max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))⟩: 𝑥 ∈ 𝑋}, the

intersection of 𝐴&𝐵. 

5.4 Theorem  

We have the following properties for (α, β, γ) − cut and strong (α, β, γ) − cut neutrosophic sets: 
1- A ⊆ B  ⇒  A(α,β,γ) ⊆ B(α,β,γ)

2- (A ∪ B)(α,β,γ) ⊇ A(α,β,γ) ∪ B(α,β,γ) equality holds if α + β + γ = 3.
(A ∩ B)(α,β,γ) = A(α,β,γ) ∩ B(α,β,γ).

3- (A ∪ B)(α,β,γ)+ ⊇ A(α,β,γ)+ ∪ B(α,β,γ)+, equality holds if α + β + γ = 3.
(A ∩ B)(α,β,γ)+ = A(α,β,γ)+ ∩ B(α,β,γ)+.
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Proof 

1- Let 𝑥 ∈ 𝐴(𝛼,𝛽,𝛾)  ⇒ 𝜇
𝐴

(𝑥) ≥ 𝛼, 𝜎𝐴(𝑥) ≥ 𝛽, 𝑣𝐴(𝑥) ≤ 𝛾

But B ⊇ A ⇒ 𝜇
𝐵

(𝑥) ≥ 𝜇
𝐴

(𝑥) ≥ 𝛼 , 𝜎𝐵(𝑥) ≥ 𝜎𝐴(𝑥) ≥ 𝛽, 𝑣𝐵(𝑥) ≤ 𝑣𝐴(𝑥) ≤ 𝛾 

⇒ 𝜇
𝐵

(𝑥) ≥ 𝛼, 𝜎𝐵(𝑥) ≥ 𝛽  , 𝑣𝐵(𝑥) ≤ 𝛾

⇒ 𝑥 ∈ B(α,β,γ) , therefore  A(α,β,γ) ⊆ B(α,β,γ)

2- (A ∪ B)(α,β,γ) ⊇ A(α,β,γ) ∪ B(α,β,γ)

Since   A ⊆ (A ∪ B), B ⊆ (A ∪ B) and from 1 above, we have: 
A(α,β,γ) ⊆ (A ∪ B)(α,β,γ)   (12) 

B(α,β,γ) ⊆ (A ∪ B)(α,β,γ)  (13) 
Combine (12) with (13). The proof of property 2 is complete, i.e. 
(A ∪ B)(α,β,γ) ⊇ A(α,β,γ) ∪ B(α,β,γ)        (14) 

If 𝛼 + 𝛽 + 𝛾 = 3, we show that (A ∪ B)(α,β,γ) = A(α,β,γ) ∪ B(α,β,γ)

Let 𝑥 ∈ (A ∪ B)(α,β,γ) ⇒ 𝜇𝐴(𝑥) ∪ 𝜇𝐵(𝑥) ≥ 𝛼, 𝜎𝐴(𝑥) ∪ 𝜎𝐵(𝑥) ≥ 𝛽, 𝑣𝐴(𝑥) ∪ 𝑣𝐵(𝑥) ≤ 𝛾

if 𝜇𝐴(𝑥) ≥ 𝛼 𝑎𝑛𝑑 𝜎𝐴(𝑥) ≥ 𝛽 then 𝑣𝐴(𝑥) ≤ 3 − 𝛼 − 𝛽 = 𝛾  ⇒ 𝑥 ∈ A(α,β,γ) ⊆ A(α,β,γ) ∪ B(α,β,γ)  
also if  𝜇𝐵(𝑥) ≥ 𝛼 𝑎𝑛𝑑 𝜎𝐵(𝑥) ≥ 𝛽 then 𝑣𝐵(𝑥) ≤ 3 − 𝛼 − 𝛽 = 𝛾  ⇒ 𝑥 ∈ B(α,β,γ) ⊆ A(α,β,γ) ∪ B(α,β,γ)

⇒ 𝑥 ∈ A(α,β,γ) ∪ B(α,β,γ)

and so (A ∪ B)(α,β,γ) ⊆ A(α,β,γ) ∪ B(α,β,γ)  (15) 
From (14) and (15), we get 
(A ∪ B)(α,β,γ) = A(α,β,γ) ∪ B(α,β,γ)

We still need to prove that (A ∩ B)(α,β,γ) = A(α,β,γ) ∩ B(α,β,γ)

Proof 
Since   A ∩ B ⊆ A  𝑎𝑛𝑑 𝐴 ∩ B ⊆ B 
⇒ (A ∩ B)(α,β,γ) ⊆ A(α,β,γ) & (A ∩ B)(α,β,γ)  ⊆ B(α,β,γ)  (16) 

Let 𝑥 ∈ A(α,β,γ) ∩ B(α,β,γ)

⇒ 𝑥 ∈ A(α,β,γ) &  𝑥 ∈ B(α,β,γ)

⇒ 𝜇𝐴(𝑥) ≥ 𝛼, 𝜎𝐴(𝑥) ≥ 𝛽, 𝑣𝐴(𝑥) ≤ 𝛾  and  𝜇𝐵(𝑥) ≥ 𝛼, 𝜎𝐵(𝑥) ≥ 𝛽, 𝑣𝐵(𝑥) ≤ 𝛾

⇒ 𝜇𝐴(𝑥) ∩ 𝜇𝐵(𝑥) ≥ 𝛼, 𝜎𝐴(𝑥) ∩ 𝜎𝐵(𝑥) ≥ 𝛽, 𝑣𝐴(𝑥) ∪ 𝑣𝐵(𝑥) ≤ 𝛾

⇒ 𝑥 ∈ (A ∩ B)(α,β,γ)

⇒ A(α,β,γ) ∩ B(α,β,γ) ⊆ (A ∩ B)(α,β,γ)  (17) 
From (16) and (17), we have 
(A ∩ B)(α,β,γ) = A(α,β,γ) ∩ B(α,β,γ)

Note that:  
The same technique that used for proving 2 will be employed to prove the properties of strong 
(α,β,γ)-cut in 3. 

6 Representations of neutrosophic sets 

The decomposition theorems of neutrosophic sets is a bridge between neutrosophic sets and ordinary 
ones. The principal feature of (α, β, γ) − cut and strong (α, β, γ) − cut sets in neutrosophic set theory is 
the capability to represent neutrosophic sets. We show in this section that each neutrosophic set can 
uniquely be represented by either the family of all its (α, β, γ) − cuts or the family of all its strong 
(α, β, γ) − cuts. 
We can convert each of  (α, β, γ) − cut and strong (α, β, γ) − cut to special neutrosophic sets denoted 
by 𝐴(α,β,γ)  𝑎𝑛𝑑 𝐴(α,β,γ)

+ , as follows:

for α, β, γ ∈ [0,1] with α + β + γ ≤ 3 , we have: 
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𝐴(α,β,γ) = {
(α, β, γ)  𝑖𝑓 𝑥 ∈ A(α,β,γ)

(0,0,1)  𝑖𝑓 𝑥 ∉ A(α,β,γ)
 (18) 

𝐴(α,β,γ)
+ = {

(α, β, γ)   𝑖𝑓 𝑥 ∈ 𝐴(𝛼,𝛽,𝛾)+

(0,0,1)  𝑖𝑓 𝑥 ∉ 𝐴(𝛼,𝛽,𝛾)+
 (19) 

The representation of an arbitrary neutrosophic set 𝐴  in terms of the special neutrosophic sets 
𝐴(α,β,γ)  , which are defined in terms of the (α, β, γ) − cuts of 𝐴 by (18), is usually referred to as

decomposition of 𝐴. In the following, we formulate and prove two basic decomposition theorems of 
neutrosophic sets. 

6.1 First Decomposition theorem of neutrosophic set (NS) 

For every 𝐴 ∈ 𝑁(𝑥), 𝐴 =
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ)   , where 𝐴(α,β,γ)  is defined by (18) and ∪ denotes the

standard neutrosophic union. 
Proof 
For each particular 𝑥 ∈ 𝑋, let  
𝜇𝐴(𝑥) = a, 𝜎𝐴(𝑥) = b, 𝑣𝐴(𝑥) = 𝑐. Then,

(
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ) ) (𝑥) = (
sup 𝜇𝐴(𝑥)

𝛼 ∈ [0,1]

, sup 𝜎𝐴(𝑥),  

𝛽 ∈ [0,1]
inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
) 

= 𝑚𝑎𝑥 [(
sup 𝜇𝐴(𝑥)

𝛼 ∈ [0, 𝑎]

, sup 𝜎𝐴(𝑥),  

𝛽 ∈ [0,1]
inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
) , (

sup 𝜇𝐴(𝑥),  
𝛼 ∈ (𝑎, 1]

sup 𝜎𝐴(𝑥)

𝛽 ∈ [0,1]
, inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
)] 

For each 𝛼 ∈ (𝑎, 1], we have 𝜇𝐴(𝑥) = 𝑎 < 𝛼 and, therefore, 𝐴(α,β,γ) = (0,0,1). On the other hand, for

each 𝛼 ∈ [0, 𝑎], we have 𝜇𝐴(𝑥) = 𝑎 ≥ 𝛼, therefore, 𝐴(α,β,γ) = (α, β, γ).
The second step of the prove is to complete the maximum value for the second component 

( 𝑖. 𝑒.
sup 𝜎𝐴(𝑥)

𝛽 ∈ [0,1]
) as follow:  

(
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ) ) (𝑥)

= 𝑚𝑎𝑥 [(
sup 𝜇𝐴(𝑥),  

𝛼 ∈ [0, 𝑎]

sup 𝜎𝐴(𝑥),  

𝛽 ∈ [0, 𝑏]
inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
) , (

sup 𝜇𝐴(𝑥),
𝛼 ∈ [0, 𝑎]

  sup 𝜎𝐴(𝑥),  
𝛽 ∈ (𝑏, 1]

inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
)] 

For each 𝛽 ∈ (𝑏, 1], we have 𝜎𝐴(𝑥) = 𝑏 < 𝛽 and, therefore, 𝐴(α,β,γ) = (0,0,1). On the other hand, for

each 𝛽 ∈ [0, 𝑏], we have 𝜎𝐴(𝑥) = 𝑏 ≥ 𝛽, therefore, 𝐴(α,β,γ) = (α, β, γ).

= (
sup 𝜇𝐴(𝑥),

𝛼 ∈ [0, 𝑎]

  sup 𝜎𝐴(𝑥),  

𝛽 ∈ [0, 𝑏]
inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
) 

The final step of the proof is to complete the maximum value for the third component ( 𝑖. 𝑒.
inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
), 

(
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ) ) (𝑥)

= 𝑚𝑎𝑥 [(
sup 𝜇𝐴(𝑥),

𝛼 ∈ [0, 𝑎]

 sup 𝜎𝐴(𝑥),  

𝛽 ∈ [0, 𝑏]
inf 𝑣𝐴(𝑥)

𝛾 ∈ [0, 𝑐)
) , (

sup 𝜇𝐴(𝑥)

𝛼 ∈ [0, 𝑎]
, sup 𝜎𝐴(𝑥),
𝛽 ∈ [0, 𝑏]

inf 𝑣𝐴(𝑥)

𝛾 ∈ [𝑐, 1]
)] 

For each 𝛾 ∈ [𝑐, 1], we have 𝑣𝐴(𝑥) = 𝑐 ≤ 𝛾, therefore, 𝐴(α,β,γ) = (α, β, γ). On the other hand, for each

𝛾 ∈ [0, 𝑐), we have 𝑣𝐴(𝑥) = 𝑐 > 𝛾, therefore, 𝐴(α,β,γ) = (0,0,1).
Consequently,  

(
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ) ) (𝑥) = (
sup 𝜇𝐴(𝑥) ,

𝛼 ∈ [0, 𝑎]   

sup 𝜎𝐴(𝑥) ,

𝛽 ∈ [0, 𝑏]
  

inf 𝑣𝐴(𝑥)

𝛾 ∈ [𝑐, 1]
) = (α, β, γ) = 𝐴(𝑥)
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Since the same argument is valid for each 𝑥 ∈ 𝑋, the theorem is proved. 

6.2 Second Decomposition Theorem of Neutrosophic Set (NS)

Let 𝑋 be any non-empty set. For a neutrosophic subset 𝐴 ∈ 𝑁(𝑋), 

𝐴 =
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ)
+   , where 𝐴(α,β,γ)

+  is defined by (19) ,and ∪ denotes the standard

neutrosophic union. 

Proof:  
For each particular 𝑥 ∈ 𝑋, let 𝜇𝐴(𝑥) = a, 𝜎𝐴(𝑥) = b, 𝑣𝐴(𝑥) = 𝑐. Then

(
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ)
+ ) (𝑥) = (

sup 𝜇𝐴(𝑥),  

𝛼 ∈ [0,1]

sup 𝜎𝐴(𝑥),  

𝛽 ∈ [0,1]
inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
) 

= 𝑚𝑎𝑥 [(
sup 𝜇𝐴(𝑥)

𝛼 ∈ [0, 𝑎)

, sup 𝜎𝐴(𝑥)

𝛽 ∈ [0,1]
, inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
) , (

sup 𝜇𝐴(𝑥),
𝛼 ∈ [𝑎, 1]

 sup 𝜎𝐴(𝑥),  

𝛽 ∈ [0,1]
inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
)] 

For each 𝛼 ∈ [𝑎, 1], we have 𝜇𝐴(𝑥) = 𝑎 ≤ 𝛼 and, therefore, 𝐴(α,β,γ)
+ = (0,0,1). On the other

hand, for each 𝛼 ∈ [0, 𝑎), we have 𝜇𝐴(𝑥) = 𝑎 > 𝛼, therefore, 𝐴(α,β,γ)
+ = (α, β, γ) the second step of the

proof is to complete the maximum value for the second component ( 𝑖. 𝑒.
sup 𝜎𝐴(𝑥)

𝛽 ∈ [0,1]
). 

Again,     

(
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ)
+ ) (𝑥)

= 𝑚𝑎𝑥 [(
sup 𝜇𝐴(𝑥),  

𝛼 ∈ [0, 𝑎)
sup 𝜎𝐴(𝑥),
𝛽 ∈ [0, 𝑏)  

inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
) , (

sup 𝜇𝐴(𝑥),  
𝛼 ∈ [𝑎, 1]

sup 𝜎𝐴(𝑥),  
𝛽 ∈ [𝑏, 1]

inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
)] 

For each 𝛽 ∈ [𝑏, 1], we have 𝜎𝐴(𝑥) = 𝑏 ≤ 𝛽 and, therefore, 𝐴(α,β,γ)
+ = (0,0,1). On the other hand, for

each 𝛽 ∈ [0, 𝑏), we have 𝜎𝐴(𝑥) = 𝑏 > 𝛽, therefore, 𝐴(α,β,γ)
+ = (α, β, γ).

(
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ)
+ ) (𝑥) = (

sup 𝜇𝐴(𝑥)

𝛼 ∈ [0, 𝑎)
, sup 𝜎𝐴(𝑥), 

𝛽 ∈ [0, 𝑏)

inf 𝑣𝐴(𝑥)

𝛾 ∈ [0,1]
) 

The final step of the proof is to complete the maximum value for the third component ( 𝑖. 𝑒.
sup 𝜎𝐴(𝑥)

𝛽 ∈ [0,1]
). 

Finally, 

 (
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ)
+ ) (𝑥)

= 𝑚𝑎𝑥 [(
sup 𝜇𝐴(𝑥),  

𝛼 ∈ [0, 𝑎)
sup 𝜎𝐴(𝑥),  
𝛽 ∈ [0, 𝑏)

inf 𝑣𝐴(𝑥)

𝛾 ∈ [0, 𝑐]
) , (

sup 𝜇𝐴(𝑥),  
𝛼 ∈ [0, 𝑎)

sup 𝜎𝐴(𝑥),  
𝛽 ∈ [0, 𝑏)

inf 𝑣𝐴(𝑥)

𝛾 ∈ (𝑐, 1]
)] 

For each 𝛾 ∈ (𝑐, 1], we have 𝑣𝐴(𝑥) = 𝑐 < 𝛾, therefore, 𝐴(α,β,γ)
+ = (α, β, γ). On the other hand, for each

𝛾 ∈ [0, 𝑐], we have 𝑣𝐴(𝑥) = 𝑐 ≥ 𝛽, therefore, 𝐴(α,β,γ)
+ = (0,0,1).

Consequently,  

(
∪

α, β, γ ∈ [0,1] 𝐴(α,β,γ)
+ ) (𝑥) = (

sup 𝜇𝐴(𝑥) ,
𝛼 ∈ [0, 𝑎)

sup 𝜎𝐴(𝑥),
𝛽 ∈ [0, 𝑏)  

inf 𝑣𝐴(𝑥)

𝛾 ∈ (𝑐, 1]
) = (α, β, γ) = 𝐴(𝑥) 

Since the same argument is valid for each 𝑥 ∈ 𝑋, therefore the theorem is proved. 
▀ 

Conclusion 
Neutrosophic geometric programming (NGP) can find many application areas, such as power 

engineering, postal services, look for exemplars for eliminating waste-water  in a power plant, or 
determining the power equipping radius in the electrical transformers. All the above-mentioned 
applications require building a strong neutrosophic theory for neutrosophic geometric programming 
(NGP), these aims lead the authors to present the (over, off, under) convexity condition in neutrosophic 
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geometric functions. The needed of establishing the aspects of sleeves, neut sleeves and anti-sleeves were 
necessary. Furthermore, the basic concept of (α,β,γ)-cut and strong (α,β,γ)-cut of neutrosophic sets have 
been given. By strong definitions and given example, the authors proved that the excluded middle law 
has no longer satisfied in neutrosophic theory, this proof has been made by neutrosophic geometrical 
programming. 

Acknowledgement 
This research is supported by the Neutrosophic Science International Association (NSIA) in both of its 
headquarter in New Mexico University and its Iraqi branch at Telafer University, for more details about 
(NSIA) see the book entitled “Neutrosophic Logic: The Revolutionary Logic in Science and Philosophy” 

Reference 
[1] B. Y. Cao "Fuzzy Geometric Programming". SPRINGER-SCIENCE +BUSINESS MEDIA, B. V. 2002.
[2] F. Smarandache “Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset”, Pons Editions,
Brussels, 2016.
[3] F. Smarandache “Law of Included Multiple-Middle & Principle of Dynamic Neutrosophic Opposition”.
EuropaNova & Education Publisher  Brussels-Columbus, 2014.
[4] F. Smarandache & Huda E. Khalid "Neutrosophic Precalculus and Neutrosophic Calculus". Second enlarged
edition, Pons asbl 5, Quai du Batelage, Brussels, Belgium, European Union, 2018.
[5] F. Smarandache,” Interval-Valued Neutrosophic Oversets, Neutrosophic Undersets, and Neutrosophic Offsets”,
journal of science and engineering investigations, vol. 5, 2016, pp. 1- 4.
[6] F. Smarandache,” Operators on Single-Valued Neutrosophic Oversets, Neutrosophic Undersets, and
Neutrosophic Offsets”, Journal of  Mathematics and Informatics, vol. 5, 2016, pp. 63- 67.
[7] F. Smarandache, “A unifying Field in Logics: Neutrosophic Logic. Neutrosophic Probability, Neutrosophic
Statistics, Neutrosophic Sets”, second version, “Collected Papers”, vol. III. Oradea (Romania): Abaddaba, 2000.
[8] F. Smarandache, H. E. Khalid, A. K. Essa, M. Ali , “The Concept of Neutrosophic Less Than or Equal To: A
New Insight in Unconstrained Geometric Programming”, Critical Review,  Volume XII, 2016, pp. 72-80.
[9] F. Smarandache, H. E. Khalid & A. K. Essa, “Neutrosophic Logic: the Revolutionary Logic in Science and
Philosophy” , Proceedings of the National Symposium , EuropaNova, Brussels, 2018.
[10] F. Smarandache, “Unmatter as a Consequence of the Law of Included Multiple-Middles”, Annual Meeting of
the APS Four Corners Section, Vol. 60, Number 11, Friday–Saturday, October 16–17, 2015; Tempe, Arizona,
http://meetings.aps.org/Meeting/4CF15/Session/F1.66
[11] F. Smarandache, “n-Valued Refined Neutrosophic Logic and Its Applications to Physics”, Bulletin of the

American Physical Society 2013 Annual Fall Meeting of the APS Ohio-Region Section Volume 58, Number 9.
Friday–Saturday, October 4–5, 2013; Cincinnati, Ohio, http://meetings.aps.org/Meeting/OSF13/Event/205641
[12] F. Smarandache, “n-Valued Refined Neutrosophic Logic and Its Applications in Physics”, Progress in Physics,
143-146, Vol. 4, 2013; https://arxiv.org/ftp/arxiv/papers/1407/1407.1041.pdf
[13] G. J. Klir,  Bo Yuan . “Fuzzy Sets and Fuzzy Logic Theory and Applications”, Published by Prentice Hall PTR,
1995.
[14] H. E. Khalid, “An Original Notion to Find Maximal Solution in the Fuzzy Neutrosophic Relation Equations 
(FNRE) with Geometric Programming (GP) ”, Neutrosophic Sets and Systems, vol. 7, 2015, pp. 3-7.
[15] H. E. Khalid, “The Novel Attempt for Finding Minimum Solution in Fuzzy Neutrosophic Relational Geometric
Programming (FNRGP) with (max, min) Composition”, Neutrosophic Sets and Systems, vol. 11, 2016, pp. 107-111.
[16] K.T. Atanassov, “Intuitionistic Fuzzy Sets”, Fuzzy Sets and Systems, vol. 20, 1986, pp. 87-96.
[17] S. Pramanik, and T.K. Roy. ”Intuitionistic fuzzy goal programming and its application in solving multi-
objective transportation problem”  Tamsui Oxford Journal of Management Sciences 23(1),2007, 01–16.
[18] S. Pramanik, P.P. Dey, T. K. Roy. “Bilevel programming in an intuitionistic fuzzy environment”. Journal of
Technology 42, 2011,103-114.
[19] V. Kandasamy , F. Smarandache, “Fuzzy Relational Maps and Neutrosophic Relational Maps”,  American
Research Press, Rehoboth,2004.

Florentin Smarandache (author and editor) Collected Papers, XII

350

http://fs.unm.edu/APS-Abstracts/MWS_4CF15-2015-000002.pdf
http://meetings.aps.org/Meeting/4CF15/Session/F1.66
file:///C:/Users/florentin/AppData/Roaming/Microsoft/Word/Abstracts/smarandache_nvaluedneutrosophy.doc
http://meetings.aps.org/Meeting/OSF13/Event/205641
https://arxiv.org/ftp/arxiv/papers/1407/1407.1041.pdf


Energy and Spectrum Analysis of Interval Valued 
Neutrosophic Graph using MATLAB 

Said Broumi, Mohamed Talea, Assia Bakali, Prem Kumar Singh, Florentin Smarandache

Abstract. In recent time graphical analytics of uncertainty and indeterminacy has become major concern for data analytics re-

searchers. In this direction, the mathematical algebra of neutrosophic graph is extended to interval-valued neutrosophic graph. 

However, building the interval-valued neutrosophic graphs, its spectrum and energy computation is addressed as another issues 

by research community of neutrosophic environment. To resolve this issue the current paper proposed some related mathemat-

ical notations to compute the spectrum and energy of interval-valued neutrosophic graph using the MATAB. 

Keywords: Interval valued neutrosophic graphs. Adjacency matrix. Spectrum of IVNG. Energy of IVNG. Complete-IVNG.

1 Introduction 

The handling uncertainty in the given data set is considered as one of the major issues for the research com-

munities. To deal with this issue the mathematical algebra of neutrosophic set is introduced [1].  The calculus of 

neutrosophic sets (NSs)[1, 2] given a way to represent the uncertainty based on acceptation, rejection and uncer-
tain part, independently. It is nothing but just an extension of fuzzy set [3], intuitionistic fuzzy set [4-6], and in-

terval valued fuzzy sets [7] beyond the unipolar fuzzy space. It characterizes the uncertainty based on a truth-
membership function (T), an indeterminate-membership function (I) and a falsity-membership function(F) inde-

pendently of a defined neutrosophic set via real a standard or non-standard unit interval]−0, 1+[. One of the best 

suitable example is for the neutrosophic logic is win/loss and draw of a match, opinion of people towards an 
event is based on its acceptance, rejection and uncertain values. These properties of neutrosophic set differentiate 

it from any of the available approaches in fuzzy set theory while measuring the indeterminacy. Due to which 

mathematics of single valued neutrosophic sets (abbr. SVNS) [8] as well as interval valued neutrosophic sets 

(abbr.IVNS) [9-10] is introduced for precise analysis of indeterminacy in the given interval. The IVNS repre-
sents the acceptance, rejection and uncertain  membership functions in the unit interval [0, 1] which helped a lot 

for knowledge processing tasks using different classifier [11], similarity method [12-14] as well as multi-

decision making process [15-17] at user defined weighted  method [18-24]. In this process a problem is ad-
dressed while drawing the interval-valued neutrosophic graph, its spectrum and energy analysis. To achieve this 

goal, the current paper tried to focus on introducing these related properties and its analysis using MATLAB. 

2 Literature Review 

There are several applications of graph theory which is a mathematical tool provides a way to visualize the 

given data sets for its precise analysis. It is utilized for solving several mathematical problems. In this process, a 
problem is addressed while representing the uncertainty and vagueness exists in any given attributes (i.e. verti-

ces) and their corresponding relationship i.e edges. To deal with this problem, the properties of fuzzy graph [25-

26] theory is extended to intuitionistic fuzzy graph [28-30], interval valued fuzzy graphs [31] is studied with ap-

plications [32—33]. In this case a problem is addressed while measuring with indeterminacy and its situation.
Hence, the neutrosophic graphs and its properties is introduced by Smaranadache [34-37] to characterizes them

using their truth, falsity, and indeterminacy membership-values (T, I, F) with its applications [38-40]. Broumi et

al. [41] introduced neutrosophic graph theory considering (T, I, F) for vertices and edges in the graph specially
termed as “Single valued neutrosophic graph theory (abbr. SVNG)” with its other properties [42-44]. Afterwards

several researchers studied the neutrosophic graphs and its applications [65, 68]. Broumi et al. [50] utilized the
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(2019). Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB. 
Neutrosophic Sets and Systems 24, 46-60
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SVNGs to find the shortest path in the given network subsequently other researchers used it in different fields 

[51-53, 59-60, 65]. To measure the partial ignorance, Broumi et al. [45] introduced interval valued-neutrosophic 

graphs and its related operations [46-48] with its application in decision making process in various extensions[49, 

54, 57 61, 62, 64,73-84]. 

Some other researchers introduced antipodal single valued neutrosophic graphs [63, 65], single valued neu-

trosophic digraph [68] for solving multi-criteria decision making. Naz et al.[69] discussed the concept of energy 

and laplacian energy of SVNGs. This given a major thrust to introduce it into interval-valued neutrosophic graph 

and its matrix. The matrix is a very useful tool in representing the graphs to computers, matrix representation of 

SVNG, some researchers study adjacency matrix and incident matrix of SVNG. Varol et al. [70] introduced sin-

gle valued neutrosophic matrix as a generalization of fuzzy matrix, intuitionistic fuzzy matrix and investigated 

some of its algebraic operations including subtraction, addition, product, transposition. Uma et al. [66] proposed 

a determinant theory for fuzzy neutrosophic soft matrices. Hamidiand Saeid [72 ] proposed the concept of acces-

sible single-valued neutrosophic graphs. 

It is observed that, few literature have shown the study on energy of IVNG. Hence this paper, introduces 

some basic concept related to the interval valued neutrosophic graphs are developed with an interesting proper-

ties and its illustration for its various applications in several research field. 

3 Preliminaries 

This section consists some of the elementary concepts related to the neutrosophic sets, single valued neutro-
sophic sets, interval-valued neutrosophic sets, single valued neutrosophic graphs and adjacency matrix for estab-

lishing the new mathematical properties of interval-valued neutrosophic graphs. Readers can refer to following 

references for more detail about basics of these sets and their mathematical representations [1, 8, 41]. 

Definition 3.1:[1] Suppose �	be a nonempty set. A neutrosophic set (abbr.NS) N in�is an object taking the

form  ���= {<x: ��(�), 
�(�) ,  ��(�)>, k∈ �}       (1)

Where ��(�):� →]−0,1+[ , 
�(�):� → ]−0,1+[ ,��(�):� →]−0,1+[  are known as truth-membership function, in-

determinate –membership function and false-membership unction, respectively. The neutrosophic sets is subject 

to  the following condition: 0� ≤ ��(�)+
�(�) +��(�) ≤ 3�  (2) 

Definition 3.2:[8]Suppose � be a nonempty set. A single valued neutrosophic sets N (abbr. SVNs)  in� is an

object taking the form: 

�����={<k:��(�), 
�(�), ��(�)>, k∈ �}  (3)

where ��(�), 
�(�), ��(�) ∈	 [0, 1] are mappings. ��(�)denote the truth-membership function of an element

x ∈ 	� , 
�(�)denote the indeterminate –membership function of an element k ∈ 	� .��(�)denote the false–

membership function of an element k ∈ 	�. The SVNs subject to condition

0 ≤ ��(�)+
�(�)+��(�) ≤ 3  (4) 

Example 3.3: Let us consider following example to understand the indeterminacy and neutrosophic logic: 

In a given mobile phone suppose 100 calls came at end of the day. 

1. 60 calls were received truly among them 50 numbers are saved and 10 were unsaved in mobile. In this case

these 60 calls will be considered as truth membership i.e. 0.6. 

2. 30 calls were not-received by mobile holder. Among them 20 calls which are saved in mobile contacts were

not received due to driving, meeting, or phone left in home, car or bag and 10 were not received due to uncertain 

numbers. In this case all 30 not received  numbers by any cause (i.e. driving, meeting or phone left at home) will 

be considered as Indeterminacy membership i.e. 0.3.   

3. 10 calls were those number which was rejected calls intentionally by mobile holder due to behavior of

those saved numbers, not useful calls, marketing numbers or other cases for that he/she do not want to pick or 

may be blocked numbers. In all cases these calls can be considered as false i.e. 0.1 membership value. 

The above situation can be represented as (0.6, 0.3, 0.1) as neutrosophic set. 
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Definition 3.4: [10] Suppose � be a nonempty set. An interval valued neutrosophic sets � (abbr.IVNs) in�is an object taking the form:

�����={<k:���(�), 
��(�),���(�)>,k∈ �>}   (5)

Where ���(�) , 
��(�) ,���(�) ⊆ ���[0,1]  are mappings. ���(�)=[�� (�) , ��!(�) ] denote the interval truth-

membership function of an element k∈ �.
��(�)=[
� ("), 
�!(�)] denote the interval indeterminate-membership

function of an element k∈ �.���(�)=[�� (�), ��!(�)] denote the false-membership function of an element k∈ �.

Definition 3.4: [10]For every two interval valued-neutrosophic sets A and B in �, we define

(N ⋃ M) (k)= ([�$ (k), �$!(k)], [	
$ (k), 
$!(k)], [	�$ (k), �$!(k)]	) for all k ∈ �   (6)

Where �$ (k)= �� (k)	∨ �' (k),  �$!(k)=  ��!(k)∨ �'!(k)
$ (k)= 
� (k)∧ 
' (k),  
$!(k)=  
�!(k)∧ 
'!(k)�$ (k)= �� (k)∧ �' (k),  �$!(k)= ��!(k)∧ �'!(k)

Definition 3.5: [41]A pair G=(V,E) is known as single valued neutrosophic graph (abbr.SVNG) if the following 
holds: 

1. V=  {�):i=1,..,n} such as �*:V→ [0,1] is the truth-membership degree, 
*:V→[0,1] is the indeterminate –
membership degree and �*:V→[0,1]is the false membership degree of �) ∈ V subject to condition

0 ≤ �*(�))+
*(�))+�*(�)) ≤ 3      (7)

2. E={(�) , �+): (�), �+) ∈ , × ,} such as �.:, × , → [0,1] is the truth-memebership degree,  
.:, × , →[0,1] is the indeterminate –membership degree and �.:, × , → [0,1] is the false-memebership degree of
(�),�+) ∈ E defined  as

�.(�),�+)≤ �*(�)) ∧ �*(�+)  (8) 
.(�) , �+) ≥ 
*(�)) ∨ 
*(�+)  (9) 

�.(�), �+) ≥ �*(�)) ∨ �*(�+)  (10) 

 Subject to condition 0 ≤ �.(�)�.)+
.(�*�.)+�.(�)�+) ≤ 3 ∀ (�), �+) ∈ E.     (11)

The Fig. 1 shows  an illustration of  SVNG. 

(0.5, 0.4 ,0.5) 

(0.2, 0.3 ,0.4) 

(0.5, 0.1 ,0.4) 

k1 k2

k* k.
(0.6, 0.3 ,0.2) 

(0.2, 0.4 ,0.5) 

(0.4, 0.2 ,0.5) 

(0
.2

, 
0

.3
 ,
0

.4
) 

(0
.4

, 
0

.3
 ,
0

.6
) 

Fig. 1. An illustration of single valued neutrosophic graph 
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Definition 3.6[41]. A single valued neutrosophic graph G=(N, M) of 3∗= (V, E) is termed  strong single

valued neutrosophic graph if the following holds: �'(�)�+)= ��(�)) ∧ ��(�+)  (12) 
'(�)�+) = 
�(�)) ∨ 
�(�))  (13) �'(�)�+)= ��(�)) ∨ ��(�+)  (14) ∀ (�) , �+) ∈ E.

Where the operator ∧denote minimum and the operator ∨denote the maximum

Definition 3.8[41]. A single valued neutrosophic graph G=(N, M) of 3∗= (V, E) is termed  complete single

valued neutrosophic graph if the following holds:  �'(�)�+)= ��(�)) ∧ ��(�+)  (15) 
'(�)�+) = 
�(�)) ∨ 
�(�))  (16) �'(�)�+)= ��(�)) ∨ ��(�+)  (17) ∀�) , �+ ∈V.

Definition 3.9:[70] The Eigen value of a graph G are the Eigen values of its adjacency matrix. 

Definition 3.10:[70 ]The spectrum  of a graph is the set of all Eigen values of its adjacency matrix 

5* ≥ 5.… ≥ 57  (18) 

Definition 3.11:[70]The energy of the graph G is defined as the sum of the absolute values of its eigenvalues 

and denoted it by E(G): 

E(G)=∑ |5)|7):*  (19) 

4.Some Basic Concepts of Interval Valued Neutrosophic Graphs

Throughout this paper, we abbreviate   3∗=(V, E) as a crisp graph, and G=(N, M) an interval valued neutro-

sophic graph.In this  section we  have defined some basic concepts of interval valued neutrosophic graphs and 

discuses some of their properties. 

Definition 4.1:[45] A pair G=(V,E) is called  an interval valued neutrosophic graph (abbr.IVNG) if the fol-

lowing holds: 

1. V=  {�):i=1,..,n} such as �* :V→ [0,1] is the lower truth-membership degree,�*!:V→ [0,1] is the upper

truth-membership degree,
* :V→ [0,1] is the lower indeterminate-membership degree,
*!:V→ [0,1] is the
upper indterminate-membership degree, and �* :V→ [0,1] is the lower false-membership degree,�*!:V→
[0,1] is the upper false-membership degree,of ;) ∈ V subject to condition

0 ≤ �*!(�))+
*!(�))+�*!(�)) ≤ 3      (20)

2. E={(�) , �+ ): (�) , �+ ) ∈ , × ,} such as �. :, × , → [0,1] is the lower truth-memebership degree, as�.!:, × , → [0,1] is the upper truth-memebership degree,  
. :, × , → [0,1] is the lower indeterminate-

memebership degree, 
.! :, × , → [0,1]  is the upper indeterminate-memebership degree and �. :, ×, → [0,1] is the lower false-memebership degree, �.!:, × , → [0,1] is the upper false-memebership de-

gree of (�),�+) ∈ E defined  as

�. (�),�+)≤ �* (�)) ∧ �* (�+) ,�.!(�),�+)≤ �*!(�)) ∧ �*!(�+)      (21)


. (�),�+)≥ 
* (�)) ∨ 
* (�+) ,
.!(�),�+)≥ 
*!(�)) ∨ 
*!(�+)            (22)

�. (�),�+)≥ �* (�)) ∨ �* (�+) ,�.!(�),�+)≥ �*!(�)) ∨ �*!(�+)      (23)

 Subject to condition 0 ≤ �.!(�)�.)+
.!(�*�.)+�.!(�)�+) ≤ 3 ∀ (�), �+) ∈ E.     (24)
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Example 4.2.Consider  a crisp graph	3∗ such that V= {�*, �., �2}, E={�*�., �.�2, �2�1}. Suppose N be an

interval valued neutrosophic subset of V and suppose M an interval valued neutrosophic subset of E denoted by: 

�* �. �2 �*�. �.�2 �2�*�� 0.3 0.2 0.1 �' 0.1 0.1 0.1 

��! 0.5 0.3 0.3 �'! 0.2 0.3 0.2 
� 0.2 0.2 0.2 
' 0.3 0.4 0.3 
�! 0.3 0.3 0.4 
'!  0.4 0.5 0.5 �� 0.3 0.1 0.3 �' 0.4 0.4 0.4 ��! 0.4 0.4 0.5 �'! 0.5 0.5 0.6 

Fig. 2.Example of an interval valued neutrosophic  graph 

Definition 4.3A graph G=(N , M)  is termed simple interval valued neutrosophic graph if it has neither self 

lops nor parallel edges in an interval valued neutrosophic graph. 

Definition 4.4The degree d(k) of any vertex k of  an interval valued neutrosophic graph G=(N, M) is defined 

as follow: 

d(v)= [ <= (�),<=!(�)],[<� (�),<�!(�)],[<> (�),<>!(�)]    (25)

 Where <= (�)= ∑ �' ?@A?B (�)�+) known as the degree of lower truth-membership vertex<=!(�)= ∑ �'!?@A?B (�)�+) known as the degree of upper truth-membership vertex<� (�)= ∑ 
' ?@A?B (�)�+) known as the degree of lower indterminate-membership vertex<�!(�)= ∑ 
'!?@A?B (�)�+) known as the degree of upperindeterminate-membership vertex<> (�)= ∑ �' ?@A?B (�)�+) known as the degree of lower false-membership vertex<>!(�)= ∑ �'!?@A?B (�)�+) known as the degree of upperfalse-membership vertex

Example 4.5 Consider an IVNG  G=(N, M) presented in Fig. 4 with  vertices  set V={�): � = 1, . . ,4} and

edges  set E ={�*�1 ,�1�2, �2�.,�.�*}.

�2

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

�* �.

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 
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Fig. 4.Illutstrationof  an interval valued neutrosophic graph 

The degree of each vertex �)is given as follows:<(k*)=	([0.3, 0.6], [0.5, 0.9], [0.5, 0.9]),<(k.)=	([0.4, 0.6], [0.5, 1.0], [0.4, 0.8]),<(k2)=	([0.4, 0.6], [0.6, 0.9], [0.4, 0.8]),<(k1)=	([0.3, 0.6], [0.6, 0.8], [0.5, 0.9]).

Definition 4.6.  A graph G=(N, M) is termed regular interval valued neutrosophic graph if d(k)=r=([r*H,r*I], [r.H, r.I], [r2H, r2I]), ∀	k ∈ V.

(i.e.) if each vertex has same degree r, then G is said to be a regular interval valued neutrosophic graph of de-

gree r. 

Definition 4.7. A graph G=(N,M) is termed irregular interval valued neutrosophic graph if the degree of 

some vertices are different than other. 

Example 4.8 Let us Suppose, G is a regular interval-valued neutrosophic graph as portrayed in Fig. 5 having 

vertex set V={k*, k., k2, k1} and edge sets E={k*k.,k.k2, k2k1	,k1k*} as follows.

 

Fig.5 .Regular IVN-graph. 

�1
<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

�2
<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 
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]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

�*
<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

�.

<
[0

.2
, 

0
.3

],
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0
.2

, 
0
.5

],
[0

.2
, 

0
.4

]>
 

�1
<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.3, 0.4],[0.2, 0.4]> 
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0
.3

],
[ 

0
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, 
0
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, 
0
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<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 
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In the Fig. 5. All adjacent vertices JKJL , JLJM , JMJN , JN�K  have the same degree equal

<[0.4,0.6],[0.4,1],[0.4,0.8]>. Hence, the graph G is a regular interval valued neutrosophic graph. 

Definition 4.9 A graph G= (N, M) on O∗is termed strong interval valued neutrosophic graph if the following

holds: 

PQR (JS, JT) = PUR (JS)∧ PUR (JT)PQV (JS, JT) = PUV(JS)∧ PUV(JT)WQR (JS, JT) = WUR (JS)∨ WUR (JT)WQV (JS, JT) =WUV(JS)∨ WUV(JT)XQR (JS, JT) = XUR (JS)∨ XUR (�)XQV (JS, JT) = XUV(JS)∨ XUV(JT)	∀	(JS ,JT )∈ E  (26) 

Example 4.10.Consider the strong interval valued neutrosophic graph G=(N, M) in Fig. 6 with vertex set N 

={k*, k., k2, k1}and edge set M={�*�., �.�2, �2�1, �1�*} as follows:

�* �. �2 �*�. �.�2 �2�*TZH 0.3 0.2 0.1 T[H  0.2 0.1 0.1 

TZI 0.5 0.3 0.3 T[I 0.3 0.3 0.3 IZH  0.2 0.2 0.2 I[H  0.2 0.2 0.2 IZI 0.3 0.3 0.4 I[I  0.3 0.4 0.4 FZH  0.3 0.1 0.3 F[H  0.3 0.3 0.3 FZI 0.4 0.4 0.5 F[I  0.4 0.4 0.5 

Fig.6.Illustration of strong IVNG 

Proposition 4.11For everyJS,JT ∈ V, we have

PQR (JS, JT) =PQR (JT, JS)and PQV (JS, JT) =PQV (JT, JS)WQR (JS, JT) =WQR (JT, JS)and WQV (JS, JT) =WQV (JT, JS)XQR (JS, JT) =XQR (JT, JS)and XQV (JS, JT) =XQV (JT, JS)  (27) 

�2

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 

�* �.

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.4]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 
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Proof. Suppose G =(N, M) be an interval valued neutrosophic graph, suppose JS is a neigbourhood of  JT in
G.Then , we have

PQR (JS, JT) =min [ PUR (JS), PUR (JT)]   and  PQV (JS, JT) =min [ PUV(JS), PUV(JT)]
WQR (JS, JT) =max [ WUR (JS), WUR (JT)]  and WQV (JS, JT) =max[ WUV(JS), WUV(JT)]
XQR (JS, JT) =max [ XUR (JS), XUR (JT)]  and  XQV (JS, JT) =max [ XUV(JS), XUV(JT)]
Similarly we have also for

PQR (JT, JS) =min [ PUR (JT), PUR (JS)]   and  PQV (JT, JS) =min [ PUV(JT), PUV(JS)]
WQR (JT, JS) =max [ WUR (JT), WUR (JS)]  and WQV (JT, JS) =max[ WUV(JT), WUV(JS)]
XQR (JT, JS) =max [ XUR (JT), XUR (JS)]  and  XQV (JT, JS) =max [ XUV(JT), XUV(JS)]
Thus

PQR (JS, JT) =PQR (JT, JS)andPQV (JS, JT) =PQV (JT, JS)WQR (JS, JT) =WQR (JT, JS)andWQV (JS, JT) =WQV (JT, JS)XQR (JS, JT) =XQR (JT, JS)andXQV (JS, �) =XQV (JT, JS)
Definition 4.12 The graph G= (N, M) is termed an interval valued neutrosophic graph if the following holds PQR (JS, JT) =min [ PUR (JS), PUV(JT)]   and  PQV (JS, JT) =min [ PUV(JS), PUV(JT)]

WQR (JS, JT) =max [ WUR (JS), WUR (JT)]  and WQV (JS, JT) =max[ WUV(JS), WUV(JT)]
XQR (JS, JT) =max [ XUR (JS), XUR (JT)]  and  XQV (JS, JT) =max [ XUV(JS), XUV(JT)]  ∀JS,JT ∈ V  (28) 

Example 4.13. Consider the complete interval valued neutrosophic graph G=(N, M) portrayed in Fig. 7 with 

vertex set A ={k*, k., k2, k1}and edge set E={k*k.,k*k2 ,k.k2, k*k1, k2k1	,k.k1}as follows

 

 

Fig.7 .Illustration of complete IVN-graph 
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<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]> 
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In the following based on the extension of the adjacency matrix of SVNG [69], we defined the concept of ad-

jacency matrix of IVNG as follow: 

Definition 4.14:The adjacency matrix M(G) of IVNG G= (N, M) is defined as a square matrix M(G)=^_)+`,
with _)+=<��'a�) , �+b,
�' a�) , �+b,��' a�) , �+b>, where��'a�) , �+b= [�' a�) , �+b,�!a�) , �+b] denote the strength of relationship
�'a�), �+b= [
' a�) , �+b,
'!a�) , �+b] denote the strength of undecided relationship��'a�), �+b=[�' a�) , �+b,�'!a�) , �+b] denote the strength of non-relationship between �) and �+  (29) 

The adjacency matrix of an IVNG can be expressed as sixth matrices, first matrix contain the entries as lower 

truth-membership values, second contain upper  truth-membership values, third contain lower indeterminacy-

membership values, forth contain upper indeterminacy-membership, fifth contains lower non-membership values 

and the sixth contain the upper non-membership values, i.e., 

c(3)=<[�' a�) , �+b,�'!a�) , �+b] ,	[
' a�) , �+b,
'!a�) , �+b] ,	[�' a�) , �+b,�'!a�) , �+b] >,  (30) 

From the Fig. 1, the adjacency matrix of IVNG is defined as: 

QO = d e < [e. K	, e. N], [e. M	, e. L], [e. L	, e. g] > < [e. K	, e. N], [e. M	, e. g], [e. L	, e. i] >< [e. K	, e. N], [e. M	, e. L], [e. L	, e. g] > e < [e. K	, e. M], [e. L	, e. g], [e. L	, e. g] >< [e. K	, e. N], [e. M	, e. g], [e. L	, e. i] > < [e. K	, e. M], [e. L	, e. g], [e. L	, e. g] > e j 

In the literature, there is no Matlab toolbox deals with neutrosophic matrix such as adjacency matrix and so 

on. Recently Broumi et al [58] developed a Matlab toolbox for computing operations on  interval valued neutro-

sophicmatrices.So, we can inputted the adjacency matrix of IVNG  in the workspace Matlab as portrayed in Fig. 

8. 

Fig. .8 Screen shot of Workspace MATLAB 

Florentin Smarandache (author and editor) Collected Papers, XII

359



Definition 4.15:The spectrum of adjacency matrix of an IVNG M(G) is defined as 

<k� , l�,m�>=<[k� ,k�!],[l� ,l�!],<[m� ,m�!]>                               (31)

Where k� is  the set of eigenvalues of c(�' a�) , �+b),k�! is the set of eigenvalues of c(�n!a�), �+b),l�  is the

set of eigenvalues of c(
' a�) , �+b),l�! is the set of eigenvalues ofc(
'!a�) , �+b) , m� is the set of eigenvalues of c(�' a�) , �+b) and m�!  is the set of eigenvalue ofc(�n!a�) , �+b)respectively.

Definition 4.16: The energy of an IVNG G= (N,M) is defined as 

E(G)=<E(PoQaJS, JTb),p(W�QR aJS, JTb),p(XoQR aJS, JTb)>  (32) 

Where 

E(��'a�) , �+b = [E(�' a�)�+b),E(�'!a�)�+b)]=[∑ |5) |7):*q@r∈s�r
, ∑ t5)!t7 ):*q@u∈s�u

] 

E(
�'a�) , �+b = [E(
' a�)�+b),E(
'!a�)�+b)]=[∑ |v) |7):*w@r∈��r
, ∑ tv)!t7 ):*w@u∈��u

] 

E(��'a�) , �+b= [E(�' a�)�+b),E(�'!a�)�+b)] =[∑ |x) |7):*y@r∈z�r
, ∑ tx)!t7 ):*y@u∈z�u

] 

Definition 4.17:Two interval valued neutrosophic graphs3* and 3. are termed equienergetic, if they have the

same number of vertices and the same energy. 

Proposition4.18:If an interval valued neutrosophic G is both regular and totally regular, then the eigen values 

are balanced on the energy. 

∑ ±5) 7):* = 0, ∑ ±5)!7):* = 0, ∑ ±v)7):* = 0, ∑ ±v)!7):* = 0, ∑ ±x)7):* = 0  and∑ ±x)!7):* = 0.  (33) 

4.19. MATLAB program for findingspectrum of an interval valued neutrosophic graph 
To generate the MATLAB program for finding the spectrum of interval valued neutrosophic graph. The program 

termed “Spec.m” is written  as follow: 

Function SG=Spec(A); 

% Spectrum of an interval valued neutrosophic matrix A   

% "A" have to be an interval valued neutrosophic  matrix - "ivnm" object: 

a.ml=eig(A.ml);               % eigenvalues of lower membership of ivnm% 

a.mu=eig(A.mu);             % eigenvalues of upper membership of ivnm% 

a.il=eig(A.il);                  % eigenvalues of lower rindeterminate-membership of ivnm% 

a.iu=eig(A.iu);                % eigenvalues of upper indterminate- membership of ivnm% 

a.nl=eig(A.nl);               % eigenvalues of lower false-membership of ivnm% 

a.nu=eig(A.nu);            % eigenvalues of upper false-membership of ivnm% 

SG=ivnm(a.ml,a.mu,a.il,a.iu,a.nl,a.nu); 

4.20. MATLAB program for finding energy of an interval valued neutrosophic graph 
To generate the MATLAB program for finding the energy of interval valued neutrosophic graph. The program 

termed “ENG.m”iswritten  as follow: 

Florentin Smarandache (author and editor) Collected Papers, XII

360



Example4.21: The spectrum and the energy of an IVNG, illustrated in Fig. 6,  are given below: 

Spec(�' a�)�+b)={ -0.10, -0.10,0.20},  Spec(�'!a�)�+b)={-0.30,-0.17,0.47}

Spec(
' a�)�+b)={-0.40,-0.27,0.67},   Spec(
'!a�)�+b)={-0.53,-0.40,0.93]}

Spec(�' a�)�+b)={-0.40,-0.40,0.80},  Spec(�'!a�)�+b)={ -0.60,-0.47,1.07}

Hence, 

Spec(G)={<[-0.10, -0.30], [-0.40, -0.53 ],[-0.40, -0.60 ]>, <[-0.10, -0.17], [-0.27, -0.40 ],[-0.40, -0.47 ]>, <[0.20, 

0.47], [0.67, 0.93 ],[0.80, 1.07 ]>} 

Now , 

E(�' a�)�+b)=0.40,   E(�'!a�)�+b)=0.94

E(
' a�)�+b)=1.34,E(
'!a�)�+b)=1.87

E(�' a�)�+b)=1.60,E(�'!a�)�+b)=2.14

Therefore 

E(G)= <[0.40, 0.94],[1.34, 1.87], [1.60, 2.14]> 

Based on toolbox MATLAB developed in [58], the readers can run the program termed “Spec.m”, for computing 

the spectrum of graph, by writing in command window “Spec (A)” as described below: 

Similarly,  the readers can also run the program termed “ENG.m”, for computing the energy of graph, by writing 

in command window “ENG (A) as described below: 
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In term of the number of vertices and the sum of interval truth-membership, interval indeterminate-membership 

and interval false-membership, we define the upper and lower bounds on energy of an IVNG. 

Proposition 4.22. Suppose  G= (N, M) be an IVNG on n vertices and the adjacency matrix   of G.then 

|2∑ a�' (�)�+)b. + �(� − 1)|� |. ��*�)+�7 ≤ �(�' a�)�+b) ≤ |2�∑ a�' (�)�+)b.*�)+�7  (34) 

|2∑ a�'!(�)�+)b. + �(� − 1)|�!|. ��*�)+�7 ≤ �(�'!a�)�+b) ≤ |2� ∑ a�'!(�)�+)b.*�)+�7  (35) 

|2∑ a
' (�)�+)b. + �(� − 1)|
 |. ��*�)+�7 ≤ �(
' a�)�+b) ≤ |2� ∑ a
' (�)�+)b.*�)+�7  (36) 

|2∑ a
'!(�)�+)b. + �(� − 1)|
!|. ��*�)+�7 ≤ �(
'!a�)�+b) ≤ |2�∑ a
'!(�)�+)b.*�)+�7  (37) 

|2∑ a�' (�)�+)b. + �(� − 1)|� |. ��*�)+�7 ≤ �(�' a�)�+b) ≤ |2� ∑ a�' (�)�+)b.*�)+�7  (38) 

|2∑ a�'!(�)�+)b. + �(� − 1)|�!|. ��*�)+�7 ≤ �(�'!a�)�+b) ≤ |2� ∑ a�'!(�)�+)b.*�)+�7  (39) 

Where  |PR|,|PV|,|WR|,|WV|,|XR|and |XV| are the determinant of Q(PQR aJS, JTb), Q(PQV aJS, JTb), Q(WQR aJS, JTb),	Q(WQV aJS, JTb), Q(XQR aJS, JTb) andQ(XQV aJS, JTb),respectively.

Proof: proof is similar as in Theorem 3.2 [69] 

Conclusion 

This paper introduces some basic operations on interval-valued neutrosophic set to increase its utility in vari-

ous fields for multi-decision process. To achieve this goal, a new mathematical algebra of interval-valued neu-

trosophic graphs, its energy as well as spectral computation is discussed with mathematical proof using 

MATLAB. In the near future, we plan to extend our research to interval valued neutrosophic digraphs and devel-

oped the concept of domination in interval valued-neutrosophic graphs. Same time the author will focus on han-

dling its necessity for knowledge representation and processing tasks [85-87]. 

Acknowledgements: 

Authors thank the anonymous reviewers and the editor for providing useful comments and suggestions to im-

prove the quality of this paper. 

References 

[1] F. Smarandache.Neutrosophic set - a generalization of the intuitionistic fuzzy set. Granular Computing, 2006 IEEE

International Conference, 2006, pp.38 – 42. DOI: 10.1109/GRC.2006.1635754.

[2] F. Smarandache (2011) A geometric interpretation of the neutrosophic set — A generalization of the intuitionistic

fuzzy set Granular Computing (GrC), 2011 IEEE International Conference,  602 – 606. DOI

10.1109/GRC.2011.6122665.

[3] L. Zadeh.  Fuzzy sets. Inform and Control 8,1965,pp.338-353

[4] K. Atanassov.Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20,1986,pp.87-96

Florentin Smarandache (author and editor) Collected Papers, XII

362



[5] K. Atanassov  andG. Gargov. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 31,1989,pp.343-349

[6] K. Atanassov. Intuitionistic fuzzy sets: theory and applications. Physica, New York,1999.

[7] I. Turksen. Interval valued fuzzy sets based on normal forms.Fuzzy Sets and Systems 20,1986,pp.191-210

[8] H. Wang, F. Smarandache, Y. Zhang and R. Sunderraman Single valued  neutrosophic  sets. Multisspace and Mul-

tistructure 4, 2010,pp.410-413

[9] H. Wang ,Y. Zhang,  R. Sunderraman. Truth-value based interval neutrosophic sets, Granular Computing, 2005

IEEE International Conference1, 2005,pp.274 - 277. DOI: 10.1109/GRC.2005.1547284.

[10] H. Wang, F. Smarandache ,Y.Q. Zhang and R. Sunderram. An interval neutrosophic sets and logic: theory and ap-

plications in  computing. Hexis, Arizona, 2005

[11] A. Q. Ansari, R. Biswas &S. Aggarwal.Neutrosophic classifier: An extension of fuzzy classifier. Elsevier- Applied

Soft Computing 13,2013, pp.563-573. http://dx.doi.org/10.1016/j.asoc.2012.08.002

[12] A. Aydoğdu. On similarity and entropy of single valued neutrosophic sets. Gen. Math. Notes 29(1),2015,pp.67-74

[13] J. Ye. Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision

making. International Journal of  Fuzzy Systems16(2), 2014,pp.204-211

[14] J .Ye. Single-valued neutrosophic minimum spanning tree and its clustering method.Journal of Intelligent Systems

23(3), 2014,pp.311–324

[15] H.Y.Zhang, J.Q.Wang, X.H. Chen.Intervalneutrosophic  sets  and  their  application  in  multicriteria  decision

making  problems. The Scientific World Journal, 2014,DOI:10.1155/2014/ 645953.

[16] H. Zhang, J. Wang, X. Chen, An outranking approach for multi-criteria decision-making problems with interval-

valued neutrosophic sets. Neural Computing and Applications, 2015,pp.1-13

[17] A.Edward Samuel and R. Narmadhagnanam. Innovative Approaches for N-valued Interval Neutrosophic Sets and

their Execution in Medical Diagnosis. Journal of Applied Sciences 17(9),2017,pp.429-440

[18] J. Ye. Similarity measures between interval neutrosophic sets and their applications in multi-criteria decision-

making.Journal of Intelligent and Fuzzy Systems 26, 2014,pp.165-172

[19] J. Ye. Some aggregation operators of interval neutrosophic linguistic numbers for multiple attribute decision mak-

ing.Journal of Intelligent & Fuzzy Systems 27, 2014,pp.2231-2241

[20] P. Liu  and    L. Shi.The  generalized  hybrid  weighted  average  operator  based  on  interval  neutrosophic  hesi-

tant  set  and  its  application to multiple attribute decision making.Neural Computing and Applications. 26

(2),2015,pp.457-471

[21] R. Şahin. Cross-entropy measure on interval neutrosophic sets and its applications in multicriteriadecision making.

Neural Computing and Applications, 2015,pp.1-11

[22] S. Broumi, F. Smarandache. New distance and similarity measures of interval neutrosophicsets.Information Fusion

(FUSION). 2014 IEEE 17th International Conference,2014,pp.1 – 7

[23] S. Broumi, and  F. Smarandache. Single valued neutrosophic trapezoid linguistic aggregation operators based mul-

ti-attribute decision making. Bulletein of Pure & Applied Sciences- Mathematics and Statistics, 2014,pp.135-155.

DOI :10.5958/2320-3226.2014.00006.X.

[24] Y. Hai-Long, She, G.Yanhonge ,L. Xiuwu. On single valued neutrosophicrelations.Journal of Intelligent & Fuzzy

Systems, vol. Preprint, no. Preprint,2015,pp.1-12

[25] A. N. Gani, and , M. BasheerAhamed. Order and size in fuzzy graphs.Bulletin of Pure and Applied Sciences 22E(1),

2003,pp.145-148

[26] A. N. Gani and S.R. Lath. On irregular fuzzy graphs. Applied Mathematical Sciences 6(11),2012,pp.517-523

[27] P. Bhattacharya. Some remarks on fuzzy graphs. Pattern Recognition Letters 6,1987, pp.297-302

[28] A. N. Gani, and S. Shajitha Begum. Degree, order and size in intuitionistic fuzzy graphs. International Journal of

Algorithms, Computing and Mathematics (3)3,2010,

[29] M.Akram, and B. Davvaz. Strong intuitionistic fuzzy graphs. Filomat 26 (1),2012,pp.177–196

[30] R. Parvathi, and M. G. Karunambigai. Intuitionistic fuzzy graphs. Computational Intelligence, Theory and applica-

tions, International Conference in Germany, Sept 18 -20, 2006.

[31] Prem Kumar S and Ch. Aswani Kumar. Interval-valued fuzzy graph representation of concept lattice. In: Proceed-

ings of 12th International Conference on Intelligent Systems Design and Application, IEEE, 2012, pp. 604-609

[32] A. Mohamed Ismayil  andA. Mohamed Ali. On Strong Interval-Valued Intuitionistic Fuzzy Graph. International

Journal of Fuzzy Mathematics and Systems 4(2),2014,pp.161-168

[33] S. N. Mishra  andA. Pal. Product of interval valued intuitionistic fuzzygraph. Annals of Pure and Applied Mathe-

matics 5(1), 2013,pp.37-46

[34] F. Smarandache. Refined literal indeterminacy and the multiplication law of sub-indeterminacies. Neutrosophic

Sets and Systems 9, 2015,pp.58- 63

[35] F. Smarandache. Types of neutrosophic graphs and neutrosophic algebraic structures together with their Applica-

tions in Technology, seminar, UniversitateaTransilvania din Brasov, Facultatea de Design de ProdussiMediu, Bra-

sov, Romania 06 June, 2015.

[36] F. Smarandache.Symbolic neutrosophic theory, Europanovaasbl, Brussels,2015,195p

[37] W. B. VasanthaKandasamy, K. Ilanthenral, and F. Smarandache.Neutrosophic graphs: A New Dimension to Graph

Theory, 2015,Kindle Edition.

[38] W. B. VasanthaKandasamy,  and F. Smarandache Fuzzy cognitive maps and neutrosophiccongtive maps,2013

[39] W.B. VasanthaKandasamy, and F. Smarandache. Analysis of social aspects of migrant laborers living with

HIV/AIDS using Fuzzy Theory and Neutrosophic Cognitive Maps, Xiquan, Phoenix,2004

Florentin Smarandache (author and editor) Collected Papers, XII

363



[40] A. V.Devadoss, A. Rajkumar& N. J. P. Praveena.A Study on Miracles through Holy Bible using Neutrosophic

Cognitive Maps (NCMS).International Journal of Computer Applications 69(3), 2013.

[41] Broumi S, M. Talea, A. Bakali and F.Smarandache. Single valued neutrosophic graphs. Journal of New Theory

10,2016,pp. 86-101.

[42] S. Broumi, M. Talea  ,F. Smarandache  and A. Bakali. Single Valued Neutrosophic Graphs: Degree, Order and Size.

IEEE International Conference on Fuzzy Systems (FUZZ), 2016,pp.2444-2451.

[43] S. Broumi,  A. Bakali, M. Talea  and F. Smarandache  Isolated single valued neutrosophic graphs. Neutrosophic

Sets and Systems 11, 2016,pp.74-78.

[44] S. Broumi, A. Dey, A. Bakali, M. Talea, F. Smarandache, L. H. Son, D. Koley. Uniform single valued neutrosophic

graphs. Neutrosophic Sets and Systems, 17,2017,pp.42-49

[45] S. Broumi, M. Talea,A. Bakali, F. Smarandache.Interval valued neutrosophic graphs. Critical Review,

XII,2016,pp.5-33.

[46] S. Broumi, F. Smarandache, M. Taleaand  A. Bakali. Operations on interval valued neutrosophic graphs, chapter in

book- New Trends in Neutrosophic Theory and Applications- FlorentinSmarandache and SurpatiPramanik (Edi-

tors),2016,231-254. ISBN 978-1-59973-498-9.

[47] S. Broumi, M. Talea, A. Bakali, F. Smarandache.On Strong interval valued neutrosophic graphs. Critical Review.

Volume XII, 2016,pp.1-21

[48] S. Broumi, A. Bakali, M. Talea, F. Smarandache. An isolated interval valued neutrosophic graphs. Critical Review.

Volume XIII,2016,pp.67-80

[49] S.Broumi, F. Smarandache, M. Talea and A. Bakali. Decision-Making Method Based On the Interval Valued Neu-

trosophic Graph.  FutureTechnologie, IEEE,2016, pp.44-50.

[50] S. Broumi, A. Bakali, M. Talea, F. Smarandache, P. K.Kishore Kumar. Shortest path problem on single valued neu-

trosophic graphs. IEEE, 2017 International Symposium on Networks, Computers and Communications

(ISNCC),2017,pp.1 - 6

[51] S. Broumi,  A. Bakali, M. Talea, F. Smarandache, M. Ali. Shortest Path Problem Under Bipolar Neutrosophic Set-

ting. Applied Mechanics and Materials 859, 2016,pp.59-66

[52] S. Broumi, A. Bakali, M. Talea, F. Smarandache  andL. Vladareanu. Computation of Shortest Path Problem in a

Network with SV-Trapezoidal Neutrosophic Numbers.Proceedings of the 2016 International Conference on Ad-

vanced Mechatronic Systems, Melbourne, Australia,  2016,pp. 417-422.

[53] S. Broumi,A. Bakali, M. Talea, F. Smarandache  and L. Vladareanu. Applying dijkstra algorithm for solving neu-

trosophic shortest path problem. Proceedings of the 2016 International Conference on Advanced Mechatronic Sys-

tems, Melbourne, Australia, November 30 - December 3,2016,pp.412-416.

[54] S. Broumi, M. Talea, A. Bakali  andF. Smarandache. On bipolar single valued neutrosophic graphs. Journal Of

New Theory, N11,2016,pp.84-102.

[55] S. Broumi, F.Smarandache, M.TaleaandA. Bakali.An Introduction to bipolar single valued neutrosophic graph the-

ory. Applied Mechanics and Materials  841, 2016,pp.184-191.

[56] S. Broumi, A. Bakali, M. Talea, F. Smarandache and M. Khan. A Bipolar single valued neutrosophic isolated

graphs: Revisited. International Journal of New Computer Architectures and their Applications 7(3), 2017,pp.89-94

[57] A. Hassan, M. Malik. A, S. Broumi, A. Bakali, M. Talea, F. Smarandache. Special types of bipolar single valued

neutrosophic graphs. Annals of Fuzzy Mathematics and Informatics 14(1), 2017, pp.55-73.

[58] S. Broumi, A. Bakali, M. Talea, F. Smarandache. A Matlab toolbox for interval valued neutrosophic matrices for

computer  applications. UluslararasıYönetimBilişimSistemleriveBilgisayarBilimleriDergisi 1,2017,pp.1-21

[59] S. Broumi, A. Bakali, M. Talea, F. Smarandache, P K. Kishore Kumar. A New concept of matrix algorithm for

MST in undirected interval valued neutrosophic graph, chapter in book- Neutrosophic Operational Research- Vol-

ume II-FlorentinSmarandache, Mohamed Abdel-Basset and Victor Chang(Editors),2017,pp. 54-69. ISBN 978-1-

59973-537-5

[60] S. Broumi, A. Bakali, M. Talea, F. Smarandache, and R. Verma.Computing minimumspanning tree in interval val-

ued bipolar neutrosophic environment. International Journal of Modeling and Optimization 7(5), 2017,pp.300-304.

DOI: 10.7763/IJMO.2017.V7.602

[61] S. Broumi, A. Bakali, M. Talea and F. Smarandache. Complex neutrosophic graphs of type1. IEEE International

Conference on INnovations in Intelligent SysTemsandApplications (INISTA), Gdynia Maritime University, Gdy-

nia, Poland, 2017,pp. 432-437.

[62] P.K. Singh. Interval-valued neutrosophic graph representation of concept lattice and its (α, β, γ)-decomposition.

Arabian Journal for Science and Engineering, ,2017,  DOI: 10.1007/s13369-017-2718-5

[63] J. Malarvizhi and G. Divya. On antipodal single valued neutrosophic graph. Annals of Pure and Applied Mathemat-

ics15(2), 2017,pp.235-242

[64] P. Thirunavukarasu and R. Suresh.On Regular complex neutrosophic graphs. Annals of Pure and Applied Mathe-

matics15(1), 2017,pp. 97-104

[65] S. Rıdvan. An approach to neutrosophic graph theory with applications. Soft Computing, pp.1–13. DOI

10.1007/s00500-017-2875-1

[66] R. Uma, P. Murugadas and S. Sriram. Determinant theory for fuzzy Neutrosophic soft matrices. Progress in Non-

linear Dynamics and Chaos 4(2), 2016,pp.85-102.

[67] S. Mehra and M. Singh. Single valued neutrosophicsignedgarphs.International Journal of computer Applications

157(9),2017,pp.31-34

Florentin Smarandache (author and editor) Collected Papers, XII

364



[68] S. Ashraf, S. Naz, H. Rashmanlou, and M. A. Malik. Regularity of graphs in single valued neutrosophic environ-

ment. Journal of Intelligent &Fuzzy Systems,2017, pp.1-14

[69] S. Naz, H. Rashmanlou and M. A.Malik.Energy and Laplacian energy of a single value neutrosophic graph.2017

(unpublished )

[70] I. Gutman. The energy of a graph. Ber Math Stat SektForsch Graz 103,1978,pp.1-22

[71] B.P.Varol, V. Cetkin, and H. Aygun. Some results on neutrosophic matrix. International Conference on Mathemat-

ics and Engineering, 10-12 May 2017, Istanbul, Turkey, 7 pages.

[72] M. Hamidi, A. B. Saeid. Accessible single-valued neutrosophic graphs. Journal of Applied Mathematics and Com-

puting,2017,pp.1-26.

[73] M.Abdel-Basset, M. Mohamed & F. Smarandache. An Extension of Neutrosophic AHP–SWOT Analysis for Stra-

tegic Planning and Decision-Making. Symmetry, 10( 4), 2018,116.

[74] M.Abdel-Basset, M.Mohamed, F.Smarandache & V. Chang. Neutrosophic Association Rule Mining Algorithm for

Big Data Analysis. Symmetry, 10(4), 2018, 106.

[75] M.Abdel-Basset, M.Mohamed & F. Smarandache. A Hybrid Neutrosophic Group ANP-TOPSIS Framework for

Supplier Selection Problems. Symmetry, 10(6), 2018,226.

[76] M.Abdel-Basset, M.Gunasekaran, M.Mohamed & F. SmarandacheA novel method for solving the fully neutro-

sophic linear programming problems. Neural Computing and Applications, 2018,pp. 1-11.

[77] M.Abdel-Basset, M.Mohamed & V.Chang. NMCDA: A framework for evaluating cloud computing ser-

vices. Future Generation Computer Systems, 86, 2018,pp.12-29.

[78] M.Abdel-Basset, Y. Zhou,  M.Mohamed  & V. Chang. A group decision making framework based on neutrosophic

VIKOR approach for e-government website evaluation. Journal of Intelligent & Fuzzy Systems, 34(6), 2018,

pp.4213-4224.

[79] M.Abdel-Basset, M.Mohamed, Y. Zhou & I. Hezam. Multi-criteria group decision making based on neutrosophic

analytic hierarchy process. Journal of Intelligent & Fuzzy Systems, 33(6), 2017,pp.4055-4066.

[80] M.Abdel-Basset & M. Mohamed. The role of single valued neutrosophic sets and rough sets in smart city: imper-

fect and incomplete information systems. Measurement, 124, 2018, pp.47-55.

[81] M.Abdel-Basset, G.Manogaran, & M. Mohamed. Internet of Things (IoT) and its impact on supply chain: A

framework for building smart, secure and efficient systems. Future Generation Computer Systems, 2018.

[82] M.Abdel-Basset, M.Gunasekaran, M.Mohamed & N.Chilamkurti. Three-way decisions based on neutrosophic sets

and AHP-QFD framework for supplier selection problem. Future Generation Computer Systems,2018

[83] V.Chang, , M.Abdel-Basset, & M.Ramachandran. Towards a Reuse Strategic Decision Pattern Framework–from

Theories to Practices. Information Systems Frontiers, 2018, pp.1-18.

[84] M.Abdel-Basset, G.Manogaran, A.Gamal & F. Smarandache.A hybrid approach of neutrosophic sets and DE-

MATEL method for developing supplier selection criteria. Design Automation for Embedded Systems, 2018, pp.1-

22.

[85] Prem Kumar Singh & Ch. Aswani Kumar, Interval-valued fuzzy graph representation of concept lattice. In:

Proceedings of 12th International Conference on Intelligent Systems Design and Application 2012, pp. 604-

609

[86] Prem Kumar Singh, Ch. Aswani Kumar & J.H. Li. Knowledge representation using interval-valued fuzzy

formal concept lattice. Soft Computing, 20(4), 2016, pp. 1485-1502.

[87] Prem Kumar Singh, Three-way n-valued neutrosophic concept lattice at different granulation. International Jour

nal of Machine Learning and Cybernetics 9(11), 2018, 1839-1855

Florentin Smarandache (author and editor) Collected Papers, XII

365



Pestel analysis based on neutrosophic cognitive maps and 

neutrosophic numbers for the sinos river basin management

Rodolfo González Ortega, Marcos David Oviedo Rodríguez, Maikel Leyva Vázquez, 
Jesús Estupiñán Ricardo, João Alcione Sganderla Figueiredo, Florentin Smarandache

Abstract. The Sinos River watershed is one of the most polluted water basins in Brazil with great efforts for its recovery 
through integral management. PESTEL is an analysis for the study of the external variables with influence in the efficiency of 
the organization or project. This paper presents a model to address problems encountered in the measurement and evaluation 
process of PESTEL analysis taking into account interdependencies among sub-factors and modeling uncertainty and 
indeterminacy in Sinos river basin. A Neutrosophic Cognitive Maps was used for modeling the integrated structure of PESTEL 
sub-factors. A quantitative analysis was developed based on static analysis and neutrosophic numbers. To demonstrate the 
applicability of the proposal in the Sinos river external factor analysis a case study is developed.  Interdependencies among sub-
factors were includes and uncertainty and indeterminacy were modeled in a practical way. Sub-factor was ranked and reduced, 
with Ecological, Technological and Social are the top three factors. The paper ends with a conclusion and future work 
recommendations.

Keywords: Sinos River Basin; PESTEL; Neutrosophy; Neutrosophic Cognitive Maps; Static Analysis

1 Introduction

PEST is an analysis for the study of the external variables with influence in the efficiency of the organization or project. 
These variables involved in the business environment are grouped in Political, Economical, Social, and Technological 
aspects [1].

The conceptual structure and nature of PEST require an integrated approach for considering importance and 
interrelation.  The standard technical framework of the PEST approach mainly provides a general idea about macro 
conditions and the situation of an organization, so it is inadequate. Therefore, PEST analysis lacks a quantitative approach 
to the measurement of the interrelation between its factors. When the environment and legal factors are included, it is 
named PESTEL (Political, Economic, Socio-cultural, Technological, Environment, and Legal) analysis [2]. Political 
variables refer to the regulatory aspects that directly affect the enterprise. Here enter the taxes rules or business incentives 
in specific sectors, regulations on employment, the promotion of foreign trade, government stability, the system of 
government, international treaties or the existence of internal conflicts or with other current or future countries — also the 
way in which the different local, regional and national administrations are organized [3]. Economic variables relate to 
macroeconomic data, Gross domestic product (GDP) evolution, interest rates, inflation, unemployment rate, income level, 
exchange rates, access to resources, level of development, economic cycles. Current and future economic scenarios and 
economic policies should also be investigated.

Social variables take into account are demographic evolution, social mobility and changes in lifestyle — also the 
educational level and other cultural patterns, religion, beliefs, gender roles, tastes, fashions and consumption habits of 
society. In short, the social trends that may affect the enterprise business [3]. Technological variables are somewhat more 
complicated to analyze due to the high speed of the changes in this area. It is necessary to know the public investment in 
research and the promotion of technological development, the technology diffusion, the degree of obsolescence, the level 

Rodolfo González Ortega, Marcos David Oviedo Rodríguez, Maikel Leyva Vázquez, Jesús 
Estupiñán Ricardo, João Alcione Sganderla Figueiredo, Florentin Smarandache (2019). Pestel 
analysis based on neutrosophic cognitive maps and neutrosophic numbers for the sinos river 
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of coverage, the digital device, the funds destined to R & D + I, as well as the trends in the use of new technologies. 
Ecological variables are the main factors to be analyzed aware of the conservation of the environment, environmental 
legislation, climate change, and temperature variations, natural risks, recycling levels, energy regulation and possible 
regulatory changes in this area[4]. Legal variables refer to legislation that is directly associated with the organization 
functions, information on licenses, labor legislation, intellectual property, health laws, and regulated sectors[5].

PESTEL analysis has deficiencies for a quantitative approach to the measurement of interrelation among factors are 
generally ignored [6]. Fuzzy cognitive maps (FCM) is a tool for modeling and analyzing interrelations [7]. Connections in 
FCMs are just numeric ones: the relationship of two events should be linear.

The Neutrosophy can operate with indeterminate and inconsistent information, while fuzzy sets and intuitionistic fuzzy 
sets do not describe them appropriately [4]. Neutrosophic cognitive maps (NCM) is an extension of FCM where was 
included the concept indeterminacy [8]. The concept of fuzzy cognitive maps fails to deal with the indeterminate relation 
[1]. 

In this paper, a PESTEL analysis based on neutrosophic cognitive maps is presented proposal methodological support 
and make possible of dealing with interdependence, feedback, and indeterminacy. Additionally, the new approach makes 
conceivable to category and to reduce factors.  

This paper continues as follows: Section 2 reviews some essential concepts about the PESTEL analysis framework, 
NCM, and fuzzy numbers. In Section 3, a framework for the PESTEL shows a static analysis based on NCM. Section 4, 
displays a case study of the proposed model applied to social-environmental management of a river basin. The paper
finishes with conclusions and additional work recommendations.

2. Case Study

The Sinos River Basin is one of the most contaminated water basins in Brazil [9] which leads to great efforts
for its recovery through integral management.  Due to the complex nature of the interrelations between the different 
factors involved in environmental quality management becomes intricate and therefore requires the use of tools 
that facilitate decision making[10]. Through a participatory exercise with stakeholder members of the 
COMITESINOS, external variables were identified and a diffuse cognitive map was constructed representing the 
relationships among the variables. This process of identifying PESTEL variables was carried out with the members 
of the committee, for which work sessions were held in the coordination meetings. To elaborate on the NCM, 
Mental Modeler tool of the website http://www.mentalmodeler.org/ was used.

Initially, factors and sub-factors were identified for Sinos river basin management as follows:

I. Relevant Political-Legal Aspects
In the political dimension, the following variables were identified:
1. Influence of the federal government in the watersheds management  (N1)
2. Importance of the state government in the management of the basin  (N2)
3. Control of the municipal government in the watershed management (N3)
4. Impact of bureaucracy on management (N4)
5. Corruption impact (N5)

II. Relevant economic and socio-economic aspects
In the socioeconomic dimension, the following variables were identified:
1. Poverty (N6)
2. Per capita income(N7)
3. Quality of solid waste collecting services (N8)
4. Quality liquid waste service (N9)
5. Water supply service (N10)
6. The quality of public health (N11)
7. Quality of sewage and sewage services (N12)

III. Relevant social aspects
In the social dimension, the variables identified were:
1. Public education (N13)
2. Population access to food (N14)
3. Access to the housing (N15)

IV. Relevant sociocultural aspects
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In the sociocultural dimension, the variables identified were:
1. Perception of the environmental relevance in the local culture (N16)
2. Knowledge of environmental risk (N17)
3. Understanding of environmental awareness ( N18)

V. Relevant technological aspects
The variables identified in the technical dimension were:
1. Innovation(N19)
2. Cleaner production(N20)
3. Eco-efficiency (N21)

For the ecological dimension was possible to identify the following variables:
1. Water quality index (WQI)(N22)
2. Air Quality index (AQI) (N23)
3. Landscape change and urban planning(N24)
4. Variations in the biodiversity index of ecosystems value (N25)
5. Climate Change (N31)
6. Soil Quality index (N32)

Legal dimension includes the following factors
1. Environmental Laws (N26)
2. Education regulation (27)
3. Health regulations (28
4. Environmental law (29)
5. Employment Laws (N30)
6. Consumer Law (33)

Interdependencies are identified and modeled using an NCM (Figure 1), with whose weighs represented in 
Table 1.

Figure 1: Fuzzy Neutrosophic Cognitive Maps of PESTEL factors.

2 Materials and Methods

2.1 Preliminaries

This article offers a first brief review by PESTEL analysis and the factors’ interdependency. The following is 
a review of the basic concepts of NCM.
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2.1.1 PESTEL Analysis

The PESTEL method is a prerequisite analysis with a network function to identify the characteristics of the 
environment in which an organization or project operates, provides data and information so that the organization 
can make predictions about new situations and circumstances and act accordingly. [12, 13]. The variables analyzed 
in PESTEL are identified and evaluated independently. [2] not taking into account interdependency.  In [14] this 
approach based on fuzzy decision maps is presented taking into account the ambiguity, the uncertainty in their 
interrelationships.

This study presents a model to address the problems encountered in the PEST measurement and evaluation 
process, taking into account the interdependencies between the subfactors. NCM modeled the integrated structure 
of the PESTEL subfactor, and the quantitative analysis is developed from a static analysis that allows to classify 
and reduce the factors in line with the proposals presented in [15].

2.1.2 Neutrosophic Cognitive Maps.

The Neutrosophic Logic (NL) like a generalization of the fuzzy logic was introduced in 1995 [16]. According 
to this theory, a logical proposition P is characterized by three components:

NL (P) =(T,I,F)                                                                    (1)
Where the neutrosophic component T is the degree of truth, F the degree of falsehood, and I is the degree of 

indeterminacy [7]. Neutrosophic set (NS) was introduced by F. Smarandache who introduced the degree of 
indeterminacy (i) as an independent component[11] .

A neutrosophic matrix content where the elements are a = (aij)  have been replaced by elements in R I . A 
neutrosophic graphic has at least one edge is a neutrosophic edge . If the indetermination is found in the cognitive 
map, it is called the neutrosophic cognitive map (NCM) [20].  NCM is based on neutrosophic logic to represent 
uncertainty and indeterminacy in cognitive maps [12]. An NCM is a directed graph in which at least one edge is 
an indeterminate border and is indicated by dashed lines [2] (Figure 2).

Figure 2: Fuzzy Neutrosophic Cognitive Maps example.

In [9] a static analysis of an NCM is presented.

2.1.3 Neutrosophic numbers

The result of the static analysis is in the form of neutrosophic numbers (a+bI, where I = indeterminacy)  A de-
neutrosification process as proposed by Salmeron and Smarandache could be applied giving final ranking value 
[13].

A neutrosophic number is a number as follows [14] :
N=d+I                                            (2)
Where d is the determinacy part, and i is the indeterminate part. For example s: a=5 +I si i [5,5.4] is equivalent 

to a [5,5.4].
Let N1=a1+b1 I and N2=a2+b2 I be two neutrosophic numbers then the following operational relation of 

neutrosophic numbers are defined as follows [8]: 
N1+ N2=a1+a1+(b1+b2) I;
N1- N2=a1-a1+(b1-b2) I

2.2 Proposed Framework

The aim was to develop and further detail a framework based on PESTEL and NCM [25]. The model was 
made in five steps (graphically, figure 3).
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Figure 3: The proposed framework for PESTEL analysis [25]

2.2.1 Factors and sub-factors identification in the PESTEL method

In this step, the significant PESTEL factors and sub-factors were recognized. Identify factors and subfactors 
to form a hierarchical structure of the PESTEL model. Sub-factors are categorized according to the literature [2].

2.2.2 Modeling interdependencies

In this step causal interdependencies between PESTEL sub-factors are modeled, consists in the construction 
of NCM subfactors following the point views of an expert or expert team.

When a selection of experts (k) participates, the adjacency matrix of the collective MCD is calculated as 
follows:

1,E2,…,Ek ) (3)
The operator is usually the arithmetic mean [13].

2.2.3 Calculate centrality measures

Centrality measures are calculated [7] with absolute values of the NCM adjacency matrix [15]:
1. Outdegree od(vi) is the summation of the row of absolute values of a variable in the neutrosophic adjacency

matrix, and It shows the cumulative strengths of connections (cij) exiting the variable.
( ) =                                                                (4)

2. Indegree id(v_i) is the summation of the column of absolute values of a variable, and it shows the cumulative
strength of variables come in the variable.

( ) =  (5)

3. The centrality degree (total degree td(vi)), of a variable is the sum of its indegree and outdegree
( ) = ( ) + ( )  (6)

2.2.4 Factors classification and ranking

The factors were categorized according to the next rules:
The variables are a Transmitter (T) when having a positive or indeterminacy outdegree, od(vi) and zero 

indegree, id(vi).
The variables give a Receiver (R) when having a positive indegree or indeterminacy, id(vi)., and zero 

outdegree, od(vi).
Variables receive the Ordinary (O) name when they have a non-zero degree, and these Ordinary variables can 

be considered more or less as receiving variables or transmitting variables, depending on the relation of their 
indegrees and outdegrees.

The de-neutrosophication process provides a range of numbers for centrality using as a ground the maximum 
& minimum values of I. A neutrosophic value is switched in an interval with these two values. [0,1].

The contribution of a variable in an NCM can be known by calculating its degree of centrality, which shows 
how the variable is connected to other variables and what is the accumulated force of these connections. The 
median of the extreme values as proposed by Merigo [29] is used to give a centrality value :

([ , ]) =  (7)

Then 

> >  (8)

Finally, a ranking of variables could be given.

Identifying 
PESTEL 

factors and 
sub-factors

Modelling 
interdepende

ncies

Calculate 
centrality 
measures

Factors 
classification

Factors 
ranking
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2.2.5 Factor prioritization

The numerical value obtained in the previous step is used for sub-factor prioritization and/or reduction. 
Threshold values may be set to 1.5 % of the total sum of total degree measures for subfactor reduction. 
Additionally, sub-factor could be grouped by parent factor and to extend the analysis to political, economic, social 
and technological general factor.

3 Results and Discussion

Case of study result.

Tabla 1: Neutrosophic Adjacency Matrix

Nodes are initially classified (Table 2)

N1 T N10 R N19 O N28 T
N2 O N11 R N20 O N29 T
N3 O N12 O N21 O N30 T
N4 T N13 O N22 O N31 O
N5 T N14 R N23 O N32 O
N6 O N15 R N24 O N33 R
N7 O N16 R N25 R
N8 O N17 R N26 R
N9 O N18 R N27 T

Tabla 2: Nodes classification

Total degree (Eq.  5) was calculated. Results are shown in Table 3.

N1 0,28 N9 0.72+i N17 i N25 0.64 N33 0.36
N2 0.56+i N10 0.5 N18 2i N26 0.42
N3 1.78+2i N11 0.64 N19 0.75 N27 0.47
N4 I N12 0.5 N20 0.36+3i N28 0.36
N5 2i N13 1.17+3i N21 0.47 + 3i N29 1.25
N6 1.83+2i N14 i N22 2.37+2i N30 1+i
N7 1.36 N15 0.67+i N23 0.78+2i N31 1.31+2i
N8 1.03 N16 0.28 N24 2i N32 1.06+4i

Tabla 3: Total degree

0 0.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.39 0.33 0.25 0.28 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 i i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 i -0.67 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -0.58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31 0 0 0 0 0 0 0 0 0 0.33 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.39 0 0 0 0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 i i 0 0 0 0 0 0 0 0.42 0 0 0 i 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i i 0 0 0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i i 0 0 0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0 0 0 0 0 -0.53 0.42 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 0 0 0 0 0 0 0 0 -0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0.36 0.47 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -0.58 0.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31 0 0 0 0 0 0 0 0 i 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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“The next step is the de-neutrosophication process as proposes by Salmeron and Smarandache. I [0,1] is 
replaced by both maximum and minimum values” [33]. In Table 4 are presented as interval values.

N1 0,28 N9 [0.72, 1.72] N17 [0,1] N25 0.64 N33 0.36
N2 [0.56, 1.56] N10 0.5 N18 [0,2] N26 0.42
N3 [1.78, 2.78] N11 0.64 N19 0.75 N27 0.47
N4 [0,1] N12 0.5 N20 [0.36, 3,36] N28 0.36
N5 [0, 2] N13 [1.17, 4.17] N21 [0.47, 3.47] N29 1.25
N6 [1.83,3.83] N14 [0,1] N22 [2.37, 4.37] N30 [1, 2]
N7 1.36 N15 [0.67, 1.67] N23 [0.78, 2.78] N31 [1.31, 3.31]
N8 1.03 N16 0.28 N24 [0, 2] N32 [1.06, 5.06]

Tabla 4: De-neutrosophication, total degree values

Finally, we work with the median of the extreme values (Table 5) [29].
N1 0.28 N9 1.22 N17 0.5 N25 0.64 N33 0.36
N2 1.06 N10 0.5 N18 1 N26 0.42
N3 2.28 N11 0.64 N19 0.75 N27 0.47
N4 0.5 N12 0.5 N20 1.86 N28 0.36
N5 1 N13 2.67 N21 1.97 N29 1.25
N6 2.83 N14 0.5 N22 3.37 N30 1.5
N7 1.36 N15 1.17 N23 1.75 N31 2.31
N8 1.03 N16 0.28 N24 1 N32 3.06

Tabla 5: Total degree using the median of the extreme values

Top 6 nodes according to centrality are represented in table 6.

Tabla 6: Top 6 nodes

Water quality index, Soil Quality index and Poverty are the top three factors. Centrality measures of subfactor 
were grouped according to their parent factors (Figure 4).

Figure 4: Aggregated total centrality values by factors

When the average is used as aggregation´s operator, the result is represented in Figure 5. Ecological, 
Technological and Social are the top three factors.

N22 3,37
N32 3,06
N6 2,83

N13 2,67
N31 2,31
N3 2,28

Political
13%

Economic 
20%

Social
11%

Sociocultural 
aspects 

4%

Technological
11%

Ecological 
30%

Legal
11%
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Figure 5: Average of total centrality values by factors

Factors with a little incidence of less than 1.5 % (0.606) are reduced for further analysis.  In this case, we found 
nodes like N1, N4, N10, N14, N16, N17, N26, N27, N28 and N33.

After the application, in this case, study the model was found practical to use. The NCM gives high flexibility 
and takes into account interdependencies PESTEL analysis.

Conclusion 

This study presents a model to address problems encountered in the measurement evaluation process of 
PESTEL analysis taking into account interdependencies among sub-factors and modeling uncertainty and 
indeterminacy in Sinos river basin. NCM modeled the integrated structure of PESTEL sub-factors, and quantitative 
analysis was developed based on static analysis and neutrosophic numbers. 

To demonstrate the applicability of the proposal in the Sinos river external factor analysis a case study is 
developed.  Sub-factor was ranked and reduced with Ecological, Technological, Social are the top three factors. 

NCM modeled the integrated structure of PESTEL of factors and sub-factors.  Our approach has many 
applications in complex decision problem that include interdependencies among criteria, and such as complex 
strategic decision support in river basin management. 

Further works will concentrate on extending the model for dealing scenario analysis in conjunction with a 
multicriteria environment. Another area of future work is the development of a software tool.
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Neutrosophic General Finite Automata

J. Kavikumar, D. Nagarajan, Said Broumi, F. Smarandache, M. Lathamaheswari, Nur Ain Ebas

Abstract: The constructions of finite switchboard state automata is known to be an extension of finite automata in the 
view of commutative and switching automata. In this research, the idea of a neutrosophic is incorporated in the general 
fuzzy finite automata and general fuzzy finite switchboard automata to introduce neutrosophic general finite automata 
and neutrosophic general finite switchboard automata. Moreover, we define the notion of the neutrosophic subsystem 
and strong neutrosophic subsystem for both structures. We also establish the relationship between the neutrosophic 
subsystem and neutrosophic strong subsystem.

Keywords: Neutrosophic set, General fuzzy automata; switchboard; subsystems.

1 Introduction
It is well-known that the simplest and most important type of automata is finite automata. After the introduction 
of fuzzy set theory by [47] Zadeh in 1965, the first mathematical formulation of fuzzy automata was proposed 
by[46] Wee in 1967, considered as a generalization of fuzzy automata theory. Consequently, numerous works 
have been contributed towards the generalization of finite automata by many authors such as Cao and Ezawac 
[9], Jin et al [18], Jun [20], Li and Qiu [27], Qiu [34], Sato and Kuroki [36], Srivastava and Tiwari [41], 
Santos [35], Jun and Kavikumar [21], Kavikumar et al, [22, 23, 24] especially the simplest one by Mordeson 
and Malik [29]. In 2005, the theory of general fuzzy automata was firstly p roposed b y D oostfatemeh and 
Kermer [11] which is used to resolve the problem of assigning membership values to active states of the fuzzy 
automaton and its multi-membership. Subsequently, as a generalization, the concept of intuitionistic general 
fuzzy automata has been introduced and studied by Shamsizadeh and Zahedi [37], while Abolpour and Zahedi 
[6] proposed general fuzzy automata theory based on the complete residuated lattice-valued. As a further

J. Kavikumar, D. Nagarajan, Said Broumi, F. Smarandache, M. Lathamaheswari, Nur Ain Ebas 
(2019). Neutrosophic General Finite Automata. Neutrosophic Sets and Systems 27, 17-36
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extension, Kavikumar et al [25] studied the notions of general fuzzy switchboard automata. For more details
see the recent literature as [5, 12, 13, 14, 15, 16, 17].

The notions of neutrosophic sets was proposed by Smarandache [38, 39], generalizing the existing ordinary
fuzzy sets, intuitionistic fuzzy sets and interval-valued fuzzy set in which each element of the universe has the
degrees of truth, indeterminacy and falsity and the membership values are lies in ]0−, 1+[, the nonstandard unit
interval [40] it is an extension from standard interval [0,1]. It has been shown that fuzzy sets provides limited
platform for computational complexity but neutrosophic sets is suitable for it. The neutrosophic sets is an
appropriate mechanism for interpreting real-life philosophical problems but not for scientific problems since
it is difficult to consolidate. In neutrosophic sets, the degree of indeterminacy can be defined independently
since it is quantified explicitly which led to different from intuitionistic fuzzy sets. Single-valued neutrosophic
set and interval neutrosophic set are the subclasses of the neutrosophic sets which was introduced by Wang et
al. [44, 45] in order to examine kind of real-life and scientific problems. The applications of fuzzy sets have
been found very useful in the domain of mathematics and elsewhere. A number of authors have been applied
the concept of the neutrosophic set to many other structures especially in algebra [19, 28], decision-making
[1, 2, 10, 30], medical [3, 4, 8], water quality management [33] and traffic control management [31, 32].

1.1 Motivation
In view of exploiting neutrosophic sets, Tahir et al. [43] introduced and studied the concept of single val-
ued Neutrosophic finite state machine and switchboard state machine. Moreover, the fuzzy finite switchboard
state machine is introduced into the context of the interval neutrosophic set in [42]. However, the realm of
general structure of fuzzy automata in the neutrosophic environment has not been studied yet in the literature
so far. Hence, it is still open to many possibilities for innovative research work especially in the context of
neutrosophic general automata and its switchboard automata. The fundamental advantage of incorporating
neutrosophic sets into general fuzzy automata is the ability to bring indeterminacy membership and nonmem-
bership in each transitions and active states which help us to overcome the uncertain situation at the time of
predicting next active state. Motivated by the work of [11], [36] and [38] the concept of neutrosophic general
automata and neutrosophic general switchboard automata are introduced in this paper.

1.2 Main Contribution
The purpose of this paper is to introduce the primary algebraic structure of neutrosophic general finite au-
tomata and neutrosophic switchboard finite automata. The subsystem and strong subsystem of neutrosophic
general finite automata and neutrosophic general finite switchboard f automata are exhibited. The relationship
between these subsystems have been discussed and the characterizations of switching and commutative are
discussed in the neutrosophic backdrop. We prove that the implication of a strong subsystem is a subsystem of
neutrosophic general finite automata. The remainder of this paper is organised as follows. Section 2 provides
the results and definitions concerning the general fuzzy automata. Section 3 describes the algebraic properties
of the neutrosophic general finite automata. Finally, in section 4, the notion of the neutrosophic general finite
switchboard automata is introduced. The paper concludes with Section 5.

2 Preliminaries
”For a nonempty set X , P̃ (X) denotes the set of all fuzzy sets on X .
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Definition 2.1. [11] A general fuzzy automaton (GFA) is an eight-tuple machine F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2)
where

(a) Q is a finite set of states, Q = {q1, q2, · · · , qn},

(b) Σ is a finite set of input symbols, Σ = {a1, a2, · · · , am},

(c) R̃ is the set of fuzzy start states, R̃ ⊆ P̃ (Q),

(d) Z is a finite set of output symbols, Z = {b1, b2, · · · , bk},

(e) ω : Q→ Z is the non-fuzzy output function,

(f) F1 : [0, 1]× [0, 1]→ [0, 1] is the membership assignment function,

(g) δ̃ : (Q× [0, 1])× Σ×Q F1(µ,δ)−→ [0, 1] is the augmented transition function,

(h) F2 : [0, 1]∗ → [0, 1] is a multi-membership resolution function.

Noted that the function F1(µ, δ) has two parameters µ and δ, where µ is the membership value of a pre-
decessor and δ is the weight of a transition. In this definition, the process that takes place upon the transition
from state qi to qj on input ak is represented as:

µt+1(qj) = δ̃((qi, µ
t(qi)), ak, qj) = F1(µ

t(qi), δ(qi, ak, qj)).

This means that the membership value of the state qj at time t + 1 is computed by function F1 using both
the membership value of qi at time t and the weight of the transition. The usual options for the function
F (µ, δ) are max{µ, δ},min{µ, δ} and (µ + δ)/2. The multi-membership resolution function resolves the
multi-membership active states and assigns a single membership value to them.

Let Qact(ti) be the set of all active states at time ti,∀i ≥ 0. We have Qact(t0) = R̃,

Qact(ti) = {(q, µti(q)) : ∃q′ ∈ Qact(ti−1), ∃ a ∈ Σ, δ(q′, a, q) ∈ ∆},∀i ≥ 1.

Since Qact(ti) is a fuzzy set, in order to show that a state q belongs to Qact(ti) and T is a subset of Qact(ti),
we should write: q ∈ Domain(Qact(ti)) and T ⊂ Domain(Qact(ti)). Hereafter, we simply denote them
as: q ∈ Qact(ti) and T ⊂ Qact(ti). The combination of the operations of functions F1 and F2 on a multi-
membership state qj leads to the multi-membership resolution algorithm.

Algorithm 2.2. [11] (Multi-membership resolution) If there are several simultaneous transitions to the active
state qj at time t+ 1, the following algorithm will assign a unified membership value to it:

1. Each transition weight δ̃(qi, ak, qj) together with µt(qi), will be processed by the membership assignment
function F1, and will produce a membership value. Call this vi,

vi = δ̃((qi, µ
t(qi)), ak, qj) = F1(µ

t(qi), δ(qi, ak, qj)).

2. These membership values are not necessarily equal. Hence, they need to be processed by the multi-
membership resolution function F2.
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3. The result produced by F2 will be assigned as the instantaneous membership value of the active state qj ,

µt+1(qj) = F2
n
i=1[vi] = F2

n
i=1[F1(µ

t(qi), δ(qi, ak, qj))],

where

• n is the number of simultaneous transitions to the active state qj at time t+ 1.

• δ(qi, ak, qj) is the weight of a transition from qi to qj upon input ak.

• µt(qi) is the membership value of qi at time t.

• µt+1(qj) is the final membership value of qj at time t+ 1.

Definition 2.3. Let F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) be a general fuzzy automaton, which is defined in Definition
2.1. The max-min general fuzzy automata is defined of the form:

F̃ ∗ = (Q,Σ, R̃, Z, δ̃∗, ω, F1, F2),

where Qact = {Qact(t0), Qact(t1), · · · } and for every i, i ≥ 0:

δ̃∗((q, µti(q)),Λ, p) =

{
1, q = p
0, otherwise

and for every i, i ≥ 1: δ̃∗((q, µti−1(q)), ui, p) = δ̃((q, µti−1(q)), ui, p),

δ̃∗((q, µti−1(q)), uiui+1, p) =
∨

q′∈Qact(ti)

(δ̃((q, µti−1(q)), ui, q
′) ∧ δ̃((q′, µti(q′)), ui+1, p))

and recursively

δ̃∗((q, µt0(q)), u1u2 · · ·un, p) =
∨
{δ̃((q, µt0(q)), u1, p1) ∧ δ̃((p1, µt1(p1)), u2, p2) ∧ · · · ∧

δ̃((pn−1, µ
tn−1(pn−1)), un, p)|p1 ∈ Qact(t1), p2 ∈ Qact(t2), · · · , pn−1 ∈ Qact(tn−1)},

in which ui ∈ Σ,∀1 ≤ i ≤ n and assuming that the entered input at time ti be ui,∀1 ≤ i ≤ n− 1.

Definition 2.4. [13] Let F̃ ∗ be a max-min GFA, p ∈ Q, q ∈ Qact(ti), i ≥ 0 and 0 ≤ α < 1. Then p is called a
successor of q with threshold α if there exists x ∈ Σ∗ such that δ̃∗((q, µtj(q)), x, p) > α.

Definition 2.5. [13] Let F̃ ∗ be a max-min GFA, q ∈ Qact(ti), i ≥ 0 and 0 ≤ α < 1. Also let Sα(q) denote the
set of all successors of q with threshold α. If T ⊆ Q, then Sα(T ) the set of all successors of T with threshold
α is defined by Sα(T ) =

⋃
{Sα(q) : q ∈ T}.

Definition 2.6. [38] Let X be an universe of discourse. The neutrosophic set is an object having the form
A = {〈x, µ1(x), µ2(x), µ3(x)〉|∀x ∈ X} where the functions can be defined by µ1, µ2, µ3 : X →]0, 1[ and µ1

is the degree of membership or truth, µ2 is the degree of indeterminacy and µ3 is the degree of non-membership
or false of the element x ∈ X to the set A with the condition 0 ≤ µ1(x) + µ2(x) + µ3(x) ≤ 3.”
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3 Neutrosophic General Finite Automata

Definition 3.1. An eight-tuple machine F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) is called neutrosophic general finite
automata (NGFA for short), where

1. Q is a finite set of states, Q = {q1, q2, · · · , qn},

2. Σ is a finite set of input symbols, Σ = {u1, u2, · · · , um},

3. R̃ = {(q, µt01 (q), µt02 (q), µt03 (q))|q ∈ R} is the set of fuzzy start states, R ⊆ P̃ (Q),

4. Z is a finite set of output symbols, Z = {b1, b2, · · · , bk},

5. δ̃ : (Q × [0, 1] × [0, 1] × [0, 1])) × Σ × Q F1(µ,δ)−→ [0, 1] × [0, 1] × [0, 1] is the neutrosophic augmented
transition function,

6. ω : (Q× [0, 1]× [0, 1]× [0, 1])→ Z is the non-fuzzy output function,

7. F1 = (F∧1 , F
∧∨
1 , F∨1 ), where F∧1 : [0, 1]× [0, 1] → [0, 1], F∧∨2 : [0, 1]× [0, 1] → [0, 1] and F∨3 : [0, 1]×

[0, 1] → [0, 1] are the truth, indeterminacy and false membership assignment functions, respectively.
F∧1 (µ1, δ̃1), F∧∨2 (µ2, δ̃2) and F∨3 (µ3, δ̃3) are motivated by two parameters µ1, µ2, µ3 and δ̃1 , δ̃2, δ̃3 where
µ1, µ2 and µ3 are the truth, indeterminacy and false membership value of a predecessor and δ̃1, δ̃2 and δ̃3
are the truth, indeterminacy and false membership value of a transition,

8. F2 = (F∧2 , F
∧∨
2 , F∨2 ), where F∧2 : [0, 1]∗ → [0, 1], F∧∨2 : [0, 1]∗ → [0, 1] and F∨2 : [0, 1]∗ → [0, 1] are the

truth, indeterminacy and false multi-membership resolution function.

Remark 3.2. In Definition 3.1, the process that takes place upon the transition from the state qi to qj on an
input uk is represented by

µ
tk+1

1 (qj) = δ̃1((qi, µ
tk
1 (qi)), uk, qj) = F∧1 (µtk1 (qi), δ1(qi, uk, qj)) =

∧
(µtk1 (qi), δ1(qi, uk, qj)),

µ
tk+1

2 (qj) = δ̃2((qi, µ
tk
2 (qi)), uk, qj) = F∧∨1 (µtk2 (qi), δ2(qi, uk, qj)) =

{ ∨
(µtk2 (qi), δ2(qi, uk, qj)) if tk < tk+1∧
(µtk2 (qi), δ2(qi, uk, qj)) if tk ≥ tk+1

,

µ
tk+1

3 (qj) = δ̃3((qi, µ
tk
3 (qi)), uk, qj) = F∨1 (µtk3 (qi), δ3(qi, uk, qj)) =

∨
(µtk3 (qi), δ3(qi, uk, qj)),

where

δ̃((qi.µ
t(qi)), uk, qj) = (δ̃1((qi, µ

t
1(qi)), uk, qj), δ̃2((qi, µ

t
2(qi)), uk, qj), δ̃3((qi, µ

t
3(qi)), uk, qj)) and

δ(qi, uk, qj) = (δ1(qi, uk, qj), δ2(qi, uk, qj), δ3(qi, uk, qj)).

Remark 3.3. The algorithm for truth, indeterminacy and false multi-membership resolution for transition
function is same as Algorithm 2.2 but the computation depends (see Remark 3.2) on the truth, indeterminacy
and false membership assignment function.
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Definition 3.4. Let F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) be a NGFA. We define the max-min neutrosophic general
fuzzy automaton F̃ ∗ = (Q,Σ, R̃, Z, δ̃∗, ω, F1, F2), where δ̃∗ : (Q × [0, 1] × [0, 1] × [0, 1]) × Σ∗ × Q →
[0, 1] × [0, 1] × [0, 1] and define a neutrosophic set δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q × [0, 1] × [0, 1] × [01]) × Σ∗ × Q
and for every i, i ≥ 0 :

δ̃∗1((q, µti(q)),Λ, p) =

{
1, q = p
0, q 6= p

,

δ̃∗2((q, µti(q)),Λ, p) =

{
0, q = p
1, q 6= p

,

δ̃∗3((q, µti(q)),Λ, p) =

{
0, q = p
1, q 6= p

,

and for every i, i ≥ 1:

δ̃∗1((q, µti−1(q)), ui, p) = δ̃1((q, µ
ti−1(q)), ui, p), δ̃

∗
2((q, µti−1(q)), ui, p) = δ̃2((q, µ

ti−1(q)), ui, p)

δ̃∗3((q, µti−1(q)), ui, p) = δ̃3((q, µ
ti−1(q)), ui, p)

and recursively,

δ̃∗1((q, µt0(q)), u1u2 · · ·un, p) =
∨
{δ̃1((q, µt0(q)), u1, p1) ∧ δ̃1((p1, µt1(p1)), u2, p2) ∧ · · · ∧

δ̃1((pn−1, µ
tn−1(pn−1)), un, p)|p1 ∈ Qact(t1), p2 ∈ Qact(t2), · · · , pn−1 ∈ Qact(tn−1)},

δ̃∗2((q, µt0(q)), u1u2 · · ·un, p) =
∧
{δ̃2((q, µt0(q)), u1, p1) ∨ δ̃2((p1, µt1(p1)), u2, p2) ∨ · · · ∨

δ̃2((pn−1, µ
tn−1(pn−1)), un, p)|p1 ∈ Qact(t1), p2 ∈ Qact(t2), · · · , pn−1 ∈ Qact(tn−1)},

δ̃∗3((q, µt0(q)), u1u2 · · ·un, p) =
∧
{δ̃3((q, µt0(q)), u1, p1) ∨ δ̃3((p1, µt1(p1)), u2, p2) ∨ · · · ∨

δ̃3((pn−1, µ
tn−1(pn−1)), un, p)|p1 ∈ Qact(t1), p2 ∈ Qact(t2), · · · , pn−1 ∈ Qact(tn−1)},

in which ui ∈ Σ,∀1 ≤ i ≤ n and assuming that the entered input at time ti be ui,∀1 ≤ i ≤ n− 1.

Example 3.5. Consider the NGFA in Figure 1 with several transition overlaps. Let F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),
where

• Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9} be a set of states,

• Σ = {a, b} be a set of input symbols,

• R̃ = {(q0, 0.7, 0.5, 0.2), (q4, 0.6, 0.2, 0.45)}, set of initial states,

• the operation of F∧1 , F
∧∨
1 and F∨1 are according to Remark 3.2,

• Z = ∅ and ω are not applicable (output mapping is not of our interest in this paper),

• δ̃ : (Q × [0, 1] × [0, 1] × [0, 1])) × Σ × Q
F1(µ,δ)−→ [0, 1] × [0, 1] × [0, 1], the neutrosophic augmented

transition function.

Assuming that F̃ starts operating at time t0 and the next three inputs are a, b, b respectively (one at a time),
active states and their membership values at each time step are as follows:
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q0 = (µ(q0),0.7,0.5,0.2) q1 q2 q3

q4

 = (µ(q4),0.6,0.2,0.45)

q5 q6 q7

q8 q9

(b,0.7,0.3,0.4)

(a,0.7,0.1,0.2)

(a,0.4,0.2,0.3)

(a,0.3,0.4,0.1)

(b,0.5,0.3,0.7)

(b,0.2,0.4,0.6)

(a,0.2,0.5,0.6) (a,0.3,0.4,0.5)

(a,0.4,0.6,0.5)

(b,0.1,0.4,0.6)

(a,0.7,0.4,0.1)

(b,0.5,0.3,0.45)

(b,0.5,0.6,0.2)

(b,0.4,0.1,0.3)

(a,0.8,0.2,0.3)

(a,0.2,0.3,0.6)

(a,0.3,0.6,0.5)
(b,0.9,0.1,0.25)

(a,0.3,0.1,0.2)

(b,0.1,0.3,0.6)

(a,0.3,0.4,0.6)

(a,0.3,0.35,0.5)

start

start

q4

Figure 1: The NGFA of Example 3.5

• At time t0: Qact(t0) = R̃ = {(q0, 0.7, 0.5, 0.2), (q4, 0.6, 0.2, 0.45)}

• At time t1, input is a. Thus q1, q5 and q8 get activated. Then:

µt1(q1) = δ̃((q0, µ
t0
1 (q0), µ

t0
2 (q0), µ

t0
3 (q0)), a, q1)

=
[
F∧1 (µt01 (q0), δ1(q0, a, q1)), F

∧∨
1 (µt02 (q0), δ2(q0, a, q1)), F

∨
1 (µt03 (q0), δ3(q0, a, q1))

]
= [F∧1 (0.7, 0.4), F∧∨1 (0.5, 0.2), F∨1 (0.2, 0.3)] = (0.4, 0.2, 0.3),

µt1(q8) = δ̃((q0, µ
t0
1 (q0), µ

t0
2 (q0), µ

t0
3 (q0)), a, q8)

=
[
F∧1 (µt01 (q0), δ1(q0, a, q8)), F

∧∨
1 (µt02 (q0), δ2(q0, a, q8)), F

∨
1 (µt03 (q0), δ3(q0, a, q8))

]
= [F∧1 (0.7, 0.7), F∧∨1 (0.5, 0.1), F∨1 (0.2, 0.2)] = (0.7, 0.1, 0.2),

but q5 is multi-membership at t1. Then

µt1(q5) = F2
i=0&4

[
F1[µ

t0(qi), δ(qi, a, q5)]
]

= F2

[
F1[µ

t0(q0), δ(q0, a, q5)], F1[µ
t0(q0), δ(q4, a, q5)]

]
= F2 [F1[(0.7, 0.5, 0.2), (0.3, 0.4, 0.1)], F1[(0.6, 0.2, 0.45), (0.4, 0.6, 0.5)]]

= (F∧2 [F∧1 (0.7, 0.3), F∧1 (0.6, 0.4)], F∧∨2 [F∧∨1 (0.5, 0.4), F∧∨1 (0.2, 0.6)],

F∨2 [F∨1 (0.2, 0.1), F∨1 (0.45, 0.5)])

= (F∧2 (0.3, 0.4), F∧∨2 (0.4, 0.2), F∨2 (0.2, 0.5)) = (0.3, 0.2, 0.5).

Florentin Smarandache (author and editor) Collected Papers, XII

381



Then we have:

Qact(t1) = {(q1, µt1(q1)), (q5, µt1(q5)), (q8, µt1(q8))}
= {(q1, 0.4, 0.2, 0.3), (q5, 0.3, 0.2, 0.5), (q8, 0.7, 0.1, 0.2)}.

• At t2 input is b. q2, q5, q6 and q9 get activated. Then

µt2(q5) = δ̃((q1, µ
t1
1 (q1), µ

t1
2 (q1), µ

t1
3 (q1)), b, q5)

=
[
F∧1 (µt11 (q1), δ1(q1, b, q5)), F

∧∨
1 (µt12 (q1), δ2(q1, b, q5)), F

∨
1 (µt13 (q1), δ3(q1, b, q5))

]
= [F∧1 (0.4, 0.1), F∧∨1 (0.2, 0.4), F∨1 (0.3, 0.6)] = (0.1, 0.2, 0.6),

µt2(q6) = δ̃((q5, µ
t1
1 (q5), µ

t1
2 (q5), µ

t1
3 (q5)), b, q6)

=
[
F∧1 (µt11 (q5), δ1(q5, b, q6)), F

∧∨
1 (µt12 (q5), δ2(q5, b, q6)), F

∨
1 (µt13 (q5), δ3(q5, b, q6))

]
= [F∧1 (0.3, 0.5), F∧∨1 (0.2, 0.6), F∨1 (0.5, 0.2)] = (0.3, 0.2, 0.5),

µt2(q9) = δ̃((q8, µ
t1
1 (q8), µ

t1
2 (q8), µ

t1
3 (q8)), b, q9)

=
[
F∧1 (µt11 (q8), δ1(q8, b, q9)), F

∧∨
1 (µt12 (q8), δ2(q8, b, q9)), F

∨
1 (µt13 (q8), δ3(q8, b, q9))

]
= [F∧1 (0.7, 0.5), F∧∨1 (0.1, 0.3), F∨1 (0.2, 0.7)] = (0.5, 0.1, 0.7),

but q2 is multi-membership at t2. Then:

µt2(q2) = F2
i=1&5

[
F1[µ

t1(qi), δ(qi, b, q2)]
]

= F2

[
F1[µ

t1(q1), δ(q1, b, q2)], F1[µ
t1(q5), δ(q5, b, q2)]

]
= F2 [F1[(0.4, 0.2, 0.3), (0.5, 0.3, 0.45)], F1[(0.3, 0.2, 0.5), (0.1, 0.4, 0.6)]]

= (F∧2 [F∧1 (0.4, 0.5), F∧1 (0.3, 0.1)], F∧∨2 [F∧∨1 (0.2, 0.3), F∧∨1 (0.2, 0.4)],

F∨2 [F∨1 (0.3, 0.45), F∨1 (0.5, 0.6)])

= (F∧2 (0.4, 0.1), F∧∨2 (0.2, 0.2), F∨2 (0.3, 0.5)) = (0.1, 0.2, 0.5).

Then we have:

Qact(t2) = {(q2, µt2(q2)), (q5, µt2(q5)), (q6, µt2(q6)), (q9, µt2(q9))}
= {(q2, 0.1, 0.2, 0.5), (q5, 0.1, 0.2, 0.6), (q6, 0.3, 0.2, 0.5), (q9, 0.5, 0.1, 0.7)}.

• At t3 input is b. q2, q6, q7 and q9 get activated and none of them is multi-membership. It is easy to verify
that:

Qact(t3) = {(q2, µt3(q2)), (q6, µt3(q6)), (q7, µt3(q7)), (q9, µt3(q9))}
= {(q2, 0.1, 0.1, 0.6), (q6, 0.1, 0.2, 0.6), (q7, 0.3, 0.1, 0.5), (q9, 0.3, 0.1, 0.5)}.
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Proposition 3.6. Let F̃ be a NGFA, if F̃ ∗ is a max-min NGFA, then for every i ≥ 1,

δ̃∗1((q, µti−1(q)), xy, p) =
∨

r∈Qact(ti)

[
δ̃∗1((p, µti−1(p)), x, r) ∧ δ̃∗1((r, µti−1(r)), y, q)

]
,

δ̃∗2((q, µti−1(q)), xy, p) =
∧

r∈Qact(ti)

[
δ̃∗2((p, µti−1(p)), x, r) ∨ δ̃∗2((r, µti−1(r)), y, q)

]
,

δ̃∗3((q, µti−1(q)), xy, p) =
∧

r∈Qact(ti)

[
δ̃∗3((p, µti−1(p)), x, r) ∨ δ̃∗3((r, µti−1(r)), y, q)

]
,

for all p, q ∈ Q and x, y ∈ Σ∗.

Proof. Since p, q ∈ Q and x, y ∈ Σ∗, we prove the result by induction on |y| = n. First, we assume that n = 0,
then y = Λ and so xy = xΛ = x. Thus, for all r ∈ Qact(ti)∨[

δ̃∗1((p, µti−1(p)), x, r) ∧ δ̃∗1((r, µti−1(r)), y, q)
]

=
∨[

δ̃∗1((p, µti−1(p)), x, r) ∧ δ̃∗1((r, µti−1(r)),Λ, q)
]

= δ̃∗1((p, µti−1(p)), x, r) = δ̃∗1((q, µti−1(q)), xy, p),∧[
δ̃∗2((p, µti−1(p)), x, r) ∨ δ̃∗2((r, µti−1(r)), y, q)

]
=
∧[

δ̃∗2((p, µti−1(p)), x, r) ∨ δ̃∗2((r, µti−1(r)),Λ, q)
]

= δ̃∗2((p, µti−1(p)), x, r) = δ̃∗2((q, µti−1(q)), xy, p),∧[
δ̃∗3((p, µti−1(p)), x, r) ∨ δ̃∗3((r, µti−1(r)), y, q)

]
=
∧[

δ̃∗3((p, µti−1(p)), x, r) ∨ δ̃∗3((r, µti−1(r)),Λ, q)
]

= δ̃∗3((p, µti−1(p)), x, r) = δ̃∗3((q, µti−1(q)), xy, p).

The result holds for n = 0. Now, continue the result is true for all u ∈ Σ∗ with |u| = n− 1, where n > 0. Let
y = ua, where a ∈ Σ and u ∈ Σ∗. Then

δ̃∗1((q, µti−1(q)), xy, p) = δ̃∗1((q, µti−1(q)), xua, p) =
∨

r∈Qact(ti)

(
δ̃1((q, µ

ti−1(q)), xu, r) ∧ δ̃1((r, µti(r)), a, p)
)

=
∨

r∈Qact(ti)

(
∨

s∈Qact(ti)

(δ̃1((q, µ
ti−1(q)), x, s) ∧ δ̃1((s, µti−1(s)), u, r)) ∧ δ̃1((r, µti(r)), a, p))

=
∨

r,s∈Qact(ti)

(δ̃1((q, µ
ti−1(q)), x, s) ∧ δ̃1((s, µti−1(s)), u, r) ∧ δ̃1((r, µti(r)), a, p))

=
∨

s∈Qact(ti)

(δ̃1((q, µ
ti−1(q)), x, s) ∧ (

∨
r∈Qact(ti)

(δ̃1((s, µ
ti−1(s)), u, r) ∧ δ̃1((r, µti(r)), a, p))))

=
∨

s∈Qact(ti)

(δ̃1((q, µ
ti−1(q)), x, s) ∧ δ̃1((s, µti(r)), ua, p))) =

∨
s∈Qact(ti)

(δ̃1((q, µ
ti−1(q)), x, s) ∧ δ̃1((s, µti(r)), y, p))),

δ̃∗2((q, µti−1(q)), xy, p) = δ̃∗2((q, µti−1(q)), xua, p) =
∧

r∈Qact(ti)

(
δ̃2((q, µ

ti−1(q)), xu, r) ∨ δ̃2((r, µti(r)), a, p)
)

=
∧

r∈Qact(ti)

(
∧

s∈Qact(ti)

(δ̃2((q, µ
ti−1(q)), x, s) ∨ δ̃2((s, µti−1(s)), u, r)) ∨ δ̃2((r, µti(r)), a, p))

=
∧

r,s∈Qact(ti)

(δ̃2((q, µ
ti−1(q)), x, s) ∨ δ̃2((s, µti−1(s)), u, r) ∨ δ̃2((r, µti(r)), a, p))

=
∧

s∈Qact(ti)

(δ̃2((q, µ
ti−1(q)), x, s) ∨ (

∧
r∈Qact(ti)

(δ̃2((s, µ
ti−1(s)), u, r) ∨ δ̃2((r, µti(r)), a, p))))

=
∧

s∈Qact(ti)

(δ̃2((q, µ
ti−1(q)), x, s) ∨ δ̃2((s, µti(r)), ua, p))) =

∧
s∈Qact(ti)

(δ̃2((q, µ
ti−1(q)), x, s) ∨ δ̃2((s, µti(r)), y, p))),
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δ̃∗3((q, µti−1(q)), xy, p) = δ̃∗3((q, µti−1(q)), xua, p) =
∧

r∈Qact(ti)

(
δ̃3((q, µ

ti−1(q)), xu, r) ∨ δ̃3((r, µti(r)), a, p)
)

=
∧

r∈Qact(ti)

(
∧

s∈Qact(ti)

(δ̃3((q, µ
ti−1(q)), x, s) ∨ δ̃3((s, µti−1(s)), u, r)) ∨ δ̃3((r, µti(r)), a, p))

=
∧

r,s∈Qact(ti)

(δ̃3((q, µ
ti−1(q)), x, s) ∨ δ̃3((s, µti−1(s)), u, r) ∨ δ̃3((r, µti(r)), a, p))

=
∧

s∈Qact(ti)

(δ̃3((q, µ
ti−1(q)), x, s) ∨ (

∧
r∈Qact(ti)

(δ̃3((s, µ
ti−1(s)), u, r) ∨ δ̃3((r, µti(r)), a, p))))

=
∧

s∈Qact(ti)

(δ̃3((q, µ
ti−1(q)), x, s) ∨ δ̃3((s, µti(r)), ua, p))) =

∧
s∈Qact(ti)

(δ̃3((q, µ
ti−1(q)), x, s) ∨ δ̃3((s, µti(r)), y, p))).

Hence the result is valid for |y| = n. This completes the proof.

Definition 3.7. Let F̃ ∗ be a max-min NGFA, p ∈ Q, q ∈ Qact(ti), i ≥ 0 and 0 ≤ α < 1. Then p is called a
successor of q with threshold α if there exists x ∈ Σ∗ such that δ̃∗1((q, µ

tj
1 (q)), x, p) > α, δ̃∗2((q, µ

tj
2 (q)), x, p) <

α and δ̃∗3((q, µ
tj
3 (q)), x, p) < α.

Definition 3.8. Let F̃ ∗ be a max-min NGFA, q ∈ Qact(ti), i ≥ 0 and 0 ≤ α < 1. Also let Sα(q) denote the set
of all successors of q with threshold α. If T ⊆ Q, then Sα(T ) the set of all successors of T with threshold α is
defined by Sα(T ) =

⋃
{Sα(q) : q ∈ T}.

Definition 3.9. Let F̃ ∗ be a max-min NGFA. Let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q× [0, 1]× [0, 1]×
[0, 1])×Σ∗×Q be a neutrosophic set inQ. Then µ is a neutrosophic subsystem of F̃ ∗, say µ ⊆ F̃ ∗ if for every j,
1 ≤ j ≤ k such that µtj1 (p) ≥ δ̃∗1((q, µ

tj
1 (q)), x, p), µtj2 (p) ≤ δ̃∗2((q, µ

tj
2 (q)), x, p), µtj3 (p) ≤ δ̃∗3((q, µ

tj
3 (q)), x, p).

∀q, p ∈ Q and x ∈ Σ∗.

Example 3.10. Let Q = {p, q}, Σ = {a}. Let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q × [0, 1] × [0, 1] ×
[0, 1]) × Σ∗ × Q be a neutrosophic set in Q such that µtj1 (p) = 0.8, µtj2 (p) = 0.7, µtj3 (p) = 0.5, µtj1 (q) = 0.5,
µ
tj
2 (q) = 0.6, µtj3 (q) = 0.8, δ1(q, x, p) = 0.7, δ2(q, x, p) = 0.9 and δ3(q, x, p) = 0.7. Then

δ̃∗1((q, µ
tj
1 (q)), x, p) = F∧1 (µ

tj
1 (q), δ1(q, x, p)) = min{0.5, 0.7} = 0.5 ≤ µ

tj
1 (p),

δ̃∗2((q, µ
tj
2 (q)), x, p) = F∧∨2 (µ

tj
2 (q), δ2(q, x, p)) = max{0.6, 0.9} = 0.9 ≥ µ

tj
2 (p), (since t < tj)

δ̃∗3((q, µ
tj
3 (q)), x, p) = F∨3 (µ

tj
3 (q), δ3(q, x, p)) = max{0.8, 0.7} = 0.8 ≥ µ

tj
3 (p).

Hence µ is a neutrosophic subsystem of F̃ ∗.

Theorem 3.11. Let F̃ ∗ be a NGFA and let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q × [0, 1] × [0, 1] ×
[0, 1])× Σ∗ ×Q be a neutrosophic set in Q. Then µ is a neutrosophic subsystem of F̃ ∗ if and only if µtj1 (p) ≥
δ̃∗1((q, µ

tj
1 (q)), x, p), µtj2 (p) ≤ δ̃∗2((q, µ

tj
2 (q)), x, p), µtj3 (p) ≤ δ̃∗3((q, µ

tj
3 (q)), x, p), for all q ∈ Q(act)(tj), p ∈ Q

and x ∈ Σ∗.

Proof. Suppose that µ is a neutrosophic subsystem of F̃ ∗. Let q ∈ Q(act)(tj), p ∈ Q and x ∈ Σ∗. The
proof is by induction on |x| = n. If n = 0, then x = Λ. Now if q = p, then δ̃∗1((p, µti1 (p)),Λ, p) =
F∧1 (µti1 (p), δ̃1(p,Λ, p)) = µti1 (p), δ̃∗2((p, µti2 (p)),Λ, p) = F∧∨1 (µti2 (p), δ̃2(p,Λ, p)) = µti2 (p), δ̃∗3((p, µti3 (p)),Λ, p) =
F∨1 (µti3 (p), δ̃3(p,Λ, p)) = µti3 (p).

If q 6= p, then δ̃∗1((q, µti1 (q)),Λ, p) = F∧1 (µti1 (q), δ̃1(q,Λ, p)) = 0 ≤ µ
tj
1 (p), δ̃∗2((q, µti2 (q)),Λ, p) =

F∧∨1 (µti2 (q), δ̃2(q,Λ, p)) = 1 ≥ µ
tj
2 (p), δ̃∗3((q, µti3 (q)),Λ, p) = F∨1 (µti3 (q), δ̃3(q,Λ, p)) = 1 ≥ µ

tj
3 (p).
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Hence the result is true for n = 0. For now, we assume that the result is valid for all y ∈ Σ∗ with |y| = n−1,
n > 0. For the y above, let x = u1 · · ·un where ui ∈ Σ, i = 1, 2, · · ·n. Then

δ̃∗1((q, µti1 (q)), x, p) = δ̃∗1((q, µti1 (q)), u1 · · ·un, p) =
∨(

δ̃∗1((q, µti1 (q)), u1, r1) ∧ · · · ∧ δ̃∗1((rn−1, µ
ti+n

1 (rn−1)), un, p)
)

≤
∨(

δ̃∗1((rn−1, µ
ti+n

1 (rn−1)), un, p)|rn−1 ∈ Q(act)(ti+n)
)
≤
∨

µ
tj
1 (p) = µ

tj
1 (p),

δ̃∗2((q, µti2 (q)), x, p) = δ̃∗2((q, µti2 (q)), u1 · · ·un, p) =
∧(

δ̃∗2((q, µti2 (q)), u1, r1) ∨ · · · ∨ δ̃∗2((rn−1, µ
ti+n

2 (rn−1)), un, p)
)

≤
∧(

δ̃∗2((rn−1, µ
ti+n

2 (rn−1)), un, p)|rn−1 ∈ Q(act)(ti+n)
)
≤
∧

µ
tj
2 (p) = µ

tj
2 (p),

δ̃∗3((q, µti3 (q)), x, p) = δ̃∗3((q, µti3 (q)), u1 · · ·un, p) =
∧(

δ̃∗3((q, µti3 (q)), u1, r1) ∨ · · · ∨ δ̃∗3((rn−1, µ
ti+n

3 (rn−1)), un, p)
)

≤
∧(

δ̃∗3((rn−1, µ
ti+n

3 (rn−1)), un, p)|rn−1 ∈ Q(act)(ti+n)
)
≤
∧

µ
tj
3 (p) = µ

tj
3 (p),

where r1 ∈ Q(act)(ti+1) · · · rn−1 ∈ Q(act)(ti+n). Hence µtj1 (p) ≥ δ̃∗1((q, µ
tj
1 (q)), x, p), µtj2 (p) ≤ δ̃∗2((q, µ

tj
2 (q)), x, p),

µ
tj
3 (p) ≤ δ̃∗3((q, µ

tj
3 (q)), x, p). The converse is trivial. This proof is completed.

Definition 3.12. Let F̃ ∗ be a NGFA. Let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q× [0, 1]× [0, 1]× [0, 1])×
Σ∗ × Q be a neutrosophic set in Q. Then µ is a neutrosophic strong subsystem of F̃ ∗, say µ ⊆ F̃ ∗, if for
every i, 1 ≤ i ≤ k such that p ∈ Sα(q), then for q, p ∈ Q and x ∈ Σ, µtj1 (p) ≥ µ

tj
1 (q), µtj2 (p) ≤ µ

tj
2 (q),

µ
tj
3 (p) ≤ µ

tj
3 (q), for every 1 ≤ j ≤ k.

Theorem 3.13. Let F̃ ∗ be a NGFA and let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q × [0, 1] × [0, 1] ×
[0, 1]) × Σ∗ × Q be a neutrosophic set in Q. Then µ is a strong neutrosophic subsystem of F̃ ∗ if and only
if there exists x ∈ Σ∗ such that p ∈ Sα(q), then µtj1 (p) ≥ µ

tj
1 (q), µtj2 (p) ≤ µ

tj
2 (q), µtj3 (p) ≤ µ

tj
3 (q), for all

q ∈ Q(act)(tj), p ∈ Q.

Proof. Suppose that µ is a strong neutrosophic subsystem of F̃ ∗. Let q ∈ Q(act)(tj), p ∈ Q and x ∈ Σ∗.
The proof is by induction on |x| = n. If n = 0, then x = Λ. Now if q = p, then δ∗1((p, µti1 (p)),Λ, p) =
1, δ∗2((p, µti2 (p)),Λ, p) = 0, δ∗3((p, µti3 (p)),Λ, p) = 0 and µtj1 (p) = µ

tj
1 (p), µ

tj
2 (p) = µ

tj
2 (p), µ

tj
3 (p) =

µ
tj
3 (p). If q 6= p, then δ̃∗1((q, µti1 (q)),Λ, p) = F∧1 (µti1 (q), δ̃1(q,Λ, p)) = c ≤ µ

tj
1 (p), δ̃∗2((q, µti2 (q)),Λ, p) =

F∧∨1 (µti2 (q), δ̃2(q,Λ, p)) = d ≥ µ
tj
2 (p), δ̃∗3((q, µti3 (q)),Λ, p) = F∨1 (µti3 (q), δ̃3(q,Λ, p)) = e ≥ µ

tj
3 (p). Hence

the result is true for n = 0. For now, we assume that the result is valid for all u ∈ Σ∗ with |u| = n − 1,
n > 0. For the u above, let x = u1 · · ·un where ui ∈ Σ∗, i = 1, 2, · · ·n. Suppose that δ̃∗1((q, µti1 (q)), x, p) > c,
δ̃∗2((q, µti2 (q)), x, p) < d, δ̃∗3((q, µti3 (q)), x, p) < e. Then

δ̃∗1((q, µti1 (q)), u1 · · ·un, p) =
∨{

δ̃∗1((q, µti1 (q)), u1, p1) ∧ · · · ∧ δ̃∗1((pn−1, µ
ti+n

1 (pn−1)), un, p)
}
> c,

δ̃∗2((q, µti2 (q)), u1 · · ·un, p) =
∧{

δ̃∗2((q, µti2 (q)), u1, p1) ∨ · · · ∨ δ̃∗2((pn−1, µ
ti+n

2 (pn−1)), un, p)
}
< d,

δ̃∗3((q, µti3 (q)), u1 · · ·un, p) =
∧{

δ̃∗3((q, µti3 (q)), u1, p1) ∨ · · · ∨ δ̃∗3((pn−1, µ
ti+n

3 (pn−1)), un, p)
}
< e,

where p1 ∈ Q(act)(ti), · · · , pn−1 ∈ Q(act)(ti+n).
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This implies that δ̃∗1((q, µti1 (q)), u1, p1) > c, · · · , δ̃∗1((pn−1, µ
ti+n

1 (pn−1)), un, p) > c, δ̃∗2((q, µti2 (q)), u1, p1) <
d, · · · , δ̃∗2((pn−1, µ

ti+n

2 (pn−1)), un, p) < d, δ̃∗3((q, µti3 (q)), u1, p1) < e, · · · , δ̃∗3((pn−1, µ
ti+n

3 (pn−1)), un, p) < e.
Hence µtj1 (p) ≥ µ

ti+n

1 (pn−1), µ
ti+n

1 (p) ≥ µ
ti+n−1

1 (pn−2), · · · , µti1 (p1) ≥ µ
tj
1 (q), µtj2 (p) ≤ µ

ti+n

2 (pn−1), µ
ti+n

2 (p) ≤
µ
ti+n−1

2 (pn−2), · · · , µti2 (p1) ≤ µ
tj
2 (q), µtj3 (p) ≤ µ

ti+n

3 (pn−1), µ
ti+n

3 (p) ≤ µ
ti+n−1

3 (pn−2), · · · , µti3 (p1) ≤ µ
tj
3 (q).

Thus µtj1 (p) ≥ µ
tj
1 (q), µtj2 (p) ≤ µ

tj
2 (q), µtj3 (p) ≤ µ

tj
3 (q). The converse is trivial. The proof is completed.

4 Neutrosophic General Finite Switchboard Automata

Definition 4.1. Let F̃ ∗ be a max-min NGFA. Let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 be a neutrosophic set
in (Q× [0, 1]× [0, 1]× [0, 1])× Σ×Q in Q. Then

1. F̃ ∗ is switching, if it satisfies ∀p, q ∈ Q, a ∈ Σ and for every i, i ≥ 0,
δ̃∗1((q, µti1 (q)), a, p) = δ̃∗1((p, µti1 (p)), a, q), δ̃∗2((q, µti2 (q)), a, p) = δ̃∗2((p, µti2 (p)), a, q),
δ̃∗3((q, µti3 (q)), a, p) = δ̃∗3((p, µti3 (p)), a, q).

2. F̃ ∗ is commutative, if it satisfies ∀p, q ∈ Q, a, b ∈ Σ and for every i, i ≥ 1, δ̃∗1((q, µ
ti−1

1 (q)), ab, p) =
δ̃∗1((q, µ

ti−1

1 (q)), ba, p), δ̃∗2((q, µ
ti−1

2 (q)), ab, p) = δ̃∗2((q, µ
ti−1

2 (q)), ba, p),
δ̃∗3((q, µ

ti−1

3 (q)), ab, p) = δ̃∗3((q, µ
ti−1

3 (q)), ba, p).

3. F̃ ∗ is Neutrosophic General Finite Switchboard Automata (NGFSA, for short), if F̃ ∗ satisfies both
switching and commutative.

Proposition 4.2. Let F̃ be a NGFA, if F̃ ∗ is a commutative NGFSA, then for every i ≥ 1,

δ̃∗1((q, µ
ti−1

1 (q)), xa, p) = δ̃∗1((q, µ
ti−1

1 (q)), ax, p),

δ̃∗2((q, µ
ti−1

2 (q)), xa, p) = δ̃∗2((q, µ
ti−1

2 (q)), ax, p),

δ̃∗3((q, µ
ti−1

3 (q)), xa, p) = δ̃∗3((q, µ
ti−1

3 (q)), ax, p),

for all q ∈ Qact(ti−1), p ∈ Sc(q), a ∈ Σ and x ∈ Σ∗.

Proof. Since p ∈ Sc(q) then q ∈ Qact(ti−1) and |x| = n. If n = 0, then x = Λ. Thus

δ̃∗1((q, µ
ti−1

1 (q)), xa, p) = δ̃∗1((q, µ
ti−1

1 (q)),Λa, p) = δ̃∗1((q, µ
ti−1

1 (q)), a, p) = δ̃∗1((q, µ
ti−1

1 (q)), aΛ, p)

= δ̃∗1((q, µ
ti−1

1 (q)), ax, p),

δ̃∗2((q, µ
ti−1

2 (q)), xa, p) = δ̃∗2((q, µ
ti−1

2 (q)),Λa, p) = δ̃∗2((q, µ
ti−1

2 (q)), a, p) = δ̃∗2((q, µ
ti−1

2 (q)), aΛ, p)

= δ̃∗2((q, µ
ti−1

2 (q)), ax, p),

δ̃∗3((q, µ
ti−1

3 (q)), xa, p) = δ̃∗3((q, µ
ti−1

3 (q)),Λa, p) = δ̃∗3((q, µ
ti−1

3 (q)), a, p) = δ̃∗3((q, µ
ti−1

3 (q)), aΛ, p)

= δ̃∗3((q, µ
ti−1

3 (q)), ax, p).
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Suppose the result is true for all u ∈ Σ∗ with |u| = n− 1, where n > 0. Let x = ub, where b ∈ Σ. Then

δ̃∗1((q, µ
ti−1

1 (q)), xa, p) = δ̃∗1((q, µ
ti−1

1 (q)), uba, p) =
∨

r∈Qact(ti)

(
δ̃1((q, µ

ti−1

1 (q)), u, r) ∧ δ̃1((r, µti1 (r)), ba, p)
)

=
∨

r∈Qact(ti)

(
δ̃1((q, µ

ti−1

1 (q)), u, r) ∧ δ̃1((r, µti1 (r)), ab, p)
)

= δ̃∗1((q, µ
ti−1

1 (q)), uab, p)

=
∨

r∈Qact(ti)

(
δ̃1((q, µ

ti−1

1 (q)), ua, r) ∧ δ̃1((r, µti1 (r)), b, p)
)

=
∨

r∈Qact(ti)

(
δ̃1((q, µ

ti−1

1 (q)), au, r) ∧ δ̃1((r, µti1 (r)), b, p)
)

= δ̃∗1((q, µ
ti−1

1 (q)), aub, p) = δ̃∗1((q, µ
ti−1

1 (q)), ax, p),

δ̃∗2((q, µ
ti−1

2 (q)), xa, p) = δ̃∗2((q, µ
ti−1

2 (q)), uba, p) =
∧

r∈Qact(ti)

(
δ̃2((q, µ

ti−1

2 (q)), u, r) ∨ δ̃2((r, µti2 (r)), ba, p)
)

=
∧

r∈Qact(ti)

(
δ̃2((q, µ

ti−1

2 (q)), u, r) ∨ δ̃2((r, µti2 (r)), ab, p)
)

= δ̃∗2((q, µ
ti−1

2 (q)), uab, p)

=
∧

r∈Qact(ti)

(
δ̃2((q, µ

ti−1

2 (q)), ua, r) ∨ δ̃2((r, µti2 (r)), b, p)
)

=
∧

r∈Qact(ti)

(
δ̃2((q, µ

ti−1

2 (q)), au, r) ∨ δ̃2((r, µti2 (r)), b, p)
)

= δ̃∗2((q, µ
ti−1

2 (q)), aub, p) = δ̃∗2((q, µ
ti−1

2 (q)), ax, p),

δ̃∗3((q, µ
ti−1

3 (q)), xa, p) = δ̃∗3((q, µ
ti−1

3 (q)), uba, p) =
∧

r∈Qact(ti)

(
δ̃3((q, µ

ti−1

3 (q)), u, r) ∨ δ̃3((r, µti3 (r)), ba, p)
)

=
∧

r∈Qact(ti)

(
δ̃3((q, µ

ti−1

3 (q)), u, r) ∨ δ̃3((r, µti3 (r)), ab, p)
)

= δ̃∗3((q, µ
ti−1

3 (q)), uab, p)

=
∧

r∈Qact(ti)

(
δ̃3((q, µ

ti−1

3 (q)), ua, r) ∨ δ̃3((r, µti3 (r)), b, p)
)

=
∧

r∈Qact(ti)

(
δ̃3((q, µ

ti−1

3 (q)), au, r) ∨ δ̃3((r, µti3 (r)), b, p)
)

= δ̃∗3((q, µ
ti−1

3 (q)), aub, p) = δ̃∗3((q, µ
ti−1

3 (q)), ax, p).

This completes the proof.

Proposition 4.3. Let F̃ be a NGFA, if F̃ ∗ is a switching NGFSA, then for every i ≥ 0, δ̃∗1((q, µti1 (q)), x, p) =
δ̃∗1((p, µti1 (p)), x, q), δ̃∗2((q, µti2 (q)), x, p) = δ̃∗2((p, µti2 (p)), x, q), δ̃∗3((q, µti3 (q)), x, p) = δ̃∗3((p, µti3 (p)), x, q), for
all p, q ∈ Qact(ti) and x ∈ Σ∗.

Proof. Since p, q ∈ Qact(ti) and x ∈ Σ∗, we prove the result by induction on |x| = n. First, we assume that
x = Λ, whenever n = 0. Then we have δ̃∗1((q, µti1 (q)), x, p) = δ̃∗1((q, µti1 (q)),Λ, p) = δ̃∗1((p, µti1 (p)),Λ, q) =
δ̃∗1((p, µti1 (p)), x, q), δ̃∗2((q, µti2 (q)), x, p) = δ̃∗2((q, µti2 (q)),Λ, p) = δ̃∗2((p, µti2 (p)),Λ, q) = δ̃∗2((p, µti2 (p)), x, q)
δ̃∗3((q, µti3 (q)), x, p) = δ̃∗3((q, µti3 (q)),Λ, p) = δ̃∗3((p, µti3 (p)),Λ, q) = δ̃∗3((p, µti3 (p)), x, q). Thus, the theorem
holds for x = Λ. Now, we assume that the results holds for all u ∈ Σ∗ such that |u| = n − 1 and n > 0. Let
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a ∈ Σ and x ∈ Σ∗ be such that x = ua. Then

δ̃∗1((q, µti1 (q)), x, p) = δ̃∗1((q, µti1 (q)), ua, p) =
∨

r∈Qact(ti+1)

(
δ̃1((q, µ

ti
1 (q)), u, r) ∧ δ̃1((r, µti+1

1 (r)), a, p)
)

=
∨

r∈Qact(ti)

(
δ̃1((r, µ

ti
1 (r)), u, q) ∧ δ̃1(p, µti+1

1 (p)), a, r)
)

=
∨

r∈Qact(ti+1)

(
δ̃1((p, µ

ti
1 (p)), a, r) ∧ δ̃1((r, µti+1

1 (r)), u, q)
)

= δ̃∗1((p, µti1 (p)), au, q) = δ̃∗1((p, µti1 (p)), ua, q) = δ̃∗1((p, µti1 (p)), x, q),

δ̃∗2((q, µti2 (q)), x, p) = δ̃∗2((q, µti2 (q)), ua, p) =
∧

r∈Qact(ti+1)

(
δ̃2((q, µ

ti
2 (q)), u, r) ∨ δ̃2((r, µti+1

2 (r)), a, p)
)

=
∧

r∈Qact(ti)

(
δ̃2((r, µ

ti
2 (r)), u, q) ∨ δ̃2(p, µti+1

2 (p)), a, r)
)

=
∧

r∈Qact(ti+1)

(
δ̃2((p, µ

ti
2 (p)), a, r) ∨ δ̃2((r, µti+1

2 (r)), u, q)
)

= δ̃∗2((p, µti2 (p)), au, q) = δ̃∗2((p, µti2 (p)), ua, q) = δ̃∗2((p, µti2 (p)), x, q),

δ̃∗3((q, µti3 (q)), x, p) = δ̃∗3((q, µti3 (q)), ua, p) =
∧

r∈Qact(ti+1)

(
δ̃3((q, µ

ti
3 (q)), u, r) ∨ δ̃3((r, µti+1

3 (r)), a, p)
)

=
∧

r∈Qact(ti)

(
δ̃3((r, µ

ti
3 (r)), u, q) ∨ δ̃3(p, µti+1

3 (p)), a, r)
)

=
∧

r∈Qact(ti+1)

(
δ̃3((p, µ

ti
3 (p)), a, r) ∨ δ̃3((r, µti+1

3 (r)), u, q)
)

= δ̃∗3((p, µti3 (p)), au, q) = δ̃∗3((p, µti3 (p)), ua, q) = δ̃∗3((p, µti3 (p)), x, q).

Hence, the result is true for |u| = n. This completes the proof.

Proposition 4.4. Let F̃ be a NGFA, if F̃ ∗ is a NGFSA, then for every i ≥ 1, δ̃∗1((q, µ
ti−1

1 (q)), xy, p) =
δ̃∗1((p, µ

ti−1

1 (p)), yx, q), δ̃∗2((q, µ
ti−1

2 (q)), xy, p) = δ̃∗2((p, µ
ti−1

2 (p)), yx, q), δ̃∗3((q, µ
ti−1

3 (q)), xy, p) =
δ̃∗3((p, µ

ti−1

3 (p)), yx, q) for all p, q ∈ Q and x, y ∈ Σ∗.

Proof. Since p, q ∈ Q and x, y ∈ Σ∗, we prove the result by induction on |x| = n. First, we assume that n = 0,
then x = Λ. Thus
δ̃∗1((q, µ

ti−1

1 (q)), xy, p) = δ̃∗1((q, µ
ti−1

1 (q)), xΛ, p) = δ̃∗1((q, µ
ti−1

1 (q)),Λx, p) = δ̃∗1((q, µ
ti−1

1 (q)), yx, p),
δ̃∗2((q, µ

ti−1

2 (q)), xy, p) = δ̃∗2((q, µ
ti−1

2 (q)), xΛ, p) = δ̃∗2((q, µ
ti−1

2 (q)),Λx, p) = δ̃∗2((q, µ
ti−1

2 (q)), yx, p),
δ̃∗3((q, µ

ti−1

3 (q)), xy, p) = δ̃∗3((q, µ
ti−1

3 (q)), xΛ, p) = δ̃∗3((q, µ
ti−1

3 (q)),Λx, p) = δ̃∗3((q, µ
ti−1

3 (q)), yx, p).

Suppose that
δ̃∗1((q, µ

ti−1

1 (q)), xu, p) = δ̃∗1((p, µ
ti−1

1 (p)), ux, q), δ̃∗2((q, µ
ti−1

2 (q)), xu, p) = δ̃∗2((p, µ
ti−1

2 (p)), ux, q),
δ̃∗3((q, µ

ti−1

3 (q)), xu, p) = δ̃∗3((p, µ
ti−1

3 (p)), ux, q), for every u ∈ Σ∗.

Now, continue the result is true for all u ∈ Σ∗ with |u| = n − 1, where n > 0. Let y = ua, where a ∈ Σ
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and u ∈ Σ∗. Then

δ̃∗1((q, µ
ti−1

1 (q)), xy, p) = δ̃∗1((q, µ
ti−1

1 (q)), xua, p) =
∨

r∈Qact(ti)

(
δ̃1((q, µ

ti−1

1 (q)), xu, r) ∧ δ̃1((r, µti1 (r)), a, p)
)

=
∨

r∈Qact(ti)

(
δ̃1((q, µ

ti−1

1 (q)), ux, r) ∧ δ̃1((r, µti1 (r)), a, p)
)

=
∨

r∈Qact(ti−1)

(
δ̃1((r, µ

ti−1

1 (r)), ux, q) ∧ δ̃1((p, µti1 (p)), a, r)
)

=
∨

r∈Qact(ti)

(
δ̃1((p, µ

ti−1

1 (p)), a, r) ∧ δ̃1((r, µti1 (r)), ux, q)
)

= δ̃∗1((p, µ
ti−1

1 (p)), aux, q) =
∨

r∈Qact(ti)

(
δ̃1((p, µ

ti−1

1 (p)), au, r) ∧ δ̃1((r, µti1 (r)), x, q)
)

=
∨

r∈Qact(ti)

(
δ̃1((p, µ

ti−1

1 (p)), ua, r) ∧ δ̃1((r, µti1 (r)), x, q)
)

= δ̃∗1((p, µ
ti−1

1 (p)), uax, q) = δ̃∗1((q, µ
ti−1

1 (q)), uax, p) = δ̃∗1((q, µ
ti−1

1 (q)), yx, p),

δ̃∗2((q, µ
ti−1

2 (q)), xy, p) = δ̃∗2((q, µ
ti−1

2 (q)), xua, p) =
∧

r∈Qact(ti)

(
δ̃2((q, µ

ti−1

2 (q)), xu, r) ∨ δ̃2((r, µti2 (r)), a, p)
)

=
∧

r∈Qact(ti)

(
δ̃2((q, µ

ti−1

2 (q)), ux, r) ∨ δ̃2((r, µti2 (r)), a, p)
)

=
∧

r∈Qact(ti−1)

(
δ̃2((r, µ

ti−1

2 (r)), ux, q) ∨ δ̃2((p, µti2 (p)), a, r)
)

=
∧

r∈Qact(ti)

(
δ̃2((p, µ

ti−1

2 (p)), a, r) ∨ δ̃2((r, µti2 (r)), ux, q)
)

= δ̃∗2((p, µ
ti−1

2 (p)), aux, q) =
∧

r∈Qact(ti)

(
δ̃2((p, µ

ti−1

2 (p)), au, r) ∧ δ̃2((r, µti2 (r)), x, q)
)

=
∧

r∈Qact(ti)

(
δ̃2((p, µ

ti−1

2 (p)), ua, r) ∨ δ̃2((r, µti2 (r)), x, q)
)

= δ̃∗2((p, µ
ti−1

2 (p)), uax, q) = δ̃∗2((q, µ
ti−1

2 (q)), uax, p) = δ̃∗2((q, µ
ti−1

2 (q)), yx, p),

δ̃∗3((q, µ
ti−1

3 (q)), xy, p) = δ̃∗3((q, µ
ti−1

3 (q)), xua, p) =
∧

r∈Qact(ti)

(
δ̃3((q, µ

ti−1

3 (q)), xu, r) ∨ δ̃3((r, µti3 (r)), a, p)
)

=
∧

r∈Qact(ti)

(
δ̃3((q, µ

ti−1

3 (q)), ux, r) ∨ δ̃3((r, µti3 (r)), a, p)
)

=
∧

r∈Qact(ti−1)

(
δ̃3((r, µ

ti−1

3 (r)), ux, q) ∨ δ̃3((p, µti3 (p)), a, r)
)

=
∧

r∈Qact(ti)

(
δ̃3((p, µ

ti−1

3 (p)), a, r) ∨ δ̃3((r, µti3 (r)), ux, q)
)

= δ̃∗3((p, µ
ti−1

3 (p)), aux, q) =
∧

r∈Qact(ti)

(
δ̃3((p, µ

ti−1

3 (p)), au, r) ∧ δ̃3((r, µti3 (r)), x, q)
)

=
∧

r∈Qact(ti)

(
δ̃3((p, µ

ti−1

3 (p)), ua, r) ∨ δ̃3((r, µti3 (r)), x, q)
)

= δ̃∗3((p, µ
ti−1

3 (p)), uax, q) = δ̃∗3((q, µ
ti−1

3 (q)), uax, p) = δ̃∗3((q, µ
ti−1

3 (q)), yx, p).

This completes the proof.

Definition 4.5. Let F̃ ∗ be a GNFSA. Let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q × [0, 1]) × Σ∗ × Q be
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a neutrosophic set in Q. Then µ is a neutrosophic switchboard subsystem of F̃ ∗, say µ ⊆ F̃ ∗, if for every j,
1 ≤ j ≤ k such that µtj1 (p) ≥ δ̃∗1((q, µ

tj
1 (q)), x, p), µtj2 (p) ≤ δ̃∗2((q, µ

tj
2 (q)), x, p), µtj3 (p) ≤ δ̃∗3((q, µ

tj
3 (q)), x, p).

∀q, p ∈ Q and x ∈ Σ.

Theorem 4.6. Let F̃ ∗ be a NGFSA and let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q × [0, 1] × [0, 1] ×
[0, 1]) × Σ∗ × Q be a neutrosophic set in Q. Then µ is a neutrosophic switchboard subsystem of F̃ ∗ if and
only if µtj1 (p) ≥ δ̃∗1((q, µ

tj
1 (q)), x, p), µtj2 (p) ≤ δ̃∗2((q, µ

tj
2 (q)), x, p), µtj3 (p) ≤ δ̃∗3((q, µ

tj
3 (q)), x, p), for all q ∈

Q(act)(tj), p ∈ Q and x ∈ Σ∗.

Proof. The proof of the theorem is similar to Theorem 3.11 and it is clear that µ satisfies switching and
commutative, since F̃ ∗ is NGFSA. This proof is completed.

Definition 4.7. Let F̃ ∗ be a NGFSA. Let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q× [0, 1]× [0, 1]× [0, 1])×
Σ∗×Q be a neutrosophic set in Q. Then µ is a neutrosophic strong switchboard subsystem of F̃ ∗, say µ ⊆ F̃ ∗,
if for every i, 1 ≤ i ≤ k such that p ∈ Sα(q), then for q, p ∈ Q and x ∈ Σ, µtj1 (p) ≥ µ

tj
1 (q), µtj2 (p) ≤ µ

tj
2 (q),

µ
tj
3 (p) ≤ µ

tj
3 (q), for every 1 ≤ j ≤ k.

Theorem 4.8. Let F̃ ∗ be a NGFA and let µ = 〈µ1, µ2, µ3〉 and δ̃∗ = 〈δ̃∗1, δ̃∗2, δ̃∗3〉 in (Q× [0, 1]× [0, 1]× [0, 1])×
Σ∗ × Q be a neutrosophic set in Q. Then µ is a strong neutrosophic switchboard subsystem of F̃ ∗ if and only
if there exists x ∈ Σ∗ such that p ∈ Sα(q), then µtj1 (p) ≥ µ

tj
1 (q), µtj2 (p) ≤ µ

tj
2 (q), µtj3 (p) ≤ µ

tj
3 (q), for all

q ∈ Q(act)(tj), p ∈ Q.

Proof. The proof of the theorem is similar to Theorem 3.13 and it is clear that µ satisfies switching and
commutative, since F̃ ∗ is NGFSA. The proof is completed.

Theorem 4.9. Let F̃ ∗ be a NGFSA and let µ = 〈µ1, µ2, µ3〉 be a neutrosophic subset ofQ. If µ is a neutrosohic
switchboard subsystem of F̃ ∗, then µ is a strong neutrosophic switchboard subsystem of F̃ ∗.

Proof. Assume that δ̃∗1((q, µti1 (q)), x, p) > 0, δ̃∗2((q, µti2 (q)), x, p) < 1 and δ̃∗3((q, µti3 (q)), x, p) < 1, for all
x ∈ Σ. Since µ is a neutrosophic switchboard subsystem of F̃ ∗, we have

µ
tj
1 (p) ≥ δ̃∗1((q, µti1 (q)), x, p), µ

tj
2 (p) ≤ δ̃∗2((q, µti2 (q)), x, p), µ

tj
3 (p) ≤ δ̃∗3((q, µti3 (q)), x, p).

for all q ∈ Q(act)(tj), p ∈ Q and x ∈ Σ. As µ is switching, then we have

µ
tj
1 (p) ≥ δ̃∗1((q, µti1 (q)), x, p) = δ̃∗1((p, µti1 (p)), x, q) = µ

tj
1 (q),

µ
tj
2 (p) ≤ δ̃∗2((q, µti2 (q)), x, p) = δ̃∗2((p, µti2 (p)), x, q) = µ

tj
2 (q),

µ
tj
3 (p) ≤ δ̃∗3((q, µti3 (q)), x, p) = δ̃∗3((p, µti3 (p)), x, q) = µ

tj
3 (q).
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As µ is commutative, then x = uv, we have

µ
tj
1 (p) ≥ δ̃∗1((q, µti1 (q)), x, p) = δ̃∗1((q, µti1 (q)), uv, p)

=
∨{

δ̃∗1((q, µti1 (q)), u, r) ∧ δ̃∗1((r, µ
ti+1

1 (r)), v, p)|r ∈ Q1(act)(ti+1)
}

=
∨{

δ̃∗1((r, µti1 (r)), u, q) ∧ δ̃∗1((p, µ
ti+1

1 (p)), v, r)|r ∈ Q1(act)(ti+1)
}

=
∨{

δ̃∗1((p, µ
ti+1

1 (p)), v, r) ∧ δ̃∗1((r, µti1 (r)), u, q)|r ∈ Q1(act)(ti+1)
}

= δ̃∗1((p, µ
ti+1

1 (p)), vu, q) = δ̃∗1((p, µ
ti+1

1 (p)), uv, q) = δ̃∗1((p, µ
ti+1

1 (p)), x, q) ≥ µ
tj
1 (q),

µ
tj
2 (p) ≤ δ̃∗2((q, µti2 (q)), x, p) = δ̃∗2((q, µti2 (q)), uv, p)

=
∧{

δ̃∗2((q, µti2 (q)), u, r) ∨ δ̃∗2((r, µ
ti+1

2 (r)), v, p)|r ∈ Q1(act)(ti+1)
}

=
∧{

δ̃∗2((r, µti2 (r)), u, q) ∨ δ̃∗2((p, µ
ti+1

2 (p)), v, r)|r ∈ Q1(act)(ti+1)
}

=
∧{

δ̃∗2((p, µ
ti+1

2 (p)), v, r) ∨ δ̃∗2((r, µti2 (r)), u, q)|r ∈ Q1(act)(ti+1)
}

= δ̃∗2((p, µ
ti+1

2 (p)), vu, q) = δ̃∗2((p, µ
ti+1

2 (p)), uv, q) = δ̃∗2((p, µ
ti+1

2 (p)), x, q) ≤ µ
tj
2 (q),

µ
tj
3 (p) ≤ δ̃∗3((q, µti3 (q)), x, p) = δ̃∗3((q, µti3 (q)), uv, p)

=
∧{

δ̃∗3((q, µti3 (q)), u, r) ∨ δ̃∗3((r, µ
ti+1

3 (r)), v, p)|r ∈ Q1(act)(ti+1)
}

=
∧{

δ̃∗3((r, µti3 (r)), u, q) ∨ δ̃∗3((p, µ
ti+1

3 (p)), v, r)|r ∈ Q1(act)(ti+1)
}

=
∧{

δ̃∗3((p, µ
ti+1

3 (p)), v, r) ∨ δ̃∗3((r, µti3 (r)), u, q)|r ∈ Q1(act)(ti+1)
}

= δ̃∗3((p, µ
ti+1

3 (p)), vu, q) = δ̃∗3((p, µ
ti+1

3 (p)), uv, q) = δ̃∗3((p, µ
ti+1

3 (p)), x, q) ≤ µ
tj
3 (q).

Hence µ is a strong neutrosophic switchboard subsystem of F̃ ∗.

Theorem 4.10. Let F̃ ∗ be a NGFSA and let µ = 〈µ1, µ2, µ3〉 be a neutrosophic subset of Q. If µ is a strong
neutrosophic switchboard subsystem of F̃ ∗, then µ is a neutrosophic switchboard subsystem of F̃ ∗.

Proof. Let q, p ∈ Q. Since µ is a strong neutrosophic switchboard subsystem of F̃ ∗ and µ is switching, we
have for all x ∈ Σ, since δ̃∗1((q, µti1 (q)), x, p) > 0, δ̃∗2((q, µti2 (q)), x, p) < 1 and δ̃∗3((q, µti3 (q)), x, p) < 1,
∀x ∈ Σ,
µ
tj
1 (p) ≥ µ

tj
1 (q) ≥ δ̃∗1((p, µti1 (p)), x, q) ≥ δ̃∗1((q, µti1 (q)), x, p),

µ
tj
2 (p) ≤ µ

tj
2 (q) ≤ δ̃∗2((p, µti2 (p)), x, q) ≤ δ̃∗2((q, µti2 (q)), x, p),

µ
tj
3 (p) ≤ µ

tj
3 (q) ≤ δ̃∗3((p, µti3 (p)), x, q) ≤ δ̃∗3((q, µti3 (q)), x, p).

It is clear that µ is commutative. Thus µ is a neutrosophic switchboard subsystem of F̃ ∗.

5 Conclusions
This paper attempt to develop and present a new general definition for neutrosophic finite automata. The
general definition for (strong) subsystem also examined and discussed their properties. A comprehensive
analysis and an appropriate methodology to manage the essential issues of output mapping in general fuzzy
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automata were studied by Doostfatemen and Kremer [11]. Their approach is consistent with the output which
is either associated with the states (Moore model) or with the transitions (Mealy model). Interval-valued fuzzy
subsets have many applications in several areas. The concept of interval-valued fuzzy sets have been studied
in various algebraic structures, see [7, 26]. On the basis [11] and [7], the future work will focus on general
interval-valued neutrosophic finite automata with output respond to input strings.
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Implementation of Neutrosophic Function 
Memberships Using MATLAB Program 

S. Broumi, D. Nagarajan, A. Bakali, M. Talea, F. Smarandache, M.Lathamaheswari, 
J. Kavikumar

Abstract. Membership function (MF) plays a key role for getting an output of a system and hence it influences system’s per-
formance directly. Therefore choosing a MF is an essential task in fuzzy logic and neutrosophic logic as well. Uncertainty is 
usually represented by MFs. In this paper, a novel Matlab code is derived for trapezoidal neutrosophic function and the validity 
of the proposed code is proved with illustrative graphical representation 

Keywords: Membership function, Matlab code, Trapezoidal neutrosophic function, Graphical representation

1 Introduction 

The membership function (MF) designs a structure of practical relationship to relational structure 
numerically where the elements lies between 0 and 1. By determining the MFs one can model the relationship 
between the cognitive and stimuli portrayal in fuzzy set theory [1]. The computed MF will provide a solution to 
the problem and the complete process can be observed as a training and acceptable approximation to the function 
from the behavior of the objects [2]. This kind of MFs can be utilized for the fuzzy implication appeared in the 

given rules to examine more examples [3]. 
The MFs of fuzzy logic is nothing but a stochastic representation and are used to determine a 

probability space and its value may be explained as probabilities. The stochastic representation will to know the 
reasoning and capability of fuzzy control [4]. MFs which are characterized in a single domain where the 
functions are in terms of single variable are playing a vital role in fuzzy logic system. FMFs determine the 
degree of membership (M/S) which is a crisp value. Generally MFs are considered as either triangular or 
trapezoidal as they are adequate, can be design easily and flexible [5].  

MFs can be carried out using hardware [6]. MFs are taking part in most of the works done under fuzzy 
environment without checking their existence for sure and also in the connection between a studied characteristic 
for sure and its reference set won’t be problematic as it is a direct measurement [7]. It is adorable to have 
continuously differentiable MFs with less parameters [8]. MFs plays an important role in fuzzy classifier (FC). 
In traditional FC, the domain of every input variable is separated into various intervals. All these intervals is 
assumed to be a FS and a correlated MF is determined. Hence the input space is separated again into various sub 
regions which are all parallel in to input axes and a fuzzy rule is defined for all these sub regions if the input 
belongs to the sub region then it is also belongs to the associated class with the sub region. 

Further the degrees of M/S of an unidentified input for all the FSs are evaluated and the input is 
restricted into the class with maximum degree of M/S. Thus the MFs are directly control the performance of the 
fuzzy classifier [10]. If the position of the MF is changed then the direct methods maximize the understanding 
rate of the training data by calculating the total increase directly [11]. Estimation of the MF is usually based on 
the level of information gained with the experiment transferred by the numerical data [12]. Due to the important 
role of MFs, concepts of fuzzy logic have been applied in many of the control systems for controlling the robot, 
nuclear reactor, climate, speed of the car, power systems, memory device under fuzzy logic, aircraft flight, 
mobile robots and focus of a camcorder. 
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There has been a habit of restrain the MFs into a well-known formats like triangular, trapezoidal and 
standard Gaussian or sigmoid types [13]. In information systems the incomplete information can be designed by 
rough sets [20].  Neutrosophy has established the base for the entire family of novel mathematical theories which 
generalizes the counterparts of the conventional and fuzzy sets [21]. The success of an approach depends on the 
MFs and hence designing MFs is an important task for the process and the system. Theory of FSs contributes the 
way of handling impreciseness, uncertainty and vagueness in the software metrics. The uncertainty of the 
problem can be solved b considering MFs in an expert system under fuzzy setting. Triangular and trapezoidal 
MFs are flexible representation of domain expert knowledge and where the computational complexity is less. 
Hence the derivation of the MF is need to be clarified. 

The MFs are continuous and maps from any closed interval to [0,1]. Also which are all either 
monotonically decreasing or increasing or both [22]. A connectively flexible aggregation of crisp and imprecise 
knowledge is possible with the horizontal MFs which are capable of introducing uncertainty directly [23]. There 
are effective methods for calculating MFs of FSs connected with few multi criteria decision making problem 
[25]. Due to the possibility of having some degree of hesitation, one could not define the non-membership 
degree by subtracting membership degree from 1 [26]. The degree of the fuzzy sets will be determined by FMFs. 
[30] Crisp value is converted into fuzzy during fuzzification process. If uncertainty exists on the variable then
becomes fuzzy and could be characterized by MFs. The degree of MF is determined by fuzzification.

In the real world problems satisfaction of the decision maker is not possible at most of the time due to 
impreciseness and incompleteness of the information of the data. Fuzziness exist in the FS is identified by the 
MF [27]. he uncertainty measure is the possible MF of the FS and is interpreted individually. This is the 
advantage of MFs especially one needs to aggregate the data and human expert knowledge. Designing MFs vary 
according to the ambition of their use. Membership functions influence a quality of inference [31].  

Neutrosophy is the connecting idea with its opposite idea also with non-committal idea to get the 
common parts with unknown things [36]. Artificial network, fuzzy clustering, genetic algorithm are some 
methods to determine the MFs and all these consume time with complexities. The MFs plays a vital role in 
getting the output.  The methods are uncertain due to noisy data and difference of opinion of the people. The 
most suitable shape and widely used MFs in fuzzy systems are triangular and trapezoidal [37]. Properties and 
relations of multi FSs and its extension are depending on the order relations of the MFs [38]. FS is the class of 
elements with a continuum of grades of M/S [39].  

The logic of neutrosophic concept is an explicit frame trying to calculate the truth, IIndetrminacy and 
falsity. Smarandache observes the dissimilarity of intuitionistic fuzzy logic (IFL) and neutrosophic logic (NL). 
NL could differentiate absolute truth (AT) and relative truth (RT) by assigning 1+  for AT and 1 for RT and is 
also applied in the field of philosophy. Hence the standard interval [0,1] used in IFS is extended to non-
standard ]-0,1+[ in NL. There is not condition on truth, indeterminacy and falsity which are all the subsets of non-
standard unitary interval. This is the reason of considering -0 0 inf inf inf sup sup sup 3T I F T I F        and 
which is useful to characterize para consistent and incomplete information [40]. The generalized form of 
trapezoidal FNs, trapezoidal IFNs, triangular FN and TIFNs are the trapezoidal and triangular neutrosophic 
fuzzy number [48]. 

2 Review of Literature 
The authors of, [Zysno 1] presented a methodology to determine the MFs analytically. [Sebag and  

Schoenauer 2] Established algorithms to determine functions from examples. [Bergadano and Cutello 3] 
proposed an effective technique to learn MFs for fuzzy predicates. [Hansson 4] introduce a stochastic perception 
of the MFs based on fuzzy logic. [Kelly and Painter 5] proposed a methodology to define N-dimensional fuzzy 
MFs (FMFs) which is a generalized form of one dimensional MF generally used in fuzzy systems. [Peterson et al. 
6] presented a hardware implementation of MF. [Royo and Verdegay 7] examined about the characterization of
the different cases where the endurance of the MF is assured.

[Grauel and L. A. Ludwig 8] proposed a class of MFs for symmetrically and asymmetrically in 
exponential order and constructed a more adaptive MFs. [Straszecka 9] presented preliminaries and methodology 
to define the MFs of FSs and discussed about application of FS with its universe, certainty of MFs and format. 
[Abe 10] examined the influence of the MFs in fuzzy classifier. [Abe 11] proved that by adjusting the slopes and 
positions the performance of the fuzzy rule classification can be improved [Pedrycz and G. Vukovich 12] 
imposed on an influential issue of determining MF. [J. M. Garibaldi and R. I. John 13] focused more MFs which 
considered as the alternatives in fuzzy systems [T. J. Ross 14] established the methodology of MFs. 

 [Brennan, E. Martin 15] proposed MFs for dimensional proximity. [Hachani et al. 16] Proposed a new 
incremental method to represent the MFs for linguistic terms. [Gasparovica et al. 17] examined about the 
suitable MF for data analysis in bioinformatics. [Zade and Ismayilova 18] investigated a class of MFs which 
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conclude the familiar types of MFs for FSs. [Bilgic 19] proposed a method of measuring MFs. [Broumi et al. 20] 
established rough neutrosophic sets and their properties. [Salama et al. 21] proposed a technique for constructing. 
[Yadava and Yadav 22] proposed an approach for constructing the MFs of software metrics. [Piegat and M. 
Landowski 23] proposed horizontal MFs to determine the FS instead of usual vertical MFs. [Mani 24] reviewed 
the relation between different meta theoretical concepts of probability and rough MFs critically.  

[Sularia 25] showed their interest of multi-criteria decision analysis under fuzzy environment. [Ali and 
F. Smarandache 26] Introduced complex NS. [Goyal et al. 27] proposed a circuit model for Gaussian MF. [Can
and Ozguven 28] proposed fuzzy logic controller with neutrosophic MFs. [Ali et al. 29] introduced  -equalities
and their properties of NSs. [Radhika and Parvathi 30] introduced different fuzzification methods for
intuitionistic fuzzy environment.  [Porebski and Straszecka 31] examined diagnosing rules for driving data which
can be described by human experts. [Hong et al. 32] accumulated the concepts of fuzzy MFs using fuzzy c-
means clustering method.

[Kundu 33] proposed an improved method of approximation of piecewise linear MFs with the support 
of approximation of cut function obtained by sigmoid function. [Wang 34] proposed the operational laws of 
fuzzy ellipsoid numbers and straight connection between the MFs which are located on the junctions and edges. 
[Mani 35] studied the contemplation of theory of probability over rough MFs. [Christianto and  Smarandache 36] 
offered a new perception at Liquid church and neutrosophic MF. [Asanka and A. S. Perera 37] introduced a new 
approach of using box plot to determine fuzzy Function with some conditions. [Sebastian and F. Smarandache 
38] generalized the concepts of NSs and its extension method. [Reddy 39] proposed a FS with two MFs such as
Belief and Disbelief. [Lupianeza 40] determined NSs and Topology.

[Zhang et al. 41] derived FMFs analytically. [Wang 42] framed a framework theoretically to construct 
MFs in a hierarchical order. [Germashev et al. 43] proposed convergence of series of FNs along with Unimodal 
membership. [Marlen and Dorzhigulov 44] implemented FMF with Memristor. [Ahmad et al. 45] introduced 
MFs and fuzzy rules for Harumanis examinations [Buhentala et al. 46] explained about the procedure and 
process of the Takagi-Sugeno fuzzy model. [Broumi et al. 47-55] proposed few concepts of NSs, triangular and 
trapezoidal NNs. 

From this literature study, to the best our knowledge there is no contribution of work on deriving membership 
function using Matlab under neutrosophic environment and hence it’s a motivation of the present work. 

3 Preliminaries 

Definition:A trapezoidal neutrosophic number  , , , ; , ,a a aa a b c d w u y is a special neutrosophic set on 
the real number set R, whose truth-membership, indeterminacy– membership and falsity-membership functions 
are defined as follows: 
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4. Proposed Matlab code to find Trapezoidal Neutrosophic Function
In this section, trapezoidal neutrosophic function has been proposed using Matlab program and for the differennt
membership values, pictorical representation is given and the Matlab code is designed as follows.

Trapezoidal neutrosophic Function (trin) 
%x=45:70; 
%[y,z]=trin(x,50,55,60,65, 0.6, 0.4,0.6)% 

U truth membership 
V indterminacy membership 
W :falsemembership 

function [y,z,t]=trin(x,a,b,c,d,u,v,w) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
t=zeros(1,length(x)); 
for j=1:length(x) 
if(x(j)<=a)  
    y(j)=0; 
    z(j)=1; 
    t(j)=1; 
elseif(x(j)>=a)&&(x(j)<=b) 
y(j)=u*(((x(j)-a)/(b-a))); 
z(j)=(((b-x(j))+v*(x(j)-a))/(b-a)); 
t(j)=(((b-x(j))+w*(x(j)-a))/(b-a)); 
elseif(x(j)>=b)&&(x(j)<=c) 
y(j)=u; 
    z(j)=v; 
    t(j)=w; 
elseif(x(j)>=c)&&(x(j)<=d) 
     y(j)=u*(((d-x(j))/(d-c))); 
     z(j)=(((x(j)-c)+v*(d-x(j)))/(d-c)); 
     t(j)=(((x(j)-c)+w*(d-x(j)))/(d-c)); 
elseif(x(j)>=d) 
    y(j)=0; 
z(j)=1; 
t(j)=1; 
end 
end 
plot(x,y,x,z,x,t) 
legend('Membership function','indeterminate function','Non-membership function') 
end 

4.1 Example  
The figure 1 portrayed the pictorical representation of the trapezoidal neutrosophic function 

 0.3,0.5,0.6,0.7 ;0.4,0.2,0.3a   
The line command to show this function in Matlab is written below: 

x=0:0.01:1; 
[y,z,t]=trin(x,0.3,0.5,0.6,0.7, 0.4, 0.2,0.3) 
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Figure 1: Trapezoidal neutrosophic function for example 4.1 

4.2 Example 
The figure 2 portrayed the trapezoidal neutrosophic function of  50,55,60,65 ;0.6,0.4,0.3a 

The line command to show this function in Matlab is written below: 
>> x=45:70;
[y,z]=trin(x,50,55,60,65, 0.6, 0.4,0.3)

Figure 2: Trapezoidal neutrosophic function for example 4.2 

4.3 Example 

The figure 3 portrayed the triangular neutrosophic function of  0.3,0.5,0.5,0.7 ;0.4,0.2,0.3a 

The line command to show this function in Matlab is written below: 

x= 0:0.01:1; 
[y,z,t]=trin(x,0.3, 0.5,0.5,0.7, 0.4, 0.2,0.3) 
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Figure 3: Triangular neutrosophic function for example 3 

Remark: if b= c, the trapezoidal neutrosophic function degenerate to triangular neutrosophic function as 
protrayed in figure 3. 

5. Qualitative analysis of different types of graphs

The following analysis helps to know the importance of the neutrosophic graph where 
the limitations are possible as mentioned in the table for fuzzy and intuitionistic fuzzy graphs. 

Types of graphs Advantages Limitations 

Graphs  Models of relations
 describing information involving

relationship between objects
 Objects are represented by verti-

ces and relations by edges
 Vertex and edge sets are crisp

 Unable to han-
dle fuzzy rela-
tion (FR)

Fuzzy graphs (FGs)  Symmetric binary fuzzy relation
on a fuzzy subset

 Uncertainty exist in the descrip-
tion of the objects or in the rela-
tionships or in both

 Able to handle FR with member-
ship value

 FGs models are more useful and
practical in nature

 Not able to deal
interval data

Interval valued FGs  Edge set of a graphs is a collec-
tion of intervals

 Unable to deal
the case of non
membership

Intuitionistic fuzzy graphs 
(IntFGs) 

 Gives more certainty into the
problems

 Minimize the cost of operation
and enhance efficiency

 Contributes a adjustable  model
to define uncertainty and vague-
ness exists in decision making

 Able to deal non membership of a
relation

 Unable to han-
dle interval da-
ta
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Interval valued IntFGs  Capable of dealing interval data  Unable to deal
indeterminacy

6. Conclusion

Choosing a MF is an essential task of all the fuzzy and neutrosophic system (Control 
system or decision making process). Due to the simplicity (less computational complexity) 
and flexibility triangular and trapezoidal membership functions are widely used in many real 
world applications. In this paper, trapezoidal neutrosophic membership function is derived 
using Matlab with illustrative example. In future, this work may be extended to interval 
valued trapezoidal and triangular neutrosophic membership functions. 
Notes 
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Application of Bipolar Neutrosophic Sets 
to Incidence Graphs

Muhammad Akram, Nabeela Ishfaq, Florentin Smarandache, Said Broumi

Abstract: In this research paper, we apply the idea of bipolar neutrosophic sets to incidence graphs. We present some 
notions, including bipolar neutrosophic incidence graphs, bipolar neutrosophic incidence cycle and bipolar neutro-
sophic incidence tree. We define strong path, strength and incidence strength of strongest path in bipolar neutrosophic 
incidence graphs. We investigate some properties of bipolar neutrosophic incidence graphs. We also describe an 
application of bipolar neutrosophic incidence graphs.

Keywords: Bipolar neutrosophic incidence graphs; Bipolar neutrosophic incidence cycle; Bipolar neutrosophic 
incidence tree.

1 Introduction
Graph theory is a mathematical structure which is used to represent a relationship between objects. It has been
very successful in engineering and natural sciences. Sometimes, in many cases, graph theoretical concepts
may be imprecise. To handle such cases, in 1975, Rosenfeld [1] gave the idea of fuzzy graphs. He consid-
ered fuzzy relations and proposed the structure of fuzzy graphs, obtaining analogs of several graph theoretical
concepts. Bhutani and Rosenfeld [2] studied the strong edges in fuzzy graphs. By applying bipolar fuzzy sets
[3] to graphs, Akram [4] introduced the notion of bipolar fuzzy graphs. He described the different methods to
construct the bipolar fuzzy graphs and discussed the some of their properties. Broumi et al [5] introduced the
single-valued neutrosophic graphs by applying the concept of single-valued neutrosophic sets to graphs. Later
on, Akram and Sarwar [6] studied the novel multiple criteria decision making methods based on bipolar neu-
trosophic sets and bipolar neutrosophic graphs. They developed the independent and dominating sets of bipolar

Muhammad Akram, Nabeela Ishfaq, Florentin Smarandache, Said Broumi (2019). Application 
of Bipolar Neutrosophic Sets to Incidence Graphs. Neutrosophic Sets and Systems 27, 
180-200
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neutrosophic graphs. Ishfaq et al [13, 14] introduced the rough neutrosophic digraphs and their applications.
Later Akram et al [15] introduced the decision making approach based on neutrsophic rough information.
Dinesh [7, 8] studied the graph structures and introduced the fuzzy incidence graphs. Fuzzy incidence graphs
not only give the limitation of the relation between elements contained in a set, but also give the influence or
impact of an element to its relation pair. Fuzzy incidence graphs play an important role to interconnect the
networks. Incidence relations have significant parts in human and natural made networks, including pipe, road,
power and interconnection networks. Later Mathew and Mordeson [9] introduced the connectivity concepts
in fuzzy incidence graphs and also introduced fuzzy influence graphs [10]. In this paper, we apply the idea
of bipolar neutrosophic sets to incidence graphs and introduce a new concept, namely bipolar neutrosophic
incidence graphs.
Some of essential preliminaries from [7] and [11] are given below:
Let V ∗ be a non-empty set. Then G∗ = (V ∗, E∗, I∗) is an incidence graph, where E∗ is a subset of V ∗ × V ∗
and I∗ is a subset of V ∗ × E∗.
A fuzzy incidence graph on an incidence graph G∗ = (V ∗, E∗, I∗) is an ordered triplet G′ = (µ′, λ′, ψ′), where
µ′ is a fuzzy set on V ∗, λ′ is a fuzzy relation on V ∗ and ψ′ is a fuzzy set on V ∗ × E∗ such that

ψ′(y, yz) ≤ µ′(y) ∧ λ′(yz), ∀y, z ∈ V ∗.

A bipolar neutrosophic set on a non-empty set V ∗ is an object having the form

B = {(b, T+
Y (b), I

+
Y (b), F

+
Y (b), T

−
Y (b), I

−
Y (b), F

−
Y (b)) : b ∈ V

∗},

where, T+
b , I

+
b , F

+
b : V ∗ −→ [0, 1] and T−b , I

−
b , F

−
b : V ∗ −→ [−1, 0].

For other notations and applications, readers are referred to [15-21].

2 Bipolar Neutrosophic Incidence Graphs
Definition 2.1. A bipolar neutrosophic incidence graphs (BNIG) on an incidence graph G∗ = (V ∗, E∗, I∗) is
an ordered triplet G = (X, Y, Z), where

(1) X is a bipolar neutrosophic set on V ∗.

(2) Y is a bipolar neutrosophic relation on V ∗.

(3) Z is a bipolar neutrosophic set on V ∗ × E∗ such that

T+
Z (x, xy) ≤min{T+

X (x), T
+
Y (xy)}, T−Z (x, xy) ≥max{T−X (x), T

−
Y (xy)},

I+Z (x, xy) ≤min{I+X(x), I
+
Y (xy)}, I−Z (x, xy) ≥max{I−X(x), I

−
Y (xy)},

F+
Z (x, xy) ≥max{F+

X (x), F
+
Y (xy)}, F−Z (x, xy) ≤min{F−X (x), F

−
Y (xy)},∀x, y ∈ V

∗.

Example 2.2. Let G∗ = (V ∗, E∗, I∗) be an incidence graph, as shown in Fig. 1, where V ∗ = {w, x, y, z},
E∗ = {wx, xy, yz, zw} and I∗ = {(w,wx), (x,wx), (x, xy), (y, xy), (y, yz), (z, yz), (z, zw), (w, zw)}. Let X
be a bipolar neutrosophic set on V ∗ given as

X = {(w, 0.2, 0.4, 0.7,− 0.1,−0.2,− 0.4),(x, 0.3, 0.5, 0.9,−0.1,− 0.6,−0.7),
(y, 0.4, 0.6, 0.9,− 0.1,−0.2,− 0.8),(z, 0.5, 0.6, 0.8,−0.2,− 0.8,−0.6)}.
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Let Y be a bipolar neutrosophic relation on V ∗ given as

Y = {(wx, 0.1, 0.2, 0.8,−0.1,−0.2,−0.9), (xy, 0.2, 0.4, 0.7,−0.2,−0.3,−0.9),
(yz, 0.1, 0.2, 0.8,−0.1,−0.2,−0.9),(zw, 0.2, 0.3, 0.6,−0.1,−0.2,−0.7)}.

Let Z be a bipolar neutrosophic set on V ∗ × E∗ given as

Z = {((w,wx), 0.1, 0.1, 0.8,−0.2,− 0.2,−0.9), ((x, wx), 0.1, 0.2, 0.8,−0.2,− 0.3, −0.9),
((x, xy), 0.2, 0.3, 0.8,−0.2,− 0.4,−0.9), ((y, xy), 0.1, 0.1, 0.8,−0.2,− 0.2, −0.9),
((y, yz), 0.1, 0.2, 0.7,−0.2,− 0.3,−0.9), ((z, yz), 0.1, 0.2, 0.7,−0.2,− 0.3, −0.7),
((z, zw), 0.1, 0.1, 0.8,−0.2,− 0.2,−0.9), ((w,zw), 0.2, 0.3, 0.5,−0.3,− 0.3,−0.8)}.

Then G = (X, Y, Z) is a BNIG as shown in Fig. 2.

b

b

b b

w

x

y

z

Figure 1: G∗ = (V ∗, E∗, I∗)

Definition 2.3. Let G = (X, Y, Z) be a BNIG of G∗. Then support of G = (X, Y, Z) is denoted by
supp(G)=(supp(X),supp(Y ),supp(Z)) such that

supp(X) = {x ∈ X|T+
X (x) > 0, I+X(x) > 0, F+

X (x) > 0,

T−X (x) < 0, I−X(x) < 0, F−X (x) < 0},

supp(Y ) = {xy ∈ Y |T+
Y (xy) > 0, I+Y (xy) > 0, F+

Y (xy) > 0,

T−Y (xy) < 0, I−Y (xy) < 0, F−Y (xy) < 0},

supp(Z) = {(x, xy) ∈ Z|T+
Z (x, xy) > 0, I+Z (x, xy) > 0, F+

Z (x, xy) > 0,

T−Z (x, xy) < 0, I−Z (x, xy) < 0, F−Z (x, xy) < 0}.

Definition 2.4. A sequence
x0, (x0, x0x1), x0x1, (x1, x0x1), x1, ·.., xn−1, (xn−1, xn−1xn), xn−1xn, (xn, xn−1xn), xn
of vertices, edges and pairs in BNIG G is called walk.
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Figure 2: BNIG G = (X, Y, Z)

If x0 = xn, it is a close walk.
If edges are distinct, it is a trail.
If pairs are distinct, it is an incidence trail.
If vertices are distinct, it is a path.
If pairs are distinct, it is an incidence path.

Example 2.5. In a BNIG G = (X, Y, Z) as shown in Fig.2,
w, (w,wx), wx, (x,wx), x, (x, xy), xy, (y, xy), y, (y, yz), yz, (z, yz), z, (z, zw), zw, (w, zw), w, (w,wx), wx,
(x,wx), x ia a walk. It is not a path, trail and an incidence trail.

w, (w,wx), wx, (x,wx), x, (x, xy), xy, (y, xy), y, (y, yz), yz, (z, yz), z

is a path, trail and an incidence trail.

Definition 2.6. The BNIG G = (X, Y, Z) is a cycle if and only if supp(G)=(supp(X),supp(Y ),supp(Z)) is a
cycle.

Example 2.7. In a BNIG G = (X, Y, Z) as shown in Fig.2, consider a walk

w, (w,wx), wx, (x,wx), x, (x, xy), xy, (y, xy), y, (y, yz), yz, (z, yz), z, (z, zw), zw, (w, zw), w.

which is a cycle. So G = (X, Y, Z) is a cycle.

Definition 2.8. The BNIG G = (X, Y, Z) is a bipolar neutrosophic cycle if and only if

supp(G) = (supp(X), supp(Y ), supp(Z))
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is a cycle and there exist at least two xy ∈ supp(Y ) such that

T+
Y (xy) = min{T+

Y (uv) |uv ∈ supp(Y )},
I+Y (xy) = min{I+Y (uv) |uv ∈ supp(Y )},
F+
Y (xy) = max{F+

Y (uv)|uv ∈ supp(Y )},
T−Y (xy) = max{T−Y (uv)|uv ∈ supp(Y )},
I−Y (xy) = max{I−Y (uv) |uv ∈ supp(Y )},
F−Y (xy) = min{F−Y (uv) |uv ∈ supp(Y )}.

Example 2.9. In a BNIG G = (X, Y, Z) as shown in Fig.2,
we have

T+
Y (wx) = 0.1 = min{ T+

Y (wx), T
+
Y (xy), T

+
Y (yz), T

+
Y (zw)},

I+Y (wx) = 0.2 = min{ I+Y (wx), I
+
Y (xy), I+Y (yz), I

+
Y (zw)},

F+
Y (wx) = 0.8 = max{F+

Y (wx), F
+
Y (xy), F

+
Y (yz), F

+
Y (zw)},

T−Y (wx) = −0.1 = max{T−Y (wx), T
−
Y (xy), T

−
Y (yz), T

−
Y (zw)},

I−Y (wx) = −0.2 = max{ I−Y (wx), I
−
Y (xy), I−Y (yz), I

−
Y (zw)},

F−Y (wx) = −0.9 = min{ F−Y (wx), F
−
Y (xy), F

−
Y (yz), F

−
Y (zw)}.

Also

T+
Y (yz) = 0.1 = min{ T+

Y (wx), T
+
Y (xy), T

+
Y (yz), T

+
Y (zw)},

I+Y (yz) = 0.2 = min{ I+Y (wx), I
+
Y (xy), I+Y (yz), I

+
Y (zw)},

F+
Y (yz) = 0.8 = max{F+

Y (wx), F
+
Y (xy), F

+
Y (yz), F

+
Y (zw)},

T−Y (yz) = −0.1 = max{T−Y (wx), T
−
Y (xy), T

−
Y (yz), T

−
Y (zw)},

I−Y (yz) = −0.2 = max{ I−Y (wx), I
−
Y (xy), I−Y (yz), I

−
Y (zw)},

F−Y (yz) = −0.9 = min{ F−Y (wx), F
−
Y (xy), F

−
Y (yz), F

−
Y (zw)}.

So G = (X, Y, Z) is a bipolar neutrosophic cycle.

Definition 2.10. The BNIG G = (X, Y, Z) is a bipolar neutrosophic incidence cycle if and only if it is a
bipolar neutrosophic cycle and there exist at least two (x, xy) ∈ supp(Z) such that

T+
Z (x, xy) = min{T+

Z (u, vw) |(u, vw) ∈ supp(Z)},
I+Z (x, xy) = min{I+Z (u, vw) |(u, vw) ∈ supp(Z)},
F+
Z (x, xy) = max{F+

Z (u, vw)|(u, vw) ∈ supp(Z)},
T−Z (x, xy) = max{T−Z (u, vw)|(u, vw) ∈ supp(Z)},
I−Z (x, xy) = max{I−Z (u, vw) |(u, vw) ∈ supp(Z)},
F−Z (x, xy) = min{F−Z (u, vw) |(u, vw) ∈ supp(Z)}.

Example 2.11. In a BNIG G = (X, Y, Z) as shown in Fig.2,
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we have

T+
Z (w,wx) = 0.1 = min{T+

Z (u, vw) |(u, vw) ∈ supp(Z)},
I+Z (w,wx) = 0.1 = min{I+Z (u, vw) |(u, vw) ∈ supp(Z)},
F+
Z (w,wx) = 0.8 = max{F+

Z (u, vw)|(u, vw) ∈ supp(Z)},
T−Z (w,wx) = −0.2 = max{T−Z (u, vw)|(u, vw) ∈ supp(Z)},
I−Z (w,wx) = −0.2 = max{I−Z (u, vw) |(u, vw) ∈ supp(Z)},
F−Z (w,wx) = −0.9 = min{F−Z (u, vw) |(u, vw) ∈ supp(Z)}.

and

T+
Z (y, xy) = 0.1 = min{T+

Z (u, vw) |(u, vw) ∈ supp(Z)},
I+Z (y, xy) = 0.1 = min{I+Z (u, vw) |(u, vw) ∈ supp(Z)},
F+
Z (y, xy) = 0.8 = max{F+

Z (u, vw)|(u, vw) ∈ supp(Z)},
T−Z (y, xy) = −0.2 = max{T−Z (u, vw)|(u, vw) ∈ supp(Z)},
I−Z (y, xy) = −0.2 = max{I−Z (u, vw) |(u, vw) ∈ supp(Z)},
F−Z (y, xy) = −0.9 = min{F−Z (u, vw) |(u, vw) ∈ supp(Z)}.

So G = (X, Y, Z) is a bipolar neutrosophic incidence cycle.

Definition 2.12. If G = (X, Y, Z) is a BNIG, then H = (X∗, Y ∗, Z∗) is a bipolar neutrosophic incidence
subgraph of G if

X∗ ⊆ X, Y ∗ ⊆ Y, Z∗ ⊆ Z.

H = (X∗, Y ∗, Z∗) is a spanning subgraph if X = X∗.

Definition 2.13. Strength of the strongest path from x to y in BNIG G = (X, Y, Z) is defined as

T+
ρ∞(x, y) =

k∨
i=1

T+
ρi
(x, y), I+ρ∞(x, y) =

k∨
i=1

I+ρi(x, y), F
+
ρ∞(x, y) =

k∧
i=1

F+
ρi
(x, y),

T−ρ∞(x, y) =
k∧
i=1

T−ρi (x, y), I
−
ρ∞(x, y) =

k∧
i=1

I−ρi(x, y), F
−
ρ∞(x, y) =

k∨
i=1

F−ρi (x, y).

where ρ(x, y) is the strength of path from x to y such that

T+
ρ (x, y)= ∧ {T+

Y (xy)|xy ∈ supp(Y )},
I+ρ (x, y) = ∧ {I+Y (xy) |xy ∈ supp(Y )},
F+
ρ (x, y)= ∨ {F+

Y (xy)|xy ∈ supp(Y )},
T−ρ (x, y)= ∨ {T−Y (xy)|xy ∈ supp(Y )},
I−ρ (x, y) = ∨ {I−Y (xy) |xy ∈ supp(Y )},
F−ρ (x, y)= ∧ {F−Y (xy)|xy ∈ supp(Y )}.
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Definition 2.14. Incidence strength of the strongest path from x to wy in BNIG G = (X, Y, Z) is defined as

T+
ψ∞(x,wy) =

k∨
i=1

T+
ψi
(x,wy), T−ψ∞(x,wy) =

k∧
i=1

T−ψi
(x,wy),

I+ψ∞(x,wy) =
k∨
i=1

I+ψi
(x,wy), I−ψ∞(x,wy) =

k∧
i=1

I−ψi
(x,wy),

F+
ψ∞(x,wy) =

k∧
i=1

F+
ψi
(x,wy), F−ψ∞(x,wy) =

k∨
i=1

F−ψi
(x,wy).

where ψ(x,wy) is the incidence strength of path from x to wy such that

T+
ψ (x,wy)= ∧ {T

+
Z (x,wy)|(x,wy) ∈ supp(Z)},

I+ψ (x,wy) = ∧ {I
+
Z (x,wy) |(x,wy) ∈ supp(Z)},

F+
ψ (x,wy)= ∨ {F

+
Z (x,wy)|(x,wy) ∈ supp(Z)},

T−ψ (x,wy)= ∨ {T
−
Z (x,wy)|(x,wy) ∈ supp(Z)},

I−ψ (x,wy) = ∨ {I
−
Z (x,wy) |(x,wy) ∈ supp(Z)},

F−ψ (x,wy)= ∧ {F
−
Z (x,wy)|(x,wy) ∈ supp}(Z).

Example 2.15. In a BNIG G = (X, Y, Z) as shown in Fig.3
the strength of path w, (w,wy), wy, (y, wy), y, (y, yz), yz, (z, yz), z is

b

b b

b

w(0.2, 0.4, 0.6,
−0.1,−0.2,−0.3)

x(0.3, 0.4, 0.5,
−0.1,−0.2,−0.6)

y(0.1, 0.4, 0.9,

−0.2,−0.3,−0.5)

z(0.1, 0.2, 0.3,

−0.6,−0.7,−0.8)

(0
.1
, 0
.2
, 0
.8
,−

0.
3,
−0

.4
,−

0.
7)

(0
.1
, 0
.2
, 0
.8
,

−0
.4
,−

0.
5,
−0

.9
)

(0
.1,

0.1
, 0
.7,

−0
.2
,−

0.
3,
−0

.8
)

(0
.1,

0.2
, 0
.8,

−0
.3,

−0
.4,

−0
.9)

(0
.1,

0.2
, 0
.9,

−0.
3,
−0.

4,
−0.

9)
(0
.1,

0.2
, 0
.7,

−0.
4,
−0.

5,
−0.

9)

(0.1, 0
.3, 0.7

.− 0.1,−0.3,−0.6)
(0.1, 0.2, 0.8,

−0.3,−0.4,−0.7)

(0.1, 0.2, 0.6,
−0.2,−0.4,−0.7)

(0.1, 0.2, 0.5,−
0.2,−

0.3,−
0.7)

(0.1, 0.1, 0.4,

−
0.3,−

0.4,−
0.8)

(0
.1
, 0
.2
, 0
.5
,−

0
.2
,−

0
.3
,−

0
.8
)

(0.1, 0.1, 0.4,−0.7,−0.3,−0.9)

(0.1, 0.2, 0.4,

−
0.2,−

0.3,−
0.8)

Figure 3: BNIG G = (X, Y, Z)

(0.1, 0.1, 0.8,−0.3,−0.4,−0.9),
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the strength of path w, (w,wx), wx, (x,wx), x, (x, xy), xy, (y, xy), y, (y, yz), yz, (z, yz), z is

(0.1, 0.2, 0.8,−0.1,−0.3,−0.9),

the strength of the strongest path from w to z is

(0.1, 0.2, 0.8,−0.3,−0.4,−0.9).

In a BNIG G = (X, Y, Z) as shown in Fig.3
the incidence strength of the path w, (w,wy), wy, (y, wy), y, (y, yz), yz is

(0.1, 0.1, 0.9,−0.2,−0.3,−0.9),

the incidence strength of the path w, (w,wx), wx, (x,wx), x, (x, xy), xy, (y, xy), y, (y, yz), yz is

(0.1, 0.1, 0.8,−0.2,−0.3,−0.9),

the incidence strength of strongest path from w to yz is

(0.1, 0.1, 0.8,−0.2,−0.3,−0.9).

Definition 2.16. BNIG G = (X, Y, Z) is called a tree if and only if supp(G)=(supp(X),supp(Y ),supp(Z)) is a
tree.

Definition 2.17. G = (X, Y, Z) is a bipolar single-valued neutrosophic tree if and only if bipolar neutrosophic
incidence spanning subgraph H = (X, Y ∗, Z∗) of G = (X, Y, Z) is a tree such that

T+
Y (xy) < T+

φ∞(x, y), I
+
Y (xy)< I+φ∞(x, y), F

+
Y (xy) > F+

φ∞(x, y),

T−Y (xy) > T−φ∞(x, y), I
−
Y (xy)> I−φ∞(x, y), F

−
Y (xy) < F−φ∞(x, y), ∀xy ∈ supp(Y )\supp(Y ∗).

where φ∞(x, y) is the strength of strongest path from x to y in H = (X, Y ∗, Z∗).

Definition 2.18. G = (X, Y, Z) is a bipolar neutrosophic incidence tree if and only if bipolar neutrosophic
incidence spanning subgraph H = (X, Y ∗, Z∗) of G = (X, Y, Z) is a tree such that

T+
Z (x, xy) < T+

τ∞(x, xy), I
+
Z (x, xy)< I+τ∞(x, xy), F

+
Z (x, xy) > F+

τ∞(x, xy),

T−Z (x, xy) > T−τ∞(x, xy), I
−
Z (x, xy)> I−τ∞(x, xy), F

−
Z (x, xy) < F−τ∞(x, xy), ∀(x, xy) ∈ supp(Z)\supp(Z∗).

where τ∞(x, xy) is the strength of strongest path from x to xy in H = (X, Y ∗, Z∗).

Example 2.19. G = (X, Y, Z) is a bipolar neutrosophic tree as shown in Fig.4 because a bipolar neutrosophic
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incidence spanning subgraph H = (X, Y ∗, Z∗) of G = (X, Y, Z) as shown in Fig.5 is a tree and

T+
Y (wx) = 0.1 < 0.2 = T+

φ∞(w, x),

I+Y (wx) = 0.1 < 0.2 = I+φ∞(w, x),

F+
Y (wx) = 0.9 > 0.7 = F+

φ∞(w, x),

T−Y (wx) = −0.1 >−0.2 = T−φ∞(w, x),

I−Y (wx) = −0.2 >−0.3 = I−φ∞(w, x),

F−Y (wx) = −0.9 <−0.8 = F−φ∞(w, x).

b

b

b

b

b

b

u(0.2, 0.4, 0.6,
−0.1,−0.2,−0.3)

v(0.3, 0.4, 0.5,

−0.1,−0.2,−0.6)

w(0.6, 0.2, 0.9,

−0.2,−0.2,−0.8)

x(0.4, 0.3, 0.8,

−0.1,−0.4,−0.5)

y(0.1, 0.4, 0.9,

−0.2,−0.3,−0.5)

z(0.2, 0.2, 0.3,

(0
.1
,
0
.2
,
0
.5
,−
0
.2

−
0
.3
,
−
0
.8
)

(0.1, 0.
1, 0.4,−0.7,−0.3,−0.9)

(0.1
, 0.1

, 0.5
,

−0.2
,−0.4

,−0.9
)

(0
.1
, 0
.1
, 0
.4
,

−0
.6
,−

0.
4,
−0

.9
)

(0
.1
,
0
.1
,
0
.6
,

−
0
.3
,−

0
.3
,−

0
.9
) (0.1, 0.1, 0.4,

−
0.3,−

0.4,−
0.8)

(0.1, 0.2, 0.8,−0.3,−0.4,−0.9)
(0.1, 0.2, 0.9,

−0.3,−0.4,−0.9)

(0.1, 0.
2, 0.7,

−0.4,−0.5. − 0.9)

(0
.2
, 0
.2
, 0
.7
,−0

.2
,−

0.
5,
−0

.6
)

(0.1, 0.1, 0.9,−0.1,−0.2,−0.9)

(0
.1
, 0
.1
, 0
.8
,

−0
.2
,−

0.
3,
−0

.9
)

(0
.1
, 0
.1
, 0
.8
,

−0.1
,−0.3

,−0.9
)

(0.2, 0.2, 0.3,−
0.3,−

0.3,−
0.8)

(0
.2
, 0
.2
, 0
.7
,

−0
.1
,−

0.
4,
−0

.9
)

−0.6,−0.7,−0.8) (0.2, 0.2, 0.3,
−0.3,−0.3,−0.8)

(0.2, 0.2, 0.9,

−0.2,−0.2,−0.8)

Figure 4: BNIG G = (X, Y, Z)

Theorem 2.20. Let G = (X, Y, Z) be a cycle. Then G = (X, Y, Z) is a bipolar neutrosophic cycle if and only
if G = (X, Y, Z) is not a bipolar neutrosophic tree.
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b

b

b

b

b

b

u(0.2, 0.4, 0.6,
−0.1,−0.2,−0.3)

v(0.3, 0.4, 0.5,

−0.1,−0.2,−0.6)

w(0.6, 0.2, 0.9,

−0.2,−0.2,−0.8)

x(0.4, 0.3, 0.8,

−0.1,−0.4,−0.5)

y(0.1, 0.4, 0.9,

−0.2,−0.3,−0.5)

z(0.2, 0.2, 0.3,

(0
.1
,
0
.2
,
0
.5
,−
0
.2

−
0
.3
,
−
0
.8
)

(0.1, 0.
1, 0.4,−0.7,−0.3,−0.9)

(0.1
, 0.1

, 0.5
,

−0.2
,−0.4

,−0.9
)

(0
.1
, 0
.1
, 0
.4
,

−0
.6
,−

0.
4,
−0

.9
)

(0
.1
,
0
.1
,
0
.6
,

−
0
.3
,−

0
.3
,−

0
.9
) (0.1, 0.1, 0.4,

−
0.3,−

0.4,−
0.8)

(0.1, 0.2, 0.8,−0.3,−0.4,−0.9)
(0.1, 0.2, 0.9,

−0.3,−0.4,−0.9)

(0.1, 0.
2, 0.7,

−0.4,−0.5. − 0.9)

(0
.2
, 0
.2
, 0
.7
,−0

.2
,−

0.
5,
−0

.6
) (0.2, 0.2, 0.3,−

0.3,−
0.3,−

0.8)

(0
.2
, 0
.2
, 0
.7
,

−0
.1
,−

0.
4,
−0

.9
)

−0.6,−0.7,−0.8) (0.2, 0.2, 0.3,
−0.3,−0.3,−0.8)

(0.2, 0.2, 0.9,

−0.2,−0.2,−0.8)

Figure 5: H = (X, Y ∗, Z∗)

Proof. Let G = (X, Y, Z) be a bipolar neutrosophic cycle. So there exists uv, xy ∈ supp(Y ) such that

T+
Y (uv)=T

+
Y (xy)= ∧ {T

+
Y (yz)|yz ∈ supp(Y )},

I+Y (uv) =I
+
Y (xy) = ∧ {I

+
Y (yz) |yz ∈ supp(Y )},

F+
Y (uv)=F

+
Y (xy)= ∨ {F

+
Y (yz)|yz ∈ supp(Y )},

T−Y (uv)=T
−
Y (xy)= ∨ {T

−
Y (yz)|yz ∈ supp(Y )},

I−Y (uv) =I
−
Y (xy) = ∨ {I

−
Y (yz) |yz ∈ supp(Y )},

F−Y (uv)=F
−
Y (xy)= ∧ {F

−
Y (yz)|yz ∈ supp(Y )}.

IfH = (X, Y ∗, Z∗) is a spanning bipolar neutrosophic incidence tree ofG = (X, Y, Z), then supp(Y )\supp(Y ∗) =
{yz} for some y, z ∈ V because G = (X, Y, Z) is a cycle.
Hence there exists no path between y and z in H = (X, Y ∗, Z∗) such that

T+
Y (yz)<T

+
φ∞(y, z), I

+
Y (yz) <I

+
φ∞(y, z), F

+
Y (yz)>F

+
φ∞(y, z),

T−Y (yz)>T
−
φ∞(y, z), I

−
Y (yz) >I

−
φ∞(y, z), F

−
Y (yz)<F

−
φ∞(y, z).

Thus, G = (X, Y, Z) is not a bipolar neutrosophic tree.
Conversely, let G = (X, Y, Z) be not a bipolar neutrosophic tree. Because G = (X, Y, Z) is a cycle, so for all
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yz ∈ supp(Y ), H = (X, Y ∗, Z∗) is spanning bipolar neutrosophic incidence tree in G = (X, Y, Z) such that

T+
Y (yz)≥T

+
φ∞(y, z), I

+
Y (yz) ≥I

+
φ∞(y, z), F

+
Y (yz)≤F

+
φ∞(y, z),

T−Y (yz)≤T
−
φ∞(y, z), I

−
Y (yz) ≤I

−
φ∞(y, z), F

−
Y (yz)≥F

−
φ∞(y, z).

where

T+
Y ∗(yz) = 0, I+Y ∗(yz)= 0, F+

Y ∗(yz) = 0,

T−Y ∗(yz) = 0, I−Y ∗(yz)= 0, F−Y ∗(yz) = 0.

and

T+
Y ∗(uv)=T

+
Y (uv), I

+
Y ∗(uv) =I

+
Y (uv), F

+
Y ∗(uv)=F

+
Y (uv),

T−Y ∗(uv)=T
−
Y (uv), I

−
Y ∗(uv) =I

−
Y (uv), F

−
Y ∗(uv)=F

−
Y (uv),∀ uv ∈ supp(Y )\{yz}.

Hence, there exists more than one edge such that

T+
Y (yz)= ∧ {T

+
Y (xy)|xy ∈ supp(Y )},

I+Y (yz) = ∧ { I
+
Y (xy)|xy ∈ supp(Y )},

F+
Y (yz)= ∨ {F

+
Y (xy)|xy ∈ supp(Y )},

T−Y (yz)= ∨ {T
−
Y (xy)|xy ∈ supp(Y )},

I−Y (yz) = ∨ { I
−
Y (xy)|xy ∈ supp(Y )},

F−Y (yz)= ∧ {F
−
Y (xy)|xy ∈ supp(Y )}.

Thus, G = (X, Y, Z) is a bipolar neutrosophic cycle.

Theorem 2.21. If G = (X, Y, Z) is a bipolar neutrosophic tree and supp(G) = (supp(X), supp(Y ), supp(Z))
is not a tree, then there exists at least one edge xy ∈ supp(Y ) such that

T+
Y (xy)<T

+
µ∞(x, y), I

+
Y (xy) <I

+
µ∞(x, y), F

+
Y (xy)>F

+
µ∞(x, y),

T−Y (xy)>T
−
µ∞(x, y), I

−
Y (xy) >I

−
µ∞(x, y), F

−
Y (xy)<F

−
µ∞(x, y).

where µ∞(x, y) is the strength of strongest path between u and v in G = (X, Y, Z).

Proof. Let G = (X, Y, Z) be a bipolar neutrosophic tree, then there exists a bipolar neutrosophic spanning
subgraph H = (X, Y ∗, Z∗) that is tree and

T+
Y (xy)<T

+
ρ∞(x, y), I

+
Y (xy) <I

+
ρ∞(x, y), F

+
Y (xy)>F

+
ρ∞(x, y),

T−Y (xy)>T
−
ρ∞(x, y), I

−
Y (xy) >I

−
ρ∞(x, y), F

−
Y (xy)<F

−
ρ∞(x, y), ∀uv ∈ supp(Y )\supp(Y ∗).

Also

T+
ρ∞(x, y) ≤T+

µ∞(x, y), I
+
ρ∞(x, y) ≤I+µ∞(x, y), F+

ρ∞(x, y) ≥F+
µ∞(x, y),

T−ρ∞(x, y) ≥T−µ∞(x, y), I−ρ∞(x, y) ≥I−µ∞(x, y), F−ρ∞(x, y) ≤F−µ∞(x, y).
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Thus,

T+
Y (xy)<T

+
µ∞(x, y), I

+
Y (xy) <I

+
µ∞(x, y), F

+
Y (xy)>F

+
µ∞(x, y),

T−Y (xy)>T
−
µ∞(x, y), I

−
Y (xy) >I

−
µ∞(x, y), F

−
Y (xy)<F

−
µ∞(x, y),∀uv ∈ supp(Y )\supp(Y ∗)

and by hypothesis there exists at least one edge xy ∈ supp(Y ).

Theorem 2.22. Let G = (X, Y, Z) be a cycle. Then G = (X, Y, Z) is a bipolar neutrosophic incidence cycle
if and only if G = (X, Y, Z) is not a bipolar neutrosophic incidence tree.

Proof. Let G = (X, Y, Z) be a bipolar neutrosophic incidence cycle. Then there exist at least two (x,wy) ∈
supp(Z) such that

T+
Z (x, yz) = min{T+

Z (u, vw) |(u, vw) ∈ supp(Z)},
I+Z (x, yz) = min{I+Z (u, vw) |(u, vw) ∈ supp(Z)},
F+
Z (x, yz) = max{F+

Z (u, vw)|(u, vw) ∈ supp(Z)},
T−Z (x, yz) = max{T−Z (u, vw)|(u, vw) ∈ supp(Z)},
I−Z (x, yz) = max{I−Z (u, vw) |(u, vw) ∈ supp(Z)},
F−Z (x, yz) = min{F−Z (u, vw) |(u, vw) ∈ supp(Z)}.

IfH = (X, Y ∗, Z∗) is a spanning bipolar neutrosophic incidence tree ofG = (X, Y, Z), then supp(Z)\supp(Z∗) =
{(x, yz)} for some x ∈ V yz ∈ supp(Y ).
Hence there exists no path between x and yz in H = (X, Y ∗, Z∗) such that

T+
Z (x, yz)<T

+
τ∞(x, yz), I

+
Z (x, yz) <I

+
τ∞(x, yz), F

+
Z (x, yz)>F

+
τ∞(x, yz),

T−Z (x, yz)>T
−
τ∞(x, yz), I

−
Z (x, yz) >I

−
τ∞(x, yz), F

−
Z (x, yz)<F

−
τ∞(x, yz).

Thus, G = (X, Y, Z) is not a bipolar neutrosophic incidence tree.
Conversely, let G = (X, Y, Z) be not a bipolar neutrosophic incidence tree. Then for all (x, yz) ∈ supp(Z),
H = (X, Y ∗, Z∗) is spanning bipolar neutrosophic incidence tree in G = (X, Y, Z) such that

T+
Z (x, yz)≥T

+
τ∞(x, yz), I

+
Z (x, yz) ≥I

+
τ∞(x, yz), F

+
Z (x, yz)≤F

+
τ∞(x, yz),

T−Z (x, yz)≤T
−
τ∞(x, yz), I

−
Z (x, yz) ≤I

−
τ∞(x, yz), F

−
Z (x, yz)≥F

−
τ∞(x, yz).

where

T+
Z∗(x, yz) = 0, I+Z∗(x, yz)= 0, F+

Z∗(x, yz) = 0,

T−Z∗(x, yz) = 0, I−Z∗(x, yz)= 0, F−Z∗(x, yz) = 0.

and

T+
Z∗(u, vw)=T

+
Z (u, vw), I

+
z∗(u, vw) =I

+
Z (u, vw), F

+
Z∗(u, vw)=F

+
Z (u, vw),

T−Z∗(u, vw)=T
−
Z (u, vw), I

−
Z∗(u, vw) =I

−
Z (u, vw), F

−
Z∗(u, vw)=F

−
Z (u, vw), ∀ (u, vw) ∈ supp(Z)\{(x, yz)}.
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Hence, there exists more than one pair such that

T+
Z (u, vw)= ∧ {T

+
Z (x, yz)|(x, yz) ∈ supp(Z)},

I+Z (u, vw) = ∧ { I
+
Z (x, yz)|(x, yz) ∈ supp(Z)},

F+
Z (u, vw)= ∨ {F

+
Z (x, yz)|(x, yz) ∈ supp(Z)},

T−Z (u, vw)= ∨ {T
−
Z (x, yz)|(x, yz) ∈ supp(Z)},

I−Z (u, vw) = ∨ { I
−
Z (x, yz)|(x, yz) ∈ supp(Z)},

F−Z (u, vw)= ∧ {F
−
Z (x, yz)|(x, yz) ∈ supp(Z)}.

Thus, G = (X, Y, Z) is a bipolar neutrosophic incidence cycle.

Definition 2.23. Let G = (X, Y, Z) be a BNIG. An edge xy is called a strong edge if

T+
Y (xy)≥T

+
ε∞(x, y), T

−
Y (xy) ≤T

−
ε∞(x, y),

I+Y (xy) ≥I
+
ε∞(x, y), I−Y (xy) ≤ I

−
ε∞(x, y),

F+
Y (xy)≤F

+
ε∞(x, y), F

−
Y (xy) ≥F

−
ε∞(x, y).

An edge xy is called α-strong if

T+
Y (xy)>T

+
ε∞(x, y), T

−
Y (xy) <T

−
ε∞(x, y),

I+Y (xy) >I
+
ε∞(x, y), I−Y (xy) < I−ε∞(x, y),

F+
Y (xy)<F

+
ε∞(x, y), F

−
Y (xy) >F

−
ε∞(x, y).

An edge xy is called β-strong if

T+
Y (xy)=T

+
ε∞(x, y), T

−
Y (xy) =T

−
ε∞(x, y),

I+Y (xy) =I
+
ε∞(x, y), I−Y (xy) = I−ε∞(x, y),

F+
Y (xy)=F

+
ε∞(x, y), F

−
Y (xy) =F

−
ε∞(x, y).

where ε∞(x, y) is the strength of strongest path between x and y.

Definition 2.24. Let G = (X, Y, Z) be a BNIG. An edge xy is called a δ-edge if

T+
Y (xy)<T

+
ε∞(x, y), T

−
Y (x, y) >T

−
ε∞(x, y),

I+Y (xy) <I
+
ε∞(x, y), I−Y (x, y) > I−ε∞(x, y),

F+
Y (xy)>F

+
ε∞(x, y), F

−
Y (x, y) <F

−
ε∞(x, y).

Definition 2.25. Let G = (X, Y, Z) be a BNIG. A pair (w, xy) is called a strong pair if

T+
Z (w, xy)≥T

+
η∞(w, xy), T

−
Z (w, xy) ≤T

−
η∞(w, xy),

I+Z (w, xy) ≥I
+
η∞(w, xy), I−Z (w, xy) ≤ I

−
η∞(w, xy),

F+
Z (w, xy)≤F

+
η∞(w, xy), F

−
Z (w, xy) ≥F

−
η∞(w, xy).
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A pair (w, xy) is called α-strong if

T+
Z (w, xy)>T

+
η∞(w, xy), T

−
Z (w, xy) <T

−
η∞(w, xy),

I+Z (w, xy) >I
+
η∞(w, xy), I−Z (w, xy) < I−η∞(w, xy),

F+
Z (w, xy)<F

+
η∞(w, xy), F

−
Z (w, xy) >F

−
η∞(w, xy).

A pair (w, xy) is called β-strong if

T+
Z (w, xy)=T

+
η∞(w, xy), T

−
Z (w, xy) =T

−
η∞(w, xy),

I+Z (w, xy) =I
+
η∞(w, xy), I−Z (w, xy) = I−η∞(w, xy),

F+
Z (w, xy)=F

+
η∞(w, xy), F

−
Z (w, xy) =F

−
η∞(w, xy).

where η∞(w, xy) is incidence strength of strongest path between w and xy.

Definition 2.26. Let G = (X, Y, Z) be a BNIG. A pair (w, xy) is called a δ-pair if

T+
Z (w, xy)<T

+
η∞(w, xy), T

−
Z (w, xy) >T

−
η∞(w, xy),

I+Z (w, xy) <I
+
η∞(w, xy), I−Z (w, xy) > I−η∞(w, xy),

F+
Z (w, xy)>F

+
η∞(w, xy), F

−
Z (w, xy) <F

−
η∞(w, xy).

b

b

b
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Figure 6: BNIG G = (X, Y, Z)

Example 2.27. In Fig.6 all edges except xw are strong. Indeed, wz and xz are α−strong edges.
whereas, a pair (z, wz) is an α-strong pair and (w, xw) is a β-strong pair.

Definition 2.28. A path P in G = (X, Y, Z) is called a strong path if all edges and pairs of P are strong.
If strong path is closed, then it is called a strong cycle.

Example 2.29. In Fig.7 a path x, (x, xu), xu, (u, xu), u, (u, uw), uw, (w, uw), w is strong path.
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Figure 7: BNIG G = (X, Y, Z)

Theorem 2.30. Let G = (X, Y, Z) be a BNIG. A pair (w, xy) is strong if

T+
Z (w, xy) = ∨{T

+
Z (u, vw)|(u, vw) ∈ supp(Z)},

I+Z (w, xy) = ∨{I
+
Z (u, vw) |(u, vw) ∈ supp(Z)},

F+
Z (w, xy) = ∧{F

+
Z (u, vw)|(u, vw) ∈ supp(Z)},

T−Z (w, xy) = ∧{T
−
Z (u, vw)|(u, vw) ∈ supp(Z)},

I−Z (w, xy) = ∧{I
−
Z (u, vw) |(u, vw) ∈ supp(Z)},

F−Z (w, xy) = ∨{F
−
Z (u, vw)|(u, vw) ∈ supp(Z)}.

Proof. Let ψ∞(w, xy) be an incidence strength of strongest path between w and xy in G = (X, Y, Z), then

T+
ψ∞(w, xy)≤T

+
Z (w, xy), T

−
ψ∞(w, xy) ≥T

−
Z (w, xy),

I+ψ∞(w, xy)≤I
+
Z (w, xy), I−ψ∞(w, xy) ≥ I

−
Z (w, xy),

F+
ψ∞(w, xy)≥F

+
Z (w, xy), F

−
ψ∞(w, xy) ≤F

−
Z (w, xy).

If (w, xy) is only one pair such that

T+
Z (w, xy) = ∨{T

+
Z (u, vw)|(u, vw) ∈ supp(Z)},

I+Z (w, xy) = ∨{I
+
Z (u, vw) |(u, vw) ∈ supp(Z)},

F+
Z (w, xy) = ∧{F

+
Z (u, vw)|(u, vw) ∈ supp(Z)},

T−Z (w, xy) = ∧{T
−
Z (u, vw)|(u, vw) ∈ supp(Z)},

I−Z (w, xy) = ∧{I
−
Z (u, vw) |(u, vw) ∈ supp(Z)},

F−Z (w, xy) = ∨{F
−
Z (u, vw)|(u, vw) ∈ supp(Z)}.
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then for every path between u and vw, we have

T+
ψ∞(u, vw)<T

+
Z (w, xy), T

−
ψ∞(u, vw) >T

−
Z (w, xy),

I+ψ∞(u, vw)<I
+
Z (w, xy), I−ψ∞(u, vw) > I−Z (w, xy),

F+
ψ∞(u, vw)>F

+
Z (w, xy), F

−
ψ∞(u, vw) <F

−
Z (w, xy).

hence

T+
ψ∞(w, xy)<T

+
Z (w, xy), T

−
ψ∞(w, xy) >T

+
Z (w, xy),

I+ψ∞(w, xy)<I
+
Z (w, xy), I−ψ∞(w, xy) > I+Z (w, xy),

F+
ψ∞(w, xy)>F

+
Z (w, xy), F

−
ψ∞(w, xy) <F

+
Z (w, xy).

Thus, (w, xy) is an α-strong pair. If (w, xy) is not unique, then

T+
Z (w, xy)=T

+
ψ∞(w, xy), T

−
Z (w, xy) =T

−
ψ∞(w, xy),

I+Z (w, xy) =I
+
ψ∞(w, xy), I−Z (w, xy) = I−ψ∞(w, xy),

F+
Z (w, xy)=F

+
ψ∞(w, xy), F

−
Z (w, xy) =F

−
ψ∞(w, xy).

Hence (w, xy) is β-strong pair.

Theorem 2.31. If G = (X, Y, Z) is a bipolar neutrosophic incidence tree and P is a strong path between any
two vertices x and y. Then P have maximum strength between x and y.

Proof. Let P be only one strong path between x and y. Because P is strong, all edges and pairs of P are in
the spanning bipolar neutrosophic incidence tree H of G. We prove that P is a path between x and y having
maximum strength.
Suppose, on contrary that P is not a path having maximum strength from x to y and P ′ is such a path. Then P
and P ′ are not equal, hence P and and reversal of P ′ form a cycle. Since H∗ is tree, so there exist no cycle in
H , . Hence any edge x′y′ of P ′ must not exist in H .
By definition of G, we have

T+
Y (x

′y′) < T+
φ∞(x

′, y′), I+Y (x
′y′)< I+φ∞(x

′, y′), F+
Y (x

′y′) > F+
φ∞(x

′, y′),

T−Y (x
′y′) > T−φ∞(x

′, y′), I−Y (x
′y′)> I−φ∞(x

′, y′), F−Y (x
′y′) < F−φ∞(x

′, y′).

It means there exist a path between x′ and y′ in H and we can replace all edges x′y′ of P ′ which not exist in H
by a path P ∗ from x to y in H . Hence P ∗ is at least as strong as P ′. Hence P ∗ and P cannot be equal. So, P
and reversal of P ∗ form a cycle in H , which is a contradiction to the fact that H∗ is tree.
Hence our assumption P is not a path having maximum strength from x to y is wrong.

3 Application to Illegal Migration
Suppose Mr.Kamran wants to travel from Bangladesh to India illegally. For this he use all borders line be-
tween Bangladesh and India. He have three ways, first one is a direct way, i.e. Bangladesh to India, second
one is Bangladesh to Pakistan and Pakistan to India and the third one is Bangladesh to Bhutan, Bhutan to
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Pakistan, Pakistan to Nepal and Nepal to India. Let V ={Bangladesh(BGD), Bhutan(BTN ), Pakistan(PAK),
Nepal(NPL), India(IND)} be the set of countries and E = {(BGD,BTN), (BTN,PAK), (PAK,NPL),
(NPL, IND), (BGD,PAK), (PAK, IND), (BGD, IND)} a subset of V × V .
Let X be the bipolar neutrosophic set on V , which is given as

X = {(BGD, 0.3, 0.2, 0.6,−0.1,−0.2,−0.5), (BTN, 0.3, 0.6, 0.9,−0.2,−0.4,−0.6),
(PAK, 0.4, 0.5, 0.6,−0.1,−0.3,−0.4), (NPL, 0.9, 0.7, 0.8,−0.4,−0.3,−0.4),
(IND , 0.6, 0.9, 0.1,−0.1,−0.2,−0.3)}.

Let Y be the bipolar neutrosophic relation on V , which is given as

Y = {((BGD,BTN ), 0.1, 0.2, 0.8,−0.2,−0.3,−0.7 ),((BTN,PAK), 0.2, 0.5, 0.9,−0.3,−0.3,−0.7),
((PAK,NPL ), 0.3, 0.4, 0.7,−0.2,−0.4,−0.5 ),((NPL, IND ), 0.5, 0.6, 0.7,−0.2,−0.3,−0.5),
((BGD,PAK), 0.3, 0.1, 0.6,−0.2,−0.2,−0.6 ),((PAK, IND ), 0.4, 0.4, 0.5,−0.1,−0.3,−0.5),
((BGD, IND ), 0.2, 0.1, 0.5,−0.1,−0.3,−0.6)}.

Let Z be the bipolar neutrosophic set on V × E, which is given as

Z = {((BGD, (BGD,BTN)), 0.1, 0.1, 0.7,−0.1,−0.3,−0.8 ),

((BTN, (BGD,BTN)), 0.1, 0.2, 0.8,−0.3,−0.3,−0.8 ),

((BTN, (BTN,PAK)), 0.2, 0.4, 0.8,−0.2,−0.3,−0.8 ),

((PAK, (BTN,PAK)), 0.2, 0.4, 0.8,−0.2,−0.4,−0.7 ),

((PAK, ( PAK,NPL)), 0.3, 0.3, 0.5,−0.1,−0.4,−0.5 ),

((NPL, ( PAK,NPL)), 0.2, 0.3, 0.8,−0.2,−0.3,−0.6 ),

((NPL, ( NPL, IND)), 0.4, 0.5, 0.7,−0.3,−0.3,−0.6 ),

((IND, ( NPL, IND)), 0.4, 0.5, 0.5,−0.1,−0.2,−0.7 ),

((BGD, (BGD,PAK)), 0.1, 0.1, 0.5,−0.2,−0.3,−0.7 ),

((PAK, (BGD,PAK)), 0.1, 0.1, 0.5,−0.2,−0.2,−0.6 ),

((PAK, ( PAK, IND)), 0.3, 0.3, 0.5,−0.1,−0.3,−0.6 ),

((IND, ( PAK, IND)), 0.4, 0.3, 0.4,−0.1,−0.3,−0.6 ),

((BGD, (BGD, IND)), 0.1, 0.1, 0.4,−0.2,−0.2,−0.7 ),

((IND, ( BGD, IND)), 0.1, 0.1, 0.5,−0.1,−0.3,−0.8)}.

Thus, G = (X, Y, Z) is a BNIG as shown in Fig.8.
Let T+

ρ (u, v) represent the degree of protection for an illegal immigrant to use u as origin and come to a
destination v. There are three paths from BGD to IND

P1 : BGD,(BGD, (BGD, IND)),(BGD, IND), (IND, (BGD, IND)),IND.
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Figure 8: BNIG G = (X, Y, Z)

P2 : BGD,(BGD, (BGD,PAK)),(BGD,PAK), (PAK, (BGD,PAK)),PAK,

(PAK, (PAK, IND )),(PAK, IND ), (IND, (PAK, IND )),IND .

P3 : BGD,(BGD, (BGD,BTN)),(BGD,BTN), (BTN, (BGD,BTN)),BTN,

(BTN, (BTN,PAK )),(BTN,PAK ), (PAK, (BTN,PAK)),PAK,

(PAK, (PAK,NPL )),(PAK,NPL ), (NPL, (PAK,NPL )),NPL,

(NPL, (NPL, IND )),(NPL, IND ), (IND, (NPL, IND )),IND .

ρ∞(BGD, IND) is the strength of strongest path between BGD and IND. This is the safest path between
BGD and IND. To calculate the value of ρ∞(BGD, IND), we need the strength of paths P1, P2 and P3,
which is denoted by ρP1(BGD, IND), ρP2(BGD, IND) and ρP3(BGD, IND), respectively.
By calculation, we have

ρP1(BGD, IND) = (0.2, 0.1, 0.5,−0.1,−0.3,−0.6),

ρP2(BGD, IND) = (0.3, 0.1, 0.6,−0.1,−0.2,−0.6),

ρP3(BGD, IND) = (0.1, 0.2, 0.9,−0.2,−0.3,−0.7).

ρ∞(BGD, IND) =(0.3, 0.2, 0.5,−0.2,−0.3,−0.6).
We see that

T+
ρ∞(BGD, IND) = T+

ρP2
(BGD, IND).
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Hence P2 is safest path for an illegal immigrant.
We present proposed method in the following Algorithm 3.1.

3.1 Algorithm
1. Input the vertex set V ∗.

2. Input the edge set E∗ ⊆ V ∗ × V ∗.

3. Input the bipolar neutrosophic set X on V ∗.

4. Input the bipolar neutrosophic relation Y on V ∗.

5. Input the bipolar neutrosophic set Z on V ∗ × E∗.

6. Calculate the strength of path ρ(x, y) from x to y such that

T+
ρ (x, y)= ∧ {T+

Y (xy)|xy ∈ supp(Y )},
I+ρ (x, y) = ∧ {I+Y (xy) |xy ∈ supp(Y )},
F+
ρ (x, y)= ∨ {F+

Y (xy)|xy ∈ supp(Y )},
T−ρ (x, y)= ∨ {T−Y (xy)|xy ∈ supp(Y )},
I−ρ (x, y) = ∨ {I−Y (xy) |xy ∈ supp(Y )},
F−ρ (x, y)= ∧ {F−Y (xy)|xy ∈ supp(Y )}.

7. Calculate the incidence strength ρ∞(x, y) of strongest path from x to y such that

T+
ρ∞(x, y) =

k∨
i=1

T+
ρi
(x, y), I+ρ∞(x, y) =

k∨
i=1

I+ρi(x, y), F
+
ρ∞(x, y) =

k∧
i=1

F+
ρi
(x, y),

T−ρ∞(x, y) =
k∧
i=1

T−ρi (x, y), I
−
ρ∞(x, y) =

k∧
i=1

I−ρi(x, y), F
−
ρ∞(x, y) =

k∨
i=1

F−ρi (x, y).

8. The safest path is S(vk) =
k∨
i=1

T+
ρi
(x, y).

9. If vk has more than one value then any path can be chosen.

4 Conclusion
Graph theory has become a branch of applied mathematics. Graph theory is considered as a mathematical
tool for modeling and analyzing different mathematical structure, but it does not give the relationship between
element and its relation pair. We have introduced BNIG which not only give the limitation of the relation
between elements contained in a set, but also give the influence or impact of an element to its relation pair. We
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have defined the bipolar neutrosophic incidence cycle and tree. An application to illegal migration is presented
using strength of strongest path in BNIG.
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Single Valued Neutrosophic Coloring 
A. Rohini, M. Venkatachalam, Said Broumi, Florentin Smarandache

Abstract: Neutrosophic set was introduced by Smarandache in 1998. Due to some real time 

situation, decision makers deal with uncertainty and inconsistency to identify the best result. 

Neutrosophic concept helps to investigate the vague or indeterminacy values. Graph structures 

used to reduce the complications in solving the system of equations for finding the decision of some 

real-life problems. In this research study, we introduced the single-valued neutrosophic coloring 

concept. We introduce various notions, single valued neutrosophic vertex coloring, single 

valued neutrosophic edge coloring, and single valued neutrosophic total coloring and support 

those definitions with some examples. 

Keywords: single-valued neutrosophic graphs; single-valued neutrosophic vertex coloring; 

single-valued neutrosophic edge coloring; single-valued neutrosophic total coloring. 

1. Introduction

Graph theory plays a vital role in real time problems Graph represents the connection among the

points by lines and is the useful tool to solve the network problems. It is applicable in many fields such 

as computer science, physical science, electrical communication engineering, economics and 

Operation Research etc. In 1852, Francis Guthrie’s four-color conjecture gave the sparkle for the new 

branch, graph coloring in graph theory. Graph coloring is assigning the color to the vertices or edges 

or both vertices and edges of the graph based on some conditions. After three decades got the solution 

to Guthrie’s conjecture. Graph coloring technique used in many areas like telecommunication, 

scheduling, computer networks etc. Sometime in real-life have to deal with imprecise data and 

uncertain relation between points, in that case fuzzy technique where came. In 1965, Fuzzy set theory 

was introduced by Zadeh [39] and further work on fuzzy graph theory developed by A. Rosenfeld 

[33] in 1975. The fuzzy chromatic number was introduced by Munoz et al. [36] in 2004 and extended

by C.Eslahchi and B.N.Onagh [23] in 2006. In 2009, S.Lavanya and R.Sattanathan [30] introduced the 

concept fuzzy total coloring. In 2014, Anjaly Kishore, M.S.Sunitha [7] discussed the strong chromatic 

number of fuzzy graphs in their research paper. 

A. Rohini, M. Venkatachalam, Said Broumi, Florentin Smarandache (2019). Single Valued 
Neutrosophic Coloring. Neutrosophic Sets and Systems 28, 13-22

Florentin Smarandache (author and editor) Collected Papers, XII

425



    Intuitionistic fuzzy sets are dealing membership and non-membership data. Kassimir 

T.Atanassov [13] introduced the concept of intuitionistic fuzzy sets in 1986 and intuitionistic fuzzy

graph in 1999. Ismail and Rifayathali [28] discussed the coloring of intuitionaistic fuzzy graphs using 

(α, β) cuts in 2015, Rifayathali et al. [32] discussed intuitionistic fuzzy coloring and strong 

intuitionistic fuzzy coloring in 2017 and 2018. 

Vague set concept introduced by Gau and Buehrer [26] in 1993 and in 2014, Akram et al. [11] 

discussed vague graphs and further work extended by Borzooei et al. [14, 15], Vertex and Edge 

coloring of Vague graphs were introduced by Arindam Dey et al [12] in 2018. 

In all real-time cases, the membership and non-membership values are not enough to find the 

result. Sometimes the vague or indeterminacy qualities need to be considered for the decision 

making, in that case intuitionistic fuzzy logic insufficient to give the solution. This situation reasoned 

for to move the new concept, F.Smarandache came with a solution”Neutrosophic logic”. 

Neutrosophic logic play a vital role in several of the real valued problems like law, medicine, 

industry, finance, engineering, IT, etc. 

Neutrosophic set was introduced by F.Smarandache [35] in 1998, Neutrosophic set a 

generalisation of the intuitionistic fuzzy set. It consists truth value, indeterminacy value and false 

values.Wang et al. [38] worked on Single valued neutrosophic sets in 2010. Strong Neutrosophic 

graph and its properties were introduced and discussed by Dhavaseelan et al. [25] in 2015 and Single 

valued neutrosophic concept introduced in 2016 by Akram and Shahzadi [8, 9, 10]. Broumi et al. [16, 

17, 18, 19, 20, 21, 22] extended their works in Single valued neutrosophic graphs, Isolated single 

valued graphs, Uniform single valued graphs, Interval valued neutrosophic graphs (IVNG) and 

Bipolar neutrosophic graphs. Dhavaseelan et al. [24] in 2018, discussed Single valued co-neutrosophic 

graphs in their paper. Sinha et al. [34] extended the single valued work for signed digraphs in 2018 

and Vasile [37] proposed five penta-valued refined neutrosophic indexes representation in his work. 

In 2019, jan et al. in their paper [29] have reviewed the following definitions: Interval-Valued Fuzzy 

Graphs (IVFG), Interval-Valued Intuitionistic Fuzzy Graphs (IVIFG), Complement of IVFG, SVNG, 

IVNG and the complement of SVNG and IVNG. They have modified those definitions, supported 

with some examples. Neutrosophic graphs happen to play a vital role in the building of neutrosophic 

models. Also, these graphs can be used in networking, Computer technology, Communication, 

Genetics, Economics, Sociology, Linguistics, etc., when the concept of indeterminacy is present. 

Abdel-Basset et al. used Neutrosophic concept in their papers [1, 2, 3, 4, 5, 6, 31] to find the 

decisions for some real-life operation research and IoT-based enterprises in 2019. The above papers 

given the idea to interlink the graph coloring concept in SVNG when deal with vague or 

indeterminacy qualities.  

In this research paper, we introduced the concept of single valued neutrosophic vertex coloring, 

single valued neutrosophic edge coloring and single valued neutrosophic total coloring of single 

valued neutrosophic graph and also Strong and Complete Single valued neutrosophic graph coloring 

are discussed with examples. 

Definition 1.1. [35] 

Let X be a space of points(objects). A neutrosophic set A in X is characterized by truth-

membership function 𝑡𝐴(𝑥) , an indeterminacy-membership function 𝑖𝐴(𝑥)  and a falsity-

membership function 𝑓𝐴(𝑥). The functions 𝑡𝐴(𝑥), 𝑖𝐴(𝑥), and 𝑓𝐴(𝑥), are real standard or non-standard 
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subsets of ]0−, 1+[. That is, 𝑡𝐴(𝑥): 𝑋 → ]0−, 1+[ , 𝑖𝐴(𝑥): 𝑋 → ]0−, 1+[ and 𝑓𝐴(𝑥): 𝑋 → ]0−, 1+[ and 0− ≤

𝑡𝐴(𝑥) + 𝑖𝐴(𝑥) + 𝑓𝐴(𝑥)  ≤ 3
+.

Definition 1.2. [9] 

    A single-valued neutrosophic graphs (SVNG) G = (X, Y) is a pair where X: N → [0,1] is a single-

valued neutrosophic set on N and Y: N × N → [0,1] is a single-valued neutrosophic relation on N 

such that 

𝑡𝑌(𝑥𝑦) ≤ min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) ≤ min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) ≤ max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all x,y ∈ N. X and Y are called the single-valued neutrosophic vertex set of G and the single-valued 

neutrosophic edge set of G, respectively. A single-valued neutrosophic relation Y is said to be 

symmetric if t𝑌(xy)  = t𝑌(yx),  i𝑌(xy)  =  i𝑌(yx) and f𝑌(xy)  =  f𝑌(yx), for all x,y ∈ N. Single-valued 

neutrosophic be abbreviated here as SVN. 

Definition 1.3. [10] 

The complement of a SVNG G = (X, Y) is a SVNG �̅� = (�̅�, �̅�), where 

1. �̅� = 𝑋

2. 𝑡�̅�(𝑥) = 𝑡𝑋(𝑥), 𝑖�̅�(𝑥) = 𝑖𝑋(𝑥), 𝑓�̅�(𝑥) = 𝑓𝑋(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋

3. 𝑡�̅�(𝑥𝑦) = {
min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}  𝑖𝑓  𝑡𝑌(𝑥𝑦) = 0

min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)} − 𝑡𝑌(𝑥𝑦)  𝑖𝑓  𝑡𝑌(𝑥𝑦) > 0

    𝑖�̅�(𝑥𝑦) = {
min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}  𝑖𝑓  𝑖𝑌(𝑥𝑦) = 0

min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)} − 𝑖𝑌(𝑥𝑦)  𝑖𝑓  𝑖𝑌(𝑥𝑦) > 0

𝑓�̅�(𝑥𝑦) = {
max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}  𝑖𝑓  𝑓𝑌(𝑥𝑦) = 0

max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)} − 𝑓𝑌(𝑥𝑦)  𝑖𝑓  𝑓𝑌(𝑥𝑦) > 0

for all 𝑥, 𝑦 ∈ 𝑋. 

2. Single-Valued Neutrosophic Vertex Coloring (SVNVC)

In this section, we have developed SVNVC and this coloring has verified through some examples of 

SVNG, CSVNG and SSVNG. Also discussed some theorems. 

Definition 2.1. 

   A family Γ = {𝛾1, 𝛾2, … , 𝛾𝑘} of SVN fuzzy set is called a k-SVNVC of a SVNG G = (X, Y) if 

1. ∨ 𝛾𝑖(𝑥) = 𝑋, ∀𝑥 ∈ 𝑋

2. 𝛾𝑖 ∧ 𝛾𝑗 = 0

3. For every incident vertices of edge xy of G, min{𝛾𝑖(𝑚1(𝑥)), 𝛾𝑖(𝑚1(𝑦))} =  0,

min{𝛾𝑖(𝑖1(𝑥)), 𝛾𝑖(𝑖1(𝑦))} = 0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛1(𝑥)), 𝛾𝑖(𝑛1(𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘).

This k-SVNVC of G is denoted by 𝜒𝑣(𝐺), is called the SVN chromatic number of the SVNG G. 

Example 2.2. 
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Consider the SVNG G = (X,E) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and SVN edge set 𝐸 =

{𝑋𝑖𝑋𝑗|𝑖𝑗 = 12,14,15,23,24,25,34,35,45} the membership functions defined as,  

(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{

(0.3,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 1,2

(0.7,0.1,0.2) 𝑓𝑜𝑟 𝑖 = 3

(0.2,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 4

(0.5,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 5

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) =

{

(0.3,0.2,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 12

(0.2,0.1,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 14,24,34,45

(0.3,0.1,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 15,23,25

(0.5,0.1,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 35

Let Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4} be a family of SVN fuzzy sets defined on X as follows: 

𝛾1(𝑥𝑖) = {
(0.3,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 1,3

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾2(𝑥𝑖) = {
(0.7,0.1,0.2) 𝑓𝑜𝑟 𝑖 = 2

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾3(𝑥𝑖) = {
(0.5,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 4

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾4(𝑥𝑖) = {
(0.2,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 5

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4}  fulfilled the conditions of SVNVC of the graph G. Any families 

below four points could not satisfy our definition. Hence the SVN chromatic number 𝜒𝑣(𝐺) of the 

above example is 4. 

Definition 2.3. 

A SVNG G = (X, Y) is called complete single-valued neutrosophic graph (CSVNG) if the following 

conditions are satisfied:  

𝑡𝑌(𝑥𝑦) = min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) = min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) = max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all x,y ∈ X. 

Definition 2.4. 

A SVNG G = (X, Y) is called strong single-valued neutrosophic graph (SSVNG) if the following 

conditions are satisfied:  

𝑡𝑌(𝑥𝑦) = min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) = min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

Florentin Smarandache (author and editor) Collected Papers, XII

428



𝑓𝑌(𝑥𝑦) = max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all (x,y) ∈ Y . 

Example 2.5. 

Consider the SSVNG G = (X,Y) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and SVN edge set 𝑌 =

{𝑥𝑖𝑥𝑗|𝑖𝑗 = 12,15,23,34,45} the membership functions defined as, 

(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{

(0.1,0.2,0.9) 𝑓𝑜𝑟 𝑖 = 1

(0.6,0.7,0.4) 𝑓𝑜𝑟 𝑖 = 2

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖 = 3

(0.7,0.8,0.2) 𝑓𝑜𝑟 𝑖 = 4

(0.5,0.5,0.6) 𝑓𝑜𝑟 𝑖 = 5

 

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) = {

(0.1,0.2,0.9) 𝑓𝑜𝑟 𝑖𝑗 = 12,15

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 23,34

(0.5,0.5,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 45

 

Let Γ = {𝛾1, 𝛾2, 𝛾3} be a family of SVN fuzzy sets defined on X as follows: 

𝛾1(𝑥𝑖) = {

(0.1,0.2,0.9) 𝑓𝑜𝑟 𝑖 = 1

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖 = 3

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾2(𝑥𝑖) = {

(0.6,0.7,0.4) 𝑓𝑜𝑟 𝑖 = 2

(0.7,0.8,0.2) 𝑓𝑜𝑟 𝑖 = 4

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾3(𝑥𝑖) = {
(0.5,0.5,0.6) 𝑓𝑜𝑟 𝑖 = 5

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3}  fulfilled the conditions of Strong SVNVC of the graph G. Any 

families below three points could not satisfy our definition. Hence the SSVN chromatic number 

𝜒𝑣(𝐺) of the above example is 3. 

Example 2.6. 

Consider the CSVNG G = (X,Y) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and SVN edge set 𝑌 =

{𝑥𝑖𝑥𝑗|𝑖𝑗 = 12,13,14,23,24,34} the membership functions defined as,  

(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{

(0.7,0.7,0.1) 𝑓𝑜𝑟 𝑖 = 1

(0.6,0.7,0.3) 𝑓𝑜𝑟 𝑖 = 2

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖 = 3

(0.1,0.1,0.8) 𝑓𝑜𝑟 𝑖 = 4

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) = {

(0.6,0.7,0.3) 𝑓𝑜𝑟 𝑖𝑗 = 12

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 13,23

(0.1,0.1,0.8) 𝑓𝑜𝑟 𝑖𝑗 = 14,24,34

 

Let Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4} be a family of SVN fuzzy sets defined on X as follows: 
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𝛾1(𝑥𝑖) = {
(0.7,0.7,0.1) 𝑓𝑜𝑟 𝑖 = 1

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾2(𝑥𝑖) = {
(0.6,0.7,0.3) 𝑓𝑜𝑟 𝑖 = 2

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾3(𝑥𝑖) = {
(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖 = 3

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾4(𝑥𝑖) = {
(0.1,0.1,0.8) 𝑓𝑜𝑟 𝑖 = 4

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4}  fulfilled the conditions of complete SVNVC of the graph G. Any 

families below four points could not satisfy our definition. Hence the SVN chromatic number 𝜒𝑣(𝐺) 

of the above example is 4. 

Theorem 2.7. 

For any graph CSVNG with n vertices, 𝜒𝑣(𝐺) = 𝑛. 

Proof: 

By the definition of CSVNG, all the vertices are adjacent to each other. Each color class contains 

exactly one vertex with the value (𝑡𝑋(x), 𝑡𝑋(x),𝑡𝑋(x))> 0, thus remaining vertices are with the value 

(𝑡𝑋(x), 𝑡𝑋(x),𝑡𝑋(x)) = 0. Hence 𝜒𝑣(𝐺) = 𝑛. 

Theorem 2.8. 

For any SSVNG G, then 𝜒𝑣̿̿ ̿(𝐺) = 𝜒𝑣(𝐺). 

Proof. It is obvious. 

3. Single-Valued Neutrosophic Edge Coloring (SVNEC)

In this section, we introduced and discussed SVNEC with an example and theorems. 

Definition 3.1. 

A family Γ = {𝛾1, 𝛾2, … , 𝛾𝑘} of SVN fuzzy set is called a k-SVNEC of a SVNG G = (X,Y) if 

1. ∨ 𝛾𝑖(𝑥𝑦) = 𝑌, ∀𝑥𝑦 ∈ 𝑌

2. 𝛾𝑖 ∧ 𝛾𝑗 = 0

3. For every strong edge xy of G, min{𝛾𝑖(𝑚2(𝑥𝑦))} =  0, min{𝛾𝑖(𝑖2(𝑥𝑦))} =

0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛2(𝑥𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘).

This k-SVNEC of G is denoted by𝜒𝑒(𝐺), is called the SVN chromatic number of the SVNG G. 

Example 3.2. 

Consider the SVNG G = (X,Y) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and SVN edge set 𝑌 =

{𝑥𝑖𝑥𝑗|𝑖𝑗 = 12,13,14,23,24,34} the membership functions defined as, 
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(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{

(0.3,0.1,0.6) 𝑓𝑜𝑟 𝑖 = 1

(0.2,0.1,0.4) 𝑓𝑜𝑟 𝑖 = 2

(0.5,0.2,0.4) 𝑓𝑜𝑟 𝑖 = 3

(0.4,0.1,0.4) 𝑓𝑜𝑟 𝑖 = 4

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) = {

(0.2,0.1,0.4) 𝑓𝑜𝑟 𝑖𝑗 = 12,23,24

(0.3,0.1,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 13,14

(0.4,0.1,0.4) 𝑓𝑜𝑟 𝑖𝑗 = 24

 

Let Γ = {𝛾1, 𝛾2, 𝛾3} be a family of SVN fuzzy sets defined on Y as follows: 

𝛾1(𝑥𝑖𝑥𝑗) = {
(0.2,0.1,0.4) 𝑓𝑜𝑟 𝑖 = 12,34

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾2(𝑥𝑖𝑥𝑗) = {
((0.3,0.1,0.6)) 𝑓𝑜𝑟 𝑖 = 14,23

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾3(𝑥𝑖𝑥𝑗) = {
(0.4,0.1,0.4) 𝑓𝑜𝑟 𝑖 = 13,24

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3} fulfills the conditions of SVNEC of SVNG. Any families below three 

members could not satisfy our definition. Hence, the SVN chromatic number 𝜒𝑒(𝐺) of the above 

example is 3. 

4. Single-Valued Neutrosophic Total Coloring (SVNTC)

In this section, we defined SVNTC supported by an example. 

Definition 4.1. 

A family Γ = {𝛾1, 𝛾2, … , 𝛾𝑘} of SVN fuzzy sets on the SVN vertex set X is called a k-SVNTC of 

SVNG G = (X, Y) if 

1. ∨ 𝛾𝑖(𝑥) = 𝑋, ∀𝑥 ∈ 𝑋 and ∨ 𝛾𝑖(𝑥𝑦) = 𝑌, ∀𝑥𝑦 ∈ 𝑌

2. 𝛾𝑖 ∧ 𝛾𝑗 = 0

3. For every incident vertices of edge xy of G, min{𝛾𝑖(𝑚1(𝑥)), 𝛾𝑖(𝑚1(𝑦))} =  0,

min{𝛾𝑖(𝑖1(𝑥)), 𝛾𝑖(𝑖1(𝑦))} = 0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛1(𝑥)), 𝛾𝑖(𝑛1(𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘).   For every strong

edge xy of G, min{𝛾𝑖(𝑚2(𝑥𝑦))} =  0, min{𝛾𝑖(𝑖2(𝑥𝑦))} = 0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛2(𝑥𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘).

This k-SVNTC of G is denoted by𝜒𝑡(𝐺), is called the SVN chromatic number of the SVNG G.  

Example 4.2. 

Consider the SVNG G = (X,Y) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and SVN edge set 𝑌 =

{𝑥𝑖𝑥𝑗|𝑖𝑗 = 12,13,14,15,23,24,25,34,35,45} the membership functions defined as, 

(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{

 

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 1

(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖 = 2

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 3

(0.8,0.6,0.2) 𝑓𝑜𝑟 𝑖 = 4

(0.7,0.5,0.3) 𝑓𝑜𝑟 𝑖 = 5

 

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) =

{

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 12,13,14,15

(0.8,0.6,0.2) 𝑓𝑜𝑟 𝑖𝑗 = 45

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 23,24,25

(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖𝑗 = 34,35

Let Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5} be a family of SVN fuzzy sets defined on Y as follows: 
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𝛾1(𝑥𝑖) = {
(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 1

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾2(𝑥𝑖) = {
(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖 = 2

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾3(𝑥𝑖) = {
(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 3

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾4(𝑥𝑖) = {
(0.8,0.6,0.2) 𝑓𝑜𝑟 𝑖 = 4

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾5(𝑥𝑖) = {
(0.7,0.5,0.3) 𝑓𝑜𝑟 𝑖 = 5

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾1(𝑥𝑖𝑥𝑗) = {

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 12

(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖 = 35

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾2(𝑥𝑖𝑥𝑗) = {

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 13

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 24

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾3(𝑥𝑖𝑥𝑗) = {

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 14

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 25

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾4(𝑥𝑖𝑥𝑗) = {

(0.8,0.6,0.2) 𝑓𝑜𝑟 𝑖 = 45

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 23

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾5(𝑥𝑖𝑥𝑗) = {

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 15

(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖 = 34

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5} fulfills the conditions of SVNTC of SVNG. Any families below 

five members could not satisfy our definition. Hence the SVN chromatic number 𝜒𝑡(𝐺) of the above 

example is 5. 

5. Conclusions

Single Valued Neutrosophic Coloring concept introduced in this paper. Single valued neutrosophic 
vertex coloring, single valued neutrosophic edge coloring and single valued neutrosophic total 
coloring are defined. All thus definitions are developed and supported by some of the examples. In 
future, it will be extended to examine the theory of SVNC with the irregular colorings of graphs.
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Machine learning in Neutrosophic Environment: A 
Survey 

Azeddine Elhassouny, Soufiane Idbrahim, Florentin Smarandache

Abstract: Veracity in big data analytics is recognized as a complex issue in data preparation 

process, involving imperfection, imprecision and inconsistency. Single-valued Neutrosophic 

numbers (SVNs), have prodded a strong capacity to model such complex information. Many 

Data mining and big data techniques have been proposed to deal with these kind of dirty data in 

preprocessing stage. However, only few studies treat the imprecise and inconsistent information 

inherent in the modeling stage. However, this paper summarizes all works done about mapping 

machine learning algorithms from crisp number space to Neutrosophic environment. We discuss 

also contributions and hybridization of machine learning algorithms with Single-valued 

Neutrosophic numbers (SVNs) in modeling imperfect information, and then their impacts on 

resolving reel world prob-lems. In addition, we identify new trends for future research, then we 

introduce, for the first time, a taxonomy of Neutrosophic learning algorithms, clarifying what 

algorithms are already processed or not, which makes it easier for domain researchers. 

Keywords: Neutrosophic; Machine Learning; Single-valued Neutrosophic numbers; Neutrosophic 

simple linear regression; Neutrosophic-k-NN; Neutrosophic-SVM; Neutrosophic C-means; 

Neutrosophic Hierarchical Clustering. 

1. Introduction

Although Machine learning algorithms have caught extensive attention in last decade, seen their 

abilities to solve a wide problems remained obscure for years. Most of these techniques work under 

the some hypotheses that data should be pure, perfect and complete information. As a result, for-

mally if the learning problems are formulated under a set of indeterminate or inconsistent infor-

mation, the machine learning system becomes unable to work and the data must treated in prepara-

tion phase, which is make data science process very long, and impracticable. 

However, real learning problems are often involves imperfect information such as uncertainty, 

inconsistency, inaccuracy and incompleteness. If we can modeling the learning problem as it in real 

form, exploiting the information’s imperfections, we can reduce the data science process which is in 

many times come back from modeling that is the last step to preparation step that is the first step in 

the process of data science. 

Single-valued neutrosophic set (SVNs) aims to provide a framework to model imperfect infor-

mation. In contrast to classical machine learning methods, single-valued neutrosophic learning algo-

rithm manipulate information with imperfections to deal with learning problems modeling complex 

information. To improve the performance of existing learning algorithms and handle the imperfect 

information in real-world, many machine learning techniques has recently been mapped into Neu-

trosophic Sets (NSs) environment. 

Azeddine Elhassouny, Soufiane Idbrahim, Florentin Smarandache (2019). Machine learning 
in Neutrosophic Environment: A Survey. Neutrosophic Sets and Systems 28, 58-68
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Hence, the main notions and concepts of Neutrosophic are defined, also some achievements and 

its extensions on the NSs are undertaken. Thus, to manipulate indeterminacy, uncertainty, or incon-

sistency in information, that often characterizes real situations, Smarandache [1 - 3], introduced Neu-

trosophic set (NS), which consists of three elements, truth-membership, an indeterminacy member-

ship, and a falsity-membership degrees independently.   

Every element of the NS's features has not only a certain degree of truth(𝑇), but also a falsity 

degree (𝐹) and indeterminacy degree(𝐼). This concept is generated from many others such as crisp 

set, intuitionistic fuzzy set, fuzzy set, interval-valued fuzzy set, interval-valued intuitionistic fuzzy 

set, etc.  

Nonetheless, the NS as a philosophical concept is hard to apply in real applications. In order to 

overcome this situation, Smarandache and al. [4] concretize this concept introducing single-valued 

neutrosophic set (SVNS). SVNS can be applied quite well in real scientific and engineering fields to 

handle the uncertainty, imprecise, incomplete, and inconsistent information.  Broumi and 

Smarandache [5, 6] studied basic properties of similarity and distances applied in Neutrosophic en-

vironment using single valued neutrosophic set (SVN).  

Hybridization between Neutrosophic and machine learning algorithms, have also been studied, 

several papers [7- 11] on Neutrosophic Machine Learning (NML) have been published in the last few 

years. 

However, there is no survey papers summarize those new learning techniques and approaches, 

removing the barrier for researchers currently working in the area of Neutrosophic Machine Learn-

ing. This has the twofold advantage of making such techniques more readily reachable by researchers 

and, conversely, avoid wasting time for to have idea which Machine learning approaches to be 

mapped to Neutrosophic. 

The rest of this paper is organized as follows. We discuss the origins of the connection between 

Neutrosophic and machine learning in Section 2. Next, in Section 3, we summarize a wide variety of 

hybrid Neutrosophic Machine Learning techniques. Research trends and outstanding issues are dis-

cussed in Section 4.1. Then, in section 4.2, we introduce, for the first time, a taxonomy of Neutrosophic 

learning algorithms, clarifying what algorithms are already processed or not, which makes it easier 

for domain researchers. 

2. Origins of connection between Neutrosophic and Machine learning

We cannot understand this connection without understanding how the Neutrosophic commu-

nity works. In recent years there has been an augmenting passion from this community of neutro-

sophic in working, in different directions, the use of Neutrosophic to treat imperfections information 

in many methods and domaines. This has led to the development of a new mathematic domaine 

called Neutrosophic, then the connections with many others areas, such as machine learning and 

artificial intelligence. In the early 1999s, the pioneer of the field Florentin Smarandache generalized 

the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS), 

and he underlined the distinctions between NS and IFS by reel examples. With his biggest passion 

and faith, Florentin Smarandache, in a quiet small town in south U.S. called Gallup, start defend his 

theory of Neutrality and why the three elements truth-membership (𝑇), indeterminacy (𝐼), and false-

hood-nonmembership (𝐹) are over 1, reproducing the history of science by story as many concepts 

and theory that considered primitives, and then changed by new ones. 

In addition to several papers of the Neutrosophic science international association (NSIA) mem-

bers, gathered in Encyclopedia Neutrosophic Researchers [12], much advances has been done. Today 

there are several fields of Neutrosophic to tackle a variety of problems, including Neutrosophic Com-

puting and Machine Learning. These efforts are valued by launching a science international journal 

of Neutrosophic Computing and Machine Learning [13], which issued its 7th volume in 2019. In 

which, all published papers have wrote by NSIA’s researchers. 
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The international journal of Neutrosophic Computing and Machine Learning with its all vol-

umes can be seen as broad overview of the field of machine learning in Neutrosophic provided by 

NSIA’s researchers. 

The main contributions of this paper: (1) summarizes research achievements on Neutrosophic 

Computing and Machine Learning from the point of view of non NSIA’s researchers. In a different 

way, try to collect the different articles on Neutrosophic machine learning papers published on sev-

eral journals around the world other than those published in Neutrosophic Computing and Machine 

Learning journal, among it, each volume is can be considered a state of art. In order to present to 

researchers, the global state of art of advances research on Neutrosophic Machine Learning ap-

proaches. (2) Try to taxonomy, cluster and identify differences Neutrosophic Machines learning ap-

proaches. 

3. Literature review

There are several Machine learning in Neutrosophic algorithms and approaches surveyed in this 

article. Then, a natural questions arise: how we can categorize all hybrid methods? 

Our view of the general relationship between the fields of machine learning and Neutrosophic 

is the re-searchers try to map the basic operations from crisp number to Neutrosophic environment, 

however they rewrite machine learning algorithm instead of using simple mathematical formulas, 

and they use Neutrosophic formulas. But the main question should the researchers in this hybrid 

field (Machine learning and Neutrosophic) respond is, does this hybridization make sense to tackle 

the real world issues or just a theoretical formulation? 

Before trying to respond this question, we synthesis all hybrid methods according to commonly 

used categories, summary all surveyed papers in a table 1. There are four categories of machine learn-

ing algorithms, supervised learning with two subcategories classification and prediction, semi-su-

pervised learning, unsupervised learning and reinforcement learning. 

3.1. Neutrosophic supervised learning 

3.1.1. Neutrosophic Classification 

Neutrosophic-k-NN Classifier [14]: K-Nearest Neighbor (K-NN) method isn’t a learning method, 

but based on saving the training examples (all training examples), at prediction time, it find the k 

training examples (𝑥1, 𝑦1),⋯ , (𝑥𝑘 , 𝑦𝑘) that are closest to the test example 𝑥, and then affect to the 

most frequent class among those 𝑦𝑖’s. This initial version of K-NN suffers from slowness because to 

classify  𝑥, one need to loop over all training examples. Actually, some tricks to speed are intro-

duced such as classes represented by medoid (Representative point), or centroid (central value), etc. 

The Neutrosophic K-NN method we present here is the mapping of method based on Centroid, in 

which we consider 𝑐𝑗 the center of cluster or class 𝑗, a constant 𝑚, regularization parameter 𝛿, and 

(𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗), where 𝑇𝑖𝑗  denote truth, 𝐼𝑖𝑗  indeterminacy and 𝑁𝑖𝑗 falsity membership values of point 𝑖 

for class 𝑗. 

𝑇𝑖𝑗 =
(𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (1) 

𝐹𝑖𝑗 =
𝛿
−(

2
𝑚−1)

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (2)
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𝐼𝑖𝑗 =
(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)

−(
2

𝑚−1

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (3) 

At the time of prediction, the membership value of unknown point 𝑥𝑢 to class 𝑗 is defined by as 

follow: 

𝑥𝑢𝑗 =
∑ 𝑑𝑖
𝑘
𝑖=1 (𝑇𝑖𝑗+𝐹𝑖𝑗−𝐼𝑖𝑗)

∑ 𝑑𝑖
𝑘
𝑖=1

, (4) 

With 𝑑𝑖 =
1

(𝑥𝑢−𝑥𝑖)
2

𝑞−1

Then unknown point 𝑥𝑢 get the label of class maximizing 𝑚𝑎𝑥{𝑥𝑢𝑗 ; 𝑗 = 1,2⋯ , 𝐶}.  

The authors didn’t show the usefulness of the proposed method but they proposed an interesting 

idea to apply it on imbalanced data-set problems. 

Neutrosophic SVM (N-SVM) [15] : Let’s assume that (𝑥𝑖, 𝑦𝑖) a set of training data, in which eve 

with 

𝑡𝑖 = 1 −
∥∥(𝑥𝑗−𝐶+)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑃∥
∥(𝑥𝑗−𝐶+)∥∥

, (5) 

ry 𝑥𝑖 belonging to class 𝑦𝑖  with a triple 𝑡𝑖, 𝑓𝑖, and 𝑖𝑖  as its Neutrosophic components. 

𝑖𝑖 = 1 −
∥∥(𝑥𝑗−𝐶𝑎𝑙𝑙)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑃∥
∥(𝑥𝑗−𝐶𝑎𝑙𝑙)∥∥

, (6) 

𝑓𝑖 = 1 −
∥∥(𝑥𝑗−𝐶−)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑃∥
∥(𝑥𝑗−𝐶−)∥∥

, (7) 

Where 𝑃 and 𝑁 represent the positive and negative samples subsets respectively, 𝑦𝑖 = +1 for all 

𝑥𝑖 ∈ 𝑃 and 𝑦𝑖 = −1 for 𝑥𝑖 ∈ 𝑁. 

𝑡𝑖 = 1 −
∥∥(𝑥𝑗−𝐶−)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑁∥
∥(𝑥𝑗−𝐶−)∥∥

, 
(8) 

𝑖𝑖 = 1 −
∥∥(𝑥𝑗−𝐶𝑎𝑙𝑙)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑁∥
∥(𝑥𝑗−𝐶𝑎𝑙𝑙)∥∥

, (9) 

𝑓𝑖 = 1 −
∥∥(𝑥𝑗−𝐶+)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑁∥
∥(𝑥𝑗−𝐶+)∥∥

, (10) 

with 𝐶+ =
1

𝑛+
∑ 𝑥𝑘
𝑛+
𝑘=1 ,  𝐶− =

1

𝑛−
∑ 𝑥𝑘
𝑛−
𝑘=1 , and 𝐶𝑎𝑙𝑙 =

1

2
(𝐶+ + 𝐶−) 

We define 𝑔𝑗 as weighting function: 

𝑔𝑗 = 𝑡𝑖 + 𝑖𝑖 − 𝑓𝑖, (11)
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The optimal hyper-plane problem in the reformulated SVM is the solution to: 

minimize 𝑔𝑗 =
1

2
𝜔 ⋅ 𝜔∑ 𝑔𝑗

𝑘
𝑗=1 𝜁𝑗, (12) 

Subject to 

𝒚𝒋(𝝎𝒋 + 𝒃) > 𝟏 − 𝜻𝒋   𝒊 = 𝟏, 𝟐⋯ , 𝒏 (13) 

N-SVM (Neutrosophic-Support Vector Machine) improves performance over standard SVM

and reduces the effects of outliers in learning samples. 

3.1.2. Neutrosophic Regression 

Neutrosophic simple linear Regression:  Salama and al. [16] studied and introduced Neutrosophic 

simple linear regression model with its possible utility to predict value of a dependent variable 𝑦 

according to predictor variable 𝑥. Below a pseudo code of Neutrosophic Linear Regression algo-

rithm. 

Algorithm 1 Neutrosophic Simple Linear Regression 

Require: Training data (𝑥𝑖, 𝑦𝑗), 𝑖, 𝑗 = 1,2,⋯ ,𝑁

A model define the relationship between input x and y, y = ax + b, where (a and b) represent esti-
mated Neutrosophic (intercept and slope) coefficients, y estimated Neutrosophic output 

Define degree of membership, non-membership, and indeterminacy :  
((𝜇𝐴(𝑥1), 𝜆𝐴(𝑥1), 𝜈𝐴(𝑥1)), (𝜇𝐵(𝑥1), 𝜆𝐵(𝑥1), 𝜈𝐵(𝑥1)), 𝑖, 𝑗 = 1,2⋯ , 𝑁
Define cost function 𝐽(𝑎, 𝑏) = ∑(𝑎𝑥𝑖 + 𝑏 − 𝑦𝑖)

2

Repeat 

Calculate the gradients of J 

Update the weights a 

Repeat until the cost 𝐽(𝑎, 𝑏) stops reducing, or some other predefined termination criteria is 

met 

3.2. Neutrosophic unsupervised learning 

3.2.1. Neutrosophic Clustering 

Neutrosophic C-means: In this method, authors [10] have given a meaning to the three basic Neu-

trosophic components 𝑇𝑖𝑗 as membership values belonging to the determinate clusters 𝐼𝑖 as bound-

ary regions, and 𝑁𝑖  noisy data set.

𝑐𝑖𝑚𝑎𝑥 =
𝑐𝑝𝑖+𝑐𝑞𝑖

2
, (14) 

We define 𝑝𝑖  and 𝑞𝑖 are the cluster numbers with the biggest and second biggest value of T re-

spectively, and 𝑚 is a constant. 

𝑝𝑖 = 𝜆 ⋅ 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1,2⋯,𝐶(𝑇𝑖𝑗), (15)
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𝑞𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗≠𝑝𝑖∩1,2⋯,𝐶(𝑇𝑖𝑗), (16) 

Membership Neutrosophic values are defined by follow formulas: 

𝑇𝑖𝑗 =
𝜛2𝜛3(𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (17) 

𝐹𝑖𝑗 =
𝜛1𝜛3𝛿

−(
2

𝑚−1)

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (18) 

𝐼𝑖𝑗 =
𝜛1𝜛2(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)

−(
2

𝑚−1

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (19) 

with 𝒊 = 𝟏, 𝟐⋯ ,𝑵 

𝑐𝑗 =
∑ (𝑁
𝑖=1 𝜛1𝑇𝑖𝑗)

𝑚𝑥𝑖

∑ (𝑁
𝑖=1 𝜛1𝑇𝑖𝑗)

𝑚 , (20) 

𝐽𝑁𝐶𝑀(𝑇, 𝐹, 𝐼, 𝑐) = ∑
𝑖=1

𝑁

(𝜛1𝑇𝑖𝑗)
𝑚(𝑥𝑖 − 𝑐𝑗)

2 + ∑
𝑖=1

𝑁

(𝜛2𝐹𝑖)
𝑚(𝑥𝑖 − 𝑐𝑖𝑚𝑎𝑥)

2 +

𝛿2 ∑
𝑖=1

𝑁

(𝜛3𝐼𝑖)
𝑚,

(21) 

The separation between classes is performed by iteration optimizing objective function, that is 

based on updating the Neutrosophic membership values (𝑇𝑖𝑗 ,𝐹𝑖, 𝐼𝑖), the centers 𝑐𝑗 , and 𝑐𝑖𝑚𝑎𝑥 accord-

ing to the equations defined above. The loop stop when ∥ 𝑇𝑖𝑗
(𝑘+1)

− 𝑇𝑖𝑗
(𝑘)

∥< 𝜖 with 𝜖 is condition check 

and 𝑘 is step.  

For nonlinear clustering problem an extended Method have been proposed called Kernel NCMA 

in which we use a function kernel 𝐾, 𝐾(𝑥𝑖 , 𝑧𝑗) instead of(𝑥𝑖 − 𝑧𝑗), such as 𝐾(𝑥𝑖 , 𝑐𝑖𝑚𝑎𝑥) in place of 𝑥𝑖 −

𝑐𝑖𝑚𝑎𝑥. The NCMA can be summarized as follow : 

Algorithm 2 KNCM algorithm 

Assign each data into the class with the largest TM 

Choose kernel function and its parameters 

Initialize 𝑇(0) , 𝐹(0), 𝐼(0), 𝐶, 𝑚, 𝛿, 𝜖, 𝜛1, 𝜛2, 𝜛3 parameters

While  ∥ 𝑇𝑖𝑗
(𝑘+1)

− 𝑇𝑖𝑗
(𝑘)

∥< 𝜖 do 

Calculate the centers vectors 𝑐(𝑘) at 𝑘 ste

Compute the 𝑐𝑖𝑚𝑎𝑥  using the clusters centers with the largest and second largest value of

𝑇𝑖𝑗
Update 𝑇𝑖𝑗(𝑘) to 𝑇𝑖𝑗(𝑘 + 1), 𝐹𝑖𝑗(𝑘) to 𝑇𝑖𝑗(𝑘 + 1) , and 𝐼𝑖𝑗(𝑘) to 𝐼𝑖𝑗(𝑘 + 1)

End while 
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NCM and KNCM as mentioned by authors may handle veracity in data such as outliers and 

noise using their new objective function. And then possibility to deal with raw data in modeling 

phase instead while data cleaning phase. 

3.2.2. Neutrosophic Hierarchical Clustering 

Agglomerative Hierarchical Clustering Algorithm [17]: First, every SVNSs 𝐴𝑘 with (𝑘 = 1,⋯ , 𝑛) con-

sidered as single cluster. In a loop, until we get a single cluster of size 𝑛, the SVNSs 𝐴𝑘 the SVNS

are then compared to each other and are merged into a single group based on the closest pair of 

groups (with the smallest distance), based on a weighted distance (Hamming distance or Euclidean 

distance). At each stage, only two clusters can be merged and they cannot be separated once 

merged. The center of each cluster is recalculated using the arithmetic mean of the SVNS offered to 

the cluster. The distance between the centers of each group is considered as the distance between 

two groups. 

Algorithm 3 Agglomerative Hierarchical Clustering algorithm 

Let us consider a collection of 𝑛 SVNSs 𝐴𝑘(𝑘 = 1,⋯ , 𝑛)

Assign each of the n SVNSs 𝐴𝑘(𝑘 = 1,⋯ , 𝑛) to a single cluster

While All 𝐴𝑘 clustered into a single cluster of size 𝑛 do

SVNSs 𝐴𝑘(𝑘 = 1,⋯ , 𝑛) are then compared among themselves and are merged them into a

single 

   Cluster according to the closest (with smaller distance) pair of clusters, based on a weighted 

distance 

   (Hamming distance or Euclidean distance) 

End while 

Table 1. List of major contributions on machine learning algorithms in Neutrosophic environment. 

Authors Title Reference Publisher 

Salama, A. A., Eisa, M., ELhafeez, 
S. A., Lotfy, M. M. (2015)

Review of recommender systems algorithms utilized in 
social networks based e-Learning systems neutro-
sophic system

[18] Neutrosophic Sets and Sys-
tems 8 : 32-40

Ansari, A. Q., Biswas, R., 
Aggarwal, S. (2013) Neutrosophic classifier: An extension of fuzzy classifer [19] Applied Soft Computing,

13(1), 563-573

Zhang, M., Zhang, L., Cheng, H. D. 
(2010)

A neutrosophic approach to image segmentation based 
on watershed method [20] Signal Processing, 90(5),

1510-1517

Zhang, X., Bo, C., Smarandache, 
F., Dai, J. (2018)

New inclusion relation of neutrosophic sets with appli-
cations and related lattice structure [21]

International Journal of Ma-
chine Learning and 
Cybernetics, 9, 1753-1763

Mondal, K. A. L. Y. A. N., Pramanik, 
S. U. R. A. P. A. T. I., Giri, B. C. 
(2016)

Role of neutrosophic logic in data mining. New Trends 
in Neutrosophic Theory and Application [22] Pons Editions, Brussels, 15-

23.

Sengur, A., Guo, Y. (2011) Color texture image segmentation based on neutro-
sophic set and wavelet transformation [23]

Computer Vision and Image 
Understanding,115(8), 1134-
1144 

Akbulut, Y., engr, A., Guo, Y., 
Smarandache, F. (2017)

A novel neutrosophic weighted extreme learning ma-
chine for imbalanced data set [24] Symmetry, 9(8), 142

Kraipeerapun, P., Fung, C. C., 
Wong, K. W. (2007 August)

Ensemble neural networks using interval neutrosophic 
sets and bagging [25]

In Third International Confer-
ence on Natural 
Computation (ICNC 2007) 
(Vol.  1, pp.  386-390). IEEE

Kavitha, B., Karthikeyan, S., 
Maybell, P. S(2012)

An ensemble design of intrusion detection system for 
handling uncertainty using Neutrosophic Logic Classi-
fier [26] Knowledge-Based Systems,

28, 88-96
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Ye, J. (2014). Single-valued neutrosophic minimum spanning tree 
and its clustering method [27] Journal of intelligent Sys-

tems, 23(3), 311-324

Thanh, N. D., Ali, M. (2017, July)
Neutrosophic recommender system for medical diagno-
sis based on algebraic similarity measure and cluster-
ing

[28]

In 2017  IEEE  International  
Conference  on Fuzzy 
Systems (FUZZ-IEEE) (pp. 
1-6). IEEE

Akbulut, Y., engr, A., Guo, Y., 
Polat, K. (2017) KNCM: Kernel neutrosophic c-means clustering [10] Applied Soft Computing, 52,

714-724

Kraipeerapun, P., Fung, C. C., 
Wong, K. W. (2006)
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4. Discussions

4.1. Research trends and open issues 

Hybridization between Neutrosophic and machine learning algorithms, have also been studied. 

In supervision learning, Akbulut and al. [14] introduced intuitive supervised learning method called 

Neutrosophic-k-NN Classifier K-Nearest Neighbor (K-NN). Due to its results as a powerful machine 

learning methods, several tries to map SVM in Neutrosophic, Ju and al. [15] proposed Neutrosophic-

support vector machines (N-SVM). In [32], authors Compared performance of interval neutrosophic 

sets and neural networks with support vector machines for binary classification problems. Ju and al 

[37] reformulated SVM, based on neutrosophic set, to discriminate outer membrane proteins using

reformulated support vector machine based on neutrosophic set. In recent years, Artificial neural

networks (ANN) has recognized huge advances, which explain many attempts of hybridization be-

tween ANN and Neutrosophic, Kraipeerapun and al. [40] demonstrated how to assess uncertainty

using neural networks and interval neutrosophic sets for multi-class classification problems, then its
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application on multi-class classification problems [29], afterward, for more robustness ensemble neu-

ral networks using interval neutrosophic sets and bagging [25]. 

Likewise, in unsupervised learning, Alsmadi and al. [7] introduced a hybrid Fuzzy C-Means 

and Neutrosophic for jaw lesions segmentation. Inspired from fuzzy c-means and the neutrosophic 

set framework, Guo and al. [9] proposed a new clustering algorithm, neutrosophic c-means (NCM), 

for uncertain data cluster-ing. Akbulu and al. [10] developed KNCM: Kernel Neutrosophic c-Means 

Clustering, neutrosophic c-means (NCM), in order to alleviate the limitations of the popular fuzzy c-

means (FCM) clustering algorithm by introducing a new objective function which contains two types 

of rejection. To deal with indeterminacy, Qureshi and al. [11] improved the Method for Image Seg-

mentation Using K-Means Clustering with Neutrosophic Logic. Ye and al. [35] proposed Single-val-

ued neutrosophic clustering algorithms based on similarity measures. Akhtar and al. [8] applied K-

mean algorithm in Neutrosophics environment for Image Segmentation, Gaber and al. [34] to predict 

thermogram breast cancer, and Shan and al. [38] use neutrosophic l-means clustering to breast ultra-

sound images based. 

Conversely, in reinforcement learning, we haven’t find any resources about mixture between 

the both approaches, because this type of algorithms of reinforcement is under development, to be 

subject of hybridization. 

4.2. Taxonomy of Neutrosophic Machine learning 

The trends also involve the question of where machine learning areas to apply Neutrosophic, 

whether to it is more appropriate to employ instead of crisp number the SVN numbers. Hence, we 

have classified different Neutrosophic machine learning algorithms. Below a summarizing of all 

Neutrosophic Learning Methods and algorithms, according to standard taxonomy of machine learn-

ing. 

 Supervised (inductive) learning (training data includes desired outputs)

o Prediction : (Regression) to predict continuous values

▪ Neutrosophic simple linear regression

o Classification (discrete labels) : predict categorical values

▪ Neutrosophic-k-NN [14]

▪ Neutrosophic-Support Vector Machines (N-SVM)[15], [32],[37]

▪ Neutrosophy-Artificial neural networks (N-ANN)[40], [29]

▪ Neutrosophy-Ensemble neural networks, Bagging [25]

 Unsupervised learning (training data does not include desired outputs)

o Clustering

▪ Neutrosophic C-Means (NCM) [7], [9], [11], [35], [8], [38], [34]

▪ Kernel Neutrosophic c-Means(KNCM) [10]

o Neutrosophic Hierarchical Clustering

▪ Neutrosophic Agglomerative Hierarchical Clustering [17]

▪ Neutrosophic Divisive Hierarchical Clustering

o Finding association (in features)

o Dimension reduction

 Neutrosophic semi-supervised learning : Neutrosophic Semi-supervised learning (training data

includes a few desired outputs

 Neutrosophic Reinforcement learning : Learning from sequential data

o Q-Learning

o State-Action-Reward-State-Action (SARSA)

o Deep Q Network (DQN)

o Deep Deterministic Policy Gradient (DDPG)
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5. Conclusions

In this paper, we have explored how Neutrosophic contributes to enhance machine learning 

algorithms generally and how to modeling and exploit information’s imperfection such as uncer-

tainty as a source of information, not a kind of noises. We tried to cover hybrid approaches. However, 

it is still several machine learning algorithms to map to Neutrosophic environment, demonstrate the 

utility of Neutrosophic with machine learning to tackle real world challenges.  
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Neutrosophic Bipolar Vague Set and its Application 

to Neutrosophic Bipolar Vague Graphs 

S. Satham Hussain, R. Jahir Hussain , Young Bae Jun, Florentin Smarandache

Abstract: A bipolar model is a significant model wherein positive data revels the liked object, while 

negative data speaks the disliked object. The principle reason for analysing the vague graphs is to 

demonstrate the stability of few properties in a graph, characterized or to be characterized in using 

vagueness. In this present research article, the new concept of neutrosophic bipolar vague sets are 

initiated. Further, its application to neutrosophic bipolar vague graphs are introduced. Moreover, 

some remarkable properties of strong neutrosophic bipolar vague graphs, complete neutrosophic 

bipolar vague graphs and complement neutrosophic bipolar vague graphs are explored and the 

proposed ideas are outlined with an appropriate example 

Keywords: Neutrosophic bipolar vague set, Neutrosophic bipolar vague graphs, Complete 

neutrosophic bipolar vague graph, Strong neutrosophic bipolar vague graph. 

1. Introduction

Fuzzy set theory richly contains progressive frameworks comprising of data with various degrees of 

accuracy. Vague sets are first investigated by Gau and Buehrer [30] which is an extension of fuzzy 

set theory. Various issues in real-life problems have fluctuations, one has to handle these 

vulnerabilities, vague set is introduced. Vague sets are regarded as a special case of context 

dependent fuzzy sets and it is applicable in real-time systems consisting of information with 

multiple levels of precision. So as to deal with the uncertain and conflicting data, the neutrosophic 

set is presented by the creator Smarandache and studied widely about it [13, 21, 28, 31, 41, 42, 4, 5, 43, 

44, 22, 23, 45]. Neutrosophic sets are the more generalized sets, one can manage with uncertain 

informations in a more successful way with a progressive manner when appeared differently in 

relation to fuzzy sets. It have the greater adaptability, accuracy and similarity to the framework 

when contrasted with past existing fuzzy models. The neutrosophic set has three completely 

independent parts, which are truth-membership degree, indeterminacy-membership degree and 

falsity-membership degree with the sum of these values lies between 𝟎 and 𝟑; therefore, it is 

applied to many different areas, such as algebra [32, 33] and decision-making problems (see [46] and 

references therein). 

Azeddine Elhassouny, Soufiane Idbrahim, Florentin Smarandache (2019). Machine 
learning in Neutrosophic Environment: A Survey. Neutrosophic Sets and Systems 28, 
58-68

Florentin Smarandache (author and editor) Collected Papers, XII

446



Bipolar fuzzy sets are extension of fuzzy sets whose membership degree ranges from [−𝟏, 𝟏]. 

Themembership degree (𝟎, 𝟏] represents that an object satisfies a certain property whereas the 

membership degree [−𝟏, 𝟎) represents that the element satisfies the implicit counter-property. The 

positive information indicates that the consideration to be possible and negative information 

indicates that the consideration is granted to be impossible. Notable that bipolar fuzzy sets and 

vague sets appear to be comparative, but they are completely different sets. Even though both sets 

handle with incomplete data, they will not adapt the indeterminate or inconsistent information 

which appears in many domains like decision support systems. Many researchers pay attention to 

the development of neutrosophic and bipolar neutrosophic graphs [39, 40]. For example, in [17], the 

authors studied neutrosophic soft topological K-algebras. In [48], complex neutrosophic graphs are 

developed. Bipolar single valued neutrosophic graphs are established in [25]. Bipolar neutrosophic 

sets and its application to incidence graphs are discussed in [15]. In [16], bipolar neutrosophic graphs 

are established. 

Recently, a variety of decision making problems are based on two-sided bipolar judgements 

on a positive side and a negative side. Nowadays bipolar fuzzy sets are playing a substantial role in 

chemistry, economics, computer science, engineering, medicine and decision making problems (for 

more details see [27, 28, 31, 34, 38, 46] and references therein). Akram [ 8] introduced bipolar fuzzy 

graphs and discuss its various properties and several new concepts on bipolar neutrosophic graphs 

and bipolar neutrosophic hypergraphs have been studied in [7] and references therein. In [4], he 

established the certain notions including strong neutrosophic soft graphs and complete 

neutrosophic soft graphs. The author Shawkat Alkhazaleh introduces the concept of neutrosophic 

vague set theory [6]. The authors [3]  introduces the concept of neutrosophic vague soft expert set 

which is a combination of neutrosophic vague set and soft expert set to improve the reasonability of 

decision making in reality. It is remarkable that the Definition 2.6 in [37] has a flaw and it not defined 

in a proper manner. We focussed on to redefine that definition in a proper way and explained with 

an example and also we applied to neutrosophic bipolar vague graphs. Motivation of the mentioned 

works as earlier [10], we mainly contribute the definition of neutrosophic bipolar vague set is 

redefined. In addition, it is applied to neutrosophic bipolar vague graphs and strong neutrosophic 

bipolar vague graphs. The developed results will find an application in NBVGs and also in decision 

making. The objectives in this work as follows:   

• Newly defined the neutrosophic bipolar vague set

• Introduce the operations like union and intersection with example in section 2.

• In section 3, neutrosophic bipolar vague graphs are developed with an example.

Further, the concepts of neutrosophic bipolar vague subgraph, adjacency, path, connectedness and 

degree of neutrosophic bipolar vague graph are evolved.  

• Further we presented some remarkable properties of strong neutrosophic bipolar

vague graphs in section 5, followed by a remark by comparing other types of bipolar graphs. The 

obtained results will improve the existing result [37].  

2. Preliminaries

Definition 2.1 [18] A vague set 𝐴 on a non empty set 𝑋 is a pair (𝑇𝐴 , 𝐹𝐴), where 𝑇𝐴: 𝑋 → [0,1] and 𝐹𝐴: 𝑋 →

[0,1]are true membership and false membership functions, respectively, such that  
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0 ≤ 𝑇𝐴(𝑥) + 𝐹𝐴(𝑦) ≤ 1 for any 𝑥 ∈ 𝑋. 

Let 𝑋 and 𝑌 be two non-empty sets. A vague relation 𝑅 of 𝑋 to 𝑌 is a vague set 𝑅 on 𝑋 × 𝑌 that 

is 𝑅 = (𝑇𝑅 , 𝐹𝑅), where 𝑇𝑅: 𝑋 × 𝑌 → [0,1], 𝐹𝑅: 𝑋 × 𝑌 → [0,1] which satisfies the condition:  

0 ≤ 𝑇𝑅(𝑥, 𝑦) + 𝐹𝑅(𝑥, 𝑦) ≤ 1 for any 𝑥 ∈ 𝑋. 

Let 𝐺 = (𝑉, 𝐸) be a graph. A pair 𝐺 = (𝐽, 𝐾) is called a vague graph on 𝐺∗ or a vague graph where 

𝐽 = (𝑇𝐽, 𝐹𝐽) is a vague set on 𝑉 and 𝐾 = (𝑇𝐾 , 𝐹𝐾) is a vague set on 𝐸 ⊆ 𝑉 × 𝑉 such that for each 

𝑥𝑦 ∈ 𝐸, 

𝑇𝐾(𝑥𝑦) ≤ (𝑇𝐽(𝑥) ∧ 𝑇𝐽(𝑦)) and 𝐹𝐾(𝑥𝑦) ≥ (𝑇𝐽(𝑥) ∨ 𝐹𝐽(𝑦)).  

Definition 2.2 [4]  A Neutrosophic set 𝐴 is contained in another neutrosophic set 𝐵, (i.e) 𝐴 ⊆ 𝐵 if ∀𝑥 ∈

𝑋, 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥ 𝐼𝐵(𝑥)and 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥).  

Definition 2.3 [27, 30] Let 𝑋 be a space of points (objects), with a generic elements in 𝑋 denoted by 𝑥. A 

single valued neutrosophic set (SVNS) 𝐴  in 𝑋  is characterized by truth-membership function 𝑇𝐴(𝑥) , 

indeterminacy-membership function 𝐼𝐴(𝑥) and falsity-membership-function 𝐹𝐴(𝑥). 

For each point 𝑥  in 𝑋 , 𝑇𝐴(𝑥), 𝐹𝐴(𝑥), 𝐼𝐴(𝑥) ∈ [0,1], 𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥), 𝐼𝐴(𝑥)〉}  and 0 ≤ 𝑇𝐴(𝑥) +

𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. 

Definition 2.4 [9] A neutrosophic graph is defined as a pair 𝐺∗ = (𝑉, 𝐸) where  

(i) 𝑉 = {𝑣1, 𝑣2, . . , 𝑣𝑛}  such that 𝑇1 = 𝑉 → [0,1] , 𝐼1 = 𝑉 → [0,1]  and 𝐹1 = 𝑉 → [0,1]  denote

the degree of truth-membership function, indeterminacy function and falsity-membership function, 

respectively and  

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 

(ii) 𝐸 ⊆ 𝑉 × 𝑉 where 𝑇2 = 𝐸 → [0,1], 𝐼2 = 𝐸 → [0,1] and 𝐹2 = 𝐸 → [0,1] are such that

𝑇2(𝑢𝑣) ≤ {𝑇1(𝑢) ∧ 𝑇1(𝑣)}, 

𝐼2(𝑢𝑣) ≤ {𝐼1(𝑢) ∧ 𝐼1(𝑣)}, 

𝐹2(𝑢𝑣) ≤ {𝐹1(𝑢) ∨ 𝐹1(𝑣)}, 

and 0 ≤ 𝑇2(𝑢𝑣) + 𝐼2(𝑢𝑣) + 𝐹2(𝑢𝑣) ≤ 3, ∀𝑢𝑣 ∈ 𝐸.  

Definition 2.5 [46] A bipolar neutrosophic set 𝐴 in 𝑋 is defined as an object of the form 

𝐴 = {< 𝑥, 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥), 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥) >: 𝑥 ∈ 𝑋} , where 𝑇𝑃 , 𝐼𝑃 , 𝐹𝑃: 𝑋 → [0,1]  and 

𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁: 𝑋 → [−1,0]  The Positive membership degree 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥)  denotes the truth 

membership, indeterminate membership and false membership of an element 𝑥 ∈ 𝑋 corresponding 

to a bipolar neutrosophic set 𝐴 and the negative membership degree 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥) denotes 

the truth membership, indeterminate membership and false membership of an element 𝑥 ∈ 𝑋 to 

some implicit counter-property corresponding to a bipolar neutrosophic set 𝐴.  

Definition 2.6 [46] Let 𝑋  be a non-empty set. Then we call 𝐴 =

{〈𝑥, 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥), 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥)〉, 𝑥 ∈ 𝑋}a bipolar single valued neutrosophic relation on 

𝑋  such that 𝑇𝐴
𝑃(𝑥, 𝑦) ∈ [0,1], 𝐼𝐴

𝑃(𝑥, 𝑦) ∈ [0,1], 𝐹𝐴
𝑃(𝑥, 𝑦) ∈ [0,1]  and 𝑇𝐴

𝑁(𝑥, 𝑦) ∈ [−1,0], 𝐼𝐴
𝑁(𝑥, 𝑦) ∈

[−1,0], 𝐹𝐴
𝑁(𝑥, 𝑦) ∈ [−1,0].

Definition 2.7 [46] Let 𝐴 = (𝑇𝑃
𝐴, 𝐼𝑃

𝐴, 𝐹𝑃
𝐴, 𝑇𝑁

𝐴, 𝐼𝑁
𝐴, 𝐹𝑁

𝐴)  and 𝐵 = (𝑇𝑃
𝐵, 𝐼𝑃

𝐵 , 𝐹𝑃
𝐵 , 𝑇𝑁

𝐵, 𝐼𝑁
𝐵 , 𝐹𝑁

𝐵)  be bipolar single

valued neutrosophic set on 𝑋. If 𝐵 = (𝑇𝑃
𝐵 , 𝐼𝑃

𝐵, 𝐹𝑃
𝐵 , 𝑇𝑁

𝐵 , 𝐼𝑁
𝐵 , 𝐹𝑁

𝐵) is a bipolar single valued neutrosophic relation

on 𝐴 = (𝑇𝑃
𝐴, 𝐼𝑃

𝐴 , 𝐹𝑃
𝐴, 𝑇𝑁

𝐴, 𝐼𝑁
𝐴, 𝐹𝑁

𝐴) then

𝑇𝐵
𝑃(𝑥𝑦) ≤ (𝑇𝐴

𝑃(𝑥) ∧ 𝑇𝐴
𝑃(𝑦)), 𝑇𝐵

𝑁(𝑥𝑦) ≥ (𝑇𝐴
𝑁(𝑥) ∨ 𝑇𝐴

𝑁(𝑦))
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𝐼𝐵
𝑃(𝑥𝑦) ≥ (𝐼𝐴

𝑃(𝑥) ∨ 𝐼𝐴
𝑃(𝑦)), 𝐼𝐵

𝑁(𝑥𝑦) ≤ (𝐼𝐴
𝑁(𝑥) ∧ 𝐼𝐴

𝑁(𝑦))

𝐹𝐵
𝑃(𝑥𝑦) ≥ (𝐹𝐴

𝑃(𝑥) ∨ 𝐹𝐴
𝑃(𝑦)), 𝐹𝐵

𝑁(𝑥𝑦) ≤ (𝐹𝐴
𝑁(𝑥) ∧ 𝐹𝐴

𝑁(𝑦))

A bipolar single valued neutrosophic relation 𝐵  on 𝑋  is called symmetric if 𝑇𝐵
𝑃(𝑥𝑦) =

𝑇𝐵
𝑃(𝑦𝑥), 𝐼𝐵

𝑃(𝑥𝑦) = 𝐼𝐵
𝑃(𝑦𝑥), 𝐹𝐵

𝑃(𝑥𝑦) = 𝐹𝐵
𝑃(𝑦𝑥)  and 𝑇𝐵

𝑁(𝑥𝑦) = 𝑇𝐵
𝑁(𝑦𝑥), 𝐼𝐵

𝑁(𝑥𝑦) = 𝐼𝐵
𝑁(𝑦𝑥), 𝐹𝐵

𝑁(𝑥𝑦) =

𝐹𝐵
𝑁(𝑦𝑥) for all 𝑥𝑦 ∈ 𝑋.

Definition 2.8 [6] A neutrosophic vague set 𝐴𝑁𝑉 (NVS in short) on the universe of discourse 𝑋 written as  

𝐴𝑁𝑉 = {〈𝑥, �̂�𝐴𝑁𝑉
(𝑥), 𝐼𝐴𝑁𝑉

(𝑥), �̂�𝐴𝑁𝑉
(𝑥)〉, 𝑥 ∈ 𝑋} whose truth-membership, indeterminacy membership 

and falsity-membership function is defined as �̂�𝐴𝑁𝑉
(𝑥) =

[�̂�−(𝑥), �̂�+(𝑥)], [𝐼−(𝑥), 𝐼+(𝑥)], [�̂�−(𝑥), �̂�+(𝑥)],where 𝑇+(𝑥) = 1 − 𝐹−(𝑥), 𝐹+(𝑥) = 1 − 𝑇−(𝑥) , and 0 ≤

𝑇−(𝑥) + 𝐼−(𝑥) + 𝐹−(𝑥) ≤ 2. 

Definition 2.9 [20] The complement of NVS 𝐴𝑁𝑉 is denoted by 𝐴𝑁𝑉
𝑐  and it is defined by

�̂�𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝑇+(𝑥),1 − 𝑇−(𝑥)], 

𝐼𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝐼+(𝑥),1 − 𝐼−(𝑥)], 

�̂�𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝐹+(𝑥),1 − 𝐹−(𝑥)], 

Definition 2.10 [6] Let 𝐴𝑁𝑉  and 𝐵𝑁𝑉  be two NVSs of the universe 𝑈 . If for all 𝑢𝑖 ∈ 𝑈, �̂�𝐴𝑁𝑉
(𝑢𝑖) =

�̂�𝐵𝑁𝑉
(𝑢𝑖), 𝐼𝐴𝑁𝑉

(𝑢𝑖) = 𝐼𝐵𝑁𝑉
(𝑢𝑖), �̂�𝐴𝑁𝑉

(𝑢𝑖) = �̂�𝐵𝑁𝑉
(𝑢𝑖) then the NVS 𝐴𝑁𝑉 are included by 𝐵𝑁𝑉, denoted 

by 𝐴𝑁𝑉 ⊆ 𝐵𝑁𝑉  where 1 ≤ 𝑖 ≤ 𝑛. 

Definition 2.11 [6] The union of two NVSs 𝐴𝑁𝑉 and 𝐵𝑁𝑉  is a NVSs, 𝐶𝑁𝑉, written as 𝐶𝑁𝑉 = 𝐴𝑁𝑉 ∪ 𝐵𝑁𝑉, 

whose truth membership function, indeterminacy-membership function and false-membership function are 

related to those of 𝐴𝑁𝑉 and 𝐵𝑁𝑉 by  

�̂�𝐶𝑁𝑉
(𝑥) = [(�̂�𝐴𝑁𝑉

− (𝑥) ∨ �̂�𝐵𝑁𝑉
− (𝑥)), (�̂�𝐴𝑁𝑉

+ (𝑥) ∨ �̂�𝐵𝑁𝑉
+ (𝑥))]

𝐼𝐶𝑁𝑉
(𝑥) = [(𝐼𝐴𝑁𝑉

− (𝑥) ∧ 𝐼𝐵𝑁𝑉
− (𝑥)), (𝐼𝐴𝑁𝑉

+ (𝑥) ∧ 𝐼𝐵𝑁𝑉
+ (𝑥))]

�̂�𝐶𝑁𝑉
(𝑥) = [(�̂�𝐴𝑁𝑉

− (𝑥) ∧ �̂�𝐵𝑁𝑉
− (𝑥)), (�̂�𝐴𝑁𝑉

+ (𝑥) ∧ �̂�𝐵𝑁𝑉
+ (𝑥))]

Definition 2.12 [6] The intersection of two NVSs 𝐴𝑁𝑉 and 𝐵𝑁𝑉 is a NVSs 𝐶𝑁𝑉, written as 𝐶𝑁𝑉 = 𝐴𝑁𝑉 ∩

𝐵𝑁𝑉, whose truth membership function, indeterminacy-membership function and false-membership function 

are related to those of 𝐴𝑁𝑉 and 𝐵𝑁𝑉 by  

�̂�𝐶𝑁𝑉
(𝑥) = [(�̂�𝐴𝑁𝑉

− (𝑥) ∧ �̂�𝐵𝑁𝑉
− (𝑥)), (�̂�𝐴𝑁𝑉

+ (𝑥) ∧ �̂�𝐵𝑁𝑉
+ (𝑥))]

𝐼𝐶𝑁𝑉
(𝑥) = [(𝐼𝐴𝑁𝑉

− (𝑥) ∨ 𝐼𝐵𝑁𝑉
− (𝑥)), (𝐼𝐴𝑁𝑉

+ (𝑥) ∨ 𝐼𝐵𝑁𝑉
+ (𝑥))]

�̂�𝐶𝑁𝑉
(𝑥) = [(�̂�𝐴𝑁𝑉

− (𝑥) ∨ �̂�𝐵𝑁𝑉
− (𝑥)), (�̂�𝐴𝑁𝑉

+ (𝑥) ∨ �̂�𝐵𝑁𝑉
+ (𝑥))]

Definition 2.13 [39] Let 𝐺∗ = (𝑉, 𝐸) be a graph. A pair 𝐺 = (𝐽, 𝐾) is called a neutrosophic vague graph 

(NVG) on 𝐺∗  or a neutrosophic graph where 𝐽 = (�̂�𝐽, 𝐼𝐽, �̂�𝐽) is a neutrosophic vague set on 𝑉  and 𝐾 =

(�̂�𝐾 , 𝐼𝐾 , �̂�𝐾) is a neutrosophic vague set 𝐸 ⊆ 𝑉 × 𝑉 where

(1)𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} such that 𝑇𝐽
−: 𝑉 → [0,1], 𝐼𝐽

−: 𝑉 → [0,1], 𝐹𝐽
−: 𝑉 → [0,1] which satisfies the

condition 𝐹𝐽
− = [1 − 𝑇𝐽

+]

𝑇𝐽
+: 𝑉 → [0,1], 𝐼𝐽

+: 𝑉 → [0,1], 𝐹𝐽
+: 𝑉 → [0,1] which satisfies the condition 𝐹𝐽

+ = [1 − 𝑇1
−]

 denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element 𝑣𝑖 ∈ 𝑉, and  

0 ≤ 𝑇𝐽
−(𝑣𝑖) + 𝐼𝐽

−(𝑣𝑖) + 𝐹𝐽
−(𝑣𝑖) ≤ 2.

0 ≤ 𝑇𝐽
+(𝑣𝑖) + 𝐼𝐽

+(𝑣𝑖) + 𝐹𝐽
+(𝑣𝑖) ≤ 2.

(2) 𝐸 ⊆ 𝑉 × 𝑉 where
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𝑇𝐾
−: 𝑉 × 𝑉 → [0,1], 𝐼𝐾

−: 𝑉 × 𝑉 → [0,1], 𝐹𝐾
−: 𝑉 × 𝑉 → [0,1]

𝑇𝐾
+: 𝑉 × 𝑉 → [0,1], 𝐼𝐾

+: 𝑉 × 𝑉 → [0,1], 𝐹𝐾
+: 𝑉 × 𝑉 → [0,1]

 denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 respectively and such that  

0 ≤ 𝑇𝐾
−(𝑣𝑖) + 𝐼𝐾

−(𝑣𝑖) + 𝐹𝐾
−(𝑣𝑖) ≤ 2.

0 ≤ 𝑇𝐾
+(𝑣𝑖) + 𝐼𝐾

+(𝑣𝑖) + 𝐹𝐾
+(𝑣𝑖) ≤ 2.

such that 

𝑇𝐾
−(𝑥𝑦) ≤ {𝑇𝐽

−(𝑥) ∧ 𝑇𝐽
−(𝑦)}

𝐼𝐾
−(𝑥𝑦) ≤ {𝐼𝐽

−(𝑥) ∧ 𝐼𝐽
−(𝑦)}

𝐹𝐾
−(𝑥𝑦) ≤ {𝐹𝐽

−(𝑥) ∨ 𝐹𝐽
−(𝑦)},

similarly 

𝑇𝐾
+(𝑥𝑦) ≤ {𝑇𝐽

+(𝑥) ∧ 𝑇𝐽
+(𝑦)}

𝐼𝐾
+(𝑥𝑦) ≤ {𝐼𝐽

+(𝑥) ∧ 𝐼𝐽
+(𝑦)}

𝐹𝐾
+(𝑥𝑦) ≤ {𝐹𝐽

+(𝑥) ∨ 𝐹𝐽
+(𝑦)}.

Example 2.14 Consider a neutrosophic vague graph 𝐺 = (𝐽, 𝐾) such that 𝐽 = {𝑎, 𝑏, 𝑐} and 𝐾 = {𝑎𝑏, 𝑏𝑐, 𝑐𝑎} 

defined by 

�̂� = 𝑇[0.5,0.6], 𝐼[0.4,0.3], 𝐹[0.4,0.5], �̂� = 𝑇[0.4,0.6], 𝐼[0.7,0.3], 𝐹[0.4,0.6], 

�̂� = 𝑇[0.4,0.4], 𝐼[0.5,0.3], 𝐹[0.6,0.6] 

𝑎− = (0.5,0.4,0.4), 𝑏− = (0.4,0.7,0.4), 𝑐− = (0.4,0.5,0.6) 

𝑎+ = (0.6,0.3,0.5), 𝑏+ = (0.6,0.3,0.6), 𝑐+ = (0.4,0.3,0.6) 

𝐹𝑖𝑔𝑢𝑟𝑒 1neutrosophic vague graph 

3. Neutrosophic Bipolar Vague Set

In this section, the definition of NBVS, complement of NBVS, operations like union, 

intersection are elaborated with an example.  

Definition 3.1 In a universe of discourse 𝑋, the neutrosophic bipolar vague set (NBVS), denoted as 𝐴𝑁𝐵𝑉𝑆 

represented as,  

𝐴𝑁𝐵𝑉 = {〈𝑥, �̂�𝐴𝑁𝐵𝑉
𝑃 (𝑥), 𝐼𝐴𝑁𝐵𝑉

𝑃 (𝑥), �̂�𝐴𝑁𝐵𝑉
𝑃 (𝑥), �̂�𝐴𝑁𝐵𝑉

𝑁 (𝑥), 𝐼𝐴𝑁𝐵𝑉
𝑁 (𝑥), �̂�𝐴𝑁𝐵𝑉

𝑁 (𝑥)〉, 𝑥 ∈ 𝑋}
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 whose truth-membership, indeterminacy membership and falssity-membership function is 

expanded as  

�̂�𝐴𝑁𝐵𝑉
𝑃 (𝑥) = [(𝑇−)𝑃(𝑥), (𝑇+)𝑃(𝑥)], 𝐼𝐴𝑁𝐵𝑉

𝑃 (𝑥) = [(𝐼−)𝑃(𝑥), (𝐼+)𝑃(𝑥)], �̂�𝐴𝑁𝐵𝑉
𝑃 (𝑥) = [(𝐹−)𝑃(𝑥), (𝐹+)𝑃(𝑥)], 

where (𝑇+)𝑃(𝑥) = 1 − (𝐹−)𝑃(𝑥), (𝐹+)𝑃(𝑥) = 1 − (𝑇−)𝑃(𝑥), and provided that, 

0 ≤ (𝑇−)𝑃(𝑥) + (𝐼−)𝑃(𝑥) + (𝐹−)𝑃(𝑥) ≤ 2. 

Also 

�̂�𝐴𝑁𝐵𝑉
𝑁 (𝑥) = [(𝑇−)𝑁(𝑥), (𝑇+)𝑁(𝑥)], 𝐼𝐴𝑁𝐵𝑉

𝑁 (𝑥) = [(𝐼−)𝑁(𝑥), (𝐼+)𝑁(𝑥)], �̂�𝐴𝑁𝐵𝑉
𝑁 (𝑥) = [(𝐹−)𝑁(𝑥), (𝐹+)𝑁(𝑥)], 

where (𝑇+)𝑁(𝑥) = −1 − (𝐹−)𝑁(𝑥), (𝐹+)𝑁(𝑥) = −1 − (𝑇−)𝑁(𝑥), 

and provided that, 

0 ≥ (𝑇−)𝑁(𝑥) + (𝐼−)𝑁(𝑥) + (𝐹−)𝑁(𝑥) ≥ −2. 

Example 3.2 Let 𝑈 = {𝑥1, 𝑥2, 𝑥3} be a set of universe we define the NBV set 𝐴𝑁𝐵𝑉 as follows 

𝐴𝑁𝐵𝑉 = {
𝑥1

[0.3,0.6]𝑃, [0.5,0.5]𝑃 , [0.4,0.7]𝑃 , [−0.3, −0.5]𝑁 , [−0.4, −0.4]𝑁 , [−0.5, −0.7]𝑁
, 

𝑥2

[0.4,0.6]𝑃 , [0.4,0.6]𝑃 , [0.4,0.6]𝑃, [−0.4, −0.4]𝑁 , [−0.5, −0.5]𝑁 , [−0.6, −0.6]𝑁
, 

𝑥3

[0.3,0.7]𝑃, [0.6,0.4]𝑃 , [0.3,0.7]𝑃 , [−0.4, −0.6]𝑁 , [−0.5, −0.6]𝑁 , [−0.4, −0.6]𝑁
} 

Definition 3.3 IN NBVS, the complement of 𝐴𝑁𝐵𝑉
𝑐  be expanded as, 

(�̂�𝐴𝑁𝐵𝑉
𝑐 (𝑥))𝑃 = {(1 − 𝑇+(𝑥))𝑃 , (1 − 𝑇−(𝑥))𝑃}, (�̂�𝐴𝑁𝐵𝑉

𝑐 (𝑥))𝑁 = {(−1 − 𝑇+(𝑥))𝑁 , (−1 − 𝑇−(𝑥))𝑁} 

(𝐼𝐴𝑁𝐵𝑉
𝑐 (𝑥))𝑃 = {(1 − 𝐼+(𝑥))𝑃 , (1 − 𝐼−(𝑥))𝑃}, (𝐼𝐴𝑁𝐵𝑉

𝑐 (𝑥))𝑁 = {(−1 − 𝐼+(𝑥))𝑁 , (−1 − 𝐼−(𝑥))𝑁} 

(�̂�𝐴𝑁𝐵𝑉
𝑐 (𝑥))𝑃 = {(1 − 𝐹+(𝑥))𝑃 , (1 − 𝐹−(𝑥))𝑃}, (�̂�𝐴𝑁𝐵𝑉

𝑐 (𝑥))𝑁 = {(−1 − 𝐹+(𝑥))𝑁, (−1 − 𝐹−(𝑥))𝑁} 

Example 3.4 Considering above example we have 

𝐴𝑁𝐵𝑉 = {
𝑥1

[0.7,0.4]𝑃, [0.5,0.5]𝑃 , [0.6,0.3]𝑃 , [−0.7, −0.5]𝑁 , [−0.6, −0.6]𝑁 , [−0.5, −0.3]𝑁
, 

𝑥2

[0.6,0.4]𝑃 , [0.6,0.4]𝑃 , [0.6,0.4]𝑃, [−0.6, −0.6]𝑁 , [−0.5, −0.5]𝑁 , [−0.4, −0.4]𝑁
, 

𝑥3

[0.7,0.3]𝑃, [0.4,0.6]𝑃 , [0.7,0.3]𝑃 , [−0.6, −0.4]𝑁 , [−0.5, −0.4]𝑁 , [−0.6, −0.4]𝑁
} 

Definition 3.5 Two NBVSs 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  of the universe 𝑈 are said to be equal, if for all 𝑢𝑖 ∈ 𝑈, 

(�̂�𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) = (�̂�𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖), (𝐼𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) = (𝐼𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖), (�̂�𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) = (�̂�𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖)

and 

(�̂�𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) = (�̂�𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖), (𝐼𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) = (𝐼𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖), (�̂�𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) = (�̂�𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖).

Definition 3.6 In the Universe 𝑈, two NBVSs, 𝐴𝑁𝐵𝑉, 𝐵𝑁𝐵𝑉  be given as, 

(�̂�𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) ≤ (�̂�𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖), (𝐼𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) ≥ (𝐼𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖), (�̂�𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) ≥ (�̂�𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖)

and 

(�̂�𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) ≥ (�̂�𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖), (𝐼𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) ≤ (𝐼𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖), (�̂�𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) ≤ (�̂�𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖)

then the NBVS (𝐴𝑁𝐵𝑉)𝑃 are included by (𝐵𝑁𝐵𝑉)𝑃, denoted by (𝐴𝑁𝐵𝑉)𝑃 ⊆ (𝐵𝑁𝐵𝑉)𝑃 where 1 ≤ 𝑖 ≤ 𝑛

and (𝐴𝑁𝐵𝑉)𝑁 are included by (𝐵𝑁𝐵𝑉)𝑁, denoted by (𝐴𝑁𝐵𝑉)𝑁 ⊆ (𝐵𝑁𝐵𝑉)𝑁 where 1 ≤ 𝑖 ≤ 𝑛.
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Definition 3.7 The union of two NVSs 𝐴𝑁𝐵𝑉  and 𝐵𝑁𝐵𝑉  is a NBVSs, 𝐶𝑁𝐵𝑉 , written as 𝐶𝑁𝐵𝑉 = 𝐴𝑁𝐵𝑉 ∪

𝐵𝑁𝐵𝑉 , whose truth membership function, indeterminacy-membership function and false-membership function 

are related to those of 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  by  

(�̂�𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝑇𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∨ (𝑇𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝑇𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∨ (𝑇𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))] 

(𝐼𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝐼𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∧ (𝐼𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝐼𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∧ (𝐼𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))] 

(�̂�𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝐹𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∧ (𝐹𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝐹𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∧ (𝐹𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))], and 

(�̂�𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝑇𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∧ (𝑇𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝑇𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∧ (𝑇𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

(𝐼𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝐼𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∨ (𝐼𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝐼𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∨ (𝐼𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

(�̂�𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝐹𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∨ (𝐹𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝐹𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∨ (𝐹𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

Definition 3.8 The intersection of two NVSs 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  is a NBVSs 𝐶𝑁𝐵𝑉, written as 𝐶𝑁𝐵𝑉 = 𝐴𝑁𝐵𝑉 ∩

𝐵𝑁𝐵𝑉 , whose truth membership function, indeterminacy-membership function and false-membership function 

are related to those of 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  by  

(�̂�𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝑇𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∧ (𝑇𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝑇𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∧ (𝑇𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))] 

(𝐼𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝐼𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∨ (𝐼𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝐼𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∨ (𝐼𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))] 

(�̂�𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝐹𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∨ (𝐹𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝐹𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∨ (𝐹𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))], and 

(�̂�𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝑇𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∨ (𝑇𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝑇𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∨ (𝑇𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

(𝐼𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝐼𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∧ (𝐼𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝐼𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∧ (𝐼𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

(�̂�𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝐹𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∧ (𝐹𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝐹𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∧ (𝐹𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

Definition 3.9 Let 𝑈 be a set of universe and let 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  be NBVSs, then the union 𝐴𝑁𝐵𝑉 ∩ 𝐵𝑁𝐵𝑉 is 

defined as follows:  

𝐴𝑁𝐵𝑉 = {
𝑥1

[0.3,0.6]𝑃, [0.6,0.6]𝑃 , [0.4,0.7]𝑃 , [−0.4, −0.7]𝑁 , [−0.6, −0.6]𝑁 , [−0.3, −0.6]𝑁
, 

𝑥2

[0.4,0.6]𝑃 , [0.6,0.4]𝑃 , [0.4,0.6]𝑃, [−0.5, −0.5]𝑁 , [−0.7, −0.3]𝑁 , [−0.5, −0.5]𝑁
, 

𝑥3

[0.7,0.8]𝑃, [0.6,0.6]𝑃 , [0.2,0.3]𝑃 , [−0.5, −0.4]𝑁 , [−0.5, −0.5]𝑁 , [−0.6, −0.5]𝑁
} 

𝐵𝑁𝐵𝑉 = {
𝑥1

[0.2,0.8]𝑃, [0.5,0.4]𝑃 , [0.2,0.8]𝑃 , [−0.5, −0.7]𝑁 , [−0.7, −0.7]𝑁 , [−0.3, −0.5]𝑁
, 

𝑥2

[0.3,0.8]𝑃 , [0.6,0.5]𝑃 , [0.2,0.7]𝑃, [−0.5, −0.6]𝑁 , [−0.4, −0.3]𝑁 , [−0.4, −0.5]𝑁
, 

𝑥3

[0.2,0.5]𝑃, [0.5,0.2]𝑃 , [0.5,0.8]𝑃 , [−0.5, −0.5]𝑁 , [−0.4, −0.3]𝑁 , [−0.5, −0.5]𝑁
} 

𝐴𝑁𝐵𝑉 ∩ 𝐵𝑁𝐵𝑉 = 𝐻𝑁𝐵𝑉  

= {
𝑥1

[0.2,0.6]𝑃 , [0.6,0.6]𝑃, [0.4,0.8]𝑃, [−0.4, −0.7]𝑁 , [−0.7, −0.7]𝑁 , [−0.3, −0.6]𝑁
, 

𝑥2

[0.3,0.6]𝑃 , [0.6,0.5]𝑃 , [0.4,0.7]𝑃, [−0.5, −0.5]𝑁 , [−0.7, −0.3]𝑁 , [−0.5, −0.5]𝑁
, 
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𝑥3

[0.2,0.5]𝑃, [0.6,0.6]𝑃 , [0.5,0.8]𝑃 , [−0.5, −0.4]𝑁 , [−0.5, −0.5]𝑁 , [−0.6, −0.5]𝑁
} 

4 Neutrosophic Bipolar Vague graphs 

 In this section, neutrosophic bipolar vague graphs are defined. The concepts of 

neutrosophic bipolar vague subgraph, adjacency, path, connectedness and degree of neutrosophic 

bipolar vague graph are discussed. 

Definition 4.1 In a crisp graph 𝐺∗ = (𝑉, 𝐸). A pair 𝐺 = (𝐽, 𝐾) is called a neutrosophic bipolar vague graph 

(NBVG) on 𝐺∗ or a neutrosophic bipolar vague graph where 𝐽 is a neutrosophic bipolar vague set and 𝐾 is a 

neutrosophic bipolar vague relation in 𝐺∗ such that 𝐽𝑃 = ((�̂�𝐽)𝑃, (𝐼𝐽)𝑃 , (�̂�𝐽)𝑃), 𝐽𝑁 = ((�̂�𝐽)𝑁 , (𝐼𝐽)𝑁 , (�̂�𝐽)𝑁) is a

neutrosophic bipolar vague set on 𝑉  and 𝐾𝑃 = ((�̂�𝐾)𝑃, (𝐼𝐾)𝑃 , (�̂�𝐾)𝑃), 𝐾𝑁 = ((�̂�𝐾)𝑁 , (𝐼𝐾)𝑁 , (�̂�𝐾
𝑁))  is a

neutrosophic Bipolar vague set 𝐸 ⊆ 𝑉 × 𝑉 where 

(1) 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} such that

(𝑇𝐽
−)𝑃: 𝑉 → [0,1], (𝐼𝐽

−)𝑃: 𝑉 → [0,1], (𝐹𝐽
−)𝑃: 𝑉 → [0,1]

which satisfies the condition (𝐹𝐽
−)𝑃 = [1 − (𝑇𝐽

+)𝑃]

(𝑇𝐽
+)𝑃: 𝑉 → [0,1], (𝐼𝐽

+)𝑃: 𝑉 → [0,1], (𝐹𝐽
+)𝑃: 𝑉 → [0,1]

which satisfies the condition (𝐹𝐽
+)𝑃 = [1 − (𝑇𝐽

−)𝑃], and

(𝑇𝐽
−)𝑁: 𝑉 → [−1,0], (𝐼𝐽

−)𝑁: 𝑉 → [−1,0], (𝐹𝐽
−)𝑁: 𝑉 → [−1,0]

which satisfies the condition (𝐹𝐽
−)𝑁 = [−1 − (𝑇𝐽

+)𝑁]

(𝑇𝐽
+)𝑁: 𝑉 → [−1,0], (𝐼𝐽

+)𝑁: 𝑉 → [−1,0], (𝐹𝐽
+)𝑁: 𝑉 → [−1,0]  which satisfies the condition

(𝐹𝐽
+)𝑁 = [−1 − (𝑇𝐽

−)𝑁]  denotes the degree of truth membership function, indeterminacy

membership and falsity membership of the element 𝑣𝑖 ∈ 𝑉, and  

0 ≤ (𝑇𝐽
−)𝑃(𝑣𝑖) + (𝐼𝐽

−)𝑃(𝑣𝑖) + (𝐹𝐽
−)𝑃(𝑣𝑖) ≤ 2

0 ≤ (𝑇𝐽
+)𝑃(𝑣𝑖) + (𝐼𝐽

+)𝑃(𝑣𝑖) + (𝐹𝐽
+)𝑃(𝑣𝑖) ≤ 2

0 ≥ (𝑇𝐽
−)𝑁(𝑣𝑖) + (𝐼𝐽

−)𝑁(𝑣𝑖) + (𝐹𝐽
−)𝑁(𝑣𝑖) ≥ −2

0 ≤ (𝑇𝐽
+)𝑁(𝑣𝑖) + (𝐼𝐽

+)𝑁(𝑣𝑖) + (𝐹𝐽
+)𝑁(𝑣𝑖) ≥ −2.

(2) 𝐸 ⊆ 𝑉 × 𝑉 where

(𝑇𝐾
−)𝑃: 𝑉 × 𝑉 → [0,1], (𝐼𝐾

−)𝑃: 𝑉 × 𝑉 → [0,1], (𝐹𝐾
−)𝑃: 𝑉 × 𝑉 → [0,1]

(𝑇𝐾
+)𝑃: 𝑉 × 𝑉 → [0,1], (𝐼𝐾

+)𝑃: 𝑉 × 𝑉 → [0,1], (𝐹𝐾
+)𝑃: 𝑉 × 𝑉 → [0,1]and

(𝑇𝐾
−)𝑁: 𝑉 × 𝑉 → [−1,0], (𝐼𝐾

−)𝑁: 𝑉 × 𝑉 → [−1,0], (𝐹𝐾
−)𝑁: 𝑉 × 𝑉 → [−1,0]

(𝑇𝐾
+)𝑁: 𝑉 × 𝑉 → [−1,0], (𝐼𝐾

+)𝑁: 𝑉 × 𝑉 → [−1,0], (𝐹𝐾
+)𝑁: 𝑉 × 𝑉 → [−1,0]

denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 respectively and such that  

0 ≤ (𝑇𝐾
−)𝑃(𝑣𝑖 , 𝑣𝑗) + (𝐼𝐾

−)𝑃(𝑣𝑖 , 𝑣𝑗) + (𝐹𝐾
−)𝑃(𝑣𝑖 , 𝑣𝑗) ≤ 2

0 ≤ (𝑇𝐾
+)𝑃(𝑣𝑖 , 𝑣𝑗) + (𝐼𝐾

+)𝑃(𝑣𝑖 , 𝑣𝑗) + (𝐹𝐾
+)𝑃(𝑣𝑖 , 𝑣𝑗) ≤ 2

0 ≥ (𝑇𝐾
−)𝑁(𝑣𝑖 , 𝑣𝑗) + (𝐼𝐾

−)𝑁(𝑣𝑖 , 𝑣𝑗) + (𝐹𝐾
−)𝑁(𝑣𝑖 , 𝑣𝑗) ≥ −2

0 ≥ (𝑇𝐾
+)𝑁(𝑣𝑖 , 𝑣𝑗) + (𝐼𝐾

+)𝑁(𝑣𝑖 , 𝑣𝑗) + (𝐹𝐾
+)𝑁(𝑣𝑖 , 𝑣𝑗) ≥ −2,

 such that 

(𝑇𝐾
−)𝑃(𝑥𝑦) ≤ {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)}

(𝐼𝐾
−)𝑃(𝑥𝑦) ≤ {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)}
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(𝐹𝐾
−)𝑃(𝑥𝑦) ≤ {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)}

(𝑇𝐾
+)𝑃(𝑥𝑦) ≤ {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)}

(𝐼𝐾
+)𝑃(𝑥𝑦) ≤ {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)}

(𝐹𝐾
+)𝑃(𝑥𝑦) ≤ {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)},

 and 

(𝑇𝐾
−)𝑁(𝑥𝑦) ≥ {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)}

(𝐼𝐾
−)𝑁(𝑥𝑦) ≥ {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)}

(𝐹𝐾
−)𝑁(𝑥𝑦) ≥ {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)},

(𝑇𝐾
+)𝑁(𝑥𝑦) ≥ {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)}

(𝐼𝐾
+)𝑁(𝑥𝑦) ≥ {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)}

(𝐹𝐾
+)𝑁(𝑥𝑦) ≥ {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}.

Example 4.2 Consider a neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾)  such that 𝐽 = {𝑎, 𝑏, 𝑐}  and 𝐾 =

{𝑎𝑏, 𝑏𝑐, 𝑐𝑎} defined by  

(�̂�)𝑃 = 𝑇[0.5,0.6], 𝐼[0.4,0.3], 𝐹[0.4,0.5], 

(�̂�)𝑃 = 𝑇[0.4,0.6], 𝐼[0.7,0.3], 𝐹[0.4,0.6], 

(�̂�)𝑃 = 𝑇[0.4,0.4], 𝐼[0.5,0.3], 𝐹[0.6,0.6] 

(𝑎−)𝑃 = (0.5,0.4,0.4), (𝑏−)𝑃 = (0.4,0.7,0.4), (𝑐−)𝑃 = (0.4,0.5,0.6) 

(𝑎+)𝑃 = (0.6,0.3,0.5), (𝑏+)𝑃 = (0.6,0.3,0.6), (𝑐+)𝑃 = (0.4,0.3,0.6) 

(�̂�)𝑁 = 𝑇[−0.6, −0.5], 𝐼[−0.3, −0.4], 𝐹[−0.5, −0.4], 

(�̂�)𝑁 = 𝑇[−0.6, −0.4], 𝐼[−0.7, −0.3], 𝐹[−0.6, −0.4], 

(�̂�)𝑁 = 𝑇[−0.4, −0.4], 𝐼[−0.3, −0.5], 𝐹[−0.6, −0.6] 

(𝑎−)𝑁 = (−0.6, −0.3, −0.5), (𝑏−)𝑁 = (−0.6, −0.7, −0.6), (𝑐−)𝑁 = (−0.4, −0.3, −0.6) 

(𝑎+)𝑁 = (−0.5, −0.4, −0.4), (𝑏+)𝑃 = (−0.4, −0.3, −0.4), (𝑐+)𝑃 = (−0.4, −0.5, −0.6) 
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𝐹𝑖𝑔𝑢𝑟𝑒 2 NEUTROSOPHIC BIPOLAR VAGUE GRAPH  

Definition 4.3 A neutrosophic bipolar vague graph 𝐻 = (𝐽′(𝑥), 𝐾′(𝑥)) is said to be a neutrosophic bipolar 

vague subgraph of the NVG 𝐺 = (𝐽, 𝐾) if 𝐽′(𝑥) ⊆ 𝐽(𝑥) and 𝐾′(𝑥𝑦) ⊆ 𝐾′(𝑥𝑦), in other words, if  

(�̂�𝐽
′)𝑃(𝑥) ≤ (�̂�𝐽)𝑃(𝑥)

(𝐼𝐽
′)𝑃(𝑥) ≤ (𝐼𝐽)𝑃(𝑥)

(�̂�𝐽
′)𝑃(𝑥) ≤ (�̂�𝐽)𝑃(𝑥) ∀𝑥 ∈ 𝑉

(�̂�𝐾
′ )𝑃(𝑥𝑦) ≤ (�̂�𝐾)𝑃(𝑥𝑦)

(𝐼𝐾
′ )𝑃(𝑥𝑦) ≤ (𝐼𝐾)𝑃(𝑥𝑦)

(�̂�𝐾
′ )𝑃(𝑥𝑦) ≤ (�̂�𝐾)𝑃(𝑥𝑦), ∀𝑥𝑦 ∈ 𝐸.

Also, 

(�̂�𝐽
′)𝑁(𝑥) ≥ (�̂�𝐽)𝑁(𝑥)

(𝐼𝐽
′)𝑁(𝑥) ≥ (𝐼𝐽)𝑁(𝑥)

(�̂�𝐽
′)𝑁(𝑥) ≥ (�̂�𝐽)𝑁(𝑥), ∀𝑥 ∈ 𝑉

and 

(�̂�𝐾
′ )𝑁(𝑥𝑦) ≥ (�̂�𝐾)𝑁(𝑥𝑦)

(𝐼𝐾
′ )𝑁(𝑥𝑦) ≥ (𝐼𝐾)𝑁(𝑥𝑦)

(�̂�𝐾
′ )𝑁(𝑥𝑦) ≥ (�̂�𝐾)𝑁(𝑥𝑦), ∀𝑥𝑦 ∈ 𝐸.

Definition 4.4 The two vertices are said to be adjacent in a neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) if 

(𝑇𝐾
−)𝑃(𝑥𝑦) = {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)}

(𝐼𝐾
−)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)}

(𝐹𝐾
−)𝑃(𝑥𝑦) = {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)},

(𝑇𝐾
+)𝑃(𝑥𝑦) = {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)}

(𝐼𝐾
+)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)}

(𝐹𝐾
+)𝑃(𝑥𝑦) = {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)},

(𝑇𝐾
−)𝑁(𝑥𝑦) = {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)}

(𝐼𝐾
−)𝑁(𝑥𝑦) = {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)}

(𝐹𝐾
−)𝑁(𝑥𝑦) = {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)},

(𝑇𝐾
+)𝑁(𝑥𝑦) = {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)}

(𝐼𝐾
+)𝑁(𝑥𝑦) = {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)}

(𝐹𝐾
+)𝑁(𝑥𝑦) = {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)},

 Here, 𝑥 is the neighbour of 𝑦 and vice versa, also (𝑥𝑦) is incident at 𝑥 and 𝑦.  

Definition 4.5 In a neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾), a path 𝜌 is meant to be a sequence of 

different points 𝑥0, 𝑥1, . . . , 𝑥𝑛 such an extent that  

(𝑇𝐾
−)𝑃(𝑥𝑖−1, 𝑥1) > 0, (𝐼𝐾

−)𝑃(𝑥𝑖−1, 𝑥1) > 0, (𝐹𝐾
−)𝑃(𝑥𝑖−1, 𝑥1) > 0,

(𝑇𝐾
+)𝑃(𝑥𝑖−1, 𝑥1) > 0, (𝐼𝐾

+)𝑃(𝑥𝑖−1, 𝑥1) > 0, (𝐹𝐾
+)𝑃(𝑥𝑖−1, 𝑥1) > 0,

and 

(𝑇𝐾
−)𝑁(𝑥𝑖−1, 𝑥1) < 0, (𝐼𝐾

−)𝑁(𝑥𝑖−1, 𝑥1) < 0, (𝐹𝐾
−)𝑁(𝑥𝑖−1, 𝑥1) < 0,

(𝑇𝐾
+)𝑁(𝑥𝑖−1, 𝑥1) < 0, (𝐼𝐾

+)𝑁(𝑥𝑖−1, 𝑥1) < 0, (𝐹𝐾
+)𝑁(𝑥𝑖−1, 𝑥1) < 0,

for every 𝑖  lies between 0 and 1. 𝑛 ≤ 1 is known as the path length.. A single vertex 𝑥𝑖  can 

represent as a path.  
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Definition 4.6 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾), if every pair of vertices has at least one 

neutrosophic bipolar vague path between them is known as connected, otherwise it is disconnected.  

Definition 4.7 A vertex 𝑥𝑖 ∈ 𝑉 of neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) is said to be isolatedvertex if 

there is no effective edge incident at 𝑥𝑖.  

Definition 4.8 A vertex in a neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) having exactly one neighbours is 

called a pendent vertex. Otherwise, it is called non-pendent vertex. An edge in a neutrosophic bipolar vague 

graph incident with a pendent vertex is called a pendent edge other words it is called non-pendent edge. A 

vertex in a neutrosophic bipolar vague graph adjacent to the pendent vertex is called an support of the pendent 

edge.  

Definition 4.9 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) that has neither self loops nor parallel edge is 

called simple neutrosophic bipolar vague graph.  

Definition 4.10 Let 𝐺 = (𝐽, 𝐾) be a neutrosophic bipolar vague graph. Then the degree of a vertex 𝑥 ∈ 𝐺 is a 

sum of degree truth membership, sum of indeterminacy membership and sum of falsity membership of all those 

edges which are incident on vertex 𝑥 denoted by  

(𝑑(𝑥))𝑃 = ([(𝑑𝑇𝐽
− )𝑃(𝑥), (𝑑𝑇𝐽

+ )𝑃(𝑥)], [(𝑑𝐼𝐽
− )𝑃(𝑥), (𝑑𝐼𝐽

+ )𝑃(𝑥)], [(𝑑𝐹𝐽
− )𝑃(𝑥), (𝑑𝐹𝐽

+ )𝑃(𝑥)])

(𝑑(𝑥))𝑁 = ([(𝑑𝑇𝐽
− )𝑁(𝑥), (𝑑𝑇𝐽

+ )𝑁(𝑥)], [(𝑑𝐼𝐽
− )𝑁(𝑥), (𝑑𝐼𝐽

+ )𝑁(𝑥)], [(𝑑𝐹𝐽
− )𝑁(𝑥), (𝑑𝐹𝐽

+ )𝑁(𝑥)])

where (𝑑𝑇𝐽
− )𝑃(𝑥) = ∑𝑥≠𝑦 (𝑇𝐾

−)𝑃(𝑥𝑦) , (𝑑𝑇𝐽
+ )𝑃(𝑥) = ∑𝑥≠𝑦 (𝑇𝐾

+)𝑃(𝑥𝑦)  denotes the positive degree of

truth membership vertex, (𝑑𝐼𝐽
− )𝑃(𝑥) = ∑𝑥≠𝑦 (𝐼𝐾

−)𝑃(𝑥𝑦) , (𝑑𝐼𝐽
+ )𝑃(𝑥) = ∑𝑥≠𝑦 (𝐼𝐾

+)𝑃(𝑥𝑦)  denotes the

positive degree of indeterminacy membership vertex, (𝑑𝐹𝐽
− )𝑃(𝑥) = ∑𝑥≠𝑦 (𝐹𝐾

−)𝑃(𝑥𝑦) , (𝑑𝐹𝐽
+ )𝑃(𝑥) =

∑𝑥≠𝑦 (𝐹𝐾
+)𝑃(𝑥𝑦) denotes the positive degree of falsity membership vertex for all 𝑥, 𝑦 ∈ 𝐽.

Similarly, (𝑑𝑇𝐽
− )𝑁(𝑥) = ∑𝑥≠𝑦 (𝑇𝐾

−)𝑁(𝑥𝑦) ,(𝑑𝑇𝐽
+ )𝑁(𝑥) = ∑𝑥≠𝑦 (𝑇𝐾

+)𝑁(𝑥𝑦)  denotes the negative

degree of truth membership vertex, (𝑑𝐼𝐽
− )𝑁(𝑥) = ∑𝑥≠𝑦 (𝐼𝐾

−)𝑁(𝑥𝑦) , (𝑑𝐼𝐽
+ )𝑁(𝑥) = ∑𝑥≠𝑦 (𝐼𝐾

+)𝑁(𝑥𝑦)

denotes the negative degree of indeterminacy membership vertex, (𝑑𝐹𝐽
− )𝑁(𝑥) =

∑𝑥≠𝑦 (𝐹𝐾
−)𝑁(𝑥𝑦),(𝑑𝐹𝐽

+ )𝑁(𝑥) = ∑𝑥≠𝑦 (𝐹𝐾
+)𝑁(𝑥𝑦) denotes the negative degree of falsity membership

vertex for all 𝑥, 𝑦 ∈ 𝐽. 

Definition 4.11 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) is called constant if degree of each vertex is 

𝐴 = (𝐴1, 𝐴2, 𝐴3) that is 𝑑(𝑥) = (𝐴1, 𝐴2, 𝐴3) for all 𝑥 ∈ 𝑉. 

5  Strong Neutrosophic Bipolar Vague Graphs 

 In this section, we presented some remarkable properties of strong neutrosophic bipolar 

vague graphs and a remark is provided by comparing other types of bipolar graphs. Finally 

conclusion is given.  

Definition 5.1 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) of 𝐺∗ = (𝑉, 𝐸) is called strong neutrosophic 

bipolar vague graph if  

(𝑇𝐾
−)𝑃(𝑥𝑦) = {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)}

(𝐼𝐾
−)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)}

(𝐹𝐾
−)𝑃(𝑥𝑦) = {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)},

(𝑇𝐾
+)𝑃(𝑥𝑦) = {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)}

(𝐼𝐾
+)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)}

(𝐹𝐾
+)𝑃(𝑥𝑦) = {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)},
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(𝑇𝐾
−)𝑁(𝑥𝑦) = {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)}

(𝐼𝐾
−)𝑁(𝑥𝑦) = {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)}

(𝐹𝐾
−)𝑁(𝑥𝑦) = {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)},

(𝑇𝐾
+)𝑁(𝑥𝑦) = {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)}

(𝐼𝐾
+)𝑁(𝑥𝑦) = {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)}

(𝐹𝐾
+)𝑁(𝑥𝑦) = {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}, ∀((𝑥𝑦) ∈ 𝐾)

Definition 5.2 The complement of neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) on 𝐺∗ is a neutrosophic 

bipolar vague graph 𝐺𝑐 where   

• (𝐽𝑐)𝑃(𝑥) = (𝐽)𝑃(𝑥)

• (𝑇𝐽
−𝑐

)𝑃(𝑥) = (𝑇𝐽
−)𝑃(𝑥), (𝐼𝐽

−𝑐
)𝑃(𝑥) = (𝐼𝐽

−)𝑃(𝑥), (𝐹𝐽
−𝑐

)𝑃(𝑥) = (𝐹𝐽
−)𝑃(𝑥) for all 𝑥 ∈ 𝑉.

• (𝑇𝐽
+𝑐

)𝑃(𝑥) = (𝑇𝐽
+)𝑃(𝑥), (𝐼𝐽

+𝑐
)𝑃(𝑥) = (𝐼𝐽

+)𝑃(𝑥), (𝐹𝐽
+𝑐

)𝑃(𝑥) = (𝐹𝐽
+)𝑃(𝑥) for all 𝑥 ∈ 𝑉.

• (𝑇𝐾
−𝑐

)𝑃(𝑥𝑦) = {(𝑇𝐽
−)𝑃(𝑥) ∧ (𝑇𝐽

−)𝑃(𝑦)} − (𝑇𝐾
−)𝑃(𝑥𝑦) , (𝐼𝐾

−𝑐
)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)} −

(𝐼𝐾
−)𝑃(𝑥𝑦)

(𝐹𝐾
−𝑐

)𝑃(𝑥𝑦) = {(𝐹𝐽
−)𝑃(𝑥) ∨ (𝐹𝐽

−)𝑃(𝑦)} − (𝐹𝐾
−)𝑃(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸

• (𝑇𝐾
+𝑐

)𝑃(𝑥𝑦) = {(𝑇𝐽
+)𝑃(𝑥) ∧ (𝑇𝐽

+)𝑃(𝑦)} − (𝑇𝐾
+)𝑃(𝑥𝑦)  , (𝐼𝐾

+𝑐
)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)} −

(𝐼𝐾
+)𝑃(𝑥𝑦)

(𝐹𝐾
+𝑐

)𝑃(𝑥𝑦) = {(𝐹𝐽
+)𝑃(𝑥) ∨ (𝐹𝐽

+)𝑃(𝑦)} − (𝐹𝐾
+)𝑃(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸

• (𝐽𝑐)𝑁(𝑥) = (𝐽)𝑁(𝑥)

• (𝑇𝐽
−𝑐

)𝑁(𝑥) = (𝑇𝐽
−)𝑁(𝑥), (𝐼𝐽

−𝑐
)𝑁(𝑥) = (𝐼𝐽

−)𝑁(𝑥), (𝐹𝐽
−𝑐

)𝑁(𝑥) = (𝐹𝐽
−)𝑁(𝑥) for all 𝑥 ∈ 𝑉.

• (𝑇𝐽
+𝑐

)𝑁(𝑥) = (𝑇𝐽
+)𝑁(𝑥), (𝐼𝐽

+𝑐
)𝑁(𝑥) = (𝐼𝐽

+)𝑁(𝑥), (𝐹𝐽
+𝑐

)𝑁(𝑥) = (𝐹𝐽
+)𝑁(𝑥) for all 𝑥 ∈ 𝑉.

• (𝑇𝐾
−𝑐

)𝑁(𝑥𝑦) = {(𝑇𝐽
−)𝑁(𝑥) ∨ (𝑇𝐽

−)𝑁(𝑦)} − (𝑇𝐾
−)𝑁(𝑥𝑦)

(𝐼𝐾
−𝑐

)𝑁(𝑥𝑦) = {(𝐼𝐽
−)𝑁(𝑥) ∨ (𝐼𝐽

−)𝑁(𝑦)} − (𝐼𝐾
−)𝑁(𝑥𝑦)

(𝐹𝐾
−𝑐

)𝑁(𝑥𝑦) = {(𝐹𝐽
−)𝑁(𝑥) ∧ (𝐹𝐽

−)𝑁(𝑦)} − (𝐹𝐾
−)𝑁(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸

• (𝑇𝐾
+𝑐

)𝑁(𝑥𝑦) = {(𝑇𝐽
+)𝑁(𝑥) ∨ (𝑇𝐽

+)𝑁(𝑦)} − (𝑇𝐾
+)𝑁(𝑥𝑦)

(𝐼𝐾
+𝑐

)𝑁(𝑥𝑦) = {(𝐼𝐽
+)𝑁(𝑥) ∨ (𝐼𝐽

+)𝑁(𝑦)} − (𝐼𝐾
+)𝑁(𝑥𝑦)

(𝐹𝐾
+𝑐

)𝑁(𝑥𝑦) = {(𝐹𝐽
+)𝑁(𝑥) ∧ (𝐹𝐽

+)𝑁(𝑦)} − (𝐹𝐾
+)𝑁(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸

Remark 5.3 If 𝐺 = (𝐽, 𝐾) is a neutrosophic bipolar vague graph on 𝐺∗ then from above definition, it follows 

that 𝐺𝑐𝑐
 is given by the neutrosophic bipolar vague graph 𝐺𝑐𝑐

= (𝐽𝑐𝑐
, 𝐾𝑐𝑐

) on 𝐺∗ where

• ((𝐽𝑐)𝑐)𝑃(𝑥) = (𝐽(𝑥))𝑃

• ((𝑇𝐽
−𝑐

)𝑐)𝑃(𝑥) = (𝑇𝐽
−)𝑃(𝑥), ((𝐼𝐽

−𝑐
)𝑐)𝑃(𝑥) = (𝐼𝐽

−)𝑃(𝑥), ((𝐹𝐽
−𝑐

)𝑐)𝑃(𝑥) = (𝐹𝐽
−)𝑃(𝑥) for all 𝑥 ∈

𝑉. 

• ((𝑇𝐽
+𝑐

)𝑐)𝑃(𝑥) = (𝑇𝐽
+)𝑃(𝑥), ((𝐼𝐽

+𝑐
)𝑐)𝑃(𝑥) = (𝐼𝐽

+)𝑃(𝑥), ((𝐹𝐽
+𝑐

)𝑐)𝑃(𝑥) = (𝐹𝐽
+)𝑃(𝑥) for all 𝑥 ∈

𝑉. 

• ((𝑇𝐾
−𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝑇𝐽
−)𝑃(𝑥) ∧ (𝑇𝐽

−)𝑃(𝑦)} − (𝑇𝐾
−)𝑃(𝑥𝑦)

((𝐼𝐾
−𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝐼𝐽
−)𝑃(𝑥) ∧ (𝐼𝐽

−)𝑃(𝑦)} − (𝐼𝐾
−)𝑃(𝑥𝑦)

((𝐹𝐾
−𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝐹𝐽
−)𝑃(𝑥) ∨ (𝐹𝐽

−)𝑃(𝑦)} − (𝐹𝐾
−)𝑃(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸

• ((𝑇𝐾
+𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝑇𝐽
+)𝑃(𝑥) ∧ (𝑇𝐽

+)𝑃(𝑦)} − (𝑇𝐾
+)𝑃(𝑥𝑦)

((𝐼𝐾
+𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝐼𝐽
+)𝑃(𝑥) ∧ (𝐼𝐽

+)𝑃(𝑦)} − (𝐼𝐾
+)𝑃(𝑥𝑦)

((𝐹𝐾
+𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝐹𝐽
+)𝑃(𝑥) ∨ (𝐹𝐽

+)𝑃(𝑦)} − (𝐹𝐾
+)𝑃(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸

• ((𝐽𝑐)𝑐)𝑁(𝑥) = (𝐽(𝑥))𝑁
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• ((𝑇𝐽
−𝑐

)𝑐)𝑁(𝑥) = (𝑇𝐽
−)𝑁(𝑥), ((𝐼𝐽

−𝑐
)𝑐)𝑁(𝑥) = (𝐼𝐽

−)𝑁(𝑥), ((𝐹𝐽
−𝑐

)𝑐)𝑁(𝑥) = (𝐹𝐽
−)𝑁(𝑥)  for all

𝑥 ∈ 𝑉. 

• ((𝑇𝐽
+𝑐

)𝑐)𝑁(𝑥) = (𝑇𝐽
+)𝑁(𝑥), ((𝐼𝐽

+𝑐
)𝑐)𝑁(𝑥) = (𝐼𝐽

+)𝑁(𝑥), ((𝐹𝐽
+𝑐

)𝑐)𝑁(𝑥) = (𝐹𝐽
+)𝑁(𝑥)  for all

𝑥 ∈ 𝑉. 

• ((𝑇𝐾
−𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝑇𝐽
−)𝑁(𝑥) ∨ (𝑇𝐽

−)𝑁(𝑦)} − (𝑇𝐾
−)𝑁(𝑥𝑦)

((𝐼𝐾
−𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝐼𝐽
−)𝑁(𝑥) ∨ (𝐼𝐽

−)𝑁(𝑦)} − (𝐼𝐾
−)𝑁(𝑥𝑦)

((𝐹𝐾
−𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝐹𝐽
−)𝑁(𝑥) ∧ (𝐹𝐽

−)𝑁(𝑦)} − (𝐹𝐾
−)𝑁(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸

• ((𝑇𝐾
+𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝑇𝐽
+)𝑁(𝑥) ∨ (𝑇𝐽

+)𝑁(𝑦)} − (𝑇𝐾
+)𝑁(𝑥𝑦)

((𝐼𝐾
+𝑐

)𝑁)𝑁(𝑥𝑦) = {(𝐼𝐽
+)𝑁(𝑥) ∨ (𝐼𝐽

+)𝑁(𝑦)} − (𝐼𝐾
+)𝑁(𝑥𝑦)

((𝐹𝐾
+𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝐹𝐽
+)𝑁(𝑥) ∧ (𝐹𝐽

+)𝑁(𝑦)} − (𝐹𝐾
+)𝑁(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸.

for any neutrosophic bipolar vague graph 𝐺,𝐺𝑐 is strong neutrosophic bipolar vague graph and 

𝐺 ⊆ 𝐺𝑐. 

Definition 5.4 Suppose 𝐺𝑐  is the complement of neutrosophic bipolar vague graph 𝐺 . In a strong 

neutrosophic bipolar vague graph 𝐺, 𝐺 ≅ 𝐺𝑐 then it is called self-complementary.  

Proposition 5.5 Let 𝐺 = (𝐽, 𝐾) be a strong neutrosophic bipolar vague graph if  

(𝑇𝐾
−)𝑃(𝑥𝑦) = {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)}

(𝐼𝐾
−)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)}

(𝐹𝐾
−)𝑃(𝑥𝑦) = {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)},

(𝑇𝐾
+)𝑃(𝑥𝑦) = {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)}

(𝐼𝐾
+)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)}

(𝐹𝐾
+)𝑃(𝑥𝑦) = {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)},

(𝑇𝐾
−)𝑁(𝑥𝑦) = {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)}

(𝐼𝐾
−)𝑁(𝑥𝑦) = {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)}

(𝐹𝐾
−)𝑁(𝑥𝑦) = {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)},

(𝑇𝐾
+)𝑁(𝑥𝑦) = {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)}

(𝐼𝐾
+)𝑁(𝑥𝑦) = {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)}

(𝐹𝐾
+)𝑁(𝑥𝑦) = {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}, ∀((𝑥𝑦) ∈ 𝐾)

 Then 𝐺 is self complementary.  

Proof. Let 𝐺 = (𝐽, 𝐾) be a strong neutrosophic bipolar vague graph such that 

(�̂�𝐾)𝑃(𝑥𝑦) =
1

2
[(�̂�𝐽)𝑃(𝑥) ∧ (�̂�𝐽)𝑃(𝑦)]

(𝐼𝐾)𝑃(𝑥𝑦) =
1

2
[(𝐼𝐽)𝑃(𝑥) ∧ (𝐼𝐽)𝑃(𝑦)]

(�̂�𝐾)𝑃(𝑥𝑦) =
1

2
[(�̂�𝐽)𝑃(𝑥) ∨ (�̂�𝐽)𝑃(𝑦)],

 and 

(�̂�𝐾)𝑁(𝑥𝑦) =
1

2
[(�̂�𝐽)𝑁(𝑥) ∨ (�̂�𝐽)𝑁(𝑦)]

(𝐼𝐾)𝑁(𝑥𝑦) =
1

2
[(𝐼𝐽)𝑁(𝑥) ∨ (𝐼𝐽)𝑁(𝑦)]
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(�̂�𝐾)𝑁(𝑥𝑦) =
1

2
[(�̂�𝐽)𝑁(𝑥) ∧ (�̂�𝐽)𝑁(𝑦)]

for all 𝑥𝑦 ∈ 𝐽 then 𝐺 ≈ 𝐺𝑐𝑐
, implies 𝐺 is self complementary. Hence proved

Proposition 5.6 Assume that, 𝐺 is a self complementary neutrosophic bipolar vague graph then 

∑

𝑥≠𝑦

(�̂�𝐾)𝑃(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(�̂�𝐽)𝑃(𝑥) ∧ (�̂�𝐽)𝑃(𝑦)}

∑

𝑥≠𝑦

(𝐼𝐾)𝑃(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(𝐼𝐽)𝑃(𝑥) ∧ (𝐼𝐽)𝑃(𝑦)}

∑

𝑥≠𝑦

(�̂�𝐾)𝑃(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(�̂�𝐽)𝑃(𝑥) ∨ (�̂�𝐽)𝑃(𝑦)}

∑

𝑥≠𝑦

(�̂�𝐾)𝑁(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(�̂�𝐽)𝑁(𝑥) ∨ (�̂�𝐽)𝑁(𝑦)}

∑

𝑥≠𝑦

(𝐼𝐾)𝑁(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(𝐼𝐽)𝑁(𝑥) ∨ (𝐼𝐽)𝑁(𝑦)}

∑

𝑥≠𝑦

(�̂�𝐾)𝑁(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(�̂�𝐽)𝑁(𝑥) ∧ (�̂�𝐽)𝑁(𝑦)}

Proof. Suppose that 𝐺 be an self complementary neutrosophic bipolar vague graph, by its 

definition, we have isomorphism 𝑓: 𝐽1 → 𝐽2 satisfy  

(�̂�𝐽1
𝑐 )𝑃(𝑓(𝑥)) = (�̂�𝐽1

)𝑃(𝑓(𝑥)) = (�̂�𝐽1
)𝑃(𝑥)

(𝐼𝐽1
𝑐 )𝑃(𝑓(𝑥)) = (𝐼𝐽1

)𝑃(𝑓(𝑥)) = (𝐼𝐽1
)𝑃(𝑥)

(�̂�𝐽1
𝑐 )𝑃(𝑓(𝑥)) = (�̂�𝐽1

)𝑃(𝑓(𝑥)) = (�̂�𝐽1
)𝑃(𝑥)

 and 

(�̂�𝐾1
𝑐 )𝑃(𝑓(𝑥), 𝑓(𝑦)) = (�̂�𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)) = (�̂�𝐾1
)𝑃(𝑥𝑦)

(𝐼𝐾1
𝑐 )𝑃(𝑓(𝑥), 𝑓(𝑦)) = (𝐼𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)) = (𝐼𝐾1
)𝑃(𝑥𝑦)

(�̂�𝐾1
𝑐 )𝑃(𝑓(𝑥), 𝑓(𝑦)) = (�̂�𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)) = (�̂�𝐾1
)𝑃(𝑥𝑦)

we have (�̂�𝐾1
𝑐 )𝑃(𝑓(𝑥), 𝑓(𝑦)) = ((�̂�𝐽1

𝑐 )𝑃(𝑥) ∧ (�̂�𝐽1
𝑐 )𝑃(𝑦)) − (�̂�𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)).

i.e,(�̂�𝐾1
)𝑃(𝑥𝑦) = ((�̂�𝐽1

𝑐 )𝑃(𝑥) ∧ (�̂�𝐽1
𝑐 )𝑃(𝑦)) − (�̂�𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)).

(�̂�𝐾1
)𝑃(𝑥𝑦) = ((�̂�𝐽1

𝑐 )𝑃(𝑥) ∧ (�̂�𝐽1
𝑐 )𝑃(𝑦)) − (�̂�𝐾1

)𝑃(𝑥𝑦), hence

∑𝑥≠𝑦 (�̂�𝐾1
)𝑃(𝑥𝑦) + ∑𝑥≠𝑦 (�̂�𝐾1

)𝑃(𝑥𝑦) = ∑𝑥≠𝑦 ((�̂�𝐽1
)𝑃(𝑥) ∧ (�̂�𝐽1

)𝑃(𝑦)).

Similarly, ∑𝑥≠𝑦 (𝐼𝐾1
)𝑃(𝑥𝑦) + ∑𝑥≠𝑦 (𝐼𝐾1

)𝑃(𝑥𝑦) = ∑𝑥≠𝑦 ((𝐼𝐽1
)𝑃(𝑥) ∧ (𝐼𝐽1

)𝑃(𝑦)) 

∑

𝑥≠𝑦

(�̂�𝐾1
)𝑃(𝑥𝑦) + ∑

𝑥≠𝑦

(�̂�𝐾1
)𝑃(𝑥𝑦) = ∑

𝑥≠𝑦

((�̂�𝐽1
)𝑃(𝑥) ∨ (�̂�𝐽1

)𝑃(𝑦))

2 ∑

𝑥≠𝑦

(�̂�𝐾1
)𝑃(𝑥𝑦) = ∑

𝑥≠𝑦

((�̂�𝐽1
)𝑃(𝑥) ∧ (�̂�𝐽1

)𝑃(𝑦))

2 ∑

𝑥≠𝑦

(𝐼𝐾1
)𝑃(𝑥𝑦) = ∑

𝑥≠𝑦

((𝐼𝐽1
)𝑃(𝑥) ∧ (𝐼𝐽1

)𝑃(𝑦)) 

2 ∑

𝑥≠𝑦

(�̂�𝐾1
)𝑃(𝑥𝑦) = ∑

𝑥≠𝑦

((�̂�𝐽1
)𝑃(𝑥) ∨ (�̂�𝐽1

)𝑃(𝑦))

Similarly one can prove for the negative condition, from the equation of the proposition (5.5) holds. 
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Proposition 5.7 Suppose 𝐺1  and 𝐺2  is neutrosophic bipolar vague graph which is strong, 𝐺1 ≈

𝐺2(isomorphism)  

Proof. Assume that 𝐺1  and 𝐺2  are isomorphic there exist a bijective map 𝑓: 𝐽1 → 𝐽2 

satisfying,  

(�̂�𝐽1
)𝑃(𝑥) = (�̂�𝐽2

)𝑃(𝑓(𝑥)),

(𝐼𝐽1
)𝑃(𝑥) = (𝐼𝐽2

)𝑃(𝑓(𝑥)),

(�̂�𝐽1
)𝑃(𝑥) = (�̂�𝐽2

)𝑃(𝑓(𝑥)), for all𝑥 ∈ 𝐽1

(�̂�𝐽1
)𝑁(𝑥) = (�̂�𝐽2

)𝑁(𝑓(𝑥)),

(𝐼𝐽1
)𝑁(𝑥) = (𝐼𝐽2

)𝑁(𝑓(𝑥)),

(�̂�𝐽1
)𝑁(𝑥) = (�̂�𝐽2

)𝑁(𝑓(𝑥)), for all𝑥 ∈ 𝐽1

 and 

(�̂�𝐾1
)𝑃(𝑥𝑦) = (�̂�𝐾2

)𝑃(𝑓(𝑥), 𝑓(𝑦))

(𝐼𝐾1
)𝑃(𝑥𝑦) = (𝐼𝐾2

)𝑃(𝑓(𝑥), 𝑓(𝑦)) 

(�̂�𝐾1
)𝑃(𝑥𝑦) = (�̂�𝐾2

)𝑃(𝑓(𝑥), 𝑓(𝑦))∀𝑥𝑦 ∈ 𝐾1

(�̂�𝐾1
)𝑁(𝑥𝑦) = (�̂�𝐾2

)𝑁(𝑓(𝑥), 𝑓(𝑦))

(𝐼𝐾1
)𝑁(𝑥𝑦) = (𝐼𝐾2

)𝑁(𝑓(𝑥), 𝑓(𝑦))

(�̂�𝐾1
)𝑁(𝑥𝑦) = (�̂�𝐾2

)𝑁(𝑓(𝑥), 𝑓(𝑦))∀𝑥𝑦 ∈ 𝐾1

 by definition (5.2) we have  

(𝑇𝐾1
𝑐 )𝑃(𝑥𝑦) = ((𝑇𝐽1

)𝑃(𝑥) ∧ (𝑇𝐽1
)𝑃(𝑦)) − (𝑇𝐾1

)𝑃(𝑥𝑦)

= ((𝑇𝐽2
)𝑃𝑓(𝑥) ∧ (𝑇𝐽2

)𝑃𝑓(𝑦)) − (𝑇𝐾2
)𝑃(𝑓(𝑥)𝑓(𝑦))

= (𝑇𝐾2
𝑐 )𝑃(𝑓(𝑥)𝑓(𝑦))

(𝐼𝐾1
𝑐 )𝑃(𝑥𝑦) = ((𝐼𝐽1

)𝑃(𝑥) ∧ (𝐼𝐽1
)𝑃(𝑦)) − (𝐼𝐾1

)𝑃(𝑥𝑦)

= ((𝐼𝐽2
)𝑃𝑓(𝑥) ∧ (𝐼𝐽2

)𝑃𝑓(𝑦)) − (𝐼𝐾2
)𝑃(𝑓(𝑥)𝑓(𝑦))

= (𝐼𝐾2
𝑐 )𝑃(𝑓(𝑥)𝑓(𝑦))

(𝐹𝐾1
𝑐 )𝑃(𝑥𝑦) = ((𝐹𝐽1

)𝑃(𝑥) ∨ (𝐹𝐽1
)𝑃(𝑦)) − (𝐹𝐾1

)𝑃(𝑥𝑦)

= ((𝐹𝐽2
)𝑃𝑓(𝑥) ∨ (𝐹𝐽2

)𝑃𝑓(𝑦)) − (𝐹𝐾2
)𝑃(𝑓(𝑥)𝑓(𝑦))

= (𝐹𝐾2
𝑐 )𝑃(𝑓(𝑥)𝑓(𝑦))

Hence 𝐺1
𝑐 ≈ 𝐺2

𝑐 for all (𝑥𝑦) ∈ 𝐾1

Definition 5.8 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) is complete if 

(𝑇𝐾
−)𝑃(𝑥𝑦) = {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)}

(𝐼𝐾
−)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)}

(𝐹𝐾
−)𝑃(𝑥𝑦) = {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)},

(𝑇𝐾
+)𝑃(𝑥𝑦) = {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)}

(𝐼𝐾
+)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)}

(𝐹𝐾
+)𝑃(𝑥𝑦) = {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)},

(𝑇𝐾
−)𝑁(𝑥𝑦) = {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)}

(𝐼𝐾
−)𝑁(𝑥𝑦) = {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)}

(𝐹𝐾
−)𝑁(𝑥𝑦) = {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)},

(𝑇𝐾
+)𝑁(𝑥𝑦) = {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)}

(𝐼𝐾
+)𝑁(𝑥𝑦) = {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)}
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(𝐹𝐾
+)𝑁(𝑥𝑦) = {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}, ∀((𝑥𝑦) ∈ 𝐽)

Remark 5.9 The complement of NBVGs are NBVGs provided the graph is strong. According to [9], 

the complement of Single-Valued Neutrosophic Graph (SVNG) is not a SVNG. By the same idea, we 

implement the definition for NBVGs to obtain the proposed concepts. For other type of bipolar 

graphs, the complement of Bipolar Fuzzy Graph (BFG) is BFG [6]. The complement of Bipolar Fuzzy 

Soft Graph (BFSG) and Bipolar Neutrosophic Graph (BNG) are BFSG and BNG, [14, 16] respectively, 

provided if the graph is strong. The complement of complete bipolar SVNG is bipolar SVFG [25].  

Conclusion 

 This present work characterised the new concept of neutrosophic bipolar vague sets and its 

application to NBVGs are introduced. Moreover, some remarkable properties of strong NBVGs, 

complete NBVGs and complement NBVGs have been investigated and the proposed concepts are 

illustrated with the examples. The obtained results are extended to interval neutrosophic bipolar 

vague sets. Further we can extend to investigate the domination number, regular and isomorphic 

properties of the proposed graph. 
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A Python Tool for Implementations on Bipolar 
Neutrosophic Matrices 

Selçuk Topal, Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache

Abstract: Bipolar neutrosophic matrices (BNM) are obtained by bipolar neutrosophic sets. Each 

bipolar neutrosophic number represents an element of the matrix. The matrices are representable 

multi-dimensional arrays (3D arrays). The arrays have nested list data type. Some operations, 

especially the composition is a challenging algorithm in terms of coding because there are so many 

nested lists to manipulate. This paper presents a Python tool for bipolar neutrosophic matrices. The 

advantage of this work, is that the proposed Python tool can be used also for fuzzy matrices, bipolar 

fuzzy matrices, intuitionistic fuzzy matrices, bipolar intuitionistic fuzzy matrices and single valued 

neutrosophic matrices. 

Keywords: Python; Neutrosophic sets; bipolar neutrosophic sets; matrix; composition operation 

1. Introduction

Smarandache [1] gave the concept of neutrosophic set (NS) by considering the triplets

independent components whose values belong to real standard or nonstandard unit interval] - 0, 1+[. 

Later on, Smarandache [1] gave single valued neutrosophic set (SVNS) to apply into the various 

engineering applications. The various properties of SVNS is being studied by Wang et al. [2]. Further, 

Zhang et al. [3] presented a concept of interval-valued NS (IVNS) where the different membership 

degrees are represented by interval. In [4] Deli et al. introduced the concept of bipolar neutrosophic 

sets and their applications based on multicriteria decision making problems. The same author [5] 

proposed the bipolar neutrosophic refined sets and their applications in medical diagnosis for more 

details about the applications and its sets, we refer to [6]. Since the existence of NS, various scholars 

have presented the approaches related to SVNS and bipolar neutrosophic sets into the different fields. 

For instance, Mumtaz et al. [7] developed the concept of bipolar neutrosophic soft sets that combines 

soft sets and bipolar neutrosophic sets. In [8, 9] Broumi et al. introduced the notion of bipolar single 

valued neutrosophic graph theory and its shortest path problem. Dey et al. [10] considered TOPSIS 

method for solving the decision making problem under bipolar neutrosophic environment. Akram 

et al. [11] described bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I 

Selçuk Topal, Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache (2019). 
A Python Tool for Implementations on Bipolar Neutrosophic Matrices. Neutrosophic Sets 
and Systems 28, 138-161
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method. Akram and Sarwar [12] studied the novel multiple criteria decision making methods based 

on bipolar neutrosophic sets and bipolar neutrosophic graphs. Akram and Sitara [13] introduced the 

concept of bipolar single-valued neutrosophic graph structures and discussed certain notions of 

bipolar single-valued neutrosophic graph structures with examples. Singh [14] introduced bipolar 

neutrosophic graph representation of concept lattice and it’s processing using granular computing. 

Mullai and Broumi [15] presented shortest path problem by minimal spanning tree algorithm using 

bipolar neutrosophic numbers. Uluçay et al. [16] defined similarity measures of bipolar neutrosophic 

sets and their application to multiple criteria decision making. Based on literal neutrosophic numbers, 

Mamouni et al. [17] defined the addition and multiplication of two neutrosophic fuzzy matrices. in 

the light of Fuzzy Neutrosophic soft sets, Arockiarani [18] present a new technique for handling 

decision making problems and proposed some new notions on matrix representation. Karaaslan and 

Hayat [19] introduced some novel operations on neutrosophic matrices. Uma et al. [20] introduced 

two types of fuzzy neutrosophic soft Matrices. The same authors in [21] decomposed fuzzy 

neutrosophic soft matrix by means of its section of fuzzy neutrosophic soft matrix of Type-I. Hassan 

et al. [22] defined some special types of bipolar single valued neutrosophic graphs. Akram and 

Siddique [23] discussed certain types of edge irregular bipolar neutrosophic graphs. Pramanik [24] 

developed cross entropy measures of bipolar neutrosophic sets and interval bipolar neutrosophic 

sets. Wang et al. [25] defined Frank operations of bipolar neutrosophic numbers (BNNs) and 

proposed Frank bipolar neutrosophic Choquet Bonferroni mean operators by combining Choquet 

integral operators and Bonferroni mean operators based on Frank operations of BNNs. In the same 

study, Akram and Nasir [26] introduced the concept of p-competition bipolar neutrosophic graphs. 

then they defined generalization of bipolar neutrosophic competition graphs called m-step bipolar 

neutrosophic competition graphs. AKRAM and SHUM [27] defined Bipolar Neutrosophic Planar 

Graphs. Hashim et al. [28] provide an application of neutrosophic bipolar fuzzy sets in daily life’s 

problem related with HOPE foundation that is planning to build a children hospital. Akram, and 

Luqman [29] generalized the concept of bipolar neutrosophic sets to hypergraphs. Das et al. [30] 

proposes an algorithmic approach for group decision making (GDM) problems using neutrosophic 

soft matrix (NSM) and relative weights of experts. 

Broumi et al. [31-34] applied the concept of IVNS on graph theory and studied some interesting 

results. Broumi et al. [35] developed a Matlab toolbox for computing operational matrices under the 

SVNS environments. Pramanik et al [36] developed a hybrid structure termed “rough bipolar 

neutrosophic set”. In [37] Pramanik et al. presented Bipolar neutrosophic projection based models for 

solving multi-attribute decision making problems.  Broumi et al [38] developed the concept of 

bipolar complex neutrosophic sets and its application in decision making problem. Akram, et al.[39] 

applied the concept of  bipolar neutrosophic sets to incidence graphs and studied some properties. 

For more details on the application of neutrosophic set theory, we refer the readers to [46-52]. 

Among all the above, matrices play a vital job in the expansion region of science and engineering. 

However, the classical matrix theory neglects the role of uncertainties during the analysis. Therefore, 

the decision process may contain a lot of uncertainties. Thus, the role of the fuzzy matrices and their 

extension including triangular fuzzy matrices, type-2 triangular fuzzy matrices, interval valued fuzzy 

matrices, intuitionistic fuzzy matrices, interval valued intuitionistic fuzzy matrices are studied deeply 

by several scholars. In [40] Zahariev, developed a Matlab software package to the fuzzy algebras. In 
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[41], authors solved intuitionistic fuzzy relational rational calculus problems using a fuzzy toolbox. 

Later on, in [42] Karunambigai and Kalaivani proposed some computing procedures in Matlab for 

intuitionistic fuzzy operational matrices with suitable examples. Uma et al. [43] studied determinant 

theory for fuzzy neutrosophic soft square matrices. Also, in [44] Uma et al. introduced the 

determinant and adjoint of a square Fuzzy Neutrosophic Soft Matrices (FNSMs) a defined the circular 

FNSM and study some relations on square FNSM such as reflexivity, transitivity and circularity.  

 Recently few researchers [45] developed a Python programs for computing operations on 

neutrosophic numbers, but all these programs cannot deal with neutrosophic matrices, to do best of 

our knowledge, there is no work conducted on developing python codes to compute the operations 

on single valued neutrosophic matrices and bipolar neutrosophic matrices. Thus, there is a need to 

develop the work in that direction. For it, the presented paper discusses various operations of bipolar 

neutrosophic sets and their corresponding Python code for different metrics. To achieve it, rest of the 

manuscript is summarized as. In section 2, some concepts related to SVNS, BNS are presented. 

Section 3 deals with the generations of Python programs for bipolar neutrosophic matrices with a 

numerical example and lastly, conclusion is summarized in section 4.  

2.BACKGROUND AND BIPOLAR NEUTROSOPHIC SETS

In this section, some basic concepts on SVNS, BNS are briefly presented over the universal set 𝜉 [1, 

2, 4]. 

Definition 2.1 [1] A set A is said to be A neutrosophic set ‘A’ consists of three components namely 

truth, indeterminate and falsity denoted by 𝑇𝐴 , 𝐼𝐴(x) and 𝐹𝐴(x) such that 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈] −0, 1+[  and  −0 ≤  sup 𝑇𝐴(𝑥)+ sup 𝐼𝐴(𝑥)  + sup FA (x) ≤  3+  (1)

Definition 2.2 [2] A SVNS ‘A’ on X is given as  

A = {< 𝑥: TA(x),IA(𝑥), FA(𝑥) > 𝑥 ∈ 𝜉}                    (2) 

where the functions TA(x), IA(x), FA(x) ∈  [0. 1] are named “degree of truth, indeterminacy and 

falsity membership of x in A”, such that 

0  ≤ 𝑇𝐴  (x) +𝐼𝐴 (x) +𝐹𝐴 (x)≤ 3                         (3) 

Definition 2.3[4]. A bipolar neutrosophic set A in 𝜉 is defined as an object of the form 

A={<x, (𝑇𝐴
𝑃(𝑥),𝐼𝐴

𝑃(𝑥),𝐹𝐴
𝑃(𝑥),𝑇𝐴

𝑁(𝑥),𝐼𝐴
𝑁(𝑥),𝐹𝐴

𝑁(𝑥))>: x  𝜉 }, where 𝑇𝐴
𝑃(𝑥),𝐼𝐴

𝑃(𝑥),𝐹𝐴
𝑃(𝑥): 𝜉   [1, 0] and

𝑇𝐴
𝑁(𝑥),𝐼𝐴

𝑁(𝑥),𝐹𝐴
𝑁(𝑥): 𝜉   [-1, 0]. The positive membership degree 𝑇𝐴

𝑃(𝑥),𝐼𝐴
𝑃(𝑥),𝐹𝐴

𝑃(𝑥)enotes the truth

membership, indeterminate membership and false membership of an element  𝜉 corresponding to 

a bipolar neutrosophic set whereas the negative membership degree 𝑇𝐴
𝑁(𝑥),𝐼𝐴

𝑁(𝑥),𝐹𝐴
𝑁(𝑥)denotes the

truth membership, indeterminate membership and false membership of an element 𝑥 𝜉 to some 

implicit counter-property corresponding to a bipolar neutrosophic set A. For convenience a bipolar 

neutrosophic number is represented by  

A= <(𝑇𝐴
𝑃,𝐼𝐴

𝑃,𝐹𝐴
𝑃,𝑇𝐴

𝑁,𝐼𝐴
−,𝐹𝐴

−> (4) 

Definition 2.4 [4]. In order to make a comparison between two BNN. The score function is applied 

to compare the grades of BNS. This function shows that greater is the value, the greater is the bipolar 

neutrosophic sets and by using this concept paths can be ranked. Suppose 
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, I ,F , , I ,FP P P N N NA T T  be a bipolar neutrosophic number. Then, the score function ( )s A , 

accuracy function ( )a A and certainty function ( )c A of a BNN are defined as follows: 

(i) 
1( ) 1 1 1
6

P P P N N Ns A T I F T I F                
(5) 

(ii) ( ) P P N Na A T F T F    (6) 

(iii) ( ) P Nc A T F  (7) 

Comparison of bipolar neutrosophic numbers 

Let 1 1 1 11 1 1, I ,F , , I ,Fp p p n n nA T T  and 2 2 2 22 2 2, I ,F , , I ,Fp p p n n nA T T  be two bipolar neutrosophic

numbers then 

i. If 1 2( ) ( )s A s A , then 1A is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A . 

ii. If 1 2( ) ( )s A s A , and 1 2( ) ( )a A a A then 1A is greater than 2A , that is, 1A is superior to 2A , 

denoted by 1 2A A . 

iii. If 1 2( ) ( )s A s A , 1 2( ) ( )a A a A , and 1 2c( ) ( )A c A then 1A is greater than 2A , that is, 1A

is superior to 2A , denoted by 1 2A A . 

iv. If 1 2( ) ( )s A s A , 1 2( ) ( )a A a A , and 1 2c( ) ( )A c A then 1A is equal to 2A , that is, 1A is 

indifferent to 2A , denoted by 1 2A A . 

Definition 2.5 [4]: A bipolar neutrosophic matrix (BNM) of order m× n is defined as 

𝐴BNM=[< 𝑎𝑖𝑗 , 𝑎𝑖𝑗𝑇

𝑃 , 𝑎𝑖𝑗𝐼

𝑃 , 𝑎𝑖𝑗𝐹

𝑃 , 𝑎𝑖𝑗𝑇

𝑁 , 𝑎𝑖𝑗𝐼

𝑁 , 𝑎𝑖𝑗𝐹

𝑁 >]
m× n

 where

𝑎𝑖𝑗𝑇

𝑃  is the positive membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑃  is the positive indeterminate-membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative indeterminate-membership value of element 𝑎𝑖𝑗  in A. 

𝑎𝑖𝑗𝑇

𝑃  is the positive non- membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative non-membership value of element 𝑎𝑖𝑗  in A.  

For simplicity, we write A as 𝐴BNM= [< 𝑎𝑖𝑗𝑇

𝑃 , 𝑎𝑖𝑗𝐼

𝑃 , 𝑎𝑖𝑗𝐹

𝑃 , 𝑎𝑖𝑗𝑇

𝑁 , 𝑎𝑖𝑗𝐼

𝑁 , 𝑎𝑖𝑗𝐹

𝑁 >]
m× n

.
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3.COMPUTING THE BIPOLAR NEUTROSOPHIC MATRIX OPERATIONS USING PYTHON LANGUAGE

To generate the Python program for inputting the single valued neutrosophic matrices. The

procedure is described as follows: 

3.1 Checking the matrix is BNM or not 

To generate the Python program for deciding for a given the matrix is bipolar neutrosophic matrix 

or, simple call of the function BNMChecking ( ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

BNM Checking 

#A1.shape and A2.shape returns (3, 3, 6) the dimension of A. (row, column, numbers of element 

(Bipolar Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 3 columns 

# A.shape[2] = Each bipolar neutrosophic number has 6 tuple as usual 

#One can use any matrices having arbitrary dimension 

import numpy as np 

#A1 is a BNM 

A1= np.array([   [[0.000, 0.001, 0.002, -0.003, -0.004, -0.005],  [0.010, 0.011, 0.012, -0.013, -0.014, -

0.015] , [0.020, 0.021, 0.022, -0.023, -0.024, -0.025]  ], 

[[0.100,0.101,0.102,-0.103,-0.104, -0.105], [0.110,0.111,0.112,-0.113,-0.114,-0.115], [0.120,0.121,0.122,-

0.123,-0.124,-0.125]   ], 

 [[0.200,0.201,0.202,-0.203,-0.204,-0.205], [0.210, 0.211,0.212,-0.213,-0.214,-0.215], [0.220,0.221,0.222,-

0.223,-0.224,-0.225]   ] ]) 

#A2 is not BNM 

A2= np.array([   [[0.000, 0.001, 0.002, -0.003, -0.004, -0.005],  [0.010, 0.011, 0.012, -0.013, -0.014, -

0.015] , [0.020, 0.021, 0.022, -0.023, -0.024, -0.025]  ], 

[[0.100,0.101,0.102,-0.103,-0.104, -0.105],    [0.110,0.111,0.112,-0.113,-0.114,-0.115],  

[0.120,0.121,0.122,-0.123,-0.124,-0.125]   ],  

[[0.200,0.201,0.202,-0.203, 0.204,-0.205],     [0.210, 0.211,0.212,-0.213,-0.214,-0.215],  

[0.220,0.221,0.222,-0.223,-0.224,-0.225]   ] ]) 

def BNMChecking (A): 

    dimA=A.shape 

    control=0 

    counter = 0 

    for i in range (0,dimA[0]): 

if counter == 1: 

   break   

for j in range (0,dimA[0]): 

if counter == 1: 

   break   

for  d in range (0, dimA[2]): 

if  counter ==0: 
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if (d==0 or d==1 or d==2) : 

if  not (0 <=  A[i][j][d] <= 1): 

counter=1 

print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix 

is not a BNM') 

control=1 

   break 

if  (d==3 or d==4 or d==5) : 

if not (-1 <=  A[i][j][d] <= 0) : 

counter=1 

print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix 

is not a BNM') 

control=1 

break 

else: 

print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix is not a 

BNM') 

break 

    if control==0: 

  print ('The matrix is a BNM') 

Example 1. In this example we evaluate the checking the matrix C is BNM or not of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python environment like this: 

3.2. Determining complement of bipolar neutrosophic matrix 

For a given BNM A= [< 𝑇𝑖𝑗
𝑃, 𝐼𝑖𝑗

𝑃 , 𝐹𝑖𝑗
𝑃, 𝑇𝑖𝑗

𝑁, 𝐼𝑖𝑗
𝑁 , 𝐹𝑖𝑗

𝑁 >]
m× n

, the complement of A is defined as follow:

𝐴𝑐= [< {1} − 𝑇𝑖𝑗
𝑃, {1} − 𝐼𝑖𝑗

𝑃 , {−1} − 𝐹𝑖𝑗
𝑃, {1} − 𝑇𝑖𝑗

𝑁, {−1} − 𝐼𝑖𝑗
𝑁 , {−1} − 𝐹𝑖𝑗

𝑁 >]
m× n

                (8)

𝐴𝑐= [< 𝐹𝑖𝑗
𝑃, {1} − 𝐼𝑖𝑗

𝑃 , 𝑇𝑖𝑗
𝑃, 𝐹𝑖𝑗

𝑁, {−1} − 𝐼𝑖𝑗
𝑁 , 𝑇𝑖𝑗

𝑁 >]
m× n

    (9)

To generate the Python program for finding complement of bipolar neutrosophic matrix, simple call 

of the function BNMCompelementOf() is defined as follow: 
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# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(8) 

import numpy as np 

A= np.array([  [ [0.3,0.6,1,-0.2,-0.54,-0.4],  [0.1,0.2,0.8,-0.5,-0.34,-0.7]], 

[ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

[ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ] 

   ]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual   

def BNMCompelementOf( A ): 

    global Ac 

    dimA=A.shape # Dimension of the matrix 

    Ac= [] # Empty matrix with dimension of A to create complement of A 

for i in range (0,dimA[0]): # for rows, here 3 

H=[] 

for j in range (0,dimA[1]):  # for columns, here 2 

H.extend([ [ 1-A[i][j][0], 1-A[i][j][1], 1-A[i][j][2], -1-(-A[i][j][3]), -1-(-A[i][j][4]), -1-(-

A[i][j][5]) ] ]) 

   Ac.append(H) 

    print  ('A= ', A) 

    print ('*********************************************************************') 

    print('Ac= ', np.array(Ac)) 

The function BNMCompelementOf (A) the below returns the complement matrix of a given bipolar 

neutrosophic matrix A for (9). 

# BNM is representable by 3D Numpy Array ====> row, column and bipolar neutrosophic 

numbers having 6 tuples for (9) 

import numpy as np 

A= np.array([  [ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

[ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

 [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = Each bipolar neutrosophic number with 6 tuple as usual 

def BNMCompelementOf( A ): 

    global Ac 

    dimA=A.shape                              # Dimension of the matrix 

    Ac= []   
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    for i in range (0,dimA[0]):      # for rows, here 3 

H=[] 

for j in range (0,dimA[1]):  # for columns, here 2 

H.extend([[ A[i][j][2], 1-A[i][j][1], A[i][j][0], A[i][j][5], -1-(-A[i][j][4]), A[i][j][3] ] ])

   Ac.append(H) 

   print  ('A= ', A) 

   print ('*********************************************************************') 

   print ('*********************************************************************') 

   print('Ac= ', np.array(Ac)) 

The bipolar neutrosophic matrix A is a simple example, one can create his/her BNM and try it into 

the function BNMCompelementOf ( ): 

3.3. Determining the score, accuracy and certainty matrices of bipolar neutrosophic matrix 

To generate the python program for obtaining the score matrix, accuracy of bipolar neutrosophic 

matrix, simple call of the functions ScoreMatrix( ), AccuracyMatrix( ) and CertaintyMatrix( ) are 

defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for (5, 

6 and 7) 

import numpy as np 

A= np.array([ [ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7] ], 

[ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

[ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ]]) 

def ScoreMatrix( A ): 

    score=[] 

    dimA=A.shape      # Dimension of the matrix 

    for i in range (0,dimA[0]): # for rows, here 3 

H=[] 

for j in range (0,dimA[1]): # for columns, here 2 

H.extend([ [ ( A[i][j][0] + 1 - A[i][j][1] + 1 - A[i][j][2] + 1 + A[i][j][3] - A[i][j][4] -

A[i][j][5] )/6 ] ]) 

score.append(H) 

    print('Score Matrix= ', np.array(score)) 

def AccuracyMatrix ( A ): 

    accuracy=[] 

    dimA=A.shape      # Dimension of the matrix 

    for i in range (0,dimA[0]): # for rows, here 3 

H=[] 

for j in range (0,dimA[1]): # for columns, here 2 

H.extend([ [  A[i][j][0] - A[i][j][2] + A[i][j][3] - A[i][j][5]  ] ])

   accuracy.append(H) 

    print('Accuracy Matrix= ', np.array(accuracy)) 
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def CertaintyMatrix ( A ): 

    certainty = [] 

    dimA=A.shape      # Dimension of the matrix 

    for i in range (0,dimA[0]): # for rows, here 3 

H=[] 

for j in range (0,dimA[1]): # for columns, here 2 

H.extend([ [  A[i][j][0] - A[i][j][5]  ] ])

   certainty.append(H) 

    print('Certainty Matrix= ', np.array(certainty)) 

3.4. Computing union of two bipolar neutrosophic matrices 

The union of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴 ∪ 𝐵 = 𝐶 = [< 𝑐𝑖𝑗𝑇

𝑃 , 𝑐𝑖𝑗𝐼

𝑃 , 𝑐𝑖𝑗𝐹

𝑃 , 𝑐𝑖𝑗𝑇

𝑁 , 𝑐𝑖𝑗𝐼

𝑁 , 𝑐𝑖𝑗𝐹

𝑁 >]
m× n

 (10) 

where 

𝑐𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 ∨ 𝑏𝑖𝑗𝑇

𝑃 , 𝑐𝑖𝑗𝑇

𝑁 = 𝑎𝑖𝑗𝑇

𝑁 ∧ 𝑏𝑖𝑗𝑇

𝑁

𝑐𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 ∧ 𝑏𝑖𝑗𝐼

𝑃 , 𝑐𝑖𝑗𝐼

𝑁 = 𝑎𝑖𝑗𝐼

𝑁 ∨ 𝑏𝑖𝑗𝐼

𝑁

𝑐𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 ∧ 𝑏𝑖𝑗𝐹

𝑃 , 𝑐𝑖𝑗𝐹

𝑁 = 𝑎𝑖𝑗𝐹

𝑁 ∨ 𝑏𝑖𝑗𝐹

𝑁

To generate the python program for finding the union of two bipolar neutrosophic matrices, 

simple call of the following function Union( A, B ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(10) 

import numpy as np 

A= np.array([  [    [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

[ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

[  [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]] ]) 

B= np.array([  [      [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]   ], 

[[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22] ], 

[ [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52] ] 

   ]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

union=[]   

def Union( A, B ): 

    if A.shape == B.shape: 

dimA=A.shape 

for i in range (0,dimA[0]):      # for rows, here 3 

H=[] 

for j in range (0,dimA[1]):  # for columns, here 2 
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H.extend([[ max(A[i][j][0],B[i][j][0]) , min(A[i][j][1], B[i][j][1]), min(A[i][j][2],

B[i][j][2]), max(A[i][j][3],B[i][j][3]), min(A[i][j][4], B[i][j][4]), min(A[i][j][5], B[i][j][5]) ] ])  

   union.append(H) 

    print('union= ', np.array(union) 

Example 2. In this example we Evaluate the union of the two bipolar neutrosophic matrices C and 

D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]],[[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D= 

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4, 0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the union matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ∪ 𝐷𝐵𝑁𝑆

= (

< .5, .4, .2, −.7, − .3, −.2 > < .4, .2, .5, −.7, − .2, −.3 > < .7, .2, .5, −.8, − .7, −.6 > < .2, .1, .3, −.5, − .2, −.4 >
< .9, .2, .5, −.7, − .3, −.1 > < .7, .5, .6, −.7, − .5, −.1 > < .9, .4, .4, −.3, − .6, −.5 > < .5, .2, .4, −.5, − .1, −.3 >
< .9, .3, .1, −.6, − .2, −.4 > < .5, .2, .2, −.4, − .7, −.2 > < .9, .5, .5, −.6, − .2, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .1, .2, −.8, − .4, −.1 > < .4, .5, .2, −.5, − .2, −.2 > < .5, .4, .3, −.5, − .5, −.2 > < .4, .4, .4, −.5, − .5, −.4 >

) 

The result of union matrix of two bipolar neutrosophic matrices C and D can be obtained by the call 

of the command Union (C, D): 

>>> Union(C, D) 

Union =   

 [[[ 0.5  0.4  0.2 -0.7 -0.3 -0.2]  [ 0.4  0.2  0.5 -0.7 -0.2 -0.3] [ 0.7  0.2  0.5 -0.8 -0.7 -0.6]   [ 0.2  0.1  0.3 -0.5 -0.2 -0.4]] 

 [[ 0.9  0.2  0.5 -0.7 -0.3 -0.1]  [ 0.7  0.5  0.6 -0.7 -0.5 -0.1]   [ 0.9  0.4  0.4 -0.3 -0.6 -0.5]   [ 0.5  0.2  0.4 -0.5 -0.1 -0.3]] 

 [[ 0.9  0.3  0.1 -0.6 -0.2 -0.4]   [ 0.5  0.2  0.2 -0.4 -0.7 -0.2]   [ 0.9  0.5  0.5 -0.6 -0.2 -0.2]   [ 0.7  0.5  0.3 -0.4 -0.2 -0.2]] 

 [[ 0.9  0.1  0.2 -0.8 -0.4 -0.1]   [ 0.4  0.5  0.2 -0.5 -0.2 -0.2]   [ 0.5  0.4  0.3 -0.5 -0.5 -0.2]   [ 0.4  0.4  0.4 -0.5 -0.5 -0.4]]] 

3.5. Computing intersection of two bipolar neutrosophic matrices 
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The union of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴 ∩ 𝐵 = 𝐷 = [< 𝑑𝑖𝑗𝑇

𝑃 , 𝑑𝑖𝑗𝐼

𝑃 , 𝑑𝑖𝑗𝐹

𝑃 , 𝑑𝑖𝑗𝑇

𝑁 , 𝑑𝑖𝑗𝐼

𝑁 , 𝑑𝑖𝑗𝐹

𝑁 >]
m× n

(11) 

Where 

𝑑𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 ∧ 𝑏𝑖𝑗𝑇

𝑃 , 𝑑𝑖𝑗𝑇

𝑁 = 𝑎𝑖𝑗𝑇

𝑁 ∨ 𝑏𝑖𝑗𝑇

𝑁  

𝑑𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 ∨ 𝑏𝑖𝑗𝐼

𝑃 , 𝑑𝑖𝑗𝐼

𝑁 = 𝑎𝑖𝑗𝐼

𝑁 ∧ 𝑏𝑖𝑗𝐼

𝑁  

𝑑𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 ∨ 𝑏𝑖𝑗𝐹

𝑃 , 𝑑𝑖𝑗𝐹

𝑁 = 𝑎𝑖𝑗𝐹

𝑁 ∧ 𝑏𝑖𝑗𝐹

𝑁  

To generate the python program for finding the intersection of two bipolar neutrosophic matrices, 

simple call of the function Intersection ( A, B ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(11) 

import numpy as np 

A= np.array([ [ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7] ], 

[ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

[ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ] 

]) 

B= np.array([  [      [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]       ], 

[ [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22] ], 

[ [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52] ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

intersection=[]   

def Intersection( A, B ): 

    if A.shape == B.shape: 

dimA=A.shape 

for i in range (0,dimA[0]):      # for rows, here 3 

H=[] 

for j in range (0,dimA[1]):  # for columns, here 2 

H.extend([[ min(A[i][j][0],B[i][j][0]) , max(A[i][j][1], B[i][j][1]), max(A[i][j][2],

B[i][j][2]), min(A[i][j][3],B[i][j][3]), max(A[i][j][4], B[i][j][4]), max(A[i][j][5], B[i][j][5]) ] ])  

   intersection.append(H) 

    print('Intersection= ', np.array(intersection)) 

Example 3. In this example we evaluate the intersection of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 
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C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6] ])  

D= 

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3, 0.4, 0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

 [[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

 [[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the intersection matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ∩ 𝐷𝐵𝑁𝑆

= (

< .3, .7, .3, −.5, − .4, −.6 > < .1, .4, .7, −.5, − .8, −.4 > < .3, .7, .6, −.4, − .8, −.7 > < .1, .5, .7, −.2, − .4, −.8 >
< .2, .7, .7, −.3, − .7, −.5 > < .3, .6, .8, −.6, − .7, −.4 > < .6, .5, .6, −.1, − .7, −.8 > < .3, .4, .7, −.3, − .5, −.9 >
< .5, .4, .2, −.4, − .3, −.7 > < .2, .4, .3, −.3, − .7, −.4 > < .5, .8, .6, −.2, − .5, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .7, .7, −.7, − .6, −.8 > < .3, .6, .4, −.4, − .5, −.5 > < .4, .9, .5, −.1, − .7, −.3 > < .2, .5, .8, −.3, − .7, −.6 >

) 

The result of intersection matrix of two bipolar neutrosophic matrices C and D can be obtained by 

the call of the command Intersection (C, D): 

>>> Intersection (C, D) 

Intersection =  

[[[ 0.3  0.7  0.3 -0.5 -0.4 -0.6]   [ 0.1  0.4  0.7 -0.5 -0.8 -0.4]   [ 0.3  0.7  0.6 -0.4 -0.8 -0.7]   [ 0.1  0.5  0.7 -0.2 -0.4 -0.8]] 

 [[ 0.2  0.7  0.7 -0.3 -0.7 -0.5]   [ 0.3  0.6  0.8 -0.6 -0.7 -0.4]   [ 0.6  0.5  0.6 -0.1 -0.7 -0.8]   [ 0.3  0.4  0.7 -0.3 -0.5 -0.9]] 

 [[ 0.5  0.4  0.2 -0.4 -0.3 -0.7]   [ 0.2  0.4  0.3 -0.3 -0.8 -0.4]   [ 0.5  0.8  0.6 -0.2 -0.5 -0.4]   [ 0.4  0.6  0.5 -0.1 -0.6 -0.5]] 

 [[ 0.6  0.7  0.7 -0.7 -0.6 -0.8]   [ 0.3  0.6  0.4 -0.4 -0.5 -0.5]   [ 0.4  0.9  0.5 -0.1 -0.7 -0.3]   [ 0.2  0.5  0.8 -0.3 -0.7 -0.6]]] 

3.6. Computing addition operation of two bipolar neutrosophic matrices. 

The addition of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴 ⊕ 𝐵 = 𝑆 = [< 𝑠𝑖𝑗𝑇

𝑃 , 𝑠𝑖𝑗𝐼

𝑃 , 𝑠𝑖𝑗𝐹

𝑃 , 𝑠𝑖𝑗𝑇

𝑁 , 𝑠𝑖𝑗𝐼

𝑁 , 𝑠𝑖𝑗𝐹

𝑁 >]
m× n

(12) 

Where 

𝑠𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 + 𝑏𝑖𝑗𝑇

𝑃 − 𝑎𝑖𝑗𝑇

𝑃 . 𝑏𝑖𝑗𝑇

𝑃 , 𝑠𝑖𝑗𝑇

𝑁 = −(𝑎𝑖𝑗𝑇

𝑁 . 𝑏𝑖𝑗𝑇

𝑁 )

𝑠𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 . 𝑏𝑖𝑗𝐼

𝑃 , 𝑠𝑖𝑗𝐼

𝑁 = −(−𝑎𝑖𝑗𝐼

𝑁 − 𝑏𝑖𝑗𝐼

𝑁 − 𝑎𝑖𝑗𝐼

𝑁 . 𝑏𝑖𝑗𝐼

𝑁 )

𝑠𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 . 𝑏𝑖𝑗𝐹

𝑃 , 𝑠𝑖𝑗𝐹

𝑁 = −(−𝑎𝑖𝑗𝐹

𝑁 − 𝑏𝑖𝑗𝐹

𝑁 − 𝑎𝑖𝑗𝐹

𝑁 . 𝑏𝑖𝑗𝐹

𝑁 )

To generate the python program for obtaining the addition of two bipolar neutrosophic matrices, 

simple call of the function Addition (A, B) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(12)
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import numpy as np 

A= np.array([  [[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7] ], 

[[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

 [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ]]) 

B= np.array([  [[0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72] ], 

[[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22] ], 

   [[0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuples as usual 

addition=[]   

def Addition( A, B ): 

    if A.shape == B.shape: 

dimA=A.shape 

for i in range (0,dimA[0]):      # for rows, here 3 

H=[] 

for j in range (0,dimA[1]):  # for columns, here 2 

   H.extend([[A[i][j][0]+B[i][j][0]-A[i][j][0]*B[i][j][0],   A[i][j][1]* B[i][j][1],   

A[i][j][2]* B[i][j][2] -(-A[i][j][3]*B[i][j][3]), -(-A[i][j][4]-B[i][j][4] -A[i][j][4]*B[i][j][4] ), -(-A[i][j][5]-

B[i][j][5]-A[i][j][5]*B[i][j][5]) ]]) 

   addition.append(H) 

    print('Addition= ', np.array(addition)) 

Example 4. In this example we evaluate the addition of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]],[[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]]]) 

D=

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 
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The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the addition matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ⊕ 𝐷𝐵𝑁𝑆 = 

(

< .65, .28, .06, −.35, − .58, −.68 > < .46, .08, .35, −.35, − .84, −.58 > < .79, .14, .30, −.32, − .94, −.88 > < .28, .05, .21, −.10, − .52, −.88 >
< .92, .14, .35, −.21, − .79, −.55 > < .79, .30, .48, −.42, − .85, −.46 > < .96, .20, .24, −.03, − .88, −.90 > < .65, .08, .28, −.15, − .55, −.93 >
< .65, .12, .02, −.24, − .44, −.82 > < .60, .08, .06, −.12, − .94, −.52 > < .95, .40, .30, −.12, − .60, −.52 > < .82, .30, .15, −.04, − .68, −.60 >
< .96, .07, .14, −.56, − .76, −.82 > < .58, .30, .08, −.20, − .60, −.60 > < .70, .36, .15, −.05, − .85, −.44 > < .52, .20, .32, −.15, − .85, −.76 >

) 

The result of addition matrix of two bipolar neutrosophic matrices C and D can be obtained by the 

call of the command addition (C, D): 

>>> Addition(C, D) 

Addition= 

[[[ 0.65  0.28  0.06  0.35 -0.58 -0.68] [ 0.46  0.08  0.35  0.35 -0.84 -0.58] [ 0.79  0.14  0.3   0.32 -0.94 -0.88] [ 

0.28  0.05  0.21  0.1  -0.52 -0.88]] 

[[ 0.92  0.14  0.35  0.21 -0.79 -0.55]   [ 0.79  0.3   0.48  0.42 -0.85 -0.46]   [ 0.96  0.2   0.24  0.03 -0.88 -

0.9 ]   [ 0.65  0.08  0.28  0.15 -0.55 -0.93]] 

 [[ 0.95  0.12  0.02  0.24 -0.44 -0.82]   [ 0.6   0.08  0.06  0.12 -0.94 -0.52]   [ 0.95  0.4   0.3   0.12 -0.6  -

0.52]   [ 0.82  0.3  0.15  0.04 -0.68 -0.6 ]] 

 [[ 0.96  0.07  0.14  0.56 -0.76 -0.82]   [ 0.58  0.3   0.08  0.2  -0.6  -0.6 ]   [ 0.7   0.36  0.15  0.05 -0.85 -

0.44]   [ 0.52  0.2   0.32  0.15 -0.85 -0.76]]] 

3.7. Computing product of two bipolar neutrosophic matrices 

The product of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴⨀𝐵 = 𝑅 = [< 𝑟𝑖𝑗𝑇

𝑃 , 𝑟𝑖𝑗𝐼

𝑃 , 𝑟𝑖𝑗𝐹

𝑃 , 𝑟𝑖𝑗𝑇

𝑁 , 𝑟𝑖𝑗𝐼

𝑁 , 𝑟𝑖𝑗𝐹

𝑁 >]
m× n

(13) 

Where 

𝑟𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 . 𝑏𝑖𝑗𝑇

𝑃 ,  𝑟𝑖𝑗𝑇

𝑁 = −(−𝑎𝑖𝑗𝑇

𝑁 − 𝑏𝑖𝑗𝑇

𝑁 − 𝑎𝑖𝑗𝑇

𝑁 . 𝑏𝑖𝑗𝑇

𝑁 )

𝑟𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 + 𝑏𝑖𝑗𝐼

𝑃 − 𝑎𝑖𝑗𝐼

𝑃 . 𝑏𝑖𝑗𝐼

𝑃 , 𝑟𝑖𝑗𝐼

𝑁 = −(𝑎𝑖𝑗𝐼

𝑁 . 𝑏𝑖𝑗𝐼

𝑁 )

𝑟𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 + 𝑏𝑖𝑗𝐹

𝑃 − 𝑎𝑖𝑗𝐹

𝑃 . 𝑏𝑖𝑗𝐹

𝑃 ,  𝑟𝑖𝑗𝐹

𝑁 = −(𝑎𝑖𝑗𝐹

𝑁 . 𝑏𝑖𝑗𝐹

𝑁 )

To generate the python program for finding the product operation of two bipolar neutrosophic 

matrices, simple call of the function Product (A, B) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(13) 

import numpy as np 

A= np.array([ [ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7] ], 

[ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

[    [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ]]) 

B= np.array([ [ [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]   ], 
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[ [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]       ], 

[    [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

product=[]   

def Product( A, B ): 

    if A.shape == B.shape: 

dimA=A.shape 

for i in range (0,dimA[0]):      # for rows, here 3 

H=[] 

for j in range (0,dimA[1]):  # for columns, here 2 

H.extend([[ A[i][j][0]*B[i][j][0]) , A[i][j][1]+ B[i][j][1]- (A[i][j][1]*B[i][j][1]),

A[i][j][2]+ B[i][j][2]- (A[i][j][2]*B[i][j][2]), -(-A[i][j][3]-B[i][j][3]-A[i][j][3]*B[i][j][3]), -(A[i][j][4]* 

B[i][j][4]), -(A[i][j][5]* B[i][j][5]) ] ]) 

   product.append(H) 

    print(' Product = ', np.array(product)) 

Example 5. In this example we evaluate the product of the two bipolar neutrosophic matrices C and 

D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D=(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

 [[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

 [[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 
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So, the product matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆⨀𝐷𝐵𝑁𝑆= 

(

< .15, .82, .44, −.85, − .12, −.12 > < .04, .52, .85, −.85, − 1.16, −.12 > < .21, .76, .80, −.88, − .56, −.42 > < .02, .55, .79, −.60, − .008, − .32 >
< .18, .76, .85, −.79, − .21, −.05 > < .21, .80, .92, −.88, − .35, −.04 > < .54, .70, .76, −.37, − .42, −0.40 > < .15, .52, .82, −.65, − .05, − .27 >
< .45, .58, .28, −.76, − .06, −.28 > < .10, .52, .44, −.58, − .56, −.08 > < .45, .90, .80, −.68, − .10, −.08 > < .28, .80, .65, −.46, − .12, −.10 >

< .54, .73, .76, −.94, − .24, −.08 > < .12, .80, .52, −.70, − .10, −.10 > < .20, .94, .65, −.55, − .35, −.06 > < .08, .70, .88, −.65, −  .35, − .24 >

) 

The result of product matrix of two bipolar neutrosophic matrices C and D can be obtained by the 

call of the command Product (C, D): 

>>> Product(C, D) 

Product=   

[[[ 0.15  0.82  0.44 -0.85 -0.12 -0.12]   [ 0.04  0.52  0.85 -0.85 -0.16 -0.12]   [ 0.21  0.76  0.8  -0.88 -

0.56 -0.42] [ 0.02  0.55  0.79 -0.6  -0.08 -0.32]] 

 [[ 0.18  0.76  0.85 -0.79 -0.21 -0.05]   [ 0.21  0.8   0.92 -0.88 -0.35 -0.04]   [ 0.54  0.7   0.76 -0.37 -

0.42 -0.4 ]   [ 0.15  0.52  0.82 -0.65 -0.05 -0.27]]  

 [[ 0.45  0.58  0.28 -0.76 -0.06 -0.28]   [ 0.1   0.52  0.44 -0.58 -0.56 -0.08]   [ 0.45  0.9   0.8  -0.68 -

0.1  -0.08]   [ 0.28  0.8   0.65 -0.46 -0.12 -0.1 ]] 

 [[ 0.54  0.73  0.76 -0.94 -0.24 -0.08] [ 0.12  0.8   0.52 -0.7  -0.1  -0.1 ] [ 0.2   0.94  0.65 -0.55 -0.35 -

0.06] [ 0.08  0.7   0.88 -0.65 -0.35 -0.24]]] 

3.8. Computing transpose of bipolar neutrosophic matrix 

To generate the python program for finding the transpose of bipolar neutrosophic matrix, simple 

call of the function Transpose (A) is defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

transpose 

import numpy as np 

A=np.array([[ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

[ [0.1,0.12,0,-0.27,-0.44,-0.92],[0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

 [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]] ])   

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual   

def Transpose( A ): 

    DimA= A. shape 

    print (' the matrix ', DimA[0],' x ', DimA[1], ' dimension') 

    trA = A.transpose() 

    DimtrA= trA. shape 

    print ('\n')  

    print (' its transpose ', DimtrA[1],' x ', DimtrA[2], ' dimension') 

    print ('\n' ) 

    print(' Transpose = ', trA) 
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Example 6. In this example we evaluate the transpose of the bipolar neutrosophic matrix C of order 

4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ]) 

So, the transpose matrix of bipolar neutrosophic matrices is portrayed as follow 

<0.50, 0.70, 0.20,-0.70, -0.30, -0.60>   <0.90, 0.70, 0.50,-0.70, -0.70, -0.10>  <0.30, 0.40, 0.20,-0.60, -0.30, -0.70>  <0.90, 0.70, 0.20,-0.80, -0.60, -0.10> 

<0.40, 0.40, 0.50,-0.70, -0.80, -0.40>  <0.70, 0.60, 0.80,-0.70, -0.50, -0.10>  <0.20, 0.20, 0.20,-0.40, -0.70, -0.40>  <0.30, 0.50, 0.20,-0.50, -0.50, -0.20> 

<0.70, 0.70, 0.50,-0.80, -0.70, -0.60>  <0.90, 0.40, 0.60,-0.10, -0.70, -0.50>  <0.90, 0.50, 0.50,-0.60, -0.50, -0.20>  <0.50, 0.40, 0.50,-0.10, -0.70, -0.20> 

<0.10, 0.50, 0.70,-0.50, -0.20, -0.80>  <0.50, 0.20, 0.70,-0.50, -0.10, -0.90>  <0.70, 0.50, 0.30,-0.40, -0.20, -0.20>  <0.20, 0.40, 0.80,-0.50, -0.50, -0.60> 

>>> Transpose(C) 

The matrix 4 x4 dimension 

 Its transpose 4 x 4 dimension 

Transpose =   

[[[ 0.5  0.9  0.9  0.9] [ 0.4  0.7  0.2  0.3]  [ 0.7  0.9  0.9  0.5] [ 0.1  0.5  0.7  0.2]] 

[[ 0.7  0.7  0.4  0.7] [ 0.4  0.6  0.2  0.5] [ 0.7  0.4  0.5  0.4] [ 0.5  0.2  0.5  0.4]] 

[[ 0.2  0.5  0.2  0.2] [ 0.5  0.8  0.2  0.2] [ 0.5  0.6  0.5  0.5] [ 0.7  0.7  0.3  0.8]] 

[[-0.7 -0.7 -0.6 -0.8]  [-0.7 -0.7 -0.4 -0.5] [-0.8 -0.1 -0.6 -0.1]    [-0.5 -0.5 -0.4 -0.5]] 

[[-0.3 -0.7 -0.3 -0.6]  [-0.8 -0.5 -0.7 -0.5]   [-0.7 -0.7 -0.5 -0.7]    [-0.2 -0.1 -0.2 -0.5]] 

[[-0.6 -0.1 -0.7 -0.1]   [-0.4 -0.1 -0.4 -0.2]   [-0.6 -0.5 -0.2 -0.2]   [-0.8 -0.9 -0.2 -0.6]]]  

3.9 Computing composition of two bipolar neutrosophic matrices 

To generate the python program for finding the composition of two bipolar neutrosophic 

matrices, simple call of the function Composition () is defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

Composition  

#A.shape and B.shape returns (3, 3, 6) the dimension of A. (row, column, numbers of element 

(Bipolar Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 3 columns 

# A.shape[2] = Each bipolar neutrosophic number has 6 tuple as usual 

#One can use matrices with any dimensions but dimensions of two matrices must be the same and 

nxn  
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import math 

import numpy as np 

A= np.array( [ [ [0.3, 0.6, 1, -0.2, -0.54, -0.4], [0.1, 0.2, 0.8, -0.5, -0.34, -0.7], [0.020,0.021,0.022,-0.023,-

0.024,-0.025]  ], 

[ [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22], [0.120,0.121,0.122,-0.123,-0.124,-

0.125]  ], 

[ [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52], [0.220,0.221,0.222,-0.223,-0.224,-

0.225]  ]  ] ) 

B=np.array([ [0.11,0.22,0.6,-0.29,-0.24,-0.52], [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-

0.72] ], 

[ [0.100,0.101,0.102,-0.103,-0.104,-0.105], [1,0.111,0.112,-0.113,-0.114,-0.115], [0.720,0.821,0.152,-

0.143,-0.194,-0.1]  ], 

[ [0,0.73,0.202,-0.203,-0.204,-0.205],  [0.22,0.63,0.88,-0.28,-0.54,-0.32], [0.3,0,0.47,-0.223,-0.254,-0.295] 

] ] ) 

def Composition( A, B ): 

    global composition 

    composition=[] 

    dimA = A.shape 

    H=[ ] 

    if A.shape == B.shape and dimA[0] == dimA[1]: 

for i in range (0,dimA[0]):  

for j in range (0,dimA[0]): 

counter0=0   

   for d in range (0, dimA[0]): 

if counter0 ==0: 

maxtt  =    [ A[i][d][0],B[d][j][0] ] 

maxT = min(maxtt) 

minii =  [A[i][d][1],B[d][j][1] ] 

minI =  max(minii)   

minff = [ A[i][d][2],B[d][j][2]] 

minF = max( minff) 

minntt= [   A[i][d][3],B[d][j][3] ] 

minNT = max (minntt) 

maxnii = [ A[i][d][4],B[d][j][4]  ] 

maxNI =  min( maxnii  )   

maxnff= [   A[i][d][5],B[d][j][5]  ] 

maxNF = min (maxnff) 

counter0  = 1   

else: 

maxT1 = [  A[i][d][0],B[d][j][0]  ] 

maxT11  = min(maxT1)   

maxT112 = [  maxT11 ,  maxT  ] 
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  maxT =  max(maxT112) 

minI1  =  [ A[i][d][1],B[d][j][1]  ] 

minI11 =  max(minI1) 

minI112 = [ minI11, minI    ] 

minI    = min(  minI112) 

minF1 = [ A[i][d][2],B[d][j][2]  ] 

minF11  =  max(minF1) 

minF112 = [ minF11, minF] 

minF = min(minF112 ) 

minNT1  =   [  A[i][d][3],B[d][j][3] ] 

minNT11 =  max( minNT1   ) 

minNT112 = [ minNT11, minNT ] 

minNT =  min( minNT112  ) 

maxNI1 = [ A[i][d][4],B[d][j][4] ] 

maxNI11 = min(  maxNI1   ) 

maxNI112 = [  maxNI11, maxNI  ] 

maxNI = max(maxNI112) 

maxNF1 =  [ A[i][d][5],B[d][j][5]  ] 

maxNF11 =  min ( maxNF1 ) 

maxNF112 =  [ maxNF11, maxNF ] 

maxNF       =  max (  maxNF112  ) 

H.append( [maxT,  minI, minF, minNT, maxNI, maxNF] )

   composition.extend(H) 

    global nested 

    nested = [  ] 

    for k in range( int(math.sqrt(len(composition))) ): 

   nested.append(composition[k:k+int(math.sqrt(len(composition))) ] ) 

    print('Composition= ', np.array(nested)) 

Example 7. In this example we evaluate the composition of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D= 
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(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this:

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the composition matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆⨀𝐷𝐵𝑁𝑆= 

(

< .5, .4, .3, −.5, − .4, −.5 > < .5, .5, .5, −.6, − .2, −.4 > < .5, .5, .5, −.5, − .5, −.6 > < .4, .4, .3, −.3, − .4, −.4 >
< .5, .5, .5, −.6, − .2, −.4 > < .5, .5 .5, −.5, − .5, −.6 > < .4, .4, .3, −.3, − .4, −.4 > < .5, .2, .5, −.5, − .4, −.2 >
< .5 .5, .5, −.5, − .5, −.6 > < .4, .4, .4, −.3, − .4, −.4 > < .5, .2, .5, −.5, − .4, −.2 > < .5, .4, .6, −.6, − .2, −.3 >

< .4, .4, .3, −.3, − .4, −.1 > < .5, .2, .5, −.5, − .4 − .2 > < .5, .4, .6, −.6, − .2, −.3 > < .6, .6, .6, −.5, − .5, −.5 >

) 

The result of composition t matrix of two bipolar neutrosophic matrices C and D can be obtained by the call of 

the command Composition (C, D): 

>>> Composition(C, D) 

Composition=   

[[[ 0.5  0.4  0.3 -0.5 -0.4 -0.5] [ 0.5  0.5  0.5 -0.6 -0.2 -0.4] [ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4]] 

[[ 0.5  0.5  0.5 -0.6 -0.2 -0.4] [ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2]]  

[[ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2] [ 0.5  0.4  0.6 -0.6 -0.2 -0.3]] 

[[ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2] [ 0.5  0.4  0.6 -0.6 -0.2 -0.3] [ 0.6  0.6  0.6 -0.5 -0.5 -0.5]]] 

4. Conclusion

In this paper, we have presented a useful Python tool for the calculations of matrices obtained 

by bipolar neutrosophic sets. The matrices have nested list data type, in other words, multi-

dimensional arrays in the Python Programming Language. The importance of this work, is that the 

proposed Python tool can be used also for fuzzy matrices, bipolar fuzzy matrices, intuitionistic fuzzy 

matrices, bipolar intuitionistic fuzzy matrices and single valued neutrosophic matrices. This work 

will be extending with the implementation of Bipolar Complex Neutrosophic Matrices in the future. 

We have used Python Numpy module in order to provide convenience for possible users. We hope 

that the tool might be useful in data science, physics, scientific computing, decision making, 

engineering studies and other fields. 
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On NGSR Closed Sets in Neutrosophic Topological 
Spaces

S. Anitha, K. Mohana, Florentin Smarandache

Abstract: The intention of this paper is to introduce the concept of GSR-closed sets in terms of 

neutrosophic topological spaces. Some of the properties of NGSR-closed sets are obtained. In 

addition, we inspect NGSR-continuity and NGSR-contra continuity in neutrosophic topological 

spaces. 

Keywords: neutrosophic topology, NGSR-closed set, NGSR-continuous, NGSR-contra continuous 

mappings. 

1. Introduction

In 1965, fuzzy concept was proposed by Zadeh [43] and he studied membership function. 

Chang [14] developed the theory of fuzzy topology in 1967. The notions of inclusion, union, 

intersection, complement, relation, convexity, and so forth, are expanded to such sets and several 

properties of these notions are established by various authors. 

Atanassov [10, 11, 12] generalized the idea of fuzzy set to intuitionistic fuzzy set by adding 

the degree of non-membership. The intuitionistic fuzzy topology was advanced by Coker [16] using 

the notion of intuitionistic fuzzy sets. Intuitionistic fuzzy point was given by Coker et.al [15]. These 

approaches gave a wide field for exploration in the area of intuitionistic fuzzy topology and its 

application. Burillo et al.[13]studied the intuitionistic fuzzy relation and their properties. Thakur et.al 

[44] introduced generalized closed set in intuitionistic fuzzy topology. Various researchers [8, 24, 26,

33, 37, 38] extended the results of generalization of various Intuitionistic fuzzy closed sets in many 

directions. 

The concepts of neutrosophy was introduced by Florentin Smarandache [18, 19, 20] in which 

he developed the degree of indeterminacy. In comparing with more uncertain ideology, the 

neutrosophic set can accord with indeterminacy situation. Salama et.al [34,35,36] transformed the 

idea of neutrosophic crisp set into neutrosophic topological spaces and introduced generalized 

neutrosophic set and generalized neutrosophic topological Spaces. Ishwarya et.al [22] studied 

Neutrosophic semi open sets in Neutrosophic topological spaces. Abdel-Basset et.al [ 1,2,3,4,5,6] gave 

a novel  neutrosophic approach. Many researchers [28, 30, 31, 41, 42] added and studied semi open 
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sets, α open sets, pre-open sets, semi alpha open sets etc., and developed several interesting 

properties and applications in Neutrosophic Topology. Several authors [7, 25, 27, 32, 39, 44] have 

contributed in topological spaces. 

Mohana K et.al [29] introduced gsr -closed sets in soft topology in 2017. In this article we tend 

to provide the idea of NGSR-closed sets and NGSR-open sets. Also, we presented NGSR continuous 

and NGSR-contra continuous mappings. 

2 Preliminaries 

Definition 2.1. [20] Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object having the 

form A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} where μA(x), σA(x) andνA(x)represent the degree of 

membership, degree of indeterminacy and the degree of nonmembership respectively of each 

element x ∈ X to the set A. 

A Neutrosophic set A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} can be identified as an ordered triple 

〈μA(x), σA(x), νA(x)〉 in ]−0, 1+[ on X.

Definition 2.2. [20] Let A =〈μA(x), σA(x), νA(x)〉  be a NS on X, then the complement C(A) may be 

defined as 

1. C(A) = {〈x, 1 − μA(x), 1 − νA(x)〉: x ∈ X}

2. C(A) = {〈x, νA(x), σA(x), μA(x)〉: x ∈ X}

3. C(A) = {〈x, νA(x), 1 − σA(x), μA(x)〉: x ∈ X}

Note that for any two neutrosophic sets A and B,

4. C(A ∪ B) = C(A)  ∩ C(B)

5. C(A ∩ B) = C(A) ∪  C(B).

Definition 2.3. [20] For any two neutrosophic sets A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} and B =

{〈x, μB(x), σB(x), νB(x)〉: x ∈ X}  we may have

1. A ⊆ B ⇔ μA(x) ≤ μB(x), σA(x) ≤ σB(x) and νA(x) ≥ νB(x)∀ x ∈ X

2. A ⊆ B ⇔ μA(x) ≤ μB(x), σA(x) ≥ σB(x) and νA(x) ≥ νB(x)∀ x ∈ X

3. A ∩ B =  〈x, μA(x) ⋀ μB(x), σA(x) ⋀  σB(x) and νA(x) ⋁  νB(x)〉

4. A ∩ B =  〈x, μA(x) ⋀ μB(x), σA(x) ⋁  σB(x) and νA(x) ⋁  νB(x)〉

5. A ∪ B =  〈x, μA(x)  ∨ μB(x), σA(x) ⋁  σB(x) and νA(x) ∧ νB(x)〉

6. A ∪ B =  〈x, μA(x)  ∨  μB(x), σA(x) ∧ σB(x) and νA(x) ∧ νB(x)〉

Definition 2.4. [34] A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic

subsets in X satisfies the following axioms:

(NT1) 0N, 1N ∈ τ 
(NT1) G1 ∩ G2 ∈ τ for any G1, G2 ∈ τ 

(NT1)  ∪ Gi ∈ τ ∀{Gi: i ∈ J} ⊆ τ 

Definition 2.5. [34] Let A be an NS in NTS X. Then 

Nint(A) = ∪ {G ∶  G is an NOS in X and G ⊆ A} is called a neutrosophic interior of A 

Ncl(A) = ∩ {K ∶  K is an NCS in X and A ⊆ K} is called a neutrosophic closure of A 

Definition 2.6. [18] A NS A of a NTS X is said to be 

(1) a neutrosophic pre-open set (NPOS) if A ⊆  NInt(NCl(A)) and a neutrosophic pre-closed(NPCS) if

NCl(NInt(A))  ⊆  A. 
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(2) a neutrosophic semi-open set (NSOS) if A ⊆ NCl(NInt(A)) and a neutrosophic semi-closed set

(NSCS) if NInt(NCl(A))  ⊆  A. 

(3) a neutrosophic α-open set (NαOS) if A ⊆  NInt(NCl(NInt(A))) and a neutrosophic α-closed set

(NαCS) if NCl(NInt(NCl(A)))  ⊆  A. 

(4) a neutrosophic regular open set (NROS) if A =  Nint(Ncl(A)) and a neutrosophic regular closed

set (NRCS) if Ncl(Nint(A))  =  A. 

Definition 2.7. [22] Consider a NS A in a NTS (X, τ).Then the neutrosophic semi interior and the 

neutrosophic 

semi closure are defined as 

Nsint(A) = ∪{G: G is a N Semi open set in X and G ⊆ A}  

Nscl(A) = ∩ {K: K is a N Semi closed set in X and A ⊆ K } 

Definition 2.8. [38] A subset A of a neutrosophic topological space (X, τ) is called a neutrosophic α 

generalized closed (Nαg-closed) set if Nαcl(A) ⊆ U whenever A ⊆ U and U is neutrosophic α-open 

in (X, τ). 

3. NGSR closed sets

Definition 3.1. A NS A in a NTS X is stated to be a neutrosophic gsr closed set (NGSR-Closed set) if 

Nscl (A) ⊆ U for every A ⊆ U and U is a NROS (Neutrosophic Regular Open set) in X. 

The complement C(A) of a NGSR-closed set A is a NGSR-open set in X. 

Example 3.2. Let X = {a, b} and τ = {01, G, 1N} be NT in which G1 〈x, (0.4, 0.1), (0.3,0.2), (0.5, 0.5)〉 and 

G2  = 〈x, (0.4,0,4), (0.4, 0.3), (0.5,0.4)〉. Here A =  〈x, (0.4,0.4), (0.3,0.2), (0.4,0.5)〉  is an NGSR-closed 

set. 
Theorem 3.3. Each NCS is a NGSR-closed set in X. 

Proof. Let A ⊆  U wherein U is a NROS in X. Let A be an NCS in X. 

We got Nscl(A) ⊆  Ncl(A)  ⊆ U. Consequently A is a NGSR-closed set in X. 

Example 3.4. Let X = {a, b} and τ = {01, G, 1N} be an NT having G1 = 〈x, (0.4, 0.1), (0.3, 0.2), (0.5, 0.5)〉   

and G2  = 〈x, (0.4, 0.4), (0.4;  0.3), (0.5, 0.4〉) .Here A = 〈x, (0.4,0.4), (0.3,0.2), (0.4,0.5)〉  is an NGSR-

closed set, however not NCS. 

Theorem 3.5. Each Nα − closed set is a NGSR-closed set in X. 

Proof. Let A ⊆ U inwhich U is a NROS in X. Let A be an Nα − closed set in X. 

Now Nscl(A) ⊆  N ⊆ cl(A)  ⊆ U . Consequently A is a NGSR-closed set in X. 

Example 3.6. Let X ={a, b} and τ = {01, G, 1N} be an NT in which 

G1 =  〈x, (0.6,0.2), (0.1,0.5), (0.5, 0.4)〉  and G2 = 〈 x, (0.5, 03), (0.3, 0.2), (0.6,0.4) 〉 

Here A = 〈x, (0.6,0.3), (0.1,0.6), (0.5,0.4)  〉 is an NGSR-closed set, but not Nα-closed set as 

Ncl(Nint(Ncl(A)))  =  C(A) ⊈ A. 

Theorem 3.7. Each Nsemi-closed set is a NGSR-closed set in X. 

Proof. Suppose A is an Nsemi-closed set and 𝐴 ⊆  𝑈 wherein U is a NROS in X. Now (𝐴) =  𝐴 ∪

𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴)) ⊆ 𝐴 ∪ 𝐴 = 𝐴 . Therefore A is a NGSR-closed set in X. 

Example 3.8. Let X = {a, b} and τ = {01, G, 1N} be an NT in which 

G1 =  〈𝑥, (0.4,0.5), (0.3,0.2), (0.5,0.5)〉 and G2 =  〈𝑥, (0.4, 0.4), (0.4,0.3), (0.5, 0.4)〉  

Then 𝐴 =  〈𝑥, (0.4,0.4), (0.3,0.2), (0.4,0.5)〉  is an NGSR-closed set, however not Nsemi-closed set as 

𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴))  = G1  ⊈  𝐴. 
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Theorem 3.9. Each 𝑁α𝐺 − 𝑐𝑙𝑜𝑠𝑒𝑑 set is a NGSR-closed set in X. 

Proof. Let 𝐴 ⊆  𝑈 where U is a NROS in X. Let A be an 𝑁α𝐺 − 𝑐𝑙𝑜𝑠𝑒𝑑 set in X. Now 𝑁𝑠𝑐𝑙(𝐴) ⊆

𝑁α𝑐𝑙(𝐴)  ⊆ 𝑈 . Therefore A is a NGSR-closed set in X. 

Example 3.10. Let X = {a, b} and τ = {01, G, 1N} be an NT where 

G1  = 〈𝑥, (0.6, 0.2), (0.1,0.5), (0.5, 0.4)  〉 and G2 =  〈x, (0.5, 0.3), (0.3,0.2), (0.6,0.4) 〉  

Then 𝐴 = 〈𝑥, (0.6,0.3), (0.1,0.6), (0.5,0.4)〉  is an NGSR-closed set but not NαG-closed set. 

Remark 3.11. The counter examples shows that NGSR-closed set is independent of NPCS. 

Example 3.12. Let X = {a, b} and τ = {01, G, 1N} be an NT where 

G1 = 〈x, (0.6, 0.2), (01, 0.5), (0.5,0.4)〉 and G2  = 〈𝑥, (0.5,03. ), (0.3, 0.2), (0.6,0.4) 〉  

Here 𝐴 = 〈𝑥, (0.6,0.3), (0.1,0.6), (0.5,0.4)〉 be an NGSR-closed set, but not NPCS as Ncl(Nint(A)) = C(B) 

⊈ A . 

Example 3.13. Let X ={a, b} and τ = {01, G, 1N} be an NT where 

G1  =  〈𝑥, (0: 5;  0: 4), (0: 3;  0: 2), (0: 5;  0: 6)〉 ,G2 = 〈𝑥, (0: 8;  0: 7), (0: 4;  0: 3), (0: 2;  0: 3)〉 and 

G3  =  〈𝑥, (0: 2;  0: 1), (0: 3;  0: 2), (0: 8;  0: 9)〉  

Then 𝐴 =  〈𝑥, (0.5,0.3), (0.3,0.2), (0.5,0.7) 〉 is an NPCS, but not NGSR-closed set. 

Theorem 3.14. Consider a NTS (X, τ). Then for each A ∈ NGSR-closed set and for each B ∈ NS in X, 

𝐴 ⊆  𝐵 ⊆  𝑁𝑠𝑐𝑙(𝐴) implies B ∈ NGSR-closed in (X, τ ) . 

Proof. Assume that 𝐵 ⊆  𝑈 and U is a NROS in (X, τ ) which shows that 𝐴 ⊆  𝐵, 𝐴 ⊆ 𝑈. Via 

speculation, B ⊆ Nscl(A). Consequently 𝑁𝑠𝑐𝑙(𝐵) ⊆ 𝑁𝑠𝑐𝑙(𝑁𝑠𝑐𝑙(𝐴))  =  𝑁𝑠𝑐𝑙(𝐴) ⊆  𝑈, given that A is an 

NGSR-closed set in (X, τ ). As a result B ∈ NGSR-closed in (X, τ ). 

Theorem 3.15. Consider a NROS A and a NGSR-closed set in (X, τ ), then A is a NSemi-closed set in 

(X, τ ). 

Proof. Due to the fact A ⊆ A and A is a NROS in (X, τ ),Via speculation, Nscl(A) ⊆ A. 

However A ⊆ Nscl(A). Therefore Nscl(A) = A. Consequently A is a Nsemi-closed set in (X, τ). 

Theorem 3.16. Let (X, τ) be a NTS. Then for each A ∈ NGSR-open X and for every B ∈ NS(X), Nsint 

(A) ⊆B⊆A implies B ∈ NGSR-open set in X.

Proof. Let A be any NGSR-open set of X and B be any NS of X. By means of speculation Nsint ⊆ B 

⊆A. Then C(A) is a NGSR-closed in X and C(A) ⊆ C(B) ⊆Nscl(C(A)). By using Theorem 3.5, C(B) is a 

NGSRclosed in (X, τ ). Thus B is a NGSR-Open in (X, τ ). Hence B ∈ NGSR-open in X. 

Theorem 3.17. A NS A is a NGSR-open in (X, τ ) if and only if F _ Nsint(A) everytime F is a NRCS in 

(X, τ ) and F ⊆ A. 

Proof. Necessity: Assume that A is a NGSR-open in (X, τ) and F is a NRCS in (X, τ ) such that F ⊆ A. 

Then C(F) is a NROS and C(A) ⊆ C(F). Via speculation C(A) is a NGSR-closed set in (X, τ), we’ve 

Nscl(C(A)) ⊆ C(F). Therefore F ⊆ Nsint(A). 
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Sufficiency: Let U be a NROS in (X, τ) such that C(A) ⊆ U. By hypothesis, C(U) ⊆ Nsint(A). 

Consequently Nscl(C(A)) ⊆ U and C(A) is an NGSR-closed set in (X, τ ). Thus A is a NGSR-open set 

in (X, τ). 

Theorem 3.18. A is Nsemi-closed if it is both Nsemi-open and NGSR-closed. 

Proof. Considering A is each Nsemi-open and NGSR-closed set in X, then Nscl(A) ⊆ A. We 

additionally have A ⊆Nscl(A). Accordingly, Nscl(A) = A. Therefore, A is an Nsemi-closed set in X. 

4 On NGSR-Continuity and NGSR-Contra Continuity 

Definition 4.1. Let f be a mapping from a neutrosophic topological space (X, τ ) to a neutrosophic 

topological space (Y, 𝜎). Then f is referred to as a neutrosophic gsr-continuous(NGSR-continuous) 

mapping if 𝑓−1(𝐵) is a NGSR-open set in X, for each neutrosophic-open set B in Y . 

Theorem 4.2. Consider a mapping 𝑓 ∶  (𝑋, 𝜏 )  →  (𝑌, 𝜎). Then (1) and (2) are equal. 

(1) f is NGSR-continuous

(2) The inverse image of each N-closed set B in Y is NGSR-closed set in X.

Proof. This can be proved with the aid of using the complement and Definition 4.1. 

Theorem 4.3. Consider an NGSR-continuous mapping 𝑓 ∶  (𝑋, 𝜏 )  →  (𝑌, 𝜎) then the subsequent 

assertions hold: 

(1) for all neutrosophic sets A in X, 𝑓(𝑁𝐺𝑆𝑅𝑁𝑐𝑙(𝐴))  ⊆  𝑁𝑐𝑙(𝑓(𝐴))

(2) for all neutrosophic sets B in Y, 𝑁𝐺𝑆𝑅𝑁𝑐𝑙 (𝑓−1(𝐵))  ⊆  𝑓−1(𝑁𝑐𝑙(𝐵)).

Proof. (1) Let Ncl(f(A)) be a neutrosophic closed set in Y and f be NGSR-continuous, then it follows 

that 𝑓−1 (Ncl(f(A))) is NGSR-closed in X. In view that 𝐴 ⊆  𝑓−1 (𝑁𝑐𝑙(𝑓(𝐴))), 𝑁𝐺𝑆𝑅𝑐𝑙(𝐴)  ⊆

 𝑓−1 (𝑁𝑐𝑙(𝑓(𝐴))). Hence, 𝑓(𝑁𝐺𝑆𝑅𝑁𝑐𝑙(𝐴))  ⊆  𝑁𝑐𝑙(𝑓(𝐴)). 

(2) We get 𝑓(𝑁𝐺𝑆𝑅𝑐𝑙(𝑓−1 (𝐵)))  ⊆  𝑁𝑐𝑙𝑓(𝑓−1 (𝐵)))  ⊆  𝑁𝑐𝑙(𝐵).

Hence, 𝑁𝐺𝑆𝑅𝑐𝑙(𝑓−1 (𝐵))  ⊆  𝑓−1 (𝑁𝑐𝑙(𝐵)) by way of changing A with B in (1).

Definition 4.4. Let f be a mapping from a neutrosophic topological space (X, τ) to a neutrosophic 

topological space (Y, 𝜎). Then f is known as neutrosophic gsr-contra continuous(NGSR-contra 

continuous) mapping if 𝑓−1 (B) is a NGSR-closed set in X for each neutrosophic-open set B in Y . 

Theorem 4.5. Consider a mapping 𝑓 ∶  (𝑋, 𝜏 )  →  (𝑌, 𝜎). Then the subsequent assertions are 

equivalent: 

(1) f is a NGSR-contra continuous mapping

(2) 𝑓−1 (B) is an NGSR-closed set in X, for each NOS B in Y.

Proof. (1)  ⟹ (2) Assume that f is NGSR-contra continuous mapping and B is NOS in Y. Then Bc is 

an NCS in Y. It follows that, 𝑓−1(𝐵𝑐) is an NGSR-open set in X. For this reason, 𝑓−1 (B) is an NGSR-

closed set in X. 

(2) ⟹  (1) The converse is similar.

Theorem 4.6. Consider a bijective mapping 𝑓 ∶  (𝑋, 𝜏 )  →  (𝑌, 𝜎). from an 
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NTS(X, 𝜏 )into an NTS(Y, 𝜎).If 𝑁𝑐𝑙(𝑓(𝐴)) ⊆ 𝑓(𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝐴)), for each NS B in X, then the mapping f 

is NGSR-contra continuous. 

Proof. Consider a NCS B in Y. Then 𝑁𝑐𝑙(𝐵) = 𝐵 and f is onto, by way of assumption, 

𝑓(𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵))) ⊆ 𝑁𝑐𝑙(𝑓(𝑓−1 (𝐵))) = 𝑁𝑐𝑙(𝐵) = 𝐵. Consequently, 

𝑓−1 (𝑓(𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵)))) ⊆ 𝑓−1 (𝐵). Additionally due to the fact that f is an into mapping, we have 

𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵)) = 𝑓−1 (𝑓(𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵)))) ⊆ 𝑓−1 (𝐵).Consequently, 𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵)) = 
 𝑓−1 (𝐵), so f1(B) is an NGSR-open set in X. Hence, f is a NGSR-contra continuous mapping. 

5. Conclusion and Future work

Neutrosophic topological space concept is used to deal with vagueness. This paper 

introduced NGSR closed set and some of its properties were discussed and derived some 

contradicting examples. This idea can be developed and extended in the real life applications such as 

in medical field and so on. 
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Neutrosophic Weibull distribution and Neutrosophic 
Family Weibull Distribution 

Kawther Fawzi Hamza Alhasan, Florentin Smarandache

Abstract: Many problems in life are filled with ambiguity, uncertainty, impreciseness etc., 

therefore we need to interpret these phenomena. In this paper, we will focus on  studying 

neutrosophic Weibull  distribution and its family,  through  explaining its special cases , 

and  the functions' relationship with neutrosophic Weibull such as Neutrosophic 

Inverse Weibull, Neutrosophic Rayleigh, Neutrosophic three parameter Weibull, 

Neutrosophic Beta Weibull, Neutrosophic five Weibull, Neutrosophic six Weibull 

distributions (various parameters).This study will enable us to deal with indeterminate or 

inaccurate  problems in a flexible manner. These problems will follow this family of 

distributions. In addition, these distributions are applied in various domains, such as 
reliability, electrical engineering, Quality Control etc. Some properties and examples for these 
distributions are discussed. 

Keywords: Weibull distribution, Neutrosophic logic, Neutrosophic number, Neutrosophic 

Weibull, Neutrosophic inverse Weibull, Neutrosophic Rayleigh, Neutrosophic Weibull with 

(three, four, five, six) parameters. 

1. Introduction

The real world is overstuffed with vague, unclear, fuzzy (problems, situations, ideas). The classical 

probability ignores extreme, aberrant, unclear values, and therefore a new adequate tool had to 

emerge. Neutrosophic logic was introduced by Smarandache in 1995, as a generalization for the fuzzy 

logic and intuitionistic fuzzy logic [5, 6]. Smarandache [3, 7, 8]   and Salamaa.et.al [3, 4] were 

presented the fundamental concepts of neutrosophic set.  Smarandache extended the fuzzy set to the 

neutrosophic set [1, 3], introducing the neutrosophic components T, I, F which represent the 

membership, indeterminacy, and non-membership values respectively, where]-0, 1+[ is the non-

standard unit interval. Smarandache presented the neutrosophic statistics, which the data can be 

enigmatic, vague, imprecise, incomplete, even unknown. 

The extension of classical distributions according to the neutrosophic logic means that the parameters 

of classical distribution take undetermined values[1,2,3,10], which allows dealing with all the 

situations that one may encounter while working with statistical data and especially when working 

with vague and inaccurate statistical data, such as the sample size may not be exactly known. The 

sample size could be between 50 and 70;  the statistician is not sure about 20 sample persons if they 

belong or not to the population of interest; or because the 20 sample persons only partially belong to 

the population of interest, while partially they don’t belong. This mean, in classical statistics all data 

Kawther Fawzi Hamza Alhasan, Florentin Smarandache (2019). Neutrosophic Weibull 
distribution and Neutrosophic Family Weibull Distribution. Neutrosophic Sets and Systems 28, 
191-199
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are determined, while in neutrosophic statistic the data or a part of it are indeterminate in some 

degree. The neutrosophic researchers presented   studies in objects different in neutrosophic statistic, 

such as Salama, Rafief [29], Abdel-Basset and others, see [20-28].  For more than a decade, Weibull 

distribution has been applied extensively in many areas and particularly used in the analysis of 

lifetime data for reliability engineering or biology (Rinne, 2008). However, the Weibull distribution 

has a weakness for modeling phenomenon with non-monotone failure rate. In this paper, we will 

define  and  study the Neutrosophic Weibull distribution, Neutrosophic family Weibull distribution 

for varies cases as Neutrosophic Weibull, Neutrosophic beta Weibull, Neutrosophic inverse Weibull, 

Neutrosophic Rayleigh, Neutrosophic with (three, four, five, six) parameters, and discuss some 

properties of these distributions, illustrated through examples and graphs.

2. Terminologies

In this section, we present some basic axioms of neutrosophic logic, and in particular, the work of

Smarandache in [3, 7, 8] and Salama et al. [3, 4]. Smarandache introduced the neutrosophic

components T, I, F which represent the membership, indeterminacy, and non-membership values

respectively, where ] 0-,1+[  is nonstandard unit interval.

2.1 Some definitions  

Definition 1 [1, 2, 3] "Neutrosophy is a new branch of philosophy which studies the origin, nature, 

and scope of neutralities, as well as their". 

Definition 2 [1, 2, 3] Let T, I,F be real standard or nonstandard subsets of ] 0-,1+[, with 

Sup_T=t_sup, inf_T=t_inf 

Sup_I=i_sup, inf_I=i_inf 

Sup_F=f_sup, inf_F=f_inf 

n-sup=t_sup+i_sup+f_sup

n-inf=t_inf+i_inf+f_inf,

T, I, F are called neutrosophic components.

Definition 3 [4, 5] Let X be a non-empty fixed set. A neutrosophic set ( NS for short) A is an object

having the form {x, (𝜇𝐴(𝑥), 𝛿𝐴(𝑥), 𝛾𝐴(𝑥)): 𝑥 ∈ 𝑋}  , where 𝜇𝐴(𝑥), 𝛿𝐴(𝑥)  𝑎𝑛𝑑  𝛾𝐴(𝑥)  which represent

the degree of member ship function , the degree of indeterminacy , and the degree of non-member

ship , respectively of each element x ∈ X to the set A .

Definition 4 [4, 5]  The NSS  0N  and  1N in X as follows:

0𝑁 may be defined as:

01 = {𝑥  0,0,1: 𝑥 ∈ 𝑋} 

02 = {𝑥  0,1,1: 𝑥 ∈ 𝑋} 

03 = {𝑥  0,1,0: 𝑥 ∈ 𝑋} 

04 = {𝑥  0,0,0: 𝑥 ∈ 𝑋} 

 1𝑁 may be defined as: 

11 = {𝑥  1,0,0: 𝑥 ∈ 𝑋} 

12 = {𝑥  1,0,1: 𝑥 ∈ 𝑋} 

13 = {𝑥  1,0,0: 𝑥 ∈ 𝑋} 

14 = {𝑥  1,1,1: 𝑥 ∈ 𝑋} 

2.2 Neutrosophic probability 
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Neutrosophic probability is a generalization of the classical probability in which the chance that event 

𝐴 = { 𝑋, 𝐴1, 𝐴2, 𝐴3} occurs is P(A1 ) true, P(A2 ) indeterminate , P(A3 ) false on a space X, then 

𝑁𝑃(𝐴) = { 𝑋, 𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐴3)}  . 

Definition 5 [3,4] 

Let A and B be a neutrosophic events on a space X, then 𝑁𝑃(𝐴) = { 𝑋, 𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐴3)}   

And  𝑁𝑃(𝐵) = { 𝑋, 𝑃(𝐵1), 𝑃(𝐵2), 𝑃(𝐵3)} their neutrosophic probabilities. 

Definition 6 [3,4] 

Let A and B be a neutrosophic events on a space X, and𝑁𝑃(𝐴) = { 𝑋, 𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐴3)}, and  

𝑁𝑃(𝐵) = { 𝑋, 𝑃(𝐵1), 𝑃(𝐵2), 𝑃(𝐵3)}  are neutrosophic probabilities. Then we define 

𝑁𝑃(𝐴 ∩ 𝐵) = { 𝑋, 𝑃(𝐴1 ∩ 𝐵1), 𝑃(𝐴2 ∩ 𝐵2), 𝑃(𝐴3 ∩ 𝐵3)}   

𝑁𝑃(𝐴 ∪ 𝐵) = { 𝑋, 𝑃(𝐴1 ∪ 𝐵1), 𝑃(𝐴2 ∪ 𝐵2), 𝑃(𝐴3 ∪ 𝐵3)}   

NP(Ac) = { X, P(A1
c), P(A2

c) , P(A3
c)}

3 Weibull Distribution 

Weibull distribution is one of most important distributions because it is widely used in reliability 

analysis, industrial and electrical engineering, in distribution of life time, in extreme value theory, … 

etc.; this distribution has various cases dependent on number of parameters such as two or three or 

five parameters α is the scale parameter, β is the shape parameter and γ is the location parameter. 

Also, it can be used to model a state where the failure function increases, decreases or remains 

constant with time. 

4 Neutrosophic Weibull Distribution 

A neutrosophic Weibull distribution (Neut-Weibull) of a continuous variable X is a classical Weibull 

distribution of x, but such that its mean α or β or γ are unclear or imprecise. 

For example, α or β or γ can be an interval (open or closed or half open or half close) or can be set(s) 

with two or more elements. Then, the probability density function (p.d.f.) is: 

𝑓𝑁(𝑋) =
𝛽𝑁

𝛼𝑁
𝛽𝑁

𝑋𝛽𝑁−1𝑒−(𝑋 𝛼𝑁⁄ )𝛽𝑁  , 𝑋 > 0, Where 𝛽𝑁: is the shape parameter of distribution Net-Weibull,

𝛼𝑁: is the scale parameter of distribution Net- Weibull, such that N is a neutrosophic number. 

4.1 Properties of Neutrosophic Weibull Distribution 

 The distribution function (c.d.f.) is:

𝐹𝑁(𝑋) = 1 − 𝑒−(𝑋 𝛼𝑁⁄ )𝛽𝑁 ,

𝐸𝑁(𝑋) = 𝛼𝑁Γ (
𝛽𝑁+1

𝛽𝑁
),

𝑉𝑁(𝑋) = 𝛼2
𝑁 [Γ (

𝛽𝑁+2

𝛽𝑁
)] − [Γ (

𝛽𝑁+1

𝛽𝑁
)]

2

. 

 The hazard function is:

ℎ𝑁 = 𝛽𝑁𝑋𝛽𝑁−1𝑋(𝛽𝑁−1 𝛼𝑁⁄ )𝛽𝑁 .

 The moment rth about mean is:

𝛼𝑁
𝑟Γ (𝛽𝑁 +

𝑟

𝛽𝑁
) 

 So, the reliability or survival function is:
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𝐹𝑁
̅̅ ̅(𝑋) = 𝑒−(𝑋 𝛼𝑁⁄ )𝛽𝑁 .

Now, we put 𝛽𝑁=1 in the formula (1), and we get the neutrosophic exponential distribution [13]. 

4.2 Example of Neutrosophic Weibull distribution 

Let the product be an electric generator produced with high capacity of trademark that has a Weibull 

distribution with parameter α=1, β=[1.5,2]. Compute  the probability of electric generator fails before 

the expiration of a five years warranty. 

Solution : 

 In this example, we note that the shape parameter is indeterminate. 

The electric generator can work through  to one  year:  

𝑓𝑁(𝑋) =
[1.5,2]

𝛼𝑁
[1.5,2] 𝑋[1.5,2]−1𝑒−(𝑋 𝛼𝑁⁄ )[1.5,2]

If  we take 𝛽 = 1.5  , and   𝛼 = 1 

             𝑓𝑁(𝑋 = 1) = 0.5518 

the probability of electric generator fails before the expiration of a five years warranty: 

𝑃(𝑋 ≤ 5) = 1 − 𝑒−(5 1⁄ )1.5
, = 0. 999986

If we take 𝛽 = 2  , and   𝛼 = 1 

            𝑓𝑁(𝑋 = 1) = 0.7357 

𝑃(𝑋 ≤ 5) = 1 − 𝑒−(5 1⁄ )5
, = 0. 999999

Thus, the probability that the electric machine fails has the  range between [0.5518, 0.7357]. 

Now, suppose  𝛽 = 2  and = [1,2] , i.e  the scale  parameter 𝛼 is indeterminate. 

We take  𝛼 = 1 and  𝛽 = 2  

𝑓𝑁(𝑋 = 1) =
2

𝑒1 = 0.7357 

We take  𝛼 = 2     and   𝛽 = 2 

       𝑓𝑁(𝑋 = 1) =
1

2𝑒1/4 = 0.3894 

   In this case, the probability that the electric machine fails has the range between [0.7357, 0.3894]. 

Also, we can  take more values of X, showed in Figure (1). 

     Now, we  can compute  

𝐹𝑁(𝑋) = 1 − 1/𝑒 = 0.6321 ,    𝑖𝑓 𝛼 = 1  

𝐹𝑁(𝑋) = 1 − 𝑒
1

1.2840⁄ = 0.2212 ,       𝑖𝑓 𝛼 = 2.
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   Figure 1: Neutrosophic Weibull distribution. 

4.3 Comparison between Neutrosophic Weibull distribution and Weibull distribution 

1- In classical Weibull, we noted that if the  𝛽 = 3.6  𝑜𝑟 𝑚𝑜𝑟𝑒 , the probability distribution

function (p.d.f) takes value error because it is greater than one, and this contradicts with law

of probability,consedered Extreme values, while in neutrosophic Weibull this is applicable.

See Figure (2).

2- In classical Weibull distribution, when X is increasing, the p.d.f. is decreasing, while in

Neutrosophic Weibull distribution the p.d.f is unpredictable because of the aberrant values.

3- Many values that are larger than one are neglected in Weibull distribution, meanwhile in

Neutrosophic Weibull these values are considered.

4- When 𝛼 = 𝛽 = 1, the p.d.f. will equal zero when X=701,while in neutrosophic Weibull X can

be of other values such as X={701,100} or [701,100] in this case p.d.f can be of different values.

 Figure 2: p.d.f of neutrosophic Weibull more than one. 
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5 The Family of Neutrosophic Weibull 

In this section, we study the various types of Net-Weibull, such as  neutrosophic Rayleigh 

distribution, neutrosophic inverse Weibull distribution, neutrosophic Beta-Weibull distribution and 

(three, four, five, six)-parameters Weibull distributions. 

5.1  Neutrosophy Rayleigh Distribution 

A Rayleigh distribution is often observed when the total size of a vector is linked to its 

directional components. Considering this distribution is important in the error analysis of various 

systems or individuals. It is also considered as a model for testing life failure/expiration. Rayleigh 

distribution is used in the study of the event of sea wave rise in the oceans and the study of wind 

speed, as well as in the information of the strength of signals and radiation at peak time of 

communications. The distribution is widely applied: 

 In communications theory, to model multiple paths of dense scattered signals getting to a
receiver;

 In the physics, to model wind speed, wave heights and sound/light radiation;

 In engineering, to measure the lifetime of an object, since the lifetime depends on the object’s age
(resistors, transformers, and capacitors in aircraft radar sets);

 In medical imaging examination, to study noise variance in magnetic resonance imaging.

Now, we define the  probability density function of neutrosophic Rayleigh  distribution as follows: 

 𝑅𝑁(𝑋) =
𝑋

𝛿𝑁
2 𝑒−𝑋2    2𝛿𝑁

2⁄  ,   𝑋 > 0, 𝛿𝑁  is the scale parameter. 

this parameter  𝛿𝑁 can take the values of an interval or a set: 

cumulative distribution is  𝐹𝑁(𝑋) = 1 − 𝑒−𝑋2    2𝛿𝑁
2⁄ , 

the mean of Neutrosophic Rayleigh distribution is 

E(X) = 𝛿𝑁 √
𝜋

2
, 

the variance:  var(x) = 2-π/2 𝛿𝑁
2.

5.2 Neutrosophic Weibull with 3 Parameters 

We can obtain the  neutrosophic Weibull with 3-parameters by relaying  on  Weibull with 2-

parameters and adding the third parameter, namely the location parameter (𝛾), this is in classical 

probability . Now, we define the neutrosophic Weibull with three parameters  (an indeterminacy 

may exist in one parameter or in all parameters). Neutrosophic Weibull with 3-parameters is defined 

as follows: 

𝑓𝑁(𝑋) = [𝛽𝑁
(𝑋−𝛾𝑁)𝛽𝑁−1

𝛼𝑁
𝛽𝑁

]𝑒−((𝑋−𝛾𝑁) 𝛼𝑁⁄ )𝛽𝑁      , 𝛾𝑁 ≤  𝑋

 The distribution function is:

𝐹𝑁(𝑋) = 1 − 𝑒−((𝑋−𝛾𝑁) 𝛼𝑁⁄ )𝛽𝑁  , 𝛾𝑁 ≤  𝑋 

 The hazard function is:

ℎ𝑁(𝑋) = 𝛽𝑁    (𝑋 − 𝛾𝑁)𝛽𝑁(1  𝛼𝑁⁄ )𝛽𝑁  ,  𝛾𝑁 ≤  𝑋 

 The survival function is

𝐹𝑁
̅̅ ̅(𝑋) = 𝑒−((𝑋−𝛾𝑁) 𝛼𝑁⁄ )𝛽𝑁

 The variance
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𝑉𝑁(𝑋) = 𝛼2
𝑁 [Γ (

𝛽𝑁+2

𝛽𝑁
)] − [Γ (

𝛽𝑁+1

𝛽𝑁
)]

2

, 

 The expected value  𝐸𝑁(𝑋) = 𝛾𝑁 + 𝛼𝑁Γ (
𝛽𝑁+1

𝛽𝑁
). 

5.3 Four-Parameter Neutrosophic-Beta-Weibull 

The Beta-Weibull was first proposed by Famoye et al. (2005) [11,12, 15]. We now define the new 

density function of neutrosophic-Beta-Weibull distribution (NBW) in neutrosophic logic with 

indeterminacy points for random variable or parameters as follows: 

      𝑓(𝑋) =
 Γ (𝑐𝑁+𝛾𝑁)

Γ (𝑐𝑁)Γ(𝛾𝑁)

 𝛼𝑁

𝛽𝑁
(

 𝑋

𝛽𝑁
)

𝛼𝑁−1

[1 − 𝑒−(𝑋 𝛽𝑁⁄ )𝛼𝑁  ]𝑐𝑁−1𝑒−𝛾𝑁(𝑋 𝛽𝑁⁄ )𝛼𝑁

    𝑋 > 0, 𝛾𝑁 , 𝛽𝑁 , 𝛼𝑁 > 0 

where these parameters  𝛾𝑁 , 𝛽𝑁 , 𝛼𝑁 can be set(s) or interval (closed or open or half): 

Because lim
𝑥→0

𝑓(𝑋) = lim
𝑥→0

 
 Γ (𝑐𝑁+𝛾𝑁)

Γ (𝑐𝑁)Γ(𝛾𝑁)

 𝛼𝑁

𝛽𝑁
(

 𝑋

𝛽𝑁
)

𝛼𝑁−1

[1 − 𝑒−(𝑋 𝛽𝑁⁄ )𝛼𝑁  ]
𝑐𝑁−1

𝑒−𝛾𝑁(𝑋 𝛽𝑁⁄ )𝛼𝑁

=
 Γ (𝑐𝑁 + 𝛾𝑁)

 Γ (𝑐𝑁)Γ(𝛾𝑁)

 𝛼𝑁

𝛽𝑁

(
 𝑋

𝛽𝑁

)
𝛼𝑁−1

𝑒−𝛾𝑁(𝑋 𝛽𝑁⁄ )𝛼𝑁  [1 − 𝑒−(𝑋 𝛽𝑁⁄ )𝛼𝑁  ]
𝑐𝑁−1

=
 Γ (𝑐𝑁 + 𝛾𝑁)

 Γ (𝑐𝑁)Γ(𝛾𝑁)

 𝛼𝑁

𝛽𝑁

(
 𝑋

𝛽𝑁

)
𝛼𝑁−1

𝑒−𝛾𝑁(𝑋 𝛽𝑁⁄ )𝛼𝑁  [1 −
1

2!
(

 𝑋

𝛽𝑁

)
𝛼𝑁

 +
1

3!
(

 𝑋

𝛽𝑁

)
2𝛼𝑁

−
1

4!
(

 𝑋

𝛽𝑁

)
3𝛼𝑁

+ ⋯ ]

𝑐𝑁−1

Then the probability of density function is equal to 

= lim
𝑥→0

 𝛼𝑁

𝛽𝑁

 Γ (𝑐𝑁+𝛾𝑁)

  Γ (𝑐𝑁)Γ(𝛾𝑁)
(

 𝑋

𝛽𝑁
)

𝛼𝑁−1

={

∞
 𝛼𝑁

𝛽𝑁

 Γ (𝑐𝑁+𝛾𝑁)

  Γ (𝑐𝑁)Γ(𝛾𝑁)

0

𝛼𝑁 𝑐𝑁 < 1
𝛼𝑁 𝑐𝑁 = 1
𝛼𝑁 𝑐𝑁 > 1

} 

where 𝛽𝑁 , 𝑐𝑁 , 𝛾𝑁 , 𝛼𝑁, are  Neutrosophy numbers. 

 When 𝑐𝑁 = 𝛾𝑁 = 1, then the (NBW) is reduced to neutrosophic Weibull distribution.

 When  𝛽𝑁 = 𝛼𝑁 = 1, 𝑐𝑁 = 2, 𝛾𝑁  = 𝛿√2, the NBW is reduced to neutrosophy Rayleigh.

 In (1958)  Kies defined the survival function to Weibull with four parameters in classical

distribution.

Here we define Neutrosophic survival function in Neutrosophic distribution as follows: 

𝐹𝑁
̅̅ ̅(𝑋) = 𝑒

{−𝛾𝑁(
𝑥−𝛼𝑁
𝛽𝑁−𝑥

)
𝑘𝑁

}
, 𝛾𝑁 > 0, 𝑘𝑁 > 0, 0 < 𝛼𝑁 < 𝑋 < 𝛽𝑁 < ∞. 

5.4 Neutrosophic Weibull Distribution with 5 Parameters 

Phani in (1987) [14] suggested model with survival function has five parameters. We define the 

neutrosophic Weibull with 5-parameters: 

𝐹𝑁
̅̅ ̅(𝑋) = 𝑒

−𝛾𝑁 [𝑋−𝛼𝑁]𝑏1  

[𝛽𝑁− 𝑋]𝑏2
,    𝛾𝑁 , 𝑏1 , 𝑏2 > 0,      0 < 𝛼𝑁 < 𝑋 < 𝛽𝑁 < ∞. 

5.5 Neutrosophic Weibull Distribution with 6 Parameters 

T, W, and Uraiwan in (2014) [15] proposed a mixed distribution is Beta exponential Weibull Poisson 

distribution. We define the neutrosophic Beta exponential Weibull Poisson distribution as follows: 

Let x be the neutrosophic random variable with parameters 𝛾𝑁 , 𝑘𝑁, 𝛼𝑁, 𝛽𝑁 , 𝑏1, 𝑏2; 
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𝑓(𝑥)  =

𝛽𝑁𝛼𝑁 𝛾𝑁
𝑘𝑁

𝛽
𝑁    𝑋𝛽𝑁−1 𝑢(1−𝑢)𝛼𝑁−1𝑒𝛾𝑁(1−𝑢)𝛼𝑁

B(𝑏1,𝑏2)(𝑒  𝛾𝑁 −1)
. [

𝑒𝛾𝑁(1−𝑢)𝛼𝑁 −1

(𝑒  𝛾𝑁 −1)
]

𝛼𝑁−1

[1 −
𝑒𝛾𝑁(1−𝑢)𝛼𝑁 −1

(𝑒  𝛾𝑁 −1)
]

𝑏1𝑁−1

where  𝑢 = 𝑒−(𝑋𝑘𝑁)𝛽𝑁 .

5.6 Neutrosophic Inverse Weibull Distribution 

Keller et al. (1985) used the inverse Weibull distribution for reliability analysis of commercial vehicle 

engines. Here, we define Neutrosophic inverse Weibull distribution as follows: 

 𝑓𝑁(𝑡) = 𝛽𝑁𝛼𝑁
𝛽𝑁 𝑡−𝛽𝑁−1𝑒−(𝛼𝑁 𝑡⁄ )𝛽𝑁 ,   𝑡 > 0, So the Hazard function is ℎ𝑁(𝑡) =

𝛽𝑁𝛼𝑁

𝛽𝑁 𝑡−𝛽𝑁−1𝑒−(𝛼𝑁 𝑡⁄ )
𝛽𝑁

1−𝑒−(𝛼𝑁 𝑡⁄ )
𝛽𝑁

. 

6 Applications 

Many  applications of Weibull families distributions are suitable for modeling and analysis of 

floods, rainfall, sea, electronic, manufacturing products, navigation and transportation control. The 

theories and tools of reliability engineering are applied into widespread fields, such as electronic and 

manufacturing products, aerospace equipment, earthquake and volcano forecasting, communication, 

navigation and transportation control, medical processor to the survival analysis of human being or 

biological species, and so on [14]. So the neutrosophic has the multi-applied in Decision-making, 

introduced by Abdel-Basset and others. 

7 Conclusions 

The study of neutrosophic probability distributions gives us a more comprehensive space in the 

applied field, as it takes into account more than the value of the distribution parameters and not only 

one value as in the classical distributions, and thus we will be able to solve and explain many of the 

issues that have been hindering us or we tended to ignore in classical logic. In this paper, we defined 

th new neutrosophic clasical distribution,  the neutrosophic Weibull distribution and neutrosophic 

family Weibull (neutrosophic inverse Weibull, Neutrosophic Rayleigh  distribution, Neutrosophic 

Weibull distribution with (3, 4, 5, 6)-parameters, and give clear  examples. Because the weibull 

distribution has many applications in different fields.such as control system, relability and others. 

We also  study some properties of these distributions (mean, variance, failure function and reliability 

function). In the future, we will apply these distributions to  many problems and we will examine 

other distributions in neutrosophic logic. 
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On Neutrosophic Vague Graphs 
S. Satham Hussain, R. Jahir Hussain, Florentin Smarandache

Abstract: In this work, the new concept of neutrosophic vague graphs are introduced form the ideas 

of neutrosophic vague sets. Moreover, some remarkable properties of strong neutrosophic vague 

graphs, complete neutrosophic vague graphs and self-complementary neutrosophic vague graphs 

are investigated and the proposed concepts are described with suitable examples.  

Keywords: Neutrosophic vague graphs, Complete neutrosophic vague graph, Strong neutrosophic 

vague graph. 

1. Introduction

  Initially, vague set theory was first investigated by Gau and Buehrer [30] which is an 

extension of fuzzy set theory. Vague sets are regarded as a special case of context-dependent fuzzy 

sets. In order to handle the indeterminate and inconsistent information, the neutrosophic set is 

introduced by the author Smarandache and studied extensively about neutrosophic set [14] - [37] and 

it receives applications in many fields. In neutrosophic set, the indeterminacy value is quantified 

explicitly and truth-membership, indeterminacy membership, and false-membership are defined 

completely independent, if the sum of these values lies between 0 and 3.  The new developments 

of neutrosophic theory are extensively studied in [1] - [6]. Molodtsov [28] firstly introduced the soft 

set theory as a general mathematical tool to with uncertainty and vagueness. Akram [9] established 

the certain notions including strong neutrosophic soft graphs and complete neutrosophic soft graphs. 

The authors [7] first introduce the concept of neutrosophic vague soft expert set which is a 

combination of neutrosophic vague set and soft expert set to improve the reasonability of decision 

making in reality.  Neutrosophic vague set theory are introduced in [8]. The operations on single 

valued neutrosophic graphs are studied in [11].  Further, intuitionistic neutrosophic soft set and 

graphs are developed in [13].  Now, the domination in vague graphs and its is application are 

discussed in [16]. Intuitionistic neutrosophic soft set are studied in [18].  Interval valued 

neutrosophic graphs are developed by the author Broumi [22,23,25]. Interval neutrosophic vague sets 

are intiated in [31]. Motivation of the aforementioned works, we introduced the concept of 

neutrosophic vague graphs and strong neutrosophic vague graphs. This is a new developed theory 

which is the combination of neutrsophic graphs and vague graphs. Here the sum of Truth, 

Intermediate and False membership value lies between 0 and 2 since the truth and false membership 

are dependent variables. Here the complement of neutrosophic vague graphs is again neutrosophic 

S. Satham Hussain, R. Jahir Hussain, Florentin Smarandache (2019). On Neutrosophic Vague 
Graphs. Neutrosophic Sets and Systems 28, 245-258
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vague graphs. This development theory will be applied in Operation Research, Social network 

problems. Particularly, fake profile is one of the big problems of social networks. Now, it has become 

easier to create a fake profile. People often use fake profile to insult, harass someone, involve in 

unsocial activities, etc. This model can be reformulated in the abstract form to be applied in 

neutrosophic vague graphs. The major contribution of this work as follows:   

• Newly introduced neutrosophic vague graphs, neutrosophic vague subgraphs,

constant neutrosophic vague graphs with examples. 

• Further we presented some remarkable properties of strong neutrosophic vague

graphs with suitable examples. 

2  Preliminaries 

Definition 2.1 [10] A vague set A on a non empty set X is a pair (TA, FA), where TA: X → [0,1] and 

FA: X → [0,1]are true membership and false membership functions, respectively, such that  

0 ≤ TA(r) + FA(r) ≤ 1 for any r ∈ X. 

Let X and Y be two non-empty sets. A vague relation R of X to Y is a vague set R on X × Y that 

is R = (TR, FR), where TR: X × Y → [0,1], FR: X × Y → [0,1] which satisfies the condition:  

0 ≤ TR(r, s) + FR(r, s) ≤ 1 for any r ∈ X. 

Let G = (R, S) be a graph. A pair G = (J, K) is named as a vague graph on G∗ or a vague graph where 

J = (TJ, FJ) is a vague set on R and K = (TK, FK) is a vague set on S ⊆ R × R such that for each rs ∈

S, 

TK(rs) ≤ (TJ(r) ∧ TJ(s))&FK(rs) ≥ (TJ(r) ∨ FJ(s)).  

Definition 2.2 [9]  A Neutrosophic set A ⊂ B, (i.e) A ⊆ C if ∀r ∈ X, TA(r) ≤ TB(r), IA(r) ≥ IB(r)and 

FA(r) ≥ FB(r).  

Definition 2.3 [12, 26, 30] Let X be a space of points (objects), with a generic elements in X known 

by r.  A single valued neutrosophic set (SVNS) A  in X  is characterized by truth-membership 

function TA(r), indeterminacy-membership function IA(r) and falsity-membership-function FA(r). 

For each point r in X, TA(r), FA(r), IA(r) ∈ [0,1]. 

A = {r, TA(r), FA(r), IA(r)} and 0 ≤ TA(r) + IA(r) + FA(r) ≤ 3 

Definition 2.4 [19, 20] A neutrosophic graph is represented as a pair G∗ = (V, E) where 

(i) R = {r1, r2, . . , rn} such that T1 = R → [0,1], I1 = R → [0,1] and F1 = R → [0,1] denote the

degree of truth-membership function, indeterminacy function and falsity-membership function, 

respectively and  

0 ≤ TA(r) + IA(r) + FA(r) ≤ 3 

(ii) S ⊆ R × R where T2 = S → [0,1], I2 = S → [0,1] and F2 = S → [0,1] are such that

T2(rs) ≤ {T1(r) ∧ T1(s)}, 

I2(rs) ≥ {I1(r) ∨ I1(s)}, 

F2(rs) ≥ {F1(r) ∨ F1(s)}, 

and 0 ≤ T2(rs) + I2(rs) + F2(rs) ≤ 3, ∀rs ∈ R 

Definition 2.5 [8] A neutrosophic vague set ANV  (NVS in short) on the universe of discourse X 

written as  
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ANV = {〈r, T̂ANV
(r), ÎANV

(r), F̂ANV
(r)〉, r ∈ X} 

whose truth-membership, indeterminacy membership and falsity-membership function is defined as 

T̂ANV
(r) = [T̂−(r), T̂+(r)], [Î−(r), Î+(r)], [F̂−(r), F̂+(r)],

where T+(r) = 1 − F−(r), F+(r) = 1 − T−(r), and 0 ≤ T−(r) + I−(r) + F−(r) ≤ 2. 

Definition 2.6 [8] The complement of NVS ANV is denoted by ANV
c  and it is represented by 

T̂ANV

c (r) = [1 − T+(r),1 − T−(r)], 

ÎANV

c (r) = [1 − I+(r),1 − I−(r)], 

F̂ANV

c (r) = [1 − F+(r),1 − F−(r)], 

Definition 2.7 [8] Let ANV and BNV be two NVSs of the universe U. If for all ri ∈ U, 

T̂ANV
(ri) = T̂BNV

(ri), ÎANV
(ri) = ÎBNV

(ri), F̂ANV
(ri) = F̂BNV

(ri) 

 then the NVS ANV are included by BNV, denoted by ANV ⊆ BNV where 1 ≤ i ≤ n. 

Definition 2.8 [7] The union of two NVSs ANV and BNV is a NVSs, CNV, written as CNV = ANV ∪ BNV, 

whose truth membership function, indeterminacy-membership function and false-membership 

function are related to those of ANV and BNV by  

T̂CNV
(x) = [max(T̂ANV

− (r)T̂BNV

− (r)), max(T̂ANV

+ (r)T̂BNV

+ (r))]

ÎCNV
(x) = [min(ÎANV

− (r)ÎBNV

− (r)), min(ÎANV

+ (r)ÎBNV

+ (r))]

F̂CNV
(x) = [min(F̂ANV

− (r)F̂BNV

− (r)), min(F̂ANV

+ (r)F̂BNV

+ (r))]

Definition 2.9 [7] The intersection of two NVSs ANV and BNV is a NVSs CNV, written as CNV = ANV ∩

BNV, whose truth membership function, indeterminacy-membership function and false-membership 

function are related to those of ANV and BNV by  

T̂CNV
(x) = [min(T̂ANV

− (r)T̂BNV

− (r)), min(T̂ANV

+ (r)T̂BNV

+ (r))]

ÎCNV
(x) = [max(ÎANV

− (r)ÎBNV

− (r)), max(ÎANV

+ (r)ÎBNV

+ (r))]

F̂CNV
(x) = [max(F̂ANV

− (r)F̂BNV

− (r)), max(F̂ANV

+ (r)F̂BNV

+ (r))]

3  NEUTROSOPHIC VAGUE GRAPH 

Definition 3.1 Let G∗ = (R, S) be a graph. A pair G = (J, K) is named as a neutrosophic vague graph 

(NVG) on G∗ or a neutrosophic graph where J = (T̂J, ÎJ, F̂J) is a neutrosophic vague set on R and

K = (T̂K, ÎK, F̂K) is a neutrosophic vague set S ⊆ R × R where 

(1) R = {r1, r2, . . . , rn} such that

TJ
−: R → [0,1], IJ

−: R → [0,1], FJ
−: R → [0,1]

which satisfies the condition FJ
− = [1 − TJ

+]

TJ
+: R → [0,1], IJ

+: R → [0,1], FJ
+: R → [0,1]

which satisfies the condition FJ
+ = [1 − T1

−] indicates the degree of truth membership

function, indeterminacy membership and falsity membership of the element ri ∈ R., and  

0 ≤ TJ
−(ri) + IJ

−(ri) + FJ
−(ri) ≤ 2.

0 ≤ TJ
+(ri) + IJ

+(ri) + FJ
+(ri) ≤ 2.

(2) S ⊆ R × R where

TK
−: R × R → [0,1], IK

−: R × R → [0,1], FK
−: R × R → [0,1]

TK
+: R × R → [0,1], IK

+: R × R → [0,1], FK
+: R × R → [0,1]

 indicates the degree of truth membership function, indeterminacy membership and falsity 

membership of the element ri, rj ∈ S. respectively and such that 
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0 ≤ TK
−(ri) + IK

−(ri) + FK
−(ri) ≤ 2.

0 ≤ TK
+(ri) + IK

+(ri) + FK
+(ri) ≤ 2.

 such that 

TK
−(rs) ≤ {TJ

−(r) ∧ TJ
−(s)}

IK
−(rs) ≤ {IJ

−(r) ∧ IJ
−(s)}

FK
−(rs) ≤ {FJ

−(r) ∨ FJ
−(s)},

 similarly 

TK
+(rs) ≤ {TJ

+(r) ∧ TJ
+(s)}

IK
+(rs) ≤ {IJ

+(r) ∧ IJ
+(s)}

FK
+(rs) ≤ {FJ

+(r) ∨ FJ
+(s)}.

Example 3.2 A neutrosophic vague graph G = (J, K)  such that J = {a, b, c}  and K = {ab, bc, ca} 

indicated by 

â = T[0.5,0.6], I[0.4,0.3], F[0.4,0.5], b̂ = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6], 

ĉ = T[0.4,0.4], I[0.5,0.3], F[0.6,0.6] 

a− = (0.5,0.4,0.4), b− = (0.4,0.7,0.4), c− = (0.4,0.5,0.6) 

a+ = (0.6,0.3,0.5), b+ = (0.6,0.3,0.6), c+ = (0.4,0.3,0.6) 

. 

Figure 1 

NEUTROSOPHIC VAGUE GRAPH 

Definition 3.3 A neutrosophic vague graph H = (J′(r), K′(r)) is meant to be a neutrosophic vague 

subgraph of the NVG G = (J, K) if J′(r) ⊆ J(r) and K′(rs) ⊆ K′(rs) in other words, if  

T̂J
′−(r) ≤ T̂J

−(r) 

ÎJ
′−(r) ≤ ÎJ

−(r) 
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F̂J
′−(r) ≥ F̂J

−(r)∀r ∈ R 

 and 

T̂K
′+(rs) ≤ T̂K

−(rs) 

ÎK
′+(rs) ≤ ÎK

−(rs) 

F̂K
′+(rs) ≥ F̂K

−(rs)∀(rs) ∈ S.

Example 3.4 A neutrosophic vague graph G = (J, K) in Figure (1) 

H1Figure 2 

H1 is a neutrosophic vague subgraph of G 

Definition 3.5 The two vertices are said to be adjacent in a neutrosophic vague graph G = (J, K) if 

TK
−(rs) = {TJ

−(r) ∧ TJ
−(s)}

IK
−(rs) = {IJ

−(r) ∧ IJ
−(s)}

FK
−(rs) = {FJ

−(r) ∨ FJ
−(s)}  and

TK
+(rs) = {TJ

+(r) ∧ TJ
+(s)}

IK
+(rs) = {IJ

+(r) ∧ IJ
+(s)}

FK
+(rs) = {FJ

+(r) ∨ FJ
+(s)}

 In this case, r and s are known to be neighbours and (rs) is incident at r and s also.  

Definition 3.6 A path ρ in a NVG G = (J, K) is a sequence of distinct vertices r0, r1, . . . , rn such that 

TK
−(ri−1, r1) > 0 , IK

−(ri−1, r1) > 0 , FK
−(ri−1, r1) > 0 , TK

+(ri−1, r1) > 0 , IK
+(ri−1, r1) > 0 , FK

+(ri−1, r1) > 0 ,

for 0 ≤ i ≤ 1, here n ≤ 1 is called the length of the path ρ. A single node or single vertex ri may all 

consider as a path.  

Definition 3.7 A neutrosophic vague graph G = (J, K) is said to be connected if every pair of vertices 

has at least on neutrosophic vague path between them otherwise it is disconnected.  

Definition 3.8 A vertex ri ∈ R of neutrosophic vague graph G = (J, K) called as a pendent vertex if 

there is no effective edge incident at xi.  
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Definition 3.9 A vertex in a neutrosophic vague graph G = (J, K) having exactly one neighbours is 

called a isolated vertex. otherwise,it is called non-isolated vertex. An edge in a neutrosophic vague 

graph incident with a isolated vertex is called a isolated edge other words it is called non-isolated 

edge. A vertex in a neutrosophic vague graph adjacent to the isolated vertex is called an support of 

the pendent edge.  

Example 3.10 A neutrosophic vague graph G = (J, K) in figure (3) 

H1Figure 3 

NEUTROSOPHIC VAGUE GRAPH 

 In figure (3), the neutrosophic vague vertex b is an pendent vertex.   

Definition 3.11 Let G = (J, K) be a neutrosophic vague graph. Then the degree of a vertex r ∈ G is a 

sum of degree truth membership, sum of indeterminacy membership and sum of falsity membership 

of all those edges which are incident on vertex r  represented by d(r) =

([dTJ

− (r), dTJ

+ (r)], [dIJ

−(r), dIJ

+(r)], [dFJ

− (r), dFJ

+ (r)]) where

dTJ

− (r) = ∑r≠s TK
−(rs),dTJ

+ (r) = ∑r≠s TK
+(rs) indicates the degree of truth membership vertex

dIJ

−(r) = ∑r≠s IK
−(rs),dIJ

+(r) = ∑r≠s IK
+(rs) indicates the degree of indeterminacy membership

vertex 

dFJ

− (r) = ∑r≠s FK
−(rs),dFJ

+ (r) = ∑r≠s FK
+(rs) indicates the degree of falsity membership vertex

for all r, s ∈ J. 

Example 3.12 A neutrosophic vague graph G = (J, K) in figure (1), we have the degree of 

each vertex as follows 

dT
−(a) = (0.6,0.7,0.9), dF

−(b) = (0.7,0.8,1.3), dF
−(c) = (0.7,0.7,1.0),

dT
+(a) = (0.9,0.6,1.0), dF

+(b) = (0.9,0.6,1.0), dF
+(c) = (0.8,0.6,1.0)

Definition 3.13 A neutrosophic vague graph G = (J, K) is called constant if degree of each vertex is 

A = (A1, A2, A3) that is d(x) = (A1, A2, A3) for all x ∈ V. 

Example 3.14 Consider a neutrosophic vague graph G = (J, K) in figure (4)defined by 
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â = T[0.5,0.6], I[0.6,0.4], F[0.4,0.5], b̂ = T[0.4,0.4], I[0.4,0.6], F[0.6,0.6], 

ĉ = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6], d̂ = T[0.6,0.4], I[0.3,0.7], F[0.6,0.4] 

a− = (0.5,0.6,0.4), b− = (0.4,0.4,0.6), c− = (0.4,0.7,0.4), d− = (0.6,0.3,0.6) 

a+ = (0.6,0.4,0.5), b+ = (0.4,0.6,0.6), c+ = (0.6,0.3,0.6), d+ = (0.4,0.7,0.4).  

Figure 4 

CONSTANT NEUTROSOPHIC VAGUE GRAPH 

 Clearly as it is seen in figure(4) G is constant neutrosophic vague graph since the degree of (â, b̂, ĉ, d̂) 

and d̂ = (0.6,0.6,1.2).  

Definition 3.15 The complement of neutrosophic vague graph G = (J, K) on G∗ is a neutrosophic 

vague graph Gc on G∗ where   

• Jc(r) = J(r)

• TJ
−c

(r) = TJ
−(r), IJ

−c
(r) = IJ

−(r), FJ
−c

(r) = FJ
−(r) for all r ∈ R.

• TJ
+c

(r) = TJ
+(r), IJ

+c
(r) = IJ

+(r), FJ
+c

(r) = FJ
+(r) for all r ∈ R.

• TK
−c

(rs) = {TJ
−(r) ∧ TJ

−(s)} − TK
−(rs)

IK
−c

(rs) = {IJ
−(r) ∧ IJ

−(s)} − IK
−(rs)

 FK
−c

(rs) = {FJ
−(r) ∨ FJ

−(s)} − FK
−(rs) for all (rs) ∈ S

• TK
+c

(rs) = {TJ
+(r) ∧ TJ

+(s)} − TK
+(rs)

IK
+c

(rs) = {IJ
+(r) ∧ IJ

+(s)} − IK
+(rs)

FK
+c

(rs) = {FJ
+(r) ∨ FJ

+(s)} − FK
+(rs) for all (rs) ∈ S

4  Strong Neutrosophic Vague Graphs 

Definition 4.1 A neutrosophic vague graph G = (J, K)  of G∗ = (R, S)  is named as a strong 

neutrosophic vague graph if  

TK
−(rs) = {TJ

−(r) ∧ TJ
−(s)}

IK
−(rs) = {IJ

−(r) ∧ IJ
−(s)}

FK
−(rs) = {FJ

−(r) ∨ FJ
−(s)}    and

TK
+(rs) = {TJ

+(r) ∧ TJ
+(s)}

IK
+(rs) = {IJ

+(r) ∧ IJ
+(s)}

FK
+(rs) = {FJ

+(r) ∨ FJ
+(s)} for all (rs ∈ S)
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Example 4.2 A neutrosophic vague graph G = (J, K)  such that J = {a, b, c}  and K = {ab, bc, ca} 

defined by â = T[0.3,0.4], I[0.4,0.6], F[0.6,0.7], b̂ = T[0.6,0.4], I[0.6,0.7], F[0.6,0.4], 

ĉ = T[0.7,0.7], I[0.5,0.6], F[0.3,0.3] 

Figure 5 

STRONG NEUTROSOPHIC VAGUE GRAPH 

Remark 4.3 If G = (J, K) is a neutrosophic vague graph on G∗ then from above definition, it follow 

that Gcc
 is given by the neutrosophic vague graph Gcc

= Jcc
, Kcc

 on G∗ where

• (Jc)c(r) = J(r)

• (TJ
−c

)c(r) = TJ
−(r), IJ

−c
(r) = IJ

−(r), FJ
−c

(r) = FJ
−(r) for all r ∈ R.

• (TJ
+c

)c(r) = TJ
+(r), IJ

+c
(r) = IJ

+(r), FJ
+c

(r) = FJ
+(r) for all r ∈ R.

• (TK
−c

)c(rs) = {TJ
−(r) ∧ TJ

−(s)} − TK
−(rs)

(IK
−c

)c(rs) = {IJ
−(r) ∧ IJ

−(s)} − IK
−(rs)

 (FK
−c

)c(rs) = {FJ
−(r) ∨ FJ

−(s)} − FK
−(rs) for all (rs) ∈ S

• (TK
+c

)c(rs) = {TJ
+(r) ∧ TJ

+(s)} − TK
+(rs)

(IK
+c

)c(rs) = {IJ
+(r) ∧ IJ

+(s)} − IK
+(rs)

 (FK
+c

)c(rs) = {FJ
+(r) ∨ FJ

+(s)} − FK
+(rs) for all (rs) ∈ S

 for any neutrosophic vague graph G,Gc is strong neutrosophic graph and G ⊆ Gc 

Definition 4.4 A strong neutrosophic graph G is called self-complementary if G ≅ Gcwhere Gc is 

the complement of neutrosophic vague graph G. 

Example 4.5 A neutrosophic vague graph G = (J, K) such that J = {a, b, c, d} and K = {ab, bc, cd, da} 

defined as follows: consider a neutrosophic vague graph G as in figure(6) 
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𝐆 STRONG NVG 𝐆𝐜 STRONG NVG 

Gcc
 STRONG NVG

Clearly, as it is seen in figure (6) G ≅ Gcc
.

Hence G is self complementary.  

Proposition 4.6 Let G = (J, K) be a strong neutrosophic vague graph if 

TK
−(rs) = {TJ

−(r) ∧ TJ
−(s)}

IK
−(rs) = {IJ

−(r) ∧ IJ
−(s)}

FK
−(rs) = {FJ

−(r) ∨ FJ
−(s)}

TK
+(rs) = {TJ

+(r) ∧ TJ
+(s)}

IK
+(rs) = {IJ

+(r) ∧ IJ
+(s)}

FK
+(rs) = {FJ

+(r) ∨ FJ
+(s)} for all rs ∈ K

 Then G is self complementary.  

Proof. Let G = (J, K) be a strong neutrosophic vague graph such that 

T̂K(rs) =
1

2
min[T̂J(r), T̂J(s)] 

ÎK(rs) =
1

2
min[ÎJ(r), ÎJ(s)] 

F̂K(rs) =
1

2
maxF̂J(r), F̂J(s) 
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for all rs ∈ J then G ≈ Gcc
 under the identity map I: J → J. Hence G is self complementary

Proposition 4.7 Let G be a self complementary neutrosophic vague graph then 

∑

r≠s

T̂K(rs) =
1

2
∑

r≠s

min{T̂J(r), T̂J(s)} 

∑

r≠s

ÎK(rs) =
1

2
∑

r≠s

min{ÎJ(r), ÎJ(s)} 

∑

r≠s

F̂K(rs) =
1

2
∑

r≠s

max{F̂J(r), F̂J(s)} 

Proof. If G be an self complementary neutrosophic vague graph then there exist an isomorphism 

f: J1 → J2 satisfy  

T̂J1

c (f(r)) = T̂J1
(f(r)) = T̂J1

(r)

ÎJ1

c (f(r)) = ÎJ1
(f(r)) = ÎJ1

(r)

F̂J1

c (f(r)) = F̂J1
(f(r)) = F̂J1

(r)

 and 

T̂K1

c (f(r), f(s)) = T̂K1
(f(r), f(s)) = T̂K1

(rs)

ÎK1

c (f(r), f(s)) = ÎK1
(f(r), f(s)) = ÎK1

(rs)

F̂K1

c (f(r), f(s)) = F̂K1
(f(r), f(s)) = F̂K1

(rs)

we have T̂K1

c (f(r), f(s)) = min(T̂J1

c (r), T̂J1

c (s)) − T̂K1
(f(r), f(s)) . i.e, T̂K1

(rs) = min(T̂J1

c (r), T̂J1

c (s)) −

T̂K1
(f(r), f(s)). T̂K1

(rs) = min(T̂J1

c (r), T̂J1

c (s)) − T̂K1
(rs). that is

∑r≠s T̂K1
(rs) + ∑r≠s T̂K1

(rs) = ∑r≠s min(T̂J1
(r), T̂J1

(s)).

Similarly, ∑r≠s ÎK1
(rs) + ∑r≠s ÎK1

(rs) = ∑r≠s min(ÎJ1
(r), ÎJ1

(s))

∑

r≠s

F̂K1
(rs) + ∑

r≠s

F̂K1
(rs) = ∑

r≠s

max(F̂J1
(r), F̂J1

(s)) 

2 ∑

r≠s

T̂K1
(rs) = ∑

r≠s

min(T̂J1
(r), T̂J1

(s)) 

2 ∑

r≠s

ÎK1
(rs) = ∑

r≠s

min(ÎJ1
(r), ÎJ1

(s)) 

2 ∑

r≠s

F̂K1
(rs) = ∑

r≠s

max(F̂J1
(r), F̂J1

(s)) 

from the equation of the proposition (4.8) holds.  

Proposition 4.8 Let G1 and G2 be strong neutrosophic vague graph G1 ≈ G2(isomorphism) 

Proof. Assume that G1  and G2  are isomorphic there exist a bijective map f: J1 → J2 

satisfying,  

T̂J1
(r) = T̂J2

(f(r)), ÎJ1
(r) = ÎJ2

(f(r)), F̂J1
(r) = F̂J2

(f(r)), forallr ∈ J1 

and 

T̂K1
(rs) = T̂K2

(f(r), f(s)) 

ÎK1
(rs) = ÎK2

(f(r), f(s)) 

F̂K1
(r) = F̂K2

(f(r), f(s))∀rs ∈ K1 

 by definition (4.3) we have 
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TK1

c (rs) = min(TJ1
(r), TJ1

(s)) − TK1
(rs)

= min(TJ2
f(r), TJ2

f(s)) − TK2
(f(r)f(s)) 

= TK2

c (f(r)f(s)) 

IK1

c (rs) = min(IJ1
(r), IJ1

(s)) − IK1
(rs)

= min(IJ2
f(r), IJ2

f(s)) − IK2
(f(r)f(s)) 

= IK2

c (f(r)f(s)) 

FK1

c (rs) = max(FJ1
(r), FJ1

(s)) − FK1
(rs)

= max(FJ2
f(r), FJ2

f(s)) − FK2
(f(r)f(s)) 

= FK2

c (f(r)f(s)) 

 Hence G1
c ≈ G2

c  for all (rs) ∈ K1 

Definition 4.9 A neutrosophic vague graph G = (J, K) is complete if 

TK
−(rs) = {TJ

−(r) ∧ TJ
−(s)}

IK
−(rs) = {IJ

−(r), IJ
−(s)}

FK
−(rs) = {FJ

−(r) ∨ FJ
−(s)},

similarly, 

TK
+(rs) = {TJ

+(r) ∧ TJ
+(s)}

IK
+(rs) = {IJ

+(r) ∧ IJ
+(s)}

FK
+(rs) = {FJ

+(r) ∨ FJ
+(s)}forr, s ∈ J.

Example 4.10 Consider a neutrosophic vague graph G = (J, K)  such that J = {a, b, c, d}  and K =

{ab, bc, cd, da} defined by  

Figure 7 

COMPLETE NEUTROSOPHIC VAGUE GRAPH 
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Definition 4.11 The complement of neutrosophic vague graph G = (J, K)  of G∗ = (V, E)  is a 

neutrosophic vague complete graph G = (Jc, Kc) on G∗ = (R, Sc) where 

(1) Jc(ri) = J(ri)

(2) T̂J
c(ri) = T̂J(ri), ÎJ

c(ri) = ÎJ(ri), F̂J
c(ri) = F̂J(ri) for all ri ∈ J

(3)T̂K
c(risj) = (T̂J(ri) ∧ T̂J(sj)) − T̂K(risj)

ÎK
c (risj) = (ÎJ(ri) ∧ ÎJ(sj)) − ÎK(ri, sj) 

 F̂K
c (risj) = (F̂J(ri) ∨ F̂J(sj)) − F̂K(risj)   for all (risj) ∈ K 

Proposition 4.12 The complement of complete neutrosophic vague graph with no edge. or if G is 

complete then Gc the edge is empty.  

Proof. Let G = (J, K) be a complete neutrosophic vague graph so  

T̂K(risj) = (T̂J(ri) ∧ T̂J(sj)) 

ÎK(risj) = (ÎJ(ri) ∧ T̂J(sj)) 

F̂K(risj) = (F̂J(ri) ∨ F̂J(sj))∀(ri, sj) ∈ J 

Hence in 𝐆𝐜. Now, 

T̂K
c(risj) = (T̂J(ri) ∧ T̂J(sj)) − T̂K(risj) 

= (T̂J(ri) ∧ T̂J(sj)) − (T̂J(ri) ∧ T̂J(sj)) ∀ i, j, . . . , n 

= 0 ∀, i, j, . . . , n. 

 and 

ÎK
c (risj) = (ÎJ(ri) ∧ ÎJ(sj)) − ÎK(risj) 

= (ÎJ(ri) ∧ ÎJ(sj)) − (ÎJ(ri) ∧ ÎJ(sj))∀ i, j, . . . , n 

= 0∀ i, j, . . . , n. 

 Similarly F̂K
c (ri, sj) = 0. Thus,(T̂K(ri, sj), ÎK(ri, sj), F̂K(ri, sj)) = (0,0,0) 

Hence, the edge set of Gc is empty if G is a complete neutrosophic vague graph. 

Conclusion and futute directions: 

 This work dealt with the new concept of neutrosophic vague graphs. Moreover, some 

remarkable properties of strong neutrosophic vague graphs, complete neutrosophic vague graphs 

and self-complementary neutrosophic vague graphs have been investigated and the proposed 

concepts were described with suitable examples. Further we can extend to investigate the regular 

and isomorphic properties of the proposed graph. This can be applied to social network model and 

operations research. 
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An Introduction to Neutrosophic Bipolar Vague Topological 
Spaces 

K. Mohana, R. Princy, Florentin Smarandache

Abstract:  The main objective of this paper is to make known to a new concept of generalised 

neutrosophic bipolar vague sets and also defined neutrosophic bipolar vague topology in topological 

spaces. Also, we introduce generalized neutrosophic bipolar vague closed sets and conferred its 

properties. 

Keywords: Bipolar set, Vague set, Neutrosophic set, Neutrosophic Bipolar Vague set, Neutrosophic 

Bipolar Vague Topological Spaces. 

1. Introduction

Levine [24] studied the Generalized closed sets in general topology. Several investigations were 

conducted on the generalizations of the notion of the fuzzy set, after the introduction of the concept of 

fuzzy sets by Zadeh [34]. In the traditional fuzzy sets, the membership degree of component ranges 

over the interval [0, 1]. Few types of fuzzy set extensions in the fuzzy set theory are present, for example, 

intuitionistic fuzzy sets[12], interval-valued fuzzy sets[32], vague sets[30] etc. As a generalization of 

Zadeh’s fuzzy set, the notion of vague set theory was first introduced by Gau W.L and Buehrer D.J [22]. 

In 1996, H.Bustince & P.Burillo indicated that vague sets are intuitionistic fuzzy sets [15].  

Intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets can handle only unfinished 

information but not the indeterminate and unreliable information which happens normally in actual 

circumstances. Hence, the conception of a neutrosophic set is very common, and then it can overcome 

the aforesaid issues on the intuitionistic fuzzy set and the interval-valued intuitionistic fuzzy set. In 

1995, the definition of Smarandache’s neutrosophic set, neutrosophic sets and neutrosophic logic have 

been useful in many real applications to handle improbability. Neutrosophy is a branch of philosophy 

which studies the source, nature and scope of neutralities, as well as their interactions with different 

ideational scales [31]. The neutrosophic set uses one single value to indicate the truth-membership 

grade, indeterminacy-membership degree and falsity membership grade of an element in the universe 

X. The theory has been brought into extensive application in varieties of field [1-6, 8, 10, 11, 14, 17, 23,

27, 33, 35] for dealing with indeterminate and unreliable information in actual domain. The conception

of Neutrosophic Topological space was introduced by A.A.Salama and S.A.Alblowi [29].

Bipolar-valued fuzzy sets, which was introduced by Lee [25, 26] is an extension of fuzzy sets 

whose membership degree range is extended from the interval [0, 1] to [-1, 1]. The membership degrees 

of the Bipolar valued fuzzy sets signify the degree of satisfaction to the property analogous to a fuzzy 

set and its counter-property in a bipolar valued fuzzy set, if the membership degree is 0 it means that 

the elements are unrelated to the corresponding property. Furthermore if the membership degree is on 

(0, 1] it indicates that the elements somewhat fulfil the property, and if the membership degree is on 
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 [-1,0) it indicates that elements somewhat satisfy the entire counter property.  After that, Deli et al. [21] 

announced the concept of bipolar neutrosophic sets, as an extension lead of neutrosophic sets. In the 

bipolar neutrosophic sets, the positive membership degree 𝑇+(𝑥), 𝐼+(𝑥), 𝐹+(𝑥)  signifies the truth 

membership, indeterminate membership and false membership of an element x ∈ X analogous to a 

bipolar neutrosophic set A and the negative membership degree  𝑇−(𝑥), 𝐼−(𝑥), 𝐹−(𝑥) signifies the truth 

membership, indeterminate membership and false membership of an element x ∈ X to some implied 

counter-property analogous to a bipolar neutrosophic set A. There are quite a few extensions of 

Neutrosophic Bipolar sets such as Neutrosophic Bipolar Soft sets [7] and Rough Neutrosophic Bipolar 

sets [28]. 

Neutrosophic vague set is a combination of neutrosophic set and vague set which was well-

defined by Shawkat Alkhazaleh [30]. Neutrosophic vague theory is a useful tool to practise incomplete, 

indeterminate and inconsistent information. In this paper, we introduced the perception of a 

neutrosophic bipolar vague set as a combination of neutrosophic set, Bipolar set and vague set and we 

also define the concept of generalised Neutrosophic Bipolar Vague set.      

2. Preliminaries

Definition 2.1[16]: Let X be the universe. Then a bipolar valued fuzzy sets, A on X is defined by positive

membership function 𝜇𝐴 
+ : X→[0,1] and a negative membership function 𝜇𝐴 

− : X→[-1,0]. For sake of

easiness, we shall practice the symbol A= {< x, 𝜇𝐴 
+ (x), 𝜇𝐴 

− (x)>: x ∈ X}.

Definition 2.2[18]: Let  A and B be two bipolar valued fuzzy sets then their union, intersection and

complement are well-defined as follows:

(i)𝜇𝐴∪𝐵
+ (𝑥) = max { 𝜇𝐴 

+ (x), 𝜇𝐵
+(x)}.

(ii) 𝜇𝐴∪𝐵
− (𝑥) = min { 𝜇𝐴 

− (x), 𝜇𝐵
−(x)}.

(iii) 𝜇𝐴∩𝐵
+ (𝑥) = min { 𝜇𝐴 

+ (x), 𝜇𝐵
+(x)}.

(iv) 𝜇𝐴∩𝐵
− (𝑥) = max { 𝜇𝐴 

− (x), 𝜇𝐵
−(x)}.

(v) 𝜇�̅�
+(𝑥)= 1-𝜇𝐴 

+ (x) and 𝜇�̅�
−(𝑥)= -1-𝜇𝐴 

+ (x) for all x∈ 𝑋.

Definition 2.3[15]: A vague set A in the universe of discourse U is a pair (tA , fA ) where tA : U→[0,1], fA

: U→[0,1] denote the mapping such that tA + fA ≤ 1 for all u∈ 𝑈 .The function tA and fA are called true

membership function and false membership function respectively. The interval [tA ,1-fA] is called the

vague value of u in A, and denoted by νA(u), i.e νA(u)=[tA ,1-fA].

Definition 2.4[15]: Let A be a non-empty set and the vague set A and B in the form  A= {<x, tA ,1-fA >:x∈

𝑋}, B={<x, tB ,1-fB >:x∈ 𝑋}.

Then

(i)A⊆ B if and only if tA(x)≤tA(x) and 1-fB(x) ≤ 1-fB(x).

(ii)A∪ B={<max(tA(x),tB(x)), max(1-fA(x),1-fB(x))>/x∈X}.

(iii) A∩ B={<min(tA(x),tB(x)), min(1-fA(x),1-fB(x))>/x∈X}.

(iv)�̅�={<x, fA(x) ,1-tA(x)>:x∈X}.

Definition 2.5[14]:Let X be a universe of discourse. Then a neutrosophic set is well-defined as:  𝐴 = {〈x,

TA(x), IA(x), FA(x)〉:x ∈ X}, which is categorized by a truth-membership function TA:X → ]0−,1+[ , an

indeterminacy membership function IA:X → ]0−,1+[and a falsity-membership function FA:X → ]0−,1+[.

There is no restriction to the sum of TA(x), IA(x) and FA(x), so 0−≤ supTA(x) ≤ supIA(x) ≤ supFA(x) ≤ 3+.

Definition 2.6[30]: A neutrosophic vague set 𝐴𝑁𝐵𝑉(NVS in short) on the universe of discourse X written

as,

𝐴𝑁𝐵𝑉  = {<  �̂�𝑁𝐵𝑉(𝑥), 𝐼𝑁𝐵𝑉(𝑥), �̂�𝑁𝐵𝑉(𝑥) >: 𝑥 ∈ 𝑋} whose truth-membership, indeterminacy-membership

and falsity-membership functions is defined as,

�̂�𝑁𝐵𝑉(𝑥) = [𝑇−, 𝑇+], 𝐼𝑁𝐵𝑉(𝑥) = [𝐼−, 𝐼+], �̂�𝑁𝐵𝑉(𝑥) = [𝐹−, 𝐹+] where

𝑇+ = 1 − 𝐹− , 𝐹+ = 1 −and 𝑇−, - 0≤ 𝑇−+𝐼− + 𝐹− ≤ 2+ .

3. Bipolar Neutrosophic Vague Set:

Under this division, we present and well-defined the notion of neutrosophic bipolar vague set and its

operations.
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Definition 3.1: If A={< x, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐼𝐴
−, 𝐼𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]−, [𝐼𝐴
−, 𝐼𝐴

+]−, [𝐹𝐴
−, 𝐹𝐴

+]− >} and B={< x,

[𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} where
(𝑇+)+ = 1 − (𝐹−)+ , (𝐹+)+ = 1 − (𝑇−)+  and (𝑇+)− = −1 − (𝐹−)− , (𝐹+)− = −1 − (𝑇−)−  𝑇+ , 𝐼+ , 𝐹+ :
X→[0,1] and 𝑇−, 𝐼−, 𝐹−:X→[-1,0]  are two neutrosophic bipolar vague sets then their union, intersection 

and complement are well-defined as follows: 

1.A∪B= { max[𝑇𝐴
−, 𝑇𝐵

−]+, max[𝑇𝐴
+, 𝑇𝐵

+]+,

min[𝐼𝐴
−, 𝐼𝐵

−]+ , min[𝐼𝐴
+, 𝐼𝐵

+]+ ,

min[𝐹𝐴
−, 𝐹𝐵

−]+, min[𝐹𝐴
+, 𝐹𝐵

+]+,

min[𝑇𝐴
−, 𝑇𝐵

−]−, min[𝑇𝐴
+, 𝑇𝐵

+]−,

max [𝐼𝐴
−, 𝐼𝐵

−]− , max[𝐼𝐴
+, 𝐼𝐵

+]−,

max[𝐹𝐴
−, 𝐹𝐵

−]−, max[𝐹𝐴
+, 𝐹𝐵

+]−}.

2.A∩B={ min[𝑇𝐴
−, 𝑇𝐵

−]+, min[𝑇𝐴
+, 𝑇𝐵

+]+,

max[𝐼𝐴
−, 𝐼𝐵

−]+ ,max[𝐼𝐴
+, 𝐼𝐵

+]+ ,

max[𝐹𝐴
−, 𝐹𝐵

−]+, max[𝐹𝐴
+, 𝐹𝐵

+]+,

max[𝑇𝐴
−, 𝑇𝐵

−]−, max[𝑇𝐴
+, 𝑇𝐵

+]−,

min [𝐼𝐴
−, 𝐼𝐵

−]− , min[𝐼𝐴
+, 𝐼𝐵

+]−,

min[𝐹𝐴
−, 𝐹𝐵

−]−, min[𝐹𝐴
+, 𝐹𝐵

+]−}.

3. �̅�={<[𝐹𝐴
−, 𝐹𝐴

+]+, [1 − 𝐼𝐴
−, 1 − 𝐼𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]−, [1 − 𝐼𝐴
−, 1 − 𝐼𝐴

+]−, [𝑇𝐴
−, 𝑇𝐴

+]−>}.

Definition 3.2: Suppose A and B be two neutrosophic bipolar vague sets defined over a universe of

disclosure X. We say that A ⊆ B if and only if [𝑇𝐴
− ≤ 𝑇𝐵

−]+,  [𝑇𝐴
+ ≤ 𝑇𝐵

+]+,  [𝐼𝐴
− ≥ 𝐼𝐵

−]+ , [𝐼𝐴
+ ≥ 𝐼𝐵

+]+ ,

[𝐹𝐴
− ≥ 𝐹𝐵

−]+, [𝐹𝐴
+ ≥ 𝐹𝐵

+]+, [𝑇𝐴
− ≥ 𝑇𝐵

−]−, [𝑇𝐴
+ ≥ 𝑇𝐵

+]−, [𝐼𝐴
− ≤ 𝐼𝐵

−]−, [𝐼𝐴
+ ≤ 𝐼𝐵

+]−, [𝐹𝐴
− ≤ 𝐹𝐵

−]−,  [𝐹𝐴
+ ≤ 𝐹𝐵

+]−.

Definition 3.3: A bipolar vague topology NBVT on a nonempty set X is a family NBVτ of Neutrosophic

bipolar vague set in X sustaining the following axioms:

1. 0, 1 ∈ 𝑁𝐵𝑉𝜏 .

2. G1∩ G2 ∈ 𝑁𝐵𝑉𝜏 , for any G1,G2 ∈ 𝑁𝐵𝑉𝜏.

3. ∪Gi ∈ 𝑁𝐵𝑉𝜏  for any arbitrary family { Gi: Gi∈ 𝑁𝐵𝑉𝜏  , i∈I}.

Under such case the pair (X, 𝑁𝐵𝑉𝜏) is known as the neutrosophic bipolar vague topological space and 

any NBVS in 𝑁𝐵𝑉𝜏  is known as bipolar vague open set in X . The complement �̅� of a neutrosophic 

bipolar vague open set (NBVOS) A in a neutrosophic bipolar vague topological space (X, 𝑁𝐵𝑉𝜏 ) is 

referred as a neutrosophic bipolar vague closed (NBVCS) in X. 

Example 3.4: Assume X={u,v}, 

𝐴𝑁𝐵𝑉= {
𝑢

[0.5,0.7][0.5,0.5][0.3,0.5][−0.4,−0.1][−0.5,−0.6][−0.9,−0.6]
,

𝑣

[0.3,0.6][0.4,0.4][0.4,0.7][−0.2,−0.2][−0.6,−0.8][−0.8,−0.8]
} , 

𝐵𝑁𝐵𝑉= {
𝑢

[0.5,0.9][0.3,0.3][0.1,0.5][−0.4,−0.3][−0.4,−0.4][−0.7,−0.6]
,

𝑣

[0.4,0.6][0.2,0.2][0.4,0.6][−0.5,−0.3][−0.5,−0.5][−0.7,−0.5]
}. 

Then the family 𝑁𝐵𝑉𝜏={0,1,A,B} of neutrosophic bipolar vague sets in X is a NBVT on X. 

Definition 3.5: Suppose (X, 𝑁𝐵𝑉𝜏) is a neutrosophic bipolar vague topological space and  

A={< x, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐼𝐴
−, 𝐼𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]−, [𝐼𝐴
−, 𝐼𝐴

+]−, [𝐹𝐴
−, 𝐹𝐴

+]− >} be a NBVS inX . Then the

neutrosophic bipolar vague interior and neutrosophic bipolar vague closure of A are well-defined by, 

NBVcl(A)=⋂{K:K is a NBVCS in X and A⊆K}, 

NBVint(A)=⋃{G:G is a NBVOS in X and G⊆A}. 

Note that NBVcl(A) is a NBVCS and NBVint(A) is a NBVOS in X . Further,  

1. A is a NBVCS in X iff NBVcl(A)=A

2. A is a NBVOS in X iff NBVint(A)=A.

Example 3.6: Assume that X={a, b}, 

A={x,
𝑎

[0.5,0.7][0.5,0.5][0.3,0.5][−0.4,−0.1][−0.5,−0.6][−0.9,−0.6]
,

𝑏

[0.3,0.6][0.4,0.4][0.4,0.7][−0.2,−0.2][−0.6,−0.8][−0.8,−0.8]
}

B= {
𝑎

[0.5,0.9][0.3,0.3][0.1,0.5][−0.4,−0.3][−0.4,−0.4][−0.7,−0.6]
,

𝑏

[0.4,0.6][0.2,0.2][0.4,0.6][−0.5,−0.3][−0.5,−0.5][−0.7,−0.5]
}. 

Then the family 𝑁𝐵𝑉𝜏={0,1,A,B} of a neutrosophic bipolar vague sets in X is  NBVT on X. If, 

F={<x,
𝑎

[0.5,0.4][0.5,0.5][0.6,0.5][−0.6,−0.4][−0.3,−0.3][−0.6,−0.4]
,

𝑏

[0.5,0.7][0.1,0.1][0.3,0.5][−0.3,−0.4][−0.2,−0.2][−0.6,−0.7]
>} 
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Then, NBVint(A)=⋃{G:G is a NBVOS in X and G⊆F}=0  and NBVcl(A)=⋂{K:K is a NBVCS in X and 

F⊆K}=1. 

Proposition 3.7: For any NBVS A in (X, 𝑁𝐵𝑉𝜏) we have, 

1. NBVcl(�̅�)=NBVint(A)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

2. NBVint(�̅�)=NBVcl(A)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .

Proof: Let A={< x, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐼𝐴
−, 𝐼𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]−, [𝐼𝐴
−, 𝐼𝐴

+]−, [𝐹𝐴
−, 𝐹𝐴

+]− >} and suppose that

NBVOS’s contained in A are indexed by the family  

{<x, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]+, [𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]+, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]+, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]−, [𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]−, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]− >: 𝑖 ∈ 𝐽}. Then

NBVint(A)= <𝑥, ⋃[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
+

, ⋂[𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]
+

, ⋂[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

, ⋂[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
−

, ⋃[𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]
−

, ⋃[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

> and hence

 NBVint(A̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) =< 𝑥, ⋂[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

, ⋃[1 − 𝐼𝐺𝑖

− , 1 − 𝐼𝐺𝑖

+ ]
+

, ⋃[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
+

, ⋃[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

, ⋂[1 − 𝐼𝐺𝑖

− , 1 −

𝐼𝐺𝑖

+ ]
−

, ⋂[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
−

> ---------  (1) 

Since, 

�̅�={<[𝐹𝐴
−, 𝐹𝐴

+]+, [1 − 𝐼𝐴
−, 1 − 𝐼𝐴

+]+, [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐹𝐴
−, 𝐹𝐴

+]−, [1 − 𝐼𝐴
−, 1 − 𝐼𝐴

+]−, [𝑇𝐴
−, 𝑇𝐴

+]−>}. Where

[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
+

≤ [𝑇𝐴
−, 𝑇𝐴

+]+, [𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]
+

≥ [𝐼𝐴
−, 𝐼𝐴

+]+, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

≥ [𝐹𝐴
−, 𝐹𝐴

+]+, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
−

≥ [𝑇𝐴
−, 𝑇𝐴

+]−,

[𝐼𝐺𝑖

− , 𝐼𝐺𝑖

+ ]
−

≤ [𝐼𝐴
−, 𝐼𝐴

+]−,  [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

≤ [𝐹𝐴
−, 𝐹𝐴

+]− for every i∈J we obtain that

{< 𝑥, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

, [1 − 𝐼𝐺𝑖

− , 1 − 𝐼𝐺𝑖

+ ]
+

, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
+

, [𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

, [1 − 𝐼𝐺𝑖

− , 1 − 𝐼𝐺𝑖

+ ]
−

, [𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
−

> i∈J}

Is the family of NBVS’s containing�̅�, that is , 

NBVcl( �̅� )= < 𝑥, ⋂[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
+

, ⋃[1 − 𝐼𝐺𝑖

− , 1 − 𝐼𝐺𝑖

+ ]
+

, ⋃[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+]
+

, ⋃[𝐹𝐺𝑖

− , 𝐹𝐺𝑖

+ ]
−

, ⋂[1 − 𝐼𝐺𝑖

− , 1 −

𝐼𝐺𝑖

+ ]
−

, ⋂[𝑇𝐺𝑖

− , 𝑇𝐺𝑖

+ ]
−

> ------------ (2).

Hence from (1) and (2) we get NBVcl(�̅�)=NBVint(A)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(2) follows from (1).

Proposition 3.8: If (X, 𝑁𝐵𝑉𝜏) is a NBVTS and A,B be are NBVS’s in X. Then the following properties

hold:

1. NBVint(A)⊆A

2. A⊆ NBνcl(A)

3. A⊆ 𝐵 ⇒ NBVint(A) ⊆ NBVint(B)

4. A⊆ 𝐵 ⇒ NBVcl(A) ⊆ NBVcl(B)

5. NBVint(NBVint(A))= NBVint(A)

6. NBVcl(NBVcl(A)= NBVcl(A)

7. NBVint(𝐴 ∩ 𝐵)= NBVint(A) ∩  NBVint(B)

8. NBVcl(A∪ 𝐵)= NBVcl(A)∪ NBVcl(B)

9. NBVint(1)=1

10. NBVcl(0)=0

Definition 3.9: Suppose (X, 𝑁𝐵𝑉𝜏) and (Y, 𝑁𝐵𝑉𝜎) be two neutrosophic bipolar vague topological spaces 

and 𝜓: 𝑋 → 𝑌 be a function. Then 𝜓 is referred to be a neutrosophic bipolar vague continuous iff the 

preimage of each neutrosophic bipolar vague open set in Y is a neutrosophic bipolar vague open set in 

X. 

Proposition 3.10: Suppose A, {Ai: i∈J} be a neutrosophic bipolar vague set in X, and B, {Bj: j∈K} be a 

neutrosophic bipolar vague set in Y, and let 𝜓: 𝑋 → 𝑌 be a function. Then, 

(a) A1⊆A2⟺  𝜓(A1) ⊆  𝜓(A2)

(b) B1⊆B2⟺  𝜓−1(B1) ⊆  𝜓−1(B2)

(c) 𝜓−1(∪Bi)= ∪  𝜓−1(Bi) and 𝜓−1(∩Bi)= ∩ 𝜓−1(Bi)

Proof: Obvious. 

Proposition 3.11: The subsequent are equivalent to each other. 

1. 𝜓: 𝑋 → 𝑌 is neutrosophic bipolar vague continuous.

2. 𝜓−1(NBVint(B))  ⊆  NBVint(𝜓−1(B)) for each NBVOS B in Y.

3. NBVcl(𝜓−1(B)) ⊆ 𝜓−1(NBVcl(B)) for each NBVOS B in Y.

Proof: (1)⟹(2) Given 𝜓: 𝑋 → 𝑌 is neutrosophic bipolar vague continuous. 
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Then we have to show that 𝜓−1(NBVint(B))  ⊆  NBVint(𝜓−1(B)) for each NBVOS B in Y. 

Let B={< y, [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} be NBVOS in Y.

NBVint(B)= 

{ < 𝑦, ⋃[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

, ⋂[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

, ⋂[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

, ⋂[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

, ⋃[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

, ⋃[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

>:i∈I}

Where, 

[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

≤ [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

≥ [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

≥ [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

≥ [𝑇𝐵
−, 𝑇𝐵

+]−,

[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

≤ [𝐼𝐵
−, 𝐼𝐵

+]− , [𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

≤ [𝐹𝐵
−, 𝐹𝐵

+]−  for every i ∈ I. By the definition of continuity

𝜓−1(NBVint(B))  is a neutrosophic bipolar vague open set in 𝑁𝐵𝑉𝜏 . Now,

𝜓−1(NBVint(B))  ={ 

𝜓−1(< 𝑦, ⋃[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

, ⋂[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

, ⋂[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

, ⋂[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

, ⋃[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

, ⋃[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

>)}

= {(<x, 𝜓−1( ⋃[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

), 𝜓−1(⋂[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

) , 𝜓−1 (⋂[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

) , 𝜓−1 ( ⋂[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

) , 𝜓−1(⋃[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

) ,

𝜓−1(⋃[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

) >)}.

= {<x, ⋃[𝜓−1 [ [𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
+

], ⋂[𝜓−1[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
+

] , ⋂[𝜓−1[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
+

] , ⋂[𝜓−1[𝑇𝐻𝑖

− , 𝑇𝐻𝑖

+ ]
−

] , ⋃[𝜓−1[[𝐼𝐻𝑖

− , 𝐼𝐻𝑖

+ ]
−

] ,

⋃[𝜓−1[[𝐹𝐻𝑖

− , 𝐹𝐻𝑖

+ ]
−

]>}.

⊆ NBVint(𝜓−1(B)) 

(2)⟹(1). Given 𝜓−1(NBVint(B))  ⊆  NBVint(𝜓−1(B)) for each NBVOS B in Y. Let

B={< y, [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} be NBVOS in Y. We know that B is

a neutrosophic bipolar vague open in Y if and only if NBVint(B)=B and hence  𝜓−1(NBVint(B))= 𝜓−1(B).

But according to our supposition 𝜓−1(NBVint(B))  ⊆  NBVint(𝜓−1 (B)), therefore we get 𝜓−1 (B)  ⊆

NBVint(𝜓−1(B), i.e., 𝜓−1(B) is a NBVS in X and thus 𝜓 is a  neutrosophic bipolar vague continuous.

(1)⟹ (3) Given 𝜓: 𝑋 → 𝑌 is neutrosophic bipolar vague continuous.

Suppose B={< y, [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} be NBVOS in Y.

Also suppose NBVcl(B) =

{<y,⋂[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

, ⋃[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

, ⋃[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

, ⋃[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

, ⋂[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

, ⋂[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
−

>:i∈ 𝐼},where

[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

≤ [𝑇𝐵
−, 𝑇𝐵

+]+,[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

≥ [𝐼𝐵
−, 𝐼𝐵

+]+,[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

≥ [𝐹𝐵
−, 𝐹𝐵

+]+,

[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

≥ [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

≤ [𝐼𝐵
−, 𝐼𝐵

+]− , [𝐹𝐾𝑖

− , 𝐹𝐾
+]

−
≤ [𝐹𝐵

−, 𝐹𝐵
+]−  for every i ∈ I. Since 𝜓  is a

neutrosophic bipolar vague continuous iff the inverse image of each NBVCS  in Y is a NBVCS in X, 

therefore 𝜓−1(NBVcl(B)) is a NBVCS in X. 

Now, 𝜓−1 (NBVcl(B))= {𝜓−1(< 𝑦,∩ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

,∪ [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

,∪ [𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

,∪ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

,∩ [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

,∩

[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
−

>)}

={(<x, 𝜓−1( ∩ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

), 𝜓−1(∪ [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

) , 𝜓−1 (∪ [𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

) , 𝜓−1 ( ∪ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

) , 𝜓−1(∩ [𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

) ,

𝜓−1(∩ [𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
−

) >)}.

= {<x, ∩ [𝜓−1 [ [𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
+

],  ∪ [𝜓−1[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
+

] , ∪ [𝜓−1[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
+

] , ∪ [𝜓−1[𝑇𝐾𝑖

− , 𝑇𝐾𝑖

+ ]
−

] , ∩ [𝜓−1[[𝐼𝐾𝑖

− , 𝐼𝐾𝑖

+ ]
−

] , ∩

[𝜓−1[[𝐹𝐾𝑖

− , 𝐹𝐾𝑖

+ ]
−

]>}

⊇ NBVcl(𝜓−1(B)) 

(3)⟹(1)

Given NBVcl(𝜓−1(B))⊆ 𝜓−1(NBVcl(B)), for each NBVOS B in Y. Let

B={< y, [𝑇𝐵
−, 𝑇𝐵

+]+, [𝐼𝐵
−, 𝐼𝐵

+]+, [𝐹𝐵
−, 𝐹𝐵

+]+, [𝑇𝐵
−, 𝑇𝐵

+]−, [𝐼𝐵
−, 𝐼𝐵

+]−, [𝐹𝐵
−, 𝐹𝐵

+]−>} be NBVCS in Y. Since NBVcl(B)=B.

But it is given that NBVcl(𝜓−1(B))⊆ 𝜓−1(NBVcl(B)), hence NBVcl(𝜓−1(B))⊆  𝜓−1(B). Hence 𝜓−1(B)=

NBVcl(𝜓−1(B)), i.e., 𝜓−1(B) is a NBVCS in X and this proves that 𝜓 is a neutrosophic bipolar vague

continuous.

4. Generalized Neutrosophic Bipolar Vague Closed Sets:

Definition 4.1:  Suppose if (X, 𝑁𝐵𝑉𝜏) be a neutrosophic bipolar vague topological space. A neutrosophic

bipolar vague set A in (X, 𝑁𝐵𝑉𝜏) is referred to be a generalized neutrosophic bipolar vague closed set if

NBVcl(A) ⊆ 𝐺  whenever A⊆G and G is a neutrosophic bipolar vague open. The complement of a

generalized neutrosophic bipolar vague closed set is generalized neutrosophic bipolar vague open set.

Florentin Smarandache (author and editor) Collected Papers, XII

523



Definition 4.2: Suppose let (X, 𝑁𝐵𝑉𝜏) be a neutrosophic bipolar vague topological space and let A be a 

neutrosophic bipolar vague set in X. The generalized neutrosophic bipolar vague closure (GNBVcl for 

short) and the generalized neutrosophic bipolar vague interior (GNBVint for short) of A are well-

defined by,  

1) GNBVcl(A)=⋂{G:G is a generalized neutrosophic bipolar vague closed sets in X and A⊆ 𝐺},

2) GNBVint(A)=⋃{G:G is a generalized neutrosophic bipolar vague open sets in X and A⊇ 𝐺}.

Remark 4.3:  Every NBVCS is generalized neutrosophic bipolar vague closed but not conversely. 

Example 4.4: Assume that X= {u,v} and 𝑁𝐵𝑉𝜏={0,1,F} is a NBVT on X where, 

F=<𝑥,
𝑢

[0.5,0.9][0.3,0.3][0.1,0.5][−0.4,−0.3][−0.4,−0.4][−0.7,−0.6]
,

𝑣

[0.4,0.6][0.2,0.2][0.4,0.6][−0.5,−0.3][−0.5,−0.5][−0.7,−0.5]
> 

Then the neutrosophic bipolar vague set, 

A=< 𝑥,
𝑢

[0.5,0.7][0.5,0.5][0.3,0.5][−0.4,−0.1][−0.5,−0.6][−0.9,−0.6]
,

𝑣

[0.3,0.6][0.4,0.4][0.4,0.7][−0.2,−0.2][−0.6,−0.8][−0.8,−0.8]
> is a

generalized neutrosophic bipolar vague closed but not NBVC in X. 

Proposition 4.5: Suppose that (X, 𝑁𝐵𝑉𝜏) be a neutrosophic bipolar vague topological space. If A is a 

generalized neutrosophic bipolar vague closed set and A ⊆ B ⊆ NBVcl(A), then B is a generalized 

neutrosophic bipolar vague closed set. 

Proof: Suppose let G be a neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏), such that B⊆G. Since A⊆B, 

A⊆ 𝐺. Now A is a generalized neutrosophic bipolar vague closed set and NBVcl(A) ⊆G. But NBVcl(B) ⊆ 

NBVcl(A). Since NBVcl(B)  ⊆  NBVcl(A)  ⊆ G, NBVcl(B)  ⊆ G. Hence B is a generalized neutrosophic 

bipolar vague closed set. 

Proposition 4.6: Suppose if A is a neutrosophic bipolar vague open set and generalized neutrosophic 

bipolar vague closed set in (X, 𝑁𝐵𝑉𝜏), then A is said to be a neutrosophic bipolar vague closed set in X. 

Proof: Assume that A is a neutrosophic bipolar vague open set in X. Since A ⊆ A, by hypothesis 

NBVcl(A) ⊆A. Then from definition A⊆ NBVcl(A). Therefore NBVcl(A)= A. Hence A is neutrosophic 

bipolar vague closed set in X.Proposition 4.7: Suppose that NBVint(A)  ⊆B⊆A and assume A is a 

generalized neutrosophic bipolar vague open set then B is also a generalized neutrosophic bipolar vague 

open set.      

Proof: Now, �̅� ⊆ �̅� ⊆ NBVint(A)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = NBVcl(�̅�). As A is a generalized neutrosophic bipolar vague open, �̅�

is a generalized neutrosophic bipolar vague closed set. By proposition 4.5, �̅� generalized neutrosophic 

bipolar vague closed set. That is, B is also a generalized neutrosophic bipolar vague open set. 

Definition 4.8: Suppose (X, 𝑁𝐵𝑉𝜏) and (Y, 𝑁𝐵𝑉𝜎)be any two neutrosophic bipolar vague topological 

spaces. 

1. A map 𝜓 : (X, 𝑁𝐵𝑉𝜏) →(Y, 𝑁𝐵𝑉𝜎)  is referred to be a generalized neutrosophic bipolar vague

continuous if the inverse image of every neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎) is a

generalized neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏).

2. A map 𝜓: (X, 𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) is called as a generalized neutrosophic bipolar vague irresolute if

the inverse image of every generalized neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎) is a

generalized neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏).

Proposition 4.9: Suppose (X, 𝑁𝐵𝑉𝜏) and (Y, 𝑁𝐵𝑉𝜎)be any two neutrosophic bipolar vague topological 

spaces. A mapping 𝜓: (X, 𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) is referred to be generalized neutrosophic bipolar vague 

continuous function mapping. Then for every neutrosophic bipolar vague set A in X, 𝜓(GNBVcl(A)) ⊆ 

NBVcl(𝜓(𝐴)). 

Proof: Assume A to be a neutrosophic bipolar vague set in (X, 𝑁𝐵𝑉𝜏) . Since NBVcl( 𝜓(𝐴))  is a 

neutrosophic bipolar vague closed set and since 𝜓  is a generalized neutrosophic bipolar vague 

continuous mapping, the set 𝜓−1(NBVcl(𝜓(𝐴))) is a generalized neutrosophic bipolar vague closed set 

and  thus 𝜓−1(NBVcl(𝜓(𝐴))) ⊇A.  

Now, GNBVcl(A))⊆ 𝜓−1 (NBVcl(𝜓(𝐴))). Therefore 𝜓(GNBVcl(A)) ⊆ NBVcl(𝜓(𝐴)).         
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Proposition 4.10: If (X, 𝑁𝐵𝑉𝜏) and (Y, 𝑁𝐵𝑉𝜎) are two neutrosophic bipolar vague topological spaces. Let 

the mapping 𝜓 : (X, 𝑁𝐵𝑉𝜏) →(Y, 𝑁𝐵𝑉𝜎)  be a generalized neutrosophic bipolar vague continuous  

mapping. Then for every neutrosophic bipolar vague set A in Y, GNBVcl(𝜓−1(A)) ⊆ 𝜓−1(NBVcl(A). 

Proof: Assume A to be a neutrosophic bipolar vague set in (Y, 𝑁𝐵𝑉𝜎) . Let B= 𝜓−1( A). Then,

𝜓(B)= 𝜓(𝜓−1(A)) ⊆A. By proposition 4.10, 𝜓(GNBVcl(𝜓−1(A))) ⊆NBV cl(𝜓(𝜓−1(A))). Thus, 

GNBVcl(𝜓−1(A)) ⊆ 𝜓−1(NBVcl(A). 

Proposition 4.11: Suppose let (X, 𝑁𝐵𝑉𝜏)  and (Y, 𝑁𝐵𝑉𝜎) be any two neutrosophic bipolar vague 

topological spaces. Let 𝜓 : (X, 𝑁𝐵𝑉𝜏) →(Y, 𝑁𝐵𝑉𝜎)  is referred to be a neutrosophic bipolar vague 

continuous  mapping, then it is a generalized neutrosophic bipolar vague continuous  mapping. 

Proof: Suppose let A be a neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎). Since the mapping 𝜓 is a 

neutrosophic bipolar vague continuous mapping, 𝜓−1(𝐴) is a neutrosophic bipolar vague open set in 

(X, 𝑁𝐵𝑉𝜏). Every neutrosophic bipolar vague open set is a generalized neutrosophic bipolar vague open 

set. Now, 𝜓−1(𝐴) is a generalized neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏). Hence 𝜓 is thus a

generalized neutrosophic bipolar vague continuous mapping. 

The converse of the proposition need not be true as shown in example.  

Example 4.12: Assume that X={a,b}, Y={u,v} and, 

A=<x, 
𝑎

[0.5,0.4][0.5,0.5][0.6,0.5][−0.6,−0.4][−0.3,−0.3][−0.6,−0.4]
,

𝑏

[0.6,0.7][0.1,0.1][0.3,0.4][−0.3,−0.4][−0.2,−0.2][−0.6,−0.7]
>, 

B=<x, 
𝑎

[0.5,0.3][0.5,0.5][0.7,0.5][−0.4,−0.2][−0.4,−0.4][−0.8,−0.6]
,

𝑏

[0.5,0.4][0.2,0.2][0.6,0.5][−0.3,−0.4][−0.2,−0.2][−0.6,−0.7]
>. 

Then 𝑁𝐵𝑉𝜏 ={0,1,A} and 𝑁𝐵𝑉𝜎 ={0,1,B} are NBVT on X and Y respectively. Define a mapping 𝜓 : (X, 

𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) by 𝜓(a)=u and 𝜓(b)=v. then 𝜓 is a generalized neutrosophic bipolar vague continuous 

mapping but not bipolar vague continuous mapping.  

Proposition 4.13: Suppose let (X, 𝑁𝐵𝑉𝜏)  and (Y, 𝑁𝐵𝑉𝜎) be any two neutrosophic bipolar vague 

topological spaces. A mapping 𝜓: (X, 𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) is said to be a generalized neutrosophic bipolar 

vague irresolute mapping, then it is a generalized neutrosophic bipolar vague continuous  mapping. 

Proof: Let A be a neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎). Since every neutrosophic bipolar 

vague open set is a generalized neutrosophic bipolar vague open set in (Y, 𝑁𝐵𝑉𝜎), but 𝜓 is a generalized 

neutrosophic bipolar vague irresolute mapping, 𝜓−1(𝐴) is a generalized neutrosophic bipolar vague 

open set in (X, 𝑁𝐵𝑉𝜏). Thus 𝜓 is a generalized neutrosophic bipolar vague continuous mapping. 

Proposition 4.14: Suppose let (X, 𝑁𝐵𝑉𝜏), (Y, 𝑁𝐵𝑉𝜎) and (Z, 𝑁𝐵𝑉𝜌) be any three bipolar vague topological 

spaces. Let 𝜓: (X, 𝑁𝐵𝑉𝜏)→(Y, 𝑁𝐵𝑉𝜎) be a generalized neutrosophic bipolar vague irresolute mapping 

and    𝜓1: (Y, 𝑁𝐵𝑉𝜎)→( Z, 𝑁𝐵𝑉𝜌) be a generalized neutrosophic bipolar vague continuous  mapping. 

Then 𝜓1 ∘ 𝜓 is a generalized neutrosophic bipolar vague continuous mapping. 

Proof: Let A be a neutrosophic bipolar vague open set in (Z, 𝑁𝐵𝑉𝜌) . Since 𝜓1   is a generalized 

neutrosophic bipolar vague continuous mapping, 𝜓1
−1 (A) is a generalized neutrosophic bipolar vague

open set in (Y, 𝑁𝐵𝑉𝜎) . Since 𝜓 is a generalized neutrosophic bipolar vague irresolute mapping, 𝜓−1(𝜓1
−1

(A)) is a generalized neutrosophic bipolar vague open set in (X, 𝑁𝐵𝑉𝜏). Thus 𝜓1 ∘ 𝜓 is a generalized 

neutrosophic bipolar vague continuous mapping. 

Conclusion: 

This paper presented the new concept of Neutrosophic Bipolar Vague sets and studied some 

basic operational relation of Neutrosophic Bipolar Vague set. Then a generalization of NBVSs in closed 

set is done. As a future work, we shall continue to work in the application of NBVS to other domains, 

such as medical diagnosis, pattern recognition and decision making. 
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Data Envelopment Analysis for Simplified 
Neutrosophic Sets 

S. A. Edalatpanah, F. Smarandache

Abstract: In recent years, there has been a growing interest in neutrosophic theory, and there are 

several methods for solving various problems under neutrosophic environment. However, a few 

papers have discussed the Data envelopment analysis (DEA) with neutrosophic sets. So, in this 

paper, we propose an input-oriented DEA model with simplified neutrosophic numbers and 

present a new strategy to solve it. The proposed method is based on the weighted arithmetic 

average operator and has a simple structure. Finally, the new approach is illustrated with the help 

of a numerical example. 

Keywords: Data envelopment analysis; Neutrosophic set; Simplified neutrosophic sets (SNSs); 

Aggregation operator. 

1. Introduction

With the advent of technology and the complexity and volume of information, senior 

executives have required themselves to apply scientific methods to determine and increase the 

productivity of the organization under their jurisdiction. Data envelopment analysis (DEA) is a 

mathematical technique to evaluate the relative efficiency of a set of some homogeneous units called 

decision-making units (DMUs) that use multiple inputs to produce multiple outputs. DMUs are 

called homogeneous because they all employ the same inputs to produce the same outputs. DEA by 

constructing an efficiency frontier measures the relative efficiency of decision making units (DMUs). 

Charnes et al. [1] developed a DEA model (CCR) based on the seminal work of Farrell [2] under the 

assumption of constant returns to scale (CRS). Banker et al. [3] extended the pioneering work 

Charnes et al. [1] and proposed a model conventionally called BCC to measure the relative efficiency 

under the assumption of variable returns to scale (VRS). DEA technique has just been effectively 

connected in various cases such as broadcasting companies [4], banking institutions [5-8], R&D 

organizations [9-10], health care services [11-12], manufacturing [13-14], telecommunication [15], 

and supply chain management [16-19]. However, data in the standard models are certain, but there 

are numerous circumstances in real life where we have to face uncertain parameters. Zadeh [20] first 

proposed the theory of fuzzy sets (FSs) against certain logic where the membership degree is a real 

number between zero and one. After this work, many researchers studied on this topic; details of 

some researches can be observed in [21-30]. Several researchers also proposed some models of DEA 

under fuzzy environment [31-42]. However, Zadeh’s fuzzy sets cannot deal with certain cases in 

which it is difficult to define the membership degree using one specific value. To overcome this lack 

of knowledge, Atanassov [43] introduced an extension of the FSs that called the intuitionistic fuzzy 

sets (IFSs). Although the theory of IFSs can handle incomplete information in various real-world 

issues, it cannot address all types of uncertainty such as indeterminate and inconsistent information. 

S.A. Edalatpanah, F. Smarandache (2019). Data Envelopment Analysis for Simplified 
Neutrosophic Sets. Neutrosophic Sets and Systems 29, 215-226
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Therefore, Smarandache [44-45], proposed the neutrosophic set (NS) as a strong general 

framework that generalizes the classical set concept, fuzzy set [20], interval-valued fuzzy set [46], 

intuitionistic fuzzy set [43], and interval-valued intuitionistic fuzzy set [47]. Neutrosophic set (NS) 

can deal with uncertain, indeterminate and incongruous information where the indeterminacy is 

quantified explicitly and truth membership, indeterminacy membership and falsity membership are 

completely independent. It can effectively describe uncertain, incomplete and inconsistent 

information and overcomes some limitations of the existing methods in depicting uncertain decision 

information. Moreover, some extensions of NSs, including interval neutrosophic set [48-51], bipolar 

neutrosophic set [52-54], single-valued neutrosophic set [55-59], simplified neutrosophic sets [60-64], 

multi-valued neutrosophic set [65-67], and neutrosophic linguistic set [68-70] have been presented 

and applied to solve various problems; see [71-80]. 

Although there are several approaches to solving various problems under neutrosophic 

environment, to the best of our knowledge, there are few investigations regarding DEA with 

neutrosophic sets. The first attempt has been proposed by Edalatpanah in [81] and further research 

has been presented in [82]. So, in this paper, we design a model of DEA with simplified neutrosophic 

numbers (SNNs) and establish a new strategy to solve it. The proposed method is based on the 

weighted arithmetic average operator and has a simple structure. 

This paper organized as follows: some basic knowledge, concepts and arithmetic operations on 

SNNs are introduced in Section 2. In Section 3, we review some concepts of DEA and the 

input-oriented BCC model. In Section 4, we introduce the mentioned model of DEA under the 

simplified neutrosophic environment and propose a method to solve it.  In Section 5, an example 

demonstrates the application of the proposed model. Finally, some conclusions and future research 

are offered in Section 6. 

2. Simplified neutrosophic sets

Smarandache [44-45] has provided a variety of real-life examples for possible applications of his 

neutrosophic sets; however, it is difficult to apply neutrosophic sets to practical problems. Therefore, 

Ye [60] reduced neutrosophic sets of non-standard intervals into a kind of simplified neutrosophic 

sets (SNSs) of standard intervals that will preserve the operations of the neutrosophic sets. In this 

section, we will review the concept of SNSs, which are a subclass of neutrosophic sets briefly. 

Definition 1 [60].  Let X be a space of points (objects), with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy 

membership function IA(x) and a falsity-membership function FA(x). If the functions TA(x), IA(x) and 

FA(x) are singleton subintervals/subsets in the real standard [0, 1], that is TA(x): [0,1],X →  IA(x): 

[0,1],X → and FA(x): [0,1].X → Then, a simplification of the neutrosophic set A is denoted by  

{( ( ) ( ) ( )) | },, , , A A AA x T x I x F x x X=  which is called a SNS. Also, SNS satisfies the condition 

.0 ( ) ( ) ( ) 3A A AT x I x F x+  +

Definition 2 [60]. For SNSs A and B, A ⊆B if and only if ,( ) ( )A BT x T x ( ) ( ),A BI x I x  and 

) ( ) (A BF x F x for every x in X. 

Definition 3 [63].  Let A, B be two SNSs. Then the arithmetic relations are defined as: 

( ) ( ) ( ) ( ) ( ) ( ), ( ) ( ) ,( ) ,A A A AB B B Bi A B T x T x T x T x I x I x F x F x = + −   (1) 

( ) ( ) ( ) ( ) ( ). ( ), ( ) ( ) ( ). ( ) ,( ) ,A A AB B B B A BAii A B T x T x I x I x I x I x F x F x F x F x+ − + −=    (2) 

.( ( )) ( )) ,( ( ))) 1 ( , 0(1 ,A A Aiii A T x I x F x    = −  −     (3) 

.( )) , )1( ) ( ,1 (1 ( )) ,1 0(
A A Aiv A T x I x F x   − − = − −  (4) 

Definition 4 [60]. Let Aj (j = 1, 2, ... , n) be a SNS. The simplified neutrosophic weighted arithmetic 

average operator is defined as: 

  
1

1
( , , )

n

n j j
j

F A A A 
=

= (5)
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where 1 2( , , , )nW   =  is the weight vector of Aj, [0,1]j   and 
1

1.
n

j
j


=

=

Theorem 1 [63]. For the simplified neutrosophic weighted arithmetic average operator, the 

aggregated result is as follows:   

1
1 1 1

( , , ) 1 (1 ) , ( ) , ( ) .( ) ( ) ( )j j j

j j j

n n n

n A A A
j j j

F A A T x I x F x  



= = =

= − −         (6) 

3. The input-oriented BCC model of DEA

Data envelopment analysis (DEA) is a linear programming method for assessing the efficiency 

and productivity of decision-making units (DMUs). In the traditional DEA literature, various 

well-known DEA approaches can be found such as CCR and BCC models [1, 3]. The efficiency of a 

DMU is established as the ratio of sum weighted output to sum weighted input, subjected to happen 

between one and zero.  Let DMUO is under consideration, then input-oriented BCC model for the 

relative efficiency is as follows [3]: 

1

1

1

.

, 1,2,...,

, 1,2,...,

1

0 , 1,2,...,

o

n

j ij o i
j

n

j rj ro
j

n

j
j

j

Min

s t

x x i m

y y r s

j n



 







=

=

=

 =

 =

=

 =







  (7) 

       In this model, each DMU (suppose that we have n  DMUs) uses m  inputs ijx
( 1,2,..., ),i m= to obtains s outputs rjy ( 1,2,..., ).r s= Here ( 1,2,...., )ru r s= and ( 1,2,...., ),iv i m=
are the weights of the i th input and r th output. This model is calculated for every DMU to find 

out its best input and output weights. If * 1o = , we say that the DMUo is efficient otherwise it is 

inefficient. 

4. Simplified Neutrosophic Data Envelopment Analysis

In this section, we establish DEA under simplified neutrosophic environment. Consider the 

input and output for the j th DMU as ( , , )
ij ij ij ijx x xx T I F = , ( , , )

rj rj rj rjy y yy T I F = which are the 

simplified neutrosophic numbers (SNN). Then the simplified neutrosophic BCC model that called 

SNBCC is defined as follows: 

1

1

1

.

, 1,2,...,

, 1,2,...,

1,

0, 1,2,..., .

o

ij io

rj ro

n

j o
j

n

j
j

n

j
j

j

Min

s t

x x i m

y y r s

j n



 







 

=

 

=

=

 =

 =

=

 =







(8) 

Next, to solve the model (8) we propose the following algorithm: 

Algorithm 1. 

Step 1. Consider the DEA model (8) that the inputs and outputs of each DMU are SNN. 
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Step 2. Using the Definition 3 and Theorem 1, the SNBCC model of Step 1 can be transformed 

into the following model: 

      oMin 

.s t

( )

( )

1 1 1

1 1 1

1

1 (1 ) , ( ) , ( ) 1 (1 ) , ( ) , ( )

1 (1 ) , ( ) , ( ) , ,

1,

0, 1,2,..., .

j j j o o o

ij ij ij io io io

j j j

rj rj rj ro ro ro

n n n

x x x x x x
j j j

n n n

y y y y y y
j j j

n

j
j

j

T I F T I F

T I F T I F

j n

     

  





= = =

= = =

=

 
− −  − − 

 

 
− −  

 

=

 =

  

  



(9) 

Step 3. Using Definition 2, the SNBCC model of Step 2 can be transformed into the following 

model: 

.
oMin

s t


  (10) 

1

1

1

1

1

1

(1 ) (1 ) , 1, 2,...,

( ) ( ) , 1, 2,...,

( ) ( ) , 1, 2,...,

(1 ) (1 ), 1, 2,...,

( ) , 1, 2,...,

( ) , 1, 2,...

j o

ij io

j o

ij io

j o

ij io

j

rj ro

j

rj ro

j

rj ro

n

x x
j

n

x x
j

n

x x
j

n

y y
j

n

y y
j

n

y y
j

T T i m

I I i m

F F i m

T T r s

I I r s

F F r

 

 

 







=

=

=

=

=

=

−  − =

 =

 =

−  − =

 =

 =













1

,

1,

0, 1, 2,..., .

n

j
j

j

s

j n





=

=

 =



Step 4. Using the natural logarithm, transform the nonlinear model of (10) into the following linear 

model:   

    oMin  (11) 

.s t

1
ln(1 ) ln(1 ), 1,2,...,

ij io

n

j x o x
j

T T i m 
=

−  − = (12) 

1
ln( ) ln( ), 1,2,...,

ij io

n

j x o x
j

I I i m 
=

 = (13) 

1
ln( ) ln( ), 1,2,...,

ij io

n

j x o x
j

F F i m 
=

 = (14) 

1
ln(1 ) ln(1 ), 1,2,...,

rj ro

n

j y y
j

T T r s
=

−  − =  (15) 

1
ln( ) ln( ), 1,2,...,

rj ro

n

j y y
j

I I r s
=

 = (16) 
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1
ln( ) ln( ), 1,2,...,

rj ro

n

j y y
j

F F r s
=

 = (17) 

1
1,

n

j
j


=

=  (18) 

0, 1,2,..., .j j n  =

Step 5. Run model (11) and obtain the optimal solution. 

5. Numerical example

In this section, an example of DEA problem under simplified neutrosophic environment is used 

to demonstrate the validity and effectiveness of the proposed model. 

Example 5.1. Consider 10 DMUs with three inputs and outputs where all the input and output data 

are designed as SNN (see tables 1 and 2). 

Table 1. DMUs with three SNN inputs 

Table 2. DMUs with three SNN outputs. 

Next, we use Algorithm.1 to solve the mentioned performance assessment problem. For example, 

The Algorithm.1 for DMU1 can be used as follows: 

Step 1. Obtain the SNBCC model (8): 

DMUS Inputs 1 Inputs 2 Inputs 3 

DMU1 <0.75, 0.1, 0.15> <0.75,0.1, 0.15> <0.8, 0.05, 0.1> 

DMU2 <0.85, 0.2,0.15> <0.6, 0.05,0.05> <0.9, 0.1, 0.2> 

DMU3 <0.9, 0.01, 0.05> <0.95, 0.01, 0.01> <0.98, 0.01, 0.01> 

DMU4 <0.7,0.2, 0.1> <0.65, 0.2, 0.15> <0.8, 0.05, 0.2> 

DMU5 <0.9, 0.05, 0.1> <0.95, 0.05, 0.05> <0.7, 0.2, 0.4> 

DMU6 <0.85, 0.2, 0.1> <0.7, 0.05, 0.1> <0.6, 0.2, 0.3> 

DMU7 <0.8, 0.3, 0.1> <0.9, 0.5, 0.1> <0.8, 0.1, 0.3> 

DMU8 <0.55, 0.3, 0.35> <0.65, 0.2, 0.25> <0.5, 0.35, 0.4> 

DMU9 <0.8, 0.05, 0.1> <0.9, 0.01, 0.05> <0.8, 0.05, 0.1> 

DMU10 <0.6, 0.1, 0.3> <0.8. 0.3. 0.1> <0.65, 0.2, 0.1> 

DMUS Outputs 1 Outputs  2 Outputs  3 

DMU1 <0.7, 0.15, 0.2> <0.7,0.15, 0.2> <0.65, 0.2, 0.25> 

DMU2 <0.15, 0.2,0.25> <0.15, 0.2,0.25> <0.25, 0.15, 0.05> 

DMU3 <0.75, 0.1, 0.15> <0.7, 0.15, 0.2> <0.8, 0.05, 0.1> 

DMU4 <0.5,0.35, 0.4> <0.6, 0.25, 0.3> <0.55, 0.3, 0.35> 

DMU5 <0.6, 0.2, 0.25> <0.6, 0.15, 0.4> <0.3, 0.5, 0.5> 

DMU6 <0.55, 0.3, 0.35> <0.5, 0.5, 0.5> <0.6, 0.25, 0.3> 

DMU7 <0.8, 0.1, 0.2> <0.3, 0.01, 0.05> <0.9, 0.05, 0.05> 

DMU8 <0.8, 0.1, 0.3> <0.8, 0.25, 0.3> <0.85, 0.2, 0.2> 

DMU9 <0.65, 0.2, 0.25> <0.7, 0.15, 0.2> <0.75, 0.1, 0.15> 

DMU10 <0.6, 0.1, 0.5> <0.75. 0.1. 0.3> <0.8, 0.3, 0.5> 

Florentin Smarandache (author and editor) Collected Papers, XII

532



1

1

1 2 3

4 5 6

7 8 9

10

0.75,0.1,0.15 0.85,0.2,0.15 0.9,0.01,0.05
0.7,0.2,0.1 0.9,0.05,0.1 0.85,0.2,0.1

0.75
0.8,0.3,0.35 0.8,0.05,0.1 0.6,0.1,0.3
0.6,0. ,0 3

.

1 .

Min

s t



  

  


  



        

   

 





  
 
 

    


       

 


( ) ,,0.1,0.15 

1

1 2 3

4 5 6

7 8 9

10

0.7,0.1,0.2 0.6,0.05,0.05 0.95,0.01,0.01
0.65,0.2,0.15 0.95,0.05,0.05 0.7,0.05,0.1

0.7,0.1
0.9,0.5,0.1 0.65,0.2,0.25 0.9,0.01,0.05
0.8,0.3,0.1

  

  


  



        

      



 
 
 





      
















( ),0.2 ,

( )1

1 2 3

4 5 6

7 8 9

10

0.8,0.05,0.1 0.9,0.1,0.2 0.98,0.01,0.01
0.8,0.05,0.2 0.7,0.2,0.4 0.6,0.2,0.3

0.8,0.05,0.1
0.8,0.1,0.3 0.5,0.35,0.4 0.7,0.0

,
5,0.1

0.65,0.2,0.1

  

  


  



 
 
  




 
  

        

   



   
 

      

 

( )

1 2 3

4 5 6

7 8 9

10

0.7,0.15,0.2 0.15,0.2,0.25 0.75,0.1,0.15
0.5,0.35,0.4 0.6,0.2,0.25 0.55,0.3,0.35

0.7,0.15,0.2
0.8,0.1,0.2 0.8,0.1,0.3 0.65,0.2,0.25
0.6,0.1,0.5

  

  

  



 
 
  
 



  


        

        


      

 





,

( )

1 2 3

4 5 6

7 8 9

10

0.6,0.1,0.3 0.2,0.1,0.3 0.7,0.15,0.2
0.6,0.25,0.3 0.6,0.15,0.4 0.5,0.5,0.5

0.6,0.1,0.3
0.3,0.01,0.05 0.8,0.25,0.3 0.7,0

,
.15,0.2

0.75,0.1,0.3

  

  

  



 


 
  
 
  


        

       
 

       





 

1 2 3

4 5 6

7 8 9

10

0.65,0.2,0.25 0.25,0.15,0.05 0.8,0.05,0.1
0.55,0.3,0.35 0.3,0.5,0.5 0.6,0.25,0.3

0.65,0.2,0
0.9,0.05,0.05 0.85,0.2,0.2 0.75,0.1,0.15
0.8,0.3,0.5

  

  

  



        

        


      



 
 
  
 
  



 



( ).25 ,

1 2 3 4 4 6 7 8 9 10 1,
0, 1,2,...,10.j j

         



+ + + + + + + + + =
 =

Step 2. Using the Step 4 of Algorithm 1, we have: 

1

.
Min
s t



(Using Eq. (12))

1 2 3 4 5

6 7 8 9 10 1

ln(0.25) ln(0.15) ln(0.1) ln(0.3) ln(0.1)
ln(0.15) ln(0.2) ln(0.2) ln(0.4) ln(0.4) ln(0.25),

    

     

+ + + + +
+ + + + 
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1 2 3 4 5

6 7 8 9 10 1

ln(0.3) ln(0.4) ln(0.05) ln(0.35) ln(0.05)
ln(0.3) ln(0.1) ln(0.35) ln(0.1) ln(0.2) ln(0.3)

    

     

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10 1

ln(0.2) ln(0.1) ln(0.02) ln(0.2) ln(0.3)
ln(0.4) ln(0.2) ln(0.5) ln(0.3) ln(0.35) ln(0.2)

    

     

+ + + + +
+ + + + 

(Using Eq. (13)) 

1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.2) ln(0.01) ln(0.2) ln(0.05)
ln(0.2) ln(0.3) ln(0.05) ln(0.1) ln(0.1) ln(0.1)

    

     

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.05) ln(0.01) ln(0.2) ln(0.05)
ln(0.05) ln(0.5) ln(0.2) ln(0.01) ln(0.3) ln(0.1)

    

     

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10 1

ln(0.05) ln(0.05) ln(0.01) ln(0.05) ln(0.2)
ln(0.2) ln(0.1) ln(0.35) ln(0.05) ln(0.2) ln(0.05)

    

     

+ + + + +
+ + + + 

(Using Eq. (14)) 

1 2 3 4 5

6 7 8 9 10 1

ln(0.15) ln(0.15) ln(0.05) ln(0.1) ln(0.1)
ln(0.1) ln(0.35) ln(0.1) ln(0.3) ln(0.3) ln(0.15)

    

     

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10 1

ln(0.2) ln(0.05) ln(0.01) ln(0.15) ln(0.05)
ln(0.1) ln(0.1) ln(0.25) ln(0.05) ln(0.1) ln(0.2)

    

     

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.2) ln(0.01) ln(0.2) ln(0.4)
ln(0.3) ln(0.3) ln(0.4) ln(0.1) ln(0.1) ln(0.1)

    

     

+ + + + +
+ + + + 

(Using Eq. (15)) 

1 2 3 4 5

6 7 8 9 10

ln(0.3) ln(0.85) ln(0.25) ln(0.5) ln(0.4)
ln(0.45) ln(0.2) ln(0.2) ln(0.35) ln(0.4) ln(0.3),

    

    

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10

ln(0.4) ln(0.8) ln(0.3) ln(0.4) ln(0.4)
ln(0.5) ln(0.7) ln(0.2) ln(0.3) ln(0.25) ln(0.4),

    

    

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10

ln(0.35) ln(0.75) ln(0.2) ln(0.45) ln(0.7)
ln(0.4) ln(0.1) ln(0.15) ln(0.25) ln(0.2) ln(0.35),

    

    

+ + + + +
+ + + + 

(Using Eq. (16)) 

1 2 3 4 5

6 7 8 9 10

ln(0.15) ln(0.2) ln(0.1) ln(0.35) ln(0.2)
ln(0.3) ln(0.1) ln(0.1) ln(0.2) ln(0.1) ln(0.15),

    

    

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10

ln(0.1) ln(0.1) ln(0.15) ln(0.25) ln(0.15)
ln(0.5) ln(0.01) ln(0.25) ln(0.15) ln(0.1) ln(0.1),

    

    

+ + + + +
+ + + + 
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1 2 3 4 5

6 7 8 9 10

ln(0.2) ln(0.15) ln(0.05) ln(0.3) ln(0.5)
ln(0.25) ln(0.05) ln(0.2) ln(0.1) ln(0.3) ln(0.2),

    

    

+ + + + +
+ + + + 

(Using Eq. (17)) 

1 2 3 4 5

6 7 8 9 10

ln(0.2) ln(0.25) ln(0.15) ln(0.4) ln(0.25)
ln(0.35) ln(0.2) ln(0.3) ln(0.25) ln(0.5) ln(0.2),

    

    

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10

ln(0.3) ln(0.3) ln(0.2) ln(0.3) ln(0.4)
ln(0.5) ln(0.05) ln(0.3) ln(0.2) ln(0.3) ln(0.3),

    

    

+ + + + +
+ + + + 

1 2 3 4 5

6 7 8 9 10

ln(0.25) ln(0.05) ln(0.1) ln(0.35) ln(0.5)
ln(0.3) ln(0.05) ln(0.2) ln(0.15) ln(0.5) ln(0.25),

    

    

+ + + + +
+ + + + 

(Using Eq. (18)) 

1 2 3 4 4 6 7 8 9 10 1,
0, 1,2,...,10.j j

         



+ + + + + + + + + =
 =

Step 3. After computations with Lingo, we obtain 
*
1 0.9068 =  for DMU1. 

Similarly, for the other DMUs, we report the results in Table 3. 

Table 3. The efficiencies of the other DMUs 

DMUs 1 2 3 4 5 6 7 8 9 10 
* 0.9068 0.9993 0.5153 0.9973 0.6382 0.6116 1 1 0.6325 1 

Rank 4 2 8 3 5 7 1 1 6 1 

By these results, we can see that DMUs 7, 8, and 10 are efficient and others are inefficient. 

6. Conclusions and future work

There are several approaches to solving various problems under neutrosophic environment. 

However, to the best of our knowledge, the Data Envelopment Analysis (DEA) has not been 

discussed with neutrosophic sets until now. This paper, therefore, plans to fill this gap and a new 

method has been designed to solve an input-oriented DEA model with simplified neutrosophic 

numbers. A numerical example has been illustrated to show the efficiency of the proposed method. 

The proposed approach has produced promising results from computing efficiency and 

performance aspects. Moreover, although the model, arithmetic operations and results presented 

here demonstrate the effectiveness of our approach, it could also be considered in other DEA models 

and their applications to banks, police stations, hospitals, tax offices, prisons, schools and 

universities. As future researches, we intend to study these problems.  
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Correlation Measure for Pythagorean Neutrosophic 
Sets with T and F as Dependent Neutrosophic 

Components
R. Jansi, K. Mohana, Florentin Smarandache

Abstract: In this paper, we study the new concept of Pythagorean neutrosophic set with T and F as 
dependent neutrosophic components [PNS]. Pythagorean neutrosophic set with T and F as dependent 
neutrosophic components [PNS] is introduced as a generalization of neutrosophic set (In neutrosophic 

sets, there are three special cases, here we take one of the special cases. That is, membership and non-

membership degrees are dependent components and indeterminacy is independent) and Pythagorean 

fuzzy set. In PNS sets, membership, non-membership and indeterminacy degrees are 

gratifying the condition 0 ≤  (𝑢𝐴(𝑥))
2 

+ (𝜁 𝑥))
2 

+ (𝑣𝐴(𝑥))
2 

≤ 2 instead of 𝑢𝐴(𝑥) + 𝜁 𝑥) + 𝑣𝐴(𝑥) 
> 2  as in neutrosophic sets. We investigate the basic operations of PNS sets. Also, the correlation 

measure of PNS set is proposed and proves some of their basic properties. The concept of this correlation 

measures of PNS set is the extension of correlation measures of Pythagorean fuzzy set and neutrosoph-

ic set. Then, using correlation of PNS set measure, the application of medical diagnosis is given. 

Keywords: Pythagorean fuzzy set, Pythagorean Neutrosophic set with T and F as dependent

neutrosophic components [PNS], Correlation measure and Medical diagnosis. 

Introduction 

Fuzzy sets were firstly initiated by L.A.Zadeh [36] in 1965. Zadeh’s idea of fuzzy set evolved as a new 

tool having the ability to deal with uncertainties in real-life problems and discussed only membership 

function. After the extensions of fuzzy set theory Atanassov [7] generalized this concept and introduced a 

new set called intuitionistic fuzzy set (IFS) in 1986, which can be describe the non-membership grade of 

an imprecise event along with its membership grade under a restriction that the sum of both membership 

and non-membership grades does not exceed 1. IFS has its greatest use in practical multiple attribute 

decision making problems.In some practical problems.In some practical problems, the sum of 

membership and non-membership degree to which an alternative satisfying attribute provided by 

decision maker(DM) may be bigger than 1.  

      Yager [30] was decided to introduce the new concept known as Pythagorean fuzzy sets. 

Pythagorean fuzzy sets has limitation that their square sum is less than or equal to 1. IFS was failed to 

deal with indeterminate and inconsistent information which exist in beliefs system, therefore, 

Smarandache [22] in 1995 introduced new concept known as neutrosophic set(NS)  which generalizes 

R. Jansi, K. Mohana, Florentin Smarandache (2019). Correlation Measure for Pythagorean 
Neutrosophic Sets with T and F as Dependent Neutrosophic Components. Neutrosophic 
Sets and Systems 30, 202-212
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fuzzy sets and intuitionistic fuzzy sets and so on. A neutrosophic set includes truth membership, falsity 

membership and indeterminacy membership. 

    In 2006, F.Smarandache introduced, for the first time, the degree of dependence (and 

consequently the degree of independence) between the components of the fuzzy set, and also between the 

components of the neutrosophic set. In 2016, the refined neutrosophic set was generalized to the degree 

of dependence or independence of subcomponents [22]. In neutrosophic set [22], if truth membership and 

falsity membership are 100% dependent and indeterminacy is 100% independent, that is   0 ≤ 𝑢𝐴(𝑥) +

𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 2 .  Sometimes in real life, we face many problems which cannot be handled by using 

neutrosophic for example when   𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) > 2. In such condition, a neutrosophic set has no 

ability to obtain any satisfactory result. To state this condition, we give an example: the truth 

membership, falsity membership and indeterminacy values are 
8

10
,

5

10
 𝑎𝑛𝑑 

9

10
 respectively. This satisfies

the condition that their sums exceeds 2 and are not presented to neutrosophic set. So, In Pythagorean 

neutrosophic set with T and F are dependent neutrosophic components [PNS]   of condition is as their 

square sum does not exceeds 2. Here, T and F are dependent neutrosophic components and we make 

𝑢𝐴(𝑥), 𝑣𝐴(𝑥)𝑎𝑠 Pythagorean, then (𝑢𝐴(𝑥))
2

+ (𝑣𝐴(𝑥))
2

≤ 1 with 𝑢𝐴(𝑥), 𝑣𝐴(𝑥) 𝑖𝑛 [0,1].  If 𝜁𝐴(𝑥)  is an

Independent from them, then 0 ≤ 𝜁𝐴(𝑥) ≤ 1. Then    0 ≤   (𝑢𝐴(𝑥))
2

+ (𝜁𝐴(𝑥))
2

+ (𝑣𝐴(𝑥))
2

≤ 2, with

𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥) 𝑖𝑛 [0,1].   We consider in general the degree of dependence 

between  𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥) 𝑖𝑠 1 , hence 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥) ≤ 3 − 1 = 2. 

      Correlation coefficients are beneficial tools used to determine the degree of similarity 

between objects. The importance of correlation coefficients in fuzzy environments lies in the fact that 

these types of tools can feasibly be applied to problems of pattern recognition, MADM, medical diagnosis 

and clustering, etc.                       In other research, Ye[33] proposed three vector similarity measure for 

SNSs, an instance of SVNS and INS, includingthe Jaccard, Dice, and cosine similarity measures for SVNS 

and INSs, and applied them to multi-criteria decision-making problems with simplified neutrosophic 

information. Hanafy et al. [16] proposed the correlation coefficients of neutrosophic sets and studied 

some of their basic properties. Based on centroid method, Hanafy et al. [17], introduced and studied the 

concepts of correlation and correlation coefficient of neutrosophic sets and studied some of their 

properties.  

      Recently Bromi and Smarandache defined the Haudroff distance between neutrosophic sets and 

some similarity measures based on the distance such as; set theoretic approach and matching function to 

calculate the similarity degree between neutrosophic sets. In the same year, Broumi and Smarandache 

[11] also proposed the correlation coefficient between interval neutrosphic sets.

      In this paper, we have to study the concept of Pythagorean neutrosophic set with T and F are 

neutrosophic components and also define the correlation measure of Pythagorean neutrosophic set with 

T and F are dependent neutrosophic components [PNS] and prove some of its properties. Then, using 

correlation of Pythagorean neutrosophic fuzzy set with T and F are dependent neutrosophic components 

[PNS] measure, the application of medical diagnosis is given. 

Preliminaries 

Definition 2.1 [1] Let E be a universe. An intuitionistic fuzzy set A on E can be defined as follows: 

𝐴 = {< 𝑥, 𝑢𝐴(𝑥), 𝑣𝐴(𝑥) >: 𝑥 ∈ 𝐸} 

Where 𝑢𝐴: 𝐸 → [0,1] 𝑎𝑛𝑑 𝑣𝐴: 𝐸 → [0,1]  such that 0 ≤ 𝑢𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1  for any 𝑥 ∈ 𝐸.  Where, 𝑢𝐴(𝑥)  and 

𝑣𝐴(𝑥) is the degree of membership and degree of non-membership of the element x, respectively. 
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Definition 2.2 [18, 24] 

Let X be a non-empty set and I the unit interval [0, 1]. A Pythagorean fuzzy set S is an object having the 

form 𝐴 = {(𝑥, 𝑢𝐴(𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 𝑋} where the functions 𝑢𝐴: 𝑋 → [0,1] 𝑎𝑛𝑑 𝑣 𝐴: 𝑋 → [0,1]  denote respectively 

the degree of membership and degree of non-membership of each element 𝑥 ∈ 𝑋 to the set P, and 0 ≤

(𝑢𝐴(𝑥))
2

+ (𝑣𝐴(𝑥))2 ≤ 1 for each 𝑥 ∈ 𝑋.

Definition 2.3[15] Let X be a non-empty set (universe). A neutrosophic set A on X is an object of the form:

𝐴 = {(𝑥, 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 𝑋}, 

Where 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)  ∈ [0,1], 0 ≤ 𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑋.  𝑢𝐴(𝑥) is the degree of 

membership, 𝜁𝐴(𝑥)  is the degree of inderminancy and 𝑣𝐴(𝑥) is the degree of non-membership. Here 

𝑢𝐴(𝑥) 𝑎𝑛𝑑 𝑣𝐴(𝑥) are dependent components and 𝜁𝐴(𝑥) is an independent components. 

Definition 2.4  Let X be a nonempty set and I the unit interval [0,1]. A neutrosophic set A and B of the 

form                    𝐴 = {(𝑥, 𝑢𝐴 (𝑥), 𝜁𝐴(𝑥), 𝑣𝐴 (𝑥)): 𝑥 ∈ 𝑋} and   B = {(𝑥, 𝑢𝐵 (𝑥), 𝜁𝐵(𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}.     Then 

1) 𝐴𝐶 = {(𝑥, 𝑣𝐴(𝑥), 𝜁𝐴(𝑥), 𝑢𝐴(𝑥)): 𝑥 ∈ 𝑋}

2) 𝐴 ∪ 𝐵 = {(𝑥, max(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) , min(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) , min (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥))): 𝑥 ∈ 𝑋}

3) 𝐴 ∩ 𝐵 = {(𝑥, min(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) , max(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) , max (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}

3. Pythagorean Neutrosophic set with T and F are dependent neutrosophic components [PNS]:

Definition 3.1 Let X be a non-empty set (universe). A  Pythagorean neutrosophic set with T and F are 

dependent neutrosophic components [PNS] A on X is an object of the form 𝐴 =

{(𝑥, 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 𝑋}, 

Where 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)  ∈ [0,1], 0 ≤ (𝑢𝐴(𝑥))
2

+ (𝜁𝐴(𝑥))
2

+ (𝑣𝐴(𝑥))
2

≤ 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑋.  𝑢𝐴(𝑥)  is the

degree of membership, 𝜁𝐴(𝑥) is the degree of inderminancy and 𝑣𝐴(𝑥) is the degree of non-membership 

.Here 𝑢𝐴(𝑥) 𝑎𝑛𝑑 𝑣𝐴(𝑥) are dependent components and 𝜁𝐴(𝑥) is an independent components. 

Definition 3.2 Let X be a nonempty set and I the unit interval [0, 1]. A Pythagorean neutrosophic set with 

T and F are dependent neutrosophic components [PNS] A and B of the form 

 𝐴 = {(𝑥, 𝑢𝐴 (𝑥), 𝜁𝐴(𝑥), 𝑣𝐴 (𝑥)): 𝑥 ∈ 𝑋} and  B = {(𝑥, 𝑢𝐵 (𝑥), 𝜁𝐵(𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}.  Then 

1) 𝐴𝐶 = {(𝑥, 𝑣𝐴(𝑥), 𝜁𝐴(𝑥), 𝑢𝐴(𝑥)): 𝑥 ∈ 𝑋}

2) 𝐴 ∪ 𝐵 = {(𝑥, max(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) , max(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) , min (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥))): 𝑥 ∈ 𝑋}

3) 𝐴 ∩ 𝐵 = {(𝑥, max(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) , max(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) , min (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}

Definition 3.3 Let X be a nonempty set and I the unit interval [0, 1]. A Pythagorean neutrosophic set with 

T and F are dependent neutrosophic components [PNS] A and B of the form 

 𝐴 = {(𝑥, 𝑢𝐴 (𝑥), 𝜁𝐴(𝑥), 𝑣𝐴 (𝑥)): 𝑥 ∈ 𝑋} and   B = {(𝑥, 𝑢𝐵 (𝑥), 𝜁𝐵(𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}.   

Then the correlation coefficient of A and B 

𝜌(𝐴, 𝐵) =
𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)
(1)
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𝐶(𝐴, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

𝐶(𝐴, 𝐴) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)

𝑛

𝑖=1

𝐶(𝐵, 𝐵) = ∑ ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

Preposition 3.4 The defined correlation measure between PNS A and PNS B satisfies the following 

properties 

(i) 0 ≤  𝜌(𝐴, 𝐵) ≤ 1

(ii) 𝜌(𝐴, 𝐵) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵

(iii) 𝜌(𝐴, 𝐵) =  𝜌(𝐵, 𝐴).

Proof: 

(i) 0 ≤  𝜌(𝐴, 𝐵) ≤ 1

As the membership, inderminate and non-membership functions of the PNS lies between 0 and 1,  𝜌(𝐴, 𝐵) 

also lies between 0 and 1. 

We will prove   𝐶(𝐴, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)𝑛
𝑖=1

= ((𝑢𝐴 (𝑥1))
2

. (𝑢𝐵(𝑥1))
2

+ (𝜁𝐴 (𝑥1))
2

. (𝜁𝐵(𝑥1))
2

+ (𝑣𝐴 (𝑥1))
2

. (𝑣𝐵(𝑥1))
2

) +

((𝑢𝐴 (𝑥2))
2

. (𝑢𝐵(𝑥2))
2

+ (𝜁𝐴 (𝑥2))
2

. (𝜁𝐵(𝑥2))
2

+ (𝑣𝐴 (𝑥2))
2

. (𝑣𝐵(𝑥2))
2

) + ⋯ +

((𝑢𝐴 (𝑥𝑛))
2

. (𝑢𝐵(𝑥𝑛))
2

+ (𝜁𝐴 (𝑥𝑛))
2

. (𝜁𝐵(𝑥𝑛))
2

+ (𝑣𝐴 (𝑥𝑛))
2

. (𝑣𝐵(𝑥𝑛))
2

)

By Cauchy-Schwarz inequality,  (𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛)2 ≤ (𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2). (𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛

2),

where (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛) ∈ 𝑅𝑛  𝑎𝑛𝑑  (𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛) ∈ 𝑅𝑛, we get

(𝐶(𝐴, 𝐵))
2

  =   ((𝑢𝐴 (𝑥1))
4

+ (𝜁𝐴 (𝑥1))
4

+ (𝑣𝐴 (𝑥1))
4

) +  ((𝑢𝐴 (𝑥2))
4

+ (𝜁𝐴 (𝑥2))
4

+   (𝑣𝐴 (𝑥2))
4

) +

… + ((𝑢𝐴 (𝑥𝑛))
4

+ (𝜁𝐴 (𝑥𝑛))
4

+ (𝑣𝐴 (𝑥𝑛))
4

)

× ((𝑢𝐵(𝑥1))
4

+ (𝜁𝐵(𝑥1))
4

+ (𝑣𝐵(𝑥1))
4

) +  ((𝑢𝐵(𝑥2))
4

+  (𝜁𝐵(𝑥2))
4

+

(𝑣𝐵(𝑥2))
4

) + ⋯ +  ((𝑢𝐵(𝑥𝑛))
4

+  (𝜁𝐵(𝑥𝑛))
4

+ (𝑣𝐵(𝑥𝑛))
4

)

= ((𝑢𝐴 (𝑥1))
2

. (𝑢𝐴(𝑥1))
2

+ (𝜁𝐴 (𝑥1))
2

. (𝜁𝐴(𝑥1))
2

+ (𝑣𝐴 (𝑥1))
2

. (𝑣𝐴(𝑥1))
2

)

+ ((𝑢𝐴 (𝑥2))
2

. (𝑢𝐴(𝑥2))
2

+ (𝜁𝐴 (𝑥2))
2

. (𝜁𝐴(𝑥2))
2

+ (𝑣𝐴 (𝑥2))
2

. (𝑣𝐴(𝑥2))
2

) + ⋯ +
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((𝑢𝐴 (𝑥𝑛))
2

. (𝑢𝐴(𝑥𝑛))
2

+ (𝜁𝐴 (𝑥𝑛))
2

. (𝜁𝐴(𝑥𝑛))
2

+ (𝑣𝐴 (𝑥𝑛))
2

. (𝑣𝐴(𝑥𝑛))
2

) ×

((𝑢𝐵(𝑥1))
2

(𝑢𝐵(𝑥1))
2

+  (𝜁𝐵(𝑥1))
2

(𝜁𝐵(𝑥1))
2

+ (𝑣𝐵(𝑥1))
2

(𝑣𝐵(𝑥1))
2

) +

((𝑢𝐵(𝑥2))
2

(𝑢𝐵(𝑥2))
2

+ (𝜁𝐵(𝑥2))
2

(𝜁𝐵(𝑥2))
2

+  (𝑣𝐵(𝑥2))
2

 (𝑣𝐵(𝑥2))
2

) + ⋯ +

((𝑢𝐵(𝑥𝑛))
2

(𝑢𝐵(𝑥𝑛))
2

+ (𝜁𝐵(𝑥𝑛))
2

+ (𝑣𝐵(𝑥𝑛))
2

(𝑣𝐵(𝑥𝑛))
2

)

    = 𝐶(𝐴, 𝐴) × 𝐶(𝐵, 𝐵). 

Therefore, (𝐶(𝐴, 𝐵))
2

≤ 𝐶(𝐴, 𝐴) × 𝐶(𝐵, 𝐵) and thus 𝜌(𝐴, 𝐵) ≤ 1.

Hence we obtain the following propertity 0 ≤  𝜌(𝐴, 𝐵) ≤ 1 

(ii) 𝜌(𝐴, 𝐵) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵

 Let the two PNS A and B be equal (i.e A = B). Hence for any 

   𝑢𝐴(𝑥𝑖) = 𝑢𝐵(𝑥𝑖), 𝜁𝐴(𝑥𝑖) = 𝜁𝐵(𝑥𝑖) and  𝑣𝐴(𝑥𝑖) = 𝑣𝐵(𝑥𝑖), 

Then   𝐶(𝐴, 𝐴) = 𝐶(𝐵, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)𝑛
𝑖=1

And     𝐶(𝐴, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)𝑛
𝑖=1

= ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)

𝑛

𝑖=1

= 𝐶(𝐴, 𝐴) 

Hence 

   𝜌(𝐴, 𝐵) =
𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)

 =
𝐶(𝐴, 𝐴)

√𝐶(𝐴, 𝐴). 𝐶(𝐴, 𝐴)
= 1 

Let the 𝜌(𝐴, 𝐵) = 1.Then, the unite measure is possible only if 

𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)
= 1 

This refer that 𝑢𝐴(𝑥𝑖) = 𝑢𝐵(𝑥𝑖), 𝜁𝐴(𝑥𝑖) = 𝜁𝐵(𝑥𝑖) and 𝑣𝐴(𝑥𝑖) = 𝑣𝐵(𝑥𝑖), 

for all i. Hence A = B. 

(iii) If 𝜌(𝐴, 𝐵) = 𝜌(𝐵, 𝐴), it obvious that

𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶𝑁𝑃𝐹𝑆(𝐵, 𝐵)
=

𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)
= 𝜌(𝐵, 𝐴) 

as 
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𝐶(𝐴, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

= ∑ ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)

𝑛

𝑖=1

      𝐶(𝐵, 𝐴) 

Hence the proof. 

Definition 3.5 

Let A and B be two PNSs, then the correlation coefficient is defined as 

𝜌′(𝐴, 𝐵) =
𝐶(𝐴, 𝐵)

𝑚𝑎𝑥{𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)}
 (2)

Theorem 3.6 

The defined correlation measure between PNS A and PNS B satisfies the following properties 

(i) 0 ≤  𝜌′(𝐴, 𝐵) ≤ 1

(ii) 𝜌′(𝐴, 𝐵) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵

(iii) 𝜌′(𝐴, 𝐵) =  𝜌′(𝐵, 𝐴).

Proof: The property (i) and (ii) is straight forward, so omit here. Also 𝜌′(𝐴, 𝐵) ≥ 0 is evident. We now 

prove only 𝜌′(𝐴, 𝐵) ≤ 1. 

 Since Theorem 3.4, we have (𝐶(𝐴, 𝐵))2 ≤ 𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵). Therefore, 𝐶(𝐴, 𝐵) ≤ 𝑚𝑎𝑥{𝐶(𝐴, 𝐴), 𝐶(𝐵, 𝐵)} and 

thus 𝜌′(𝐴, 𝐵) ≤ 1. 

However, in many practical situations, the different set may have taken different weights, and thus, 

weight 𝜔𝑖 of the element 𝑥𝑖 ∈ 𝑋 (𝑖 = 1,2, … , 𝑛) should be taken into account. In the following, we develop 

a weighted correlation coefficient between PNSs. Let 𝜔 = {𝜔1, 𝜔2, … , 𝜔𝑛} be the weight vector of the 

elements 𝑥𝑖(𝑖 = 1,2, … . , 𝑛)  with 𝜔𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝜔𝑖 = 1,𝑛
𝑖=1  then we have extended the above correlation 

coefficient 𝜌(𝐴, 𝐵) 𝑎𝑛𝑑 𝜌′(𝐴, 𝐵) to weighted correlation coefficient as follows: 

𝜌′′ =
𝐶𝜔(𝐴, 𝐵)

√𝐶𝜔(𝐴, 𝐴). 𝐶𝜔(𝐵, 𝐵)
   (3)

𝐶𝜔(𝐴, 𝐵) = ∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

𝐶𝜔(𝐴, 𝐴) = ∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)

𝑛

𝑖=1

𝐶𝜔(𝐵, 𝐵) = ∑ 𝜔𝑖 ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1
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And 

𝜌′′′ =
𝐶𝜔(𝐴, 𝐵)

𝑚𝑎𝑥{𝐶𝜔(𝐴, 𝐴). 𝐶𝜔(𝐵, 𝐵)}
  (4)

 =
∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))

2
. (𝑢𝐵(𝑥𝑖))

2
+ (𝜁𝐴 (𝑥𝑖))

2
. (𝜁𝐵(𝑥𝑖))

2
+ (𝑣𝐴 (𝑥𝑖))

2
. (𝑣𝐵(𝑥𝑖))

2
)𝑛

𝑖=1

𝑚𝑎𝑥 {
∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))

2
. (𝑢𝐴(𝑥𝑖))

2
+ (𝜁𝐴 (𝑥𝑖))

2
. (𝜁𝐴(𝑥𝑖))

2
+ (𝑣𝐴 (𝑥𝑖))

2
. (𝑣𝐴(𝑥𝑖))

2
)𝑛

𝑖=1 ,

∑ 𝜔𝑖 ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)𝑛
𝑖=1

}

It can be easy to verify that if 𝜔 = (
1

𝑛
,

1

𝑛
, … ,

1

𝑛
)

𝑇

, then Equation  (3) and (4)  reduce that (1) and (2), respectively.

Theorem 3.7 

Let 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇  be the weight vector of 𝑥𝑖(𝑖 = 1,2, … . , 𝑛)  with 𝜔𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝜔𝑖 =𝑛
𝑖=1

1,  then the weighted correlation coefficient between the PNSs A and B defined by Equation (3) satisfies: 

(i) 0 ≤  𝜌′′(𝐴, 𝐵) ≤ 1

(ii) 𝜌′′(𝐴, 𝐵) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵

(iii) 𝜌′′(𝐴, 𝐵) =  𝜌′′(𝐵, 𝐴).

Proof: 

   The property (i) and (ii) are straight forward so omit here. Also  𝜌′′(𝐴, 𝐵) ≥ 0 is evident so we need to 

show only  𝜌′′(𝐴, 𝐵) ≤ 1. 

Since, 

𝐶𝜔(𝐴, 𝐵) = ∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

= 𝜔1 ((𝑢𝐴 (𝑥1))
2

. (𝑢𝐵(𝑥1))
2

+ (𝜁𝐴 (𝑥1))
2

. (𝜁𝐵(𝑥1))
2

+ (𝑣𝐴 (𝑥1))
2

. (𝑣𝐵(𝑥1))
2

) +

𝜔2  ((𝑢𝐴 (𝑥2))
2

. (𝑢𝐵(𝑥2))
2

+ (𝜁𝐴 (𝑥2))
2

. (𝜁𝐵(𝑥2))
2

+ (𝑣𝐴 (𝑥2))
2

. (𝑣𝐵(𝑥2))
2

) + ⋯ +

𝜔𝑛 ((𝑢𝐴 (𝑥𝑛))
2

. (𝑢𝐵(𝑥𝑛))
2

+ (𝜁𝐴 (𝑥𝑛))
2

. (𝜁𝐵(𝑥𝑛))
2

+ (𝑣𝐴 (𝑥𝑛))
2

. (𝑣𝐵(𝑥𝑛))
2

)

= (√𝜔1(𝑢𝐴 (𝑥1))
2

. √𝜔1(𝑢𝐵(𝑥1))
2

+ √𝜔1(𝜁𝐴 (𝑥1))
2

. √𝜔1(𝜁𝐵(𝑥1))
2

+ √𝜔1(𝑣𝐴 (𝑥1))
2

. √𝜔1(𝑣𝐵(𝑥1))
2

)

+ (√𝜔2(𝑢𝐴 (𝑥2))
2

. √𝜔2(𝑢𝐵(𝑥2))
2

+ √𝜔2(𝜁𝐴 (𝑥2))
2

. √𝜔2(𝜁𝐵(𝑥2))
2

+ √𝜔2(𝑣𝐴 (𝑥2))
2

. √𝜔2(𝑣𝐵(𝑥2))
2

) + ⋯ +

(√𝜔𝑛(𝑢𝐴 (𝑥𝑛))
2

. √𝜔𝑛(𝑢𝐵(𝑥𝑛))
2

+ √𝜔𝑛(𝜁𝐴 (𝑥𝑛))
2

. √𝜔𝑛(𝜁𝐵(𝑥𝑛))
2

+

√𝜔𝑛(𝑣𝐴 (𝑥𝑛))
2

. √𝜔𝑛(𝑣𝐵(𝑥𝑛))
2

)

By using Cauchy-Schwarz inequality,   we get 
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(𝐶𝜔(𝐴, 𝐵))
2

  ≤   (𝜔1(𝑢𝐴 (𝑥1))
2

. (𝑢𝐴(𝑥1))
2

+ (𝜁𝐴 (𝑥1))
2

. (𝜁𝐴(𝑥1))
2

+ (𝑣𝐴 (𝑥1))
2

. (𝑣𝐴(𝑥1))
2

) +

(𝜔2(𝑢𝐴 (𝑥2))
2

. (𝑢𝐴(𝑥2))
2

+ (𝜁𝐴 (𝑥2))
2

. (𝜁𝐴(𝑥2))
2

+ (𝑣𝐴 (𝑥2))
2

. (𝑣𝐴(𝑥2))
2

) +

… + (𝜔𝑛(𝑢𝐴 (𝑥𝑛))
2

. (𝑢𝐴(𝑥𝑛))
2

+ (𝜁𝐴 (𝑥𝑛))
2

. (𝜁𝐴(𝑥𝑛))
2

+ (𝑣𝐴 (𝑥𝑛))
2

. (𝑣𝐴(𝑥𝑛))
2

) ×

(𝜔1(𝑢𝐵(𝑥1))
2

(𝑢𝐵(𝑥1))
2

+ (𝜁𝐵(𝑥1))
2

(𝜁𝐵(𝑥1))
2

+ (𝑣𝐵(𝑥1))
2

(𝑣𝐵(𝑥1))
2

) +

(𝜔2(𝑢𝐵(𝑥2))
2

(𝑢𝐵(𝑥2))
2

+ (𝜁𝐵(𝑥2))
2

(𝜁𝐵(𝑥2))
2

+  (𝑣𝐵(𝑥2))
2

 (𝑣𝐵(𝑥2))
2

)

+ ⋯ + (𝜔𝑛(𝑢𝐵(𝑥𝑛))
2

(𝑢𝐵(𝑥𝑛))
2

+  (𝜁𝐵(𝑥𝑛))
2

(𝜁𝐵(𝑥𝑛))
2

+ (𝑣𝐵(𝑥𝑛))
2

(𝑣𝐵(𝑥𝑛))
2

)

= ∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

) ×

  𝑛

𝑖=1

∑ 𝜔𝑖 ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)𝑛
𝑖=1

 = 𝐶𝜔(𝐴, 𝐴) × 𝐶𝜔(𝐵, 𝐵) 

Therefore, 𝐶𝜔(𝐴, 𝐵) ≤ √𝐶𝜔(𝐴, 𝐴) × 𝐶𝜔(𝐵, 𝐵) and hence 0 ≤  𝜌′′(𝐴, 𝐵) ≤ 1.

Theorem 3.8 

The correlation coefficient of two PNSs A and B as defined in Equation (4), that is, 𝜌′′′(𝐴, 𝐵) satisfies the 

same properties as those in Theorem 3.7 

Proof: The proof of this theorem is similar to that of Theorem 3.6. 

5. Application

In this section, we give some application of PNS in medical diagnosis problem using correlation measure. 

Medical Diagnosis Problem 

As medical diagnosis contains lots of uncertainties and increased volume of information available to 

physicians from new medical technologies, the process of classifying different set of symptoms under a 

single name of disease becomes difficult.In some practical problems, there is the possibility of each 

element having different truth membership , inderminate and false membership functions.The proposed 

correlation measure among the patients Vs. symptoms and symptoms Vs. diseases gives the proper 

medical diagnosis. Now, an example of a medical diagnosis will be presented  

Example 

Let P= {𝑃1, 𝑃2, 𝑃3} be a set of patients, D= {𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟, 𝑀𝑎𝑙𝑎𝑟𝑖𝑎, 𝑇𝑦𝑝ℎ𝑜𝑖𝑑, 𝐷𝑒𝑛𝑔𝑢} be a set of diseases and 

S= {𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, Headache, Cough, Joint pain} be a set of symptoms. 

Table 1: M (the relation between Patient and Symptoms) 

M 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 Headache Cough Joint pain

𝑃1 (0.8,0.7,0.6) (0.5,0.3,0.8) (0.6,0.9,0.4) (0.3,0.5,0.2) 
𝑃2 (0.2,0.7,0.9) (0.5,0.9,0.8) (0.4,0.6,0.3) (0.1,0.2,0.9) 
𝑃3 (0.3,0.1,0.5) (0.8,0.5,0.6) (0.4,0.8,0.9) (0.5,0.7,0.2) 
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Table 2: N (the relation between Symptoms and Diseases) 
N 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (0.9,0.5,0.4) (0.5,0.3,0.6) (0.8,0.9,0.4) (0.2,0.8,0.5) 

Headache (0.1,0.5,0.3) (0.5,0.6,0.7) (0.4,0.5,0.9) (0.9,0.8,0.3) 

Cough (0.3,0.7,0.8) (0.9,0.7,0.4) (0.1,0.3,0.9) (0.5,0.3,0.8) 

Joint pain (0.7,0.3,0.5) (0.8,0.9,0.6) (0.5,0.7,0.6) (0.1,0.5,0.8) 

Using Equations (1), we get the value of 𝜌(𝐴, 𝐵) 

Table 3: M and N (Correlation Measure) 

   M 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢

𝑃1 0.7670 0.5363 0.5965 0.5446 

𝑃2 0.4638 0.6253 0.4873 0.5434 

𝑃3 0.4596 0.6606 0.6072 0.7401 

Using Equations ( 2 ), we get the value of 𝜌′(𝐴, 𝐵)

Table 4: M and N (Correlation Measure) 

M 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢

𝑃1 0.6997 0.5223 0.5786 0.5357 

𝑃2 0.3670 0.5292 0.4358 0.5095 

𝑃3 0.4269 0.6562 0.5784 0.6729 
On the other hand, if we assign weights 0.10, 0.20, 0.30 and 0.40 respectively, then by applying correlation 

coefficient given in Equations (3) and (4), we can give the following values of the correlation coefficient: 

Using Equations ( 3 ), we get the value of 𝜌′′(𝐴, 𝐵) 

Table 5: M and N (Correlation Measure) 
M 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢

𝑃1 0.7233 0.6496 0.4527 0.4623 

𝑃2 0.4390 0.5469 0.4758 0.4194 

𝑃3 0.5123 0.6606 0.7229 0.7638 

Using Equations ( 4 ), we get the value of 𝜌′′′(𝐴, 𝐵)

Table 6: M and N (Correlation Measure) 

M 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢

𝑃1 0.6936 0.5324 0.4280 0.4039 

𝑃2 0.2812 0.5316 0.4245 0.4084 

𝑃3 0.4321 0.6154 0.6727 0.7518 
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The highest correlation measure from the Tables 3,4,5,6 gives the proper medical diagnosis. Therefore, 

patient 𝑃1    suffers from Viral Fever, patient 𝑃2 suffers from Malaria and patient  𝑃3 suffers from Dengu. 

Hence, we can see from the above four kinds of correlation coefficient indices that the results are same. 

Conclusion 

 In this paper, we found the correlation measure of Pythagorean neutrosophic set with T and F are 

neutrosophic components (PNS) and proved some of their basic properties. Based on that the present 

paper have extended the theory of correlation coefficient from and neutrosophic sets (NS) to the 

Pythagorean neutrosophic set with T and F are neutrosophic components in which the constraint 

condition of sum of membership, non-membership and indeterminacy be less than two has been relaxed. 

Illustrate examples have handle the situation where the existing correlation coefficient in NS environment 

fails. Also to deal with the situations where the elements in a set are correlative, a weighted correlation 

coefficients has been defined. We studied an application of correlation measure of Pythagorean 

neutrosophic set with T and F are neutrosophic components in medical diagnosis. 
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Operations of Single Valued Neutrosophic Coloring 

A. Rohini, M. Venkatachalam, Dafik, Said Broumi, Florentin Smarandache

Abstract: Smarandache introduced the concept of Neutrosophic which deals with membership, 

non-membership and indeterminacy values. Wang discussed the Single Valued Neutrosophic sets in 

2010. Single Valued Neutrosophic graph was introduced by Broumi and in 2019 Single Valued 

Neutrosophic coloring was introduced. In this paper, some properties of the Single Valued 

Neutrosophic Coloring of Strong Single Valued Neutrosophic graph, Complete Single Valued 

Neutrosophic graph and Complement of Single Valued Neutrosophic graphs are discussed. 

Keywords: single-valued neutrosophic graphs; single-valued neutrosophic vertex coloring; strong 

single-valued neutrosophic graph; complete single-valued neutrosophic graph. 

1. Introduction

Francis Guthrie’s four-color conjecture was reasoned for the development of the new branch of 

graph coloring in graph theory. Graph coloring is assigning labels to the vertices or edges or both 

vertices and edges. Distinct vertices received different colors are called proper coloring. Graph 

coloring technique used in many areas like telecommunication, scheduling, computer networks etc. 

   Most of the problems are not only deals the accurate values, sometimes handle vague values. 

Fuzzy sets were introduced by Zadeh [29] in 1965, dealt imprecise values in his work. Fuzzy graph 

theory concept was developed by Rosenfeld [25] in 1975. Munoz et al. [27] in 2004 and Eslahchi, 

Onagh [19] in 2006 discussed the fuzzy chromatic number and its properties. 

Kassimir T. Atanassov [11] introduced the concept of intuitionistic fuzzy sets in 1986 and 

intuitionistic fuzzy graph in 1999. The intuitionistic graphs are handled membership and 

non-membership values. Vague set concept introduced by Gau and Buehrer [21] in 1993. In 2014, 

Akram et al. [9] discussed vague graphs and further work extended by Borzooei et al. [12, 13]. Vertex 

and Edge coloring of Vague graphs were introduced by Arindam Dey et al. [10] in 2018. 

Neutrosophic set was introduced by F. Smarandache [25] in 1998, it’s a generalization of the 

intuitionistic fuzzy set. It consists of membership value, indeterminacy value and non-membership 

value. Neutrosophic logic play a vital role in several of the real valued problems like law, medicine, 

A. Rohini, M. Venkatachalam, Dafik, Said Broumi, Florentin Smarandache (2020). Operations 
of Single Valued Neutrosophic Coloring. Neutrosophic Sets and Systems 31, 172-178
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industry, finance, engineering, IT, etc. Wang et al. [28] worked on Single valued neutrosophic sets in 

2010. Strong Neutrosophic graph and its properties were introduced and discussed by Dhavaseelan 

et al. [20] in 2015 and Single valued neutrosophic concept introduced in 2016 by Akram and 

Shahzadi [6, 7, 8]. Broumi et al. [14, 15, 16, 17, 18] extended their works in single valued neutrosophic 

graphs, interval valued neutrosophic graphs (IVNG) and bipolar neutrosophic graphs. Abdel-Basset 

et al. used Neutrosophic concept in their papers [1, 2, 3, 4, 5] to find the decisions for some real-life 

operation research and IoT-based enterprises in 2019. In 2019, Jan et al. [23] have reviewed the 

following definitions: Interval-Valued Fuzzy Graphs (IVFG), Interval-Valued Intuitionistic Fuzzy 

Graphs (IVIFG), Complement of IVFG, SVNG, IVNG and the complement of SVNG and IVNG. They 

have modified those definitions, supported with some examples. Neutrosophic graphs happen to 

play a vital role in the building of neutrosophic models. Also, these graphs can be used in 

networking, Computer technology, Communication, Genetics, Economics, Sociology, Linguistics, 

etc., when the concept of indeterminacy is present. 

In this research paper, the bounds of single valued neutrosophic vertex coloring for SVNG, 

Complement of SVNG are determined and discussed some more operations on SVNG. 

Definition 1.1. [26] Let X be a space of points(objects). A neutrosophic set A in X is characterized by 

truth-membership function 𝑡𝐴(𝑥) , an indeterminacy-membership function 𝑖𝐴(𝑥)  and a 

falsity-membership function 𝑓𝐴(𝑥). The functions 𝑡𝐴(𝑥), 𝑖𝐴(𝑥), and 𝑓𝐴(𝑥) , are real standard or 

non-standard subsets of ]0−, 1+[ . That is, 𝑡𝐴(𝑥): 𝑋 → ]0−, 1+[ ,  𝑖𝐴(𝑥): 𝑋 → ]0−, 1+[  and 𝑓𝐴(𝑥): 𝑋 →

]0−, 1+[ and 0− ≤ 𝑡𝐴(𝑥) +  𝑖𝐴(𝑥) +  𝑓𝐴(𝑥)  ≤ 3+.

Definition 1.2. [7] A single-valued neutrosophic graphs (SVNG) G = (X, Y) is a pair where X: N → 

[0,1] is a single-valued neutrosophic set on N and Y: N × N → [0,1] is a single-valued neutrosophic 

relation on N such that 

𝑡𝑌(𝑥𝑦) ≤ min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) ≤ min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) ≤ max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all x, y ∈ N. X and Y are called the single-valued neutrosophic vertex set of G and the 

single-valued neutrosophic edge set of G, respectively. A single-valued neutrosophic relation Y is 

said to be symmetric if t𝑌(xy)  = t𝑌(yx),  i𝑌(xy)  =  i𝑌(yx) and f𝑌(xy)  =  f𝑌(yx), for all x,y ∈ N. 

Single-valued neutrosophic be abbreviated here as SVN. 

2. Single-Valued Neutrosophic Vertex Coloring (SVNVC)

In this section, discussed the bounds of SVNVC for the resultant SVNG by some operations on 

SVNG, CSVNG and complement of SVNG. Also discussed some theorems. 

Definition 2.1. [24] A family Γ = {𝛾1, 𝛾2, … , 𝛾𝑘} of SVN fuzzy set is called a k-SVNVC of a SVNG G = 

(X, Y) if 

1. ∨ 𝛾𝑖(𝑥) = 𝑋, ∀𝑥 ∈ 𝑋

2. 𝛾𝑖 ∧ 𝛾𝑗 = 0
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3. For every incident vertices of edge xy of G, min{𝛾𝑖(𝑚1(𝑥)), 𝛾𝑖(𝑚1(𝑦))} =  0,

min{𝛾𝑖(𝑖1(𝑥)), 𝛾𝑖(𝑖1(𝑦))} = 0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛1(𝑥)), 𝛾𝑖(𝑛1(𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘).

This k-SVNVC of G is denoted by 𝜒𝑣(𝐺), is called the SVN chromatic number of the SVNG G.

Definition 2.2 A SVNG G = (X, Y) is called complete single-valued neutrosophic graph (CSVNG) if 

the following conditions are satisfied:  

𝑡𝑌(𝑥𝑦) = min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) = min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) = max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all x, y ∈ X. 

For any single value neutrosophic subgraph H of SVNG G, 𝜒𝑣(𝐻) ≤ 𝜒𝑣(𝐺) 

Theorem 2.3.  

For any SVNG with n vertices 𝜒𝑣(𝐺) ≤ 𝑛. 

Proof: 

By the observation that the CSVNG with n vertices has the SVNVC is n. All the other graphs with n 

vertices are subgraphs of the CSVNG, it is clear by the above observation. Hence 𝜒𝑣(𝐺) ≤ 𝑛. 

Definition 2.4 Let 𝐺1 = (𝑋1, 𝑌1) and 𝐺2 = (𝑋2, 𝑌2)  be single-valued neutrosophic graphs of𝐺1
∗ =

(𝑉1, 𝐸1) and 𝐺2
∗ = (𝑉2, 𝐸2), respectively. The union G1 ∪ G2 is defined as a pair (X, Y) such that

𝑡𝑋(𝑥) = {

𝑡𝑋1
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉1𝑎𝑛𝑑 𝑥 ∉ 𝑉2,

𝑡𝑋2
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉2𝑎𝑛𝑑 𝑥 ∉ 𝑉1,

max (𝑡𝑋1
(𝑥), 𝑡𝑋2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2.

𝑖𝑋(𝑥) = {

𝑖𝑋1
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉1𝑎𝑛𝑑 𝑥 ∉ 𝑉2,

𝑖𝑋2
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉2𝑎𝑛𝑑 𝑥 ∉ 𝑉1,

max (𝑖𝑋1
(𝑥), 𝑖𝑋2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2.

𝑓𝑋(𝑥) = {

𝑓𝑋1
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉1𝑎𝑛𝑑 𝑥 ∉ 𝑉2,

𝑓𝑋2
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉2𝑎𝑛𝑑 𝑥 ∉ 𝑉1,

min (𝑓𝑋1
(𝑥), 𝑓𝑋2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2.

𝑡𝑌(𝑥𝑦) = {

𝑡𝑌1
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸1𝑎𝑛𝑑 𝑥 ∉ 𝐸2,

𝑡𝑌2
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸2𝑎𝑛𝑑 𝑥 ∉ 𝐸1,

max (𝑡𝑌1
(𝑥), 𝑡𝑌2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝐸1 ∩ 𝐸2.

𝑖𝑌(𝑥𝑦) = {

𝑖𝑌1
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸1𝑎𝑛𝑑 𝑥 ∉ 𝐸2,

𝑖𝑌2
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸2𝑎𝑛𝑑 𝑥 ∉ 𝐸1,

max (𝑖𝑌1
(𝑥), 𝑖𝑌2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝐸1 ∩ 𝐸2.

𝑓𝑌(𝑥𝑦) = {

𝑓𝑌1
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸1𝑎𝑛𝑑 𝑥 ∉ 𝐸2,

𝑓𝑌2
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸2𝑎𝑛𝑑 𝑥 ∉ 𝐸1,

min (𝑓𝑌1
(𝑥), 𝑓𝑌2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝐸1 ∩ 𝐸2.

For any SVNGs 𝐺1 = (𝑋1, 𝑌1) and 𝐺2 = (𝑋2, 𝑌2), 𝜒𝑣(𝐺1 ∪ 𝐺2) = 𝑚𝑎𝑥{𝜒𝑣(𝐺1), 𝜒𝑣(𝐺2)}. 

Definition 2.5 [8] The complement of a SVNG G = (X, Y) is a SVNG �̅� = (�̅�, �̅�), where 

1. �̅� = 𝑋

2. 𝑡�̅�(𝑥) = 𝑡𝑋(𝑥), 𝑖�̅�(𝑥) = 𝑖𝑋(𝑥), 𝑓�̅�(𝑥) = 𝑓𝑋(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋
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3. 𝑡�̅�(𝑥𝑦) = {
min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}                 𝑖𝑓  𝑡𝑌(𝑥𝑦) = 0

min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)} − 𝑡𝑌(𝑥𝑦)  𝑖𝑓  𝑡𝑌(𝑥𝑦) > 0

    𝑖�̅�(𝑥𝑦) = {
min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}                 𝑖𝑓  𝑖𝑌(𝑥𝑦) = 0

min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)} − 𝑖𝑌(𝑥𝑦)  𝑖𝑓  𝑖𝑌(𝑥𝑦) > 0

𝑓�̅�(𝑥𝑦) = {
max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}                   𝑖𝑓  𝑓𝑌(𝑥𝑦) = 0

max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)} − 𝑓𝑌(𝑥𝑦)  𝑖𝑓  𝑓𝑌(𝑥𝑦) > 0

for all 𝑥, 𝑦 ∈ 𝑋. 

Theorem 2.6. For any SVNG 𝐺  with 𝑛  vertices, 2√𝑛 ≤  𝜒𝑣(𝐺) + 𝜒𝑣(�̅�) ≤ 2𝑛  and 𝑛 ≤

𝜒𝑣(𝐺)𝜒𝑣(�̅�) ≤ 𝑛2.

    Let every vertex of G has n − 1 adjacent vertices, then by the definition of complement of SVNG 

each vertex of �̅� has the lesser than or equal to n − 1 adjacent vertices. Hence, the inequalities true 

for all SVNG. Thus, 2√𝑛 ≤  𝜒𝑣(𝐺) + 𝜒𝑣(�̅�) ≤ 2𝑛 and 𝑛 ≤  𝜒𝑣(𝐺)𝜒𝑣(�̅�) ≤ 𝑛2.

Definition 2.7. 

A SVNG G = (X, Y) is called strong single-valued neutrosophic graph (SSVNG) if the following 

conditions are satisfied:  

𝑡𝑌(𝑥𝑦) = min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) = min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) = max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all (x,y) ∈ Y . 

Observation 2.8 

For any SSVNG G with n vertices, 2√𝑛 ≤  𝜒𝑣(𝐺) + 𝜒𝑣(�̅�) ≤ n + 1 and 𝑛 ≤  𝜒𝑣(𝐺)𝜒𝑣(�̅�) ≤ (
𝑛+1

2
)2. 

Given that G is SSVNG and the complement of G is defined by �̅� = (�̅�, �̅�), where 

1. �̅� = 𝑋

2. 𝑡�̅�(𝑥) = 𝑡𝑋(𝑥), 𝑖�̅�(𝑥) = 𝑖𝑋(𝑥), 𝑓�̅�(𝑥) = 𝑓𝑋(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋

3. 𝑡�̅�(𝑥𝑦) = {
min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}    𝑖𝑓  𝑡𝑌(𝑥𝑦) = 0

 0  𝑖𝑓  𝑡𝑌(𝑥𝑦) > 0

   𝑖�̅�(𝑥𝑦) = {
min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}  𝑖𝑓  𝑖𝑌(𝑥𝑦) = 0

        0  𝑖𝑓  𝑖𝑌(𝑥𝑦) > 0

𝑓�̅�(𝑥𝑦) = {
max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}  𝑖𝑓  𝑓𝑌(𝑥𝑦) = 0

 0  𝑖𝑓  𝑓𝑌(𝑥𝑦) > 0

for all 𝑥, 𝑦 ∈ 𝑋. Hence, the above inequalities hold. 

Theorem 2.9.  For a path graph 𝑃𝑛 , 𝜒𝑣(𝑃𝑛) = 2 where 𝑛 ≥ 2. 

Let Γ = {𝛾1, 𝛾2} be a family of SVN fuzzy sets defined on V as follows: 

𝛾1(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 𝑜𝑑𝑑

 (0,0,1)                𝑓𝑜𝑟 𝑖 = 𝑒𝑣𝑒𝑛

𝛾2(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 𝑒𝑣𝑒𝑛

       (0,0,1)                   𝑓𝑜𝑟 𝑖 = 𝑜𝑑𝑑

Hence the family Γ = {𝛾1, 𝛾2}  fulfilled the conditions of SVNVC of the graph G. Hence the SVN 

chromatic number of 𝑃𝑛 is 𝜒𝑣(𝑃𝑛) = 2. 
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Theorem 2.10.  For a cycle graph 𝐶𝑛 , 𝜒𝑣(𝐶𝑛) = {
2 𝑖𝑓 𝑛 = 𝑒𝑣𝑒𝑛
3 𝑖𝑓 𝑛 = 𝑜𝑑𝑑

 where 𝑛 ≥ 3. 

For n is odd: 

Let Γ = {𝛾1, 𝛾2, , 𝛾3} be a family of SVN fuzzy sets defined on V as follows: 

𝛾1(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))  𝑓𝑜𝑟 𝑖 = 1,3,5, … , 𝑛 − 2

 (0,0,1)       𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

𝛾2(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))  𝑓𝑜𝑟 𝑖 = 2,4,6, … , 𝑛 − 1

(0,0,1)  𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 𝛾3(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))  𝑓𝑜𝑟 𝑖 = 𝑛

 (0,0,1)  𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

Hence the family Γ = {𝛾1, 𝛾2, , 𝛾3} fulfilled the conditions of SVNVC of the graph G. Hence the SVN 

chromatic number 𝜒𝑣(𝐶𝑛) = 3.  

For n is even: 

Let Γ = {𝛾1, 𝛾2} be a family of SVN fuzzy sets defined on V as follows: 

𝛾1(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 𝑜𝑑𝑑

 (0,0,1)                𝑓𝑜𝑟 𝑖 = 𝑒𝑣𝑒𝑛

     𝛾2(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))  𝑓𝑜𝑟 𝑖 = 𝑒𝑣𝑒𝑛

       (0,0,1)        𝑓𝑜𝑟 𝑖 = 𝑜𝑑𝑑

Hence the family Γ = {𝛾1, 𝛾2} fulfilled the conditions of SVNVC of the graph G. Hence the SVN 

chromatic number 𝜒𝑣(𝐶𝑛) = 2. 

Theorem 2.11.  For any graph SVNG, 𝜒𝑣(𝐺) ≤ ∆(𝐺) + 1. 

Here ∆(𝐺) denotes the number of edges incident with a vertex of SVNG G, hence the result is true 

for all SVNG. 

3. Conclusions

Graph Coloring is an useful technique to solve many real life problems which are easily converted as 

graph models. SVNG is dealt with vague and imprecise values. Single Valued Neutrosophic 

Coloring concept was introduced by the authors in [24]. In this paper, we discussed few more results 

of SVNVC using CSVNG and Complement of SVNG. We have an idea to extend the concept of 

SVNVC with irregular coloring and dominating coloring technique in future.  
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Multi-Aspect Decision-Making Process in Equity 
Investment Using Neutrosophic Soft Matrices 

Chinnadurai Veerappan, Florentin Smarandache, Bobin Albert

Abstract: Neutrosophic theory alleviates the ambiguity situation more effectively than fuzzy sets. 

Neutrosophic soft set deals with the combination of truth, indeterminacy and falsity membership. 

This provides a space for the convention with multi-aspect decision-making (MADM) problems that 

involve these combinations. The main aim of this paper is to provide a unique ranking for the 

alternatives to overcome the existing drawbacks in the said environment. Initially, a new score 

function and the weighted neutrosophic vector are discussed. Secondly, to show the supremacy of 

the proposed score function a comparison analysis is discussed between the existing score method 

and the proposed approach. Thirdly, algorithm and flowchart are discussed for the case study. 

Lastly, a new technique for ranking the alternatives is discussed which enables us to determine the 

unique highest score. The working model is illustrated with suitable examples to authenticate the 

tool and to demonstrate the effectiveness of the planned approach. 

Keywords: Single valued neutrosophic sets, Neutrosophic soft matrix (NSM), weighted 

neutrosophic vector, Score and value function, Multi-aspect decision-analysis. 

1. Introduction

Our world is complex and rapid changes keep occurring in the field of engineering, medical 

science, banking, modern education, social, economic, and various other fields. Complexity 

generally arises from ambiguity and to overcome these situations in day to day life, Zadeh (1965) 

introduced a fuzzy set (FS) [14] and an interval-valued fuzzy set (IVFS) [15]. Atanassov (1986) 

proposed the concept of intuitionistic fuzzy set (IFS) [1] and interval-valued intuitionistic fuzzy set 

[2] a combination of membership and non-membership functions. However, both fuzzy and

intuitionistic fuzzy sets cannot treat the indeterminacy part in the day to day problems. To deal with 

indeterminacy situations, Smarandache (1998) grounded the neutrosophic set (NS) [10] theory 

which is an overview of FS and IFS. In plithogenic set (PS) elements are characterized by the 

attribute values. It was introduced by Smarandache [27] as a generalization of crisp, fuzzy, 

intuitionistic fuzzy, and neutrosophic sets.  

FS, IVFS, IFS, NS, PS and hybrid of these sets are used in various decision-making problems. 

Decision making plays a significant role in today’s social, scientific and economic endeavor. Most of 

the decision-making process is based on an objective to reduce the cost, reduce the production time, 

Chinnadurai Veerappan, Florentin Smarandache, Bobin Albert (2020). Multi-Aspect Decision-
Making Process in Equity Investment Using Neutrosophic Soft Matrices. Neutrosophic Sets 
and Systems 31, 224-241
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and increase the profit for the organization. However, considering today’s environment the decision 

should include various objective sources to deal with uncertainty. It weighs the provided 

information and chooses the best criteria for subsequent action. The information provided in a 

complex world is likely ambiguous, hence the outcomes are vague, irrespective of the decision made 

on the criteria chosen. To explain this scenario, consider the criteria of taking a loan from a bank. The 

outcome can be ambiguous with the possibility of a loan getting approved or declined or 

undetermined. The primary issues in MADM are to rank the relative importance of each of the 

objectives. Despite our vast knowledge and experience in handling these objectives, we come across 

violations in our everyday life. A bank manager makes a decision in this complex environment and 

figures out that his/her decision becomes weird. We have come across many situations where the 

loan applicant fails to repay the loan amount despite following the scrutiny process. The said 

problem could be due to the change in information and condition according to the situation. The 

outcomes of these situations have nothing to do with the quality of the decisions made. The best we 

can do with our knowledge is that in the long run the `good decisions’ will outplay the `bad 

decisions’.  

Most of the researchers utilize NS as a significant tool to analyze MADM problems with the 

help of aggregation operators, information measures, score functions and machine learning 

algorithms. Abhishek et al. [28] developed a parametric divergence measure and initiated the 

concept of pattern recognition and medical diagnosis problem for neutrosophic sets. Abdel-Basset et 

al. [18] proposed a hybrid combination between analytical hierarchical process and neutrosophic 

theory to solve the uncertainty involved in the technology of the internet of things. Abhisek and 

Rakesh [29] proposed a notion for finding the threshold value in decision-making problems when 

the qualitative and quantitative information is outsized. Abdel-Basset et al. [20] proposed the 

concept of type 2 neutrosophic number TOPSIS method to deal with real case decision problems. 

Edalatpanah and Smarandache [30] found a new method to solve the data envelopment analysis 

using the weighted arithmetic average operator in neutrosophic sets. Abdel-Basset et al. [19] 

initiated a neutrosophic approach for evaluating green supply chain management to aid managers 

and decision-makers. Vakkas et al. [33] proposed a novel ranking method for decision-making 

problems in the bipolar neutrosophic environment. Pandy and Trinita [31] constructed a new 

approach to represent gray-scale (medical) images in the bipolar neutrosophic domain. Shazia et al. 

[32] presented the concept of the plithogenic hypersoft matrix and discussed some of its theoretical

properties. Abdel-Basset et al. [17] developed the combination of quality function deployment with 

plithogenic operations and analyzed the case study of Thailand’s sugar industry and also developed 

a novel evaluation approach to handle the hospital medical care systems based on plithogenic sets 

[16]. Azeddine et al. [34] introduced an improved method to map machine learning algorithms from 

crisp number to Neutrosophic environment. Wang and Smarandache (2010) focused on 

single-valued neutrosophic set [13] to magnetize on MADM problems. Chinnadurai et al., (2016) [3] 

discussed some of its theoretical properties. Smarandache and Teodorescu (2014) introduced the 

fusion of fuzzy data to neutrosophic data [11] with case studies. Garg and Nancy (2018) developed 

the neutrosophic Muirhead mean operators [5] for an aggregating single-valued neutrosophic set to 

solve MADM problems among the ambiguity. Gulistan et al., (2019) studied on neutrosophic cubic 

soft matrices [6] using max-min operations. Jun et al. presented elucidation to handle actual data 

which consists of crisp values using the neutrosophic analytic hierarchy process. Abdel-Basset et.al. 
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[12] developed the concept of Neutrosophic AHP-SWOT Analysis for MADM problems by

analyzing a real case study. 
The advantage of this proposed method is that it shortens the computation process and 

provides a better solution in decision-making. To establish the superiority of our improved score 

function a comparison study is illustrated with suitable examples. From the presented references 

[21, 22, 23, 24, 25, 26] it is clear that there are limitations in providing unique ranking using score 

function in neutrosophic MADM methods. The fact that we would like to enlighten in this 

manuscript is that there could always be a possibility of equal ranking among the alternatives. 

Hence, to our knowledge, a simple but effective way to determine the unique highest score for each 

object in a MADM is by including additional criteria from the parameter set which is not been 

discussed in any of the related literature works.  

In this paper, we aim to discuss the weighted neutrosophic vector and value function of a 

neutrosophic soft matrix to combine the different components of truth, indeterminacy and falsity 

membership into a single membership value. An application of this matrix in MADM is also given 

by presenting the method, algorithm and numerical illustrations.  

The structure of the manuscript is as follows. In section 2, some of the basic neutrosophic 

definitions are specified. In section 3, the notions of weighted neutrosophic vector and value 

functions are introduced. In section 4, an algorithm with a flowchart of NSM to MADM is 

developed. In section 5, case studies are presented to illustrate the working of the algorithm. This 

manuscript is concluded in section 6. 

2. Preliminaries

In this section first we review some basic concepts and definitions.  

Definition 2.1[9] Let U  be the universal set and E be a set of parameters. The parameters represent 

some selected properties or characteristics of the elements of U.  Let P(U) denote the power set of U. 

A pair (𝐹, 𝐸) is called a soft set over U where F is a mapping 𝐹: 𝐸 → 𝑃(𝑈). It is clear that a soft set is 

a parameterized family of subsets of U.  

Definition 2.2 [13] Let U be the universal set, then a set 𝔸 = {⟨𝑥, 𝑇𝔸(𝑥), 𝐼𝔸(𝑥), 𝐹𝔸(𝑥)⟩: 𝑥 ∈ 𝑈} is 

termed as neutrosophic set where 𝑇𝔸, 𝐼𝔸, 𝐹𝔸: 𝑋 → [0,1]  with 0 ≤ 𝑇𝔸(𝑥) + 𝐼𝔸(𝑥) + 𝐹𝔸(𝑥) ≤ 3  and 

the functions 𝑇𝔸, 𝐼𝔸, 𝐹𝔸 are truth, indeterminacy and falsity membership degrees respectively.  

Definition 2.3 [8] Let U be the universal set and E  be a set of parameters. Consider 𝔸 ⊆ 𝐸. Let 

NS(U) denote the set of all neutrosophic sets of U. The collection (𝐹, 𝔸)  is termed to be the 

neutrosophic soft set (NSS) over U, where F is a mapping given by 𝐹:𝔸 → 𝑁𝑆(𝑈).  

Definition 2.4 [4] Let (𝑁𝔸, 𝐸) be a NSS over the universe U  and E  be a set of parameters and 𝔸 ⊆

𝐸. Then a subset of 𝑈 × 𝐸 is uniquely defined by the relation {(𝑥, 𝑒): 𝑒 ∈ 𝔸, 𝑥 ∈ 𝑁𝔸(𝑒)} and denoted 

by 𝑅𝔸 = (𝑁𝔸, 𝐸) . The relation 𝑅𝔸  is characterized by truth function 𝑇𝔸: 𝑈 × 𝐸 → [0,1] ,

indeterminacy 𝐼𝔸: 𝑈 × 𝐸 → [0,1]and the falsity function 𝐹𝔸: 𝑈 × 𝐸 → [0,1] . 𝑅𝔸  is represented as

𝑅𝔸 = {(𝑇𝔸(𝑥, 𝑒), 𝐼𝔸(𝑥, 𝑒), 𝐹𝔸(𝑥, 𝑒)): 0 ≤ 𝑇𝔸 + 𝐼𝔸 + 𝐹𝔸 ≤ 3, (𝑥, 𝑒) ∈ 𝑈 × 𝐸}. Now if the set of universe

𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} and the set of parameters 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}, then 𝑅𝔸 can be represented by a 

matrix as follows: 
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𝑅𝔸 = [𝑎𝑖𝑗]𝑚×𝑛= 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

]

where 𝑎𝑖𝑗 = (𝑇𝔸(𝑥, 𝑒), 𝐼𝔸(𝑥, 𝑒), 𝐹𝔸(𝑥, 𝑒)) = (𝑇𝑖𝑗
𝔸, 𝐼𝑖𝑗

𝔸 , 𝐹𝑖𝑗
𝔸) .

The above matrix is called a neutrosophic soft matrix (NSM) of order 𝑚 × n corresponding to the 

neutrosophic set (𝑁𝔸, 𝐸) over U. 

3. NSM theory in decision making

In this section, we define the concepts of weighted neutrosophic vector, score function and total 

score for a neutrosophic soft matrix. Later these notions will be used in MADM process.  

Definition: 3.1 Let ℳ  be the collection of all neutrosophic values and 𝑁 = (𝑛1, 𝑛2, . . . , 𝑛𝑛)  be 

neutrosophic vector with components from ℳ . Thus the components of N are 𝑁 =

((𝑛1
𝑇 , 𝑛1

𝐼 , 𝑛1
𝐹), (𝑛2

𝑇 , 𝑛2
𝐼 , 𝑛3

𝐹), . . . , (𝑛𝑛
𝑇 , 𝑛𝑛

𝐼 , 𝑛𝑛
𝐹)). Let 𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be a weight vector associated with

N. 𝑤𝑖  can be considered as the significance attached to 𝑛𝑖; 𝑖 = 1,2, . . . , 𝑛 with 𝑤𝑖 ∈ [0,1], ∑𝑛
𝑖=1 𝑤𝑖 =

1. Then the weighted neutrosophic vector corresponding to N and W denoted by WN is defined as

𝑊𝑁 = (𝑤1𝑛1, 𝑤2𝑛2, . . . , 𝑤𝑛𝑛𝑛) = ((𝑤1𝑛1
𝑇 , 𝑤1𝑛1

𝐼 , 𝑤1𝑛1
𝐹), (𝑤2𝑛2

𝑇 , 𝑤2𝑛2
𝐼 , 𝑤2𝑛2

𝐹), . . . , (𝑤𝑛𝑛𝑛
𝑇 , 𝑤𝑛𝑛𝑛

𝐼 , 𝑤𝑛𝑛𝑛
𝐹))

Example:3.1 Let 𝑁 = ((0.4,0.3,0.6), (0.2,0.6,0.7), (0.7,0.1,0.5), (0.4,0.2,0.3)) and 𝑊 = (0.1,0.4,0.2,0.3). 

Then 𝑊𝑁 = ((0.04,0.03,0.06), (0.08,0.24,0.28), (0.14,0.02,0.10), (0.12,0.06,0.09))  

Definition: 3.2 Score function of a neutrosophic matrix helps to integrate the neutrosophic value 

into a single real number in order to bring out the importance of truth, indeterminacy and falsity 

membership values. 

Let 𝐴 = [𝑎𝑖𝑗] = (𝑇𝑖𝑗
𝐴, 𝐼𝑖𝑗

𝐴 , 𝐹𝑖𝑗
𝐴). Then the score function for the element 𝑎𝑖𝑗  is defined as

𝑠(𝑎𝑖𝑗) = 𝑠𝑖𝑗 =
(𝑇𝑖𝑗

𝐴+𝐼𝑖𝑗
𝐴)

2
+ 𝐹𝑖𝑗

𝐴 ∀ 𝑖, 𝑗

Thus the score function for the NSM, 𝐴 = [𝑎𝑖𝑗] is given by 

𝑆𝐹(𝐴) = [
(𝑇𝑖𝑗

𝐴+𝐼𝑖𝑗
𝐴)

2
+ 𝐹𝑖𝑗

𝐴] = [𝑠𝑖𝑗].

𝑆𝐹(𝐴) is also an 𝑚 × 𝑛 matrix, having the same dimension as A and has non-negative entries.  

Definition 3.3 Let 𝑁 = [𝑠𝑖𝑗] be the matrix of score functions of a NSM N.  The  quantity 𝑇𝑖 =

∑𝑛
𝑗=1 𝑠𝑖𝑗  ; 𝑖 = 1,2, . . . , 𝑚 gives the total of the score function values for the 𝑖𝑡ℎ  row of NSM. 𝑇𝑖

represent the total value for the element 𝑥𝑖  with representation to all the characteristics under 

consideration.  

3.1 Comparison analysis with existing and proposed score functions 

In this subsection, we compare and analyze the method developed in this paper with six of the 

recently developed score functions and methods. The below cited Table 1 highlights the ranking 

difficulty of an existing score function in the neutrosophic environment. It also shows that the new 
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score function can compute the rank of the alternatives even when the existing score function is 

unable to rank the alternatives. 

Table 1. Comparison analysis of score values. 

Neutrosophic 
environment 

Existing & Proposed methods Score value Remarks 

N1 =(0.6,0.2,0.6) 
& 
N2 =(0.6,0.4,0.2) 

Sahin [25] 
S(N1 ) = 0.3 & 
     S(N2 ) = 0.3 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 1 & 
     S(N2 ) = 0.7 

S(N1 ) > S(N2 ) 
able to rank 

N1 =(0.7,0.3,0.1) 
& 
N2 =(0.9,0.4,0.2) 

Peng et.al., [24] 
S(N1 ) = 0.1 & 
     S(N2 ) = 0.1 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 0.60 & 
     S(N2 ) = 0.85 

S(N2 ) > S(N1 ) 
able to rank 

N1 =(0.9,0.6,0.3) 
& 
N2 =(0.6,0.4,0.2) 

Garg and Nancy [23] S(N1 ) = 0.26 & 
     S(N2 ) = 0.26 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 1.05 &   
     S(N2 ) = 0.7 

S(N1 ) > S(N2 ) 
able to rank 

N1 =(0.4,0.2,0.6) 
& 
N2 =(0.7,0.6,0.7) 

Arockiarani [21] 
S(N1 ) = 0.28 & 
     S(N2 ) = 0.28 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 0.9 & 
     S(N2 ) = 1.35 

S(N2 ) > S(N1 ) 
able to rank 

N1 =(0.5,0.7,0.4) 
& 
N2 =(0.4,0.6,0.3) 

Ye [26] 
S(N1 ) = 0.55 & 
     S(N2 ) = 0.55 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 1 & 
     S(N2 ) = 0.8 

S(N1 ) > S(N2 ) 
able to rank 

N1 =(0.8,0.3,0.2) 
&  
N2=(0.6,0.3,0.7) 
N3 =(0.9,0.4,0.5) 
& 
N4 =(0.8,0.5,04) 

Mondal [22] 

S(Np ) = 0.65,  
where p = 1,2  & 
     S(Nq ) = 0.65 
where q = 3,4 

S(Np ) = S(Nq ) 
unable to rank 

Proposed method 

S(Np ) = 0.95,  
where p = 1,2  & 
     S(Nq ) = 1.1 
where q = 3,4 

S(Nq ) > S(Np ) 
able to rank 

4. Application of NSM to MADM environment

 In this section an application of NSM in MADM is explained. An algorithm is developed 

and the working of the same is illustrated with suitable examples. 

4.1. Statement of the problem 

Suppose a person is in the progression of stock investment (SI) in the equity market. Let’s assume 

that person seeks the help of a financial advisor organization (FAO). FAO has a panel of 

highly-trained professionals to provide value-added services to the investors to ensure higher 

proficiency, consistency of charges and superior forecast of SI in equity market by analyzing the 

historical data. The FAO, in turn, selects a group of proficient members 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑘} to 
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proceed with the same. Now according to the group let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑝} be the list of selected SIs 

based on historical data analysis . Let 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑞} be the set of selected parameters based on 

which the SIs selection is to be finalized. Assume that weights are assigned for each criterion. Let 

𝑊 = (𝑤1 , 𝑤2, . . . , 𝑤𝑞) and ∑𝑞
𝑖=1 𝑤𝑖 = 1. Let’s assume that the group assesses the SI based on a subset

of the parameter set. Let 𝐴 = {𝑒1, 𝑒2, . . . , 𝑒𝑙} be the subset of the parameter set E, so that 𝑙 ≤ 𝑞. Each 

of the personnel verifies the listed SI historical records based on the parameter set A and presents his 

forecast result in the form of neutrosophic soft matrices. The respective NSM’s are denoted by 

𝑁1, 𝑁2, . . . , 𝑁𝐾. The crisis is to convert the NSM’s into significant matrices which enables them to 

select the best SI for the investor. Figure 1 illustrates the conceptual structure of the problem. 

Figure 1. Conceptual structure of the statement 

 

4.2. Methodology 

Let’s assume that the proficient members evaluate the SIs independently without any bias. 

Let 𝑁1, 𝑁2, … ,𝑁𝐾 be the NSMs obtained from the members. Using Definition 3.1, and weight vector 

W the weighted neutrosophic matrices are calculated. The resultant of weighted neutrosophic 

matrices are denoted by 𝑁𝑤
1 , 𝑁𝑤

2 , … , 𝑁𝑤
k  i.e., 𝑁𝑤

r = 𝑊𝑁r = [𝑛𝑖𝑗
𝑟 ]  where  𝑟 = 1,2, … , 𝑘 . Using

Definition 3.2, convert each of the weighted neutrosophic matrix 𝑁𝑤 
r  value into corresponding

score function as 𝑆𝐹[𝑁𝑤
r ] = [𝑠𝑖𝑗

𝑟 ] = [
(𝑇𝑖𝑗

𝑟𝐴+𝐼𝑖𝑗
𝑟𝐴)

2
+ 𝐹𝑖𝑗

𝑟𝐴]. Then using the Definition 3.3 the score function

for the 𝑖th  SI as evaluated by the 𝑟th expert is calculated by adding the values of the 𝑖th  row of the 

score function matrix, ie., the 𝑖th row of the weighted neutrosophic matrix 𝑁𝑤
r . Let us denote this 

sum by the symbol 𝑇i
r. The total score 𝑆𝑇𝑖 for the 𝑖th SI is obtained by summing 𝑇i

r over r. That is

the total score for the 𝑖th SI 𝑆𝑇𝑖 = ∑𝑘
𝑟=1 𝑇𝑖

𝑟 = 𝑇𝑖
1 + 𝑇𝑖

2 + ⋯ + 𝑇𝑖
k  . The total score is evaluated for all

the SIs, 𝑖 = 1,2, … , 𝑝. Arrange the 𝑆𝑇𝑖 values in decreasing order. The SI with highest 𝑆𝑇𝑖 value is 

SIs 

Financial advisor 

organization 
Proficient members 

Analyze historical 

data 

Investor 

Parameters 

Neutrosophic values 

Weight vector 

selects 
approaches 

selects 

predicts goal 

Unique ranking 
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the most suitable one for the investor. If more than one SI are there with equal highest 𝑆𝑇𝑖 value, the 

entire process is repeated by adding one more parameter into the set A. This process is repeated until 

a unique SI with highest 𝑆𝑇𝑖 value is identified. 

4.3. Algorithm 

The algorithm for ranking the alternatives of MADM problem based on NSM is given below: 

Step 1: Identify the list of SIs and the list of parameters. 

Step 2: Select a subset of the parameter set. 

Step 3: Present the result in the form of NSMs (𝑁1, 𝑁2, . . . , 𝑁𝐾 ). 

Step 4: Compute the weight order for the NSMs (𝑁𝑊
1 , 𝑁𝑊

2 , … , 𝑁𝑊
k ). 

Step 5: Calculate the score function matrix 𝑆𝐹[𝑁𝑤
r ] = [𝑠𝑖𝑗

𝑟 ]

Step 6: Calculate the total value 𝑇𝑖
𝑟 from each of the 𝑆𝐹[𝑁𝑤

r ]  matrices.

Step 7: Evaluate the 𝑆𝑇𝑖 for each SI. 

Step 8: Order the 𝑆𝑇𝑖 values and select the SI with highest 𝑆𝑇𝑖  value as the most suitable one. 

Step 9: If there are more than one SI with equal highest 𝑆𝑇𝑖 value, repeat the process by including 

another parameter into the set A. Continue the process until a unique SI with highest 𝑆𝑇𝑖  is 

identified. 
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4.4. Flowchart 

5. Case studies

In this section we present two case studies to illustrate the working of the algorithm. In 5.1 

we present an example where the ranking of the SIs are unique and processed based on a subset of 

the criteria set. In 5.2 an example is given where the initially selected set of parameters does not 

provide unique ranking and there are more than one SIs with equal highest total score. Addition of 
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another parameter yields a clear ranking and the selection is performed by repeating some of the 

steps with enlarged parameter set. 

5.1. Case study I 

A person is in the process of selecting a suitable SI. 

1. Let 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐7) be the set of listed SIs.

2. Let 𝐸 = (𝑒1, 𝑒2, 𝑒3, 𝑒4) be the set of parameters which form the criteria for selection.

Here, 𝑒1  = financial profitability projection, 𝑒2  = asset-utilization, 𝑒3  = conservative capital

structure and 𝑒4 = earnings momentum.

3. Let the personnel present his forecast result in the form of NSM- 𝑁1,  𝑁2 and 𝑁3 for the subset of

the criteria set (𝑒1, 𝑒2, 𝑒3) as 

 𝑁1 =

[

(0.245,0.456,0.721) (0.457,0.421,0.431) (0.415,0.821,0.211)

(0.348,0.156,0.627) (0.345,0.653,0.543) (0.618,0.712,0.514)

(0.546,0.765,0.429) (0.765,0.753,0.632) (0.415,0.521,0.416)
(0.267,0.321,0.321) (0.552,0.893,0.723) (0.314,0.612,0.518)

(0.428,0.416,0.891) (0.452,0.213,0.413) (0.231,0.923,0.916)

(0.456,0.932,0.217) (0.569,0.236,0.247) (0.416,0.378,0.612)

(0.324,0.634,0.816) (0.367,0.456,0.912) (0.482,0.231,0.712)
]

𝑁2 =

[

(0.245,0.348,0.546) (0.456,0.156,0.765) (0.721,0.627,0.429)

(0.457,0.345,0.765) (0.421,0.653,0.753) (0.431,0.543,0.632)

(0.415,0.618,0.415) (0.821,0.712,0.521) (0.211,0.514,0.416)
(0.238,0.416,0.467) (0.734,0.817,0.926) (0.518,0.456,0.267)

(0.314,0.231,0.916) (0.753,0.893,0.213) (0.213,0.765,0.457)

(0.753,0.893,0.213) (0.618,0.415,0.314) (0.451,0.233,0.532)

(0.412,0.824,0.218) (0.614,0.425,0.324) (0.546,0.267,0.428)
]

 and 

 𝑁3 =

[

(0.238,0.734,0.518) (0.765,0.345,0.734) (0.345,0.457,0.347)

(0.416,0.817,0.456) (0.429,0.653,0.817) (0.456,0.892,0.821)

(0.467,0.926,0.267) (0.156,0.543,0.926) (0.673,0.452,0.342)
(0.914,0.316,0.912) (0.245,0.431,0.211) (0.345,0.763,0.821)

(0.928,0.419,0.745) (0.348,0.345,0.618) (0.543,0.821,0.721)

(0.211,0.518,0.213) (0.245,0.456,0.721) (0.436,0.417,0.556)

(0.156,0.653,0.712) (0.348,0.345,0.618) (0.529,0.673,0.719)
]

4. Let the weight order of neutrosophic soft sets be 𝑊1 = 0.3,𝑊2 = 0.4,𝑊3 = 0.3. Using Definition

3.1 the results are obtained as 

𝑁𝑤
1 =

[

(0.074,0.137,0.216) (0.183,0.168,0.172) (0.125,0.246,0.063)

(0.104,0.047,0.188) (0.138,0.261,0.217) (0.185,0.214,0.154)

(0.164,0.230,0.129) (0.306,0.301,0.253) (0.125,0.156,0.125)
(0.080,0.096,0.096) (0.221,0.357,0.289) (0.094,0.184,0.155)

(0.128,0.125,0.267) (0.181,0.085,0.165) (0.069,0.277,0.275)

(0.137,0.280,0.065) (0.228,0.094,0.099) (0.125,0.113,0.184)

(0.097,0.190,0.245) (0.147,0.182,0.365) (0.145,0.069,0.214)
]

, 
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𝑁𝑤
2 =

[

(0.074,0.104,0.164) (0.182,0.062,0.306) (0.216,0.188,0.129)

(0.137,0.104,0.230) (0.168,0.261,0.301) (0.129,0.163,0.190)

(0.125,0.185,0.125) (0.328,0.285,0.208) (0.063,0.154,0.125)
(0.071,0.125,0.140) (0.294,0.327,0.370) (0.155,0.137,0.080)

(0.094,0.069,0.275) (0.301,0.357,0.085) (0.064,0.230,0.137)

(0.226,0.268,0.064) (0.247,0.166,0.126) (0.135,0.070,0.160)

(0.124,0.247,0.065) (0.246,0.170,0.130) (0.164,0.080,0.128)
]

𝑎𝑛𝑑 

𝑁𝑤
3 =

[

(0.071,0.220,0.155) (0.306,0.138,0.294) (0.104,0.137,0.104)

(0.125,0.245,0.137) (0.172,0.261,0.327) (0.137,0.268,0.246)

(0.140,0.278,0.080) (0.062,0.217,0.370) (0.202,0.136,0.103)
(0.274,0.095,0.274) (0.098,0.172,0.084) (0.104,0.229,0.246)

(0.278,0.126,0.224) (0.139,0.138,0.247) (0.163,0.246,0.216)

(0.063,0.155,0.064) (0.098,0.182,0.288) (0.131,0.125,0.167)

(0.047,0.196,0.214) (0.139,0.138,0.247) (0.159,0.202,0.216)
]

5. Using Definition 3.2 the score function matrices are obtained as

 𝑆𝐹(𝑁𝑤
1) =

[

0.321 0.348 0.249
0.264 0.417 0.354
0.325 0.556 0.265
0.185 0.578 0.294
0.394 0.298 0.448
0.273 0.260 0.303
0.389 0.529 0.321

]

 𝑆𝐹(𝑁𝑤
2) =

[

0.253 0.428 0.331
0.350 0.516 0.336
0.279 0.515 0.234
0.238 0.681 0.226
0.357 0.414 0.284
0.311 0.332 0.262
0.251 0.337 0.250

]

 𝑆𝐹(𝑁𝑤
3) =

[

0.301 0.516 0.224
0.322 0.543 0.449
0.289 0.510 0.271
0.458 0.220 0.413
0.426 0.386 0.421
0.173 0.429 0.295
0.335 0.386 0.396

]

6. Applying Definition 3.3 the total of the score functions are calculated as

𝑇𝑖
1 =

[

0.918
1.034
1.147
1.057
1.140
0.836
1.238

]

, 𝑇𝑖
2 =

[

1.012
1.202
1.028
1.145
1.055
0.905
1.839

]

𝑎𝑛𝑑  𝑇𝑖
3 =

[

1.041
1.313
1.071
1.090
1.232
0.897
1.117

]

7. The total value for each candidate is calculated and presented as

𝑆𝑇𝑖 =

[

2.971
3.549
3.246
3.292
3.427
2.638
3.194

]
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8. Arranging the SIs according to their total score values we obtain the ranking of the SIs as

Table 2. Tabular representation of SI’s total score values. 

𝒄𝒊 Score Rank 

𝒄𝟐 3.549 1 

𝑐5  3.427  2 

𝑐4  3.292  3 

𝑐3  3.246  4 

𝑐7  3.194  5 

𝑐1  2.971  6 

𝑐6  2.638  7 

Figure 2. Score values of SIs. 

From Table 2 and Figure 2, we obtain the ranking of SIs as   𝑐2  > 𝑐5  >  𝑐4  >  𝑐3  > 𝑐7  >  𝑐1  >  𝑐6 . 

The SI 𝑐2 ranks first and it is the most suitable SI for the investor. 

5.2. Case study II 

Consider the same example as in 5.1. A person would like to select the best SI. 

1. Let 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐7) be the set of top listed SIs.

2. Let 𝐸 = (𝑒1, 𝑒2, 𝑒3, 𝑒4) be the set of parameters which form the criteria for selection. Here, 𝑒1 =

financial profitability projection, 𝑒2 = asset-utilization, 𝑒3 = conservative capital structure and 𝑒4 =

earnings momentum of the SI.

3. Let the personnel present his forecast result in the form of NSM- 𝑁1,  𝑁2 and 𝑁3 for the subset of

the criteria set (𝑒1, 𝑒2, 𝑒3) as 
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𝑁1 =

[

(0.245,0.456,0.721) (0.457,0.421,0.431) (0.415,0.821,0.211)

(0.247,0.156,0.547) (0.345,0.653,0.543) (0.618,0.712,0.614)

(0.546,0.765,0.429) (0.765,0.753,0.632) (0.415,0.521,0.416)
(0.567,0.552,0.521) (0.652,0.682,0.723) (0.313,0.412,0.568)

(0.429,1.000,0.891) (0.452,0.219,0.407) (0.231,0.922,0.916)

(0.456,0.932,0.217) (0.569,0.236,0.247) (0.416,0.378,0.612)

(0.324,0.634,0.816) (0.367,0.456,0.912) (0.482,0.231,0.712)
]

, 

 𝑁2 =

[

(0.245,0.348,0.546) (0.456,0.156,0.765) (0.721,0.627,0.429)

(0.457,0.345,0.765) (0.421,0.653,0.753) (0.431,0.543,0.632)

(0.415,0.618,0.415) (0.821,0.712,0.521) (0.211,0.514,0.416)
(0.638,0.516,0.467) (0.734,0.817,0.926) (0.518,0.456,0.467)

(0.314,0.231,0.916) (0.753,0.893,0.213) (0.213,0.765,0.457)

(0.753,0.893,0.213) (0.618,0.415,0.314) (0.451,0.233,0.532)

(0.412,0.824,0.218) (0.614,0.425,0.324) (0.546,0.267,0.428)
]

𝑎𝑛𝑑 

𝑁3 =

[

(0.238,0.734,0.518) (0.765,0.345,0.734) (0.345,0.457,0.347)

(0.416,0.817,0.456) (0.429,0.753,0.817) (0.456,0.892,0.821)

(0.467,0.926,0.267) (0.156,0.543,0.926) (0.673,0.452,0.342)
(0.714,0.716,0.912) (0.245,0.431,0.211) (0.345,0.763,0.821)

(0.928,0.419,0.745) (0.348,0.345,0.616) (0.543,0.821,0.721)

(0.211,0.518,0.213) (0.245,0.456,0.721) (0.436,0.417,0.556)

(0.156,0.653,0.712) (0.348,0.345,0.618) (0.529,0.673,0.719)
]

4. Let the weight order of neutrosophic soft sets be 𝑊1 = 0.3,𝑊2 = 0.4,𝑊3 = 0.3. Using Definition 3.1

the results are obtained as 

𝑁𝑤
1 =

[

(0.074,0.137,0.216) (0.183,0.168,0.172) (0.125,0.246,0.063)

(0.074,0.047,0.164) (0.138,0.261,0.217) (0.184,0.214,0.184)

(0.164,0.230,0.129) (0.306,0.301,0.253) (0.125,0.156,0.125)
(0.070,0.166,0.156) (0.261,0.273,0.289) (0.094,0.124,0.170)

(0.129,0.300,0.267) (0.181,0.088,0.163) (0.069,0.277,0.275)

(0.137,0.280,0.065) (0.228,0.094,0.099) (0.125,0.113,0.184)

(0.097,0.190,0.245) (0.147,0.182,0.365) (0.145,0.069,0.213)
]

, 

 𝑁𝑤
2 =

[

(0.074,0.104,0.164) (0.182,0.062,0.306) (0.216,0.188,0.129)

(0.137,0.104,0.230) (0.168,0.261,0.301) (0.129,0.163,0.190)

(0.125,0.185,0.125) (0.328,0.285,0.208) (0.063,0.154,0.125)
(0.091,0.155,0.140) (0.294,0.327,0.370) (0.155,0.137,0.140)

(0.094,0.069,0.275) (0.301,0.357,0.085) (0.064,0.230,0.137)

(0.226,0.268,0.064) (0.247,0.166,0.126) (0.135,0.070,0.160)

(0.124,0.247,0.065) (0.246,0.170,0.130) (0.164,0.080,0.128)
]

𝑎𝑛𝑑 
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𝑁𝑤
3 =

[

(0.071,0.220,0.155) (0.306,0.138,0.294) (0.104,0.137,0.104)

(0.125,0.245,0.137) (0.172,0.301,0.327) (0.137,0.268,0.246)

(0.140,0.278,0.080) (0.062,0.217,0.370) (0.202,0.136,0.103)
(0.214,0.215,0.274) (0.098,0.172,0.084) (0.104,0.229,0.246)

(0.278,0.126,0.224) (0.139,0.138,0.246) (0.163,0.246,0.216)

(0.063,0.155,0.064) (0.098,0.182,0.288) (0.131,0.125,0.167)

(0.047,0.196,0.214) (0.139,0.138,0.247) (0.159,0.202,0.216)
]

5. Using Definition 3.2 the score function matrices are obtained as

𝑉𝐹(𝑁𝑤
1) =

[

0.321 0.348 0.249
0.225 0.417 0.384
0.325 0.556 0.265
0.324 0.556 0.279
0.482 0.297 0.448
0.273 0.260 0.303
0.389 0.529 0.321

]

𝑉𝐹(𝑁𝑤
2) =

[

0.253 0.428 0.331
0.350 0.516 0.336
0.279 0.515 0.234
0.313 0.681 0.286
0.357 0.414 0.284
0.311 0.332 0.262
0.251 0.337 0.250

]

 𝑉𝐹(𝑁𝑤
3) =

[

0.301 0.516 0.224
0.322 0.563 0.449
0.289 0.510 0.271
0.488 0.220 0.413
0.426 0.385 0.421
0.173 0.429 0.295
0.335 0.386 0.396

]

6. Applying Definition 3.3 the total of the score functions are calculated as

𝑇𝑖
1 =

[

0.918
1.025
1.147
1.159
1.226
0.836
1.238

]

, 𝑇𝑖
2 =

[

1.012
1.202
1.028
1.280
1.055
0.905
1.839

]

, 𝑇𝑖
3 =

[

1.041
1.333
1.071
1.120
1.231
0.897
1.117

]

, 

7. The total value for each SI is calculated and presented as

𝑆𝑇𝑖 =

[

2.971
3.560
3.246
3.560
3.513
2.638
3.194

]

Table 3. Tabular representation of SI’s total score values. 

𝒄𝒊 Score Rank 

𝒄𝟐 3.560 1 

𝒄𝟒 3.560 1 

𝑐5  3.513  3 

𝑐3  3.246  4 

𝑐7  3.194  5 

𝑐1  2.971  6 

𝑐6  2.638  7 
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Figure 3. Score values of SIs 

From Table 3 and Figure 3, we obtain the ranking of SIs as   𝒄𝟐 = 𝒄𝟒  >  𝑐5  >  𝑐3  > 𝑐7  >  𝑐1  >  𝑐6 .  

As there are more than one SI (𝑐2 and 𝑐4) with the same ranking we add one more parameter 𝑒4 in 

the list and repeat the process. 

 𝑁1 =

[

(0.245,0.456,0.721) (0.457,0.421,0.431) (0.415,0.821,0.211) (0.536,0.665,0.129)

(0.247,0.156,0.547) (0.345,0.653,0.543) (0.618,0.712,0.614) (0.547,0.451,0.321)

(0.546,0.765,0.429) (0.765,0.753,0.632) (0.415,0.521,0.416) (0.357,0.451,0.631)
(0.567,0.552,0.521) (0.652,0.682,0.723) (0.313,0.412,0.568) (0.375,0.753,0.243)

(0.429,1.000,0.891) (0.452,0.219,0.407) (0.231,0.922,0.916) (0.251,0.562,0.726)

(0.456,0.932,0.217) (0.569,0.236,0.247) (0.416,0.378,0.612) (0.426,0.478,0.512)

(0.324,0.634,0.816) (0.367,0.456,0.912) (0.482,0.231,0.712) (0.416,0.252,0.317)
]

, 

 𝑁2 =

[

(0.245,0.348,0.546) (0.456,0.156,0.765) (0.721,0.627,0.429) (0.546,0.765,0.429)

(0.457,0.345,0.765) (0.421,0.653,0.753) (0.431,0.543,0.632) (0.567,0.551,0.521)

(0.415,0.618,0.415) (0.821,0.712,0.521) (0.211,0.514,0.416) (0.457,0.421,0.431)
(0.638,0.516,0.467) (0.734,0.817,0.926) (0.518,0.456,0.467) (0.345,0.653,0.543)

(0.314,0.231,0.916) (0.753,0.893,0.213) (0.213,0.765,0.457) (0.231,0.922,0.916)

(0.753,0.893,0.213) (0.618,0.415,0.314) (0.451,0.233,0.532) (0.416,0.378,0.612)

(0.412,0.824,0.218) (0.614,0.425,0.324) (0.546,0.267,0.428) (0.456,0.932,0.217)
]

 𝑁3 =

[

(0.238,0.734,0.518) (0.765,0.345,0.734) (0.721,0.627,0.429) (0.546,0.765,0.429)

(0.416,0.817,0.456) (0.429,0.753,0.817) (0.431,0.543,0.632) (0.567,0.551,0.521)

(0.467,0.926,0.267) (0.156,0.543,0.926) (0.211,0.514,0.416) (0.457,0.421,0.431)
(0.714,0.716,0.912) (0.245,0.431,0.211) (0.518,0.456,0.467) (0.345,0.653,0.543)

(0.928,0.419,0.745) (0.348,0.345,0.616) (0.213,0.765,0.457) (0.231,0.922,0.916)

(0.211,0.518,0.213) (0.245,0.456,0.721) (0.451,0.233,0.532) (0.416,0.378,0.612)

(0.156,0.653,0.712) (0.348,0.345,0.618) (0.546,0.267,0.428) (0.456,0.932,0.217)
]

, 

4. Let the weight order of neutrosophic soft sets be 𝑊1 = 0.3,𝑊2 = 0.4,𝑊3 = 0.15 and 𝑊4 = 0.15.

Using Definition 3.1 the resultant are obtained as 
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𝑁𝑤
1 =

[

(0.074,0.137,0.216) (0.183,0.168,0.172) (0.062,0.123,0.032) (0.080,0.100,0.019)

(0.074,0.047,0.164) (0.138,0.261,0.217) (0.093,0.107,0.092) (0.082,0.068,0.048)

(0.164,0.230,0.129) (0.306,0.301,0.253) (0.062,0.078,0.062) (0.054,0.068,0.095)
(0.070,0.166,0.156) (0.261,0.273,0.289) (0.047,0.062,0.085) (0.056,0.113,0.036)

(0.129,0.300,0.267) (0.181,0.088,0.163) (0.035,0.138,0.137) (0.038,0.084,0.109)

(0.137,0.280,0.065) (0.228,0.094,0.099) (0.062,0.057,0.092) (0.064,0.072,0.077)

(0.097,0.190,0.245) (0.147,0.182,0.365) (0.072,0.035,0.107) (0.062,0.038,0.048)
]

𝑁𝑤
2 =

[

(0.074,0.104,0.164) (0.182,0.062,0.306) (0.108,0.094,0.064) (0.082,0.115,0.064)

(0.137,0.104,0.230) (0.168,0.261,0.301) (0.065,0.081,0.095) (0.085,0.083,0.078)

(0.125,0.185,0.125) (0.328,0.285,0.208) (0.032,0.077,0.062) (0.069,0.063,0.065)
(0.091,0.155,0.140) (0.294,0.327,0.370) (0.078,0.068,0.070) (0.052,0.098,0.081)

(0.094,0.069,0.275) (0.301,0.357,0.085) (0.032,0.115,0.069) (0.035,0.138,0.137)

(0.226,0.268,0.064) (0.247,0.166,0.126) (0.068,0.035,0.080) (0.062,0.057,0.092)

(0.124,0.247,0.065) (0.246,0.170,0.130) (0.082,0.040,0.064) (0.068,0.140,0.033)
]

𝑁𝑤
3 =

[

(0.071,0.220,0.155) (0.306,0.138,0.294) (0.052,0.069,0.052) (0.082,0.115,0.064)

(0.125,0.245,0.137) (0.172,0.301,0.327) (0.068,0.134,0.123) (0.085,0.083,0.078)

(0.140,0.278,0.080) (0.062,0.217,0.370) (0.101,0.068,0.051) (0.069,0.063,0.065)
(0.214,0.215,0.274) (0.098,0.172,0.084) (0.052,0.114,0.123) (0.052,0.098,0.081)

(0.278,0.126,0.224) (0.139,0.138,0.246) (0.081,0.123,0.108) (0.035,0.138,0.137)

(0.063,0.155,0.064) (0.098,0.182,0.288) (0.065,0.063,0.083) (0.062,0.057,0.092)

(0.047,0.196,0.214) (0.139,0.138,0.247) (0.079,0.101,0.108) (0.068,0.140,0.033)
]

5. Using Definition 3.2 the score function matrices are obtained as

𝑉𝐹(𝑁𝑤
1) =

[

0.321 0.348 0.124 0.109
0.225 0.417 0.192 0.123
0.325 0.556 0.133 0.155
0.324 0.556 0.140 0.121
0.482 0.297 0.224 0.170
0.273 0.260 0.151 0.145
0.389 0.529 0.160 0.098

]

, 𝑉𝐹(𝑁𝑤
2) =

[

0.253 0.428 0.165 0.163
0.350 0.516 0.168 0.162
0.279 0.515 0.117 0.131
0.313 0.681 0.143 0.156
0.357 0.414 0.142 0.224
0.311 0.332 0.131 0.151
0.251 0.337 0.125 0.137

]

𝑉𝐹(𝑁𝑤
3) =

[

0.301 0.516 0.112 0.163
0.322 0.563 0.224 0.162
0.289 0.510 0.136 0.131
0.488 0.220 0.206 0.156
0.426 0.385 0.210 0.224
0.173 0.429 0.147 0.151
0.335 0.386 0.198 0.137

]

6. Applying Definition 3.3 the total of the score functions are calculated as

𝑇𝑖
1 =

[

0.903
0.995
1.170
1.141
1.130
0.829
1.176

]

, 𝑇𝑖
2 =

[

1.009
1.196
1.293
1.137
0.925
0.850

]

𝑎𝑛𝑑𝑇𝑖
3 =

[

1.092
1.271
1.065
1.070
1.245
0.901
1.055

]
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7. The total value for each SI is calculated and presented as

𝑆𝑇𝑖 =

[

3.004
3.423
3.277
3.504
3.554
2.655
3.081

]

8. Arranging the SIs according to their total score values we obtain the ranking of the SIs as

Table 4. Tabular representation of SI’s total score values. 

𝒄𝒊 Score Rank 

𝒄𝟓 3.554 1 

𝑐4  3.504  2 

𝑐2  3.423  3 

𝑐3  3.277  4 

𝑐7  3.081  5 

𝑐1  3.004  6 

𝑐6  2.655  7 

Figure 4. Score values of SIs 

From Table 4 and Figure 4, we obtain the ranking of SIs as   𝑐5  > 𝑐4  >  𝑐2  >  𝑐3  > 𝑐7  >  𝑐1  >  𝑐6 . 

The SI 𝑐5 ranks first and it is the most suitable SI for the investor. 

6. Conclusions

The proposed NSM computational solution supports decision-makers in solving the complex 

decision-making problem faced in today’s ambiguity situation. In this paper, the weight vector and 

score function are introduced with illustrative examples. By applying the score function we solve the 

MADM problems in the neutrosophic environment and transforming the values of truth, 

indeterminacy and falsity into a single membership value to obtain a more precise, efficient, and 

realistic solution. An application of NSM in MADM is also explained. An algorithm is developed for 
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this purpose and two examples are provided to illustrate the working of the algorithm. Our future 

work is to extend the concept of MADM problems in real-life psychology applications by using 

standard or hybrid neutrosophic and plithogenic tools. 
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Neutrosophic Fixed Point Theorems and Cone 
Metric Spaces

Wadei F. Al-Omeri, Saeid Jafari, Florentin Smarandache

Abstract. The intention of this paper is to give the general definition of cone metric space in the context of

the neutrosophic theory. In this relation, we obtain some fundamental results concerting fixed points for weakly

compatible mapping.

Keywords: neutrosophic theory, neutrosophic Fixed Point, neutrosophic topology, neutrosophic cone metric

space, neutrosophic metric space.

—————————————————————————————————————————-

1. Introduction

Zadeh [13] introduced the notion of fuzzy sets. After that there have been a number of

generalizations of this fundamental concept. The study of fuzzy topological spaces was first

initiated by Chang [6] in the year 1968. Atanassov [12] introduced the notion of intuitionistic

fuzzy sets. This notion was extended to intuitionistic L-fuzzy setting by Atanassov and Sto-

eva [20], which currently holds the name “intuitionistic L-topological spaces”. Using the notion

of intuitionistic fuzzy sets, Coker [7] introduced the notion of intuitionistic fuzzy topological

space. The concept of generalized fuzzy closed set was introduced by G. Balasubramanian

and P. Sundaram [11]. In various recent papers, F. Smarandache generalizes intuitionistic

fuzzy sets (IFSs) and other kinds of sets to neutrosophic sets (NSs). F. Smarandache and

A. Al Shumrani also defined the notion of neutrosophic topology on the non-standard inter-

val [2,9,14,16]. Also, ( [8,15,17]) introduced the metric topology and neutrosophic geometric

and studied various properties. Recently, Wadei Al-Omeri and Smarandache [18,19] introduce

Wadei F. Al-Omeri, Saeid Jafari, Florentin Smarandache (2020). Neutrosophic Fixed Point 
Theorems and Cone Metric Spaces. Neutrosophic Sets and Systems 31, 250-265
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and study the concepts of neutrosophic open sets and its complements in neutrosophic topolog-

ical space, continuity in neutrosophic topology, and obtain some characterizations concerning

neutrosophic connectedness and neutrosophic mapping.

This paper is arranged as follows. In Section 2, we will recall some notions which will be

used throughout this paper. In Section 3, neutrosophic Cone Metric Space and investigate its

basic properties. In Section 4, we study the neutrosophic Fixed Point Theorems and study

some of their properties. Finally, Banach contraction theorem and some fixed point results on

neutrosophic cone metric space are stated and proved.

2. Preliminaries

Definition 2.1. [4] Let Σ be a non-empty fixed set. A neutrosophic set (briefly NS) B

is an object having the form B = {〈r, ξB(r), %B(r), ηB(r)〉 : r ∈ Σ}, where ξB(r), %B(r),

and ηB(r) which represent the degree of membership function (namely ξB(r)), the degree of

indeterminacy (namely %B(r)), and the degree of non-membership (namely ηB(r) ) respectively,

of each element r ∈ Σ to the set B.

A neutrosophic set B = {〈r, ξB(r), %B(r), ηB(r)〉 : r ∈ Σ} can be identified to an ordered

triple 〈ξB(r), %B(r)

, ηB(r)〉 in c0−, 1+b on Σ.

Remark 2.1. [4] For the sake of simplicity, we shall use the symbol B = {r, ξB(r),

%B(r), ηB(r)} for the NS B = {〈r, ξB(r), %B(r), ηB(r)〉 : r ∈ Σ}.

Definition 2.2. [5] Let B = 〈ξB(r), %B(r), ηB(r)〉 be an NS on Σ. The complement of

B(brieflyC(B)), are defined as three types of complements

(1) C(B) = {〈r, ηB(r), 1− %B(r), ξB(r)〉 : r ∈ Σ} ,

(2) C(B) = {〈r, 1− ξB(r), 1− ηB(r)〉 : r ∈ Σ}
(3) C(B) = {〈r, ηB(r), %B(r), ξB(r)〉 : r ∈ Σ}

We have the following NSs (see [4]) which will be used in the sequel:

(1) 0N = {〈r, 0, 0, 1〉 : r ∈ Σ} or

(2) 0N = {〈r, 0, 1, 1〉 : r ∈ Σ} or

(3) 0N = {〈r, 0, 0, 0〉 : r ∈ Σ} or

(4) 0N = {〈r, 0, 1, 0〉 : r ∈ Σ}

2- 1N may be defined as four types:

(1) 1N = {〈r, 1, 1, 1〉 : r ∈ Σ} or

(2) 1N = {〈r, 1, 0, 0〉 : r ∈ Σ} or

(3) 1N = {〈r, 1, 1, 0〉 : r ∈ Σ} or
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(4) 1N = {〈r, 1, 0, 1〉 : r ∈ Σ}

Definition 2.3. [4] Let x 6= ∅, and generalized neutrosophic sets (GNSs) B and Γ be in

the form B = {r, ξB(r), %B(r), ηB(r)}, Γ = {r, ξΓ(r), %Γ(r), ηΓ(r)}. We think of two possible

definitions A ⊆ Γ.

(1) B ⊆ Γ⇔ ξB(r) ≤ ξΓ(r), %B(r) ≥ %Γ(r), and ηB(r) ≤ ηΓ(r)

(2) B ⊆ Γ⇔ ξB(r) ≤ ξΓ(r), %B(r) ≥ %Γ(r), and ηB(r) ≥ ηΓ(r).

Definition 2.4. [4] Let {Bj : j ∈ J} be an arbitrary family of an NSs in Σ. Then

(1) ∩Bj defined as two types:

- ∩Bj = 〈r, ∧
j∈J

ξBj(r), ∧
j∈J

%Bj(r), ∨
j∈J

ηBj(r)〉 < Type 1 >

- ∩Bj = 〈r, ∧
j∈J

ξBj(r), ∨
j∈J

%Bj(r), ∨
j∈J

ηBj(r)〉 < Type 2 >.

(2) ∪Bj defined as two types:

- ∪Bj = 〈r, ∨
j∈J

ξBj(r), ∨
j∈J

%Bj(r), ∧
j∈J

ηBj(r)〉 < Type 1 >

- ∪Bj = 〈r, ∨
j∈J

ξBj(r), ∧
j∈J

%Bj(r), ∧
j∈J

ηBj(r)〉 < Type 2 >

Definition 2.5. [3] A neutrosophic topology (briefly NT ) and a non empty set Σ is a family

Υ of neutrosophic subsets of Σ satisfying the following axioms

(1) 0N , 1N ∈ Υ

(2) S1 ∩ S2 ∈ Υ for any S1, S2 ∈ Υ

(3) ∪Si ∈ Υ, ∀ {Si|i ∈ I} ⊆ Υ.

The pair (Σ,Υ) is called a neutrosophic topological space (briefly NTS ) and any neutrosophic

set in Υ is defined as neutrosophic open set ( NOS for short) in Σ. The elements of Υ are

called open neutrosophic sets. A neutrosophic set S is closed if f its C(S) is neutrosophic open.

For any NTS A in (Σ,Υ) ( [21]), we have Int(Ac) = [Cl(A)]c and Cl(Ac) = [Int(A)]c.

Definition 2.6. A subset ω of Ω is called a cone if

(1) For non-empty ω is closed, and ω 6= 0,

(2) If both u ∈ ω and −u ∈ ω then u = 0,

(3) If u, v ∈ S, u, v ≥ 0 and x, y ∈ ω then ux+ vy ∈ ω.

Throughout this paper, we assume that all cones have non-empty interior. For any cone, x ≺ y
will stand for x 4 y and x 6= y, while x� y will stand for y − x ∈ Int(ω). a partial ordering

4 on Ω via ω is defined by x 4 y iff y − x ∈ ω.

Definition 2.7. A cone metric space (briefly CMS) an ordered (Σ, d), where Σ is any set and

d : Σ× Σ 7−→ Ω is a mapping satisfying:

(1) d(s1, s2) = d(s2, s1) for all s1, s2 ∈ Σ,
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(2) d(s1, s2) = 0 iff s1 = s2,

(3) 0 4 d(s1, s2) for all s1, s2 ∈ Σ,

(4) d(s1, s3) 4 d(s1, s2) + d(s2, s3) for all s1, s2, s3 ∈ Σ.

Definition 2.8. Let (Σ, d) be a CMS. Then, for each c1 � 0 and c2 � 0, c1, c2 ∈ Ω, there

exists c� 0, c ∈ Ω such that c� c1 and c� c2.

Definition 2.9. A binary operation
⊗

: [0, 1] × [0, 1] −→ [0, 1] is a continuous t-norm if
⊗

satisfies the following conditions:

(1)
⊗

is continuous,

(2)
⊗

is commutative and associative,

(3) m1
⊗
m2 ≤ m3

⊗
m4 whenever m1 ≤ m3 and m2 ≤ m4 ∀m1, m2, m3, m4 ∈ [0, 1],

(4) m1
⊗

1 = m1 ∀m1 ∈ [0, 1].

Definition 2.10. A binary operation � : [0, 1]× [0, 1] −→ [0, 1] is a continuous t-conorm if �
satisfies the following conditions:

(1) � is continuous,

(2) � is commutative and associative,

(3) m1 �m2 ≤ m3 �m4 whenever m1 ≤ m3 and m2 ≤ m4 ∀m1, m2, m3, m4 ∈ [0, 1],

(4) m1 � 1 = m1 ∀m1 ∈ [0, 1].

Definition 2.11. Let Σ be a non-empty set. The mappings G : Σ×Σ −→ Σ and H : Σ −→ Σ

are called commutative if H(G(x, y)) = G(H(x), H(y)) ∀x, y ∈ Σ.

Definition 2.12. Let Σ 6= ∅. An element x ∈ Σ is called a common fixed point of mappings

G : Σ× Σ −→ Σ and H : Σ −→ Σ if x = H(x) = G(x, x).

Definition 2.13. If U and V are two maps then, a pair of maps is called weakly compatible

(briefly WCP) pair if they commute at (CP).

Definition 2.14. Let Σ be a set, G, H self maps of Σ. A point x in Σ is called a coincidence

point (briefly CP) of G and H if and only if G(x) = H(x). We call w = G(x) = H(x) a point

of coincidence of G and H.

Definition 2.15. Two self maps G and H of a set Σ are sporadically weakly compatible of Σ.

If G and H have a unique point of coincidence, z = G(u) = H(v), then z is the unique common

fixed point of G and H.

Lemma 2.2. Two self maps G and H of a set Σ are sporadically weakly compatible of Σ. then

z is the unique common fixed point of G and H, if z = G(u) = H(u) G and H have a unique

point of coincidence.
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Definition 2.16. A pair of maps G and H which G and H commute of a set Σ are sporadically

weakly compatible iff there is a point x in Σ which is a coincidence point of G and H.

3. neutrosophic Cone Metric Space

Definition 3.1. A 3-tuple (Σ,Ξ,Θ,
⊗
, �) is said to be a neutrosophic CMS if ω is a neutro-

sophic cone metric (briefly NCMS) of Ω, Σ is an arbitrary set, � is a neutrosophic continuous

t-conorm ,
⊗

is a neutrosophic continuous t-norm, ∀ε1, ε2, ε3 ∈ Σ and m, n ∈ Int(ω) (that

is n � 0Θ, s � 0Θ), and Ξ, Θ are neutrosophic set on Σ2 × Int(ω) satisfying the following

conditions:

(1) Ξ(ε1, ε2, ε3) + Θ(ε1, ε2, ε3) ≤ 1Θ;

(2) Ξ(ε1, ε2, ε3) > 0Θ;

(3) Ξ(ε1, ε2, ε3) = 1 iff ε1 = ε2;

(4) Ξ(ε1, ε2, ε3) = Ξ(ε2, ε1,m);

(5) Ξ(ε1, ε2, ε3)
⊗

Ξ(ε2, ε3, n) ≤ Ξ(ε1, ε3,m+ n);

(6) Ξ(ε1, ε2, .) : Int(ω) −→c0−, 1+b is neutrosophic continuous;

(7) Θ(ε1, ε2, ε3) < 0Θ;

(8) Θ(ε1, ε2, ε3) = 0Θ if and only if ε1 = ε2;

(9) Θ(ε1, ε2, ε3) = Θ(ε2, ε3, r);

(10) Θ(ε1, ε2, ε3) �Θ(ε2, ε3, n) ≥ Θ(ε1, ε3,m+ n);

(11) Θ(ε1, ε2, .) : Int(ω) −→c0−, 1+b is neutrosophic continuous.

Then (Ξ,Θ) is called a neutrosophic cone metric on Σ. The functions Θ(ε1, ε2,m) and

Ξ(ε1, ε2,m) denote the degree of non-nearness and the degree of nearness between ε1 and

ε2 with respect to n, respectively.

Example 3.2. Let Ω = R, ω = [0,∞) and a � b = max{a, b}, a
⊗
b = min{a, b}, then every

neutrosophic metric space (Σ,Ξ,Θ) becomes a NCMS.

Example 3.3. If we take ω be an any cone, a
⊗
b = min{a, b}, Σ = Θ, Ξ,Θ : Σ2×Int(ω) −→

c0−, 1+b defined by

Ξ(ε1, ε2, t) =


ε1
ε2
, if ε1 ≤ ε2,

ε1
ε2
, if ε2 ≤ ε1,

Θ(ε1, ε2, t) =


ε2 − ε1
ε2

, if ε1 ≤ ε2,

ε1 − ε2
ε2

, if ε2 ≤ ε1,

for all ε1, ε2 ∈ Σ and r � 0Θ. Then (Σ,Ξ,Θ,
⊗
, �) is a NCMS.
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Definition 3.4. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS, {ε1n} be a sequence in Σ and ε1 ∈ Σ. Then

{ε1n} is said to converge to ε1 if for any s ∈ (0, 1) and any m� 0Θ ∃ a natural number n0 such

that Ξ(ε1n, x,m) > 1 − s,Θ(ε1n, ε1,m) ≤ s for all n ≥ n0. We denote this by limε1n→∞ = ε1

or ε1n → ε1 as →∞.

Definition 3.5. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS. For m � 0Θ, the open ball Γ(x, s,m)

with radius s ∈ (0, 1) and center ε1 is defined by Γ(ε1, s,m) = {ε2 ∈ Σ : Ξ(ε1, ε2,m) >

1− s,Θ(ε1, ε2,m) < s}.

Definition 3.6. The neutrosophic cone metric CMS (Σ,Ξ,Θ,

trosophic CMS if every Cauchy sequence in NCMS (Σ,Ξ,Θ) is convergent.

⊗
, �) is called complete neu-

Definition 3.7. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS. A subset P of Σ is said to be FC-bounded

if ∃ s ∈ (0, 1) and m� θ such that Ξ(ε1, ε2, t) > 1−m,Θ(ε1, ε2,m) < s for all ε1, ε2 ∈ P .

Definition 3.8. Let (Σ,Ξ,Θ,
⊗
, �) be a neutrosophic CMS and h : Σ → Σ is a self map-

ping. Then h is said to be neutrosophic cone contractive if there exists c ∈ (0, 1) such that

1
Ξ(h(ε1),h(ε2),m) − 1 ≤ c( 1

Ξ(ε1,ε2,m) − 1)

Θ(h(ε1), h(ε2),m) ≤ cΘ(ε1, ε2,m)

for each ε1, ε2 ∈ Σ and m� 0Θ. The constant c is called the contractive constant of h.

Lemma 3.9. If for two points ε1, ε2 ∈ Σ and c ∈ (0, 1) such that Ξ(ε1, ε2, cm) ≥ Ξ(ε1, ε2,m),

Θ(ε1, ε2, cm) ≥ Θ(ε1, ε2,m) then ε1 = ε2.

Theorem 3.10. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS. Define T = {K ⊆ Σ : ε1 ∈

Kiff there exists s ∈ (0, 1)andm � 0Θsuch thatL(ε1, s,m) ⊆ K} , then T is a neutrosophic

topology on Σ.

Proof. If ε1 is empty, then ∅ = L(ε1, s,m) ⊆ ∅. Hence the empty set belong to T Since for any

ε1 ∈ Σ, any s ∈ (0, 1) and any m� 0Θ, L(ε1, s,m) ⊆ Σ, then Σ ∈ T .

Let K,L ∈ T and ε1 ∈ K ∩ L. Then ε1 ∈ K and ε1 ∈ L, so there exist m1 � 0Θ; m2 � 0Θ

and m1,m2 ∈ (0, 1) such that L(ε1, s1,m1) ⊆ K and L(ε1, s2,m2) ⊆ L.

By Proposition 2.8, for m1 � 0; m2 � 0, there exists m � 0Θ such that m � m1; r � m2

and take s = min{m1,m2}. Then L(ε1, s,m) ⊆ Σ L(ε1, s1,m1)∩L(ε1, s2,m2) ⊆ K ∩L. Thus

K ∩ L ∈ T . Let Ki ∈ T for each i ∈ I and ε1 ∈ ∪i∈IKi. Then there exists i0 ∈ I such that

ε1 ∈ Ki0. So, there exist r � 0Θ and s ∈ (0, 1) such that L(ε1, s,m) ⊆ Ki0 . SinceKi0 ⊆ ∪i∈IKi,

L(ε1, s,m) ⊆ ∪i∈IKi. Thus ∪i∈IKi ∈ T . Hence, T is a neutrosophic topology on Σ.

Theorem 3.11. If (Σ,Ξ,Θ,
⊗
, �) is a NCMS, then the neutrosophic topology (Σ, T ) is Haus-

dorff.
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Proof. Let (Σ,Ξ,Θ,

Then 0 < Ξ(ε1, ε2,m) < 1Θ and 0 < Θ(ε1, ε2,m) < 1Θ. Let Ξ(ε1, ε2,m) = s1, Θ(ε1, ε2,m) = s2

⊗
, �) be a neutrosophic CMS. Let ε1, ε2 be two distinct points of Σ.

and s = max{s1, s2}. Then for each s0 ∈ (s, 1), there exists s3 and s4 such that s3
⊗
s3 ≥ s0

and (1Θ − s4) � (1Θ − s4) ≤ (1Θ − s0). Put s4 = max{s3, s4} and consider the open balls

L(ε1, 1Θ − s5,m/2) and L(ε2, 1Θ − s5,m/2).

Then clearly L(x, 1Θ − s5,m = 2) ∩ L(ε2, 1− s5,m/2) = ∅
. Suppose that L(x, 1Θ − s5,m = 2) ∩ L(ε2, 1 − s5,m/2) 6= ∅. Then there exists ε3 ∈
L(x, 1Θ − s5,m = 2) ∩ L(ε2, 1Θ − s5,m/2).

s1 =Ξ(ε1, ε2,m)

≥Ξ(ε1, ε3,m/2)
⊗

Ξ(ε3, ε2,m/2)

≥s5

⊗
s5

≥s3

⊗
s3

≥s0 > s1

and

s2 =n(ε1, ε2,m)

≥n(ε1, ε3,m/2)
⊗

n(ε3, ε2,m/2)

≥(1Θ − s5) � (1Θ − s5)

≥(1Θ − s4) � (1Θ − s4)

≤1Θ − s0 < s2

This is a contradiction. Hence ((Σ,Ξ,Θ,
⊗
, �) is Hausdorff.

Theorem 3.12. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS, ε1 ∈ Σ and (ε1n) a sequence in Σ. Then

(ε1n) converges to ε1 if and only if Ξ(ε1n, ε1,m) → 1 and Θ(ε1n, ε1,m) → 0 as n → 1Θ, for

each m� 0Θ.

Proof. Let (ε1n)→ ε1. Then, for each m� 0Θ and s ∈ (0, 1), there exists a natural number n0

such that Ξ(ε1n, ε1,m) > 1Θ−s, Θ(ε1n, ε1,m) < s for all n� n0. We have 1−Ξ(ε1n, ε1,m) < m

and Ξ(ε1n, ε1,m) < m. Hence Ξ(ε1n, ε1,m) → 1 and Θ(ε1n, ε1,m) → 0 as n → 1. Conversely,

Suppose that Ξ(ε1n, ε1,m) → 1Θ as n → 1Θ. Then, for each m � 0Θ and s ∈ (0, 1), there

exists a natural number n0 such that 1Θ−Ξ(ε1n, ε1,m) < s and Θ(ε1n, ε1,m) < s for all n ≥ n0.

In that case, Ξ(ε1n, ε1,m) > 1Θ − s and Θ(ε1n, ε1,m) < s Hence (ε1n)→ ε1 as n→ 1Θ.
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4. Neutrosophic Fixed Point Theorems

Theorem 4.1. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS in which neutrosophic cone contrac-

tive sequences are Cauchy. Let H a neutrosophic cone contractive mapping. Then H has a

unique fixed point. Where H : Σ→ Σ with c as the contractive constant.

Proof. Let ε1 ∈ Σ and fix ε1n = Hn(x), n ∈ Θ For m� 0Θ, we have

1

Ξ(H(ε1),H2(ε1),m)
− 1Θ ≤ c(

1

Ξ(ε1, ε11,m)
− 1Θ),

Θ(H(ε1),H2(ε1),m) ≤ cΘ(ε1, ε11,m).

And by induction

1

Ξ(ε1n+1, ε1n+2,m)
− 1 ≤ c( 1

Ξ(ε1, ε1n+1,m)
− 1)

,

Θ(ε1n+1, ε1n+2,m) ≤ cΘ(ε1, ε1n+1,m) for all n ∈ Θ.

Then (ε1n) is a neutrosophic contractive sequence, by assumptions (ε1n) converges to ε2 and

it is a Cauchy sequence, for some ε2 ∈ Σ. By Theorem 3.12, we have

1

Ξ(H(ε2),H(ε1n),m)
− 1 ≤ c( 1

Ξ(ε2, ε1n,m)
− 1)→ 0

Θ(H(ε2),H(ε1n),m) ≤ cΘ(ε2, ε1n,m)→ o

as n→ 1. Then for each m� 0Θ,

lim
n→∞

Ξ(H(ε2),H(ε1n),m) = 1, lim
n→∞

Θ(H(ε2),H(ε1n),m) = 0Θ,
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and hence limn→∞H(ε1n) = H(ε2), i.e.,limn→∞ ε1n+1 = H(ε2) and H(ε2) = ε2. To show

uniqueness. Let H(kkk) = ε3 for some ε3 ∈W . For m� 0Θ, we have

1

Ξ(ε2, ε3,m)
− 1 =

1

Ξ(H(ε2),H(ε3),m)
− 1

≤ c(
1

Ξ(ε2, ε3,m)
− 1)

=c(
1

Ξ(H(ε2),H(ε3),m)
− 1)

≤c2(
1

Ξ(ε2, ε3,m)
− 1)

≤... ≤ cn(
1

Ξ(ε2, ε3,m)
− 1)→ 0 asn→∞. (4.1)

Θ(ε2, ε3,m) =Θ(H(ε2),H(ε3),m)

≤c(Θ(ε2, ε3,m)

=cΘ(H(ε2),H(ε3),m)

≤c2Θ(ε2, ε3,m)

≤... ≤ cnΘ(ε2, ε3,m)→ 0 asn→∞. (4.2)

Hence Ξ(ε2, ε3,m) = 1Θ and Θ(ε2, ε3,m) = 0Θ and ε2 = ε3.

Theorem 4.2. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS, for G be self mappings of Σ and

let K,L,G. Let {K,G} and {L,G} are pairs be sporadically weakly compatible. If there exists

c ∈ (0, 1) such that

Ξ(Kε1 , Lε2 , c(m)) ≥ min{Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m)

Ξ(L(ε2),G(ε2),m),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m)}.
(4.3)

Θ(Kε1 , Lε2 , c(m)) ≤ max{Θ(G(ε1),G(ε2), r),Θ(G(ε1),K(ε1),m)

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2), r),Θ(L(ε2), G(ε1),m)}.
(4.4)

for all ε1, ε2 ∈ Σ and for all r � 0Θ, there exists a unique point z ∈ Σ such that K(z) =

G(z) = z and a unique point y ∈ Σ such that L(y) = G(y) = y. Moreover y = z, so that there

is a unique common fixed point of K,L,G and G.

Proof. Let the pairs {K,G} and {L,G} be sporadically weakly compatible, so there are points

ε1, ε2 ∈ Σ such that K(ε1) = G(ε1) and L(ε2) = G(ε2). We claim that K(ε1) = L(ε2). By
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inequality 4.3,

Ξ(Kε1 , Lε2 , c(m)) ≥min{Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m),

Ξ(L(ε2),G(ε2),m),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m)}

=min{Ξ(K(ε1), L(ε2), r),Ξ(K(ε1),K(ε1),m),

Ξ(L(ε2), L(ε2),m),Ξ(K(ε1), L(ε2), r), L(L(ε2),K(ε1),m)}

=Ξ(Kε1 , Lε2 ,m). (4.5)

Θ(Kε1 , Lε2 , c(m)) ≤max{Θ(G(ε1),G(ε2),m),Θ(G(ε1),K(ε1),m),

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2),m),Θ(L(ε2), G(ε1),m)}

= max{Θ(K(ε1), L(ε2),m),Θ(K(ε1),K(ε1),m),

Θ(L(ε2), L(ε2),m),Θ(K(ε1), L(ε2),m),Θ(L(ε2),K(ε1),m)}

= Θ(Kε1 , Lε2 ,m). (4.6)

By Lemma 3.9, K(ε1) = L(ε2), i.e. K(ε1) = L(ε1) = L(ε2) = G(ε2). Suppose that there is

another point y such that K(y) = G(y) and by 4.3, we have K(y) = G(y) = L(ε2) = G(ε2).

Thus K(ε1) = K(y) and z = K(ε1) = G(ε1) is the unique point of coincidence of K and G. By

Lemma 2.2, z is the unique common fixed point of K and G. Similarly there is a only point

y ∈ Σ such that y = L(y) = G(y). Assume that z 6= y, we have

Ξ(z, y, c(m)) = Ξ(K(z), L(y), c(m))

≥min{Ξ(G(z),G(y), r),Ξ(G(z),K(y),m),Ξ(L(y),G(y),m)

Ξ(K(z),G(y),m),Ξ(L(y), G(z),m)}

=min{Ξ(z, y,m),Ξ(z, y,m),Ξ(y, y,m),Ξ(z, y,m),Ξ(y, z,m)}

=Ξ(z, y,m). (4.7)

Θ(z, y, c(r)) = Θ(K(z), L(y), c(m))

≥min{Θ(G(z),G(y),m),Θ(G(z),K(y),m),Θ(L(y),G(y),m)

Θ(K(z),G(y), r),Θ(L(y), G(z),m)}

=min{Θ(z, y,m),Θ(z, y,m),Θ(y, y,m),Θ(z, y,m),Θ(y, z,m)}

=Θ(z, y,m). (4.8)

by Lemma 2.2 and y is a common fixed point of K,L,G and G. Then we have y = z. The

uniqueness of the fixed point come from 4.6.
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Theorem 4.3. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS and K,L,G and G be self-mappings

of Σ. Let the pairs {K,G} and {L,G} be sporadically weakly compatible. If there exists

c ∈ (0, 1) such that

Ξ(K(ε1), L(ε2), c(m)) ≥ φ[min{Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m)

Ξ(L(ε2),G(ε2),m),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m)}].
(4.9)

Θ(K(ε1), L(ε2), c(m)) ≤ ζ[max{Θ(G(ε1),G(ε2),m),Θ(G(ε1),K(ε1),m)

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2),m),Θ(L(ε2), G(ε1),m)}].
(4.10)

for all ε1, ε2 ∈ Σ and φ, ζ :c0−, 1+b→c0−, 1+b such that ζ(m) < m, φ(m) > m, for all

0Θ � r < 1Θ, thus there is a unique common fixed point of K,L,G and G.

Proof. The proof follows from Theorem 4.4

Theorem 4.4. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS and K,L,G and G be self-mappings

of Σ. Let {K,G} and {L,G} are pairs be sporadically weakly compatible. If ∃c ∈ (0, 1) such

that

Ξ(K(ε1), L(ε2), c(m)) ≥ φ(Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m)

Ξ(L(ε2),G(ε2),m),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m)),
(4.11)

Θ(K(ε1), L(ε2), c(m)) ≤ ζ(Θ(G(ε1),G(ε2),m),Θ(G(ε1),K(ε1),m)

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2),m),Θ(L(ε2), G(ε1),m)).
(4.12)

for all ε1, ε2 ∈ Σ and φ, ζ : c0−, 1+5b→c0−, 1+b such that φ(r, 1Θ, 1Θ,m,m) > m,

ζ(m, 0Θ, 0Θ,m,m) < m for all 0 � m < 1 then there exists a unique common fixed point

of K,L,G and G.

Proof. Let {K,G} and {L,G} are pairs be sporadically weakly compatible. There are points

ε1, ε2 ∈ Σ such that K(ε1) = G(ε1) and L(ε2) = G(ε2).

We claim that K(ε1) = L(ε2). By inequalities (4.11) and (4.12), we have

Ξ(K(ε1), L(ε2), c(m)) ≥ φ(Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m),

Ξ(L(ε2),G(ε2),mr),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m))

=φ(Ξ(K(ε1), L(ε2),m),Ξ(K(ε1),K(ε1),m),

Ξ(L(ε2), L(ε2),m),Ξ(K(ε1), L(ε2), r), L(L(ε2),K(ε1),m))

=φ((Ξ(K(ε1), L(ε2),m), 1Θ, 1Θ,Ξ(K(ε1), L(ε1),m),Ξ(L(ε2),K(ε2),m))

>Ξ(K(ε1), L(ε2),m).
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Θ(K(ε1), L(ε2), c(m)) ≤ ζ(Θ(G(ε1),G(ε2),m),Θ(G(ε1),K(ε1),m),

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2),m),Θ(L(ε2), G(ε1),m))

=ζ(Θ(K(ε1), L(ε2),m),Θ(K(ε1),K(ε1),m),

Θ(L(ε2), L(ε2),m),Θ(K(ε1), L(ε2),m), L(L(ε2),K(ε1),m))

=ζ((Θ(K(ε1), L(ε2),m), 0Θ, 0Θ,Θ(K(ε1), L(ε1),m),Θ(L(ε2),K(ε2),m))

<Θ(K(ε1), L(ε2),m).

a contradiction, therefore K(ε1) = L(ε2), i.e. K(ε1) = G(ε1) = L(ε2) = G(ε2). Suppose that

there is a another point y such that K(y) = G(y). Then by 4.11 we have K(y) = G(y) =

L(ε2) = G(ε2), so K(ε1) = K(y) and z = K(ε1) = G(ε1) is the unique point of coincidence. z

is a unique common fixed point of K and G, by Lemma 2.2. Similarly, for K and G there is a

unique point y ∈ Σ such that y = L(y) = G(y). Thus for K,L,G, y is a common fixed point

and G. For the uniqueness fixed point holds from (4.11).

Theorem 4.5. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS and K,L,G and G be self-mappings

of Σ. Let the pairs {K,G} and {L,G} be sporadically weakly compatible. If there exists

c ∈ (0, 1) for all ε1, ε2 ∈ Σ and m� 0Θ satisfying

Ξ(K(ε1), L(ε2), c(m)) ≥ Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)⊗
Ξ(L(ε2),G(ε2),m)

⊗
Ξ(K(ε1),G(ε2),m)

(4.13)

ΞΘ(K(ε1), L(ε2), c(m)) ≤ Θ(G(ε1),G(ε2),m)
⊗

Θ(K(ε1), G(ε1),m)⊗
Θ(L(ε2),G(ε2),m)

⊗
Θ(K(ε1),G(ε2),m)

(4.14)

then there exists a unique common fixed point of K,L,G and G.

Proof. Let the pairs {K,G} and {L,G} are sporadicallyweakly compatible, there are points

ε1, ε2 ∈ Σ such that K(ε1) = G(ε1) and L(ε2) = G(ε2).

We claim that K(ε1) = L(ε2). By inequalities (4.13) and (4.14), we have

Ξ(K(ε1), L(ε2), c(m)) ≥ Ξ(G(ε1), L(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)⊗
Ξ(L(ε2), L(ε2),m)

⊗
Ξ(K(ε1), L(ε2),m)

=Ξ(K(ε1), L(ε2),m)
⊗

Ξ(K(ε1),K(ε1),m)
⊗

Ξ(L(ε2), L(ε2),m)⊗
Ξ(K(ε1), L(ε2),m)

≥Ξ(K(ε1), L(ε2),m)
⊗

1Θ

⊗
1Θ

⊗
Ξ(K(ε1), L(ε2),m)

≥Ξ(K(ε1), L(ε2),m)
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Θ(K(ε1), L(ε2), c(m)) ≤ Θ(G(ε1), L(ε2),m) �Θ(K(ε1), G(ε1),m) �Θ(L(ε2), L(ε2),m) �Θ(K(ε1), L(ε2),m)

=Θ(K(ε1), L(ε2),m) �Θ(K(ε1),K(ε1),m) �Θ(L(ε2), L(ε2),m) �Θ(K(ε1), L(ε2),m)

≤Θ(K(ε1), L(ε2),m) � 0Θ � 0Θ �Θ(K(ε1), L(ε2),m)

≤Θ(K(ε1), L(ε2),m)

By Lemma 3.9, we have K(ε1) = L(ε2), i.e. K(ε1) = G(ε1) = L(ε2) = G(ε2). Suppose

that there is a another point y such that K(y) = G(y). Then by (4.13, 4.14), we have

K(y) = G(y) = L(ε2) = G(ε2). Thus K(ε1) = K(y) and z = K(ε1) = G(ε1) is the unique

point of coincidence ofK andG. Then there is a unique point y ∈ Σ such that y = L(y) = G(y).

Thus z is a common fixed point of K,L,G and G.

Theorem 4.6. Let (Σ,Ξ,Θ,
⊗
, �) be a complete neutrosophic CMS and G and K,L,G be

self-mappings of Σ. Let {K,G} and {L,G} are the pairs be sporadically weakly compatible. If

∃c ∈ (0, 1) for all ε1, ε2 ∈ Σ and r � 0Θ satisfying

Ξ(K(ε1), L(ε2), c(m)) ≥ Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)
⊗

Ξ(L(ε2),G(ε2),m)⊗
Ξ(L(ε2), G(ε2), 2m)

⊗
Ξ(K(ε1),G(ε2),m)

(4.15)

Θ(K(ε1), L(ε2), c(m)) ≤ Θ(G(ε1),G(ε2), r)
⊗

Θ(K(ε1), G(ε1),m)
⊗

Θ(L(ε2),G(ε2),m)⊗
Θ(L(ε2), G(ε2), 2m)

⊗
Θ(K(ε1),G(ε2),m)

(4.16)

then for K,L,G and G there exists a unique common fixed point.

Proof. We have,

Ξ(K(ε1), L(ε2), c(m)) ≥ Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)
⊗

Ξ(L(ε2),G(ε2),m)⊗
Ξ(L(ε2), G(ε2), 2m)

⊗
Ξ(K(ε1),G(ε2),m)

=Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)
⊗

Ξ(L(ε2),G(ε2),m)⊗
Ξ(G(ε1),G(ε1),m)

⊗
Ξ(H(ε1), L(ε1),m)

⊗
Ξ(K(ε1),G(ε2),m)

≥Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)
⊗

Ξ(L(ε2),G(ε2),m)⊗
Ξ(K(ε1),G(ε2),m)

Θ(K(ε1), L(ε2), c(m)) ≤ Θ(G(ε1),G(ε2),m) �Θ(K(ε1), G(ε1),m) �Θ(L(ε2),G(ε2),m)

�Θ(L(ε2), G(ε2), 2m) �Θ(K(ε1),G(ε2),m)

=Θ(G(ε1),G(ε2),m) �Θ(K(ε1), G(ε1),m) �Θ(L(ε2),G(ε2),m)

�Θ(G(ε1),G(ε1),m) �Θ(H(ε1), L(ε1),m) �Θ(K(ε1),G(ε2),m)

≤Θ(G(ε1),G(ε2),m) �Θ(K(ε1), G(ε1),m) �Θ(L(ε2),G(ε2),m) �Θ(K(ε1),G(ε2),m)
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and therefore by Theorem 4.5, K,L,G and G have a common fixed point.

Theorem 4.7. Let (Σ,Ξ,Θ,
⊗
, �) be a complete neutrosophic CMS and K, L be self-

mappings of Σ. Let K and L be sporadically weakly compatible. If ∃ a point c ∈ (0, 1) for all

ε1, ε2 ∈ Σ and r � 0Θ

Ξ(L(ε1), L(ε2), c(m)) ≥ aΞ(K(ε1),K(ε2),m) + bmin{Ξ(K(ε1),K(ε2),m),

Ξ(L(ε1),K(ε1),m),Ξ(L(ε2),K(ε2),m)}
(4.17)

Θ(L(ε1), L(ε2), c(m)) ≤ aΘ(K(ε1),K(ε2),m) + bmax{Θ(K(ε1),K(ε2),m),

Θ(L(ε1),K(ε1),m),Θ(L(ε2),K(ε2),m)}
(4.18)

for all ε1, ε2 ∈ Σ, where a, b > 0Θ, a + b > 1Θ. Then K and L have a unique common fixed

point.

Proof. Let the pairs {K,L} be sporadicallyweakly compatible, so there is a point ε1 ∈ Σ such

that K(ε1) = L(ε1). Suppose that there exists another point ε2 ∈ Σ for which K(ε2) = L(ε2).

We claim that G(ε1) = L(ε2). By inequalities (4.17) and (4.18), we have

Ξ(L(ε1), L(ε2), c(m)) ≥ aΞ(K(ε1),K(ε2),m) + bmin{Ξ(K(ε1),K(ε2),m),

Ξ(L(ε1),K(ε1), r),Ξ(L(ε2),K(ε2),m)}

=aΞ(L(ε1), L(ε2),m) + bmin{Ξ(L(ε1), L(ε2),m),

Ξ(L(ε1), L(ε1),m),Ξ(L(ε2), L(ε2),m), }

=a+ bΞ(L(ε1), L(ε2),m)

Θ(L(ε1), L(ε2), c(m)) ≤ aΘ(K(ε1),K(ε2),m) + bmax{Θ(K(ε1),K(ε2),m),

Θ(L(ε1),K(ε1),m),Θ(L(ε2),K(ε2), r)}

=aΘ(L(ε1), L(ε2),m) + bmax{Θ(L(ε1), L(ε2),m),

Θ(L(ε1), L(ε1),m),Θ(L(ε2), L(ε2),m), }

=a+ bΘ(L(ε1), L(ε2),m)

a contradiction, since a + b > 1Θ. Therefore L(ε1) = L(ε2). Therefore K(ε1) = K(ε2) and

K(ε1) is unique. From Lemma 2.2, K and L have a unique fixed point.

5. Conclusion

In this paper, the concept of neutrosophic CMS is introduced. Some fixed point theorems

on neutrosophic CMS are stated and proved.
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Comment on "A Novel Method for Solving the Fully Neutrosophic 

Linear Programming Problems: Suggested Modifications" 

Mohamed Abdel-Basset, Mai Mohamed, Florentin Smarandache

Abstract. Some clarifications of a previous paper with the same title are presented here to avoid 

any reading conflict [1]. Also, corrections of some typo errors are underlined. Each 

modification is explained with details for making the reader able to understand the main concept 

of the paper. Also, some suggested modifications advanced by Singh et al. [3] (Journal of 

Intelligent & Fuzzy Systems, 2019, DOI:10.3233/JIFS-181541) are discussed. It is observed that 

Singh et al. [3] have constructed their modifications on several mathematically incorrect 

assumptions. Consequently, the reader must consider only the modifications which are presented 

in this research.   

1. Clarifications and Corrected Errors

In Section 5 and Step 3 of the proposed NLP method [1], the trapezoidal neutrosophic number was 

presented in the following form:  

�̃�=〈(𝑎𝑙 , 𝑎𝑚1, 𝑎𝑚2 , 𝑎𝑢 ); 𝑇�̃� , 𝐼�̃�, 𝐹�̃�〉 ,

where 𝑎𝑙 , 𝑎𝑚1 , 𝑎𝑚2, 𝑎𝑢  are the lower bound, the first and second median values and the upper 

bound for trapezoidal neutrosophic number, respectively. Also,  𝑇�̃�  , 𝐼�̃�, 𝐹�̃�  are the truth, 

indeterminacy and falsity degrees of the trapezoidal neutrosophic number. The ranking function 

for that trapezoidal neutrosophic number is as follows:  

𝑅(�̃�) = |(
−

1

3
(3𝑎𝑙−9𝑎𝑢)+2(𝑎𝑚1−𝑎𝑚2)

2
) × (𝑇�̃� − 𝐼�̃� −  𝐹�̃�)|    (8) 

The previous ranking function is only for maximization problems. 

But, if NLP problem is a minimization problem, then ranking function for that trapezoidal 

neutrosophic number is as follows: 

𝑅(�̃�) = |(
(𝑎𝑙+𝑎𝑢)−3(𝑎𝑚1+𝑎𝑚2)

−4
) × (𝑇�̃� − 𝐼�̃� − 𝐹�̃�)|    (9) 

If reader deals with a symmetric trapezoidal neutrosophic number which has the following form: 

�̃�=〈( 𝑎𝑚1, 𝑎𝑚2 ); 𝛼, 𝛽〉, 

where 𝛼 = 𝛽, 𝛼, 𝛽 ≥ 0, then the ranking function for that number will be as follows: 

𝑅(�̃�) = |(
(𝑎𝑚1+𝑎𝑚2)+2(𝛼+𝛽)

2
) × (𝑇�̃� − 𝐼�̃� −  𝐹�̃�)|.      (10)

We applied Eq. (10) directly in Example 1, but we did not illustrated it in the original work [1], and 

this caused a reading conflict. After handling typo errors in Example 1, the crisp model of the 

problem will be as follows: 

Maximize 𝑍 =18𝑥1+19𝑥2+20𝑥3 

Subject to 

12𝑥1+13𝑥2+12𝑥3 ≤ 502, 

14𝑥1+13𝑥3 ≤ 486, 

12𝑥1+15𝑥2 ≤ 490, 

𝑥1,𝑥2,𝑥3 ≥ 0. 

Mohamed Abdel-Basset, Mai Mohamed, Florentin Smarandache (2020). Comment on "A Novel 
Method for Solving the Fully Neutrosophic Linear Programming Problems: Suggested 
Modifications”. Neutrosophic Sets and Systems 31, 305-309

Florentin Smarandache (author and editor) Collected Papers, XII

591

mailto:smarand@unm.edu


The initial simplex form will be as in Table 1. 

Table 1 Initial simplex form 

Basic variables 𝑥1 𝑥2 𝑥3 𝑠4 𝑠5 𝑠6 RHS 

𝑠4 12 13 12 1 0 0 502 

𝑠5 14 0 13 0 1 0 486 

𝑠6 12 15 0 0 0 1 490 

Z -18 -19 -20 0 0 0 0 

The optimal simplex form will be as in Table 2. 

Table 2 Optimal form 

Basic variables 𝑥1 𝑥2 𝑥3 𝑠4 𝑠5 𝑠6 RHS 

𝑥2 -12/169 1 0 1/13 -12/169 0 694/169 

𝑥3 14/13 0 1 0 1/13 0 486/13 

𝑠6 2208/169 0 0 -15/13 180/169 1 72400/169 

Z 370/169 0 0 19/13 32/169 0 139546/169 

The obtained optimal solution is 𝑥1 = 0, 𝑥2 = 4.11, 𝑥3 = 37.38. 

The optimal value of the NLPP is �̃� ≈ (13,15,2,2)𝑥1 + (12,14,3,3)𝑥2 + (15,17,2,2)𝑥3 = (13,15,2,2) ∗

0 + (12,14,3,3) ∗ 4.11 + (15,17,2,2) ∗ 37.38 =  

(49.32,57.54,12.33,12.33) + (560.70,635.46,74.76,74.7) = (610.02,693,87.09,87.09).  

�̃� ≈ (610.02,693,87.09,87.09), which is in the symmetric trapezoidal neutrosophic number form. 

Since the traditional form of  �̃� =〈( 𝑎𝑚1, 𝑎𝑚2 ); 𝛼, 𝛽〉 is:  

�̃� =〈(𝑎𝑚1 − 𝛼, 𝑎𝑚1, 𝑎𝑚2, 𝑎𝑚2 + 𝛽)〉, 

where 𝑎𝑚1 − 𝛼 = 𝑎𝑙  , 𝑎𝑚2 + 𝛽 = 𝑎𝑢, then the optimal value of the NLPP can also be written as �̃� ≈ 

(522.93,610.02,693,780.09). 

The reader must also note that one can transform the symmetric trapezoidal neutrosophic numbers 

from Example 1 in [1] to its traditional form, and use Eq. (8) for solving the problem, obtaining the 

same result. By comparing the result with other existing models mentioned in the original research 

[1], the proposed model is the best. 

By using Eq. (8) and solving Example 2 in [1], the crisp model will be as follows: 

Maximize 𝑍 =25𝑥1+48𝑥2 

Subject to 

13𝑥1+28𝑥2 ≤ 31559, 

26𝑥1+9𝑥3 ≤ 16835, 

21𝑥1+15𝑥2 ≤ 19624, 

𝑥1,𝑥2 ≥ 0. 

The initial simplex form will be as in Table 3. 

Table 3 Initial simplex form 

Basic variables 𝑥1 𝑥2 𝑠3 𝑠4 𝑠5 RHS 

𝑠3 13 28 1 0 0 31559 

𝑠4 26 9 0 1 0 16835 

𝑠5 21 15 0 0 1 19624 

Z -25 -48 0 0 0 0 

The optimal simplex form will be as in Table 4. 
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Table 4 Optimal simplex form 

Basic variables 𝑥1 𝑥2 𝑠3 𝑠4 𝑠5 RHS 

𝑥2 0 1 7/131 0 -13/393 407627/393 

𝑠4 0 0 67/131 1 -611/393 969250/393 

𝑥1 1 0 -5/131 0 28/393 76087/393 

Z 0 0 211/131 0 76/393 21468271/393 

The optimal value of objective function is 54627. 

By using Eq. (9) and solving Example 3 in [1], the crisp model will be as follows: 

Minimize 𝑍 =6𝑥1+10𝑥2 

Subject to 

2𝑥1+5𝑥2 ≥ 6, 

3𝑥1+4𝑥2 ≥ 3, 

𝑥1,𝑥2 ≥ 0. 

The optimal simplex form will be as in Table 5. 

Table 5 Optimal simplex form 

Basic variables 𝑥1 𝑥2 𝑠3 𝑠4 RHS 

𝑠4 -7/5 0 -4/5 1 0 

𝑥2 2/5 1 -1/5 0 10 

Z -2 0 -2 0 12 

Hence, the optimal solution has the value of variables: 

𝑥1 = 0, 𝑥2 = 1.2, Z = 12. 

The obtained result is better than Saati et al. [2] method. 

By correcting typo errors which percolated in the Case study in [1], the problem formulation model 

will be as follows: 

Maximize 𝑍 = 9̃𝑥1+12̃𝑥2+15̃𝑥3+11̃𝑥4

Subject to 

0.5𝑥1 + 1.5𝑥2 + 1.5𝑥3 + 𝑥4 ≤ 1500̃,

3𝑥1 + 𝑥2 + 2𝑥3 + 3𝑥4 ≤ 2350̃,

2𝑥1 +  4𝑥2 + 𝑥3 + 2𝑥4 ≤ 2600̃,

0.5𝑥1 + 1𝑥2 + 0.5𝑥3 + 0.5𝑥4 ≤ 1200̃,

𝑥1 ≤ 150̃,

𝑥2 ≤ 100̃,

𝑥3 ≤ 300̃,

𝑥4 ≤ 400̃,

𝑥1,𝑥2, 𝑥3, 𝑥4 ≥ 0. 

The values of each trapezoidal neutrosophic number remain the same [1].  

By using Eq. (8) and solving the Case study, the crisp model will be as follows: 

Maximize 𝑍 = 10𝑥1+10𝑥2+12𝑥3+9𝑥4

Subject to 

0.5𝑥1 + 1.5𝑥2 + 1.5𝑥3 + 𝑥4 ≤ 1225, 

3𝑥1 + 𝑥2 + 2𝑥3 + 3𝑥4 ≤ 1680, 

2𝑥1 +  4𝑥2 + 𝑥3 + 2𝑥4 ≤ 2030, 

0.5𝑥1 + 1𝑥2 + 0.5𝑥3 + 0.5𝑥4 ≤ 945, 

𝑥1 ≤ 122, 

𝑥2 ≤ 87, 

𝑥3 ≤ 227, 

𝑥4 ≤ 297, 

𝑥1,𝑥2, 𝑥3, 𝑥4 ≥ 0. 
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By solving the previous model using simplex approach, the results are as follows: 

𝑥1 = 122, 𝑥2 = 87, 𝑥3 = 227, 𝑥4 =
773

3
, 𝑍 = 7133.

2. A Note on the modifications suggested by Singh et al. [3]

This part illustrates how Singh et al. [3] constructed their modifications of Abdel-Basset et al.’s 

method [1] on wrong concepts. The errors in Singh et al.’s [3] modifications reflects the 

misunderstanding of Abdel-Basset et al.’s method [1].  

In the second paragraph of the introductory section, Singh et al. [3] assert that “in Abdel-Basset et 

al.’s method [1], firstly, a neutrosophic linear programming problem (NLPP) is transformed into a 

crisp linear programming problem (LPP) by replacing each parameter of the NLPP, represented by 

a trapezoidal neutrosophic number with its equivalent defuzzified crisp value”. However, this is 

not true, since the neutrosophic linear programming problem (NLPP) is transformed into a crisp 

linear programming problem (LPP) by replacing each parameter of the NLPP, represented by a 

trapezoidal neutrosophic number with its equivalent deneutrosophic crisp value. The 

deneutrosophication process means transforming a neutrosophic value to its equivalent crisp value. 

In Section 2, Step 1 Singh et al. [3] alleged that Abdel-Basset et al.’s method [1] for comparing two 

trapezoidal neutrosophic numbers is based on maximization and minimization of problem, which 

is again not true.  

In Section 3 and Definition 4, Abdel-Basset et al. [1] illustrated that the method for comparing two 

trapezoidal neutrosophic numbers is as follows: 

1. If 𝑅(�̃�) > 𝑅(�̃�) then �̃� > �̃�,

2. If 𝑅(�̃�) < 𝑅(�̃�) then �̃� < �̃�,

3. If 𝑅(�̃�) = 𝑅(�̃�) then �̃� = �̃�.

There is well known that if 𝑎𝑙 =  𝑎𝑚1 = 𝑎𝑚2 = 𝑎𝑢 , then the trapezoidal number 

�̃�=〈(𝑎𝑙 , 𝑎𝑚1, 𝑎𝑚2 , 𝑎𝑢 ); 1 ,0, 0〉  will be transformed into a real number 𝑎 = 〈(𝑎, 𝑎, 𝑎, 𝑎 ); 1 ,0, 0〉, and 

hence in this case 𝑅(𝑎) = 𝑎 . We presented this fact to illustrate a great error in the suggested 

modifications of Singh et al. [3]  

In the Suggested modifications section [3], the authors claimed that: 

𝑅 (∑〈𝑎𝑖
𝑙 , 𝑎𝑖

𝑚1, 𝑎𝑖
𝑚2, 𝑎𝑖

𝑢 , 𝑇�̃�𝑖
, 𝐼�̃�𝑖

, 𝐹�̃�𝑖
〉

𝑚

𝑖=1

) = ∑ 𝑅

𝑚

𝑖=1

〈𝑎𝑖
𝑙 , 𝑎𝑖

𝑚1, 𝑎𝑖
𝑚2, 𝑎𝑖

𝑢 , 𝑇�̃�𝑖
, 𝐼�̃�𝑖

, 𝐹�̃�𝑖
〉 − ∑ 𝑇�̃�𝑖

𝑚

𝑖=1

+ ∑ 𝐼�̃�𝑖

𝑚
𝑖=1 + ∑ 𝐹�̃�𝑖

𝑚
𝑖=1 +𝑚𝑖𝑛1≤𝑗≤𝑛{𝑇𝑐̃𝑖

} − 𝑚𝑎𝑥1≤𝑗≤𝑛{𝐼𝑐̃𝑖
} − 𝑚𝑎𝑥1≤𝑗≤𝑛{𝐹𝑐�̃�

} (11) 

instead of , 

𝑅(∑ 〈𝑎𝑖
𝑙 , 𝑎𝑖

𝑚1, 𝑎𝑖
𝑚2 , 𝑎𝑖

𝑢, 𝑇�̃�𝑖
, 𝐼�̃�𝑖

, 𝐹�̃�𝑖
〉𝑚

𝑖=1 ) =∑ 𝑅𝑚
𝑖=1 〈𝑎𝑖

𝑙 , 𝑎𝑖
𝑚1, 𝑎𝑖

𝑚2 , 𝑎𝑖
𝑢, 𝑇�̃�𝑖

, 𝐼�̃�𝑖
, 𝐹�̃�𝑖

〉 .

Let us consider the following example for proving the error in this suggestion [3] 

Let 𝑚 = 3, which are three trapezoidal neutrosophic numbers �̃�1, �̃�2, �̃�3; since �̃�1=〈(1, 1,1,1 ); 1 ,0, 0〉 

, �̃�2 = 〈(2, 2,2,2 ); 1 ,0, 0〉 ,  �̃�3= 〈(3, 3,3,3 ); 1 ,0, 0〉, then, 

𝑅(∑ 〈𝑎𝑖
𝑙 , 𝑎𝑖

𝑚1, 𝑎𝑖
𝑚2 , 𝑎𝑖

𝑢, 𝑇�̃�𝑖
, 𝐼�̃�𝑖

, 𝐹�̃�𝑖
〉𝑚

𝑖=1 ) = 𝑅(〈(1, 1,1,1 ); 1 ,0, 0〉 + 〈(2, 2,2,2 ); 1 ,0, 0〉 + 〈(3, 3,3,3 ); 1 ,0, 0〉) 

=  𝑅(〈(6, 6,6,6 ); 1 ,0, 0〉), and according to the previously determined fact “if 𝑎𝑙 =  𝑎𝑚1 = 𝑎𝑚2 = 𝑎𝑢   

then the trapezoidal number  �̃� = 〈(𝑎𝑙 , 𝑎𝑚1, 𝑎𝑚2, 𝑎𝑢 ); 1 ,0, 0〉  will be transformed into a real 

number  𝑎 = 〈(𝑎, 𝑎, 𝑎, 𝑎 ); 1 ,0, 0〉  and hence in this case 𝑅(𝑎) = 𝑎 ”, the value of 

 𝑅(〈(6, 6,6,6 ); 1 ,0, 0〉) = 6.  

And by calculating the right hand side of Eq. (11), which is ∑ 𝑅𝑚
𝑖=1 〈𝑎𝑖

𝑙 , 𝑎𝑖
𝑚1, 𝑎𝑖

𝑚2 , 𝑎𝑖
𝑢, 𝑇�̃�𝑖

, 𝐼�̃�𝑖
, 𝐹�̃�𝑖

〉 −

∑ 𝑇�̃�𝑖

𝑚
𝑖=1 + ∑ 𝐼�̃�𝑖

𝑚
𝑖=1 + ∑ 𝐹�̃�𝑖

𝑚
𝑖=1 +𝑚𝑖𝑛1≤𝑗≤𝑛{𝑇𝑐�̃�

} − 𝑚𝑎𝑥1≤𝑗≤𝑛{𝐼𝑐�̃�
} − 𝑚𝑎𝑥1≤𝑗≤𝑛{𝐹𝑐�̃�

} , we note that,

𝑅〈(1, 1,1,1 ); 1 ,0, 0〉 + 𝑅〈(2, 2,2,2 ); 1 ,0, 0〉 + 𝑅〈(3, 3,3,3 ); 1 ,0, 0〉 − 3 + 0 + 0 + 1 − 0 − 0 = 1 + 2 +

3 − 3 + 0 + 0 + 1 − 0 − 0 = 4. 
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And then, the left hand side of Eq. (11) does not equal the right hand side, i.e. 6 ≠ 4. 

Consequently, the authors [3] built their suggestions on a wrong concept. 

Beside Eq. (11), the authors [3] used the expressions 𝑅(𝑎) = 3𝑎 + 1 for maximization problems, 

and  𝑅(𝑎) = −2𝑎 + 1  for minimization problems, and this shows peremptorily that their 

assumptions are scientifically incorrect. 

There is also a repeated error in all corrected solutions suggested by Singh et al. [3] which contradicts 

with the basic operations of trapezoidal neutrosophic numbers. This error is iterated in Section 7, as 

in Example 1, in Step 6. Singh et al. [3] illustrated that the optimal value of the NLPP is calculated 

using the optimal solution obtained in Step 5 as follows: 

(11,13,15,17)𝑥1 + (9,12,14,17)𝑥2 + (13,15,17,19)𝑥3 =  (11,13,15,17) ∗ 0  +(9,12,14,17) ∗ 0 

+(13,15,17,19) ∗ (
245

18
)  = 13 (

245

18
)  + 15 (

245

18
) +  17 (

245

18
) +  19 (

245

18
)  = 

7840

9
 , and because the basic

operation of multiplying trapezoidal neutrosophic number by a constant value is  as follows: 

�̃� ={
〈(𝑎1, 𝑎2, 𝑎3, 𝑎4); T�̃� , I�̃� , F�̃�〉  𝑖𝑓(  ≥ 0)

〈(𝑎4, 𝑎3, 𝑎2, 𝑎1); T�̃�  , I�̃� , F�̃�〉 𝑖𝑓 ( < 0)
  , then the value of (11,13,15,17) ∗ 0 +(9,12,14,17) ∗

0 +(13,15,17,19) ∗ (
245

18
) = (

3185

18
,

1225

6
,

4165

18
,

4655

18
; 1,0,0).Then the optimal value of the NLPP is�̃� ≈

=(
3185

18
,

1225

6
,

4165

18
,

4655

18
). 

The same error appears in Example 4, where the optimal value of the NLPP is calculated by Singh 

et al. [3] using the optimal solution obtained in Step 5 as follows: 

(6,8,9,12)𝑥1(9,10,12,14)𝑥2 + (12,13,15,17)𝑥3 + (8,9,11,13)𝑥4 =   (6,8,9,12)(
3700

21
)+ (9,10,12,14)(0) +

(12,13,15,17)(
6200

7
)  + (8,9,11,13)(0)  = 6(

3700

21
)+ 8 (

3700

21
) + 9 (

3700

21
) + 12(

3700

21
)  +12(

6200

7
)+13(

6200

7
)  +

15(
6200

7
)+17(

6200

7
) = 

1189700

21
 , which is scientifically incorrect and reflects only the weak background

of the authors in the neutrosophic field. 

Therefore, we concluded that it is scientifically incorrect to use Singh et al.’s modifications [3]. 

3. Conclusions

Clarifications and corrections of some typo errors are presented here to avoid any reading conflict.

Also, the correct results of NLPPs are presented. By using three modified functions for ranking

process which were presented by Abdel-Basset et al. [1], the reader will be able to solve all types of

linear programming problems with trapezoidal and symmetric trapezoidal neutrosophic numbers.

Also, the mathematically incorrect assumptions used by Singh et al. [3] are discussed and rejected.
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Neutrosophic Soft Sets Applied on Incomplete Data 
Abhijit Saha, Said Broumi, Florentin Smarandache 

Abstract: A neutrosophic set is a part of neutrosophy that studies the origin, nature and scope of neu-

tralities as well as their interactions with different ideational spectra. In this present paper first we have 

introduced the concept of a neutrosophic soft set having incomplete data with suitable examples. Then 

we have tried to explain the consistent and inconsistent association between the parameters. We have 

introduced few new definitions, namely- consistent association number between the parameters, con-

sistent association degree, inconsistent association number between the parameters and inconsistent as-

sociation degree to measure these associations. Lastly we have presented a data filling algorithm. An il-

lustrative example is employed to show the feasibility and validity of our algorithm in practical situa-

tion. 

Keywords: Soft set, neutrosophic set, neutrosophic soft set, data filling. 

1. Introduction

In 1999, Molodstov [01] initiated the concept of soft set theory as a new mathematical tool for mod-

elling uncertainty, vague concepts and not clearly defined objects. Although various traditional tools, 

including but not limited to rough set theory [02], fuzzy set theory [03], intuitionistic fuzzy set theory 

[04] etc. have been used by many researchers to extract useful information hidden in the uncertain da-

ta, but there are immanent complications connected with each of these theories. Additionally, all these

approaches lack in parameterizations of the tools and hence they couldn’t be applied effectively in real

life problems, especially in areas like environmental, economic and social problems. Soft set theory is

standing uniquely in the sense that it is free from the above mentioned impediments and obliges ap-

proximate illustration of an object from the beginning, which makes this theory a natural mathemati-

cal formalism for approximate reasoning.

     The Theory of soft set has excellent potential for application in various directions some of which are 

reported by Molodtsov in his pioneer work. Later on Maji et al. [05] introduced some new annotations 

on soft sets such as subset, complement, union and intersection of soft sets and discussed in detail its 

applications in decision making problems. Ali et al. [06] defined some new operations on soft sets and 

shown that De Morgan's laws holds in soft set theory with respect to these newly defined operations. 

Atkas and Cagman [07] compared soft sets with fuzzy sets and rough sets to show that every fuzzy set 

and every rough set may be considered as a soft set. Jun   [08] connected soft sets to the theory of 

BCK/BCI-algebra and introduced the concept of soft BCK/BCI-algebras. Feng et al. [09] characterized 

soft semi rings and a few related notions to establish a relation between soft sets and semi rings. In 

2001, Maji et al. [10] defined the concept of fuzzy soft set by combining of fuzzy sets and soft sets . Roy 

and Maji [11] proposed a fuzzy soft set based decision making method. Xiao et al. [12] presented a 

combined forecasting method based on fuzzy soft set. Feng et al. [13] discussed the validity of the 

Abhijit Saha, Said Broumi, Florentin Smarandache (2020). Neutrosophic Soft Sets 
Applied on Incomplete Data. Neutrosophic Sets and Systems 32, 282-293
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Roy-Maji method and presented an adjustable decision-making method based on fuzzy soft set. Yang 

et al.   [14] initiated the idea of interval valued fuzzy soft set (IVFS-set) and analyzed a decision mak-

ing method using the IVFS-sets. The notion of intuitionistic fuzzy set (IFS) was initiated by Atanassov 

as a significant generalization of fuzzy set. Intuitionistic fuzzy sets are very useful in situations when 

description of a problem by a linguistic variable, given in terms of a membership function only, seems 

too complicated. Recently intuitionistic fuzzy sets have been applied to many fields such as logic pro-

gramming, medical diagnosis, decision making problems etc. Smarandache [15] introduced the con-

cept of neutrosophic set which is a mathematical tool for handling problems involving imprecise, in-

determinacy and inconsistent data. Thao and Smaran [16] proposed the concept of divergence meas-

ure on neutrosophic sets with an application to medical problem. Song et al. [17] applied neutrosophic 

sets to ideals in BCK/BCI algebras. Some recent applications of neutrosophic sets can be found in [18], 

[19], [20], [21], [22], [23] and [24]. Maji [25] introduced the concept of neutrosophic soft set and estab-

lished some operations on these sets. Mukherjee et al [26] introduced the concept of interval valued 

neutrosophic soft sets and studied their basic properties. In 2013, Broumi and Smarandache [27, 28] 

combined the intuitionistic neutrosophic and soft set which lead to a new mathematical model called 

“intuitionistic neutrosophic soft set”. They studied the notions of intuitionistic neutrosophic soft set 

union, intuitionistic neutrosophic soft set intersection, complement of intuitionistic neutrosophic soft 

set and several other properties of intuitionistic neutrosophic soft set along with examples and proofs 

of certain results. Also, in [29] S. Broumi presented the concept of “generalized neutrosophic soft set” 

by combining the generalized neutrosophic sets and soft set models, studied some properties on it, 

and presented an application of generalized neutrosophic soft set in decision making problem. Recent-

ly, Deli [30] introduced the concept of interval valued neutrosophic soft set as a combination of inter-

val neutrosophic set and soft set. In 2014, S. Broumi et al. [31] initiated the concept of relations on in-

terval valued neutrosophic soft sets. 

      The soft sets mentioned above are based on complete information. However, incomplete infor-

mation widely exists in various real life problems. Soft sets under incomplete information become in-

complete soft sets. H. Qin et al [32] studied the data filling approach of incomplete soft sets. Y. Zou et 

al [33] investigated data analysis approaches of soft sets under incomplete information. In this paper 

first we have introduced the concept of a neutrosophic soft set with incomplete data supported by ex-

amples. Then we have introduced few new definitions to measure the consistent and inconsistent as-

sociation between the parameters. Lastly we have presented a data filling algorithm supported by an 

illustrative example to show the feasibility and validity of our algorithm. 

2. Preliminaries:

2.1 Definition:  [03] Let U  be a non empty set. Then a fuzzy set  τ  on U  is a set having the form

   ττ x, μ x :x U  where the function τμ :U [0, 1] is called the membership function and 

 τμ x represents the degree of membership of each element x U .  

2.2 Definition:  [04] Let U  be a non empty set. Then an intuitionistic fuzzy set (IFS for short) τ  is an

object having the form     τ ττ x, μ x , γ x : x U  where  the  functions

τ τμ :U [0, 1]  and  γ :U [0, 1]   are called membership function and non-membership function 

respectively. 

   τ τμ x  and  γ x represent the degree of membership and the degree of non-membership 

respectively of each element xU  and    τ τ0 μ x + γ x 1 for each  x U.   We denote the class of 

all intuitionistic fuzzy sets on U by IFSU. 
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2.3 Definition:  [01] Let U  be a universe set and E  be a set of parameters. Let  P U  denotes the

power set of  U  and  AE. Then the pair  F, A  is called a soft set over U , where  F  is a mapping

given by  F: A P U .

       In other words, the soft set is not a kind of set, but a parameterized family of subsets of U . For 

eA,  e UF   may be considered as the set of e-approximate elements of the soft set  F, A .

2.4 Definition:  [10] Let U  be a universe set, E  be a set of parameters and A E . Then the pair 

 F, A is called a fuzzy soft set over U , where F is a mapping given by UF: A FS .    

2.5 Definition:  [34] Let U  be a universe set, E  be a set of parameters and A E . Then the pair 

 F, A is called an intuitionistic fuzzy soft set over U , where F  is a mapping given by UF: A IFS . 

For e A ,  eF  is an intuitionistic fuzzy subset of  U  and is called the intuitionistic fuzzy value 

set of the parameter ‘e’. 

     Let us denote 
   eμ xF  by the membership degree that object  ‘x’ holds parameter ‘e’ and 

   eγ xF

by the membership degree that object  ‘x’ doesn’t hold parameter ‘e’ , where  eA and  xU . Then 

 eF can be written as  an intuitionistic fuzzy set such that            e ee = x, μ x , γ x : x UF FF  .

2.6 Definition:  [15] A neutrosophic set A  on the universe of discourse U  is defined as 

      , , ,A A AA x x x x x U     , where 0,1, , AA A U   
   are functions such that the

condition:      , 0 3A A Ax U x x x  
 

       is satisfied. 

Here      , ,A A Ax x x   represent the truth-membership, indeterminacy-membership and

falsity-membership  respectively of the element x U .  

     Smarandache [15] applied neutrosophic sets in many directions after giving examples of 

neutrosophic sets. Then he introduced the neutrosophic set operations namely-complement, union, 

intersection, difference, Cartesian product etc.  

2.7 Definition:  [21] Let U  be an initial universe, E  be a set of parameters and A E . Let  NP U

denotes the set of all neutrosophic sets of  U . Then the pair  ,f A is termed to be the neutrosophic 

soft set over U , where f  is a mapping given by  f A NP U  .

2.8 Example:  Let us consider a neutrosophic soft set  ,f A which describes the “attractiveness of the 

house”. Suppose { }1 2 3 4 5 6,, , , ,U u u u u u u= be the set of six houses under consideration and 

{ }1 2 3 4 5(beautiful), (expensive), (cheap), (good location), (wooden)e e e e eE = be the set of parameters. Then

a neutrosophic soft set  ,f A  over U can be given by:

U 1e 2e 3e 4e 5e

1u (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) 

2u (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) (0.1,0.1,0.3) 

3u (0.2,0.6,0.4) (0.5,0.5,0.5) (0.8,0.1,0.7) (0.5,0.3,0.5) (0.5,0.5,0.5) 

4u (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) 

Florentin Smarandache (author and editor) Collected Papers, XII

598



5u (0.1,0.1,0.7) (0.2,0.6,0.7) (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) 

6u (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.5) (0.4,0.4,0.4) 

3. Neutrosophic soft sets with incomplete (missing) data:

 Suppose that ( , )f E  is a neutrosophic soft set over U, such that ix U$ Î and je EÎ so that none 

of ( ) ( )( ), ( )i ij jf e f ex xgm  and )( ( )ijf e xd is known. In this case, in the tabular representation of the 

neutrosophic soft set ( , )f E , we write ( )( ) ( ) ( )( ), ( ), ( ) *i i ij j jf e f e f ex x xg dm = . Here we say that the data

for ( )jf e  is missing and the neutrosophic soft set ( , )f E  over U  has incomplete data. 

3.1 Example:  Suppose Tech Mahindra is recruiting some new Graduate Trainee for the session 2019-

2020 and suppose that eight candidates have applied for the job. Assume that { }1 2 3 8, , ,......,U u u u u=  

be the set of candidates and 

{ 1 2 3 4(communication skill), (domain knowledge), (experienced), (young),e e e eE =

}5 6(highest academic degree), (profess onal attitute)ie e be the set of parameters. Then a neutrosophic soft 

set over U  having missing data can be given by Table-1. 

Table-1 

U 1e 2e 3e 4e 5e 6e

1u (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) (0.2,0.5,0.5) 

2u (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) * (0.6,0.6,0.4) 

3u (0.2,0.6,0.4) (0.5,0.5,0.5) * (0.5,0.5,0.5) (0.5,0.5,0.5) (0.3,0.4,0.6) 

4u (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) (0.3,0.4,0.4) 

5u (0.1,0.1,0.7) * (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) (0.3,0.4,0.3) 

6u (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.6) (0.4,0.4,0.4) (0.3,0.6,0.6) 

7u (0.2,0.4,0.6) (0.4,0.4,0.5) (0.5,0.5,0.6) * (0.7,0.5,0.8) (0.4,0.4,0.5) 

8u (0.2,0.3,0.1) (0.6,0.6,0.1) (0.8,0.3,0.8) (0.4,0.3,0.4) (0.5,0.6,0.3) (0.9,0.3,0.3) 

         In case of soft set theory, there always exist some obvious or hidden associations between 

parameters. Let us focus on this to find the associations between the parameters of a neutrosophic soft 

set. 

       In example 2.8, one can easily find that if a house is expensive, the house is not cheap and vice 

versa. Thus there is an inconsistent association between the parameters ‘expensive’ and ‘cheap’. 

Generally, if a house is beautiful or situated in a good location, the house is expensive. Thus there is a 

consistent association between the parameters ‘beautiful’ and ‘expensive’ or the parameters ‘good 

location’ and ‘expensive’. 

       In example 3.1, we find that if a candidate is experienced or have highest academic degree, he/she 

is not young. Thus there is an inconsistent association between parameters ‘experienced’ and ‘young’ 

or between ‘highest academic degree’ and ‘young’. 

       The above two examples reveal the interior relations of parameters. In a neutrosophic soft set, 

these associations between parameters will be very useful for filling incomplete data. If it is found that 
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the parameters ie  and je  are associated and the data for ( )if e  is missing, then we can fill the

missing data according to the corresponding data in ( )jf e  . To measure these associations, let us

define the notion of association degree and some relevant concepts. 

      For the rest of the paper we shall assume that U be the universe set and E be the set of parameters. 

Let ijU  denotes the set of objects that have specified values in the form of an ordered triplet (a, b, c)

where a, b, c[0, 1] on both parameters ie  and je  such that

( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ): , , *, , , *
i i i j j jf e f e f e f e f e f ex UijU x x x x x xg gm d m d= Î ¹ ¹

ì üæ öï ïï ï÷ç ÷í ýç ÷çï ïè øï ïî þ

In other words ijU  is the collection of those objects that have known data both on ie  and je .

3.2 Definition:  Let , ji Ee e Î . Then the consistent association number between the parameters ie  and

je is denoted by CANij  and is defined  as:

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ): , ,
i i ij j jf e f e f ef e f e f e

CAN xij ijU x x x x x xgm m g d d
ì üï ïï ï= Î = = =í ýï ïï ïî þ

where .  

denotes the cardinality of a set. 

3.3 Definition:  Let , ji Ee e Î . Then the consistent association degree between the parameters ie  and

je is denoted by CADij and is defined as: 
ij

CANijCADij U
= where .  denotes the cardinality of a set. 

It can be easily verified that the value of CADij lies in [0, 1]. Actually CADij  measures the extent to

which the value of parameter ie  keeps consistent with that of parameter je  over ijU . Next we define

inconsistent association number and inconsistent association degree as follows: 

3.4 Definition:  Let , ji Ee e Î . Then the inconsistent association number between the parameters ie
and je  is denoted by ICANij  and is defined as

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ): or or
i i ij j jf e f e f ef e f e f e

ICAN xij ijU x x x x x xgm m g d d
ì üï ïï ï= Î ¹ ¹ ¹í ýï ïï ïî þ

 

where .  denotes the cardinality of a set. 

3.5 Definition:  Let , ji Ee e Î . Then the inconsistent association degree between the parameters ie

and je  is denoted by ICADij  and is defined as:
ij

ICANijICADij U
= where .  denotes the cardinality of 

a set. 

It can be easily verified that the value of ICADij lies in [0, 1]. Actually ICADij  measures the extent

to which the parameters ie  and je  is inconsistent.

3.6 Definition:  Let , ji Ee e Î . Then the association degree between the parameters ie  and je   is

denoted by ADij  and is defined by { }max ,AD CAD ICADij ij ij= .
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If CAD ICADij ij> , then AD CADij ij= , which means that most of the objects over ijU  have

consistent values on parameters ie  and je . If CAD ICADij ij< , then AD ICADij ij= , which means that

most of the objects over ijU  have inconsistent values on parameters ie  and je . Again if

CAD ICADij ij= , then it means that there is the lowest association degree between the parameters ie

and je .

3.7 Theorem:  For parameters ie  and je , 0.5ADij ³  for all i, j. 

Proof: Follows from the fact that 1CAD ICADij ij+ = . 

3.8 Definition: If i Ee Î , then the maximal association degree of parameter ie  is denoted by MADi
and is defined by max

j
MAD ADi ij= . 

4. DATA Filling Algorithm for a neutrosophic soft  set:

Step-1: Input the neutrosophic soft set ( , )f E  which has incomplete data. 

Step-2: Find all parameters ie  for which data is missing.

Step-3: Compute ADij  for j=1,2,3….,m (where ‘m’ is the number of parameters in E).

Step-4: Compute MADi .

Step-5:  Find out all parameters je  which have the maximal association degree MADi  with the

parameter ie .

Step-6: In case of consistent association between the parameter ie  and je ’s (j=1,2,3,….)

( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ), , , ,max max max
j j ji i i j j jf e f e f e f e f e f ex x x x x xg gm d m d=

æ ö÷ç ÷ç ÷çè ø
. In case of inconsistent 

association between the parameter ie  and je ’s (j=1,2,3,….) 

( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ), , max ,1 max ,1 max1
j j ji i i j j jf e f e f e f e f e f ex x x x x xg gm d m d= - -

æ ö÷ç ÷ç ÷çè ø
- . 

Step-7: If all the missing data are filled then stop else go to step-2. 

 An Illustrative example: Consider the neutrosophic soft set given in example 3.1.

Step-1: 

U 1e 2e 3e 4e 5e 6e

1u (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) (0.2,0.5,0.5) 

2u (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) * (0.6,0.6,0.4) 

3u (0.2,0.6,0.4) (0.5,0.5,0.5) * (0.5,0.5,0.5) (0.5,0.5,0.5) (0.3,0.4,0.6) 

4u (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) (0.3,0.4,0.4) 

5u (0.1,0.1,0.7) * (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) (0.3,0.4,0.3) 

6u (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.6) (0.4,0.4,0.4) (0.3,0.6,0.6) 

7u (0.2,0.4,0.6) (0.4,0.4,0.5) (0.5,0.5,0.6) * (0.7,0.5,0.8) (0.4,0.4,0.5) 

8u (0.2,0.3,0.1) (0.6,0.6,0.1) (0.8,0.3,0.8) (0.4,0.3,0.4) (0.5,0.6,0.3) (0.9,0.3,0.3) 
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Step-2: Clearly there are missing data in ( ) ( ) ( ) ( )52 3 4, , ,f e f e f e f e . We shall fill these missing data.

Step-3: 

(a) For the parameter 2e .

{ } { } { }
{ } { }

7 71 2 3 4 6 8 1 2 4 6 8 1 2 3 4 6 8

7 71 3 4 6 8 1 2 3 4 6 8

, , ,21 23 24
, .25 26

, , , , , , , , , , , , , , , ,
, , , , , , , , , , ,
u u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u
U U U

U U
= = =

= =

\

     Now { } 021CAN = = and so 021CAD = . Again { }71 2 3 4 6 8 721 , , , , , ,ICAN u u u u u u u= = and so 

21

721 121 7
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.21 21 21AD CAD ICAD= = =

{ } 023CAN = = and so 023CAD = . Again { }71 2 4 6 8 623 , , , , ,ICAN u u u u u u= = and so 

23

623 123 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.23 23 23AD CAD ICAD= = =  

{ }3 6 224 ,CAN u u= = and so 
2 0.3324 6

CAD = = . Again { }1 2 4 8 424 , , ,ICAN u u u u= =
 
and so 

24

424 0.6624 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.24 24 24AD CAD ICAD= = =  

{ }3 1 225 ,CAN u u= = and so 
2 0.3325 6

CAD = = . Again { }74 6 8 425 , , ,ICAN u u u u= = and so 

24

424 0.6625 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.25 25 25AD CAD ICAD= = =

{ }4 126CAN u= = and so 
1 0.1426 7

CAD = = . Again { }71 2 3 6 8 626 , , , , ,ICAN u u u u u u= = and so 

26

626 0.8526 7
ICAN

ICAD
U

= = = . Hence { }max , max{0.14,0.85} 0.85.26 26 26AD CAD ICAD= = =

Thus { }max max , , , , max{1,1,0.66,0.66,0.85} 1.2 2 21 23 24 25 26j
MAD AD AD AD AD AD ADj= = = = . 

(b) For the parameter 3e .

{ } { } { }
{ } { }

7 7 51 2 4 6 8 1 2 4 6 8 1 2 4 6 8

5 7 5 71 4 6 8 1 2 4 6 8

, , ,31 32 34
, , , .35 36

, , , , , , , , , , , , , , ,
, , , , , , , , ,
u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u
U U U

U U
= = =

= =

\

     Now { }2 4, 231CAN u u= = and so 
2 0.3331 6

CAD = = . Again { }71 6 8 431 , , ,ICAN u u u u= = and so 

31

431 0.6631 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.31 31 31AD CAD ICAD= = =  

{ } 032CAN = = and so 032CAD = . Again { }71 2 4 6 8 632 , , , , ,ICAN u u u u u u= = and so 

32

632 132 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.32 32 32AD CAD ICAD= = =  

{ } 034CAN = = and so 034CAD = . Again { }51 2 4 6 8 634 , , , , ,ICAN u u u u u u= = and so 

34

434 0.6634 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,0.66} 0.66.34 34 34AD CAD ICAD= = =  
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{ } 035CAN = = and so 035CAD = . Again { }5 71 4 6 8, 635 , , , ,ICAN u u u u u u= = and so

35

635 135 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.35 35 35AD CAD ICAD= = =  

{ }4 136CAN u= = and so 
1 0.1436 7

CAD = = . Again { }5 71 2 6 8, 636 , , , ,ICAN u u u u u u= = and so 

36

636 0.8536 7
ICAN

ICAD
U

= = = . Hence { }max , max{0.14,0.85} 0.85.36 36 36AD CAD ICAD= = =  

Thus { }max max , , , , max{0.66,1,0.66,1,0.85} 1.3 3 31 32 34 35 36j
MAD AD AD AD AD AD ADj= = = =

(c) For the parameter 4e .

{ } { } { }
{ } { }

3 3

3 3

5 51 2 4 6 8 1 2 4 6 8 1 2 4 6 8

5 51 4 6 8 1 2 4 6 8

, , , ,41 42 43
, , , , , .45 46

, , , , , , , , , , , , , , ,
, , , , , , ,
u u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u
U U U

U U
= = =

= =

\

Now { } 041CAN = =
 
and so 041CAD = . Again { }3 51 2 4 6 8, 741 , , , , ,ICAN u u u u u u u= = and so 

41

741 141 7
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.41 41 41AD CAD ICAD= = =

{ }3 6, 242CAN u u= = and so 
2 0.3342 6

CAD = = . Again { }1 2 4 8 442 , , ,ICAN u u u u= = and so 

42

442 0.6642 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.42 42 42AD CAD ICAD= = =  

{ } 043CAN = = and so 043CAD = . Again { }51 2 4 6 8 643 , , , , ,ICAN u u u u u u= = and so 

43

643 143 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.43 43 43AD CAD ICAD= = =  

{ }3 145CAN u= = and so 
1 0.1645 6

CAD = = . Again { }51 4 6 8, 545 , , ,ICAN u u u u u= = and so 

45

545 0.8345 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.16,0.83} 0.83.45 45 35AD CAD ICAD= = =  

{ }6 146CAN u= = and so 
1 0.1446 7

CAD = = . Again { }3 51 2 4 8, 646 , , , ,ICAN u u u u u u= = and so 

46

646 0.8546 7
ICAN

ICAD
U

= = = . Hence { }max , max{0.14,0.85} 0.85.46 46 46AD CAD ICAD= = =

Thus { }max max , , , , max{1,0.66,1,0.83,0.85} 1.4 4 41 42 43 45 46j
MAD AD AD AD AD AD ADj= = = =

(d) For the parameter 5e .

{ } { } { }
{ } { }

5 5

5 5

7 7 71 3 4 6 8 1 3 4 6 8 1 4 6 8

71 3 4 6 8 1 3 4 6 8

, , ,51 52 53
, .54 56

, , , , , , , , , , , , , , , ,
, , , , , , , , , , ,
u u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u
U U U

U U
= = =

= =

\

Now { } 051CAN = = and so 051CAD = . Again { }5 71 3 4 6 8 751 , , , , , ,ICAN u u u u u u u= = and so 

51

751 151 7
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.51 51 51AD CAD ICAD= = =  
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{ }1 3, 252CAN u u= = and so 
2 0.3352 6

CAD = = . Again { }74 6 8 452 , , ,ICAN u u u u= =
 
and so 

52

452 0.6652 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.52 52 52AD CAD ICAD= = =  

{ } 053CAN = = and so 053CAD = . Again { }5 71 4 6 8 653 , , , , ,ICAN u u u u u u= = and so 

53

653 153 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.53 53 53AD CAD ICAD= = =  

{ }3 154CAN u= = and so 
1 0.1654 6

CAD = = . Again { }51 4 6 8 554 , , , ,ICAN u u u u u= = and so 

54

554 0.8354 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.16,0.83} 0.83.54 54 54AD CAD ICAD= = =  

{ } 056CAN = = and so 056CAD = . Again { }5 71 3 4 6 8 756 , , , , , ,ICAN u u u u u u u= = and so 

56

756 156 7
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.56 56 56AD CAD ICAD= = =  

Thus { }max max , , , , max{1,0.66,1,0.83,1} 1.5 5 51 52 53 54 56j
MAD AD AD AD AD AD ADj= = = =

The association degree table for the neutrosophic soft set ( , )f E  is given below: 

1e 2e 3e 4e 5e 6e

2e 1 _ 1 0.66 0.66 0.85 

3e 0.66 1 _ 0.66 1 0.85 

4e 1 0.66 1 _ 0.83 0.85 

5e 1 0.66 1 0.83 _ 1 

Step-4: From step-3, we have, 1, 1, 1, 152 3 4MAD MAD MAD MAD= = = = .

Step-5: The parameters 1e and 3e have the maximal association degree 21AD and 23AD

respectively with the parameter 2e . 

The parameters 2e and 5e have the maximal association degree 32AD   and 35AD  respectively with 

the parameter 3e . 

The parameters 1e and 3e  have the maximal association degree 41AD   and 43AD  respectively with 

the parameter 4e . 

The parameters ,1 3e e  and 6e have the maximal association degree 51AD , 53AD and 56AD respectively 

with the parameter 5e .

Step-6: There is a consistent association between the parameters 2e and 1e , 2e and 3e , 5e and 1e , 

3e and 5e ; while there is an inconsistent association between the parameters 4e and 1e , 4e and 

3e .So we have,
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( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

( ) ( ) ( )( )

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

5 5 5

5 5 5 5 5 5

3 3 3

3 3 3 3 3 3

2 2 2

1 1 13 3 3

3 3 3

5 5 52 2 2

, ,

, , , , ,

0.1, 0.4 , 0.1, 0.2 , 0.7, 0.1 (0.4, 0.2, 0.7),

, ,

, , , , ,

0.5, 0.

max max max

max max max

max max max

max

f e f e f e

f e f e f ef e f e f e

f e f e f e

f e f e f ef e f e f e

u u u

u u u u u u

u u u

u u u u u u

g

g

g

g

m d

m m g d d

m d

m m g d d

=

= =

=

= ( ) ( ) ( )( )5 , 0.5, 0.5 , 0.5, 0.5 (0.5, 0.5, 0.5),max max =

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

( ) ( ) ( )( )

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

7 7 7

7 7 7 7 7 7

2 2 2

2 2 2 2 2 2

4 4 4

1 1 13 3 3

5 5 5

1 1 13 3 3

, ,

, , 1 , ,1 ,

0.2, 0.5 , 0.4, 0.5 , 0.6, 0.6 (0.5, 0.5, 0.6),

, ,

, , , , ,

1 max max max

max max max

max max max

max

f e f e f e

f e f e f ef e f e f e

f e f e f e

f e f e f ef e f e f e

u u u

u u u u u u

u u u

u u u u u u

g

g

g

g

m d

m m g d d

m d

m m g d d

= - -

= =

=

=

-

( ) ( ) ( )( )0.4, 0.4 , 0.1, 0.1 , 0.7, 0.7 (0.4, 0.1, 0.7).max max =

Thus we have the following table which gives the tabular representation of the filled neutrosophic soft 

set: 

U 1e 2e 3e 4e 5e 6e

1u (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) (0.2,0.5,0.5) 

2u (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) (0.4,0.1,0.7) (0.6,0.6,0.4) 

3u (0.2,0.6,0.4) (0.5,0.5,0.5) (0.5,0.5,0.5) (0.5,0.5,0.5) (0.5,0.5,0.5) (0.3,0.4,0.6) 

4u (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) (0.3,0.4,0.4) 

5u (0.1,0.1,0.7) (0.4,0.2,0.7) (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) (0.3,0.4,0.3) 

6u (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.6) (0.4,0.4,0.4) (0.3,0.6,0.6) 

7u (0.2,0.4,0.6) (0.4,0.4,0.5) (0.5,0.5,0.6) (0.5,0.5,0.6) (0.7,0.5,0.8) (0.4,0.4,0.5) 

8u (0.2,0.3,0.1) (0.6,0.6,0.1) (0.8,0.3,0.8) (0.4,0.3,0.4) (0.5,0.6,0.3) (0.9,0.3,0.3) 

Conclusion: Incomplete information or missing data in a neutrosophic soft set restricts the usage of 

the neutrosophic soft set. To make the neutrosophic soft set (with missing / incomplete data) more 

useful, in this paper, we have proposed a data filling approach, where missing data is filled in terms of 

the association degree between the parameters. We have validated the proposed algorithm by an ex-

ample and drawn the conclusion that relation between parameters can be applied to fill the missing 

data. 
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On Optimizing Neutrosophic Complex 
Programming Using Lexicographic Order 

Hamiden Abd El- Wahed Khalifa, Pavan Kumar, Florentin Smarandache

Abstract:  Neutrosophic sets are considered as a generalization of the crisp set, fuzzy set, and 

intuitionistic fuzzy set for representing the uncertainty, inconsistency, and incomplete knowledge about 

the real world problems. This paper aims to characterize the solution of complex programming (CP) problem 

with imprecise data instead of its prices information. The neutrosophic complex programming (NCP) problem 

is considered by incorporating single valued trapezoidal neutrosophic numbers in all the parameters of 

objective function and constraints. The score function corresponding to the neutrosophic number is used to 

transform the problem into the corresponding crisp CP. Here, lexicographic order is applied for the 

comparison between any two complex numbers. The comparison is developed between the real and imaginary 

parts separately. Through this manner, the CP problem is divided into two real sub-problems. In the last, 

a numerical example is solved for the illustration that shows the applicability of the proposed approach. 

The advantage of this approach is more flexible and makes a real-world situation more realistic.  

Keywords: Complex programming; Neutrosophic numbers; Score function; Lexicographic 

order; Lingo software; Kuhn- Tucker conditions; Neutrosophic optimal solution.  

1. Introduction

In many earlier works in complex programming, the researchers considered the real part only

of the complex objective function as the objective function. The constraints of the problem 

considered as a cone in complex space  Since the concept of complex fuzzy numbers was first 
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introduced [17], many researchers studied the problems of the concept of fuzzy complex numbers. 

This branch subject will be widely applied in fuzzy system theory, especially in fuzzy mathematical 

programming, and also in complex programming too.  

     Complex programming problem was studied first by Levinson who studied the linear 

programming (LP) in complex space [39]. The duality theorem was extended to the quadratic 

complex programming by an adaption of the technique which was introduced by Dorn [27, 22]. The 

linear fractional programming in complex space was proposed [45]. Linear and nonlinear complex 

programming problems were treated by numerous authors [24, 33- 37, 41]. In applications, many 

practical problems related to complex variables, for instance, electrical engineering, filter theory, 

statistical signal processing, etc., were studied. 

     Some more general minimax fractional programming problem with complex variables was 

proposed with the establishment of the necessary and sufficient optimality conditions [36, 37]. A 

certain kind of linear programming with fuzzy complex numbers in the objective function 

coefficients also considered as complex fuzzy numbers [52]. The hyper complex neutrosophic 

similarity measure was proposed by numerous authors [29]. Also, they discussed its application in 

multicriteria decision making problem. There was proposed an interval neutrosophic multiple 

attribute decision-making method with credibility information [50]. Later, the multiple attribute 

group decision making based on interval neutrosophic uncertain linguistic variables was studied 

[51]. 

    An extended TOPSIS for multi-attribute decision making problems with neutrosophic cubic 

information was proposed [42]. A single valued neutrosophic hesitant fuzzy computational 

algorithm was developed for multiple objective nonlinear optimization problem [9]. A 

computational algorithm was developed for the neutrosophic optimization model with an 

application to determine the optimal shale gas water management under uncertainty [10]. The 

interval complex neutrosophic set was studied by the formulation and applications in 

decision-making [11]. A group decision-making method was proposed under hesitant interval 

neutrosophic uncertain linguistic environment [40]. The neutrosophic complex topological spaces 

was studied, and introduced the concept of neutrosophic complex αѱ connectedness in 

neutrosophic complex topological spaces [30].  

    A computational algorithm based on the single-valued neutrosophic hesitant fuzzy was 

developed for multiple objective nonlinear optimization problems [9]. A neutrosophic optimization 

model was formulated and presented a computational algorithm for optimal shale gas water 

management under uncertainty [10]. A multiple objective programming approach was proposed to 

solve integer valued neutrosophic shortest path problems [32].  

Some linguistic approaches were developed to study the interval complex neutrosophic sets in 

decision making applications [39].  

    Neutrosophic sets were studied to search some applications in the area of transportations and 

logistics. A multi-objective transportation model was studied under neutrosophic environment [43]. 

The multi-criteria decision making based on generalized prioritized aggregation operators was 
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presented under simplified neutrosophic uncertain linguistic environment [46]. Some dynamic 

interval valued neutrosophic set were proposed by modeling decision making in dynamic 

environments [48]. A hybrid plithogenic decision-making approach was proposed with quality 

function deployment for selecting supply chain sustainability metrics [1]. Some applications of 

neutrosophic theory were studied to solve transition difficulties of IT-based enterprises [2]. 

    Based on plithogenic sets, a novel model for the evaluation of hospital medical care systems 

was presented [3]. Some decision making applications of soft computing and IoT were proposed for 

a novel intelligent medical decision support model [4]. A novel neutrosophic approach was applied 

to evaluate the green supply chain management practices [5]. Numerous researchers studied the 

under type-2 neutrosophic numbers. An application of under type-2 neutrosophic number was 

presented for developing supplier selection with group decision making by using TOPSIS [6]. An 

application of hybrid neutrosophic multiple criteria group decision making approach for project 

selection was presented [7]. The Resource levelling problem was studied in construction projects 

under neutrosophic environment [8].  

    The N-valued interval neutrosophic sets with their applications in the field of medical diagnosis 

was presented [16]. Based on the pentagonal neutrosophic numbers, the de-neutrosophication 

technique was proposed with some applications in determining the minimal spanning tree [18]. The 

pentagonal fuzzy numbers were studied with their different representations, properties, ranking, 

defuzzification. The concept of pentagonal fuzzy neutrosophic numbers was proposed with some 

applications in game and transportation models [19- 20]. Various forms of linear as well as 

non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques were 

studied. Their application were also presented in time cost optimization technique and sequencing 

problems [21]. The parametric divergence measure of neutrosophic sets was studied with its 

application in decision-making situations [25]. A technique for reducing dimensionality of data in 

decision-making utilizing neutrosophic soft matrices was proposed [26]. 

    In this paper, we aim to characterize the solution of complex programming (NCP) neutrosophic 

numbers. The score function corresponding to the neutrosophic number is used to convert the 

problem into the corresponding crisp CP, and hence lexicographic order used for comparing 

between any two complex numbers. The comparison developed between the real and imaginary 

parts separately. Through this manner, the CP problem is divided into two real sub-problems. 

    The outlay of the paper is organized as follows: In section 2; some preliminaries are presented. In 

section 3, a NCP problem is formulated. Section 4 characterizes a solution to the NCP problem to 

obtain neutrosophic optimal solution. In section 5, two numerical examples are given for illustration. 

Finally some concluding remarks are reported in section 6.  
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2. Preliminaries

In order to discuss our problem conveniently, basic concepts and results related to fuzzy

numbers, trapezoidal fuzzy numbers, intuitionistic trapezoidal fuzzy numbers, neutrosophic set, 

and complex mathematical programming are recalled. 

Definition 1. (Trapezoidal fuzzy numbers, Kaur and Kumar [31]). 

A fuzzy number . is a trapezoidal fuzzy numbers where  and its 

membership function is defined as 

Definition 2. (Intuitionistic fuzzy set, Atanassov, [12]). 

A fuzzy set is said to be an intuitionistic fuzzy set of a non empty set if 

, where , and are membership and nonmembership 

functions such that  ,  and , for all 

Definition 3. (Intuitionistic fuzzy number, Atanassov, [13]). 

An intuitionistic fuzzy set of a is called an Intuitionistic fuzzy number if the following 

conditions hold: 

1. There exists , and 

2.  is continuous function such that 

, for all 

3. The membership and non-membership functions of  are 
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Where ,   and  are strictly increasing functions,  and  are strictly decreasing 

functions with the conditions , and . 

Definition 4. (Trapezoidal intuitionistic fuzzy number, Jianqiang and Zhong, [28]). 

A trapezoidal intuitionistic fuzzy number is denoted by , where 

 with membership and non-membership functions are defined as: 

Definition 5 (Neutrosophic set, Smarandache, [44]). 

A neutrosophic set  of non-empty set  is defined as 

, 
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where and  are truth membership function, an indeterminacy- membership 

function, and a falsity- membership function and there is no restriction on the sum of 

and  , so  , and  is a 

nonstandard unit interval.  

Definition 6. (Single-valued neutrosophic set, Wang et al., [49]). 

A Single-valued neutrosophic set of a non empty set is defined as: 

, 

where and for each and 

Definition 7. (Single-valued neutrosophic number, Thamariselvi and Santhi, [47]). 

 Let  and  such that . Then a single valued 

trapezoidal neutrosophic number,  is a special neutrosophic set on 

, whose truth-membership, indeterminacy-membership, and falsity-membership functions are 
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Where and  denote the maximum truth, minimum-indeterminacy, and minimum falsity 

membership degrees, respectively. A single-valued trapezoidal neutrosophic number 

 may express in ill-defined quantity about , which is 

approximately equal to . 

Definition 8. 

Let , and   be two single-

valued trapezoidal neutrosophic numbers and . The arithematic operations on , and 

are 

1.  , 

2.

3.

4.

5.

6.
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Definition 9 (Score function of single-valued trapezoidal neutrosophic number, Thamaraiselvi 

and Santhi [47]). 

 A two single-valued trapezoidal neutrosophic numbers  and  can be compared based on the score function 

as 

Score function 

Definition 10.  (Thamaraiselvi and  Santhi, [47]). 

The order relations between  and  based on  are defined as 

1. If , then 

2. If , then 

3. If , then , 

3. Problem definition and solution concepts

      Consider the following single -valued trapezoidal neutrosophic (NCP) problem 

    (NCP)     

Subject to  (1) 

Where, 

 are convex functions on . 

All of are 

single-valued trapezoidal neutrosophic numbers. 

Definition 11.  

Lexicographic order of two complex numbers and is defined as 

 and 
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Definition 12.  

A neutrosophic feasible point  is called single-valued trapezoidal neutrosophic optimal solution 

to NCP problem if  

, and  for each . 

According to the score function in Definition 9, the NCP problem is converted into the following 

crisp CP problem as 

    (CP)      

Subject to          (2) 

4. Characterization of neutrosophic optimal solution for NCP problem

To characterize the neutrosophic optimal solution of NCP problem, let us divide the CP

problem into the following two sub-problems 

Subject to           (3) 

, and 

 Subject to (4) 

Definition 13. 

  is said to be an optimal solution for  if and only if , and 

for each 

Let us denote  and  be the set of solution for  and , respectively, i.e., 

, and  (5) 

(6)
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Lemma 1. For  the solution of CP problem is embedded into 

Proof. Assume that  be a solution of CP, this leads to  (i.e., . 

Similarly,   (i. e., . Then, 

In this paper, we focus on the case 

Lemma 2. If vS and wS are open, v wS S ,  and  v,  w are strictly convex functions on X then 

ˇ

vSx is a solution of a conjugate function      F x v x i w x .   

Proof.  Since vSx  , then    v v xx  for all x X . Also, 

   *v v xx  for all
*

vx S X    (7) 

But 
*

wx S which means that    
ˇ

*w x v ,  for all x vx S X   and    *–    i w x i w x 

i. e.,

   *–    i w x i w x    (8) 

From (7) and (8), we get 

       * *v –   v x  x i w x i w x  ,for all
*

wx S , (.i.e., vSx  )is a solution of a conjugate

function      F x v x i w x  . Now we will prove that there is no ˆ Xx  and vˆ Sx  such that 

           ˆF v i w  ˆ ˆ F v i wx x x x xx        (9) 

There are two cases:  

Case 1:  Assume that x  X vˆ S ,x 
´

vSx and        ˆ ˆv i w v i wx x x x   i.e., 

   ˆw w  x x

Since the function  w x is strictly convex and wS is open, then

        ˆ ˆw τ    1 τ     1 τ w ,  0 1x x w x x        . This leads to 

        ˆ ˆ ˆw τ    1 τ     1 τ wx x w x x     i. e., 

For certain τ such that   wτ  1ˆ τ Sx x   , we obtain 
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    ˆ ˆw τ  1 τ  x x w x   , 

which contradicts to wˆ Sx  i.e., there is no v wˆ ˆX,  S Sˆ ,  xx x   such that 

           ˆ ˆ ˆF v i w  F v i wx x x x x x    

Case 2:  Assume that , ,ˆ ˆ ˆ v wX S Sx x x   and        ˆ ˆv i w v i wx x x x   i.e., 

   ˆv  vx x and    ˆ w  wx x . 

Since the function  v x is strictly convex and vS is open, then, 

        ˆ ˆv τ x   1 τ     1 τ v ,  0 1x v x x        . This leads to 

       ˆ ˆv τ    1 τ   1 τ v ,  x x v x x    i.e., for certain , we have

  1 ˆ vx x S    , such that   1 ˆ vx x S    , we have

    v τ  1 τ ˆ v  x x x   ,  

which contradicts vx S . Thus, there is no x̂ X such that

       v i w  v wˆ i ˆ xx xx   

5. Numerical examples

Example1. (Illustration of Lemma 1) 

Consider the following complex problem 

       Subject to (10) 

. 

Problem (10) is divided into the following two problems as: 

Subject to (11) 

 and 
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Subject to 

   (12) 

The optimal solutions of problem (11) and (12) are x   (i. e.,  vS  ), and  0,x  , 

(i. e.,  0, wS  ), respectively. Thus, the optimal solution of problem (10) is v wS S .x   

Example2. (Illustration of Lemma 2) 

  Consider the following NCP problem: 

Subject to (13) 

. 

Where, 

Using the score function of the single- valued trapezoidal neutrosophic number introduced in 

Definition 9, the above problem become: 

     1 2 1 2Min   F x 3x x i 5x 11x   

Subject to   (14) 

 . 

According to Lexicographic order, the problem is divided into the following two sub-problems as: 
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Subject to       (15) 

  and 

Subject to     (16) 

By applying the Kuhn-Tucker optimality conditions [14, 22], the optimal solutions of problems (15), 

and (16) are illustrated as in the following Tables 1 -2. 

Table 1. The set of solution of 

Optimum value 
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Table 2. The set of solution of 

Optimum value 

Therefore,    and  is not a solution of the conjugate function  , because of 

 and  are not strictly convex functions. 

6. Concluding Remarks

In this paper, the solution of complex programming (NCP) with single valued trapezoidal

neutrosophic numbers in all the parameters of objective function and constraints has been 

characterized. Through the use of the score function, the NCP has converted into the corresponding 

crisp CP problem and hence Lexicographic order has been used for comparing between any two 

complex numbers. The comparison was developed between the real and imaginary parts 

separately. Through this manner, the CP problem has divided into two real sub-problems. The 

main contribution of this approach is more flexible and makes a situation realistic to real world 

application. The obtained results are more significant to enhance the applicability of single-valued 

trapezoidal neutrosophic number in various new fields of decision-making situations. The future 

research scope is to apply the proposed approach to more complex and new applications. Another 

possibility is to work on the interval type complex neutrosophic sets for the applications in 

forecasting field. 
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Analyzing Age Group and Time of the Day Using 
Interval Valued Neutrosophic Sets  

S. Broumi, M.Lathamaheswari, A. Bakali, M. Talea, F. Smarandache, D. Nagarajan,
Kavikumar, Guennoun Asmae

Abstract: Human psychological behavior is always uncertain in nature with the truth, 

indeterminacy and falsity of the information and hence neutrosophic logic is able to deal with this 

kind of real world problems as it resembles human’s attitude very closely. In this paper, age group 

analysis and time (day or night) analysis have been carried out using interval valued neutrosophic 

sets. Further, the impact of the present work is presented.   

Keywords: Neutrosophic Logic; Human Psychological Behavior; Age Group; Day; Interval Valued 

Neutrosophic Set.   

1. Introduction

Uncertainty saturates our daily lives and period the entire range from index fluctuations of 

stock market to prediction of weather and car parking in a congested area to traffic control 

management. Hence almost all the area contains ambiguity or impression. For various real world 

problems, intelligent models with many types of mathematical designs of different logics have been 

modeled by the researchers.  In the area of computational intelligence, fuzzy logic is one of the 

superior logic that provides appropriate representation of real world information and permits 

reasoning that are almost accurate in nature [1].  

Generally the inputs conquered by the fuzzy logic are determinate and complete. Humans 

can able to take knowledgeable decisions in those situations, however it is difficult to express in 

proper terms. But fuzzy models need complete information.  Due to basic non-linearity, huge 

erratic substantial disturbances, time varying nature, difficulties to find precise and predictable 

measurements, incompleteness and indeterminacy may arise in the data. All these problems can be 

dealt by neutrosophic logic proposed by Smarandache in the year 1999 [2-10].  Also this logic can 

able to represent mathematical structure of uncertainty, ambiguity, vagueness, imprecision, 

inconsistency, incompleteness and contradiction.  

Also it is efficient in characterizing various attributes of data such as incompleteness and 

inaccuracy and hence gives proper estimation about the authenticity of the information. This 

approach proposes extending the proficiencies of representation of fuzzy logic and system of 

S. Broumi, M. Lathamaheswari, A. Bakali, M. Talea, F. Smarandache, D. Nagarajan, Kavikumar, 
Guennoun Asmae (2020). Analyzing Age Group and Time of the Day Using Interval Valued. 
Neutrosophic Sets and Systems 32, 361-371
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reasoning by introducing neutrosophic representation of the information and system of 

neutrosophic reasoning.  Neutrosophic logic can exhibit various logical behaviors according to the 

nature of the problem to be solved and hence it influences its chance to be utilized and experimented 

for real world performance and simulations in human psychology [15]. 

Due to computational complexity of the neutrosophic sets, single valued neutrosophic sets 

have been introduced. It can deal with only exact numerical value of the three components truth, 

indeterminacy and falsity. While the data in the form of interval, then single valued neutrosophic 

sets unable to scope up and hence interval valued neutrosophic sets have been introduced. As it has 

lower and upper membership functions it can deal more uncertainty with less computational 

complexity than other types [25]. Neutrosophic set has been used in several areas like traffic control 

management, solving minimum spanning tree problem, analyzing failure modes and effect analysis, 

blockchain technology, resource leveling problem, medical diagnostic system, evaluating time-cost 

tradeoffs, analysis of criminal behavior, petal analysis, decision making problem etc. [26-40].   

The major advantage of neutrosophic set and its types namely single valued neutrosophic sets 

and interval valued neutrosophic sets overrule other sets namely conventional set, fuzzy set, type-2 

fuzzy, intuitionistic fuzzy and type-2 intuinistic fuzzy by their capability of dealing with 

indeterminacy which is missing with other types of sets. Since there is a possibility of having interval 

number than the exact number we consider interval valued neutrosophic set in this study of 

analyzing age group and time. Prediction of future trend is one of the interesting areas in the 

research field.  Hence, in this paper, age group analysis and time (day or night) analysis have been 

done using interval valued neutrosophic sets. The remaining part of the paper is organized as 

follows. In section 2, review of literature is given. In section 3, preliminaries are given for better 

understanding of the paper. In section 4, age group and day and night time have been analyzed 

using the concept of interval valued neutrosophic sets. In section 5, impact of the present work is 

given. In section 6, concluded the present work with the future direction.  

2. Review of Literature

The author in, [1] analyzed uncertainty exists in the project schedule using fuzzy logic. And the 

authors of, [2] analyzed power flow using fuzzy logic. [3] Examined specific seasonal prediction 

spatially under fuzzy environment for the group of long-term daily rainfall and temperature data 

spatiotemporally. [4] examined about the prediction of temperature flow of the atmosphere based on 

fuzzy knowledge–rule base for interior cities in India. [5] proposed a novel approach for 

intuitionistic fuzzy sets and its applications in the prediction area.  

[6] proposed single-valued neutrosophic minimum spanning tree and its aggregation method.

[7] proposed a new approach for the advisory of weather using fuzzy logic. [8] Proposed a method

for prediction of weather under fuzzy neural network environment and Hierarchy particle swarm 

optimization algorithm. [9] Proposed various types of neutrosophic graphs and algebraic model and 

applied in the field of technology. [10] proposed single valued neutrosophic graphs (SVNGs).  

Florentin Smarandache (author and editor) Collected Papers, XII

628



[11] examined bipolar single valued neutrosophic graphs. [12] Proposed interval valued

neutrosophic graphs. [13] proposed isolated SVNGs. [14] provided an introduction to the theory 

bipolar SVNG. [15] proposed the degree, size and order of SVNGs. 16] applied Dijkstra algorithm to 

solve shortest path problem under IVN environment. [17] solved minimum spanning tree problem 

under trapezoidal fuzzy neutrosophic environment. 

[18] applied minimum spanning tree algorithm for shortest path (SP) problem using bipolar

neutrosophic numbers. [19] proposed a novel matrix algorithm for solving MST for undirected 

interval value NG. [20] solved a spanning tree problem with neutrosophic edge weights. [21] 

proposed a new algorithm to solve MST problem with undirected NGs. [22] analyzed the role of 

SVNSs and rough sets with imperfect and incomplete information systems. 

[23] Studied about neutrosophic set and its development . [24] studied about the prediction of

long-term weather elements using adaptive neuro-fuzzy system using GIS approach in Jordan. [25] 

have done overview of neutrosophic sets. [26] proposed a methodology of traffic control 

management using triangular interval type-2 fuzzy sets and interval neutrosophic sets.  [27] Solved 

MST problem using single valued trapezoidal neutrosophic numbers.  

[28] estimated risk priority number in design failure modes and effect analysis using factor

analysis. [29] have done edge detection on DICOM image using type-2 fuzzy logic. [30] made a 

review on the applications of type-2 fuzzy in the field of biomedicine. [31] have done image 

extraction on DICOM image usingtype-2 fuzzy. [32] made a review on application of type-2 fuzzy in 

control system. [33] proposed single and interval valued neutrosophic graphs using blockchain 

technology. [34] introduced interval valued neutrosophic graphs using Dombi triangular norms. [35] 

solved resource leveling problem under neutrosophic environment.  

[36] introduced cosine similarity measures of bipolar neutrosophic sets and applied in

diagnosis of disorder diseases. [37] introduced a methodology for petal analysis using neutrosophic 

cognitive maps. [38] analyzed criminal behavior using neutrosophic model. [39] presented 

assessments of linear time-cost tradeoffs using neutrosophic sets. [40] solved sustainable supply 

chain risk management problem using plithogenic TOPSIS-CRITIC methodology.  In view of the 

literature, prediction of age group and day or night time under interval neutrosophic set are yet to be 

studied and which is the reason of the present study.  

3. Preliminaries

In this section, preliminaries of the proposed concept are given

3. 1. Neutrosophic Set (NS) [25]

 Consider the space X consists of universal elements characterized by e . The NS A is a 

phenomenon which has the structure        , , /A A AA T e I e F e e X  where the three grades of
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memberships are from X to ]−0,1+[of the element e X to the set A, with the criterion:

     0 3A A AT e I e F e     (1) 

The functions ( )AT e , ( )AI e and ( )AF e are the truth, indeterminate and falsity grades lies in real 

standard/non-standard subsets of ] −0, 1+ [. 

Since there is a complication of applying NSs to real issues, Samarandache and Wang et al. [11-12] 

proposed the notion of SVNS, which is a specimen of NS and it is useful for realistic applications of 

all the fields. 

3.2. Single Valued Neutrosophic Set (SVNS) [25] 

 For the space X of objects contains global elements e . A SVNS is represented by degrees of

bership grades mentioned in Def. 2.8. For all e  in X, ( )AT e , ( ),AI e  ( )AF e [0, 1]. A SVNS can be 

written as 

      : , , /A A AA e T e I e F e e X  (2) 

3.3. Interval Valued Neutrosophic Set [12] 

 Let X be a space of objects with generic elements in X denoted by e . An interval valued 

neutrosophic set (IVNS) A in X is characterized by truth-membership function, ( )AT e , 

indeterminacy-membership function ( )AI e  and falsity membership function ( )AF e . For each 

point e  in X , ( )AT e  , ( )AI e ,  ( ) 0,1 ,AF e  and an IVNS A is defined by 

            , , , , , |L U L U L U
A A A A A AA T e T e I e I e F e F e e X      

     
(3) 

 Where,    ( ) , ,L U
A A AT e T e T e 

 
    ( ) ,L U

A A AI e I e I e 
 

and    ( ) ,L U
A A AF e F e F e 

 

Fig 1 shows the Pictorial Representation of the neutrosophic set [5] 

 Fig.1. Neutrosophic set 

4. Proposed Methodology

In this section, age group and time (day or night) have been analyzed using interval valued 

neutrosophic set. 

4.1 Application of Interval Valued Neutrosophic Set in Age Group Analysis   

NT NI NF
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As per our convenience, the age group is divided into three groups: young people, middle aged 

people and old people. Assume young people are a truth membership function, middle aged people 

are indeterminate membership function and old people are a falsity membership function. Here, the 

degree of middle aged people may provide either degree of old people or young people or both. Let 

us consider the age group is definitely young at and below 18-40, it is definitely old at and beyond 

51-100 and in between the age group is middle. i.e., the level of the young age people decreases and

the level of old age people increases. The age group is represented pictorially for young people, 

middle aged people and old people as in Fig. 2.   

Fig.2. The degrees of ‘young age’, ‘middle age’ and ‘old age’ people. 

Let A be the different age groups of the people and N be an interval valued neutrosophic set defined 

in the set A. Let  NT a be the membership degree of the age group ‘young age people’ at a , here 

a denotes a numerical value. For example, 20.a   Similarly, indeterminate degree of ‘middle age 

people’ can be denoted by  NI a and the falsity degree of ‘old age people’ denoted by  NF a at a . 

Consider       18,40 , 41,50 , 51,100A  and

         1 8 , 4 0 , 1 8 , 4 0 , 1 8 , 4 0 ,N N NN T I F

        4 1, 5 0 , 4 1, 5 0 , 4 1, 5 0 ,N N NT I F          5 1, 1 0 0 , 5 1, 1 0 0 , 5 1, 1 0 0 .N N NT I F

Case (i). At and below [18, 40], there is no middle age people and old age people but there exist only 

young age people. Therefore the following values are obtained.  

    , 18,40 1,1L U
N NT T  

 
,     , 18,40 0,0L U

N NI I  
 

and 

   Middle Age Young Age Old 
Age

L R 

C 
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    , 18,40 0,0L U
N NF F  

 

i.e., the membership function of the interval valued neutrosophic set is       1,1 , 0,0 , 0,0

Case (ii). At age [41, 50] (at the point C) 

    , 41,50 0,0L U
N NT T  

 
,     , 41,50 1,1L U

N NI I  
 

and 

    , 41,50 0,0L U
N NF F  

 

i.e., the membership function of the interval valued neutrosophic set is       0,0 , 1,1 , 0,0

Case (iii). At and above [51,100], there are no young age people and middle age people, but there 

exist only old age people. 

    , 51,100 0,0L U
N NT T  

 
,     , 51,100 0,0L U

N NI I  
 

and     , 51,100 1,1L U
N NF F  

 

i.e., the membership function of the interval valued neutrosophic set is       0,0 , 0,0 , 1,1

Hence,                   1,1 , 0,0 , 0,0 , 0,0 , 1,1 , 0,0 , 0,0 , 0,0 , 1,1N 

Also, young age people decreases and middle age people increases in between L and C. 

i.e.,    1,1 , 0,0L U
N NT T  

 
and    0,0 , 1,1L U

N NI I  
 

Further, middle age people decreases and old age people increases in between C and R. 

i.e.,    1,1 , 0,0L U
N NI I  

 
and    0,0 , 1,1L U

N NF F  
 

4.2 Application of Interval Valued Neutrosophic Set in Day and Night Time Analysis   
As per our convenience, time of the day is divided into three groups: day, day or night (or both) and 

night. Assume day time is a truth membership function, day or night (or both) is an indeterminate 

membership function and night time is a falsity membership function. Here, the degree of day or 

night time may provide either degree of day time or night time or both. Let us consider the time of 

the day is definitely day time at and below 7 AM to 6 PM, it is definitely night at and beyond 7 PM 

and 5 AM and in between time is day or night. i.e., the level of the day time decreases and the level 

of night time increases. The time of the day is represented pictorially for day, day or night people 

and night as in Fig. 3.   
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Fig.3. The degrees of time for ‘day’, ‘day or night’ and ‘night’ 

Let B be the different times of the day, M an interval valued neutrosophic set defined in the set B. Let 

 MT b be the membership degree of the time ‘day’ at b , here, b denotes a numerical value.  

For example 8b  AM or PM. Similarly, the indeterminate degree of the time  NI b and the falsity

degree of the time  MF b can be represented by b . 

Consider two cases. 

 7 ,6 , 5 ,6 , 7 ,5B AM PM AM AM PM AM            and

      7 ,6 , 7 ,6 , 7 ,6 ,N N NM T AM PM I AM PM F AM PM           

     5 ,6 , 5 ,6 , 5 ,6 ,N N NT AM AM I AM AM F AM AM          

      7 ,5 , 7 ,5 , 7 ,5 .N N NT PM AM I PM AM F PM AM          

Also we can consider,  7 ,6 , 6 ,7 , 7 ,5B AM PM PM PM PM AM            and

      7 ,6 , 7 ,6 , 7 ,6 ,N N NM T AM PM I AM PM F AM PM           

     6 , 7 , 6 , 7 , 6 , 7 ,N N NT P M P M I P M P M F P M P M          

      7 ,5 , 7 ,5 , 7 ,5 .N N NT PM AM I PM AM F PM AM          

Case (i). At and below [7AM, 6 PM], there is no hesitation of day or night time and no night time but 

there exist only day time. Therefore the following values are obtained.  

 , 7 ,6 1,1L U
N NT T AM PM         

 , 7 ,6 0,0L U
N NI I AM PM         

and
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 , 7 ,6 0,0L U
N NF F AM PM         

i.e., the membership function of the interval valued neutrosophic set is       1,1 , 0,0 , 0,0

Case (ii). At [5AM, 6AM] (at the point C) and at [6 PM, 7PM] 

 , 5 ,6 0,0L U
N NT T AM AM         

and  , 6 ,7 0,0L U
N NT T PM PM         

 , 5 ,6 1,1L U
N NI I AM AM         

and  , 6 ,7 1,1L U
N NI I PM PM         

 , 5 ,6 0,0L U
N NF F AM AM         

and  , 6 ,7 0,0L U
N NF F PM PM         

i.e., the membership function of the interval valued neutrosophic set is       0,0 , 1,1 , 0,0

Case (iii). At and above [7 PM, 5 PM], there is no day time and no hesitation of day or night time, but 

there exist only night time. 

 , 7 ,5 0,0L U
N NT T PM AM         

 , 7 ,5 0,0L U
N NI I PM AM         

and

 , 7 ,5 1,1L U
N NF F PM AM         

i.e., the membership function of the interval valued neutrosophic set is       0,0 , 0,0 , 1,1

Hence,                   1,1 , 0,0 , 0,0 , 0,0 , 1,1 , 0,0 , 0,0 , 0,0 , 1,1M 

Also, day time decreases and day or night time increases in between L and C. 

 i.e.,    1,1 , 0,0L U
N NT T  

 
and    0,0 , 1,1L U

N NI I  
 

Further, day or night time decreases and night time increases in between C and R. 

i.e.,    1,1 , 0,0L U
N NI I  

 
and    0,0 , 1,1L U

N NF F  
 

 

5. Impacts of the work

i). The proposed approach is the effective one in determining age group forecasting while the data is 

in the form of interval data with indeterminate information too. 

ii). Time (day or night) analysis under interval neutrosophic environment will be very useful as it is 

the major scientific and technical problems.  

iii). Analysing any future trend can be done easily by inferring the existing information into the 

future using interval neutrosophic sets as it has the capacity of addressing with the set of numbers in 

the real unit interval which is not just a determined number, it is efficient to deal with real world 

problems with various possible interval values 
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iv). The proposed methodology of age group analysis can be used in facial image analysis as age 

detection system.  

v). The proposed methodology of time analysis can be utilized in time series analysis.  

6. Conclusion

Since neutrosophic logic resembles human behavior for predicting age and time (day or night), 

it is suitable for this study. According to the knowledge of human, membership values of the truth, 

indeterminacy and falsity may be exact numbers or interval numbers. In this paper, analysis of age 

group and time(day or night) have been done using interval valued neutrosophic set with the 

detailed description and pictorial representation. Also the impact of the present work has been 

given. In future, the proposed concept can be done based on the concept of neutrosophic rough and 

soft sets.
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On Some Types of Neutrosophic Topological 
Groups with Respect to Neutrosophic Alpha Open 

Sets 
Qays Hatem Imran, Ali Hussein Mahmood Al-Obaidi, Florentin Smarandache

Abstract: In this article, we presented eight different types of neutrosophic topological groups, each 

of which depends on the conceptions of neutrosophic -open sets and neutrosophic -continuous 

functions. Also, we found the relation between these types, and we gave some properties on the 

other side. 

Keywords: Neutrosophic  -open sets, neutrosophic  -continuous functions, neutrosophic 

topological groups, and neutrosophic topological groups of type (𝑅), 𝑅 = 1,2,3, … ,8. 

1. Introduction

Smarandache [1,2] originally handed the theory of “neutrosophic set”. Recently, Abdel-Basset 

et al. discussed a novel neutrosophic approach [3-6]. Salama et al. [7] gave the clue of neutrosophic 

topological space. Arokiarani et al. [8] added the view of neutrosophic α -open subsets of 

neutrosophic topological spaces. Dhavaseelan et al. [9] presented the idea of neutrosophic 

𝛼𝑚-continuity. Banupriya  et al. [10] investigated the notion of neutrosophic αgs continuity and 

neutrosophic αgs irresolute maps. Nandhini et al. [11] presented Nαg#ψ-open map, Nαg#ψ-closed 

map, and Nαg#ψ-homomorphism in neutrosophic topological spaces. Sumathi et al. [12] submitted 

the perception of neutrosophic topological groups. The target of this article is to perform eight 

different types of neutrosophic topological groups, each of which depends on the notions of 

neutrosophic α-open sets and neutrosophic α-continuous functions and also we found the relation 

between these types. 

2. Preliminaries

In all this paper, (𝒢, 𝜏) and (ℋ, 𝜎) (or briefly 𝒢  and ℋ ) frequently refer to neutrosophic 

topological spaces (or shortly NTSs). Suppose 𝒜 be a neutrosophic open subset (or shortly Ne-OS) 

of 𝒢, then its complement 𝒜𝑐 is closed (or shortly Ne-CS). In addition, its interior and closure are 

denoted by 𝑁𝑖𝑛𝑡(𝒜)and 𝑁𝑐𝑙(𝒜), correspondingly. 

Definition 2.1 [8]: Let 𝓐 be a Ne-OS in NTS 𝓖, then it is said that a neutrosophic 𝛂-open subset (or 

briefly Ne-𝛂OS) if 𝓐 ⊆ 𝑵𝒊𝒏𝒕(𝑵𝒄𝒍(𝑵𝒊𝒏𝒕(𝓐))). Then 𝓐𝒄 is the so-called a neutrosophic 𝛂-closed (or 

briefly Ne-𝛂CS). The collection of all such these Ne-𝛂OSs (resp. Ne-𝛂CSs) of 𝓖 is denoted by 

𝑵𝜶𝑶(𝓖) (resp. 𝑵𝜶𝑪(𝓖)). 

Definition 2.2 [8]: Let 𝒜 be a neurrosophic set in NTS 𝒢. Then the union of all such these Ne-αOSs 

involved in 𝒜( symbolized by 𝛼𝑁𝑖𝑛𝑡(𝒜)) is said to be the neutrosophic α-interior of 𝒜. 

Qays Hatem Imran, Ali Hussein Mahmood Al-Obaidi, Florentin Smarandache (2020). On 
Some Types of Neutrosophic Topological Groups with Respect to Neutrosophic Alpha Open 
Sets. Neutrosophic Sets and Systems 32, 426-434
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Definition 2.3 [8]: Let 𝒜 be a neurrosophic set in NTS 𝒢. Then the intersection of all such these 

Ne-αCSs that contain 𝒜 ( symbolized by 𝛼𝑁𝑐𝑙(𝒜)) is said to be the neutrosophic α-closure of 𝒜. 

Proposition 2.4 [13]: Let 𝒜 be a neutrosophic set in NTS 𝒢. Then 𝒜 ∈ 𝑁𝛼𝑂(ℬ) iff there exists a Ne-
αOS ℬ where ℬ ⊆ 𝒜 ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℬ)). 

Proposition 2.5 [8]: In any NTS, the following claims hold, and not vice versa: 

(i) For each, Ne-OS is a Ne-αOS.

(ii) For each, Ne-CS is a Ne-αCS.

Definition 2.6: Let 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) be a function, then 𝒽 is called: 

(i) a neutrosophic continuous (in short Ne-continuous) iff for each 𝒜 Ne-OS in ℋ, then 𝒽−1(𝒜) is

a Ne-OS in 𝒢 [14]. 

(ii) a neutrosophic α-continuous (in short Ne-α-continuous) iff for each 𝒜  Ne-OS in ℋ , then

𝒽−1(𝒜) is a Ne-αOS in 𝒢 [8].

(iii) a neutrosophic α-irresolute (in short Ne-α-irresolute) iff for each 𝒜  Ne-αOS in ℋ , then

𝒽−1(𝒜) is a Ne-αOS in 𝒢.

Proposition 2.7 [8]: Every Ne-continuous function is a Ne-α-continuous, but the opposite is not valid 

in general. 

Proposition 2.8: Every Ne-α-irresolute function is a Ne-α-continuous, but the opposite is not exact in 

general. 

Proof: Let 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) be a Ne-α-irresolute function and let 𝒜 be any Ne-OS in ℋ. From 

proposition 2.5, we get 𝒜  is a Ne-αOS in ℋ . Since 𝒽 is a Ne-α-irresolute, then 𝒽−1(𝒜) is a 

Ne-αOS in 𝒢. Therefore 𝒽 is a Ne-α-continuous.  

Example 2.9: Let 𝒢 = {𝑝, 𝑞}. Suppose the neutrosophic sets 𝒜, ℬ, 𝒞 and 𝒟 be in 𝒢 as follows: 

𝒜 = 〈𝑥, (
𝑝

0.5
,

𝑞

0.3
) , (

𝑝

0.5
,

𝑞

0.3
) , (

𝑝

0.5
,

𝑞

0.7
)〉, ℬ = 〈𝑥, (

𝑝

0.5
,

𝑞

0.6
) , (

𝑝

0.5
,

𝑞

0.6
) , (

𝑝

0.5
,

𝑞

0.4
)〉,

𝒞 = 〈𝑥, (
𝑝

0.6
,

𝑞

0.3
) , (

𝑝

0.6
,

𝑞

0.3
) , (

𝑝

0.4
,

𝑞

0.7
)〉 and 𝒟 = 〈𝑥, (

𝑝

0.6
,

𝑞

0.7
) , (

𝑝

0.6
,

𝑞

0.7
) , (

𝑝

0.4
,

𝑞

0.3
)〉. 

Then the families 𝜏 = {0𝑁 , 𝒜, 1𝑁} and 𝜎 = {0𝑁 , 𝒟, 1𝑁} are neutrosophic topologies on 𝒢.  

Thus, (𝒢, 𝜏) and (𝒢, 𝜎) are NTSs. Define 𝒽: (𝒢, 𝜏) ⟶ (𝒢, 𝜎)  as (𝑝) = 𝑝, 𝒽(𝑞) = 𝑞 . Hence 𝒽  is a 

Ne-α-continuous function, but not Ne-α-irresolute. 

Definition 2.10: A function 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) is said to be ℳ-function iff 𝒽−1(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℬ))) ⊆

𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒽−1(ℬ) )), for every Ne-αOS ℬ of ℋ. 

Theorem 2.11: If 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) is a Ne-α-continuous function and ℳ-function, then 𝒽 is a 

Ne-α-irresolute. 

Proof: Let 𝒜 be any Ne-αOS of ℋ, there exists a Ne-OS ℬ of ℋ where ℬ ⊆ 𝒜 ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℬ)).  

Since 𝒽 is ℳ-function, we have 𝒽−1(ℬ)  ⊆ 𝒽−1(𝒜) ⊆ 𝒽−1(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℬ)) ) ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒽−1(ℬ) )). 
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By proposition 2.4, we have 𝒽−1(𝒜) is a Ne-αOS. Hence, 𝒽 is a Ne-α-irresolute.  

Definition 2.12 [8]: A function  𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎)  is called a neutrosophic α -open (resp. 

neutrosophic α -closed) iff for each 𝒜 ∈ 𝑁𝛼𝑂(𝒢)  (resp.  𝒜 ∈ 𝑁𝛼𝐶(𝒢) ), 𝒽(𝒜) ∈ 𝑁𝛼𝑂(ℋ) 

(resp. 𝒽(𝒜) ∈ 𝑁𝛼𝐶(ℋ)).  

Definition 2.13 [15]: A bijective function  𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎)  is called a neutrosophic 

homeomorphism iff 𝒽 and 𝒽−1 are Ne-continuous. 

Definition 2.14 [12]: A neutrosophic topological group (briefly NTG) is a set 𝒢 which carries a 

group structure and a neutrosophic topology with the following two postulates: 

(i) The operation function 𝜇: 𝒢 × 𝒢 → 𝒢, given as 𝜇(𝑔, ℎ) = 𝑔 ⋅ ℎ is a Ne-continuous.

(ii) The inversion function 𝐼: 𝒢 → 𝒢, given as 𝐼(𝑔) = 𝑔−1 is a Ne-continuous.

Remark 2.15 [12]: 

(i) The function 𝛾: 𝒢 × 𝒢 → 𝒢, given as 𝛾(𝑔, ℎ) = 𝑔 ⋅ ℎ is a Ne-continuous iff for each Ne-OS 𝒞 and

𝑔 ⋅ ℎ ∈ 𝒞, there exist Ne-OS 𝒜, ℬ such that 𝑔 ∈ 𝒜, ℎ ∈ ℬ, and 𝒜 ⋅ ℬ ⊆ 𝒞. 

(ii) The function 𝑖𝑛𝑣: 𝒢 → 𝒢 is a Ne-continuous iff for each Ne-OS 𝒜 and 𝑔−1 ∈ 𝒜, there exists a

Ne-OS ℬ and 𝑔 ∈ ℬ where ℬ−1 ⊆ 𝒜.

Definition 2.16 [16]: A group 𝒢 is nice iff its operation is nice. 

3. Different Types of Neutrosophic Topological Groups

In this section, we introduce eight types of neutrosophic topological groups, each of which 

depends on the notions of neutrosophic α-open sets and neutrosophic α-continuous functions. 

Definition 3.1: Let 𝒢 be a set that equips with a group structure and a neutrosophic topology. Then 

𝒢 is called: 

(i) NTG of type (1) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 and the inversion function 𝐼: 𝒢 → 𝒢 are

both Ne-α-continuous. 

(ii) NTG of type (2) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 and the inversion function 𝐼: 𝒢 → 𝒢 are

both Ne-α-irresolute. 

(iii) NTG of type (3) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-α-continuous and the inversion

function 𝐼: 𝒢 → 𝒢 is Ne-continuous. 

(iv) NTG of type (4) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-α-irresolute and the inversion

function 𝐼: 𝒢 → 𝒢 is Ne-continuous. 

(v) NTG of type (5) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-α-irresolute and the inversion

function 𝐼: 𝒢 → 𝒢 is Ne-α-continuous. 

(vi) NTG of type (6) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-α-continuous and the inversion

function 𝐼: 𝒢 → 𝒢 is Ne-α-irresolute. 

(vii) NTG of type (7) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-continuous, and the inversion

function 𝐼: 𝒢 → 𝒢 is Ne-α-continuous. 
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(viii) NTG of type (8) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-continuous, and the inversion

function 𝐼: 𝒢 → 𝒢 is Ne-α-irresolute. 

Proposition 3.2: 

(i) Every NTG is a NTG of type (𝑅), where 𝑅 = 1,3,7.

(ii) Every NTG of type (2) is a NTG of type (5).

(iii) Every NTG of type (2) is a NTG of type (6).

(iv) Every NTG of type (4) is a NTG of type (3).

(v) Every NTG of type (4) is a NTG of type (5).

(vi) Every NTG of type (𝑅) is a NTG of type (1), where 𝑅 = 2,3, … ,8.

Proof: 

(i) Let 𝒢  be a NTG, then the operation function 𝜇  and the inversion function  𝐼  are both

Ne-continuous. By proposition 2.7, we have that the operation function 𝜇  and the inversion 

function 𝐼 are both Ne-α-continuous. Hence, 𝒢 is a NTG of type (𝑅), where 𝑅 = 1,3,7. 

(ii) Let 𝒢 be a NTG of type (2), then the operation function 𝜇 and the inversion function 𝐼 are both

Ne-α-irresolute. By proposition 2.8, we have that the inversion function 𝐼 is a Ne-α-continuous. 

Hence, 𝒢 is a NTG of type (5). 

(iii) Let 𝒢 be a NTG of type (2), then the operation function 𝜇 and the inversion function 𝐼 are

both Ne- α -irresolute. By proposition 2.8, we have that the operation function  𝜇  is a 

Ne-α-continuous. Hence, 𝒢 is a NTG of type (6). 

(iv) Let 𝒢  be a NTG of type (4), then the operation function 𝜇  is a Ne-α-irresolute and the

inversion function 𝐼 is a Ne-continuous. By proposition 2.8, we have that the operation function 𝜇 

is a Ne-α-continuous. Hence, 𝒢 is a NTG of type (3). 

(v) Let 𝒢 be a NTG of type (4), then the operation function 𝜇 is a Ne-α-irresolute and the inversion

function 𝐼  is a Ne-continuous. By proposition 2.7, we have that the inversion function 𝐼  is a 

Ne-α-continuous. Hence, 𝒢 is a NTG of type (5). 

(vi) Let 𝒢 be a NTG of type (𝑅), where 𝑅 = 2,3, … ,8. By proposition 2.7 and proposition 2.8, we

have that the operation function 𝜇 and the inversion function 𝐼 are both Ne-α-continuous. Hence, 𝒢 

is a NTG of type (1).  

Proposition 3.3: 

(i) A NTG of type (3) with ℳ-function operation 𝜇 is a NTG of type (4).

(ii) A NTG of type (1) with ℳ-function inversion 𝐼 and ℳ-function operation 𝜇 is a NTG of type

(2). 

(iii) A NTG of type (1) with ℳ-function operation 𝜇 is a NTG of type (5).

(iv) A NTG of type (1) with ℳ-function inversion 𝐼 is a NTG of type (6).

(v) A NTG of type (5) with ℳ-function inversion 𝐼 is a NTG of type (2).

(vi) A NTG of type (6) with ℳ-function operation 𝜇 is a NTG of type (2).

(vii) A NTG of type (7) with ℳ-function inversion 𝐼 is a NTG of type (8).

Proof: 

(i) Let 𝒢 be a NTG of type (3), then the operation function 𝜇 is a Ne-α-continuous and the inversion

function 𝐼 is a Ne-continuous. Since 𝜇 is ℳ-function. So by Theorem 2.11, we get that operation 𝜇 
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is a Ne-α-irresolute. Hence, 𝒢 is a NTG of type (4). 

(ii) Let 𝒢 be a NTG of type (1), then the operation function 𝜇 and the inversion function 𝐼 are both

Ne-α-continuous. Since 𝜇, 𝐼 are ℳ-function. So by Theorem 2.11, we get that the operation function 

𝜇 and the inversion function 𝐼 are both Ne-α-irresolute. Hence, 𝒢 is a NTG of type (2). The proof is 

evident for others. 

Remark 3.4: The next illustration displays relationship among different kinds of neutrosophic 

topological groups mentioned in this section and the neutrosophic topological group:  

Definition 3.5: A bijective function 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) is said to be: 

(i) Neutrosophic α-homeomorphism iff 𝒽 and 𝒽−1 are Ne-α-continuous.

(ii) Neutrosophic α-irresolute – homeomorphism iff 𝒽 and 𝒽−1 are Ne-α-irresolute.

Definition 3.6: Let (𝒢, 𝜏)  be a NTS, then  𝒢  is called neutrosophic α -homogeneous (resp. 

neutrosophic α -irresolute – homogeneous) iff for any two elements 𝑔, ℎ ∈ 𝒢 , there exists a 

neutrosophic α-homeomorphism (resp. neutrosophic α-irresolute – homeomorphism) from 𝒢 onto 

𝒢 which transforms 𝑔 into ℎ. 

Proposition 3.7: The inversion function 𝐼  in a NTG of type (𝑅) , where  𝑅 = 1,2, … … ,8  is a 

neutrosophic α-homeomorphism. 
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Proof: Let 𝒢 be a NTG of type (1). Since 𝒢 is a group, 𝐼(𝒢) = 𝒢−1 = 𝒢 which implies 𝐼 is onto, 

also for any 𝑔 ∈ 𝒢 , there exists a unique inverse which is equal to 𝐼(𝑔)  which implies, 𝐼  is 

one-to-one. Now; we have 𝐼  is a Ne- α -continuous and 𝐼−1: 𝒢 → 𝒢  such that 𝐼−1(𝑔) = 𝑔 , i.e 

𝐼−1(𝑔) = 𝐼(𝑔)  for each  𝑔 ∈ 𝒢 , so,  𝐼−1  is a Ne- α -continuous. Thus, 𝐼  is a neutrosophic 

α-homeomorphism. In the case of type (𝑅), we have a similar proof, where 𝑅 = 2,3, … ,8.  

Corollary 3.8: Let 𝒢 be a NTG of type (1) and 𝒜 ⊆ 𝒢. If 𝒜 ∈ 𝜏, then 𝒜−1 ∈ 𝑁𝛼𝑂(𝒢). 

Proof: Since the inversion function 𝐼 is a neutrosophic α-homeomorphism, then 𝐼(𝒜) = 𝒜−1 is a 

Ne-αOS in 𝒢 for each 𝒜 ∈ 𝜏.  

Proposition 3.9: The inversion function 𝐼 in a NTG of type (3) [and type (4)] is a neutrosophic 

homeomorphism. 

Proof: Suppose 𝒢 be a NTG of type (3). Since 𝒢 is a group, 𝐼(𝒢) = 𝒢−1 = 𝒢 which implies 𝐼 is 

onto, also for any 𝑔 ∈ 𝒢, there exists a unique inverse which is equal to 𝐼(𝑔) which implies, 𝐼 is 

one-to-one. Now; we have 𝐼 is a Ne-continuous and 𝐼−1: 𝒢 → 𝒢 such that 𝐼−1(𝑔) = 𝑔, i.e 𝐼−1(𝑔) =

𝐼(𝑔) for each 𝑔 ∈ 𝒢, so, 𝐼−1  is a Ne-continuous. Thus, 𝐼 is a neutrosophic homeomorphism. In the 

case of type (4), we have similar proof.  

Proposition 3.10: The inversion function 𝐼 in a NTG of type (𝑅), where 𝑅 = 2,6,8 is a neutrosophic 

α-irresolute – homeomorphism. 

Proof: Suppose 𝒢 be a NTG of type (2). Since 𝒢 is a group, 𝐼(𝒢) = 𝒢−1 = 𝒢 which implies 𝐼 is 

onto, also for any 𝑔 ∈ 𝒢, there exists a unique inverse which is equal to 𝐼(𝑔) which implies, 𝐼 is 

one-to-one. Now; we have 𝐼 is a Ne-α-irresolute and 𝐼−1: 𝒢 → 𝒢 such that 𝐼−1(𝑔) = 𝑔, i.e 𝐼−1(𝑔) =

𝐼(𝑔)  for each  𝑔 ∈ 𝒢 , so, 𝐼−1   is a Ne- α -irresolute. Thus, 𝐼  is a neutrosophic α -irresolute – 

homeomorphism. In the case of type (6) and type (8), we have a similar proof.  

Proposition 3.11: Let 𝒢 be a set which carries a group structure and a neutrosophic topology, let 

𝑘1, 𝑘2 ∈ 𝒢. Then for each 𝑔 ∈ 𝒢 if one of the following functions:  

(i) 𝑙𝑘1
(𝑔) = 𝑘1 ⋅ 𝑔

(ii) 𝑟𝑘1
(𝑔) = 𝑔 ⋅ 𝑘1

(iii) 𝒽𝑘1𝑘2
(𝑔) = 𝑘1 ⋅ 𝑔 ⋅ 𝑘2

is a neutrosophic α-homeomorphism (resp. neutrosophic α-irresolute – homeomorphism), then so

the others.

Proof: Since 𝑘1and 𝑘2 are arbitrary elements in 𝒢, clear that 𝑙𝑘1
and 𝑟𝑘1

come from 𝒽𝑘1𝑘2
 by taking

𝑘2 = 𝑒  or 𝑘1 = 𝑒  respectively. Hence, when 𝒽𝑘1𝑘2
 is a neutrosophic α -homeomorphism, both

𝑙𝑘1
and 𝑟𝑘2

are neutrosophic α -homeomorphisms. Now; when 𝑙𝑘1
 is a neutrosophic

α-homeomorphism. Since 𝒢 is a group, 𝒢 ⋅ 𝑘 = 𝒢 for each 𝑘 ∈ 𝒢 then  𝒢 ⋅ 𝑘2 = 𝒢. Hence, for each

ℎ ∈ 𝒢 ⋅ 𝑘2, 𝑙𝑘1
(ℎ) = 𝑘1 ⋅ ℎ, 𝑙𝑘1

 is a neutrosophic α-homeomorphism. But ℎ = 𝑔 ⋅ 𝑘2 for some 𝑔 ∈ 𝒢,

then for each  𝑔 ∈ 𝒢 ,  𝑙𝑘1
(ℎ) = 𝑙𝑘1

(𝑔 ⋅ 𝑘2) = 𝑘1 ⋅ 𝑔 ⋅ 𝑘2 = 𝒽𝑘1𝑘2
(𝑔) , 𝒽𝑘1𝑘2

 is a neutrosophic

α-homeomorphism. Then by the first part of the proof, 𝑟𝑘1
. And we have a similar proof if we are

beginning with 𝑟𝑘1
 is a neutrosophic α-homeomorphism. In the case of neutrosophic α-irresolute –

homeomorphism, we have a similar proof.
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Theorem 3.12: Let 𝒢 be a nice NTG of type (𝑅), where 𝑅 = 1,2,3, … ,8 and let 𝑘1, 𝑘2 ∈ 𝒢. Then for 

each 𝑔 ∈ 𝒢 the following functions: 

(i) 𝑙𝑘1
(𝑔) = 𝑘1 ⋅ 𝑔

(ii) 𝑟𝑘1
(𝑔) = 𝑔 ⋅ 𝑘1

(iii) 𝒽𝑘1𝑘2
(𝑔) = 𝑘1 ⋅ 𝑔 ⋅ 𝑘2

are neutrosophic α-homeomorphisms.

Proof: Let 𝒢 be a nice NTG of type (1). It is clear that each of the functions 𝑙𝑘1
, 𝑟𝑘1

and 𝒽𝑘1𝑘2
 is a

bijective function. Let 𝒽 be the operation of  𝒢, then 𝒽 is a Ne-α-continuous. Since  𝒢 is a nice, so

𝑙𝑘1
= 𝒽/{𝑘1} × 𝒢  is a Ne-α-continuous. Similarly, 𝑙𝑘1

−1(𝑔) = 𝑘1
−1 ⋅ 𝑔, 𝑙𝑘1

−1 is a Ne-α-continuous.

Hence, 𝑙𝑘1
 is a neutrosophic α-homeomorphism. Thus, because of the preceding proposition, 𝑟𝑘1

and 𝒽𝑘1𝑘2
 are neutrosophic α -homeomorphisms. The case of type (𝑅)  has a similar proof,

where 𝑅 = 2,3, … ,8.

Theorem 3.13: Let 𝒢 be a nice NTG of type (𝑅), where 𝑅 = 2,4,5 and let 𝑘1, 𝑘2 ∈ 𝒢. Then for each 

𝑔 ∈ 𝒢 the following functions: 

(i) 𝑙𝑘1
(𝑔) = 𝑘1 ⋅ 𝑔

(ii) 𝑟𝑘1
(𝑔) = 𝑔 ⋅ 𝑘1

(iii) 𝒽𝑘1𝑘2
(𝑔) = 𝑘1 ⋅ 𝑔 ⋅ 𝑘2

are neutrosophic α-irresolute – homeomorphisms.

Proof: Let 𝒢 be a nice NTG of type (2). It is clear that each of the functions 𝑙𝑘1
, 𝑟𝑘1

and 𝒽𝑘1𝑘2
 is a

bijective function. Let 𝒽 be the operation of  𝒢, then 𝒽 is a Ne-α-irresolute. Since  𝒢 is a nice, so

𝑙𝑘1
= 𝒽/{𝑘1} × 𝒢   is a Ne-α-irresolute. Similarly, 𝑙𝑘1

−1(𝑔) = 𝑘1
−1 ⋅ 𝑔 , 𝑙𝑘1

−1  is a Ne-α-irresolute.

Hence, 𝑙𝑘1
 is a neutrosophic α -irresolute – homeomorphism. Thus, given the preceding

proposition, 𝑟𝑘1
 and 𝒽𝑘1𝑘2

 are neutrosophic α-irresolute – homeomorphisms. The case of type (𝑅)

has a similar proof, where 𝑅 = 4,5.

Corollary 3.14: Let 𝒜, ℬ and 𝒞 be subsets of a nice NTG 𝒢 of type (1) (resp. of type (4)) such that 

𝒜 is a Ne-CS (resp. Ne-αCS), and ℬ is a Ne-OS (resp. Ne-αOS). Then for each 𝑘 ∈ 𝒢, 𝑘 ⋅ 𝒜 and 𝒜 ⋅

𝑘 are Ne-α-CSs also 𝑘 ⋅ ℬ, ℬ ⋅ 𝑘, 𝒞 ⋅ ℬ and ℬ ⋅ 𝒞 are Ne-αOSs. 

Proof: Since 𝒜 is a Ne-CS so in view of the theorem 3.12, 𝑙𝑘(𝒜) = 𝑘 ⋅ 𝒜 and 𝑟𝑘(𝒜) = 𝒜 ⋅ 𝑘 are 

Ne-αCSs.  

Similarly, since ℬ is a Ne-OS so in view of the theorem 3.12, 𝑙𝑘(ℬ) = 𝑘 ⋅ ℬ and 𝑟𝑘(ℬ) = ℬ ⋅ 𝑘 are 

Ne-αOSs. Also, 𝒞 ⋅ ℬ = ⋃ 𝒸 ⋅ ℬ𝒸∈𝒞  but 𝒸 ⋅ ℬ is a Ne-αOS for each 𝒸 ∈ 𝒞. Hence, 𝒞 ⋅ ℬ is a Ne-αOS. 

Similarly, ℬ ⋅ 𝒞 is a Ne-αOS. In the case of type (4), we have a similar proof.    

Corollary 3.15: A nice NTG of type (𝑅), where 𝑅 = 1,2,3, … ,8 is neutrosophic α-homogeneous. 

Proof: Let 𝒢 be a nice NTG of type (1) and 𝑎, 𝑏 ∈ 𝒢. Then for any fixed element 𝑘 ∈ 𝒢, 𝑟𝑘  is a 

neutrosophic α-homeomorphism, therefore, it is true when 𝑘 = 𝑎−1 ⋅ 𝑏. Thus, 𝑟𝑎−1𝑏(𝑔) = 𝑔 ⋅ 𝑎−1 ⋅ 𝑏

is a neutrosophic α-homeomorphism we need because 𝑟𝑎−1𝑏(𝑎) = 𝑏. Therefore, 𝒢 is a neutrosophic 

α-homogeneous. In the case of type (𝑅), we have a similar proof, where 𝑅 = 2,3, … ,8.  
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Corollary 3.16: A nice NTG of type (𝑅) , where 𝑅 = 2,4,5  is neutrosophic α -irresolute – 

homogeneous. 

Proof: Let 𝒢 be a nice NTG of type (2) and 𝑎, 𝑏 ∈ 𝒢. Then for any fixed element 𝑘 ∈ 𝒢, 𝑟𝑘  is a 

neutrosophic α -irresolute – homeomorphism, therefore, it is true when 𝑘 = 𝑎−1 ⋅ 𝑏 . Thus, 

𝑟𝑎−1𝑏(𝑔) = 𝑔 ⋅ 𝑎−1 ⋅ 𝑏 is a neutrosophic α-irresolute – homeomorphism. But  𝑟𝑎−1𝑏(𝑎) = 𝑏, therefore

𝒢 is a neutrosophic α-irresolute – homogeneous. In the case of type (𝑅), we have a similar proof, 

where 𝑅 = 4,5.  

Definition 3.17: Let 𝒢 be a NTG of type (2), (5), and ℱ be a fundamental system of neutrosophic 

α-open nhds of the identity element 𝑒. Then for any fixed element 𝑘 ∈ 𝒢, 𝑟𝑘  is a neutrosophic 

α -irresolute – homeomorphism. So  ℱ(𝑘) = {𝑟𝑘(𝒜) = 𝒜 ⋅ 𝑘: 𝒜 ∈ ℱ}  is a fundamental system of 

neutrosophic α-open nhds of 𝑘.  

Proposition 3.18: Let 𝒢 be a NTG of type (2), (5). Any fundamental system ℱ of neutrosophic 

α-open nhds of e in 𝒢 has the below postulates: 

(i) If 𝒜, ℬ ∈ ℱ, then ∃𝒞 ∈ ℱ such that 𝒞 ⊆ 𝒜⋂ℬ.

(ii) If 𝑔 ∈ 𝒜 ∈ ℱ, then ∃ℬ ∈ ℱ such that ℬ ⋅ 𝑔 ⊆ 𝒜.

(iii) If 𝒜 ∈ ℱ, then ∃ℬ ∈ ℱ such that ℬ−1 ⋅ ℬ ⊆ 𝒜.

(iv) If 𝒜 ∈ ℱ, 𝑘 ∈ 𝒢, then ∃ℬ ∈ ℱ such that 𝑘−1 ⋅ ℬ ⋅ 𝑘 ⊆ 𝒜.

(v) ∀𝒜 ∈ ℱ, ∃ℬ ∈ ℱ such that ℬ−1 ⊆ 𝒜.

(vi) ∀𝒜 ∈ ℱ, ∃𝒞 ∈ ℱ such that 𝒞2 ⊆ 𝒜.

Proof: 

(i) Let 𝒜, ℬ ∈ ℱ, then 𝒜⋂ℬ ∈ ℱ, so ∃𝒞 ∈ ℱ such that 𝒞 ⊆ 𝒜⋂ℬ.

(ii) Let 𝒜 ∈ ℱ and 𝑔 ∈ 𝒜 implies 𝒜 ⋅ 𝑔−1 ∈ ℱ, then ∃ℬ ∈ ℱ such that ℬ ⊆ 𝒜 ⋅ 𝑔−1. Thus, ℬ ⋅ 𝑔 ⊆

𝒜.

(iii) The function 𝜇: 𝒢 × 𝒢 → 𝒢, given by 𝜇(𝑔, ℎ) = 𝑔−1 ⋅ ℎ is a Ne-α-irresolute because  𝒢 is a NTG

of type (2), (5). Thus 𝜇−1(𝒜) is a neutrosophic α-open nhd in 𝒢 × 𝒢 contains (𝑒, 𝑒) and hence

includes a set of the from 𝒰 × 𝒱, where 𝒰, 𝒱 are neutrosophic α-open and provide 𝑒. But 𝒰⋂𝒱 is

a neutrosophic α-open contains 𝑒, so ∃ℬ ∈ ℱ such that ℬ ⊆ 𝒰⋂𝒱 then ℬ ⊆ 𝒰 and ℬ ⊆ 𝒱. Thus

ℬ × ℬ ⊆ 𝒰 × 𝒱 ⊆ 𝜇−1(𝒜), then 𝜇(ℬ × ℬ) ⊆ 𝒜 but 𝜇(ℬ × ℬ) = ℬ−1 ⋅ ℬ ⊆ 𝒜.

(iv) The function 𝒽: 𝒢 → 𝒢  given by 𝒽(𝑔) = 𝑘−1 ⋅ 𝑔 ⋅ 𝑘  is a Ne- α -irresolute. Since 𝑙𝑘−1 , 𝑟𝑘  is

Ne- α -irresolute. So 𝑙𝑘−1 ∘ 𝑟𝑘  is a Ne- α -irresolute from 𝒢  to 𝒢  put 𝒽 = 𝑙𝑘−1 ∘ 𝑟𝑘 , 𝒽(𝑔) = (𝑙𝑘−1 ∘

𝑟𝑘)(𝑔) = 𝑙𝑘−1(𝑟𝑘(𝑔)) = 𝑙𝑘−1(𝑔 ⋅ 𝑘) = 𝑘−1 ⋅ 𝑔 ⋅ 𝑘.

So, 𝒽−1(𝒜)  is a neutrosophic α -open nhd and contains 𝑒 , hence ∃ℬ ∈ ℱ,  ℬ ⊆ 𝒽−1(𝒜)  then 

𝒽(ℬ) ⊆ 𝒜. Thus, 𝒽(ℬ) = 𝑘−1 ⋅ ℬ ⋅ 𝑘 ⊆ 𝒜. 

𝒢 𝒢 

𝒢 

𝑟𝑘 

𝑙𝑘−1  
𝒽 
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(v) Since 𝐼  the inverse function in a NTG of type (2)  is a Ne-α-irresolute, then 𝐼−1(𝒜)  is a

neutrosophic α-open contains 𝑒  so ∃ℬ ∈ ℱ  such that ℬ ⊆ 𝐼−1(𝒜) then 𝐼(ℬ) ⊆ 𝒜 . Thus, 𝐼(ℬ) =

ℬ−1 ⊆ 𝒜.

(vi) Since 𝜇  in a NTG of type (5)  is a Ne-α-irresolute. So 𝜇−1(𝒜)  is a neutrosophic α-open

contains (𝑒, 𝑒) and thus contains a neutrosophic set of the from 𝒰 × 𝒱, where 𝒰, 𝒱 are neutrosophic 

α-open and contain 𝑒 then 𝒰⋂𝒱 is a neutrosophic α-open and contain 𝑒 ∃𝒞 ∈ ℱ such that 𝒞 ⊆

𝒰⋂𝒱, then 𝒞 × 𝒞 ⊆ 𝒰 × 𝒱 ⊆ 𝜇−1(𝒜). Thus, 𝜇(𝒞 × 𝒞) = 𝒞 ⋅ 𝒞 = 𝒞2 ⊆ 𝒜.  

Definition 3.19: A neutrosophic α-open nhd 𝒞 of 𝑔 is called symmetric if 𝒞−1 = 𝒞. 

Proposition 3.20: Let 𝒢 be a NTG of type (𝑅), where 𝑅 = 1,2, … ,8, and let ℬ be any neutrosophic 

α-open nhd of a point 𝑔 ∈ 𝒢. Then ℬ⋃ℬ−1 is symmetric neutrosophic α-open nhd of 𝑔.  

Proof: Let ℬ is a neutrosophic α-open nhd of 𝑔, then ℬ⋃ℬ−1 is a neutrosophic α-open nhd of 𝑔; 

ℬ⋃ℬ−1 = {𝑏: 𝑏 ∈ ℬ 𝑜𝑟 𝑏 ∈ ℬ−1} = {𝑏: 𝑏−1 ∈ ℬ 𝑜𝑟 𝑏−1 ∈ ℬ−1} 

= {𝑏: 𝑏−1 ∈ ℬ⋃ℬ−1} = {𝑏: 𝑏 ∈ (ℬ⋃ℬ−1)−1} = (ℬ⋃ℬ−1)−1. 

That is, ℬ⋃ℬ−1 is symmetric neutrosophic α-open nhd of 𝑔. 

Proposition 3.21: Let ℬ be any neutrosophic α-open nhd of 𝑒 in a nice NTG of type (𝑅), where 

𝑅 = 1,2, … . . ,8. Then ℬ ⋅ ℬ−1 is symmetric neutrosophic α-open nhd of 𝑒.    

Proof: Let ℬ be a neutrosophic α-open nhd of 𝑒 and since 𝒢 is a nice, then ℬ ⋅ ℬ−1 is neutrosophic 

α-open nhd of 𝑒; 

ℬ ⋅ ℬ−1 = {𝑥 ⋅ 𝑦−1: 𝑥, 𝑦 ∈ ℬ} = {(𝑥−1)−1 ⋅ 𝑦−1: 𝑥, 𝑦 ∈ ℬ} = (ℬ−1)−1 ⋅ ℬ−1 = (ℬ ⋅ ℬ−1)−1. 

That is, ℬ ⋅ ℬ−1 is symmetric neutrosophic α-open nhd of 𝑒.  

4. Conclusion

In this work, we examined the conceptions of eight different types of neutrosophic topological 

groups, each of which, depending on the notions of neutrosophic α-open sets and neutrosophic 

α-continuous function. In the future, we plan to rsearch the ideas of neutrosophic topological 

subgroups and the neutrosophic topological quotient groups as well as defining the perception of 

neutrosophic topological product groups with some results. 

References 

1. F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set,

neutrosophic probability. American Research Press, Rehoboth, NM, (1999).

2. F. Smarandache, Neutrosophy and neutrosophic logic, first international conference on neutrosophy,

neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA

(2002).

3. Abdel-Basset, M., Saleh, M., Gamal, A., & Smarandache, F. (2019). An approach of the TOPSIS   technique

for developing supplier selection with group decision making under type-2 neutrosophic number.

Applied Soft Computing, 77, 438-452.

4. Abdel-Baset, M., Chang, V., Gamal, A., & Smarandache, F. (2019). An integrated neutrosophic ANP and

VIKOR method for achieving sustainable supplier selection: A case study in the importing field.

Computers in Industry, 106, 94-110.

5. Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2019). A group decision-making

framework based on the neutrosophic TOPSIS approach for smart medical device selection. Journal of

medical systems, 43(2), 38.

Florentin Smarandache (author and editor) Collected Papers, XII

646



6. Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018). A hybrid approach of

neutrosophic sets and DEMATEL method for developing supplier selection criteria. Design Automation

for Embedded Systems, 1-22.

7. Abdel-Baset, M., Chang, V., & Gamal, A. (2019). Evaluation of the green supply chain management

practices: A novel neutrosophic approach. Computers in Industry, 108, 210-220.

8. I. Arokiarani,  R. Dhavaseelan, S. Jafari and M. Parimala, On Some New Notions and Functions in

Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, Vol.16, 2017, pp.16-19.

9. R. Dhavaseelan, R. Narmada Devi, S. Jafari and Qays Hatem Imran, Neutrosophic

𝛼𝑚-continuity. Neutrosophic Sets and Systems, 27(2019), 171-179.

10. V. Banupriya  and S. Chandrasekar, Neutrosophic αgs Continuity and Neutrosophic αgs Irresolute

Maps. Neutrosophic Sets and Systems, 28(2019), 162-170.

11. T. Nandhini and M. Vigneshwaran, Nαg#ψ-open map, Nαg#ψ-closed map and Nαg#ψ-homomorphism in

neutrosophic topological spaces. Neutrosophic Sets and Systems, 29(2019), 186-196.

12. I. R. Sumathi, I. Arockiarani, Topological Group Structure of Neutrosophic set. Journal of Advanced

Studies in Topology, 7(1), (2016), 12-20.

13. Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan, On neutrosophic semi--open sets.

Neutrosophic Sets and Systems, 18(2017), 37-42.

14. A. A. Salama, F. Smarandache and V. Kroumov, Neutrosophic Closed Set and Neutrosophic Continuous

Functions. Neutrosophic Sets and Systems, 4(2014), 2-8.

15. M. Parimala, R. Jeevitha, F. Smarandache, S. Jafari and R. Udhayakumar, Neutrosophic

αψ-Homeomorphism in Neutrosophic Topological Spaces. Information, (2018), 9, 187, 1-10.

16. S. H. Al-Kutaibi, On Some types of topological groups. Education Coll. J., Mustansiriyah University,

9(1996).

Florentin Smarandache (author and editor) Collected Papers, XII

647

http://fs.unm.edu/NSS/Neutrosophic%20alpha-m-continuity.pdf
http://fs.unm.edu/NSS/Neutrosophic%20alpha-m-continuity.pdf
http://fs.unm.edu/NSS/NeutrosophicContinuity.pdf
http://fs.unm.edu/NSS/NeutrosophicContinuity.pdf
http://fs.unm.edu/NSS/NopenMap.pdf
http://fs.unm.edu/NSS/NopenMap.pdf
http://fs.unm.edu/NSS/NopenMap.pdf


Neutrosophic Soft Rough Topology and its 
Applications to Multi-Criteria Decision-Making 

Muhammad Riaz, Florentin Smarandache, Faruk Karaaslan, Masooma Raza Hashmi, 
Iqra Nawaz

Abstract: In this manuscript, we introduce the notion of neutrosophic soft rough topology (NSR-

topology) defined on neutrosophic soft rough set (NSR-set). We define certain properties of NSR-

topology including NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit point, 

and NSR-bases. Furthermore, we aim to develop some multi-criteria decision-making (MCDM) 

methods based on NSR-set and NSR-topology to deal with ambiguities in the real-world problems. 

For this purpose, we establish algorithm 1 for suitable brand selection and algorithm 2 to determine 

core issues to control crime rate based on NSR-lower approximations, NSR-upper approximations, 

matrices, core, and NSR-topology. 

Keywords: Neutrosophic soft rough (NSR) set, NSR-topology, NSR-interior, NSR-closure, NSR-

exterior, NSR-neighborhood, NSR-limit point, NSR-bases, Multi-criteria group decision making.  

1. Introduction

The limitations of existing research are recognized in the field of management, social sciences, 

operational research, medical, economics, artificial intelligence, and decision-making problems. 

These limitations can be dealt with the Fuzzy set [1], rough set [2, 3], neutrosophic set [4, 5], soft set 

[6], and different hybrid structures of these sets. Rough set theory was initiated by Pawlak [2], which 

is an effective mathematical model to deal with vagueness and imprecise knowledge. Its boundary 

region gives the concept of vagueness, which can be interpreted by using the vagueness of Frege's 

idea. He invented that vagueness can be dealt with the upper and lower approximations of precise 

set using any equivalence relation. In the real life, rough set theory has many applications in different 

fields such as social sciences, operational research, medical, economics, and artificial intelligence, etc. 

Many real-world problems have neutrosophy in their nature and cannot handle by using fuzzy or 

intuitionistic fuzzy set theory. For example, when we are dealing with conductors and non-

conductors there must be a possibility having insulators. For this purpose, Smarandache [4, 5] 

inaugurated the neutrosophic set theory as a generalization of fuzzy and intuitionistic fuzzy set 

theory. The neutrosophic set yields the value from real standard or non-standard subsets of ]−0, 1+[. 

It is difficult to utilize these values in daily life science and technology problems. Therefore, the 

concept of a single-valued neutrosophic set, which takes value from the subset of [0,1], as defined by 

Wang et al. [7]. The beauty of this set is that it gives the membership grades for truth, indeterminacy 

Muhammad Riaz, Florentin Smarandache, Faruk Karaaslan, Masooma Raza Hashmi, Iqra 
Nawaz (2020). Neutrosophic Soft Rough Topology and its Applications to Multi-Criteria 
Decision-Making. Neutrosophic Sets and Systems 35, 198-219
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and falsity for the corresponding attribute. All the grades are independent of each other and provide 

information about the three shades of an arbitrary attribute. Smarandache [8] extended the 

neutrosophic set respectively to neutrosophic Overset (when some neutrosophic components are >

1), Neutrosophic Underset (when some neutrosophic components are < 0), and to Neutrosophic 

Offset (when some neutrosophic components are off the interval [0,1] , i.e. some neutrosophic 

components are > 1 and other neutrosophic components < 0). In 2016, Smarandache introduced 

the Neutrosophic Tripolar Set and Neutrosophic Multipolar Set, also the Neutrosophic Tripolar 

Graph and Neutrosophic Multipolar Graph [8]. 

The soft set is a mathematical model to deal ambiguities and imprecisions in parametric manners. 

This is another abstraction of the crisp set theory. In 1999, Molodtsov [9] worked on parametrizations 

of the universal set and invented a parameterized family of subsets of the universal set called soft set. 

In recent years, many mathematicians worked on different hybrid structures of the fuzzy and rough 

sets. Ali et al. [10, 11] established some novel operations in the soft sets, rough soft sets and, fuzzy 

soft set theory. Aktas and Çağman [12] introduced various results on soft sets and soft groups. Bakier 

et al. [13] introduced the idea of soft rough topology. Çağman et al. [14] introduced various results 

on soft topology. Chen [15] worked on parametrizations reduction of soft sets and gave its 

applications in decision-making. Feng et al. [16, 17] established various results on soft set, fuzzy set, 

rough set and soft rough sets with the help of illustrations. Hashmi et al. [18] introduced the notion 

of m-polar neutrosophic set and m-polar neutrosophic topology and their applications to multi-

criteria decision-making (MCDM) in medical diagnosis and clustering analysis. Hashmi and Riaz [19] 

introduced a novel approach to the census process by using Pythagorean m-polar fuzzy Dombi's 

aggregation operators. Kryskiewicz [20] introduced the rough set approach to incomplete 

information systems. Karaaslan and Çağman [21] introduced bipolar soft rough sets and presented 

their applications in decision-making. Kumar and Garg [22] introduced the TOPSIS method based on 

the connection number of set pair analyses under an interval-valued intuitionistic fuzzy set 

environment. Maji et al. [23, 24, 25] worked on some results of a soft set and gave its applications in 

decision-making problems. He also invented the idea of a neutrosophic soft set and gave various 

results to intricate the concept with numerous applications. Naeem et al. [26] introduced the novel 

concept of Pythagorean m-polar fuzzy sets and the TOPSIS method for the selection of advertisement 

mode. Peng and Garg [27] introduced algorithms for interval-valued fuzzy soft sets in emergency 

decision making based on WDBA and CODAS with new information measures. Peng and Yang [28] 

presented some results for Pythagorean fuzzy sets. Peng et al. [29] introduced Pythagorean fuzzy 

information measures and their applications. Peng et al. [30] introduced a Pythagorean fuzzy soft set 

and its application. Peng and Dai [31] introduced certain approaches to single-valued neutrosophic 

MADM based on MABAC, TOPSIS and, new similarity measure with score function. Marei [32] 

invented some more results on neutrosophic soft rough sets and worked on its modifications. Pei and 

Miao [33] worked on the information system using the idea of a soft set. Quran et al. [34] introduced 

a novel approach to neutrosophic soft rough set under uncertainty. Riaz et al. [35] introduced soft 

rough topology with its applications to group decision making. 

Florentin Smarandache (author and editor) Collected Papers, XII

649



Riaz and Hashmi [36] introduced the notion of linear Diophantine fuzzy Set (LDFS) and its 

applications towards the MCDM problem. Linear Diophantine fuzzy Set (LDFS) is superior to IFS, 

PFS and, q-ROFS. Riaz and Hashmi [37] introduced novel concepts of soft rough Pythagorean m-

Polar fuzzy sets and Pythagorean m-polar fuzzy soft rough sets with application to decision-making. 

Riaz and Tehrim [38] established the idea of cubic bipolar fuzzy ordered weighted geometric 

aggregation operators and, their application using internal and external cubic bipolar fuzzy data. 

They presented various illustrations and decision-making applications of these concepts by using 

different algorithms. Roy and Maji [39] introduced a fuzzy soft set-theoretic approach to decision-

making problems. Salama [40] investigated some topological properties of rough sets with tools for 

data mining. Shabir and Naz [41] worked on soft topological spaces and presented their applications. 

Thivagar et al. [42] presented some mathematical innovations of a modern topology in medical 

events. Xueling et al. [43] presented some decision-making methods based on certain hybrid soft set 

models. Zhang et al. [44, 45, 46] established fuzzy soft β-covering based fuzzy rough sets, fuzzy soft 

coverings based fuzzy rough sets and, covering on generalized intuitionistic fuzzy rough sets with 

their applications to multi-attribute decision-making (MADM) problems. Broumi et al. [47] 

established the concept of rough neutrosophic sets. Christianto et al. [48] introduced the idea about 

the extension of standard deviation notion with neutrosophic interval and quadruple neutrosophic 

numbers. Adeleke et al. [49, 50] invented the concepts of refined eutrosophic rings I and refined 

neutrosophic rings II. Parimala et al. [51] worked on 𝛼𝜔-closed sets and its connectedness in terms 

of neutrosophic topological spaces. Ibrahim et al. [52] introduced the neutrosophic subtraction 

algebra and neutrosophic subraction semigroup. 

The neutrosophic soft rough set and neutrosophic soft rough topology have many applications in 

MCDM problems. This hybrid erection is the most efficient and flexible rather than other 

constructions. It is constructed with a combination of neutrosophic, soft and, rough set theory. The 

interesting point in this structure is that by using this idea, we can deal with those type of models 

which have roughness, neutrosophy and, parameterizations in their nature. 

The motivation of this extended and hybrid work is presented step by step in the whole manuscript. 

This model is generalized form and use to collect data at a large scale and applicable in medical, 

engineering, artificial intelligence, agriculture and, other daily life problems. In the future, this work 

can be gone easily for other approaches and different types of hybrid structures. 

The layout of this paper is systematized as follows. Section 2, implies some basic ideas including soft 

set, rough set, neutrosophic set, neutrosophic soft set and, neutrosophic soft rough set. We elaborate 

on these ideas with the help of illustrations. In Section 3, we establish neutrosophic soft rough 

topology (NSR-topology) with some examples. We introduce some topological structures on NSR-

topology named NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit point and, 

NSR-bases. In Section 4 and 5, we present multi-criteria decision-making problems by using two 

different algorithms on NSR-set and NSR-topology. We use the idea of upper and lower 

approximations for NSR-set and construct algorithms using NSR-sets and NSR-bases We discuss the 

optimal results obtained from both algorithms and present a comparitive analysis of proposed 

approach with some existing approaches. Finally, the conclusion of this research is summarized in 

section 6. 
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2. Preliminaries

This section presents some basic definitions including soft set, rough set, neutrosophic soft set, and 

neutrosophic soft rough set .  

Definition 2.1 [18] 

Let U be the universal set. Let I(U) is collection of subsets of U. A pair (Θ, 𝔄) is said to be a soft set 

over the universe U, where 𝔄 ⊆ E and Θ:𝔄 → I(U) is a set-valued function. We denote soft set as 

(Θ, 𝔄) or Θ𝔄 and mathematically write it as 

Θ𝔄 = {(ξ, Θ(ξ)): ξ ∈ 𝔄,Θ(ξ) ∈ I(U)}. 

For any ξ ∈ 𝔄, Θ(ξ) is ξ-approximate elements of soft set Θ𝔄. 

Definition 2.2 [21] 

Let U be the initial universe and Y ⊆ U. Then, lower, upper, and boundary approximations of Y are 

defined as  

ℜå(Y) = ⋃g∈U {ℜ(g): ℜ(g) ⊆ Y}, 

ℜå(Y) = ⋃g∈U {ℜ(g): ℜ(g) ∩ Y ≠ ∅},

and 

Bℜ(Y) = ℜ
å(Y) − ℜå(Y),

respectively. Where ℜ is an indiscernibility relation ℜ ⊆ U × U which indicates our information 

about elements of U. The set Y is said to be defined if ℜå(Y) = ℜå(Y). If ℜ
å(Y) ≠ ℜå(Y) i.e BR(Y) ≠

∅, the set Y is rough set w.r.t ℜ.  

Definition 2.3 [41] Let U be the initial universe. Then, a neutrosophic set N on the universe U is 

defined as  

N = {< g, 𝔗N(g), ℑN(g), 𝔉N(g) >: g ∈ U}, where 

−0 ≤ 𝔗N(g) + ℑN(g) + 𝔉N(g) ≤ 3
+, where

𝔗, ℑ, 𝔉: U →]−0, 1+[. 

Where 𝔗, ℑ and 𝔉 represent the degree of membership, degree of indeterminacy and degree of non-

membership for some g ∈ U, respectively.   

Definition 2.4 [16] Let U be an initial universe and E be a set of parameters. Suppose 𝔄 ⊂ E, and 

let ℐ(U) represents the set of all neutrosophic sets of U. The collection (Φ, 𝔄) is said to be the 

neutrosophic soft set over U, where Φ is a mapping given by  

Φ:𝔄 → ℐ(U). 

The set containing all neutrosophic soft sets over U is denoted by NSU. 

Example 2.5  Consider U = {g1, g2, g3, g4, g5}  be set of objects and attribute set is given by 𝔄 =

{ξ1, ξ2, ξ3, ξ4} = E = 𝔄, where  

The neutrosophic soft set represented as Φ𝔄. Consider a mapping Φ:𝔄 → I(U) such that 

Φ(ξ1) = {< g1, 0.7,0.7,0.3 >,< g2, 0.5,0.7,0.7 >,< g3, 0.7,0.5,0.2 >,< g4, 0.7,0.4,0.4 >,< g5, 0.9,0.3,0.4 >},

Φ(ξ2) = {< g1, 0.9,0.5,0.4 >,< g2, 0.7,0.3,0.5 >,< g3, 0.9,0.2,0.4 >,< g4, 0.9,0.3,0.3 >,< g5, 0.9,0.4,0.3 >},

Φ(ξ3) = {< g1, 0.8,0.5,0.4 >,< g2, 0.7,0.5,0.4 >,< g3, 0.8,0.3,0.6 >,< g4, 0.6,0.3,0.7 >,< g5, 0.8,0.4,0.5 >},

Φ(ξ4) = {< g1, 0.9,0.7,0.5 >,< g2, 0.8,0.7,0.7 >,< g3, 0.8,0.7,0.5 >,< g4, 0.8,0.6,0.7 >,< g5, 1.0,0.6,0.7 >}.

The tabular representation of neutrosophic soft set K = (Φ,𝔄) is given in Table 1. 
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  (Φ, 𝔄)  g1  g2  g3  g4  g5 

ξ1 

(0.7,0.7,0.3) (0.5,0.7,0.7) (0.7,0.5,0.2) (0.7,0.4,0.4) (0.9,0.3,0.4) 

ξ2 

(0.9,0.5,0.4) (0.7,0.3,0.5) (0.9,0.2,0.4) (0.9,0.3,0.3) (0.9,0.4,0.3) 

ξ3 

(0.8,0.5,0.4) (0.7,0.5,0.4) (0.8,0.3,0.6) (0.6,0.3,0.7) (0.8,0.4,0.5) 

ξ4 

(0.9,0.7,0.5) (0.8,0.7,0.7) (0.8,0.7,0.5) (0.8,0.6,0.7) (1.0,0.6,0.7) 

Table 1: Neutrosophic soft set (Φ, 𝔄) 

Definition 2.6 Let (Φ, 𝔄) be a neutrosophic soft set on a universe U. For some elements g ∈ U, a 

neutrosophic right neighborhood, regarding ξ ∈ 𝔄 is interpreted as follows;  

gξ = {gi ∈ U:𝔗ξ(gi) ≥ 𝔗ξ(g), ℑξ(gi) ≥ ℑξ(g), 𝔉ξ(gi) ≤ 𝔉ξ(g)}. 

Definition 2.7 Let (Φ, 𝔄) be a neutrosophic soft set over a universe U. For some elements g ∈ U, a 

neutrosophic right neighborhood regarding all parameters 𝔄 is interpreted as follows;  

g]𝔄 =∩ {gξi: ξi ∈ 𝔄}.

Example 2.8 Consider Example 2.5 then we find the following neutosophic right neighborhood 

regarding all parameters 𝔄 as  

g1ξ1
= g1ξ2

= g1ξ3
= g1ξ4

= {g1}, g2ξ1
= g2ξ3

= {g1, g2}, g2ξ2
= {g1, g2, g4, g5}, g2ξ4

= {g1, g2, g3}, g3ξ1
= g3ξ4

= {g1, g3}, g3ξ2
= {g1, g3, g4, g5}, g3ξ3

= {g1, g3, g5}, g4ξ1
= {g1, g3, g4}, g4ξ2

= {g4, g5}, g4ξ3
= U, g4ξ4

= U, g5ξ1
= g5ξ2

= g5ξ4
= {g5}, g5ξ3

= {g1, g5}.

It follows that, 

g1]𝔄 = {g1}, 

g2]𝔄 = {g1, g2}, 

g3]𝔄 = {g1, g3}, 

g4]𝔄 = {g4}, 

g5]𝔄 = {g5}. 

Definition 2.9 Let (Φ, 𝔄) be a neutrosophic soft set over U. For any X ⊆ U, neutrosophic soft lower 

(aprNSR) approximation, neutrosophic soft upper (apr
NSR
) approximation, and neutrosophic soft

boundary (BNSR) approximation of X are defined as 

aprNSR(X) =∪ {g]𝔄: g ∈ U, g]𝔄 ⊆ X} 

apr
NSR
(X) =∪ {g]𝔄: g ∈ U, g]𝔄 ∩ X ≠ ∅}

BNSR(X) = aprNSR(X) − aprNSR(X),

respectively. If aprNSR(X) = aprNSR(X) then X is neutrosophic soft definable set.

Example 2.10 Consider Example 2.5 , If X = {g1} ⊆ U , then aprNSR(X) = {g1}  and apr
NSR
(X) =

{g1, g2, g3}. Since its clear aprNSR(X) ≠ aprNSR(X), so X is neutrosophic soft rough set on U.

3  Neutrosophic Soft Rough Topology 
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In this section, we introduce and study the idea of neutrosophic soft rough topology and its related 

properties. Concepts of (NSR)-open set, (NSR)-closed set, (NSR)-closure, (NSR)-interior, (NSR)-

exterior, (NSR)-neighborhood, (NSR)-limit point, and (NSR)-bases are defined. 

Definition 3.1 Let U  be the initial space, 𝔜 ⊆ U  and G = (U, K)  be a neutrosophic soft 

approximation space, where K = (Φ,𝔄)  is a neutrosophic soft set. The upper and lower 

approximations are calculated on the basis of neutrosophic soft approximation space and 

neighborhoods. Then, the collection  

τNSR(𝔜) = {U, ∅, aprNSR(𝔜), aprNSR(𝔜), BNSR(𝔜)}

is called neutrosophic soft rough topology (NSR-topology) which guarantee the following postulates: 

• U and ∅ belongs to τNSR(𝔜).

• Union of members of τNSR(𝔜) belongs to τNSR(𝔜).

• Finite Intersection of members of τNSR(𝔜) belongs to τNSR(𝔜).

 Then (U, τNSR(𝔜), E) is said to be NSR-topological space, if τNSR(𝔜) is Neutrosophic soft 

rough topology.  

Note that Neutrosophic soft rough topology is based on lower and upper approximations of 

neutrosophic soft rough set.  

Example 3.2  From Example 2.5 , if 𝔜 = {g2, g4} ⊆ U , we obtain aprNSR(𝔜) = {g4} , apr
NSR
(𝔜) =

{g1, g2, g4} and BNSR(𝔜) = {g1, g2}. Then,  

τNSR(𝔜) = {U, ∅, {g4}, {g1, g2, g4}, {g1, g2}} 

is a NSR-topology. 

Definition 3.3 Let (U, τNSR(𝔜), E) be an NSR-topological space. Then, the members of τNSR(𝔜) are 

called NSR-open sets. An NSR-set is said to be an NSR-closed set if its complement belongs to 

τNSR(𝔜).  

Proposition 3.4 Consider (U, τNSR(𝔜), E) as NSR-space over U. Then,   

• U and ∅ are NSR-closed sets.

• The intersection of any number of NSR-closed sets is an NSR-closed set over U.

• The finite union of NSR-closed sets is an NSR-closed set over U.

Proof. The proof is straightforward.  

Definition 3.5 Let (U, τNSR(𝔜), E)  be an NSR-space over U  and τNSR(𝔜) = {U, ∅} . Then, τNSR  is 

called NSR-indiscrete topology on U  w.r.t 𝔜  and corresponding space is said to be an NSR-

indiscrete space over U.  

Definition 3.6 Let (U, τNSR(𝔜), E) is an NSR-topological space and A ⊆ B ⊆ U. Then, the collection 

τNSRA = {Bi ∩ A: Bi ∈ τNSR, i ∈ L ⊆ N}  is called NSR-subspace topology on A . Then, (A, τNSRA)  is

called an NSR-topological subspace of (B, τNSR).  

Definition 3.7 Let (U, τNSR′(𝔜), E) and (U, τNSR(𝔛), E) be two NSR-topological spaces. τNSR′(𝔜) is 

finer than τNSR(𝔛), if τNSR′(𝔜) ⊇ τNSR(𝔛).  

Definition 3.8 Let (U, τNSR(𝔜), E)  be a NSR-topological space and βNSR ⊆ τNSR . If we can write 

members of τNSR  as the union of members of βNSR , then βNSR  is called NSR-basis for the NSR-

topology τNSR.  

Proposition 3.9 If τNSR(𝔜) is an NSR-topology on U w.r.t 𝔜 the the collection  

βNSR = {U, aprNSR(𝔜), BNSR(𝔜)} 

is a base for τNSR(𝔜) 
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Theorem 3.10 Let (U, τNSR(𝔜), E) and (U, τNSR′(𝔜′), E) be two NSR-topological spaces w.r.t 𝔜 and 

𝔜′ respectively. Let βNSR and βNSR′ be NSR-bases for τNSR and τNSR′, respectively. If βNSR′ ⊆ βNSR 

then τNSR is finer than τNSR′ and τNSR′ is weaker than τNSR.  

Theorem 3.11 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be an NSR-topological space. If 𝛽𝑁𝑆𝑅  is an NSR-basis for 𝜏𝑁𝑆𝑅 . 

Then, the collection 𝛽𝑁𝑆𝑅𝐵 = {𝐴𝑖 ∩ 𝐵: 𝐴𝑖 ∈ 𝛽𝑁𝑆𝑅 , 𝑖 ∈ 𝐼 ⊆ ℕ}  is an NSR-basis for the NSR-subspace 

topology on 𝐵.  

Proof. Consider 𝐴𝑖 ∈ 𝜏𝑁𝑆𝑅𝐵 . By definition of NSR-subspace topology, 𝐶 = 𝐷 ∩ 𝐵 ,where 𝐷 ∈ 𝜏𝑁𝑆𝑅 .

Since 𝐷 ∈ 𝜏𝑁𝑆𝑅, it follows that 𝐷 = ⋃𝐴𝑖∈𝛽𝑁𝑆𝑅 𝐴𝑖. Therefore,

𝐶 = (⋃𝐴𝑖∈𝛽𝑁𝑆𝑅 𝐴𝑖) ∩ 𝐵 = ⋃𝐴𝑖∈𝛽𝑁𝑆𝑅 (𝐴𝑖 ∩ 𝐵).

3.1  Main Results 

We present some results of neutrosophic soft rough topology including NSR-interior, NSR-exterior, 

NSR-closure, NSR-frontier, NSR-neighbourhood and NSR-limit point. These are some topological 

properties of NSR-topology and can be used to prove various results related to NSR-topological 

spaces. 

Definition 3.12 Let (𝑈, 𝜏𝑁S𝑅(𝔜), 𝐸)  be an NSR-topological space w.r.t 𝔜 , where 𝑇 ⊆ 𝑈  be an 

arbitrary subset. The NSR-interior of 𝑇 is union of all NSR-open subsets of 𝑇 and we denote it as 

𝐼𝑛𝑡𝑁𝑆𝑅(𝑇).  

We verify that 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) is the largest NSR-open set contained by 𝑇.  

Theorem 3.13 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be a NSR-topological space over 𝑈 w.r.t 𝔜, 𝑆 and 𝑇 are NSR-

sets over 𝑈. Then   

• 𝐼𝑛𝑡𝑁𝑆𝑅(∅) = ∅ and 𝐼𝑛𝑡𝑁𝑆𝑅(𝑈) = 𝑈,

• 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑆,

• 𝑆 is NSR-open set ⇔ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) = 𝑆,

• 𝐼𝑛𝑡𝑁𝑆𝑅(𝐼𝑛𝑡𝑁𝑆𝑅(𝑆)) = 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆),

• 𝑆 ⊆ 𝑇 implies 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇),

• 𝐼n𝑡𝑁𝑆𝑅(𝑆) ∪ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∪ 𝑇),

• 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) = 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇).

Proof. (i) and (ii) are obvious. 

(iii) First, suppose that 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) = 𝑆. Since 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) is an NSR-open set, it follows that 𝑆 is NSR-

open set. For the converse, if 𝑆 is a NSR-open set, then the largest NSR-open set that is contained in

𝑆 is 𝑆 itself. Thus, 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) = 𝑆.

(iv) Since 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) is an NSR-open set, by part (iii) we get 𝐼𝑛𝑡𝑁𝑆𝑅(𝐼𝑛𝑡𝑁𝑆𝑅(𝑆)) = 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆).

(v) Suppose that 𝑆 ⊆ 𝑇. By (ii) 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑆. Then 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑇. Since 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) is NSR-open set

contained by 𝑇. So by definition of NSR-interior 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇).

(vi) By using (ii) 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑆  and 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝑇 . Then, 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∪ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝑆 ∪ 𝑇 . Since

𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∪ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) is an NSR-open, it follows that 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∪ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∪ 𝑇).

(vii) By using (ii) 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ⊆ 𝑆  and 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝑇 . Then, 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝑆 ∩ 𝑇 . Since

𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇)  is NSR-open, it follows that 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇). For the

converse, 𝑆 ∩ 𝑇 ⊆ 𝑆  also 𝑆 ∩ 𝑇 ⊆ 𝑇 . Then, 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆)  and 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆

𝐼𝑛𝑡𝑁𝑆𝑅(𝑇). Hence 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑆) ∩ 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇).
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Definition 3.14 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be an NSR-topological space w.r.t 𝔜, where 𝔜 ⊆ 𝑈. Let 𝑇 ⊆ 𝑈. 

Then, NSR-exterior of 𝑇 is defined as 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇
𝑐), where 𝑇𝑐 is complement of 𝑇. NSR-exterior of 𝑇

is denoted by 𝐸𝑥𝑡𝑁𝑆𝑅(𝑇).  

Definition 3.15 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be an NSR-topological space w.r.t 𝔜, where 𝔜 ⊆ 𝑈. Let 𝑇 ⊆ 𝑈. 

Then, NSR-closure of 𝑇 is defined to be intersection of all NSR-closed supersets of 𝑇 and is denoted 

by 𝐶𝑙𝑁𝑆𝑅(𝑇).  

Example 3.16 Consider the NSR-topology given in Example 3.2, taking 𝑇 = {𝑔1, 𝑔2, 𝑔3}, so 𝑇𝑐 =

{𝑔4, 𝑔5}. Then 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇) = {𝑔1, 𝑔2}, 𝐸𝑥𝑡𝑁𝑆𝑅(𝑇) = 𝐼𝑛𝑡𝑁𝑆𝑅(𝑇
𝑐) = {𝑔4} and 𝐶𝑙𝑁𝑆𝑅(T) = {𝑔1, 𝑔2, 𝑔3, 𝑔5}.

Theorem 3.17 Let (𝑈, 𝜏𝑁𝑆𝑅(𝔜), 𝐸) be a NSR-topological space over 𝑈 w.r.t 𝔜, 𝑆 and 𝑇 are NSR-

sets over 𝑈. Then   

• 𝐶𝑙𝑁𝑆𝑅(∅) = ∅ and 𝐶𝑙𝑁𝑆𝑅(𝑈) = 𝑈,

• 𝑆 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆),

• 𝑆 is NSR-closed set ⇔ 𝑆 = 𝐶𝑙𝑁𝑆𝑅(𝑆),

• 𝐶𝑙𝑁𝑆𝑅(𝐶𝑙𝑁𝑆𝑅(𝑆)) = 𝐶𝑙𝑁𝑆𝑅(𝑆),

• 𝑆 ⊆ 𝑇 implies 𝐶𝑙𝑁𝑆𝑅(𝑆) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇),

• 𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇) = 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝑙𝑁𝑆𝑅(𝑇),

• 𝐶𝑙𝑁𝑆𝑅(𝑆 ∩ T) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆) ∩ 𝐶𝑙𝑁𝑆𝑅(𝑇).

Proof. (i) and (ii) are straightforward. 

(iii) First, consider 𝑆 = 𝐶𝑙𝑁𝑆𝑅(𝑆). Since 𝐶𝑙𝑁𝑆𝑅(𝑆) is an NSR-closed set, so 𝑆 is an NSR-closed set over

𝑈. For the converse, suppose that 𝑆 be an NSR-closed set over 𝑈. Then, 𝑆 is NSR-closed superset of

𝑆. So that 𝑆 = 𝐶𝑙𝑁𝑆𝑅(𝑆).

(iv) By definition 𝐶𝑙𝑁𝑆𝑅(𝑆) is always NSR-closed set. Therefore, by part (iii) we have

𝐶𝑙𝑁𝑆𝑅(𝐶𝑙𝑁𝑆𝑅(𝑆)) = 𝐶𝑙𝑁𝑆𝑅(𝑆).

(v) Let 𝑆 ⊆ 𝑇. By (ii) 𝑇 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇). Then, 𝑆 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇). Since 𝐶𝑙𝑁𝑆𝑅(𝑇) is a NSR-closed superset of

𝑆, it follows that 𝐶𝑙𝑁𝑆𝑅(𝑆) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇).

(vi) Since 𝑆 ⊆ 𝑆 ∪ 𝑇  and 𝑇 ⊆ 𝑆 ∪ 𝑇 , by part (v), 𝐶𝑙𝑁𝑆𝑅(𝑆) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇)  and 𝐶𝑙𝑁𝑆𝑅(𝑇) ⊆

𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇) . Hence 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝑙𝑁𝑆𝑅(𝑆) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇) .  For the converse, let   𝑆 ⊆

𝐶𝑙𝑁𝑆𝑅(𝑆) and 𝑇 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑇). Then, 𝑆 ∪ 𝑇 ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝐿𝑁𝑆𝑅(𝑇). Since 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝑙𝑁𝑆𝑅(𝑇) is a

NSR-closed superset of 𝑆 ∪ 𝑇. Thus, 𝐶𝑙𝑁𝑆𝑅(𝑆 ∪ 𝑇) = 𝐶𝑙𝑁𝑆𝑅(𝑆) ∪ 𝐶𝑙𝑁𝑆𝑅(𝑇). 

(vii) Since 𝑆 ∩ 𝑇 ⊆ 𝑆  and 𝑆 ∩ 𝑇 ⊆ 𝑇 , by part(5) 𝐶𝑙𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆)  and 𝐶𝑙𝑁𝑆𝑅(𝑆 ∩  𝑇) ⊆

𝐶𝑙𝑁𝑆𝑅(𝑇). Thus, we obtain 𝐶𝑙𝑁𝑆𝑅(𝑆 ∩ 𝑇) ⊆ 𝐶𝑙𝑁𝑆𝑅(𝑆) ∩ 𝐶𝑙𝑁𝑆𝑅(𝑇).

Definition 3.18 Let (𝑈, 𝜏𝑁𝑅(𝔜), 𝐸) be a NSR-topological space w.r.t 𝔜, where 𝔜 ⊆ 𝑈. Let 𝑇 ⊆ 𝑈.

Then, NSR-frontier or NSR-boundary of 𝑇 is denoted by 𝐹𝑟𝑁𝑆𝑅(𝑇) or 𝑏𝑁𝑆𝑅(𝑇) and mathematically

defined as

𝐹𝑟𝑁𝑆𝑅(𝑇) = 𝐶𝑙𝑁𝑆𝑅(𝑇) ∩ 𝐶𝑙𝑁𝑆𝑅(𝑇
𝑐).

Clearly NSR-frontier 𝐹𝑟𝑁𝑆𝑅(𝑇) is an NSR-closed set.

Example 3.19 Consider the NSR-topology given in Example 3.2, taking 𝑇 = {𝑔1, 𝑔2, 𝑔3}, so 𝑇𝑐 =

{𝑔4, 𝑔5}. Then, 𝐶𝑙𝑁𝑆𝑅(𝑇) = {𝑔1, 𝑔2, 𝑔3, 𝑔5} and 𝐶𝑙𝑁𝑆𝑅(𝑇
𝑐) = {𝑔3, 𝑔4, 𝑔5}.

𝐹𝑟𝑁𝑆𝑅(𝑇) = 𝐶𝑙𝑁𝑆𝑅(𝑇) ∩ 𝐶𝑙𝑁𝑆𝑅(𝑇
𝑐) = {𝑔3, 𝑔5}
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Definition 3.20 Let (𝑈, 𝜏𝑁𝑅(𝔜), 𝐸) be an NSR-topological space. A subset 𝑋 of 𝑈 is said to be NSR-

neighborhood of 𝑔 ∈ 𝑈 if there exist an NSR-open set 𝑊𝑔 containing 𝑔 so that  

𝑔 ∈ 𝑊𝑔 ⊆ 𝑋. 

Definition 3.21 The set of all the NSR-limit points of 𝑆 is known as NSR-derived set of 𝑆 and is 

denoted by 𝑆𝑁𝑆𝑅
𝑑 .

4  NSR-set in multi-criteria decision-making 

In this section, we present an idea for multi-criteria decision-making method based on the 

neutrosophic soft rough sets 𝑁𝑆𝑅 − 𝑠𝑒𝑡. 

Let 𝑈 = {𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑚} is the set of objects under observation, 𝐸 be the set of criteria to analyze 

the objects in 𝑈 . Let 𝔄 = {𝜉1, 𝜉2, 𝜉3, . . . , 𝜉𝑛} ⊆ 𝐸  and (𝛷, 𝔄)  be a neutrosophic soft set over 𝑈. 

Suppose that 𝐻 = {𝑃1, 𝑃2, . . . , 𝑃𝑘} be a set of experts, 𝔜1, 𝔜2, . . . , 𝔜𝑘 are subsets of 𝑈 which indicate 

results of initial evaluations of experts 𝑃1, 𝑃2, . . . , 𝑃𝑘 , respectively and 𝔗1, 𝔗2, . . . 𝔗𝑟 ∈ 𝑁𝑆𝑈  are real 

results that previously obtained for same or similar problems in different times or different places.  

Definition 4.1 Let 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗),𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞
(𝔜𝑗) be neutrosophic soft lower and upper approximations 

of 𝔜𝑗(𝑗 = 1,2, . . . , 𝑘) related to 𝔗𝑞(𝑞 = 1,2, . . . , 𝑟). Then, 

𝑎 =

(

𝑛1
1 𝑛2

1 ⋯ 𝑛𝑘
1

𝑛1
2 𝑛2

2 ⋯ 𝑛𝑘
2

⋮ ⋮ ⋱ ⋮
𝑛1
𝑟 𝑛2

𝑟 ⋯ 𝑛𝑘
𝑟

)

 
(1) 

𝑎 =

(

𝑛1
1
𝑛2
1
⋯ 𝑛𝑘

1

𝑛1
2
𝑛2
2
⋯ 𝑛𝑘

2

⋮ ⋮ ⋱ ⋮
𝑛1
𝑟
𝑛2
𝑟
⋯ 𝑛𝑘

𝑟

)

 
(2) 

 are called neutrosophic soft lower and neutrosophic upper approximations matrices, respectively, 

and represented by 𝑎 and 𝑎. Here 

𝑛𝑗
𝑞
= (𝑔1𝑗

𝑞
, 𝑔2𝑗
𝑞
, . . . , 𝑔𝑛𝑗

𝑞
) (3) 

𝑛𝑗
𝑞
= (𝑔

1𝑗

𝑞
, 𝑔
2𝑗

𝑞
, . . . , 𝑔

𝑛𝑗

𝑞
) (4) 

 Where 

𝑔𝑖𝑗
𝑞
= (

1, 𝑔𝑖 ∈ 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗)

0, 𝑔𝑖 ∈ 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗)

 and 

𝑔
𝑖𝑗

𝑞
= (

1, 𝑔𝑖 ∈ 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞
(𝔜𝑗)

0, 𝑔𝑖 ∈ 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞
(𝔜𝑗)
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Definition 4.2 Let 𝑛 and 𝑛 be neutrosophic soft lower and neutrosophic upper approximations 

matrices based on 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗, 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞
(𝔜𝑗  for 𝑞 = 1,2, . . . 𝑟 and 𝑗 = 1,2, . . . , 𝑘. Neutrosophic soft

lower approximation vector represented by (𝑛) and neutrosophic soft upper approximation vector 

represented by (𝑛) are defined by, respectively, 

𝑛 =⊕
𝑗=1

𝑘

⊕
𝑞=1

𝑟

𝑛𝑗
𝑞 (5) 

𝑛 =⊕
𝑗=1

𝑘

⊕
𝑞=1

𝑟

𝑛𝑗
𝑞

(6) 

 Here the operation ⊕  represents the vector summation.  

Definition 4.3 Let 𝑛  and 𝑛  be neutrosophic soft 𝔗𝑞 −  lower approximation vector and 

neutrosophic soft 𝔗𝑞 − upper approximation vector, respectively. Then, vector summation 𝑛 ⊕ 𝑛 =

(𝑤1, 𝑤2, . . . , 𝑤𝑛) is called decision vector.  

Definition 4.4 Let 𝑛 ⊕ 𝑛 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be the decision vector. Then, each 𝑤𝑖  is called a weighted 

number of 𝑔𝑖 ∈ 𝑈 and 𝑔𝑖 is called an optimum element of 𝑈 if it weighted number is maximum of 

𝑤𝑖∀𝑖 ∈ 𝐼𝑛 . In this case, if there are more then one optimum elements of 𝑈, select one of them.  

Algorithm 1 for neutrosophic soft rough set: 

Input 

Step-1: Take initial evaluations 𝔜1, 𝔜2, . . . , 𝔜𝑘 of experts 𝑃1, 𝑃2, . . . , 𝑃𝑘. 

Step-2: Construct 𝔗1, 𝔗2, . . . 𝔗𝑟 neutrosophic soft sets using real results. 

Step-3: Compute 𝑎𝑝𝑟𝑁𝑆𝑅𝔗𝑞(𝔜𝑗) and 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗𝑞

(𝔜𝑗) for each 𝑞 = 1,2, . . . , 𝑟 and 𝑗 = 1,2, . . . , 𝑘. 

Step-4: Construct neutrosophic soft lower and neutrosophic soft upper approximations matrices 𝑎 

and 𝑎. 

Step-5: Compute 𝑛 and 𝑛, 

Step-6: Compute 𝑛 ⊕ 𝑛, 

Output  

Step-7: Select 𝑚𝑎𝑥𝑖∈𝐼𝑛𝑤𝑖 .  

The flow chart of proposed algorithm 1 is represented in Figure.1 
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Fig 1: Flow chart diagram of proposed algorithm 1 for NSR-set. 

Example 4.5 In finance company three finance experts 𝑃1, 𝑃2, 𝑃3 want to make investment one of the 

clothing brand  

{𝑔1 = 𝐽𝑜𝑟, 𝑔2 = 𝐴𝑒𝑟𝑜, 𝑔3 = 𝐶ℎ𝑎𝑛, 𝑔4 = 𝐿𝑖, 𝑔5 = 𝑆𝑟𝑘}. 

The set of parameters include the following parameters  

𝔄 = {𝜉1 = 𝑀𝑎𝑟𝑘𝑒𝑡 𝑆ℎ𝑎𝑟𝑒, 𝜉2 = 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑚𝑒𝑛𝑡, 𝜉3 = 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠, 𝜉4 =

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} 

𝑆𝑡𝑒𝑝1: 𝔜1 = {𝑔1, 𝑔2, 𝑔4}, 𝔜2 = {𝑔1, 𝑔3, 𝑔5}, 𝔜3 = {𝑔2, 𝑔4, 𝑔5} are primary evaluations of experts 

𝑃1, 𝑃2, 𝑃3, respectively. 

𝑆𝑡𝑒𝑝2: Neutrosophic soft sets 𝔗1, 𝔗2, 𝔗3 are the actual results in individual three periods 

and tabular representations of these neutrosophic soft sets are given in Table 2, Table 3 and Table 4, 

respectively.  

  𝔗1  𝜉1  𝜉2  𝜉3  𝜉4 

𝑔1  (0.6,0.6,0.2)  (0.8,0.4.0.3)  (0.7,0.4,0.3)  (0.8,0.6,0.4) 

𝑔2  (0.4,0.6,0.6)  (0.6,0.2,0.4)  (0.6,0.4,0.3)  (0.7,0.6,0.6) 

𝑔3  (0.6,0.4,0.2)  (0.8,0.1,0.3)  (0.7,0.2,0.5)  (0.7,0.6,0.4) 

𝑔4  (0.6,0.3,0.3)  (0.8,0.2,0.2)  (0.5,0.2,0.6)  (0.7,0.5,0.6) 

𝑔5  (0.8,0.2,0.3)  (0.8,0.3,0.2)  (0.7,0.3,0.4)  (0.9,0.5,0.7) 

Table 2: Neutrosophic soft set 𝔗1 

  𝔗2  𝜉1  𝜉2  𝜉3  𝜉4 

𝑔1  (0.6,0.4,0.2)  (0.8,0.1,0.3)  (0.7,0.2,0.5)  (0.7,0.6,0.4) 

𝑔2  (0.4,0.6,0.6)  (0.6,0.2,0.4)  (0.6,0.4,0.3)  (0.7,0.6,0.6) 

𝑔3  (0.8,0.2,0.3)  (0.8,0.3,0.2)  (0.7,0.3,0.4)  (0.9,0.5,0.7) 

𝑔4  (0.6,0.3,0.3)  (0.8,0.2,0.2)  (0.5,0.2,0.6)  (0.7,0.5,0.6) 

𝑔5  (0.6,0.6,0.2)  (0.8,0.4.0.3)  (0.7,0.4,0.3)  (0.8,0.6,0.4) 

Table 3: Neutrosophic soft set 𝔗2 
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  𝔗3  𝜉1  𝜉2  𝜉3  𝜉4 

𝑔1  (0.6,0.6,0.2)  (0.8,0.4.0.3)  (0.7,0.4,0.3)  (0.8,0.6,0.4) 

𝑔2  (0.6,0.3,0.3)  (0.8,0.2,0.2)  (0.5,0.2,0.6)  (0.7,0.5,0.6) 

𝑔3  (0.6,0.4,0.2)  (0.8,0.1,0.3)  (0.7,0.2,0.5)  (0.7,0.6,0.4) 

𝑔4  (0.4,0.6,0.6)  (0.6,0.2,0.4)  (0.6,0.4,0.3)  (0.7,0.6,0.6) 

𝑔5  (0.8,0.2,0.3)  (0.8,0.3,0.2)  (0.7,0.3,0.4)  (0.9,0.5,0.7) 

Table 4: Neutrosophic soft set 𝔗3  

The tabular representation of the neutrosophic right neighborhoods of 𝔗1, 𝔗2, 𝔗3 are given in 

Table5, Table 6 and Table 7 respectively. 

 Neighborhoods of 𝔗1 

𝑔1]𝔄  {𝑔1} 

𝑔2]𝔄  {𝑔1, 𝑔2} 

𝑔3]𝔄  {𝑔1, 𝑔3} 

𝑔4]𝔄  {𝑔4} 

𝑔5]𝔄  {𝑔5} 

 Table 5: Neutrosophic right neighborhoods of 𝔗1 w.r.t set 𝔄 

 Neighborhoods of 𝔗2 

𝑔1]𝔄  {𝑔1, 𝑔5} 

𝑔2]𝔄  {𝑔2, 𝑔5} 

𝑔3]𝔄  {𝑔3} 

𝑔4]𝔄  {𝑔4} 

𝑔5]𝔄  {𝑔5} 

Table 6: Neutrosophic right neighborhoods of 𝔗2 w.r.t set 𝔄 

 Neighborhoods of 𝔗3 

𝑔1]𝔄  {𝑔1} 

𝑔2]𝔄  {𝑔2} 

𝑔3]𝔄  {𝑔1, 𝑔3} 

𝑔4]𝔄  {𝑔1, 𝑔4} 

𝑔5]𝔄  {𝑔5} 

Table 7: Neutrosophic right neighborhoods of 𝔗3 w.r.t set 𝔄 
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𝑆𝑡𝑒𝑝3: Next we find 𝑎𝑝𝑟𝑁𝑆𝑅𝔗1  and 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗1

 for each 𝔜𝑗 , where 𝑗 = 1,2,3. 

𝑎𝑝𝑟𝑁𝑆𝑅𝔗1(𝔜1) = {𝑔1, 𝑔2, 𝑔4},

𝑎𝑝𝑟
𝑁𝑆𝑅𝔗1

(𝔜1) = {𝑔1, 𝑔2, 𝑔3, 𝑔4}, 

𝑎𝑝𝑟𝑁𝑆𝑅𝔗1(𝔜2) = {𝑔1, 𝑔3, 𝑔5},

𝑎𝑝𝑟
𝑁𝑆𝑅𝔗1

(𝔜2) = {𝑔1, 𝑔2, 𝑔3, 𝑔5}, 

𝑎𝑝𝑟𝑁𝑆𝑅𝔗1(𝔜3) = {𝑔4, 𝑔5},

𝑎𝑝𝑟
𝑁S𝑅𝔗1

(𝔜3) = {𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5} 

Similarly we find 𝑎𝑝𝑟𝑁𝑆𝑅𝔗2 ,𝑎𝑝𝑟
𝑁𝑆𝑅𝔗2

and 𝑎𝑝𝑟𝑁𝑆𝑅𝔗3 , 𝑎𝑝𝑟
𝑁𝑆𝑅𝔗3

 corresponding to each 𝔜𝑗 , where 𝑗 =

1,2,3.  

𝑎𝑝𝑟𝑁𝑆𝑅𝔗2(𝔜1) = {𝑔4},

𝑎𝑝𝑟
𝑁𝑆𝑅𝔗2

(𝔜1) = {𝑔1, 𝑔2, 𝑔4, 𝑔5}, 

𝑎𝑝𝑟𝑁𝑆𝑅𝔗2(𝔜2) = {𝑔1, 𝑔3, 𝑔5},

𝑎𝑝𝑟
𝑁𝑆𝑅𝔗2

(𝔜2) = {𝑔1, 𝑔2, 𝑔3, 𝑔5}, 

𝑎𝑝𝑟𝑁S𝑅𝔗2(𝔜3) = {𝑔4, 𝑔5},

𝑎𝑝𝑟
𝑁𝑆𝑅𝔗2

(𝔜3) = {𝑔1, 𝑔2, 𝑔4, 𝑔5} 

 and 

𝑎𝑝𝑟𝑁𝑆𝑅𝔗3(𝔜1) = {𝑔1, 𝑔2, 𝑔4},

𝑎𝑝𝑟
𝑁𝑆𝑅𝔗3

(𝔜1) = {𝑔1, 𝑔2, 𝑔3, 𝑔4}, 

𝑎𝑝𝑟𝑁𝑆𝑅𝔗3(𝔜2) = {𝑔1, 𝑔3, 𝑔5},

𝑎𝑝𝑟
𝑁𝑆𝑅𝔗3

(𝔜2) = {𝑔1, 𝑔3, 𝑔4, 𝑔5}, 

𝑎𝑝𝑟𝑁𝑆𝑅𝔗3(𝔜3) = {𝑔2, 𝑔5},

𝑎𝑝𝑟
𝑁𝑆𝑅𝔗3

(𝔜3) = {𝑔1, 𝑔2, 𝑔4, 𝑔5} 

 𝑆𝑡𝑒𝑝4: Neutrosophic soft lower approximation matrix and neutrosophic soft upper approximation 

matrix are obtained as follows: 

𝑎 = (

(1,1,0,1,0) (1,0,1,0,1) (0,0,0,1,1)
(0,0,0,1,0) (1,0,1,0,1) (0,0,0,1,1)

(1,1,0,1,0) (1,0,1,0,1) (0,1,0,0,0)
) (7) 

𝑎 = (

(1,1,1,1,0) (1,1,1,0,1) (1,1,1,1,1)
(1,1,0,1,1) (1,1,1,0,1) (1,1,0,1,1)

(1,1,1,1,0) (1,0,1,1,1) (1,1,0,1,1)
) (8) 

 𝑆𝑡𝑒𝑝5: Using Eqs. 7 and 8, neutrosophic soft lower approximation vector and neutrosophic soft 

upper approximation vector are obtained as follows:  

𝑛 = (5,3,3,5,5) 

𝑛 = (9,8,6,7,7) 

𝑆𝑡𝑒𝑝6: Decision vector is obtained as 𝑛 ⊕ 𝑛 = (14,11,9,12,12). 

𝑆𝑡𝑒𝑝7: Since 𝑚𝑎𝑥𝑖∈𝐼𝑛𝑤𝑖 = 𝑤1 = 14, optimal clothing brand is 𝑔1 = 𝐽𝑜𝑟. 
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5  NSR-topology in multi-criteria decision-making 

In this section, we use the concept of NSR-topology in multi-criteria decision-making. The idea of 

core in the picking of attributes to the rough set was introduced by Thivagar in [45]. In the following 

definition, we develop this idea of core to the NSR-set.  

Definition 5.1 Let 𝑈 be the set of objects, 𝐾 = (𝛷,𝔄) is the neutrosophic soft set and 𝐺 = (𝑈, 𝐾) is 

the the corresponding neutrosophic soft approximation space. Let ℜ be an indiscernibility relation. 

Let 𝜏𝑁𝑆𝑅 be an NSR-topology on 𝑈 and 𝛽𝑁𝑆𝑅 be the basis defined for 𝜏𝑁𝑆𝑅. Let 𝔑 be the subset of 

𝔄, is said to be core of ℜ if 𝛽𝔑 ≠ 𝛽𝑁𝑆𝑅−(𝑠) for each '𝑠' in 𝔑. i.e. a core of ℜ is the subset of attributes 

with the condition that if we remove any element from 𝔑 it will affect the classification power of the 

attributes.  

Algorithm 2 for neutrosophic soft rough topology: 

Input 

Step-1: Consider initial universe 𝑈, set of attributes 𝔄 which can be classified into division 𝔻 of 

decision attributes, ℂ of condition attributes and an indiscernibility relation ℜ on 𝑈. Construct the 

neutrosophic soft set in tabular form corresponding to ℂ condition attributes and a subset 𝔜 of 𝑈. 

The columns indicate the elements of universe, rows represent the attributes and entries of table give 

attribute values. 

Output 

Step-2: Classify set 𝔜 and find the NSR-approximation subsets (ℜ𝐺(𝔜), ℜ𝐺(𝔜)) 𝑎𝑛𝑑 𝐵𝐺(𝔜)    

w.r.t ℜ.

Step-3: Define Neutrosophic Soft Rough Topology 𝜏ℜ on 𝑈 and find basis 𝛽𝑁𝑆𝑅. 

Step-4: By removing an attribute 𝜉  from ℂ , find again the NSR-approximation subsets 

(ℜ𝐺(𝔜), ℜ𝐺(𝔜)), 𝐵𝐺(𝔜)) w.r.t ℜ𝑜𝑛ℂ − (𝜉). 

Step-5: Generate 𝑁𝑆𝑅 − 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝜏𝑁𝑆𝑅−(𝜉) on 𝑈,define its basis 𝛽𝑁𝑆𝑅−(𝜉). 

Step-6: Repeat step 4 and step 5 for each attribute in ℂ. 

Step-7: The attributes for which 𝛽𝑁𝑆𝑅−(𝜉) ≠ 𝛽𝑁𝑆𝑅 gives the 𝑐𝑜𝑟𝑒(ℜ).   

The flow chart diagram of proposed algorithm 2 is represented as Figure 2. 
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Fig 2: The flow chart diagram of algorithm 2 for NSR-topology. 

Example 5.2 Here we consider the problem of Crime rate in developing countries of Asia, Crime is 

an unlawful act punishable by a state or other authority. In other words, we can say that a crime is 

an act harmful not only to some individual but also to a community, society or the state. A developing 

country is a country with a less developed industrial base and a low Human Development Index 

(HDI) relative to other countries. Developing countries are facing so many issues including high 

crime rate. This is the fundamental reason of emerging questions in our mind, that why the crime 

rate is higher in developing countries? 

 We apply the concept of NSR-topology in Crime rate of developing countries of Asia. 

Consider the following information table which shows data about 5 developing countries. The rows 

of the table represent the objects(countries). Let 𝑈 = {𝑔1 = 𝐵𝑎𝑛𝑔𝑙𝑎𝑑𝑒𝑠ℎ, 𝑔2 = 𝐴𝑓𝑔ℎ𝑎𝑛𝑖𝑠𝑡𝑎𝑛, 𝑔3 =

𝑆𝑟𝑖𝐿𝑎𝑛𝑘𝑎, 𝑔4 = 𝑁𝑒𝑝𝑎𝑙, 𝑔5 = 𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛}  be the set of developing countries and 𝔄 = {𝜉1, 𝜉2, 𝜉3, 𝜉4} , 

where 𝜉1 stands for `corruption', 𝜉2 stands for `poverty ', 𝜉3 stands for `self actualization' and 𝜉4 

stands for `lack of education'. Let 𝐾 = (𝛷,𝔄) is the neutrosophic soft set over 𝑈 shown by Table 

8,corresponding soft approximation space 𝐺 = (𝑈, 𝐾).   

  𝐾  𝜉1  𝜉2  𝜉3  𝜉4  Crime Rate 

𝑔1  (0.6,0.6,0.2)  (0.8,0.4.0.3)  (0.7,0.4,0.3)  (0.8,0.6,0.4)  High 

𝑔2  (0.4,0.6,0.6)  (0.6,0.2,0.4)  (0.6,0.4,0.3)  (0.7,0.6,0.6)  Medium 

𝑔3  (0.6,0.4,0.2)  (0.8,0.1,0.3)  (0.7,0.2,0.5)  (0.7,0.6,0.4)  Medium 

𝑔4  (0.6,0.3,0.3)  (0.8,0.2,0.2)  (0.5,0.2,0.6)  (0.7,0.5,0.6)  High 

𝑔5  (0.8,0.2,0.3)  (0.8,0.3,0.2)  (0.7,0.3,0.4)  (0.9,0.5,0.7)  High 

Table 8: Neutrosophic soft set 𝐾 = (𝛷,𝔄) 

The tabular representation of neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 is given Table 9. 

 Neighborhoods of 𝐾 

𝑔1]𝔄  {𝑔1} 

𝑔2]𝔄  {𝑔1, 𝑔2} 

𝑔3]𝔄  {𝑔1, 𝑔3} 
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𝑔4]𝔄  {𝑔4} 

𝑔5]𝔄  {𝑔5} 

Table 9: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 

 For 𝔜 = {𝑔1, 𝑔3, 𝑔5}  and indiscernibility relation 'Crime rate' we have ℜ𝐺(𝔜) = {𝑔1, 𝑔3, 𝑔5} , 

ℜ𝐺(𝔜) = {𝑔1, 𝑔2, 𝑔3, 𝑔5} and 𝐵𝐺(𝔜) = {𝑔2}. 

So we define NSR-topology as 𝜏𝑁𝑆𝑅(𝔜) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {g2}} and its basis 𝛽𝑁𝑆𝑅 =

{𝑈, {𝑔1, 𝑔3, 𝑔5}, {𝑔2}}. 

 If we remove the attribute `Corruption', then the tabular representation of neutrosophic 

right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉1 is given Table 10.   

Neighborhoods of 𝐾 

𝑔1]𝔄−𝜉1  {𝑔1} 

𝑔2]𝔄−𝜉1  {𝑔1, 𝑔2} 

𝑔3]𝔄−𝜉1  {𝑔1, 𝑔3} 

𝑔4]𝔄−𝜉1  {𝑔4} 

𝑔5]𝔄−𝜉1  {𝑔5} 

Table 10: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉1 

 we have 

𝜏𝑁𝑆𝑅−𝜉1(𝔜) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {𝑔2}} 

is a NSR-topology and its basis is  

𝛽𝑁𝑆𝑅 − 𝜉1 = {𝑈, {𝑔1, 𝑔3, 𝑔5}, {𝑔2}} = 𝛽𝑁𝑆𝑅 . 

 If we remove the attribute `poverty', then the tabular representation of neutrosophic right 

neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉2 is given Table 11.    

 Neighborhoods of 𝐾 

𝑔1]𝔄−𝜉2   {𝑔1} 

𝑔2]𝔄−𝜉2   {𝑔1, 𝑔2} 

𝑔3]𝔄−𝜉2   {𝑔1, 𝑔3} 

𝑔4]𝔄−𝜉2   {𝑔1, 𝑔3, 𝑔4} 

𝑔5]𝔄−𝜉2   {𝑔5} 

Table 11: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉2 

We have an NSR-topology and its base as follows:  

𝜏𝑁𝑆𝑅−𝜉2(𝑌) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔2, 𝑔4}} 

and  𝛽𝑁𝑆𝑅 − 𝜉2 = {𝑈, {𝑔1, 𝑔3, 𝑔5}, {𝑔2, 𝑔4}} ≠ 𝛽𝑁𝑆𝑅 , 

respectively.  If we remove the attribute 'self actualization', then the tabular representation of 

neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉3 is given Table 12.    

 Neighborhoods of 𝐾 

𝑔1]𝔄−𝜉3   {𝑔1} 

𝑔2]𝔄−𝜉3   {𝑔1, 𝑔2} 
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𝑔3]𝔄−𝜉3   {𝑔1, 𝑔3} 

𝑔4]𝔄−𝜉3   {𝑔4} 

𝑔5]𝔄−𝜉3   {𝑔5} 

Table 12: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉3 

 We have an NSR-topology and its base as follows: 

𝜏𝑁𝑆𝑅−𝜉3(𝑌) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {𝑔2}} 

and 

𝛽𝑁𝑆𝑅 − 𝜉3 = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔2} = 𝛽𝑁𝑆𝑅}, 

respectively.  If we remove the attribute `lack of education', then the tabular representation of 

neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉4 is given Table 13.    

 Neighborhoods of 𝐾 

𝑔1]𝔄−𝜉4   {𝑔1} 

𝑔2]𝔄−𝜉4   {𝑔1, 𝑔2} 

𝑔3]𝔄−𝜉4   {𝑔1, 𝑔3} 

𝑔4]𝔄−𝜉4   {𝑔4} 

𝑔5]𝔄−𝜉4   {𝑔5} 

Table  13: Neutrosophic right neighborhoods of 𝐾 w.r.t set 𝔄 − 𝜉4  

We have an NSR-topology and its base as follows:  

𝜏𝑁𝑆𝑅−𝜉4(𝑌) = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔1, 𝑔2, 𝑔3, 𝑔5}, {𝑔2}} 

and 

𝛽𝑁𝑆𝑅 − 𝜉4 = {𝑈, ∅, {𝑔1, 𝑔3, 𝑔5}, {𝑔2} = 𝛽𝑁𝑆𝑅}, 

respectively. Thus, 𝐶𝑂𝑅𝐸(𝑁𝑆𝑅) = {𝜉2}, i.e., `poverty' is the deciding attributes of the Crime Rate in 

developing countries of Asia.  

Discussion and comparitive analysis 5.3 In this section, we discuss our results obtained from both 

numerical examples and present a comparative analysis of proposed topological space to some 

existing topological spaces. Table 14 describes the comparison of both proposed algorithms based on 

NSR-sets and NSR-topology. The algorithm 1 is used to find the optimal decision about the set of 

alternatives and establish the ranking order between them. We can choose the best and worst 

alternative from the given input information. While algorithm 2 is used to choose the most relevant 

and significant attribute to which one can observe the specific characteristic of the alternatives. This 

is called the CORE of the problem, which is an essential part of the decision-making difficulty. Both 

algorithms have their own merits and can be used to solve decision-making problems in medical, 

artificial intelligence, business, agriculture, engineering, etc. 

Proposed Algorithms Choice values Final Decision Selection criteria 

Algorithm 1 (NSR-sets) 𝑔1 ≻ 𝑔4 ≻ 𝑔5 ≻ 𝑔2 ≻ 𝑔3  𝑔1 Based on alternatives 

Algorithm 2 (NSR-topology) 𝐶𝑂𝑅𝐸(𝑁𝑆𝑅) = {𝜉2} 𝜉2 = poverty Based on attributes 

Table 14: Comparison of prooposed algorithms 

Now we present a soft comparative analysis of proposed approach with some existing approaches. 

In Table 15, we describe the comparison and discuss about their advantages and limitations. 
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Set theories Informa-

tion 

about 

Indeter-

minacy 

part 

Upper and 

lower 

approxi-

mations 

with 

boundary 

region 

Parameter-

izations 

Advantages Limitations 

Fuzzy sets [1] No No No Deal with the 

hesitations. 

Do not collect  any 

information about the 

indeterminacy of input 

data. 

Neutrosophic 

sets [4, 5] 

Yes No No Deal with the data 

having 

indeterminacy 

information. 

Do not deal with the 

roughness and 

parameterizations. 

Rough sets 

[2, 3] 

No Yes No Deal with the 

roughness of input 

information and 

create upper, lower 

and boundary 

regions. 

Do not give any 

information about the 

parameterizations. 

Soft sets [6] No No Yes Deal with the 

uncertainity with 

parameterizations. 

Do not provide 

information about the 

roughness of data. 

Soft rough sets 

[17] 

No Yes Yes Deal with 

uncertainities and 

roughness of data. 

Do not give information 

about the indeterminacy 

part of problem. 

Rough 

neutrosophic 

sets [47] 

Yes Yes No Deal with the 

roughness having 

indeterminacy 

information. 

Do not deal with the 

parameterizations. 

Neutrosophic 

soft rough sets 

and topology 

(proposed) 

Yes Yes Yes Provide the data of 

indeterminacy part 

and remove 

roughness under 

parameterizations 

without any loss of 

information. 

Effective but heavy 

calculations as 

compared to above 

existing theories. 

Table 15: Comparitive analysis of proposed approach with some exsting theories. 
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6. Conclusion

Most of the issues in decision-making problems are associated with uncertain, imprecise and, 

multipolar information, which cannot be tackled properly through the fuzzy set. So to overcome this 

particular deficiency rough set was introduced by Pawlak, which deals with the vagueness of input 

data. This research implies the novel approach of neutrosophic soft rough set (NSR-set) with 

neutrosophic soft rough topology (NSR-topology). We presented various topological structures of 

NSR-topology named as NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit 

point and, NSR-bases with numerous examples. We established two novel algorithms to deal with 

multi-criteria decision-making (MCDM) problems under NSR-data. One is based on NSR-sets and 

the other is based on NSR-topology with NSR-bases. This research is more efficient and flexible than 

the other approaches. The proposed algorithms are simple and easy to understand which can be 

applied easily on whatever type of alternatives and measures. Both algorithms are flexible and easily 

altered according to the different situations, inputs and, outputs. In the future, we will extend our 

work to solve the MCDM problems by using TOPSIS, AHP, VIKOR, ELECTRE family and, 

PROMETHEE family using different hybrid structures of fuzzy and rough sets. 
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Exploration of the Factors Causing Autoimmune 

Diseases using Fuzzy Cognitive Maps with 

Concentric Neutrosophic Hypergraphic Approach 

Nivetha Martin, Florentin Smarandache, I.Pradeepa, N.Ramila Gandhi, P.Pandiammal 

  Abstract: Neutrosophic sets are comprehensively used in decision making environment. The 

manifestation of neutrosophic sets in concentric hypergraphs is proposed in this research work. 

The intention of developing a decision making model using the combination of Fuzzy Cognitive 

Maps and concentric neutrosophic hypergraph is to rank the core factors of decision making 

problem and find the inter relational impacts. This proposed model is validated with the 

exploration of the causative factors of autoimmune diseases. The proposed model is highly 

compatible as it assists in determining the core factors and their inter association. This model will 

certainly benefit the decision maker at all managerial levels to design optimal decisions. 

Keywords: Autoimmune disease, fuzzy cognitive maps, neutrosophic hypergraphs, optimal decision making 

1. Introduction

Westernization the cause of modernization has unlocked the portals of cultural, behavioural 

and environmental changes of the people which greatly influence the biological system of human 

and this also lays the core reason for the outbreak of novel diseases. Presently the people of the 

world are characterized by multicultural and multi technological adoption. The integration and the 

association between people of varied culture have brought diverse implications on the external and 

internal environment of the human. Not just the social interactions contribute to such modifications; 

also the technological advancement and the work space of an individual cause a varied range of 

changes in the mankind. The tendency of manhood repelling from indigenous practices is the 

gateway for several health woes. The health system of the human is getting affected by several 

factors and especially the vulnerable target group is the women. In recent days, the people are 

chained by diseases of various kinds, even the economy of the nation face huge falls due to the effect 

of epidemic diseases, amidst such miserable situations, the immunity of the human is the only 

armed force against these viruses, but if the immune system fails to be defensive in nature and if it 

joins hand with the external invaders the entire human health system collapses and it ends in 

fatality. This is the characterization of auto immune diseases and the women are greatly affected by 

these diseases. It is highly a dreadful circumstance to tackle the consequences of these self- 

destructing diseases. The autoimmune diseases predominantly affecting the women are Rheumatoid 

Arthritis, Multiple Sclerosis, Systemic lupus Erythematosus, Grave’s disease, Hashimoto’s 

thyroiditis and Myasthenia gravis. Presently the rate of occurrences of such diseases is at its pinnacle 

and the medical experts are investigating the ways and means of its mitigation. [1]  
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Generally the women are highly susceptible to these autoimmune diseases as the immune system 

gets weakened during pre and post pregnancy stages. This scenario has gained the medical concerns 

and medical researchers are on their study, to render support to it, this paper aims to underlie the 

core factors contributing to autoimmune diseases in women and to find the inter association 

between the core factors. Optimal decisions can be made by applying scientific methods in the 

process of decision making process. The entire scenario of decision making must be modeled based 

on decisive factors of the study. One of the realistic tools of decision making is fuzzy cognitive maps 

(FCM), introduced by Kosko [2], later several academicians extended this FCM tool based on the 

requirements. FCM is a directed graph representing the casual relationship between factors 

considered for study. The nodes and the edges of the graph represent the study factors and their 

association. The weights [-1,1] represent the nature of the association. The integration of FCM with 

other graphic structures was initiated by Nivetha and Pradeepa [3]. The hypergraphic and fuzzy 

hypergraphic approaches with FCM unlocked the construction of concentric fuzzy hypergraphs and 

its integration with FCM [4,5]. This field of integrated FCM with fuzzy hypergraphs has made the 

researchers explore by introducing various types of concentric fuzzy hypergraphs. 

In this research work, a fuzzy cognitive map with concentric neutrosophic hypergraphic approach is 

introduced. The notion of neutrosophic fuzzy sets and neutrosophic logic was first coined by 

Smarandache [6] and presently many researchers are highly interested to carry out their research  in 

this field, the concepts of neutrosophic is applied in almost all types of decision making tools. 

Neutrosophic sets, play significant role in making decisions in uncertain environment as it provides 

space for the pragmatic representation of the expert’s opinion. Abdel Basset et al [7]developed a 

decision making model for evaluating the framework for smart disaster response system in an 

uncertain environment, neutrosophic sets are used for uncertainty assessments of linear time-cost 

tradeoffs [8]; resource levelling problem[9] in construction project was modeled under neutrosophic 

environment. The concept of neutrosophic sets was extended to bipolar neutrosophic representation 

[10] and it is used in multi criteria decision making framework for professional selection. Das et al

[11] developed neutrosophic fuzzy matrices and algebraic operation that had some utility in

decision making. Plithogenic sets, the extension of neutrosophic sets are used in solving supply

chain problem with the development of a novel plithogenic model [12]. Such massive applications of

neutrosophic sets in decision making and its robust nature triggered the idea of integrating

neutrosophic sets to concentric hypergraphs. To the best of our knowledge, the integration of

neutrosophic concentric fuzzy hypergraphs with FCM has not been instituted and so this is a new

arena of research towards optimal decision making.

Fuzzy Cognitive Maps are more useful in determining the association between study factors, if 

the number of study factors is less, FCM’s are highly compatible, but if the number of factors is 

more, then comparative analysis between the factors is difficult and tedious, to resolve such crisis, 

the core factors of the problem are to be decided and then the inter association between the core 

factors can be determined easily. To find the core factors, the intervention of various experts is 

mandatory, based on which the factors can be ranked and the core factors are decided based on the 

rank positions of the factors. This eases the process of making decisions as it helps in filtering the 

non- core factors. Generally in medicinal environment, the medical experts analyze the factors 

contributing to diseases, initially the causative factors taken for study will be more in number, but 

the factors have to drop at each stage of their research to find the prime causative factors. In the 

process of factor filtration, the expert’s opinions play a vital role. The role of each causative factor of 

a disease cannot be certainly express but representation using neutrosophic sets makes it possible 

and more meaningful. Thus the integration of FCM with concentric neutrosophic hypergraph will 

help to tackle the difficulties in handling large number of study factors. 

Florentin Smarandache (author and editor) Collected Papers, XII

671



The paper is structured as follows: section 2consists of the methodology in which the algorithm of 

finding optimal decision is presented; section 3 comprises of the adaptation of the proposed model 

to the decision making problem; section 4 discusses the results and the last section summarizes the 

research work. 

2. Methodology and its application

The steps in making optimal decisions is presented as an algorithm as follows, 

Step 1: The expert’s opinion of the study factors are represented by concentric fuzzy hypergraphs 

with neutrosophic fuzzy sets representations of the envelope. 

Step 2: The score values of the neutrosophic fuzzy sets are determined. 

Step 3:  The factors are ranked based on the score values. 

Step 4:  The core factors are determined based on the ranking positions. 

Step5:  The inter association between the core factors is obtained based on the conventional FCM 

procedure. 

The case histories of patients belonging to women gender suffering from autoimmune diseases are 

taken as the source of data collection and the factors contributing to the occurrence of auto immune 

disease in women [13] are presented below based on the medical expert’s opinion and data obtained 

from questionnaire.  

F1. Excess presence of VGLL3 (Vestigial Like Family Member 3) in skin cells 

F2. Changes in the gene system 

F3. Exposure to ultraviolet radiation from sunlight 

F4. Acquaintance with organic mercury 

F5. Alteration in food habits 

F6. Gene-Environment interface 

F7. Fluctuations in sex hormones 

F8. Modifications in Nutritional diet  

F9. Post pregnancy impacts 

F10. Genetic vulnerability 

F11. Genetic differences in immunity 

 Fig.3.1.Concentric Neutrosophic Fuzzy Hypergraphic representation 
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The concentric neutrosophic fuzzy hyper envelopes with neutrosophic representations of the 

expert’s opinion are presented below in Table 3.1. 

      Table 3.1 Representations of Expert’s opinion 

Experts F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

E1 (0.3,0.2, 

0.8) 

(0.5,0.2, 

0.3) 

(0.4,0.1, 

0.5) 

(0.3,0.4, 

0.6) 

(0.8,0.1, 

0.2) 

(0.7,0.2, 

0.3) 

(0.7,0.3, 

0.4) 

(0.7,0.2, 

0.3) 

(0.3,0.2, 

0.8) 

(0.5,0.2, 

0.3) 

(0.5,0.2, 

0.3) 

E2 (0.2,0.2, 

0.9) 

(0.4,0.3, 

0.5) 

(0.5,0.2, 

0.3) 

(0.2,0.2, 

0.9) 

(0.7,0.2, 

0.3) 

(0.6,0.2, 

0.3) 

(0.7,0.5, 

0.4) 

(0.6,0.2, 

0.3) 

(0.4,0.3, 

0.5) 

(0.6,0.2, 

0.3) 

(0.8,0.3, 

0.2) 

E3 (0.3,0.4, 

0.6) 

(0.3,0.5, 

0.6) 

(0.4,0.3, 

0.5) 

(0.3,0.2, 

0.8) 

(0.8,0.3, 

0.2) 

(0.9,0.2, 

0.3) 

(0.9,0.1, 

0.3) 

(0.6,0.2, 

0.3) 

(0.3,0.5, 

0.6) 

(0.7,0.3, 

0.4) 

(0.6,0.2, 

0.3) 

E4 (0.5,0.2, 

0.3) 

(0.2,0.2, 

0.9) 

(0.5,0.2, 

0.3) 

(0.4,0.4, 

0.6) 

(0.7,0.1, 

0.2) 

(0.7,0.3, 

0.4) 

(0.6,0.2, 

0.3) 

(0.7,0.1, 

0.2) 

(0.2,0.2, 

0.9) 

(0.6,0.2, 

0.3) 

(0.4,0.3, 

0.5) 

E5 (0.2,0.5 

,0.6) 

(0.3,0.2, 

0.8) 

(0.6,0.2, 

0.3) 

(0.5,0.2, 

0.3) 

(0.6,0.2, 

0.3) 

(0.8,0.1, 

0.2) 

(0.6,0.2, 

0.3) 

(0.9,0.2, 

0.3) 

(0.4,0.4, 

0.6) 

(0.5,0.2, 

0.3) 

(0.7,0.3, 

0.4) 

The score values of the factors are presented in Table 3.2 and it is represented graphically in Fig.3.2 

    Table 3.2 Score values of the Factors 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

0.571 0.571 0.546 0.538 0.667 0.783 0.756 0.573 0.445 0.636 0.667 

7 7 8 9 5 1 2 6 10 3 4 

0

0.2

0.4

0.6

0.8

1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Ranking of the Factors

Fig.3.2 

Based on the scores, the following factors are considered as the core factors and their inter 

association is expressed as linguistic variables, which then later quantified by heptagonal fuzzy 

numbers. 

HP1. Alteration in food habits 

HP2. Gene-Environment interface 
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HP1 

HP3 

HP2 

HP4 

HP5 
1

HP3. Fluctuations in sex hormones 

HP4. Genetic vulnerability 

HP5. Genetic differences in immunity 

The connection matric between the factors, based on the expert’s opinion 

The modified matrix based on the values of quantification in Table 3.3 

The interrelationship between the factors is determined by the similar application of FCM 

methodology [9-10] and it is presented graphically in Fig 3.2 

Fig.3.2 FCM representation of the inter association of the core factors 

HP1 HP2 HP3 HP4 HP5 

HP1 0 M H L L 

HP2 L 0 M H H 

HP3 L M 0 M L 

HP4 L M H 0 M 

HP5 L M M H 0 

Linguistic 

Variable 

Heptagonal Weight Membership 

value 

Low (0,0.1,0.2,0.3,0.35,0.4,0.45) 0.26 

Medium (0.4,0.45,0.5,0.55,0.6,0.65,0.7) 0.55 

High (0.65,0.7,0.8,0.9,1,1,1) 0.86 

HP1 HP2 HP3 HP4 HP5 

HP1 0 0.55 0.86 0.26 0.26 

HP2 0.26 0 0.55 0.86 0.86 

HP3 0.26 0.55 0 0.55 0.26 

HP4 0.26 0.55 0.86 0 0.55 

HP5 0.26 0.55 0.55 0.86 0 
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4. Results and Discussion

Fig. 3.2 clearly states the factor, fluctuations in sex hormone is the core causative factor of auto 

immune diseases. The findings of this research will certainly assist the medical experts to ascertain 

the causes of the auto immune disease in women and give treatment in accordance to it. Hormonal 

imbalance is quite common in the life of the women as they undergo various stages of puberty, 

maternity, menopause, but still proper medications has to be given to avoid the risks of such fatal 

diseases. The representation of the imprecise data in the form neutrosophic sets is the pragmatic 

reflection of the expert’s opinion, as the factors contributing to the diseases are quite uncertain. The 

degree of truth values, indeterminacy and false values are indeed very essential in making optimal 

decisions. 

5. Conclusion

The proposed decision making tool with the integration of FCM and concentric neutrosophic fuzzy 

hypergraphs is a highly feasible tool to obtain optimal decisions. The difficulty in handling several 

factors in FCM is reduced and this integrated approach facilitate the determination of inter 

association between the factors. This method of decision making can be extended to other kinds of 

concentric fuzzy hypergraphs with various representations. Plithogenic sets representation is the 

future extension of this proposed research work. 
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Translative and Multiplicative Interpretation 
of Neutrosophic Cubic Set  

Abstract: In this paper, we introduce the idea of neutrosophic cubic translation (NCT) and neutrosophic cubic 
multiplication (NCM) and provide entirely new type of conditions for neutrosophic cubic translation and 
neutrosophic cubic multiplication on BF-algebra. This is the new kind of approach towards translation and 
multiplication which involves the indeterminacy membership function. We also define neutrosophic cubic 
magnified translation (NCMT) on BF-algebra which handles the neutrosophic cubic translation and 
neutrosophic cubic multiplication at the same time on membership function, indeterminacy membership 
function and non-membership function. We present the examples for better understanding of neutrosophic 
cubic translation, neutrosophic cubic multiplication, and neutrosophic cubic magnified translation, and 
investigate significant results of BF-ideal and BF-subalgebra by applying the ideas of NCT, NCM and NCMT. 
Intersection and union of neutrosophic cubic BF-ideals are also explained through this new type of 
translation and multiplication. 

Keywords: BF-algebra, neutrosophic cubic translation, neutrosophic cubic multiplication, neutrosophic cubic 
BF ideal, neutrosophic cubic BF subalgebra, neutrosophic cubic magnified translation. 

1. Introduction

Zadeh [1] presented the theory of fuzzy set in 1965. Fuzzy idea has been applied to different algebraic structures 
like groups, rings, modules, vector spaces and topologies. In this way, Iseki and Tanaka [2] introduced the idea 
of BCK-algebra in 1978. Iseki [3] introduced the idea of BCI-algebra in 1980 and it is obvious that the class of 
BCK-algebra is a proper sub class of the class of BCI-algebra. Lee et al. [4] studied the fuzzy translation, 

Mohsin Khalid, Florentin Smarandache, Neha Andalleb Khalid, Said Broumi 

Mohsin Khalid, Florentin Smarandache, Neha Andalleb Khalid, Said Broumi (2020). 
Translative and Multiplicative Interpretation of Neutrosophic Cubic Set. Neutrosophic Sets 
and Systems 35, 299-239

Florentin Smarandache (author and editor) Collected Papers, XII

677

mailto:mk4605107@gmail.com


(normalized, maximal) fuzzy extension and fuzzy multiplication of fuzzy subalgebra in BCK/BCI-algebra. Link 
among fuzzy translation, (normalized, maximal) fuzzy extension and fuzzy multiplication are also discussed. 
Ansari and Chandramouleeswaran [5] introduced the idea of fuzzy translation, fuzzy extension and fuzzy 
multiplication of fuzzy β ideal of β-algebra and investigated some of their properties. Satyanarayana [6] 
introduced the concepts of fuzzy ideals, fuzzy implicative ideals and fuzzy p-ideals in BF-algebras and 
investigate some of its properties. Andrzej [7] defined the BF-algebra. Lekkoksung [8] focused on fuzzy 
magnified translation in ternary hemirings, which is a extension of BCI / BCK/Q / KU / d-algebra. Senapati et 
al. [9] have done much work on intuitionistic fuzzy H-ideal in BCK/BCI-algebra. Jana et al. [10] wrote on 
intuitionistic fuzzy G-algebra. Senapati et al. [11] studied fuzzy translations of fuzzy H-ideals in BCK/BCI-
algebra. Atanassov [12] introduced the intuitionistic fuzzy sets. Senapati [13] investigated the relationship 
among intuitionistic fuzzy translation, intuitionistic fuzzy extension and intuitionistic fuzzy multiplication in 
B-algebra. Kim and Jeong [14] defined the intuitionistic fuzzy structure of B-algebra. Senapati et al. [15]
introduced the cubic subalgebras and cubic closed ideals of B-algebras. Senapati et al. [16] discussed the fuzzy 
dot subalgebra and fuzzy dot ideal of B-algebras. Priya and Ramachandran [17] worked on fuzzy translation 
and fuzzy multiplication in PS-algebra. Chandramouleeswaran et al. [18] worked on fuzzy translation and fuzzy 
multiplication in BF/BG-algebra. Jana et al. [19] studied the cubic G-subalgebra of G-algebra. Smarandache 
[20,21] extended the intuitionistic fuzzy set, paraconsistent set, and intuitionistic set to the neutrosophic set 
through Several examples. Jun et al. [22] studied the Cubic set and apply the idea of cubic sets in group and 
gave the definition of cubic subgroups. Saeid and Rezvani [23] introduced and studied fuzzy BF-algebra, fuzzy 
BF-subalgebras, level subalgebras,fuzzy topological BF-algebra. Jun et al. [24] defined the neutrosophic cubic 
set introduced truth-internal and truth-external and discuss the many properties. Jun et al. [25] investigated the 
commutative falling neutrosophic ideals in BCK-algebra. C. H. Park [26] defined the neutrosophic ideal in 
subtraction algebra and studied it through several properties, he also discussed conditions for a neutrosophic set 
to be a neutrosophic ideal along with properties of neutrosophic ideal. Khalid et al. [27] investigated the 
neutrosophic soft cubic subalgebra through significant characteristic like P-union, R-intersection etc. Khalid et 
al. [28] interestinly investigated the intuitionistic fuzzy translation and multiplication through subalgebra and 
ideals. Khalid et al. [29] defined the T-neutrosophic cubic set and studied this set through ideals and subalgebras 
and investigated many results.  

The purpose of this paper is to introduce the idea of neutrosophic cubic translation (NCT), neutrosophic cubic 
multiplication (NCM) and neutrosophic cubic magnified translation (NCMT) on BF-algebra. In second section 
we discuss some fundamental definitions which are used to develop the paper. In third’s first subsection we 
discuss the neutrosophic cubic translation (NCT) and neutrosophic cubic multiplication (NCM) of BF 
subalgebra. In second subsection we discuss the neutrosophic cubic translation (NCT) and neutrosophic cubic 
multiplication (NCM) of BF ideal. In third subsection we discuss the neutrosophic cubic magnified translation 
(NCMT) of BF ideal and BF subalgebra. 

2 Preliminaries 

First we discuss some definitions which are used to present this paper. 
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Definition 2.1 [3] An algebra (Y,∗ ,0)  of type (2,0) is called a BCI-algebra if it satisfies the following 
conditions: 

i) (t1 ∗ t2) ∗ (t1 ∗ t3) ≤ (t3 ∗ t2),

ii) t1 ∗ (t1 ∗ t2) ≤ t2,

iii) t1 ≤ t1,

iv) t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2,

v) t1 ≤ 0 ⇒ t1 = 0, where t1 ≤ t2 is defined by t1 ∗ t2 = 0, for all t1, t2, t3 ∈ Y.

Definition 2.2 [1] An algebra (Y,∗ ,0)  of type (2,0) is called a BCK-algebra if it satisfies the following 
conditions: 

i) (t1 ∗ t2) ∗ (t1 ∗ t3) ≤ (t3 ∗ t2),

ii) t1 ∗ (t1 ∗ t2) ≤ t2,

iii) t1 ≤ t1,

iv) t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2,

v) 0 ≤ t1 ⇒ t1 = 0, where t1 ≤ t2 is defined by t1 ∗ t2 = 0, for all t1, t2, t3 ∈ Y.

Definition 2.3 [7] A nonempty set Y with a constant 0 and a binary operation ∗ is called BF–algebra when it 
fulfills these axioms. 

i) t1 ∗ t1 = 0

ii) t1 ∗ 0 = 0

iii) 0 ∗ (t1 ∗ t2) = t2 ∗ t1 for all t1, t2 ∈ Y.

A BF-algebra is denoted by (Y,∗ ,0). 

Definition 2.4 [7] Let S be a nonempty subset of BF-algebra Y, then S is called a BF-subalgebra of Y if t1 ∗

t2 ∈ S, for all t1, t2 ∈ S.

Definition 2.5 [6] Let Y ba a BF-algebra and I is a subset of Y, then I is called a BF ideal of Y if it satisfies 
the following conditions: 

i) 0 ∈ I,

ii) t2 ∗ t1 ∈ I and t2 ∈ I → t1 ∈ I.

Definition 2.6 [6] Let Y be a BF-algebra. A fuzzy set B of Y is called a fuzzy BF ideal of Y if it satisfies the 
following conditions: 

i) κ(0) ≥ κ(t1),

ii) κ(t1) ≥ min{κ(t2 ∗ t1), κ(t2)}, for all t1, t2 ∈ Y.

Definition 2.7 [1] Let Y be a group of objects denoted generally by t1. Then a fuzzy set B of Y is defined as
B = {< t1, κB(t1) >  |t1 ∈ Y}, where κB(t1) is called the membership value of t1 in B and κB(t1) ∈ [0,1].

Definition 2.8 [23] A fuzzy set B of BF-algebra Y is called a fuzzy PS subalgebra of Y if κ(t1 ∗ t2) ≥

min{κ(t1), κ(t2)}, for all t1, t2 ∈ Y.
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Definition 2.9 [4,5] Let a fuzzy subset B of Y and α ∈ [0,1 − sup{κB(t1)|t1 ∈ Y}]. A mapping (κB)α
T|Y ∈

[0,1] is said to be a fuzzy α translation of κB if it satisfies (κB)α
T(t1) = κB(t1) + α, for all t1 ∈ Y.

Definition 2.9 [4,5] Let a fuzzy subset B of Y and α ∈ [0,1]. A mapping (κB)α
M: Y → [0,1] is said to be a

fuzzy α multiplication of B if it satisfies (κB)α
M(t1) = α. (κB)(t1), for all t1 ∈ Y.

Definition 2.10 [12] An intuitionistic fuzzy set (IFS) B  over Y  is an object having the form B =

{〈t1, κB(t1), υB(t1)〉|t1 ∈ Y},  where κB(t1): Y → [0,1]  and υB(t1)|Y → [0,1],  with the condition 0 ≤

κB(t1) + υB(t1) ≤ 1, for all t1 ∈ Y. κB(t1) and υB(t1) represent the degree of membership and the degree
of non-membership of the element t1 in the set B respectively.

Definition 2.11 [12] Let B = {〈t1, κB(t1), υB(t1)〉|t1 ∈ Y} and B = {〈t1, κB(t1), υB(t1)〉|t1

∈ Y}  be two IFSs  on Y.  Then intersection and union of A  and B  are indicated by A ∩ B  and A ∪ B 
respectively and are given by  

A ∩ B = {〈t1, min(κA(t1), κB(t1)), max(υA(t1), υB(t1))〉|t1 ∈ Y},

A ∪ B = {〈t1, max(κA(t1), κB(t1)), min(υA(t1), υB(t1))〉|t1 ∈ Y}.

Definition 2.12 [14] An IFS  B = {〈t1, κB(t1), υB(t1)〉|t1 ∈ Y} of Y is called an IFSU of Y if it satisfies these
two conditions: 

(i) κB(t1 ∗ t2) ≥ min{κB(t1), κB(t2)},

(ii) υB(t1 ∗ t2) ≤ max{υB(t1), υB(t2)}, for all t1, t2 ∈ Y.

Definition 2.13 An IFS B = {〈t1, κB(t1), υB(t1)〉|t1 ∈ Y} of Y is said to be an IFID of Y if it satisfies these
three conditions: 

(i) κB(0) ≥ κB(t1), υB(0) ≤ υB(t1),

(ii) κB(t1) ≥ min{κB(t1 ∗ t2), κB(t2)},

(iii) υB(t1) ≤ max{υB(t1 ∗ t2), υB(t2)}, for all t1, t2 ∈ Y.

Definition 2.14 [8] Let κ be a fuzzy subset  of Y, α ∈ [0,T] and β ∈ [0,1]. A mapping κβ α
M T|Y →[0,1] is said

to be a fuzzy magnified βα translation of κ if it satisfies: κβ α
M T(t1) = β. κ(t1) + α for all t1 ∈ Y.

Jun et al. [22,24]introduced neutrosophic cubic set and investigated several properties.  

Definition 2.15 [24] Suppose X be a nonempty set. A neutrosophic cubic set in X is pair 𝒞 = (κ, σ) where 
κ = {〈t1; κE(t1), κI(t1), κN(t1)〉 |t1 ∈ X}  is an interval neutrosophic set in X  and σ =

{〈t1; σE(t1), σI(t1), σN(t1)〉 |t1 ∈ X} is a neutrosophic set in X.

Definition 2.16 [15] Let C = {〈t1, κ(t1), σ(t1)〉} be a cubic set, where κ(t1) is an interval-valued fuzzy set in
X, σ(t1) is a fuzzy set in X. Then C is cubic subalgebra under binary operation " ∗”, if following axioms are
satisfied: 

i) κ(t1 ∗ t2) ≥ rmin{κ(t1), κ(t2)},

ii) σ(t1 ∗ t2) ≤ max{σ(t1), σ(t2)} ∀ t1, t2 ∈ X.
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Definition 2.17 [28] Let A = (κA, υA) be an IFS of G-algebra and let α ∈ [0, ¥]. An object of the form Aα
T =

((κA)α
T, (υA)α

T) is called an intuitionistic fuzzy α-translation (IFAT) of A when (κA)α
T(t1) = κA(t1) + α and

(υA)α
T(t1) = υA(t1) − α for all t1 ∈ Y.

3 Translative and Multiplicative Interpretation of Neutrosophic Cubic Set 

For our simplicity, we use the notation B = (κT,I,F, υT,I,F) for the NCS B = {⟨t1, κT,I,F(t1), υT,I,F(t1)⟩|t1 ∈ Y}.

In this paper, we used ℸ = [1,1] − rsup{κ{T,I}(t1)|t1 ∈ Y} , ¥ = rinf{κF(t1)|t1 ∈ Y} , Γ = 1 −

sup{υ{T,I}(t1)|t1 ∈ Y}, £ = inf{υF(t1)|t1 ∈ Y for any NCS B = (κT,I,F, υT,I,F) of Y.

3.1  Translative and Multiplicative Interpretation of Neutrosophic Cubic Subalgebra 

Definition 3.1.1 Let B = (κT,I,F, υT,I,F)  be a NCS of Y  and for κT,I,F,  α, β ∈ [[0,0], ℸ]  and γ ∈ [[0,0], ¥],

where for υT,I,F , α, β ∈ [0, Γ]  and γ ∈ [0, £].  An object of the form Bα,β,γ
T = ((κT,I,F)α,β,γ

T , (υT,I,F)α,β,γ
T )  is

called a NCT of B,  when (κT)α
T(t1) = κB(t1) + α , (κI)β

T(t1) = κB(t1) + β , (κF)γ
T(t1) = κF(t1) − γ  and

(υT)α
T(t1) = υT(t1) + α, (υI)β

T(t1) = υB(t1) + β, (υF)γ
T(t1) = υB(t1) − γ for all t1 ∈ Y.

Example 3.1.1 Let Y = {0,1,2} be a BF-algebra with the following Cayley table: 

*  0  1  2 

0  0  1  2 

1  0  0  1 

2  0  2  0 

Let B = (κT,I,F, υT,I,F) be a NCS of Y is defined as

κT(t1) = {
[0.1, 0.3]  if t1 = 0

 [0.4, 0.7]  if otherwise

κI(t1) = {
[0.2, 0.4]  if t1 = 0

 [0.5, 0.7]  if otherwise

κF(t1) = {
[0.4, 0.6]  if t1 = 0

 [0.3, 0.8]  if otherwise

 and 

υT(t1) = {
0.1  if t1 = 0

 0.4  if otherwise

υI(t1) = {
0.2  if t1 = 0

 0.3  if otherwise
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υF(t1) = {
0.5  if t1 = 0

 0.7  if otherwise.

Then B is a neutrosophic cubic subalgebra. Here we choose for υT,I,F, α = 0.01, β = 0.02, γ = 0.03, and for

κT,I,F, α = [0.1,0.2], β = [0.2,0.25], γ = [0.2,0.3] then the mapping BT: Y → [0,1] is given by

(κT)[0.1,0.2]
T (t1) = {

[0.2, 0.5]  if t1 = 0

 [0.5, 0.9]  if otherwise

(κI)[0.2,0.25]
T (t1) = {

[0.4, 0.7]  if t1 = 0

 [0.7, 0.95]  if otherwise

(κF)[0.2,0.3]
T (t1) = {

[0.2, 0.3]  if t1 = 0

 [0.1, 0.5]  if otherwise

 and 

(υT)0.01
T (t1) = {

0.11  if t1 = 0
 0.41  if otherwise.

(υI)0.02
T (t1) = {

0.22  if t1 = 0
 0.32  if otherwise.

(υF)0.03
T (t1) = {

0.47  if t1 = 0
 0.67  if otherwise,

which imply (κT)[0.1,0.2]
T (t1) = κT(t1) + [0.1,0.2] , (κI)[0.2,0.25]

T (t1) = κI(t1) + [0.2,0.25 ] ,
(κF)[0.2,0.3]

T (t1) = κF(t1) − [0.2,0.3]  and (υT)0.01
T (t1) = υT(t1) + 0.01 , (υI)0.02

T (t1) = υI(t1) + 0.02 ,
(υF)0.03

T (t1) = υF(t1) − 0.03 for all t1 ∈ Y. Hence BT is a neutrosophic cubic translation.

Theorem 3.1.1 Let B be a NCSU of Y and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F,
α, β ∈ [0, Γ] and γ ∈ [0, £]. Then NCT Bα,β,γ

T  of B is a NCSU of Y. 

Proof. Assume t1, t2 ∈ Y. Then

(κT)α
T(t1 ∗ t2) = κT(t1 ∗ t2) + α

≥ rmin{κT(t1), κT(t2)} + α

= rmin{κT(t1) + α, κT(t2) + α}

(κT)α
T(t1 ∗ t2) = rmin{(κT)α

T(t1), (κT)α
T(t2)},

(κI)β
T(t1 ∗ t2) = κI(t1 ∗ t2) + β

≥ rmin{κI(t1), κI(t2)} + β

= rmin{κI(t1) + β, κI(t2) + β}
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(κI)β
T(t1 ∗ t2) = rmin{(κI)β

T(t1), (κI)β
T(t2)},

(κF)γ
T(t1 ∗ t2) = κF(t1 ∗ t2) − γ

≥ rmin{κF(t1), κF(t2)} − γ

= rmin{κF(t1) − γ, κF(t2) − γ}

(κF)γ
T(t1 ∗ t2) = rmin{(κF)γ

T(t1), (κF)γ
T(t2)}

 and 

(υT)α
T(t1 ∗ t2) = υT(t1 ∗ t2) + α

≤ max{υT(t1), υT(t2)} + α

= max{υT(t1) + α, υT(t2) + α}

(υT)α
T(t1 ∗ t2) = max{(υT)α

T(t1), (υT)α
T(t2)},

(υI)β
T(t1 ∗ t2) = υI(t1 ∗ t2) + β

≤ max{υI(t1), υI(t2)} + β

= max{υI(t1) + β, υI(t2) + β}

(υI)β
T(t1 ∗ t2) = max{(υI)β

T(t1), (υI)β
T(t2)},

(υF)γ
T(t1 ∗ t2) = υF(t1 ∗ t2) − γ

≤ max{υF(t1), υF(t2)} − γ

= max{υF(t1) − γ, υF(t2) − γ}

(υF)γ
T(t1 ∗ t2) = max{(υF)γ

T(t1), (υF)γ
T(t2)}.

Hence NCT Bα,β,γ
T  of B is a NCSU of Y. 

Theorem 3.1.2 Let B be a NCS of Y such that NCT Bα,β,γ
T of B is a NCSU of Y for some κT,I,F, α, β ∈

[[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £]. Then B is a NCSU of Y.

Proof. Let Bα,β,γ
T = ((κT,I,F)α,β,γ

T , (υT,I,F)α,β,γ
T )  be a NCSU of Y  for some κT,I,F,  α, β ∈ [[0,0], ℸ]  and γ ∈

[[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and t1, t2 ∈ Y. Then

κT(t1 ∗ t2) + α = (κT)α
T(t1 ∗ t2)

≥ rmin{(κT)α
T(t1), (κT)α

T(t2)}

= rmin{κT(t1) + α, κT(t2) + α}

κT(t1 ∗ t2) + α = rmin{κT(t1), κT(t2)} + α,

κI(t1 ∗ t2) + β = (κI)β
T(t1 ∗ t2)

≥ rmin{(κI)β
T(t1), (κI)β

T(t2)}
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= rmin{κI(t1) + β, κI(t2) + β}

κI(t1 ∗ t2) + β = rmin{κI(t1), κI(t2)} + β,

κF(t1 ∗ t2) − γ = (κF)γ
T(t1 ∗ t2)

≥ rmin{(κF)γ
T(t1), (κF)γ

T(t2)}

= rmin{κF(t1) − γ, κF(t2) − γ}

κF(t1 ∗ t2) − γ = rmin{κF(t1), κF(t2)} − γ

 and 

υT(t1 ∗ t2) + α = (υT)α
T(t1 ∗ t2)

≤ max{(υT)α
T(t1), (υT)α

T(t2)}

= max{υT(t1) + α, υB(t2) + α}

υT(t1 ∗ t2) + α = max{υT(t1), υT(t2)} + α,

υI(t1 ∗ t2) + β = (υI)β
T(t1 ∗ t2)

≤ max{(υI)β
T(t1), (υI)β

T(t2)}

= max{υI(t1) + β, υB(t2) + β}

υI(t1 ∗ t2) + β = max{υI(t1), υI(t2)} + β,

υF(t1 ∗ t2) − γ = (υF)γ
T(t1 ∗ t2)

≤ max{(υF)γ
T(t1), (υF)γ

T(t2)}

= max{υF(t1) − γ, υB(t2) − γ}

υF(t1 ∗ t2) − γ = max{υF(t1), υF(t2)} − γ,

which imply κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)} , κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} , κF(t1 ∗ t2) ≥

rmin{κF(t1), κF(t2)} , and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)} , υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)} , υF(t1 ∗

t2) ≤ max{υF(t1), υF(t2)}, for all t1, t2 ∈ Y. Hence B is a NCSU of Y.

Definition 3.1.2 Let B  be a NCS of Y  and δ  ∈  [0,1].  An object having the form Bδ
M =

(((κT)δ
M, (κI)δ

M, (κF)δ
M), ((υT)δ

M, (υI)δ
M, (υF)δ

M))  is called a NCM of B,  when (κT)δ
M(t1) =

δ. κT(t1) , (κI)δ
M(t1) = δ. κI(t1) , (κF)δ

M(t1) = δ. κF(t1)  and (υT)δ
M(t1) = δ. υT(t1) , (υI)δ

M(t1) =

δ. υI(t1),(υF)δ
M(t1) = δ. υF(t1) for all t1 ∈ Y.

Example 3.1.2 Let Y = {0,1,2} be a BF-algebra with the following Cayley table: 
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*  0  1  2 

0  0  1  2 

1  0  0  1 

2  0  2  0 

Let B = (κT,I,F, υT,I,F) be a NCS of Y is defined as

κT(t1) = (
[0.1, 0.3] if t1 = 0

[0.4, 0.7] if otherwise

κI(t1) = (
[0.2, 0.4] if t1 = 0

[0.5, 0.7] if otherwise

κF(t1) = (
[0.4, 0.6] if t1 = 0

[0.3, 0.8] if otherwise

 and 

υT(t1) = (
0.1 if t1 = 0
0.4 if otherwise

υI(t1) = (
0.2 if  t1 = 0
0.3 if otherwise

υF(t1) = (
0.5 if t1 = 0
0.7 if otherwise.

Then B is a neutrosophic cubic subalgebra, choose δ = 0.01 for υ and δ = [0.1,0.2] for κ then the mapping 

Bδ
M|Y → [0,1] is given by

(κT)[0.1,0.2]
M (t1) = (

[0.01, 0.06] if t1 = 1

[0.04, 0.14] if otherwise,

(κI)[0.1,0.2]
M (t1) = (

[0.02, 0.08] if t1 = 1

[0.05, 0.14] if otherwise,

(κF)[0.1,0.2]
M (t1) = (

[0.04,0.12] if t1 = 1

[0.03, 0.16] if otherwise

 and 

(υT)0.01
M (t1) = (

0.001 if t1 = 0
0.004 if otherwise,

(υI)0.01
M (t1) = (

0.002 if t1 = 0
0.003 if otherwise,

(υF)0.01
M (t1) = (

0.005 if t1 = 0
0.007 if otherwise,
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which imply (κT)[0.1,0.2]
M (t1) = κT(t1). [0.1,0.2] , (κI)[0.1,0.2]

M (t1) = κI(t1). [0.1,0.2] , (κF)[0.1,0.2]
M (t1) =

κF(t1). [0.1,0.2]  and (υT)0.01
M (t1) = υT(t1). (0.01) , (υI)0.01

M (t1) = υI(t1). (0.01) , (υF)0.01
M (t1) =

υF(t1). (0.01) for all t1 ∈ Y. Hence Bδ
M is a neutrosophic cubic multiplication.

Theorem 3.1.3 Let B be a NCS of Y such that NCM Bδ
M of B is a NCSU of Y for some δ ∈ [0,1]. Then B

is a NCSU of Y. 

Proof. Assume Bδ
M of B is a NCSU of Y for some δ ∈ [0,1]. Now for all t1, t2 ∈ Y, we have

κT(t1 ∗ t2). δ = (κT)δ
M(t1 ∗ t2)

≥ rmin{(κT)δ
M(t1), (κT)δ

M(t2)}

= rmin{κT(t1). δ, κT(t2). δ}

κT(t1 ∗ t2). δ = rmin{κT(t1), κT(t2)}. δ,

κI(t1 ∗ t2). δ = (κI)δ
M(t1 ∗ t2)

≥ rmin{(κI)δ
M(t1), (κI)δ

M(t2)}

= rmin{κI(t1). δ, κI(t2). δ}

κI(t1 ∗ t2). δ = rmin{κI(t1), κI(t2)}. δ,

κF(t1 ∗ t2). δ = (κF)δ
M(t1 ∗ t2)

≥ rmin{(κF)δ
M(t1), (κF)δ

M(t2)}

= rmin{κF(t1). δ, κF(t2). δ}

κF(t1 ∗ t2). δ = rmin{κF(t1), κF(t2)}. δ

 and 

υT(t1 ∗ t2). δ = (υT)δ
M(t1 ∗ t2)

≤ max{(υT)δ
M(t1), (υT)δ

M(t2)}

= max{υT(t1). δ, υT(t2). δ}

υT(t1 ∗ t2). δ = max{υT(t1), υT(t2)}. δ,

υI(t1 ∗ t2). δ = (υI)δ
M(t1 ∗ t2)

≤ max{(υI)δ
M(t1), (υI)δ

M(t2)}

= max{υI(t1). δ, υI(t2). δ}

υI(t1 ∗ t2). δ = max{υI(t1), υI(t2)}. δ,

υF(t1 ∗ t2). δ = (υF)δ
M(t1 ∗ t2)
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≤ max{(υF)δ
M(t1), (υF)δ

M(t2)}

= max{υF(t1). δ, υF(t2). δ}

υF(t1 ∗ t2). δ = max{υF(t1), υF(t2)}. δ,

which imply κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)} , κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} , κF(t1 ∗ t2) ≥

rmin{κF(t1), κF(t2)}  and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)} ,  υI(t1 ∗ t2) ≤ max {υI(t1), υI(t2)} , υF(t1 ∗

t2) ≤ max{υF(t1), υF(t2)} for all t1, t2 ∈ Y. Hence B is a NCSU of Y.

Theorem 3.1.4 Let B be a NCSU of Y for δ ∈ [0,1]. Then NCM Bδ
M of B is a NCSU of Y.

Proof. Assume t1, t2 ∈ Y. Then

(κT)δ
M(t1 ∗ t2) = δ. κT(t1 ∗ t2)

≥ δ. rmin{(κT)(t1), (κT)(t2)}

= rmin{δ. κT(t1), δ. κT(t2)}

= rmin{(κT)δ
M(t1), (κT)δ

M(t2)}

(κT)δ
M(t1 ∗ t2) ≥ rmin{(κT)δ

M(t1), (κT)δ
M(t2)},

(κI)δ
M(t1 ∗ t2) = δ. κI(t1 ∗ t2)

≥ δ. rmin{(κI)(t1), (κI)(t2)}

= rmin{δ. κI(t1), δ. κI(t2)}

= rmin{(κI)δ
M(t1), (κI)δ

M(t2)}

(κI)δ
M(t1 ∗ t2) ≥ rmin{(κI)δ

M(t1), (κI)δ
M(t2)},

(κF)δ
M(t1 ∗ t2) = δ. κF(t1 ∗ t2)

≥ δ. rmin{(κF)(t1), (κF)(t2)}

= rmin{δ. κF(t1), δ. κF(t2)}

= rmin{(κF)δ
M(t1), (κF)δ

M(t2)}

(κF)δ
M(t1 ∗ t2) ≥ rmin{(κF)δ

M(t1), (κF)δ
M(t2)}

 and 

(υT)δ
M(t1 ∗ t2) = δ. υT(t1 ∗ t2)

≤ δ. max{(υT)(t1), (υT)(t2)}

= max{δ. υT(t1), δ. υT(t2)}

= max{(κB)δ
M(t1), (κB)δ

M(t2)}

(υT)δ
M(t1 ∗ t2) ≤ max{(υT)δ

M(t1), (υT)δ
M(t2)},
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(υI)δ
M(t1 ∗ t2) = δ. υI(t1 ∗ t2)

≤ δ. max{(υI)(t1), (υI)(t2)}

= max{δ. υI(t1), δ. υI(t2)}

= max{(κB)δ
M(t1), (κB)δ

M(t2)}

(υI)δ
M(t1 ∗ t2) ≤ max{(υI)δ

M(t1), (υI)δ
M(t2)},

(υF)δ
M(t1 ∗ t2) = δ. υF(t1 ∗ t2)

≤ δ. max{(υF)(t1), (υF)(t2)}

= max{δ. υF(t1), δ. υF(t2)}

= max{(κB)δ
M(t1), (κB)δ

M(t2)}

(υF)δ
M(t1 ∗ t2) ≤ max{(υF)δ

M(t1), (υF)δ
M(t2)},

which imply κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)} , κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} , κF(t1 ∗ t2) ≥

rmin{κF(t1), κF(t2)}  and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)} , υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)} , υF(t1 ∗

t2) ≤ max{υF(t1), υF(t2)} for all t1, t2 ∈ Y. Hence Bδ
M is a NCSU of Y.

3.2   Translative and Multiplicative Interpretation of Neutrosophic Cubic Ideal 

In this section, neutrosophic cubic translation of NCID, neutrosophic cubic multiplication of NCID, union and 
intersection of neutrosophic cubic translation of NCID are investigated through some results. 

Theorem 3.2.1 If NCT Bα,β,γ
T of B is a neutrosophic cubic BF ideal, then it fulfills the conditions (κT)α

T(t1 ∗

(t2 ∗ t1)) ≥ (κT)α
T(t2) , (κI)β

T(t1 ∗ (t2 ∗ t1)) ≥ (κI)β
T(t2) ,(κF)γ

T(t1  ∗ (t2 ∗ t1)) ≥ (κF)γ
T(t2)  and (υT)α

T(t1 ∗

(t2 ∗ t1)) ≤ (υT)α
T(t2), (υI)β

T(t1 ∗ (t2 ∗ t1)) ≤ (υI)β
T(t2), (υF)γ

T(t1 ∗ (t2 ∗ t1)) ≤ (υF)γ
T(t2).

Proof. Let NCT Bα,β,γ
T  of B be a neutrosophic cubic BF ideal. Then

(κT)α
T(t1 ∗ (t2 ∗ t1)) = κT(t1 ∗ (t2 ∗ t1)) + α

≥ rmin{κT(t2 ∗ (t1 ∗ (t2 ∗ t1))) + α, κT(t2) + α}

= rmin{κT(0) + α, κT(t2) + α}

= rmin{(κT)α
T(0), (κT)α

T(t2)}

(κT)α
T(t1 ∗ (t2 ∗ t1)) = (κT)α

T(t2),

(κI)α
T(t1 ∗ (t2 ∗ t1)) = κI(t1 ∗ (t2 ∗ t1)) + β

≥ rmin{κI(t2 ∗ (t1 ∗ (t2 ∗ t1))) + β, κI(t2) + β}

= rmin{κI(0) + β, κI(t2) + β}
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= rmin{(κI)β
T(0), (κI)β

T(t2)}

(κI)β
T(t1 ∗ (t2 ∗ t1)) = (κI)β

T(t2),

(κF)γ
T(t1 ∗ (t2 ∗ t1)) = κF(t1 ∗ (t2 ∗ t1)) − γ

≥ rmin{κF(t2 ∗ (t1 ∗ (t2 ∗ t1))) − γ, κF(t2) − γ}

= rmin{κF(0) − γ, κF(t2) − γ}

= rmin{(κF)γ
T(0), (κF)γ

T(t2)}

(κF)γ
T(t1 ∗ (t2 ∗ t1)) = (κF)γ

T(t2)

 and 

(υT)α
T(t1 ∗ (t2 ∗ t1)) = υT(t1 ∗ (t2 ∗ t1)) + α

≤ max{υT(t2 ∗ (t1 ∗ (t2 ∗ t1))) + α, υT(t2) + α}

= max{υT(0) + α, υT(t2) + α}

= max{(υT)α
T(0), (υT)α

T(t2)}

(υT)α
T(t1 ∗ (t2 ∗ t1)) = (υT)α

T(t2),

(υI)α
T(t1 ∗ (t2 ∗ t1)) = υI(t1 ∗ (t2 ∗ t1)) + β

≤ max{υI(t2 ∗ (t1 ∗ (t2 ∗ t1))) + β, υI(t2) + β}

= max{υI(0) + β, υI(t2) + β}

= max{(υI)β
T(0), (υI)β

T(t2)}

(υI)β
T(t1 ∗ (t2 ∗ t1)) = (υI)β

T(t2),

(υF)γ
T(t1 ∗ (t2 ∗ t1)) = υF(t1 ∗ (t2 ∗ t1)) − γ

≤ max{υF(t2 ∗ (t1 ∗ (t2 ∗ t1))) − γ, υF(t2) − γ}

= max{υF(0) − γ, υF(t2) − γ}

= max{(υF)γ
T(0), (υF)γ

T(t2)}

(υF)γ
T(t1 ∗ (t2 ∗ t1)) = (υF)γ

T(t2).

Hence (κT)α
T(t1 ∗ (t2 ∗ t1)) ≥ (κT)α

T(t2) , (κI)β
T(t1 ∗ (t2 ∗ t1)) ≥ (κI)β

T(t2) , (κF)γ
T(t1 ∗ (t2 ∗ t1)) ≥

(κF)γ
T(t2)  and (υT)α

T(t1 ∗ (t2 ∗ t1)) ≤ (υT)α
T(t2) , (υI)β

T(t1 ∗ (t2 ∗ t1)) ≤ (υI)β
T(t2) , (υF)γ

T(t1 ∗ (t2 ∗

t1)) ≤ (υF)γ
T(t2).

Theorem 3.2.2 Let B be a NCID of Y and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F ,
α, β ∈ [0, Γ] and γ ∈ [0, £]. Then NCT Bα,β,γ

T  of B is a NCID of Y. 

Proof. Let B  be a NCID of Y  and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F , α, β ∈

[0, Γ]  and γ ∈ [0, £].  Then (κT)α
T(0) = κT(0) + α ≥ κT(t1) + α = (κT)α

T(t1) , (κI)β
T(0) = κI(0) + β ≥
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κI(t1) + β = (κI)β
T(t1) , (κF)γ

T(0) = κF(0) − γ ≥ κF(t1) − γ = (κF)γ
T(t1)  and (υT)α

T(0) = υT(0) + α ≤

υT(t1) + α = (υT)α
T(t1) ,  (υI)β

T(0) = υI(0) + β ≤ υI(t1) + β = (υI)β
T(t1) , (υF)γ

T(0) = υF(0) − γ ≤

υF(t1) − γ = (υF)γ
T(t1 ). So

(κT)α
T(t1) = κT(t1) + α

≥ rmin{κT(t1 ∗ t2), κT(t2)} + α

= rmin{κT(t1 ∗ t2) + α, κT(t2) + α}

(κT)α
T(t1) = rmin{(κT)α

T(t1 ∗ t2), (κT)α
T(t2)},

(κI)β
T(t1) = κI(t1) + β

≥ rmin{κI(t1 ∗ t2), κI(t2)} + β

= rmin{κI(t1 ∗ t2) + β, κI(t2) + β}

(κI)β
T(t1) = rmin{(κI)β

T(t1 ∗ t2), (κI)β
T(t2)},

(κF)α
T(t1) = κF(t1) − γ

≥ rmin{κF(t1 ∗ t2), κF(t2)} − γ

= rmin{κF(t1 ∗ t2) − γ, κF(t2) − γ}

(κF)γ
T(t1) = rmin{(κF)γ

T(t1 ∗ t2), (κF)γ
T(t2)}

 and 

(υT)α
T(t1) = υT(t1) + α

≤ max{υT(t1 ∗ t2), υT(t2)} + α

= max{υT(t1 ∗ t2) + α, υT(t2) + α}

(υT)α
T(t1) = max{(υT)α

T(t1 ∗ t2), (υT)α
T(t2)},

(υI)β
T(t1) = υI(t1) + β

≤ max{υI(t1 ∗ t2), υI(t2)} + β

= max{υI(t1 ∗ t2) + β, υI(t2) + β}

(υI)β
T(t1) = max{(υI)β

T(t1 ∗ t2), (υI)β
T(t2)},

(υF)γ
T(t1) = υF(t1) − γ

≤ max{υF(t1 ∗ t2), υF(t2)} − γ

= max{υF(t1 ∗ t2) − γ, υF(t2) − γ}

(υF)γ
T(t1) = max{(υF)γ

T(t1 ∗ t2), (υF)γ
T(t2)},
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for all t1, t2  ∈ Y and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F , α, β ∈ [0, Γ] and γ ∈

[0, £]. Hence Bα,β,γ
T  of B is a NCID of Y. 

Theorem 3.2.3 Let B be a neutrosophic cubic set of Y such that NCT Bα,β,γ
T  of B is a NCID of Y for all

κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £]. Then B is a NCID of
Y. 

Proof. Suppose Bα,β,γ
T is a NCID of Y, where for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], and for υT,I,F,

α, β ∈ [0, Γ] and γ ∈ [0, £] and t1, t2 ∈ Y. Then

κT(0) + α = (κT)α
T(0) ≥ (κT)α

T(t1) = κT(t1) + α,

κI(0) + β = (κI)β
T(0) ≥ (κI)β

T(t1) = κI(t1) + β,

κF(0) − γ = (κF)γ
T(0) ≥ (κF)γ

T(t1) = κF(t1) − γ,

 and 

υT(0) + α = (υT)α
T(0) ≤ (υT)α

T(t1) = υT(t1) + α,

υI(0) + β = (υI)β
T(0) ≤ (υI)β

T(t1) = υI(t1) + β

υF(0) − γ = (υF)γ
T(0) ≤ (υF)γ

T(t1) = υF(t1) − γ,

which imply κT(0) ≥ κT(t1), κI(0) ≥ κI(t1), κF(0) ≥ κF(t1) and υT(0) ≤ υT(t1), υI(0) ≤ υI(t1),

υF(0) ≤ υF(t1), now

κT(t1) + α = (κT)α
T(t1) ≥ rmin{(κT)α

T(t1 ∗ t2), (κT)α
T(t2)}

= rmin{κT(t1 ∗ t2) + α, κT(t2) + α}

κT(t1) + α = rmin{κT(t1 ∗ t2), κT(t2)} + α,

κI(t1) + β = (κI)β
T(t1) ≥ rmin{(κI)β

T(t1 ∗ t2), (κI)β
T(t2)}

= rmin{κI(t1 ∗ t2) + β, κI(t2) + β}

κI(t1) + β = rmin{κI(t1 ∗ t2), κI(t2)} + β,

κF(t1) − γ = (κF)γ
T(t1) ≥ rmin{(κF)γ

T(t1 ∗ t2), (κF)γ
T(t2)}

= rmin{κF(t1 ∗ t2) − γ, κF(t2) − γ}

κF(t1) − γ = rmin{κF(t1 ∗ t2), κF(t2)} − γ,

 and 

υT(t1) + α = (υT)α
T(t1) ≤ max{(υT)α

T(t1 ∗ t2), (υT)α
T(t2)}

= max{υT(t1 ∗ t2) + α, υT(t2) + α}
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υT(t1) + α = max{υT(t1 ∗ t2), υT(t2)} + α,

υI(t1) + β = (υI)β
T(t1) ≤ max{(υI)β

T(t1 ∗ t2), (υI)β
T(t2)}

= max{υI(t1 ∗ t2) + β, υI(t2) + β}

υI(t1) + β = max{υI(t1 ∗ t2), υI(t2)} + β,

υF(t1) − γ = (υF)γ
T(t1) ≤ max{(υF)γ

T(t1 ∗ t2), (υF)γ
T(t2)}

= max{υF(t1 ∗ t2) − γ, υF(t2) − γ}

υF(t1) − γ = max{υF(t1 ∗ t2), υF(t2)} − γ,

which imply κT(t1) ≥ rmin{κT(t1 ∗ t2), κT(t2)}, κI(t1) ≥ rmin{κI(t1 ∗ t2), κI(t2)}, κF(t1) ≥ rmin{κF(t1 ∗

t2), κF(t2)}  and υT(t1) ≤ max{υT(t1 ∗ t2), υT(t2)} , υI(t1) ≤ max{υI(t1 ∗ t2), υI(t2)} , υF(t1) ≤

max{υF(t1 ∗ t2), υF(t2)} for all t1, t2 ∈ Y. Hence B is a NCID of Y.

Theorem 3.2.4 Let B be a NCID of Y for some κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F,
α, β ∈ [0, Γ] and γ ∈ [0, £]. Then NCT Bα,β,γ

T  of B is a NCSU of Y. 

Proof. Assume t1, t2 ∈ Y. Then

(κT)α
T(t1 ∗ t2) = κT(t1 ∗ t2) + α

≥ rmin{κT(t2 ∗ (t1 ∗ t2)), κT(t2)} + α

= rmin{κT(0), κT(t2)} + α

≥ rmin{κT(t1), κT(t2)} + α

= rmin{κT(t1) + α, κT(t2) + α}

(κT)α
T(t1 ∗ t2) = rmin{(κT)α

T(t1), (κT)α
T(t2)}

(κT)α
T(t1 ∗ t2) ≥ rmin{(κT)α

T(t1), (κT)α
T(t2)},

(κI)β
T(t1 ∗ t2) = κI(t1 ∗ t2) + β

≥ rmin{κI(t2 ∗ (t1 ∗ t2)), κI(t2)} + β

= rmin{κI(0), κI(t2)} + β

≥ rmin{κI(t1), κI(t2)} + β

= rmin{κI(t1) + β, κI(t2) + β}

(κI)β
T(t1 ∗ t2) = rmin{(κI)β

T(t1), (κI)β
T(t2)}

(κI)β
T(t1 ∗ t2) ≥ rmin{(κI)β

T(t1), (κI)β
T(t2)},

(κF)γ
T(t1 ∗ t2) = κF(t1 ∗ t2) − γ
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≥ rmin{κF(t2 ∗ (t1 ∗ t2)), κF(t2)} − γ

= rmin{κF(0), κF(t2)} − γ

≥ rmin{κF(t1), κF(t2)} − γ

= rmin{κF(t1) − γ, κF(t2) − γ}

(κF)γ
T(t1 ∗ t2) = rmin{(κF)γ

T(t1), (κF)γ
T(t2)}

(κF)γ
T(t1 ∗ t2) ≥ rmin{(κF)γ

T(t1), (κF)γ
T(t2)}

 and 

(υT)α
T(t1 ∗ t2) = υT(t1 ∗ t2) + α

≤ max{υT(t2 ∗ (t1 ∗ t2)), υT(t2)} + α

= max{υT(0), υT(t2)} + α

≤ max{υT(t1), υT(t2)} + α

= max{υT(t1) + α, υT(t2) + α}

(υT)α
T(t1 ∗ t2) = max{(υT)α

T(t1), (υT)α
T(t2)}

(υT)α
T(t1 ∗ t2) ≤ max{(υT)α

T(t1), (υT)α
T(t2)},

(υI)β
T(t1 ∗ t2) = υI(t1 ∗ t2) + β

≤ max{υI(t2 ∗ (t1 ∗ t2)), υI(t2)} + β

= max{υI(0), υI(t2)} + β

≤ max{υI(t1), υI(t2)} + β

= max{υI(t1) + β, υI(t2) + β}

(υI)β
T(t1 ∗ t2) = max{(υI)β

T(t1), (υI)β
T(t2)}

(υI)β
T(t1 ∗ t2) ≤ max{(υI)β

T(t1), (υI)β
T(t2)},

(υF)γ
T(t1 ∗ t2) = υF(t1 ∗ t2) − γ

≤ max{υF(t2 ∗ (t1 ∗ t2)), υF(t2)} − γ

= max{υF(0), υF(t2)} − γ

≤ max{υF(t1), υF(t2)} − γ

= max{υF(t1) − γ, υF(t2) − γ}

(υF)γ
T(t1 ∗ t2) = max{(υF)γ

T(t1), (υF)γ
T(t2)}

(υF)γ
T(t1 ∗ t2) ≤ max{(υF)γ

T(t1), (υF)γ
T(t2)}.

Hence Bα,β,γ
T  is a NCSU of Y. 
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Theorem 3.2.5 If NCT Bα,β,γ
T of B is a NCID of Y for some κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], and

for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £]. Then B is a NCSU of Y.

Proof. Suppose Bα,β,γ
T  of B is a NCID of Y. Then 

(κT)(t1 ∗ t2) + α = (κT)α
T(t1 ∗ t2)

≥ rmin{(κT)α
T(t2 ∗ (t1 ∗ t2)), (κT)α

T(t2)}

= rmin{(κT)α
T(0), (κT)α

T(t2)}

≥ rmin{(κT)α
T(t1), (κT)α

T(t2)}

= rmin{κT(t1) + α, κT(t2) + α}

(κT)(t1 ∗ t2) + α = rmin{κT(t1), κT(t2)} + α,

(κI)(t1 ∗ t2) + β = (κI)β
T(t1 ∗ t2)

≥ rmin{(κI)β
T(t2 ∗ (t1 ∗ t2)), (κI)β

T(t2)}

= rmin{(κI)β
T(0), (κI)β

T(t2)}

≥ rmin{(κI)β
T(t1), (κI)β

T(t2)}

= rmin{κI(t1) + β, κI(t2) + β}

(κI)(t1 ∗ t2) + β = rmin{κI(t1), κI(t2)} + β,

(κF)(t1 ∗ t2) − γ = (κF)γ
T(t1 ∗ t2)

≥ rmin{(κF)γ
T(t2 ∗ (t1 ∗ t2)), (κF)γ

T(t2)}

= rmin{(κF)γ
T(0), (κF)γ

T(t2)}

≥ rmin{(κF)γ
T(t1), (κF)γ

T(t2)}

= rmin{κF(t1) − γ, κF(t2) − γ}

(κF)(t1 ∗ t2) − γ = rmin{κF(t1), κF(t2)} − γ

⇒ κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)}, κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} and κF(t1 ∗ t2)

≥ rmin{κF(t1), κF(t2)} and now

(υT)(t1 ∗ t2) + α = (υT)α
T(t1 ∗ t2)

≤ max{(υT)α
T(t2 ∗ (t1 ∗ t2)), (υT)α

T(t2)}

= max{(υT)α
T(0), (υT)α

T(t2)}

≤ max{(υT)α
T(t1), (υT)α

T(t2)}

= max{υT(t1) + α, υT(t2) + α}

(υT)(t1 ∗ t2) + α = max{υT(t1), υT(t2)} + α,
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(υI)(t1 ∗ t2) + β = (υI)β
T(t1 ∗ t2)

≤ max{(υI)β
T(t2 ∗ (t1 ∗ t2)), (υI)β

T(t2)}

= max{(υI)β
T(0), (υI)β

T(t2)}

≤ max{(υI)β
T(t1), (υI)β

T(t2)}

= max{υI(t1) + β, υI(t2) + β}

(υI)(t1 ∗ t2) + β = max{υI(t1), υI(t2)} + β,

(υF)(t1 ∗ t2) − γ = (υF)γ
T(t1 ∗ t2)

≤ max{(υF)γ
T(t2 ∗ (t1 ∗ t2)), (υF)γ

T(t2)}

= max{(υF)γ
T(0), (υF)γ

T(t2)}

≤ max{(υF)γ
T(t1), (υF)γ

T(t2)}

= max{υF(t1) − γ, υF(t2) − γ}

(υF)(t1 ∗ t2) − γ = max{υF(t1), υF(t2)} − γ

⇒ υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)}, υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)}  and υF(t1 ∗ t2) ≤

max{υF(t1), υF(t2)}. Hence B is a NCSU of Y.

Theorem 3.2.6 Intersection of any two neutrosophic cubic translations of a neutrosophic cubic BF ideals B of 

Y is a neutrosophic cubic BF ideal of Y. 

Proof. Suppose Bα,β,γ
T and Bα′,β′,γ′

T  are two neutrosophic cubic translations of neutrosophic cubic BF ideal B 

and C of Y respectively, where for Bα,β,γ
T , for κT,I,F,  α, β ∈ [[0,0], ℸ], γ ∈ [[0,0], ¥],  for υT,I,F, α, β ∈ [0, Γ],

γ ∈ [0, £]  and for Bα′,β′,γ′
T , for κT,I,F  α′, β′ ∈ [[0,0], ℸ], γ′ ∈ [[0,0], ¥], for υT,I,F , α′, β′ ∈ [0, Γ], γ′ ∈ [0, £]

and α ≤ α′, β ≤ β′, γ ≤ γ′ as we know that, Bα,β,γ
T and Bα′,β′ ,γ′

T  are neutrosophic cubic BF ideals of Y. So

((κT)α
T ∩ (κT)α′

T )(t1) = rmin{(κT)α
T(t1), (κT)α′

T (t1)}

= rmin{κT(t1) + α, κT(t1) + α′}

= κT(t1) + α

((κT)α
T ∩ (κT)α′

T )(t1) = (κT)α
T(t1),

((κI)β
T ∩ (κI)β′

T )(t1) = rmin{(κI)β
T(t1), (κI)β′

T (t1)}

= rmin{κI(t1) + β, κI(t1) + β′}

= κI(t1) + β

((κI)β
T ∩ (κI)β′

T )(t1) = (κI)β
T(t1),
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((κF)γ
T ∩ (κF)γ′

T )(t1) = rmin{(κF)γ
T(t1), (κF)γ′

T (t1)}

= rmin{κF(t1) − γ, κF(t1) − γ′}

= κF(t1) − γ′

((κF)γ
T ∩ (κF)γ′

T )(t1) = (κF)γ′
T (t1)

 and 

((υT)α
T ∩ (υT)α′

T )(t1) = max{(υT)α
T(t1), (υT)α′

T (t1)}

= max{υT(t1) + α, υT(t1) + α′}

= υT(t1) + α′

((υT)α
T ∩ (υT)α′

T )(t1) = (υT)α′
T (t1),

((υI)β
T ∩ (υI)β′

T )(t1) = max{(υI)β
T(t1), (υI)β′

T (t1)}

= max{υI(t1) + β, υI(t1) + β′}

= υI(t1) + β′

((υI)β
T ∩ (υI)β′

T )(t1) = (υI)β′
T (t1),

((υF)γ
T ∩ (υF)γ′

T )(t1) = max{(υF)γ
T(t1), (υF)γ′

T (t1)}

= max{υF(t1) − γ, υF(t1) − γ′}

= υF(t1) − γ

((υF)γ
T ∩ (υF)γ′

T )(t1) = (υF)γ
T(t1).

Hence Bα,β,γ
T ∩ Bα′,β′ ,γ′

T  is a neutrosophic cubic BF ideal of Y. 

Theorem 3.2.7 Union of any two neutrosophic cubic translations of a neutrosophic cubic BF ideals B of Y is 
a neutrosophic cubic BF ideal of Y. 

Proof. Suppose Bα,β,γ
T and Bα′,β′,γ′

T  are two neutrosophic cubic translations of neutrosophic cubic BF ideal B 
of Y respectively, where for Bα,β,γ

T , for κT,I,F,  α, β ∈ [[0,0], ℸ], γ ∈ [[0,0], ¥],  for υT,I,F , α, β ∈ [0, Γ], γ ∈

[0, £]  and for Bα′,β′,γ′
T , for κT,I,F  α′, β′ ∈ [[0,0], ℸ], γ′ ∈ [[0,0], ¥], for υT,I,F , α′, β′ ∈ [0, Γ], γ′ ∈ [0, £] and

α ≥ α′, β ≥ β′, γ ≥ γ′ as we know that, Bα,β,γ
T and Bα′,β′ ,γ′

T  are neutrosophic cubic BF ideals of Y. Then 

((κT)α
T ∪ (κT)α′

T )(t1) = rmax{(κT)α
T(t1), (κT)α′

T (t1)}

= rmax{κT(t1) + α, κT(t1) + α′}

= κT(t1) + α

((κT)α
T ∪ (κT)α′

T )(t1) = (κT)α
T(t1),

((κI)β
T ∪ (κI)β′

T )(t1) = rmax{(κI)β
T(t1), (κI)β′

T (t1)}

= rmax{κI(t1) + β, κI(t1) + β′}

= κI(t1) + β

((κI)β
T ∪ (κI)β′

T )(t1) = (κI)β
T(t1),

Florentin Smarandache (author and editor) Collected Papers, XII

696



((κF)γ
T ∪ (κF)γ′

T )(t1) = rmax{(κF)γ
T(t1), (κF)γ′

T (t1)}

= rmax{κF(t1) − γ, κF(t1) − γ′}

= κF(t1) − γ′

((κF)γ
T ∪ (κF)γ′

T )(t1) = (κF)γ′
T (t1)

 and 

((υT)α
T ∪ (υT)α′

T )(t1) = min{(υT)α
T(t1), (υT)α′

T (t1)}

= min{υT(t1) + α, υT(t1) + α′}

= υT(t1) + α′

((υT)α
T ∪ (υT)α′

T )(t1) = (υT)α′
T (t1),

((υI)β
T ∪ (υI)β′

T )(t1) = min{(υI)β
T(t1), (υI)β′

T (t1)}

= min{υI(t1) + β, υI(t1) + β′}

= υI(t1) + β′

((υI)β
T ∪ (υI)β′

T )(t1) = (υI)β
T(t1),

((υF)γ
T ∪ (υF)γ′

T )(t1) = min{(υF)γ
T(t1), (υF)γ′

T (t1)}

= min{υF(t1) − γ, υF(t1) − γ′}

= υF(t1) − γ

((υF)γ
T ∪ (υF)γ′

T )(t1) = (υF)γ
T(t1)

Hence Bα,β,γ
T ∪ Bα′,β′,γ′

T  is a neutrosophic cubic BF ideal of Y. 

Theorem 3.2.8 Let B be a NCS of Y such that NCM Bδ
M of B is a NCID of Y for δ ∈ (0,1] then B is a

NCID of Y. 

Proof. Suppose that Bδ
M  is a NCID of Y  for δ  ∈  (0,1]  and t1, t2  ∈  Y.  Then δ. κT(0) = (κT)δ

M(0)  ≥

(κT)δ
M(t1) = δ. κT(t1), so κT(0) ≥ κT(t1),δ. κI(0) = (κI)δ

M(0) ≥ (κI)δ
M(t1) = δ. κI(t1), so κI(0) ≥ κI(t1),

δ. κF(0) = (κF)δ
M(0)  ≥ (κF)δ

M(t1)  = δ. κF(t1), so κF(0) ≥ κF(t1)  and δ. υT(0) = (υT)δ
M(0)  ≤ (υT)δ

M(t1)

= δ. υT(t1),  so υT(0) ≤ υT(t1) , δ. υI(0) = (υI)δ
M(0)  ≤ (υI)δ

M(t1)  = δ. υI(t1),  so υI(0) ≤ υI(t1) ,
δ. υF(0) = (υF)δ

M(0) ≤ (υF)δ
M(t1) = δ. υF(t1), so υF(0) ≤ υF(t1). Now

δ. κT(t1) = (κT)δ
M(t1)

≥ rmin{(κT)δ
M(t1 ∗ t2), (κT)δ

M(t2)}

= rmin{δ. κT(t1 ∗ t2), δ. κT(t2)}

δ. κT(t1) = δ. rmin{κT(t1 ∗ t2), κT(t2)},

δ. κI(t1) = (κI)δ
M(t1)
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≥ rmin{(κI)δ
M(t1 ∗ t2), (κI)δ

M(t2)}

= rmin{δ. κI(t1 ∗ t2), δ. κI(t2)}

δ. κI(t1) = δ. rmin{κI(t1 ∗ t2), κI(t2)},

δ. κF(t1) = (κF)δ
M(t1)

≥ rmin{(κF)δ
M(t1 ∗ t2), (κF)δ

M(t2)}

= rmin{δ. κF(t1 ∗ t2), δ. κF(t2)}

δ. κF(t1) = δ. rmin{κF(t1 ∗ t2), κF(t2)},

so κT(t1) ≥ rmin{κT(t1 ∗ t2), κT(t2)}, κI(t1) ≥ rmin{κI(t1 ∗ t2), κI(t2)}  and κF(t1) ≥ rmin{κF(t1 ∗

t2), κF(t2)} and also

δ. υT(t1) = (υT)δ
M(t1)

≤ max{(υT)δ
M(t1 ∗ t2), (υT)δ

M(t2)}

= max{δ. υT(t1 ∗ t2), δ. υT(t2)}

δ. υT(t1) = δ. max{υT(t1 ∗ t2), υT(t2)},

δ. υI(t1) = (υI)δ
M(t1)

≤ max{(υI)δ
M(t1 ∗ t2), (υI)δ

M(t2)}

= max{δ. υI(t1 ∗ t2), δ. υI(t2)}

δ. υI(t1) = δ. max{υI(t1 ∗ t2), υI(t2)},

δ. υF(t1) = (υF)δ
M(t1)

≤ max{(υF)δ
M(t1 ∗ t2), (υF)δ

M(t2)}

= max{δ. υF(t1 ∗ t2), δ. υF(t2)}

δ. υF(t1) = δ. max{υF(t1 ∗ t2), υF(t2)},

so υT(t1) ≤ max{υT(t1 ∗ t2), υT(t2)}, υI(t1) ≤ max{υI(t1 ∗ t2), υI(t2)}  and υF(t1) ≤ max{υF(t1 ∗

t2), υF(t2)}. Hence B is a NCID of Y.

Theorem 3.2.9 If B is a NCID of Y, then NCM Bδ
M of B is a NCID of Y, for all δ ∈ (0,1].

Proof. Let B be a NCID of Y and δ ∈ (0,1]. Then we have (κT)δ
M(0) = δ. κT(0) ≥ δ. κT(t1) →(κT)δ

M(0) =

(κT)δ
M(t1),  (κI)δ

M(0) = δ. κI(0) ≥ δ. κI(t1) → (κI)δ
M(0) = (κI)δ

M ( t1),  (κF)δ
M(0) = δ. κF(0) ≥

δ. κF(t1) → (κF)δ
M(0) = (κF)δ

M(t1)  and (υT)δ
M(0) = δ. υT(0) ≤ δ. υT(t1) → (υT)δ

M(0) = (υT)δ
M(t1),
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(υI)δ
M(0) = δ. υI(0) ≤ δ. υI(t1) → (υI)δ

M (0) = (υI)δ
M(t1),  (υF)δ

M(0) = δ. υF(0) ≤ δ. υF(t1) → (υF)δ
M(0) =

(υF)δ
M(t1).

Now  

(κT)δ
M(t1) = δ. κT(t1)

≥ δ. rmin{κT(t1 ∗ t2), κT(t2)}

= rmin{δ. κT(t1 ∗ t2), δ. κT(t2)}

(κT)δ
M(t1) = rmin{(κT)δ

M(t1 ∗ t2), (κT)δ
M(t2)}

(κT)δ
M(t1) ≥ rmin{(κT)δ

M(t1 ∗ t2), (κT)δ
M(t2)},

(κI)δ
M(t1) = δ. κI(t1)

≥ δ. rmin{κI(t1 ∗ t2), κI(t2)}

= rmin{δ. κI(t1 ∗ t2), δ. κI(t2)}

(κI)δ
M(t1) = rmin{(κI)δ

M(t1 ∗ t2), (κI)δ
M(t2)}

(κI)δ
M(t1) ≥ rmin{(κI)δ

M(t1 ∗ t2), (κI)δ
M(t2)},

(κF)δ
M(t1) = δ. κF(t1)

≥ δ. rmin{κF(t1 ∗ t2), κF(t2)}

= rmin{δ. κF(t1 ∗ t2), δ. κF(t2)}

(κF)δ
M(t1) = rmin{(κF)δ

M(t1 ∗ t2), (κF)δ
M(t2)}

(κF)δ
M(t1) ≥ rmin{(κF)δ

M(t1 ∗ t2), (κF)δ
M(t2)}

 and 

(υT)δ
M(t1) = δ. υT(t1)

≤ δ. max{υT(t1 ∗ t2), υT(t2)}

= max{δ. υT(t1 ∗ t2), δ. υT(t2)}

(υT)δ
M(t1) = max{(υT)δ

M(t1 ∗ t2), (υT)δ
M(t2)}

(υT)δ
M(t1) ≤ max{(υT)δ

M(t1 ∗ t2), (υT)δ
M(t2)},

(υI)δ
M(t1) = δ. υI(t1)

≤ δ. max{υI(t1 ∗ t2), υI(t2)}

= max{δ. υI(t1 ∗ t2), δ. υI(t2)}

(υI)δ
M(t1) = max{(υI)δ

M(t1 ∗ t2), (υI)δ
M(t2)}

(υI)δ
M(t1) ≤ max{(υI)δ

M(t1 ∗ t2), (υI)δ
M(t2)},
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(υF)δ
M(t1) = δ. υF(t1)

≤ δ. max{υF(t1 ∗ t2), υF(t2)}

= max{δ. υF(t1 ∗ t2), δ. υF(t2)}

(υF)δ
M(t1) = max{(υF)δ

M(t1 ∗ t2), (υF)δ
M(t2)}

(υF)δ
M(t1) ≤ max{(υF)δ

M(t1 ∗ t2), (υF)δ
M(t2)}.

Hence Bδ
M of B is a NCID of Y, for all δ ∈ (0,1].

Theorem 3.2.10 Let B be a NCID of Y and δ ∈ [0,1] then NCM Bδ
M of B is a NCSU of Y.

Proof. Suppose t1, t2 ∈ Y. Then

(κT)δ
M(t1 ∗ t2) = δ. κT(t1 ∗ t2)

≥ δ. rmin{κT(t2 ∗ (t1 ∗ t2)), κT(t2)}

= δ. rmin{κT(0), κT(t2)}

≥ δ. rmin{κT(t1), κT(t2)}

= rmin{δ. κT(t1), δ. κT(t2)}

(κT)δ
M(t1 ∗ t2) = rmin{(κT)δ

M(t1), (κT)δ
M(t2)}

(κT)δ
M(t1 ∗ t2) ≥ rmin{(κT)δ

M(t1), (κT)δ
M(t2)},

(κI)δ
M(t1 ∗ t2) = δ. κI(t1 ∗ t2)

≥ δ. rmin{κI(t2 ∗ (t1 ∗ t2)), κI(t2)}

= δ. rmin{κI(0), κI(t2)}

≥ δ. rmin{κI(t1), κI(t2)}

= rmin{δ. κI(t1), δ. κI(t2)}

(κI)δ
M(t1 ∗ t2) = rmin{(κI)δ

M(t1), (κI)δ
M(t2)}

(κI)δ
M(t1 ∗ t2) ≥ rmin{(κI)δ

M(t1), (κI)δ
M(t2)},

(κF)δ
M(t1 ∗ t2) = δ. κF(t1 ∗ t2)

≥ δ. rmin{κF(t2 ∗ (t1 ∗ t2)), κF(t2)}

= δ. rmin{κF(0), κF(t2)}

≥ δ. rmin{κF(t1), κF(t2)}

= rmin{δ. κF(t1), δ. κF(t2)}

(κF)δ
M(t1 ∗ t2) = rmin{(κF)δ

M(t1), (κF)δ
M(t2)}
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(κF)δ
M(t1 ∗ t2) ≥ rmin{(κF)δ

M(t1), (κF)δ
M(t2)}

 and 

(υT)δ
M(t1 ∗ t2) = δ. υT(t1 ∗ t2)

≤ δ. max{υT(t2 ∗ (t1 ∗ t2)), υT(t2)}

= δ. max{υT(0), υT(t2)}

≤ δ. max{υT(t1), υT(t2)}

= max{δ. υT(t1), δ. υT(t2)}

(υT)δ
M(t1 ∗ t2) = max{(υT)δ

M(t1), (υT)δ
M(t2)}

(υT)δ
M(t1 ∗ t2) ≤ max{(υT)δ

M(t1), (υT)δ
M(t2)},

(υI)δ
M(t1 ∗ t2) = δ. υI(t1 ∗ t2)

≤ δ. max{υI(t2 ∗ (t1 ∗ t2)), υI(t2)}

= δ. max{υI(0), υI(t2)}

≤ δ. max{υI(t1), υI(t2)}

= max{δ. υI(t1), δ. υI(t2)}

(υI)δ
M(t1 ∗ t2) = max{(υI)δ

M(t1), (υI)δ
M(t2)}

(υI)δ
M(t1 ∗ t2) ≤ max{(υI)δ

M(t1), (υI)δ
M(t2)},

(υF)δ
M(t1 ∗ t2) = δ. υF(t1 ∗ t2)

≤ δ. max{υF(t2 ∗ (t1 ∗ t2)), υF(t2)}

= δ. max{υF(0), υF(t2)}

≤ δ. max{υF(t1), υF(t2)}

= max{δ. υF(t1), δ. υF(t2)}

(υF)δ
M(t1 ∗ t2) = max{(υF)δ

M(t1), (υF)δ
M(t2)}

(υF)δ
M(t1 ∗ t2) ≤ max{(υF)δ

M(t1), (υF)δ
M(t2)}.

Hence Bδ
M is a NCSU of Y.

Theorem 3.2.11 If the NCM Bδ
M of B is a NCID of Y, for δ ∈ (0,1]. Then B is a neutrosophic cubic BF-

subalgebra of Y. 

Proof. Assume Bδ
M of B is a NCID of Y. Then

δ. (κT)(t1 ∗ t2) = (κT)δ
M(t1 ∗ t2)

≥ rmin{(κT)δ
M(t2 ∗ (t1 ∗ t2)), (κT)δ

M(t2)}

= rmin{(κT)δ
M(0), (κT)δ

M(t2)}
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≥ rmin{(κT)δ
M(t1), (κT)δ

M(t2)}

= rmin{δ. κT(t1), δ. κT(t2)}

δ. (κT)(t1 ∗ t2) = δ. rmin{κT(t1), κT(t2)}

⇒ κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)},

δ. (κI)(t1 ∗ t2) = (κI)δ
M(t1 ∗ t2)

≥ rmin{(κI)δ
M(t2 ∗ (t1 ∗ t2)), (κI)δ

M(t2)}

= rmin{(κI)δ
M(0), (κI)δ

M(t2)}

≥ rmin{(κI)δ
M(t1), (κI)δ

M(t2)}

= rmin{δ. κI(t1), δ. κI(t2)}

δ. (κI)(t1 ∗ t2) = δ. rmin{κI(t1), κI(t2)}

⇒ κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)},

δ. (κF)(t1 ∗ t2) = (κF)δ
M(t1 ∗ t2)

≥ rmin{(κF)δ
M(t2 ∗ (t1 ∗ t2)), (κF)δ

M(t2)}

= rmin{(κF)δ
M(0), (κF)δ

M(t2)}

≥ rmin{(κF)δ
M(t1), (κF)δ

M(t2)}

= rmin{δ. κF(t1), δ. κF(t2)}

δ. (κF)(t1 ∗ t2) = δ. rmin{κF(t1), κF(t2)}

⇒ κF(t1 ∗ t2) ≥ rmin{κF(t1), κF(t2)}

 and 

δ. (υT)(t1 ∗ t2) = (υT)δ
M(t1 ∗ t2)

≤ max{(υT)δ
M(t2 ∗ (t1 ∗ t2)), (υT)δ

M(t2)}

= max{(υT)δ
M(0), (υT)δ

M(t2)}

≤ max{(υT)δ
M(t1), (υT)δ

M(t2)}

= max{δ. υT(t1), δ. υT(t2)}

δ. (υT)(t1 ∗ t2) = δ. max{υT(t1), υT(t2)}

⇒ υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)},

δ. (υI)(t1 ∗ t2) = (υI)δ
M(t1 ∗ t2)

≤ max{(υI)δ
M(t2 ∗ (t1 ∗ t2)), (υI)δ

M(t2)}

= max{(υI)δ
M(0), (υI)δ

M(t2)}
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≤ max{(υI)δ
M(t1), (υI)δ

M(t2)}

= max{δ. υI(t1), δ. υI(t2)}

δ. (υI)(t1 ∗ t2) = δ. max{υI(t1), υI(t2)}

⇒ υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)},

δ. (υF)(t1 ∗ t2) = (υF)δ
M(t1 ∗ t2)

≤ max{(υF)δ
M(t2 ∗ (t1 ∗ t2)), (υF)δ

M(t2)}

= max{(υF)δ
M(0), (υF)δ

M(t2)}

≤ max{(υF)δ
M(t1), (υF)δ

M(t2)}

= max{δ. υF(t1), δ. υF(t2)}

δ. (υF)(t1 ∗ t2) = δ. max{υF(t1), υF(t2)}

⇒ υF(t1 ∗ t2) ≤ max{υF(t1), υF(t2)}.

Hence B is a NCSU of Y. 

Theorem 3.2.12 Intersection of any two neutrosophic cubic multiplications of a NCID B of Y is a NCID of 
Y. 

Proof. Suppose Bδ
M and Bδ′

M are neutrosophic cubic multiplications of NCID B of Y, where δ, δ′ ∈ (0,1]

and δ ≤ δ′, as we know that Bδ
M and Bδ′

M  are NCIDs of Y. Then 

((κT)δ
M ∩ (κT)δ′

M )(t1) = rmin{(κT)δ
M(t1), (κT)δ′

M (t1)}

= rmin{κT(t1). δ, κT(t1). δ′}

= κT(t1). δ

((κT)δ
M ∩ (κT)δ′

M )(t1) = (κT)δ
M(t1),

((κI)δ
M ∩ (κI)δ′

M )(t1) = rmin{(κI)δ
M(t1), (κI)δ′

M (t1)}

= rmin{κI(t1). δ, κI(t1). δ′}

= κI(t1). δ

((κI)δ
M ∩ (κI)δ′

M )(t1) = (κI)δ
M(t1),

((κF)δ
M ∩ (κF)δ′

M )(t1) = rmin{(κF)δ
M(t1), (κF)δ′

M (t1)}

= rmin{κF(t1). δ, κF(t1). δ′}

= κF(t1). δ

((κF)δ
M ∩ (κF)δ′

M )(t1) = (κF)δ
M(t1)

 and 
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((υT)δ
M ∩ (υT)δ′

M )(t1) = max{(υT)δ
M(t1), (υT)δ′

M (t1)}

= max{υT(t1). δ, υT(t1). δ′}

= υT(t1). δ′

((υT)δ
M ∩ (υT)δ′

M )(t1) = (υT)δ′
M (t1),

((υI)δ
M ∩ (υI)δ′

M )(t1) = max{(υI)δ
M(t1), (υI)δ′

M (t1)}

= max{υI(t1). δ, υI(t1). δ′}

= υI(t1). δ′

((υI)δ
M ∩ (υI)δ′

M )(t1) = (υI)δ′
M (t1),

((υF)δ
M ∩ (υF)δ′

M )(t1) = max{(υF)δ
M(t1), (υF)δ′

M (t1)}

= max{υF(t1). δ, υF(t1). δ′}

= υF(t1). δ′

((υF)δ
M ∩ (υF)δ′

M )(t1) = (υF)δ′
M (t1).

Hence Bδ
M ∩ Bδ′

M  is NCID of Y. 

Theorem 3.2.13 Union of any two neutrosophic cubic multiplications of a NCID B of Y is a NCID of Y. 

Proof. Suppose Bδ
M and Bδ′

M are neutrosophic cubic multiplications of NCID B of Y, where δ, δ′ ∈ (0,1]

and δ ≤ δ′, as we know that Bδ
M and Bδ′

M  are NCIDs of Y. Then 

((κT)δ
M ∪ (κT)δ′

M )(t1) = rmax{(κT)δ
M(t1), (κT)δ′

M (t1)}

= rmax{κT(t1). δ, κT(t1). δ′}

= κT(t1). δ′

((κT)δ
M ∪ (κT)δ′

M )(t1) = (κT)δ′
M (t1),

((κI)δ
M ∪ (κI)δ′

M )(t1) = rmax{(κI)δ
M(t1), (κI)δ′

M (t1)}

= rmax{κI(t1). δ, κI(t1). δ′}

= κI(t1). δ′

((κI)δ
M ∪ (κI)δ′

M )(t1) = (κI)δ′
M (t1),

((κF)δ
M ∪ (κF)δ′

M )(t1) = rmax{(κF)δ
M(t1), (κF)δ′

M (t1)}

= rmax{κF(t1). δ, κF(t1). δ′}

= κF(t1). δ′

((κF)δ
M ∪ (κF)δ′

M )(t1) = (κF)δ′
M (t1)
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 and 

((υT)δ
M ∪ (υT)δ′

M )(t1) = min{(υT)δ
M(t1), (υT)δ′

M (t1)}

= min{υT(t1). δ, υT(t1). δ′}

= υT(t1). δ

((υT)δ
M ∪ (υT)δ′

M )(t1) = (υT)δ
M(t1),

((υI)δ
M ∪ (υI)δ′

M )(t1) = min{(υI)δ
M(t1), (υI)δ′

M (t1)}

= min{υI(t1). δ, υI(t1). δ′}

= υI(t1). δ

((υI)δ
M ∪ (υI)δ′

M )(t1) = (υI)δ
M(t1),

((υF)δ
M ∪ (υF)δ′

M )(t1) = min{(υF)δ
M(t1), (υF)δ′

M (t1)}

= min{υF(t1). δ, υF(t1). δ′}

= υF(t1). δ

((υF)δ
M ∪ (υF)δ′

M )(t1) = (υF)δ
M(t1).

Hence Bδ
M ∪ Bδ′

M  is NCID of Y.  

3.3 Magnified Translative Interpretation of Neutrosophic Cubic Subalgebra and Neutrosophic Cubic 
Ideal 

In this section, we define the notion of neutrosophic cubic magnified translation NCMT and investigate some 

results.   

Definition 3.3.1 Let B = (κT,I,F, υT,I,F)  be a NCS of Y  and for κT,I,F,  α, β ∈ [[0,0], ℸ]  and γ ∈ [[0,0], ¥],

where for υT,I,F , α, β ∈ [0, Γ]  and γ ∈ [0, £]  and for all δ ∈ [0,1].  An object having the form Bδ α,β,γ
M T =

{(κT,I,F)δ α,β,γ
M T , (υT,I,F)δ α,β,γ

M T } is said to be a NCMT of B, when (κT)δ α
M T(t1) = δ. κT(t1) + α,(κI)δ β

M T(t1) =

δ. κI(t1) + β , (κF)δ γ
M T(t1) = δ. κF(t1) -  γ  and (υT)δ α

M T(t1) = δ. υT(t1) + α , (υI)δ β
M T(t1) = δ. υI(t1) + β ,

(υF)δ γ
M T(t1) = δ. υF(t1)-γ for all t1 ∈ Y.

Example 3.3.1 Let Y = {0,1,2} be a BF-algebra as defined in Example 3.2.1. A NCS B = (κT,I,F, υT,I,F) of Y

is defined as 

κT(t1) = (
[0.1, 0.3] if t1 = 0

[0.4, 0.7] if otherwise

κI(t1) = (
[0.2,0.4] if t1 = 0

[0.5, 0.7] if otherwise

κF(t1) = (
[0.4,0.6] if  t1 = 0

[0.5, 0.8] if otherwise

and 
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υT(t1) = (
0.1 if t1 = 0
0.4 if otherwise

υI(t1) = (
0.2 if t1 = 0
0.3 if otherwise

υF(t1) = (
0.5 if t1 = 0
0.7 if otherwise.

Then B is a neutrosophic cubic subalgebra, for υT,I,F choose δ = 0.1, α = 0.02, β = 0.03, γ = 0.04 and for
κT,I,F choose  δ = [0.1,0.4], α = [0.03,0.07], β = [0.04,0.08], γ = [0.02,0.06]  then the mapping 
B(0.1) (α,β,γ)

M T |Y → [0,1] is given by 

(κT)[0.1,0.4] [0.03,0.07]
M (t1) = (

[0.04, 0.19] if t1 = 1

[0.07, 0.35] if otherwise

(κI)[0.1,0.4] [0.04,0.08]
M T (t1) = (

[0.06, 0.24] if t1 = 1

[0.09, 0.36] if otherwise

(κF)[0.1,0.4] [0.02,0.06]
M T (t1) = (

[0.02, 0.18] if t1 = 1

[0.03, 0.26] if otherwise

 and 

(υT)0.1,0.02
M (t1) = (

0.03 if t1 = 1
0.06 if otherwise

(υI)0.1,0.03
M T (t1) = (

0.05 if t1 = 1
0.06 if otherwise

(υF)0.1.0.04
M T (t1) = (

0.01 if t1 = 1
0.03 if otherwise,

which imply (κT)[0.1,0.4][0.03,0.07]
M T (t1) = [0.1,0.4]. κT(t1) + [0.03,0.07] , (κI)[0.1,0.4][0.04,0.08]

M T (t1) =

[0.1,0.4]. κT(t1) + [0.04,0.08] , (κF)[0.1,0.4][0.02,0.06]
M T (t1) = [0.1,0.4]. κF(t1) − [0.02,0.06]  and 

(υT)(0.1)(0.02)
M T (t1) = (0.1). υT(t1) + 0.02 , (υI)(0.1)(0.03)

M T (t1) = (0.1). υT(t1) + 0.03 , (νF)(0.1) (0.04)
M T (t1) =

(0.1). νF(t1) − 0.04 for all t1 ∈ Y. Hence BM T is a neutrosophic cubic magnified translation.

Theorem 3.3.1 Let B  be a neutrosophic cubic subset of Y  such that for κT,I,F,  α, β ∈ [[0,0], ℸ] and γ ∈

[[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ [0,1] and a mapping Bδ α,β,γ
M T,I,F|Y → [0,1] be a 

NCMT of B. If B is NCSU of Y, then Bδ α,β,γ
M T,I,F is a NCSU of Y.

Proof. Let B be a neutrosophic cubic subset of Y such that for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥],

where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ [0,1] and a mapping Bδ α,β,γ
M T,I,F|Y → [0,1] be a NCMT of 

B.  Suppose B  is a NCSU of Y. Then κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)}, κI(t1 ∗ t2) ≥

rmin{κI(t1), κI(t2)}, κF(t1 ∗ t2) ≥ rmin{κF(t1), κF ( t2 ) }  and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)}, υI(t1 ∗

t2) ≤ max{υI(t1), υI(t2)}, υF(t1 ∗ t2) ≤ max{υF(t1), υF(t2)}. Now

(κT)δ α
M T(t1 ∗ t2) = δ. κT(t1 ∗ t2) + α

≥ δ. rmin{κT(t1), κT(t2)} + α
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= rmin{δ. κT(t1) + α, δ. κT(t2) + α}

(κT)δ α
M T(t1 ∗ t2) = rmin{(κT)δ α

M T(t1), (κT)δ α
M T(t2)}

(κT)δ α
M T(t1 ∗ t2) ≥ rmin{(κT)δ α

M T(t1), (κT)δ α
M T(t2)},

(κI)δ β
M T(t1 ∗ t2) = δ. κI(t1 ∗ t2) + β

≥ δ. rmin{κI(t1), κI(t2)} + β

= rmin{δ. κI(t1) + β, δ. κI(t2) + β}

(κI)δ β
M T(t1 ∗ t2) = rmin{(κI)δ β

M T(t1), (κI)δ β
M T(t2)}

(κI)δ β
M T(t1 ∗ t2) ≥ rmin{(κI)δ β

M T(t1), (κI)δ β
M T(t2)},

(κF)δ γ
M T(t1 ∗ t2) = δ. κF(t1 ∗ t2) − γ

≥ δ. rmin{κF(t1), κF(t2)} − γ

= rmin{δ. κF(t1) − γ, δ. κF(t2) − γ}

(κF)δ γ
M T(t1 ∗ t2) = rmin{(κF)δ γ

M T(t1), (κF)δ γ
M T(t2)}

(κF)δ γ
M T(t1 ∗ t2) ≥ rmin{(κF)δ γ

M T(t1), (κF)δ γ
M T(t2)}

 and 

(υT)δ α
M T(t1 ∗ t2) = δ. υT(t1 ∗ t2) + α

≤ δ. max{υT(t1), υT(t2)} + α

= max{δ. υT(t1) + α, δ. υT(t2) + α}

(υT)δ α
M T(t1 ∗ t2) = max{(υT)δ α

M T(t1), (υT)δ α
M T(t2)}

(υT)δ α
M T(t1 ∗ t2) ≤ max{(υT)δ α

M T(t1), (υT)δ α
M T(t2)},

(υI)δ β
M T(t1 ∗ t2) = δ. υI(t1 ∗ t2) + β

≤ δ. max{υI(t1), υI(t2)} + β

= max{δ. υI(t1) + β, δ. υI(t2) + β}

(υI)δ β
M T(t1 ∗ t2) = max{(υI)δ β

M T(t1), (υI)δ β
M T(t2)}

(υI)δ β
M T(t1 ∗ t2) ≤ max{(υI)δ β

M T(t1), (υI)δ β
M T(t2)},

(υF)δ γ
M T(t1 ∗ t2) = δ. υF(t1 ∗ t2) − γ

≤ δ. max{υF(t1), υF(t2)} − γ

= max{δ. υF(t1) − γ, δ. υF(t2) − γ}

(υF)δ γ
M T(t1 ∗ t2) = max{(υF)δ γ

M T(t1), (υF)δ γ
M T(t2)}

(υF)δ γ
M T(t1 ∗ t2) ≤ max{(υF)δ γ

M T(t1), (υF)δ γ
M T(t2)}.
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Hence NCMT Bδ α,β,γ
M T  is a NCSU of Y. 

Theorem 3.3.2 Let B be a NCS of Y such that and for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for
υT,I,F , α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ [0,1] and a mapping Bδ α,β,γ

M T : Y → [0,1] be a NCMT of B. If
Bδ α,β,γ

M T  is NCSU of Y. Then B is a NCSU of Y. 

Proof. Let B  be a neutrosophic cubic subset of Y,  where α, β, γ  ∈  [0, ¥],  δ  ∈  [0,1]  and a mapping 

Bδ α,β,γ
M T : Y → [0,1] be a NCMT of B. Suppose Bδ α,β,γ

M T = {(κB)δ α,β,γ
M T,I,F, (υB)δ α,β,γ

M T,I,F} is a NCSU of Y, then 

δ. κT(t1 ∗ t2) + α = (κT)δ α
M T(t1 ∗ t2)

≥ rmin{(κT)δ α
M T(t1), (κT)δ α

M T(t2)}

= rmin{δ. κT(t1) + α, δ. κT(t2) + α}

δ. κT(t1 ∗ t2) + α = δ. rmin{κT(t2), κT(t1)} + α,

δ. κI(t1 ∗ t2) + β = (κI)δ β
M T(t1 ∗ t2)

≥ rmin{(κI)δ β
M T(t1), (κI)δ β

M T(t2)}

= rmin{δ. κI(t1) + β, δ. κI(t2) + β}

δ. κI(t1 ∗ t2) + β = δ. rmin{κI(t2), κI(t1)} + β,

δ. κF(t1 ∗ t2) − γ = (κF)δ γ
M T(t1 ∗ t2)

≥ rmin{(κF)δ γ
M T(t1), (κF)δ γ

M T(t2)}

= rmin{δ. κF(t1) − γ, δ. κF(t2) − γ}

δ. κF(t1 ∗ t2) − γ = δ. rmin{κF(t2), κF(t1)} − γ,

 and 

δ. υT(t1 ∗ t2) + α = (υT)δ α
M T(t1 ∗ t2)

≤ max{(υT)δ α
M T(t1), (υT)δ α

M T(t2)}

= max{δ. υT(t1) + α, δ. υT(t2) + α}

δ. υT(t1 ∗ t2) + α = δ. max{υT(t2), υT(t1)} + α,

δ. υI(t1 ∗ t2) + β = (υI)δ β
M T(t1 ∗ t2)

≤ max{(υI)δ β
M T(t1), (υI)δ β

M T(t2)}

= max{δ. υI(t1) + β, δ. υI(t2) + β}

δ. υI(t1 ∗ t2) + β = δ. max{υI(t2), υI(t1)} + β,
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δ. υF(t1 ∗ t2) − γ = (υF)δ γ
M T(t1 ∗ t2)

≤ max{(υF)δ γ
M T(t1), (υF)δ γ

M T(t2)}

= max{δ. υF(t1) − γ, δ. υF(t2) − γ}

δ. υF(t1 ∗ t2) − γ = δ. max{υF(t2), υF(t1)} − γ,

which imply κT(t1 ∗ t2) ≥ rmin{κT(t1), κT(t2)} , κI(t1 ∗ t2) ≥ rmin{κI(t1), κI(t2)} , κF(t1 ∗ t2) ≥

rmin{κF(t1), κF(t2)} and υT(t1 ∗ t2) ≤ max{υT(t1), υT(t2)},υI(t1 ∗ t2) ≤ max{υI(t1), υI(t2)},υF(t1 ∗ t2) ≤

max{υF(t1), υF(t2)} for all t1, t2 ∈ Y. Hence B is a NCSU of Y.

Theorem 3.3.3 If B  is a NCID of Y. Then NCMT Bδ α,β,γ
M T of B  is a NCID of Y  for all  κT,I,F, α, β ∈

[[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ (0,1].

Proof. Suppose B = (κT,I,F, υT,I,F) is a NCID of Y. Then

(κT)δ α
M T(0) = δ. κT(0) + α

≥ δ. κT(t1) + α

(κT)δ α
M T(0) = (κT)δ α

M T(t1),

(κI)δ β
M T(0) = δ. κI(0) + β

≥ δ. κI(t1) + β

(κI)δ β
M T(0) = (κI)δ β

M T(t1),

(κF)δ γ
M T(0) = δ. κF(0) − γ

≥ δ. κF(t1) − γ

(κF)δ γ
M T(0) = (κF)δ γ

M T(t1)

 and 

(υT)δ α
M T(0) = δ. υT(0) + α

≤ δ. υT(t1) + α

(υT)δ α
M T(0) = (υT)δ α

M T(t1),

(υI)δ β
M T(0) = δ. υI(0) + β

≤ δ. υI(t1) + β

(υI)δ β
M T(0) = (υI)δ β

M T(t1),

(υF)δ γ
M T(0) = δ. υF(0) − γ

≤ δ. υF(t1) − γ

(υF)δ γ
M T(0) = (υF)δ γ

M T(t1)
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 Now 

(κT)δ α
M T(t1) = δ. κT(t1) + α

≥ δ. rmin{κT(t1 ∗ t2), κT(t2)} + α

= rmin{δ. κT(t1 ∗ t2) + α, δ. κT(t2) + α}

(κT)δ α
M T(t1) = rmin{(κT)δ α

M T(t1 ∗ t2), (κT)δ α
M T(t2)}

⇒ (κT)δ α
M T(t1) ≥ rmin{(κT)δ α

M T(t1 ∗ t2), (κT)δ α
M T(t2)},

(κI)δ β
M T(t1) = δ. κI(t1) + β

≥ δ. rmin{κI(t1 ∗ t2), κI(t2)} + β

= rmin{δ. κI(t1 ∗ t2) + β, δ. κI(t2) + β}

(κI)δ β
M T(t1) = rmin{(κI)δ β

M T(t1 ∗ t2), (κI)δ β
M T(t2)}

⇒ (κI)δ β
M T(t1) ≥ rmin{(κI)δ β

M T(t1 ∗ t2), (κI)δ β
M T(t2)},

(κF)δ γ
M T(t1) = δ. κF(t1) − γ

≥ δ. rmin{κF(t1 ∗ t2), κF(t2)} − γ

= rmin{δ. κF(t1 ∗ t2) − γ, δ. κF(t2) − γ}

(κF)δ γ
M T(t1) = rmin{(κF)δ γ

M T(t1 ∗ t2), (κF)δ γ
M T(t2)}

⇒ (κF)δ γ
M T(t1) ≥ rmin{(κF)δ γ

M T(t1 ∗ t2), (κF)δ γ
M T(t2)}

 and 

(υT)δ α
M T(t1) = δ. υT(t1) + α

≤ δ. max{υT(t1 ∗ t2), υT(t2)} + α

= max{δ. υT(t1 ∗ t2) + α, δ. υT(t2) + α}

(υT)δ α
M T(t1) = max{(υT)δ α

M T(t1 ∗ t2), (υT)δ α
M T(t2)}

⇒ (υT)δ α
M T(t1) ≤ max{(υT)δ α

M T(t1 ∗ t2), (υT)δ α
M T(t2)},

(υI)δ β
M T(t1) = δ. υI(t1) + β

≤ δ. max{υI(t1 ∗ t2), υI(t2)} + β

= max{δ. υI(t1 ∗ t2) + β, δ. υI(t2) + β}

(υI)δ β
M T(t1) = max{(υI)δ β

M T(t1 ∗ t2), (υI)δ β
M T(t2)}
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⇒ (υI)δ β
M T(t1) ≤ max{(υI)δ β

M T(t1 ∗ t2), (υI)δ β
M T(t2)},

(υF)δ γ
M T(t1) = δ. υF(t1) − γ

≤ δ. max{υF(t1 ∗ t2), υF(t2)} − γ

= max{δ. υF(t1 ∗ t2) − γ, δ. υF(t2) − γ}

(υF)δ γ
M T(t1) = max{(υF)δ γ

M T(t1 ∗ t2), (υF)δ γ
M T(t2)}

⇒ (υF)δ γ
M T(t1) ≤ max{(υF)δ γ

M T(t1 ∗ t2), (υF)δ γ
M T(t2)},

for all t1, t2 ∈ Y and all for κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F, α, β ∈ [0, Γ] and γ ∈

[0, £] and δ ∈ (0,1]. Hence Bδ α,β,γ
M T  of B is a NCID of Y. 

Theorem 3.3.3 If B is a neutrosophic cubic set of Y such that NCMT Bδ α,β,γ
M T  of B is a NCID of Y for all for

κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where for υT,I,F , α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ (0,1], then

B is a NCID of Y. 

Proof. Suppose NCMT Bδ α,β,γ
M T is a NCID of Y for some κT,I,F, α, β ∈ [[0,0], ℸ] and γ ∈ [[0,0], ¥], where

for υT,I,F, α, β ∈ [0, Γ] and γ ∈ [0, £] and δ ∈ (0,1] and t1, t2 ∈ Y. Then

δ. κT(0) + α = (κT)δ α
M T(0)

≥ (κT)δ α
M T(t1)

δ. κT(0) + α = δ. κT(t1) + α,

δ. κI(0) + β = (κI)δ β
M T(0)

≥ (κI)δ β
M T(t1)

δ. κI(0) + β = δ. κI(t1) + β,

δ. κF(0) − γ = (κF)δ γ
M T(0)

≥ (κF)δ γ
M T(t1)

δ. κF(0) − γ = δ. κF(t1) − γ,

 and 

δ. υT(0) + α = (υT)δ α
M T(0)

≤ (υT)δ α
M T(t1)

δ. υT(0) + α = δ. υT(t1) + α,

δ. υI(0) + β = (υI)δ β
M T(0)

≤ (υI)δ β
M T(t1)

δ. υI(0) + β = δ. υI(t1) + β,
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δ. υF(0) − γ = (υF)δ γ
M T(0)

≤ (υF)δ γ
M T(t1)

δ. υF(0) − γ = δ. υF(t1) − γ,

which imply κT(0) ≥ κT(t1),κI(0) ≥ κI(t1),κF(0) ≥ κF(t1) and υT(0) ≤ υT(t1), υI(0) ≤ υI(t1), υF(0) ≤

υF(t1). Now, we have

δ. κT(t1) + α = (κT)δ α
M T(t1)

≥ rmin{(κT)δ α
M T(t1 ∗ t2), (κT)δ α

M T(t2)}

= rmin{δ. κT(t1 ∗ t2) + α, δ. κT(t2) + α}

δ. κT(t1) + α = δ. rmin{κT(t1 ∗ t2), κT(t2)} + α,

δ. κI(t1) + β = (κI)δ β
M T(t1)

≥ rmin{(κI)δ β
M T(t1 ∗ t2), (κI)δ β

M T(t2)}

= rmin{δ. κI(t1 ∗ t2) + β, δ. κI(t2) + β}

δ. κI(t1) + β = δ. rmin{κI(t1 ∗ t2), κI(t2)} + β,

δ. κF(t1) − γ = (κF)δ γ
M T(t1)

≥ rmin{(κF)δ γ
M T(t1 ∗ t2), (κF)δ γ

M T(t2)}

= rmin{δ. κF(t1 ∗ t2) − γ, δ. κF(t2) − γ}

δ. κF(t1) − γ = δ. rmin{κF(t1 ∗ t2), κF(t2)} − γ

 and 

δ. υT(t1) + α = (υT)δ α
M T(t1)

≤ max{(υT)δ α
M T(t1 ∗ t2), (υT)δ α

M T(t2)}

= max{δ. υT(t1 ∗ t2) + α, δ. υT(t2) + α}

δ. υT(t1) + α = δ. max{υT(t1 ∗ t2), υT(t2)} + α,

δ. υI(t1) + β = (υI)δ β
M T(t1)

≤ max{(υI)δ β
M T(t1 ∗ t2), (υI)δ β

M T(t2)}

= max{δ. υI(t1 ∗ t2) + β, δ. υI(t2) + β}

δ. υI(t1) + β = δ. max{υI(t1 ∗ t2), υI(t2)} + β,

δ. υF(t1) − γ = (υF)δ γ
M T(t1)

≤ max{(υF)δ γ
M T(t1 ∗ t2), (υF)δ γ

M T(t2)}

= max{δ. υF(t1 ∗ t2) − γ, δ. υF(t2) − γ}
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δ. υF(t1) − γ = δ. max{υF(t1 ∗ t2), υF(t2)} − γ

which imply κT(t1) ≥ rmin{κT(t1 ∗ t2), κT(t2)} , κI(t1) ≥ rmin{κI(t1 ∗ t2), κI(t2)} , κF(t1) ≥ rmin{κF(t1 ∗

t2), κF(t2)} and υT(t1) ≤ max{υT(t1 ∗ t2), υT(t2)},υI(t1) ≤ max{υI(t1 ∗ t2), υI(t2)},υF(t1) ≤ max{υF(t1 ∗

t2), υF(t2)} for all t1, t2 ∈ Y. Hence B is a NCID of Y.

Theorem 3.3.4 Intersection of any two NCMT of a NCID B of Y is a NCID of Y. 

Proof. Suppose Bδ α,β,γ
M T and Bδ′α′,β′,γ′

M T are two NCMTs of NCID B ofY, where for Bα,β,γ
M T  , for κT,I,F, α, β ∈

[[0,0], ℸ], γ ∈ [[0,0], ¥], for υT,I,F, α, β ∈ [0, Γ], γ ∈ [0, £]  and for Bα′,β′,γ′
T  , for κT,I,F α′, β′ ∈ [[0,0], ℸ], γ′ ∈

[[0,0], ¥], for υT,I,F, α′, β′ ∈ [0, Γ],  γ′ ∈ [0, £]. Assume α ≤ α′, β ≤ β′, γ ≤ γ′ and δ = δ′. Then by Theorem
3.3.3, Bδ α,β,γ

M T and Bδ′ α′,β′,γ′
M T  are NCIDs of Y. So 

((κT)δ α
M T ∩ (κT)δ′ α′

M T )(t1) = rmin{(κT)δ α
M T(t1), (κT)δ′ α′

M T (t1)}

= rmin{δ. κT(t1) + α, δ′. κT(t1) + α′}

= δ. κT(t1) + α

((κT)δ α
M T ∩ (κT)δ′ α′

M T )(t1) = (κT)δ α
M T(t1),

((κI)δ β
M T ∩ (κI)δ′ β′

M T )(t1) = rmin{(κI)δ β
M T(t1), (κI)δ′ β′

M T (t1)}

= rmin{δ. κI(t1) + β, δ′. κI(t1) + β′}

= δ. κI(t1) + β

((κI)δ β
M T ∩ (κI)δ′ β′

M T )(t1) = (κI)δ β
M T(t1),

((κF)δ γ
M T ∩ (κF)δ′ γ′

M T )(t1) = rmin{(κF)δ γ
M T(t1), (κF)δ′ γ′

M T (t1)}

= rmin{δ. κF(t1) − γ, δ′. κF(t1) − γ′}

= δ′. κF(t1) − γ′

((κF)δ γ
M T ∩ (κF)δ′ γ′

M T )(t1) = (κF),δ′ γ′
M T (t1)

 and 

((υT)δ α
M T ∩ (υT)δ′ α′

M T )(t1) = max{(υT)δ α
M T(t1), (υT)δ′ α′

M T (t1)}

= max{δ. υT(t1) + α, δ′. υT(t1) + α′}

= δ′. υT(t1) + α′

((υT)δ α
M T ∩ (υT)δ′ α′

M T )(t1) = (υT)δ′α′
M T (t1),

((υI)δ β
M T ∩ (υI)δ′ β′

M T )(t1) = max{(υI)δ β
M T(t1), (υI)δ′ β′

M T (t1)}

= max{δ. υI(t1) + β, δ′. υI(t1) + β′}

= δ′. υI(t1) + β′

((υI)δ β
M T ∩ (υI)δ′β′

M T )(t1) = (υI)δ′ β′
M T (t1),
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((υF)δ γ
M T ∩ (υF)δ′ γ′

M T  )(t1) = max{(υF)δ γ
M T(t1), (υF)δ′ γ′

M T (t1)}

= max{δ. υF(t1) − γ, δ′. υF(t1) − γ′}

= δ. υF(t1) − γ

((υF)δ γ
M T ∩ (υF)δ′ γ′

M T )(t1) = (υF)δ γ
M T(t1).

Hence Bδ α,β,γ
M T ∩ Bδ′α′,β′ ,γ′

M T  is NCID of Y.

Theorem 3.3.5 Union of any two NCMT Bδ α,β,γ
M T  of a NCID B of Y is a NCID of Y. 

Proof. Suppose Bδ α,β,γ
M T and Bδ′α′,β′,γ′

M T are two NCMTs of NCID B of Y , where for Bα,β,γ
M T  , for κT,I,F, α, β ∈

[[0,0], ℸ], γ ∈ [[0,0], ¥], for υT,I,F, α, β ∈ [0, Γ], γ ∈ [0, £]  and for Bα′,β′,γ′
T  , for κT,I,F α′, β′ ∈ [[0,0], ℸ], γ′ ∈

[[0,0], ¥], for υT,I,F, α′, β′ ∈ [0, Γ],  γ′ ∈ [0, £]. Assume α ≥ α′, β ≥ β′, γ ≥ γ′ and δ = δ′. Then by Theorem
3.3.3, Bδ α,β,γ

M T and Bδ′ α′,β′,γ′
M T  are NCIDs of Y. So 

((κT)δ α
M T ∪ (κT)δ′ α′

M T )(t1) = rmax{(κT)δ α
M T(t1), (κT)δ′α′

M T (t1)}

= rmax{δ. κT(t1) + α, δ′. κT(t1) + α′}

= δ. κT(t1) + α

((κT)δ α
M T ∪ (κT)δ′α′

M T )(t1) = (κT)δ α
M T(t1),

((κI)δ β
M T ∪ (κI)δ′β′

M T )(t1) = rmax{(κI)δ β
M T(t1), (κI)δ′β′

M T (t1)}

= rmax{δ. κI(t1) + β, δ′. κI(t1) + β′}

= δ. κI(t1) + β

((κI)δ β
M T ∪ (κI)δ′ β′

M T )(t1) = (κI)δ β
M T(t1),

((κF)δ γ
M T ∪ (κF)δ′ γ′

M T )(t1) = rmax{(κF)δ γ
M T(t1), (κF)δ′ γ′

M T (t1)}

= rmax{δ. κF(t1) − γ, δ′. κF(t1) − γ′}

= δ′. κF(t1) − γ′}

((κF)δ γ
M T ∪ (κF)δ′ γ′

M T )(t1) = (κF)δ′ γ′
M T (t1)

 and 

((υT)δ α
M T ∪ (υT)δ′ α′

M T )(t1) = min{(υT)δ α
M T(t1), (υT)δ′ α′

M T (t1)}

= min{δ. υT(t1) + α, δ′. υT(t1) + α′}

= δ′. υT(t1) + α′

((υT)δ α
M T ∪ (υT)δ′ α′

M T )(t1) = (υT)δ′α′
M T (t1),

((υI)δ β
M T ∪ (υI)δ′ β′

M T )(t1) = min{(υI)δ β
M T(t1), (υI)δ′ β′

M T (t1)}

= min{δ. υI(t1) + β, δ′. υI(t1) + β′}

= δ′. υI(t1) + β′
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((υI)δ β
M T ∪ (υI)δ′ β′

M T )(t1) = (υI)δ′β′
M T (t1),

((υF)δ γ
M T ∪ (υF)δ′ γ′

M T )(t1) = min{(υF)δ γ
M T(t1), (υF)δ′ γ′

M T (t1)}

= min{δ. υF(t1) − γ, δ′. υF(t1) − γ′}

= δ. υF(t1) − γ

((υF)δ γ
M T ∪ (υF)δ′ γ′

M T )(t1) = (υF)δ γ
M T(t1).

Hence Bδ α,β,γ
M T ∪ Bδ′ α′,β′,γ′

M T  is NCID of Y. 

4. Conclusion

In this paper, we defined neutrosophic cubic translation,, neutrosophic cubic multiplication and neutrosophic 
cubic magnified translation for neutrosophic cubic set on BF-algebra. We provided the new sort of different 
conditions for neutrosophic cubic translation, neutrosophic cubic multiplication and neutrosophic cubic 
magnified translation and proved with examples.  Moreover, for better understanding we investigated many 
results for NCT, NCM and NCMT using the subalgebra and ideals. For future work, translation and 
multiplication can be applied on neutrosophic cubic soft set and T-neutrosophic cubic set. 
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A new distance measure for trapezoidal fuzzy 
neutrosophic numbers based on the centroids 

Abstract: Distance measure is a numerical measurement of the distance between any two objects. 

The aim of this paper is to propose a new distance measure for trapezoidal fuzzy neutrosophic 

numbers based on the centroids with graphical representation. In addition, the metric properties of 

the proposed measure are examined in detail. A decision making problem also has been solved 

using the proposed distance measure for a software selection process. comparative analysis has 

been done with the existing methods to show the potential of the proposed distance measure and 

various forms of trapezoidal fuzzy neutrosophic number have been listed out to show the 

uniqueness of the proposed graphical representation. Further, advantages of the proposed 

distance measure have been given.  

Keywords: trapezoidal fuzzy neutrosophic numbers; centroids; distance measure 

1-Introduction

Zadeh introduced a mathematical frame work called fuzzy set [43] which plays a very significant role 

in many aspects of science. Intuitionistic fuzzy set is the generalization of the Zadeh’s fuzzy set which 

was presented by Atanassov [3]. Later, triangular intuitionistic fuzzy sets was developed by Liu and 

Yuan [22] which is based on the combination of triangular fuzzy numbers and intuitionistic fuzzy 

sets. The fundamental characteristic of the triangular intuitionistic fuzzy set is that the values of its 

membership function and non-membership function are triangular fuzzy numbers rather than exact 

numbers. Furthermore, Ye [38] extended the triangular intuitionistic fuzzy set to the trapezoidal 

intuitionistic fuzzy set, where its fundamental characteristic is that the values of its membership 

function and non-membership function are trapezoidal fuzzy numbers rather than triangular fuzzy 

numbers, and proposed the trapezoidal intuitionistic fuzzy prioritized weighted averaging 

(TIFPWA) operator and trapezoidal intuitionistic fuzzy prioritized weighted geometric (TIFPWG) 

operator and their multi-criteria decision-making method, in which the criteria are in different 

Broumi Said, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, 
Talea Mohamed, Florentin Smarandache, Assia Bakali 
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priority level. Recently, Wang et al. [35] introduced a single-valued neutrosophic set, which is a 

subclass of a neutrosophic set presented by Smarandache [30], as a generalization of the classic set, 

fuzzy set and intuitionistic fuzzy set. The single-valued neutrosophic set can independently express 

truth-membership degree, indeterminacy-membership degree and falsity-membership degree and 

deal with incomplete, indeterminate and inconsistent information. All the factors described by the 

single-valued neutrosophic set are very suitable for human thinking due to the imperfection of 

knowledge that human receives or observes from the external world. For example, for a given 

proposition ‘‘Movie X would be hit,’’ in this situation human brain certainly cannot generate precise 

answers in terms of yes or no, as indeterminacy is the sector of unawareness of a proposition’s value 

between truth and falsehood. Obviously, the neutrosophic components are best fit in the 

representation of indeterminacy and inconsistent information, while the intuitionistic fuzzy set 

cannot represent and handle indeterminacy and inconsistent information. Hence, the single-valued 

neutrosophic set has been a rapid development and a wide range of applications [39, 40]. Ye [42] 

introduced the trapezoidal neutrosophic set and its application to multiple attribute decision-making. 

Cui and Ye [10], Donghai et al. [16], Ebadi et al. [17], Guha and Chakraborty [18], Hajjari [19], 

Nayagam et al. [25], Rouhparvar et al. [29], Wu [37], Ye [40], Zou et al. [45] and more researchers have 

shown interest on decision making problem using distance measures.  Weighted projection 

measure, the combination of angle cosine and weighted projection measure,similarity measure, 

hybrid vector similarity measure of single valued neutrosophic set and interval valued neutrosophic 

set, outranking strategy, complete ranking, new ranking function have been introduced so far under 

fuzzy, intuitionistic fuzzy and neutrosophic environments and applied in decision making problem. 

The rest of the paper is organized as follows. In section 2, literature review is given. In section 3, basic 

concepts are presented for better understanding. In section 4, proposed a new distnace measure and 

its graphical representation, and derived its properties in detail. In section 5, new methodology is 

described for a decision making process using the proposed measure. In section 6, a numerical 

example is using the proposed methodology to choose the best software system. In section 7, 

comparative analysis has been done with the existing methods and various forms of trapezoidal 

fuzzy neutrosophic numbers have been listed out to ahow the uniqueness of the proposed graphical 

representation. In section 8, advantages of the proposed measure are given. In section 9, conclusion 

of the present work is given with the future direction.  

2-Literature Review

The authors of, Ahmad et al. [1] proposed a similarity measure based on the distance and set theory 

for generalized trapezoidal fuzzy numbers. Allahviranloo et al. [2] contributed a new distance 

measure and ranking method for generalized trapezoidal fuzzy numbers. Atanassov [3] introduced 

intuitionistic fuzzy sets. Azman and Abdullah [4] proposed a novel centroid method for trapezoidal 

fuzzy numbers for ranking. Biswas et al. [6] solved a decision making problem using expected value 

of neutrosophic trapezoidal numbers. Biswas et al. [6] solved a decision making problem using 

distance measure under interval trapezoidal neutrosophic numbers. Bolos et al. [7] designed the 

performance indicators of financial assets using neutrosophic fuzzy numbers. Bora and Gupta [8] 

studied the reaction of distance measure on the work of K-Means algorithm Matlab. Chakraborty et 

al. [9] presented  different forms of trapezoidal neutrosophic number and deneutrosophication 
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techniques. Cui and Ye [10] proposed logarithmic similarity measure and applied in medical 

diagnosis under dynamic neutrosophic cubic setting. Darehmiraki [11] introduced a new ranking 

methodology to solve linear programming problem. Das and De [12] introduced a new distance 

measure for the ranking IFNs. Das and Guha [13] introduced a ranking method for IFN using the 

point of centroid. Deli and Oztaurk [14] introduced a defuzzification method and applied in a 

decision-making problem for single valued trapezoidal neutrosophic numbers. Dhar et al. [15] 

indicated square neutrosophic fuzzy matrices. Donghai et al. [16] proposed a new similarity measure 

and distance measure between hesitant linguisticterm sets and applied the proposed concepts in a 

decision making problem. Ebadi et al. [17] proposed a novel distance measure for trapezoidal fuzzy 

numbers. Guha and Chakraborty [18] contributed a theoretical development of distance measure for 

intuitionistic fuzzy numbers (IFNs). Hajjari [19] conferred a new distance measure for Trapezoidal 

fuzzy numbers. Huang and Wu [20] presented equivalent forms of the triangle inequalities in fuzzy 

metric spaces. Liang et al. [21] proposed an integrated approach under a single valued trapezoidal 

neutrosophic environment. Liu and Yuan [22] prospected fuzzy number of intuitionistic fuzzy set. 

Llopis and Micheli [23] rectified a state of conflict in the sequence of input images. Minculete and 

Paltanea [24] introduced an enhanced estimates for the triangle inequality. Nayagam et al. [25] 

contributed a complete ranking of IFNs. Pardha Saradhi et al. [26] presented ordering of IFNs using 

centroids of centroids. Ravi Shankar et al. [27] developed a new ranking formula using centroid of 

centroids for fuzzy numbers and applied in a fuzzy critical path method. Rezvani [28] proposed a 

new ranking exponential formula using median value for trapezoidal fuzzy numbers. Rouhparvar et 

al. [29] introduced a novel fuzzy distance measure. Uppada [31] examined clustering algorithm using 

centroid clearly. Varghese and Kuriakose [32] proposed a formula to find the centroid of the fuzzy 

number. Wang [33] introduced geometric aggregation operator and applied in a decision making 

problem under intuitionistic fuzzy environment. Wang [34] proposed arithmetic aggregation 

operators. Wang et al. [35] introduced single valued neutrosophic sets. Wei et al. [36] introduced 

some persuaded aggregation operators under intuinistic fuzzy setting and applied in a group 

decision making problem. Wu [37] explained about distance metrics and their role in data 

transformations.Ye [38] proposed prioritized aggregation operators based on trapezoidal 

intuitionistic fuzzy concept and applied in a multi-criteria decision making problem. Ye [39] solved 

minimum spanning tree problem under single valued neutrosophic setting and its clustering method. 

Ye [40] proposed single valued neutrosophic cross entropy measure and applied in a decision making 

problem. Ye [41] introduced the expected Dice similarity measure and applied in a decision making 

problem. Ye [42] projected trapezoidal neutrosophic set and applied in a multiple attribute decision 

making. Zhang et al. [44] introduced interval neutrosophic sets and used in multi criteria decision 

making problem. Zou et al. [45] introduced a distance measure between neutrosophic sets as an 

evidential approach. From the literature, it is found that distance measure for trapezoidal 

neutrosophic numbers using centroids with its properties has not yet been studied so far. Hence the 

motivation of the present study.  

Hence, in this paper a new distance measure for trapezoidal fuzzy neutrosophic numbers based on 

centroids has been proposed with its metric properties in detail. Also the graphical representation is 

presented for trapezoidal fuzzy neutrosophic number. Comparative study also have been made with 
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the existing cases for both proposed distance measure and proposed graphical representation. 

Further advantages of the proposed distance measure are presented.  

3-Preliminaries

Definition 1. [38] Let X  be a space of discourse, a trapezoidal intuitionistic fuzzy set B  in X is

defined as:     , ,B BB y y y y X   , where    0,1B y   and    0,1B y   are 

two trapezoidal fuzzy numbers             1 2 3 4, , , : 0,1B B B B By y y y y Y       and 

            1 2 3 4, , , : 0,1B B B B By y y y y Y       with the condition that 

   4 40 1,   .B By y y Y     

For Convenience, let    , , ,B y a b c d  and    , , ,B y e f g h  be two trapezoidal 

fuzzy numbers, thus a trapezoidal intuitionistic fuzzy number (TrIFN) can be denoted by 

   , , , , , , , ,j a b c d e f g h which is basic element in a trapezoidal intuitionistic fuzzy set. 

If b c  and f g  hold in a TrIFN j , which is a special case of the TrIFN.

Definition 2. [38] Let    1 1 1 1 1 1 1 1 1, , , , , , ,j a b c d e f g h  and 

   2 2 2 2 2 2 2 2 2, , , , , , ,j a b c d e f g h , be two TrIFNs. Then there are the following operational 

rules: 

1. 
 

 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2

, , , ,

, , ,

a a a a b b b b c c c c d d d d
j j

e e f f g g h h

       
 

2.
 

 

1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , , ,

, , ,

a a b b c c d d
j j

e e e e f f f f g g g g h h h h
 

       

3.
        

 

1 1 1 1

1

1 1 1 1

1 1 ,1 1 ,1 1 ,1 1 ,
, 0;

, , ,

a b c d
j

e f g h

   

   
 

       
 

4.

          
        

1 1 1 1 1 1 1 1

1

1 1 1 1

, , , , 1 1 ,1 1 ,1 1 ,1 1 ,
, 0

1 1 ,1 1 ,1 1 ,1 1

a b c d e f g h
m

i j k l

      



   


       
 

       

Definition 3. [30] From philosophical point of view, Smarandache [30] originally presented the 

concept of a neutrosophic set B  in a universal set Y , which is characterized independently by a 
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truth-membership function  BT y , an indeterminacy membership function  BI y and a falsity-

membership function  BF y . The function  BT y ,  BI y and  BF y in Y are real standard or 

nonstandard subsets of ] 0,1 [,   such that   : ] 0,1 [,BT y Y     : ] 0,1 [,BI y Y   and

  : ] 0,1 [BF y Y   .Then, the sum of    ,B BT y I y  and  BF y  satisfies the condition 

     0 sup sup sup 3B B BT y I y F y     . Obviously, it is difficult to apply the neutrosophic set 

to practical problems. To easily apply it in science and engineering fields, Wang et al. [35] introduced 

the concept of a single-valued neutrosophic set as a subclass of the neutrosophic set and gave the 

following definition. 

Definition 4. [35] A single-valued neutrosophic set B in a universal set Y is characterized by a 

truth-membership function  BT y , an indeterminacy-membership function  BI y and a falsity-

membership function  BF y . Then, a single-valued neutrosophic set B can be denoted by

      , , ,B B BB y T y I y F y y Y 

where,        , , 0,1B B BT y I y F y  for each y Y . Therefore, the sum of    ,B BT y I y and 

 BF y satisfies      0 3B B BT y I y F y    . 

Let       , , ,M M MM y T y I y F y y Y  and       , , ,N N NN y T y I y F y y Y  be two single-

valued neutrosophic sets, then we the following relations [8,11]: 

1. Complement:       , ,1 ,C
M M MM y F y I y T y y Y   ; 

2. Inclusion: M N  if and only if    M NT y T y ,    M NI y I y and    M NF y F y for 

any y Y ; 

3. Equality: M N  if and only if M N  and N M ;

4. Union:             , , ,M N M N M NM N y T y T y I y I y F y F y y Y     ; 

5. Intersection:             , , ,M N M N M NM N y T y T y I y I y F y F y y Y     ; 
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6. Addition:
           

   

, , ,M N M N M N

M N

y T y T y T y T y I y I y
M N y Y

F y F y

   
   

  

; 

7. Multiplication:
           

       

, , ,M N M N M N

M N M N

y T y T y I y I y I y I y
M N y Y

F y F y F y F y

   
   

   

. 

Definition 5. [42] Let Y be a space of discourse, a trapezoidal neutrosophic set H  in Y is defined 

as follow: 

      , , ,H H HH y T y I y F y y Y  , where    0,1HT y  ,    0,1HI y  and    0,1HF y  are 

three trapezoidal fuzzy numbers             1 2 3 4, , , : 0,1H H H H HT y t y t y t y t y Y  , 

            1 2 3 4, , , : 0,1H H H H HI y i y i y i y i y Y  and 

            1 2 3 4, , , : 0,1H H H H HF y f y f y f y f y Y  with the condition 

     4 4 40 3,  .H H Ht y i y f y y Y    

For convenience, the three trapezoidal fuzzy numbers are denoted by 

   , , , ,HT y a b c d    , , ,HI y e f g h and    , , ,HF y i j k l . Thus, a trapezoidal neutrosophic 

numbers is denoted by      , , , , , , , , , , , ,m a b c d e f g h i j k l which is a basic element in the 

trapezoidal neutrosophic set. 

If b c , f g  and j k  hold in a trapezoidal neutrosophic number 1j , it reduces to the

triangular neutrosophic number, which is considered as a special case of the trapezoidal neutrosophic 

number. 

Definition 6. [42] Let      1 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , ,m a b c d e f g h i j k l , and 

     2 2 2 2 2 2 2 2 2 2 2 2 2, , , , , , , , , , ,m a b c d e f g h i j k l  be two trapezoidal neutrosophic numbers. Then 

there are the following operational rules: 

1.
 

   

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , , ,

, , , , , , ,

a a a a b b b b c c c c d d d d
m m

e e f f g g h h i i j j k k l l

       
  , 
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2.

 

 

 

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , , ,

, , , , ;

, , ,

a a b b c c d d

m m e e e e f f f f g g g g h h h h

i i i i j j j j k k k k l l l l

         

       

3.
        

   

1 1 1 1

1

1 1 1 1 1 1 1 1

1 1 ,1 1 ,1 1 ,1 1 ,
, 0;

, , , , , , ,

a b c d
m

e f g h i j k l

   

       
 

       
 

4.

 

        
        

1 1 1 1

1 1 1 1 1

1 1 1 1

, , , ,

1 1 ,1 1 ,1 1 ,1 1 , , 0

1 1 ,1 1 ,1 1 ,1 1

a b c d

m e f g h

i j k l

   

   

   

         

       

Definition 7. [18] Let P and Q be the intuitionistic fuzzy sets with membership functions

   ,P Qx x  , non-membership functions    ,P Qx x  and hesitation degree    ,P Qx x  . Then 

the normalized Hamming distance is 

             
1

1,
2

n

P i Q i P i Q i P i Q i
i

D P Q x x x x x x
n

     


      
 

And the normalized Euclidean distance is 

                
2 2 2

1

1,
2

n

E P i Q i P i Q i P i Q i
i

D P Q x x x x x x
n

     


      
  

Definition 8. [17] Consider the real values , 1,2,3,...,6ir i  and if 
1 2 3 4 5 6, ,r r r r r r   then the 

following results are true. 

1.    1 3 5 2 4 6max , , max , ,r r r r r r

2.      1 2 3 4 5 6 1 3 5 2 4 6max , , max , , max , ,r r r r r r r r r r r r    

Definition 9. [34] For any real numbers , 0, 1,2,...,i ir s i d  , the Euclidean distance is defined as,

   
2

1
,

d

i i
i

D r s r s


  and satisfies the condition that 
     

1 1 1

1 1 1

p p pd d d
p p p

i i i i
i i i

r s r s
  

     
      

     
   . 
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Definition 10. [42] Let      , , , , , , , , , , , , 1,2,3,...,p p p p p p p p p p p p pm a b c d e f g h i j k l p n  be the

trapezoidal fuzzy neutrosophic numbers then the trapezoidal fuzzy neurosophic weighted geometric 

operator is defined by  

31 2
1 2 1 2 3( , ,..., ) ... n

n nTFNWG m m m m m m m  
    

1 1 1 1

, , , ,p p p p
n n n n

p p p p
p p p p

a b c d   

   

 
  

 
           

1 1 1 1

1 1 ,1 1 ,1 1 ,1 1 ,p p p p
n n n n

p p p p
p p p p

e f g h
   

   

 
        

 
   

       
1 1 1 1

1 1 , 1 1 , 1 1 , 1 1p p p p
n n n n

p p p p
p p p p

i j k l
   

   

 
        

 
   

where, 
1 2, ,..., n   are the weight vectors and the sum of the weight vectors is 1. 

Definition 11. [9] Graphical representation of trapezoidal neutrosophic number 

Figure 1. Graphical representation of Trapezoidal neutrosophic number 

Figure 1 shows that graphical representation of trapezoidal fuzzy neutrosophic number can be 

done in different ways. It is a linear trapezoidal neutrosophic number. 

4-Proposed Distance Measure for Trapezoidal Fuzzy Neutrosophic Number

Here we propose a new distance measure for trapezoidal fuzzy neutrosophic number based on 

centroids. Firstly, individual graphical representation proposed measure is presented here with the 

individual representation of truth, indeterminacy, falsity membership functions and trapezoidal 

fuzzy neutrosophic fuzzy number described by Figure 2-Figure 6. 

Centre point of the object is called centroid. It should lie inside the object. At this point, the three 

medians of the triangle intersect and is termed point of intersection. Centroid is the average of 

coordinate points in X axis and Y axis of each vertex of the triangle. Centroid is the fixed point of all 

linear transformation which maintains length in translation, rotation, glides and reflection.   

The centroid of the truth, indeterminacy and falsity trapezoid is treated as a balance point for the 

trapezoid. The centroid of each part are estimated using the calculation of centroid and the simple 

area and this combination will generate a triangle. Also the distance is measured from the centroid 

of all the parts to X axis and Y axis. Here the area of all the parts are multiplied by the distance and 
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find their sum to get the total value. And the sum of the products of the area and distances is divided 

by the total area and obtain the centroid of circumcentre described by x and y point. Since centroid 

based distance measure may be derived using Euclidean measure, here it is obtained from the 

circumcentre of the centroids and the authentic point for the trapezoidal fuzzy neutrosophic number. 

0

( )nT x

x
1a

2a 3a 4a

TO

L
Tf

R
Tf

1

1

Figure 2. Truth membership function of trapezoidal fuzzy neutrosophic set with centroid 

( )nT x

x

1a

2a

3a

4a

L
Tg

R
Tg

0 1

1

Figure 3. Truth membership function of trapezoidal fuzzy neutrosophic set 

Suppose      1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n a a a a b b b b c c c c  be a trapezoidal fuzzy neutrosophic

number. Based on the literature (Y. M. Wang et al. On the centroids of fuzzy numbers), we can get the 

centroid point ( ( ), ( ))T T T
o oO x n y n of the truth membership function of trapezoidal fuzzy 

neutrosophic number n . 
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Figure 4. Indeterminate membership function of trapezoidal fuzzy neutrosophic set with centroid 
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   Figure 5. Indeterminate membership function of trapezoidal fuzzy neutrosophic number 
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we can get the centroid point ( ( ), ( ))I I I
o oO x n y n  of indeterminacy membership function of 

trapezoidal fuzzy neutrosophic number n . 
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. 

Similarly, we can get the centroid point ( ( ), ( ))F F F
o oO x n y n of falsity membership function 

of trapezoidal fuzzy neutrosophic number n . 
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Figure 6. Trapezoidal fuzzy neutrosophic number with circumcentre of Centroids 

Florentin Smarandache (author and editor) Collected Papers, XII

727



In the above figure 5, the red dot represents the center of gravity of the triangle consisting of TO , IO
, and FO . According to the coordinate formula of the center of gravity of the triangle, we can get the 

coordinates of red dots ( ( ), ( ))O x n y n .  
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Definition1: Let      1 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n a a a a b b b b c c c c and 

     2 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n e e e e f f f f g g g g be two trapezoidal fuzzy neutrosophic 

numbers, and their centroids are 
1 1 1( ( ), ( ))O x n y n , 

2 2 2( ( ), ( ))O x n y n respectively, then the 

distance between 
1n and 

2n is 

4 4 4 4 4 4
4 3 1 2 4 3 1 2

1 1 1 1 1 1 4 3 1 2 4 3 1 2

4 3 1 2 4 3 1 2 4 3 1 2 4 3 1

4 3 1 2 4 3 1 2 4 3 1 2
1 2

[ ( )
( ) ( ) ( ) ( )
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Theorem 1: This distance  1 2,D n n  of 1n  and 2n fulfills the following properties: 

Florentin Smarandache (author and editor) Collected Papers, XII

728



1.  1 20 , 1D n n  ; 

2.  1 2, 0D n n  if and only if 
1 2n n , i.e.,

i ia e ,
i ib f and

i ic g hold for 1,2,3,4i  ; 

3.    1 2 2 1, ,D n n D n n . 

4. If 1 2 3, &n n n are the trapezoidal fuzzy neutrosophic numbers then 

     1 3 1 2 2 3, , ,D n n D n n D n n 

Proof 

1. It is easy to prove  1 20 ,D n n . In addition, it can be seen from figure 1, the maximum distance is 

the distance between the point (0,0)  and the point (1,1) , or the point (0,1)  and the point (1,0) , 

assume the coordinates of centroids of 
1n and 

2n are
1O and 

2O , and 
1 (0,1)O  and 

2 (1,0)O  , or 
1 (1,0)O  and 

2 (0,1)O  , or 
1 (0,0)O  and

2 (1,1)O  , or 
1 (1,1)O  and 

2 (0,0)O  , then the  1 2, 1D n n  , otherwise,  1 2, 1D n n  , thus  1 20 , 1D n n  . 

2. if 1 2n n , i.e., i ia e , i ib f and i ic g , then 
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Thus, 
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thus 
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thus 

i ia e ,
i ib f , 

i ic g , that is 
1 2n n . 

3. Since,
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then    1 2 2 1, ,D n n D n n . 

4. Using Def. 8, we can prove (4).

Let      1 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n a a a a b b b b c c c c , 

     2 1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,n e e e e f f f f g g g g and 
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     3 1 2 3 4 1 2 3 4 1 2 3 4, j , j , j , ,k ,k ,k , , , ,n j k l l l l are the three trapezoidal fuzzy neutrosophic 

numbers then      1 3 1 2 2 3, , ,D n n D n n D n n 

Using the results we have, 
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Using Def.9 we have, 
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   1 2 2 3, ,D n n D n n  and hence the result (4).

5- Decision Making method based on new distance measure based on centroids

In this section, we establish an approach based an trapezoidal fuzzy neutrosophic number weighted 

geometric arithmetic operator and a new distance measure based on centroid to deal with trapezoidal 

fuzzy neutrosophic information. The proposed approach is described as follows. 

Step 1: Apply trapezoidal fuzzy neutrosophic number weighted geometric arithmetic operator [39] 

to find the aggregated trapezoidal fuzzy neutrosophic numbers for all the alternatives. 

Step 2: Use the proposed distance measure, find the distances between all the alternatives and the 

ideal trapezoidal fuzzy neutrooshic number 
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Step 3: Rank the alternatives in which smaller value of distance indicate the best one. 

Step 4: End  

6- Numerical Example for the application of the proposed distance measure

In this section, a numerical example of a software selection problem and the aggregation operator 

called trapezoidal neutrosophic number weighted geometric averaging operator are get used from 

Ye [39] for a multiple attribute decision making problem is contributed to exhibit the application and 

effectiveness of the proposed distance measure under trapezoidal fuzzy neutrosophic environment. 

For a software selection process, consider candidate software systems are given as the set of five 

alternatives
1 2 3 4 5, , , ,S S S S S and the investment company need to take a decision according to four 

criteria: (i). the contribution to organization performance, (ii). The effort totranform from current 

system, (iii). The costs of hardware/software investment, (iv). The outsourcing software deneloper 

reliability denoted by
1 2 3 4,C ,C ,CC respectively with the weight vector  0.25,0.25,0.3,0.2 T

  . The experts 

evaluate the five alternatives with repect to the four criteions under trapezoidal fuzzy neutrosophic 

environment and thus we can form the trapezoidal fuzzy neutrosophic decision matrix: 

Table 1: Decision matrix using trapezoidal fuzzy neutrosophic numbers 

Here we used the developed method to obtain the best software system(s) and it is described as 

follows: 

Step 1: Using trapezoidal fuzzy neutrosophic weighted geometric operator in Definition 10, get the 

aggregated trapezoidal fuzzy neutrosophic numbers of , 1, 2,3, 4,5in i  for the software system 

, 1, 2,3, 4,5iS i  as follows: 

           

           

0.4,0.5,0.6,0.7 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.1,0.1 0.0,0.1,0.2,0.3 , 0.0,0.1,0.2,0.3 , 0.2,0.3,0.4,0.5

0.3,0.4,0.5,0.5 , 0.1,0.2,0.3,0.4 , 0.0,0.1,0.1,0.1 0.2,0.3,0.4,0.5 , 0.0,0.1,0.2,0.3 , 0.0,0.1,0.2,0.3

0.1,0.1,0.D             

           

 

1,0.1 , 0.1,1.1,0.1,0.1 , 0.6,0.7,0.8,0.9 0.0,0.1,0.1,0.2 , 0.0,0.1,0.2,0.3 , 0.3,0.4,0.5,0.6

0.7,0.7,0.7,0.7 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.1,0.1 0.4,0.5,0.6,0.7 , 0.1,0.1,0.1,0.1 , 0.0,0.1,0.2,0.2

0.0,0.1,0.2,0.2 , 0.1,0.         

           

 

1,0.1,0.1 , 0.5,0.6,0.7,0.8 0.4,0.4,0.4,0.4 , 0.0,0.1,0.2,0.3 , 0.0,0.1,0.2,0.3

0.3,0.4,0.5,0.6 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.1,0.1 0.3,0.4,0.5,0.6 , 0.1,0.1,0.1,0.1 , 0.1,0.2,0.3,0.4

0.0,0.1,0.1,0.2 , 0.1,0.1,0











         

           

   

.1,0.1 , 0.5,0.6,0.7,0.8 0.3,0.4,0.5,0.6 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.1,0.2

0.2,0.3,0.4,0.5 , 0.0,0.1,0.2,0.3 , 0.1,0.2,0.2,0.3 0.1,0.2,0.3,0.4 , 0.1,0.1,0.1,0.1 , 0.3,0.4,0.5,0.6

0.2,0.3,0.4,0.5 , 0.0,0.1,0.2,0.3 , 0.1,0       

           

.2,0.3,0.3 0.1,0.2,0.3,0.4 , 0.1,0.1,0.1,0.1 , 0.1,0.1,0.1,0.1

0.6,0.7,0.7,0.8 , 0.1,0.1,0.1,0.1 , 0.0,0.1,0.1,0.2 0.1,0.2,0.3,0.3 , 0.1,0.2,0.3,0.4 , 0.2,0.3,0.4,0.5
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1

2

3

0.0000,0.2985,0.4162,0.5244 , 0.0209,0.1003,0.1809,0.2639 , 0.1261,0.1745,0.2266,0.2836

0.0000,0.2458,0.2919,0.3798 , 0.0563,0.1262,0.1984,0.2739 , 0.1879,0.2944,0.3717,0.4743

0.0000,0.1599,0.1888,0.25

n

n

n





      

     

 

4

5

45 , 0.0464,0.1000,0.1566,0.2162 , 0.3437,0.4502,0.5424,0.6655

0.2833,0.3885,0.4807,0.5658 , 0.0464,0.1000,0.1566,0.2162 , 0.1480,0.2276,0.3109,0.3109

0.0000,0.2912,0.3756,0.3910 , 0.0760,0.1210,0.1690,0.22

n

n



    08 , 0.1958,0.3012,0.3877,0.5020

Step 2: Use the proposed distance measure and find the distance between all , 1,2,3,4,5in i  and 

the ideal trapezoidal fuzzy neutrosophic number      1,1,1,1 , 0,0,0,0 , 0,0,0,0Idealn  . 

The obtained distances are as follows: 

 

 

 

 

 

1 1

2 2

3 3

4 4

5 5

, 0.1712

, 0.1276

, 0.1000

, 0.1280

, 0.1246

D n I D

D n I D

D n I D

D n I D

D n I D

 

 

 

 

 

Step 3: Find the best alternative by considering the smaller value of the distance as the smaller value 

of distance indicates the best one. 

Using step 2 it is found that, 
3 5 2 4 1D D D D D    and from the ranking order,

3S is the best is 

the best software system. 

7- Comparative analysis for the proposed distance measure and graphical representation

In this section, a comparative study is made to show the effectiveness of the proposed distance 

measure with the existing methods and to show the uniqueness of the proposed graphical 

representation. 

Table 2: Comparative analysis with the existing methods 

Existing 

Methods 

Score/ distance values Ranking 

1D 2D 3D 4D 5D

[6] 0.6092 0.4512 0.6039 0.6121 0.6321 2 3 1 4 5S S S S S   

[16] 0.2788 0.6790 0.9394 0.6564 0.4014 3 2 4 5 1S S S S S   

[42] 0.6553 0.5779 0.5069 0.6835 0.5904 4 1 5 2 3S S S S S   

[45] 0.7716 0.7798 0.7349 0.8124 0.8201 3 1 2 4 5S S S S S   

From the Table 2, it is found that, the third software system is the best one among the five alternatives. 

The results in the existing methods overlaps the proposed result. Theresore the proposed 

methodology using the proposed under trapezoidal fuzzy neutrosophic environment to solve the 

decision making problem suitably in comparision with the existing methods. 
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Table 3 represents the various forms of trapezoidal fuzzy neutrosophic numbers (TrFNN) have been 

listed out and it shows the uniqueness of the proposed graphical representation among the existing 

graphical representations. 

Table 3: Comparative analysis with the existing graphical representation 

Trapezoidal fuzzy neutrosophic forms Graphical representation 

Darehmiraki [11]; A is a TrFNN, 

'' ' ' ''
1 1 1 2 3 4 4 4, , , , , , ,a a a a a a a a R such that 

'' ' ' ''
1 1 1 2 3 4 4 4a a a a a a a a      

 '' ' ' ''
1 1 1 2 3 4 4 4, , , , , , , , , ,A A AA a a a a a a a a T I F

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 

''
1a '

1a1a 2a
3a '

4a 4a ''
4a

x

Liang [21]; A is a TrFNN, 

1 2 3 4, , , [0,1]a a a a  such that 

1 2 3 40 1a a a a    

   1 2 3 4, , , , , ,A A AA a a a a T I F

x0

1 ( )A x

( )A x

( )A x

1a 2a 3a 4a

AT

AI

AF

Biswas [5]; A is a TpFNN, 

   

 

41 21 31 41 41 21 31 41

41 21 31 41

,a ,a ,a , ,b ,b ,b ,

,c ,c ,c

a b

c R

such that 

11 11 11 21 21 21

31 31 31 41 41 41

c b a
a b c a b c

c b a    

     

and 

   

 

11 21 31 41 11 21 31 41

11 21 31 41

,a ,a ,a , ,b ,b ,b ,

,c ,c ,c

A a b

c


0

1

11a11c
11b 21c 21b 21a 31a 31b 31c 41a

41b 41c
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8-Advantages of the proposed measure

An efficient distance measure boosts the performance of task analysis or clustering. Also centroid 

method is specific and location based one and acquire the best geographical location in consideration 

of the distance between all the competences. Though the existing methods namely Euclidean 

measure, Manhattan measure Minkowski measure and Hamming distance measure have been 

applied in many real time problems they could not provide good results for the indeterminate data. 

Hence in this paper, we proposed a new distance measure for trapezoidal neutrosophic fuzzy 

numbers based on centroids and the significant advantages of the proposed measure are given as 

follows. 

(i). Trapezoidal fuzzy neutrosophic number is a simple design of arithmetic operations and easy and 

perceptive interpretation as well. Therefore the proposed measure is an easy and effective one under 

neutrosophic environment. 

(ii). Distance measure can be estimated with simple algorithm and significant level of accuracy can 

be acquired as well. 

(iii). While taking the important decision of choosing the method to measure a distance it can be used 

due its simplicity.   

(iv). The proposed distance measure is based on centroid and hence estimation of the distance 

between all objects of the data set is possible and indeterminacy also can be addressed. 

(v). It is derived using Euclidean distance and hence it is very useful in correlation analysis. 

(vi). Also it can be applied in location planning, operations management, Neutrosophic Statistics, 

clustering, medical diagnosis, Optimization and image processing to get more accurate results 

without any computational complexity.  

9-Conclusion and Future Research

The concept of distance measure of trapezoidal fuzzy neutrosophic number has sufficient scope of 

utilization in different studies in various domain. In this paper, we proposed a new distance measure 

for the trapezoidal fuzzy neutrosophic number based on centroid with the graphical representation. 

Also, the properties of the proposed measure have been derived in detail. In addition, a decision 

making problem has been solved using the proposed measure as a numerical example. Further, 

comparative analysis has been done with the existing methods to show the potential of the proposed 

distance measure and various forms of trapezoidal fuzzy neutrosophic number have been listed and 

shown the uniqueness of the proposed graphical representation. Furthermore, advantages of the 

proposed measure are given. In future, the present work may be extended to other special types of 

neutrosophic set like pentagonal neutrosophic set, neutrosophic rough set, interval valued 

neutrosophic set and plithogeneic environments.   
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Neutrosophic Soft Fixed Points 

Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan, Florentin Smarandache 

Abstract. In a wide spectrum of mathematical issues, the presence of a fixed point (FP) is equal to the presence 

of a appropriate map solution. Thus in several fields of math and science, the presence of a fixed point is im-

portant. Furthermore, an interesting field of mathematics has been the study of the existence and  uniqueness 

of common fixed point (CFP) and coincidence points of mappings fulfilling the contractive conditions. There-

fore, the existence of a FP is of significant importance in several fields of mathematics and science. Results of 

the FP, coincidence point (CP) contribute conditions under which maps have solutions. The aim of this paper 

is to explore these conditions (mappings) used to obtain the FP, CP and CFP of a neutrosophic soft set. We study 

some of these mappings (conditions) such as contraction map, L-lipschitz map, non-expansive map, compatible 

map, commuting map, weakly commuting map, increasing map, dominating map, dominated map of a neu-

trosophic soft set. Moreover we introduce some new points like a coincidence point, common fixed point and 

periodic point of neutrosophic soft mapping. We establish some basic results, particular examples on these 

mappings and points. In these results we show the link between FP and CP. Moreover we show the importance 

of mappings for obtaining the FP, CP and CFP of neutrosophic soft mapping. 

Keyword. Neutrosophic set, fuzzy neutrosophic soft mapping, fixed point, coincidence point. 

_________________________________________________________________________________ 

1. Introduction

It is well known fact that fuzzy sets (FS) [1], complex fuzzy sets (CFS) [2], intuitionistic fuzzy sets (IFSs),

the soft sets [3], fuzzy soft sets (FSS) and the fuzzy parameterized fuzzy soft sets (FPFS-sets) [4], [5] have been 

used to model the real life problems in various fields like in medical science, environments, economics, engi-

neering, quantum physics and psychology etc. 

In ,1965 L. A. Zadeh [1] introduced a FS, which is the generalization of a crisp set. A grade value of a crisp set 

is either 1 or 0 but a grade value of fuzzy set has all the values in closed interval  ].1,0[  A FS plays a central 

role in modeling of real world problems. There are a lot of applications of FS theory in various branches of 

science such as in engineering, economics, medical science, mathematical chemistry, image processing, non-

equilibrium thermodynamics etc. The concept for IFSs is provided in [3] which are generalizations of FS. An 

IFS P can be expressed as },:)(),(,,{ XP PP   where )(vP represents the degree of mem-

bership, )(vP  represents the degree of non-membership of the element .X  FPFS-sets is the extension of

a FS and soft set proposed in [4], [5] .  FPFS-sets maintain a proper degree of membership to both elements and 

parameters. 

The notion of a complex CFS, the extension of the fuszy set, was introduced by Ramot et, al., [2]. A CFS mem-

bership function has all the values in the unit disk. A complex fuzzy set is used for representing two-dimen-

sional phenomena and plays an important role in periodic phenomena. Complex fuzzy set is used in signals 

and systems to identify a reference signal out of large signals detected by a digital receiver. Moreover it is used 

for expressing complex fuzzy solar activity (solar maximum and solar minimum) through the average number 

Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan, Florentin Smarandache 
(2020). Neutrosophic Soft Fixed Points. Neutrosophic Sets and Systems 35, 531-546
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of sunspot. 

Smarandache [6], [7] has given the notion of a neutrosophic set (NS). A NS is the extension of a crisp set, FS and 

IFS. In NS, truth membership (TM), falsity membership (FM) and indeterminacy membership (IM) are inde-

pendent. In decision-making problems, the indeterminacy function is very significant. A NS and its extensions 

plays a vital role in many fields such as decision making problems, educational problems, image processing, 

medical diagnosis and conflict resolution. Moreover the field of neutrosophic probability, statistics, measures 

and logic have been developed in [8]. The generalization of fuzzy logic (FL) has been suggested by Smarandache 

in [8] and is termed as neutrosophic logic (NL). A proposition in NL is true ),(t  indeterminate )(i  and false 

)( f  are real values from the ranges .,, FIT  FIT ,,  and also the sum of fit ,,  are not restricted. In neutro-

sophic logic, there is indeterminacy term, which have no other logics, such as intuitionistic logic (IL), FL, bool-

ean logic (BL) etc. Neutrosophic probability (NP) [8] is the extension of imprecise probability and classical prob-

ability. In NP, the chance occurs by an event is %t  true, %i  indeterminate and %f  false where fit ,,  varies 

in the subsets IT ,  and F  respectively. Dynamically these subsets are functions based on parameters, but they 

are subsets on a static basis. In NP ,3sup_ n while in classical probability .1sup_ n  The extension of

classical statistics is neutrosophic statistics [8] which is the analysis of events described by NP. There are twenty 

seven new definitions derived from NS, neutrosophic statistics and a neutrosophic probability. Each of these 

are independent. The sets derived from NS are intuitionistic set, paradoxist set, paraconsistent set, nihilist set, 

faillibilist set, trivialist set, and dialetheist set. Intuitionistic probability and statistics, faillibilist probability and 

statistics,tautological probability and statistics, dialetheist probabilityand statistics, paraconsistent probability 

and statistics, nihilist probability and statistics and trivialist probability and statistics are derived from neuto-

sophic probability and statistics. N. A. Nabeeh [9] suggested a technique that would promote a personal selec-

tion process by integrating the neutrosophic analytical hierarchy process to show the ideal solution among 

distinct options with order preference tevhnique similar to an ideal solution (TOPSIS). M. A. Baset [10] intro-

duced a new type of neutrosophy technique called type 2 neutrosophic numbers. By combining type 2 neutro-

sophic number and TOPSIS, they suggested a novel method T2NN-TOPSIS which is very useful in group deci-

sion making. They researched a multi criteria group decision making technique of the analytical network pro-

cess method and Visekriterijusmska Optmzacija I Kommpromisno Resenje method under neutrosophic envi-

ronment that deals high order imprecision and incomplete information [11]. M. A. Baet suggested a new strat-

egy for estimating the smart medical device selecting process in a GDM in a vague decision environment. Neu-

trosophic with TOPSIS strategy is used in decision-making processes to deal with incomplete information, 

vagueness and uncertainty, taking into account the decision requirements in the information gathered by deci-

sion-makers [12]. They suggested the robust ranking method with NS to manage supply chain management 

(GSCM) performance and methods that have been widely employed to promote environmental efficiency and 

gain competitive benefits. The NS theory was used to manage imprecise understanding, linguistic imprecision, 

vague data and incomplete information [13]. Moreover M. A. Baset [14] et, al., used NS for assessment technique 

and decision-making to determine and evaluate the factors affecting supplier selection of supply chain man-

agement. T. Bera [15] et, al., defined a neutrosophic norm on a soft linear space known as neutrosophic soft 

linear space. They also modified the concept of neutrosophic soft (Ns) prime ideal over a ring. They presented 

the notion of Ns completely semi prime ideals, Ns completely prime ideals and Ns prime K-ideals [16]. Moreo-

ver T. Bera [17] introduced the concept of compactness and connectedness on Ns topological space along with 

their several characteristics. R. A. Cruz [18] et, al., discussed P-intersection, P- union, P-AND and P-OR of neu-

trosophic cubic sets and their related properties. N. Shah [19] et, al., studied neutrosophic soft graphs. They 

presented a link between neutorosophic soft sets and graphs. Moreover they also discussed the notion of strong 

neutosophic soft graphs. 

Smarandache [20] discussed the idea of a single valued neutrosophic set (SVNS). A SVNS defined as for any 
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space of points set 'U  with 𝑢 in ,'U  a SVNS W  in ,'U  the truth membership, false memebership and inde-

terminac membership functions denoetd as ,AT  AF  and AI  respectively with ,AT AF , ]1,0[AI  for each u
in '.U  A SVNS W is expressed as ,,/)(),(),( XFITW WWWX    when X  is continous. For a dis-

crete case, a SVNS can be expressed as ,/)(),(),(
1

iiFiIiTW
n

i




  .Xi  Later, Maji [21] gave a new 

concept neutrosophic soft set (NSS). For any initial universal set W  and any parameters set E  with EA   

and )(WP  represents all the NS of W . The order set ),( A  is said to be the soft NS over W  where 

).(: WPA  Arockiarani et al., [22] introduced fuzzy neutrosophic soft topological space and presents

main results of fuzzy neutrosophic soft topological space. Later on the researchers linked the above theories 

with different field of sciences. 

The purpose of this paper is to study the mappings such as contraction mapping, expansive mapping, non-

expansive mapping, commuting mapping, and weakly commuting mapping used to attain the FP, CP and CFP 

of a neutrosophic soft set. We present some basic resultsnd particular examples of fixed points, coincidence 

points, common fixed points in which contraction mapping, expansive mapping, non-expansive mapping, com-

muting mapping, and weakly commuting mapping are used. 

2. Preliminaries

We will discuss here the basic notions of NS and neutrosophic soft sets. We will also discuss some new

neutrosophic soft mappings such as contraction mapping, increasing mapping, dominated mapping, dominat-

ing mapping, K-lipschitz mapping, non-expansive mapping, commuting mapping, weakly compatible map-

ping. Moreover we will study periodic point, common fixed point, coinciding point of neutrosophic soft-map-

ping. Here )( 

EUSN


 is the collection of all neutrosophic soft points. 

Definition 2.1 [7] Let U  be any universal set, with generic element .U   A NS


N is defined by 

},,)(),(),(,{ UFITN
NNN

  



 where   1,0:,, UFIT and  

.3)()()(0    

NNN
FIT

)(),(  

NN
IT  and )(

N
F  denote TM, IM and FM functions respectively. In   ,11,1,0 

where   is

it's non-standard part and 1  is it's standard part. Likely ,00 
    is it's non-standard part and 0 is it's

standard part. It is difficult to employ these values in real life applications. Hence we take all the values of 

neutrosophic set from subset ].1,0[   

Definition 2.2 [23] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Let the power set 

of 𝑊  is denoted by 𝑃(𝑊).  Then a pair ),( A  is called soft set (SS) over  𝑊,  where EA  and 

).(: WPA 

Definition 2.3 [21] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all neutrosophic soft set (NSS) is denoted as )(WSN


. Then for E , a pair ),(   is called a SSN


over W , where )(: WSN


  is a mapping. 

Definition 2.4 [24] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all NSS is denoted as )(WSN


. A NSS 


N over W is a set which defined by a set valued function 

N


representing a mapping ).(: WSNE
N



  

N
 is known as approximate function of the ).(WSN



 The 
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neutrosophic soft set can be written as: 

}:}):)(),(),(,{,{( )()()( EeWFITeN eee
NNN

  


where )(),(),(  NNN FIT   represents the TM, IM and FM functions of )(e
N
 respectively and has val-

ues in ].1,0[  Also 

    .3)(),(),(0 )()()(    eee
NNN

FIT


Definition 2.5 [22] Let U   be any universal set. The fuzzy neutrosophic set (fn-s) N   is defined as 

},)(),(),(,{ XFITN NNN   

where )(),(),(  NNN FIT   represents the TM, IM and FM functions respectively and

].1,0[:,, NFIT Also .3)()()(0    NNN FIT
Definition 2.6 [22] Let 𝐸 and 𝑊 be the set of parameters and initial universal set respectively. Suppose that the 

set of all fuzzy neutrosophic soft set (FNS-set) is denoted as )( 

EUSFN


. Then for E , a pair ),(   is said 

to be a FNS-set over W , where )(: WSN


  is a mapping. 

Definition 2.7 [25] Let BA   , be two fuzzy neutrosophic soft set. An fuzzy neutrosophic soft (FNS) relation 

 from A to B is known as FNS mapping if the two conditions are fulfilled.

i.   For every ,
1

AA  


 there exists ,

1
BB  


 where 



 
11

, BA  are FNS elements. 

ii. For empty fuzzy FNS element in ,A the )( A is also empty FNS element. 

Definition 2.8 [25] Let ),( RWFNSA  
 be a FNS-set and AA  : an FNS-mapping. A fuzzy neu-

trosophic element 


A is called a fixed point of   if .)(  AA  

Criterion [26], [27] Let )(WSN


 be the set of all neutrosophic points over ).,( EW   Then the neutrosophic soft 

metric on based of neutrosophic points is defined as )()(: EE WSNWSNd


 having the following prop-

erties. 

).1M 0),(  



BAd  for all ).(, EBA WSN


 



).2M .0),( 

BABAd  

).3M ).,(),( 

ABBA dd  

).4M ).,(),(),( 

BCCABA ddd  

Then )),(( dUSN E




 is said to be neutrosophic soft metric space. Here 


BA    implies 


BABA

IITT
 

 , and .
BA

FF
 



3. Mappings on Neutrosophic Soft Set

Here, we introduced some new neutrosophic soft mappings such as contraction mapping, increasing

mapping, dominated mapping, dominating mapping, K-lipschitz mapping, non-expansive mapping, commut-

ing mapping, weakly compatible mapping. Also we introduced periodic point, common fixed point, coinciding 

point of neutrosophic soft-mapping. Here )( 

EUSN


 is the collection of all neutrosophic soft points. 
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Definition 3.1 Let   be a mapping from )( 

EUSN


 to ).( 

EUSN


 Then   is called neutrosophic soft contrac-

tion if ),())(),((   BABA kdd   for all )(, 

  EBA USNF


 and ).1,0[k Where k is called 

contraction factor. 

Example 3.1 Let },,{ 311 U be any initial universal set and },{ 21  BAR . Define a NSS 


A

and 


B as below:

})}7.0,8.0,1.0,,3.0,9.0,1.0,,6.0,7.0,3.0,{,(

}),4.0,2.0,1,,4.0,7.0,6.0,,3.0,1.0,8.0,{,{(

3212

3211



  A

and 

})}.7.0,8.0,1.0,,9.0,3.0,2.0,,6.0,3.0,1.0,{,(

}}),4.0,2.0,1,,6.0,8.0,1,,1.0,7.0,9.0,{,{(

3212

3211



  B

The distance defined [27] as 

})|)()(||)()(||)()({(|min))(),((
1

212121
21 p

BBBBBBi

p
ii

p
ii

p
iiAA TTIITTd  





  

).1( p
In this example, we take ,1p now 

).,(2.0
)8.0)(2.0(

16.0
3.05.08.0

|9.06.0||3.08.0||2.01|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121
2

1

1

1

22

2222



























































AA

ii

iiiiAA

d

FF

IITT

FF

IITTd

BB

BBBB

BB

BBBBi

Here ,2.0k  so   is a contraction. 

Definition 3.2 Let    be a mapping from )( EWSN


 to ).( EWSNF


 Then   is called neutrosophic soft non-

expansive mapping if ),())(),((   BABA kdd   for all )(, EBA WSN


 

  and .1k  

Example 3.2 Let },,{ 321 W and },{ 21  BAR . Define a neutrosophic soft sets 


A and


B

as follows: 

})}7.0,6.0,4.0,,3.0,9.0,1.0,,6.0,7.0,3.0,{,(

}),6.0,4.0,2.0,,4.0,7.0,6.0,,2.0,1.0,1,{,{(

3212

3211



  A

and 
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})}.7.0,6.0,4.0,,9.0,3.0,2.0,,6.0,3.0,1.0,{,(

}}),6.0,4.0,2.0,,6.0,5.0,1,,2.0,5.0,1,{,{(

3212

3211



  B

).,(1
)5.0)(1(

5.0
1.02.02.0

|7.06.0||6.04.0||4.02.0|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121
2

1

1

1

33

3333


























































AA

ii

iiiixAA

d

FF

IITT

FF

IITTd

BA

BABB

BB

BBBBi

Here ,1k  so   is non-expansive. 

Definition 3.3 Let   be a mapping from )( EWSN


 to ).( EWSN


 Then   is called neutrosophic soft k-Lip-

schitz mapping if ),())(),((   BABA kdd   for all )(, EBA WSNF


 

   and .0k  

Example 3.3 Let },,{ 321 W and },{ 21  BAR . Define a NSS 


A and


B as below:

})}7.0,6.0,4.0,,3.0,9.0,1.0,,4.0,6.0,5.0,{,(

}),6.0,4.0,2.0,,4.0,7.0,6.0,,3.0,4.0,3.0,{,{(

3212

3211



  A

and 

})}.9.0,3.0,1,,9.0,2.0,3.0,,5.0,7.0,5.0,{,(

}}),6.0,4.0,2.0,,3.0,6.0,1,,3.0,4.0,1,{,{(

3212

3211



  B
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).,(2
)5.0)(2(

1
2.03.05.0

|5.03.0||7.04.0||5.01|

|)()(|

|)()(||)()(|

|})()(|

|)()(||)()({|min))((),((

2

1

1

1

21

2121

21

2121
2

1

1

1

11

1111

?


























































AA

ii

iiiiAA

d

FF

IITT

FF

IITTd

BA

BABB

BB

BBBBi

Here ,2k  so   is k-lipschitz. 

Note: Every neutrosophic soft contraction mapping is neutrosophic soft K-lipschitz mapping but its converse 

does not hold. 

Definition 3.4 Let  be a mapping from )( EWSN


 to ).( EWSN


 Then   is said to be neutrosophic soft kanan 

contraction if ))](,())(,([))(),((   BBAABA ddkd   for all )(, EBA WSN


 

  and 

).,0[ 2
1k  Where k  is called contraction factor. 

Definition 3.5 Let   and   be two mappings from )( 

EUSN


 to )( 

EUSN


. Then   and   are called neu-

trosophic soft commuting mapping if ))(())((   AA   for all  ).( 

  EA USN




 Definition 3.6 Let   and   be two mappings from )( 

EUSN


 to )( 

EUSN


. Then   and   are called neu-

trosophic soft weakly commuting mapping if ))(),(()))(()),(((   AAAA dd   for all

).( 

  EA USN




Definition 3.7 Let   and  be two mappings from )( 

EUSN


 to )( 

EUSN


. If for 
  

0
)( AAn

 and 

  
0

)( AAn
as n  and ).(,

0

  EAA USN
n




 Then it is called neutrosophic soft compatible map-

ping if .0)))(()),(((lim  


  AAn
d

Definition 3.8 Let  , )()(:   EE USNUSN


 be two mappings. If there is )( 

  EA USN


  such that 

,)()(   AAA   then )( 

  EA USN


  is called common fixed point neutrosophic soft mappings. 

Definition 3.9 If 


A is a fixed point of ),()(:   EE USNUSN


  then 


A is also a fixed point
k that is

 AA
k

  )( for all ).( 

  EA USN


  So 


A is called periodic point of neutrosophic soft mapping   and

k is called period of .
Remark Every fixed point of neutrosophic soft mapping is a periodic point but every periodic point of neutro-

sophic soft mapping is not a fixed point.

Definition 3.9 Let  ,   be two mappings from )( 

EUSN


 to ).( 

EUSN


If ,)()(   BAA   for all
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).(, 

  EBA USNF


  Then 


A is called coincidence point of   and   and


B is called point of coinci-

dence for   and .  

Definition 3.10 Let )()(:   EE USNUSN


  be a mapping. Then   is said to be neutrosophic soft increas-

ing map if for any 


BA   implies )()(   BA    for all ).(, 

  EBA USN




Definition 3.11 Let )()(:   EE USNUSN


  be a mapping. Then   is said to be neutrosophic soft domi-

nated map if 
 AA   )( for all ).( 

  EA USN




Definition 3.12 Let )()(:   EE USNUSN


 be a mapping. Then   is said to be neutrosophic soft domi-

nating map if )(   AA     for all ).( 

  EA USN




4. Main Results

Banach Contraction Theorem 

Proposition 1 Let )( 

EUSN


 be a non-empty set of neutrosophic points and )),(( dUSN E




 be a complete neu-

trosophic soft metric space. Suppose   is a mapping from )( 

EUSN


 to )( 

EUSN


 be contraction. Then fixed 

point of   exists and unique. 

Proof Let )(
0

  EA USN



 be arbitrary. Define )(

01

    AA  and by continuing we have a sequence in the 

form ).(
1

  



nn AA  Now 

).,(
.
.
.

),(

))(),((

),(

))(),((

),(

))(),((),(

01

32

32

21

21

1

11

3

2

2








































































AA
n

AA

AA

AA

AA

AA

AAAA

dk

dk

dk

dk

kd

kd

dd

nn

nn

nn

nn

nn

nnnn

Now for ,, 0nnm  we have
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. as 0),(

),(
1

),(]...1[

),(...),(),(

),(...),(),(),(

1

01

01

010101

12111

12

11










































nd

d
k

k

dkkkk

dkdkdk

dddd

nn

mmnnnnnn

AA

AA

n

AA
nmn

AA
m

AA
n

AA
n

AAAAAAAA











So 



nA is a cauchy sequence in ),),(( dUSN E




 but )),(( dUSN E




 is complete, so there exists  

)( 

  EA USN


  such that 0),(  





AAn
d  as .n  Now

).,(

))(),(())(,(
1




























 

AA

AAAA

n

nn

kd

dd

On taking limit as ,n  we get 

.0)),((  







 AAd
But 

.0)),((  







 AAd
So 

.)(
0)),((





























AA

AAd

So 




A  is the FP of .

Now we have to show that 




A  is unique. Suppose there exists another FP )( 

  EB USN


  such that 

.)( 





   BB Now 

.0),()1(
),(

))(),((),(









































 

BA

BA

BABA

dk
kd
dd

Here 0)1(  k , so 

.0),( ??  



BAd
But 

.0),(
0),(

























BA

BA

d
d

Hence ,


  

BA  so the fixed point is unique. 

Proposition 2 Let )),(( dUSN E




 be a complete neutrosophic soft metric space. Suppose   be a mapping from 

)( 

EUSNF


to )( 

EUSNF


satisfies the contraction ),())(),((
1111

    BAB
m

A
m kdd  for all 

),(,
11

  EBA USN



where )1,0[k  and m  is any natural number. Then   has a FP.
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 Proof It follows from banach contraction theorem that 
m has unique a FP that is .)(

11

   AA
m

 Now 

).(

))((

)())((

1

1

11

1























 

A

A
m

A
m

A
m

By the uniqueness of FP, we have .)(
11

   AA

Proposition 3 Let )),(( dUSN E




 be a complete neutrosophic soft metric space. Suppose  ,  satisfy 

)](,())(,([))(,())(,())(),((
1111111111

    ABBABBAABA ddddd for all

)(,
11

  EBA USNF



 with  ,,  are non-negative and .1   Then   and   have a unique FP. 

 Proof Let )(
1

  EA USN



 be a fixed point of   that is .)(

11

   AA  We need to show that .)(
11

   AA

Now 

))(,()(,(

)],())(,([))(,(),(

))](,())(,([))(,())(,(

))(),(())(,(

1111

11111111

11111111

1111

































AAAA

AAAAAAAA

AAAAAAAA

AAAA

dd

dddd

dddd

dd

0))(,()1(
11

 

  AAd
Since  ,0)1(     so 

.0))(,(
11

 

  AAd
But 

0))(,(
11

 

  AAd
hence 

.0))(,(
11

 

  AAd

Thus .)(
11

   AA

 Proposition 4 Let )( 

EUSN


 be a non-empty set of neutrosophic points and )),(( dUSN E




 be a complete neu-

trosophic soft metric space. Suppose   is a mapping from )( 

EUSN


 to )( 

EUSN


 be kanan contraction. Then 

fixed point of   exists and unique. 

 Proof Let )(
0

  EA USN



 be arbitrary. Define )(

01

    AA  and by continuing we have a sequence in the 

form ).(
1

  



nn AA  Now 
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),(

),(
1

),(

),(),()1(

),(),(

)],(),([

))(,())(,([

))(),((),(

1

11

11

11

11

11

11



















































































nn
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nnnn

nnnn

nnnn

nnnn

nnnn

AA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

hd

d
k

kd

kddk

kdkd

ddk

ddk

dd

for k
kh


 1

).,(
.
.
.

),(

),(

),(),(

01

32

21

11

3

2





































AA
n

AA

AA

AAAA

dh

dh

dh

hdd

nn

nn

nnnn

For  nm 

. as 0),(

),()
1

1(

),(]...1[

),(...),(),(

),(...),(),(),(

01

01

010101

1211

12

11
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d
h

h

dhhhh

dhdhdh

dddd
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AA

AA
n

AA
nmn

AA
m

AA
n

AA
n

AAAAAAAA











The sequence 



nA is a cauchy sequence in )),(( dUSN E




. Since )),(( dUSN E




 is complete, so 



nA converges 

to any ).( 

  EA USN


  Now 

))].(,())(,([

))(),(()),((
1






































nn

nn

AAAA

AAAA

ddh

dd

Taking limit as ,n  we have 

0)),(()21(
))(,(2

))](,())(,([)),((

























































AA

AA

AAAAAA

dh
hd

ddhd

As ,0)21(  h  so 
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0)),((  







 AAd
but 

0)),((  







 AAd
thus 

.0)),((  







 AAd
Hence )( 

  EA USN


  is a FP of .  

Suppose )( 

  EB USN


  be another FP. Now 

)],(),([
))](,())(,([

))(),((),(





























































BBAA

BBAA

BABA

ddh
ddh

dd

)1(0),(  









BAd
but 

)2(.0),(  









BAd
From )1(  and )2(  we have 

.0),(  









BAd
Hence .



  

BA

 Proposition 5 Let )()(:,   EE USNUSN


  be weakly compatible maps. If   and   have unique coin-

cidence point. Then   and   have unique common fixed point (CFP). 

 Proof Suppose there is )(
1

  EA USN



 such that .)()(

111

    BAA  Since   and   are weakly 

compatible, so ))(())((
11

    AA  for all ).(
1

  EA USN



 Now 

)).(())(()()(
1111

    AABB

So 



1B is also coincidence point (CP) of   and , but 




1A is the unique CP of   and , so 

).()(

)()()()(

111

1111

















BBB

BBAA

So )(
1

  EB USN



 is CFP. 

Proposition 6 Let )),(( dUSN E




 be a complete metric space and )()(:   EE USNUSN


  be a mapping 

satisfies )),(())(),((
1111

2     AAAA kdd  for all )(
1

  EA USN



 and ).1,0[k  Then fixed point of 

 is singleton.

Proof Let )(
0

  EA USN



 be arbitrary and defines (

1

n
An

  


()
0

  A ).


nA Now 
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So )(
0

 A
n

 is a cauchy sequence in ),),(( dUSN E




 but )),(( dUSN E




 is complete, so every cauchy sequence 

is convergent that is 


  
00

)( AA
n
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Hence the FP is unique. 

Proposition 7 Let )()(:,   EE USNUSN


  be commuting maps. If   and   have unique coincidence 

point. Then   and   have unique common fixed point. 

Proof Suppose there is )(
1

  EA USN



 such that )).(())((

11

    AA  Since   and   have unique co-

incidence point, so let .)()(
111

    BAA  Now 

).())(())(()(
1111

    BAAB

Here )(
1

  EB USN



 is also a coincidence point, but )(

1

  EA USN



 is unique coincidence point, so 

.)()()()(
11111

    BAABB

Hence )(
1

  EB USN



 is also a fixed point. 

Proposition 8 Every neutrosophic soft identity map is non-expansive. 

Proof Suppose that I  from )( 

EUSN


 to )( 

EUSN


 be a neutrosophic soft identity map such that  



 
11

)( AAI  for all ).(
1

  EA USN



 Now 

),())(),((
1111



  BABA dIId

Here ,1k so I is non-expansive map. 

5. Conclusion

In this paper, we have discussed some new mappings of NSS and some basic results and particular 
examples. Like fixed point, here also present some new concepts of points that is coincidence point, periodic 

point and CFP. 

FP theory has a lot of applications in control and communicating system. FP theory is an important mathemat-

ical instrument used to demonstrate the existence of a solution in mathematical economics and game theory. So 

the notion of a neutrosophic soft fixed point can be used in these areas. For stabilization of dynamic systems, 
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neutrosophic soft fixed point can be used. In addition, dynamic programming may employ the notion of pres-

ence and uniqueness of the common solution of neutrosophic soft set. 
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Soft Subring Theory Under Interval-Valued 
Neutrosophic Environment

Abstract. The primary goal of this article is to establish and investigate the idea of interval-valued neutrosophic

soft subring. Again, we have introduced function under interval-valued neutrosophic soft environment and

investigated some of its homomorphic attributes. Additionally, we have established product of two interval-

valued neutrosophic soft subrings and analyzed some of its fundamental attributes. Furthermore, we have

presented the notion of interval-valued neutrosophic normal soft subring and investigated some of its algebraic

properties and homomorphic attributes.

Keywords: Neutrosophic set; Interval-valued neutrosophic soft set; Interval-valued neutrosophic soft subring;

Interval-valued neutrosophic normal soft subring

—————————————————————————————————————————–

ABBREVIATIONS

TN indicates “T-norm”.

SN indicates “S-norm”.

IVTN indicates “Interval-valued T-norm”.

IVSN indicates “Interval-valued S-norm”.

CS indicates “Crisp set”.

US indicates “Universal set”.

FS indicates “Fuzzy set”.

IFS indicates “Intuitionistic fuzzy set”.

NS indicates “Neutrosophic set”.

PS indicates “Plithogenic set”.

SS indicates “Soft set”.

Sudipta Gayen, Florentin Smarandache, Sripati Jha, Manoranjan Kumar Singh, Said 
Broumi, Ranjan Kumar (2020). Soft Subring Theory Under Interval-valued Neutrosophic 
Environment. Neutrosophic Sets and Systems 36, 193-219

Sudipta Gayen, Florentin Smarandache, Sripati Jha, Manoranjan Kumar Singh, 
Said Broumi, Ranjan Kumar 
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IVFS indicates “Interval-valued fuzzy set”.

IVIFS indicates “Interval-valued intuitionistic fuzzy set”.

IVNS indicates “Interval-valued neutrosophic set”.

NSSR indicates “Neutrosophic soft subring”.

NNSSR indicates “Neutrosophic normal soft subring”.

IVNSR indicates “Interval-valued neutrosophic subring”.

IVNSSR indicates “Interval-valued neutrosophic soft subring”.

IVNNSSR indicates “Interval-valued neutrosophic normal soft subring”.

DMP indicates “Decision making problem”.

φ(F ) indicates “Power set of F”.

K indicates “The set [0, 1]”.

1. Introduction

Uncertainty plays a huge part in different economical, sociological, biological, as well as

other scientific fields. It is not always possible to tackle ambiguous data using CS theory.

To cope with its limitations Zadeh introduced the groundbreaking concept of FS [1] theory.

Which was further generalized by Atanassov as IFS [2] theory. Later on, Smarandache ex-

tended these notions by introducing NS [3] theory, which became more reasonable for managing

indeterminate situations. From the beginning, NS theory became very popular among various

researchers. Nowadays, it is heavily utilized in numerous research domains. PS [4] theory is

another innovative concept introduced by Smarandache, which is more general than all the

previously mentioned notions. In NS and PS theory some of Smarandache’s remarkable contri-

butions are the notions of neutrosophic robotics [5], neutrosophic psychology [6], neutrosophic

measure [7], neutrosophic calculus [8], neutrosophic statistics [9], neutrosophic probability [10],

neutrosophic triplet group [11], plithogenic logic, probability [12], plithogenic subgroup [13],

plithogenic aggregation operators [14], plithogenic hypersoft set [15], plithogenic fuzzy whole

hypersoft set [16], plithogenic hypersoft subgroup [17], etc. Moreover, NS and PS theory

has several contributions in various other scientific fields, for instance, in selection of suppli-

ers [18], professional selection [19], fog and mobile-edge computing [20], fractional program-

ming [21], linear programming [22], shortest path problem [23–30], supply chain problem [31],

DMP [32–37], healthcare [38,39], etc.

Interval-valued versions of FS [40], IFS [41], and NS [42] are further generalizations of their

previously discussed counterparts. Since the beginning, various researchers have carried out

this concepts and explored them in different research domains. For instance, nowadays in

logic [42], abstract algebra [43–46], graph theory [47, 48], DMPs [49–51], etc., these concepts

are widely used.

Florentin Smarandache (author and editor) Collected Papers, XII

758



Another set theory of utmost importance is SS [52] theory. It was introduced by Molodtsov

to deal with uncertainty more conveniently and easily. At present, it is extensively used in

different scientific areas, like in DMPs [53–57], abstract algebra [58–61], stock treading [62], etc.

Furthermore, to achieve higher uncertainty handling potentials researchers have implemented

SS theory in different interval-valued environments. The following Table 1 comprises some

momentous aspects of different interval-valued soft notions.

Table 1. Significance of different interval-valued soft notions in various fields.

Author & references Year Contributions in various fields

Yang et al. [63] 2009 Introduced soft IVFS and defined complement,

“and” and “or” operations on them.

Jiang et al. [64] 2010 Proposed soft IVIFS and defined complement,

“and”, “or”, union, intersection, necessity, and pos-

sibility operations on them.

Feng et al. [65] 2010 Introduced soft reduct fuzzy sets of soft IVFS and

utilizing soft versions of reduct fuzzy sets and level

sets, proposed flexible strategy for DMP.

Broumi et al. [66] 2014 Presented generalized soft IVNS, analyzed some set

operations and further, applied it in DMP.

Mukherje et al. [67] 2014 Proposed relation on soft IVIFSs and presented a

solution to a DMP.

Broumi et al. [68] 2014 Proposed relation on soft IVNSs and studied reflex-

ivity, symmetry, transitivity of it.

Mukherje and Sarkar [69] 2015 Defined Euclidean and Hamming distances between

two soft IVNSs and presented similarity measures

according to distances within them.

Deli [70] 2017 Defined soft IVNS and introduced some operations.

Further, implemented this in DMP.

Garg and Arora [71] 2018 Solved DMP with soft IVIFS information.

Group theory and ring theory are essential parts of abstract algebra, which have various

applications in different research domains. But these were initially introduced under the crisp

environment, which has certain limitations. From the year 1971, various mathematicians

started implementing uncertainty theories to generalize these notions. Some noteworthy con-

tributions in the field of group theory under uncertainty can be found on [72–76]. In ring theory

under uncertainty, the following articles [77–80] are some important developments. Again, sev-

eral researchers introduced these notions under soft environments. For instance, researchers

have introduced the concepts of ring theory under soft fuzzy [81], soft intuitionistic fuzzy [82],
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and soft neutrosophic [83] environments. Also, some more articles which can be helpful to

different researchers are [84–91], etc. Now, by mixing interval-valued environment with soft

neutrosophic environment, we can introduce a more general version of NSSR, which will be

called IVNSSR. Also, their homomorphic attributes can be studied. Again, their product and

normal versions can be introduced and studied. Based on these perceptions, the followings are

our primary objectives for this article:

• Introducing the concept of IVNSSR and a analyzing its homomorphic attributes.

• Introducing the product of IVNSSRs.

• Introducing subring of a IVNSSR.

• Introducing the concept of IVNNSSR and a analyzing its homomorphic properties.

The arrangement our article is: in Section 2, some desk researches of IVTN, IVSN, NS,

IVNS, IVNSS, NSR, NSSR, etc., are discussed. In Section 3, the concept of IVNSSR has

been introduced and some fundamental theories are provided. Also, their product and nor-

mal versions are defined and some theories are given to understand their different algebraic

characteristics. Lastly, in Section 4, mentioning some future scopes, the concluding segment

is given.

2. Literature Review

Definition 2.1. [92] A function T : K → K is known as a TN iff ∀g, n, z ∈ K, the followings

can be concluded

(i) T (g, 1) = g

(ii) T (g, n) = T (n, g)

(iii) T (g, n) ≤ T (z, n) if g ≤ z
(iv) T (g, T (n, z)) = T (T (g, n), z)

Definition 2.2. [93] A function T̄ : φ(K) × φ(K) → φ(K) defined as T̄ (ḡ, n̄) =

[T (g−, n−), T (g+, n+)] (T is a TN) is known as an IVTN.

Definition 2.3. [92] A function S : K → K is known as SN iff ∀g, n, z ∈ K, the followings

can be concluded

(i) S(g, 0) = g

(ii) S(g, n) = S(n, g)

(iii) S(g, n) ≤ S(z, n) if g ≤ z
(iv) S(g, S(n, z)) = S(S(g, n), z)

Definition 2.4. [93] The function S̄ : φ(K) × φ(K) → φ(K) defined as S̄(ḡ, n̄) =

[S(g−, n−), S(g+, n+)] (S is a SN) is called an IVSN.
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Definition 2.5. [3] A NS σ of a CS Q is denoted as σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
.

Here ∀g ∈ Q, tσ(g), iσ(g), and fσ(g) are known as degree of truth, indeterminacy, and falsity

which satisfy the inequality −0 ≤ tσ(g) + iσ(g) + fσ(g) ≤ 3+.

The set of all NSs of Q will be expressed as NS(Q).

Definition 2.6. [52] Let Q be a US and A be a set of parameters. Also, let L ⊆ A. Then

the ordered pair (f, L) is called a SS over Q, where f : L→ φ(Q) is a function.

Definition 2.7. [94] Let Q be a US and A be a set of parameters. Also, let M ⊆ A. Then a

NSS over Q is denoted as (f,M) where f : M → NS(Q) is a function.

The following Definition 2.7 is a redefined version of NSS, which we have adopted in this

article.

Definition 2.8. [56] Let Q be a US and A be a set of parameters. Then a NSS δ of Q is

denoted as δ =
{(
r, lδ(r)

)
: r ∈ A

}
where lδ : A → NS(Q) is a function which is also known

as an approximate function of NSS δ and lδ(r) =
{(
g, tlδ(r)(g), ilδ(r)(g), flδ(r)(g)

)
: g ∈ Q

}
.

Here, ∀g ∈ Q, tlδ(r)(g), ilδ(r)(g), and flδ(r)(g) ∈ [0, 1] and they satisfy the inequality 3 ≥
tlδ(r)(g) + ilδ(r)(g) + flδ(r)(g) ≥ 0.

The set of all NSSs of a set Q will be expressed as NSS(Q).

Definition 2.9. [42] An IVNS of Q is defined as the mapping σ̄ : Q→ φ(K)×φ(K)×φ(K),

where σ̄(g) =
{(
g, t̄σ̄(g), īσ̄(g), f̄σ̄(g)

)
: g ∈ Q

}
, where ∀g ∈ Q, t̄σ̄(g), īσ̄(g), and f̄σ̄(g) ⊆ [0, 1].

The set of all IVNSs of a set Q will be expressed as IVNS(Q).

Definition 2.10. [70] Let Q be a US and A be a set of parameters. Then a IVNSS Ψ of Q is

denoted as Ψ =
{(
r, lΨ(r)

)
: r ∈ A

}
, where lΨ : A→ IVNS(Q) is a function which is also known

as an approximate function of IVNSS Ψ and lΨ(r) =
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Q

}
.

Here, ∀g ∈ Q, t̄lΨ(r)(g), īlΨ(r)(g), and f̄lΨ(r)(g) ⊆ [0, 1].

The set of all IVNSSs of a set Q will be expressed as IVNSS(Q).

Definition 2.11. [70] Ψ1 =
{(
r, lΨ1(r)

)
: r ∈ A

}
and Ψ2 =

{(
r, lΨ2(r)

)
: r ∈ A

}
be two

IVNSSs of Q. Then Ψ = Ψ1 ∪Ψ2 =
{(
r, lΨ(r)

)
: r ∈ A

}
is defined as

t̄lΨ(r) =
[

max
{
t̄−lΨ1

(r), t̄
−
lΨ2

(r)

}
,max

{
t̄+lΨ1

(r), t̄
+
lΨ2

(r)

}]
t̄lΨ(r) =

[
min

{
ī−lΨ1

(r), ī
−
lΨ2

(r)

}
,min

{
ī+lΨ1

(r), ī
+
lΨ2

(r)

}]
t̄lΨ(r) =

[
min

{
f̄−lΨ1

(r), f̄
−
lΨ2

(r)

}
,min

{
f̄+
lΨ1

(r), f̄
+
lΨ2

(r)

}]
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Definition 2.12. [70] Ψ1 =
{(
r, lΨ1(r)

)
: r ∈ A

}
and Ψ2 =

{(
r, lΨ2(r)

)
: r ∈ A

}
be two

IVNSSs of Q. Then Ψ = Ψ1 ∩Ψ2 =
{(
r, lΨ(r)

)
: r ∈ A

}
is defined as

t̄lΨ(r) =
[

min
{
t̄−lΨ1

(r), t̄
−
lΨ2

(r)

}
,min

{
t̄+lΨ1

(r), t̄
+
lΨ2

(r)

}]
t̄lΨ(r) =

[
max

{
ī−lΨ1

(r), ī
−
lΨ2

(r)

}
,max

{
ī+lΨ1

(r), ī
+
lΨ2

(r)

}]
t̄lΨ(r) =

[
max

{
f̄−lΨ1

(r), f̄
−
lΨ2

(r)

}
,max

{
f̄+
lΨ1

(r), f̄
+
lΨ2

(r)

}]
2.1. Neutrosophic subring

Definition 2.13. [80] Let (Q,+, ·) be a crisp ring. A NS σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
is called a NSR of F , iff ∀g, n ∈ Q,

(i) tσ(g + n) ≥ T
(
tσ(g), tσ(n)

)
, iσ(g + n) ≥ I

(
iσ(g), iσ(n)

)
, fσ(g + n) ≤ F

(
fσ(g), fσ(n)

)
(ii) tσ(−g) ≥ tσ(g), iσ(−g) ≥ iσ(g), fσ(−g) ≤ fσ(g)

(iii) tσ(g · n) ≥ T
(
tσ(g), tσ(n)

)
, iσ(g · n) ≥ I

(
iσ(g), iσ(n)

)
, fσ(g · n) ≤ S

(
fσ(g), fσ(n)

)
.

Here, T and I are two TNs and S is a SN.

The set of all NSR of a crisp ring (Q,+, · ) will be expressed as NSR(Q).

Proposition 2.1. [80] A NS σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
is called a NSR of Q, iff

∀g, n ∈ Q,

(i) tσ(g − n) ≥ T
(
tσ(g), tσ(n)

)
, iσ(g − n) ≥ I

(
iσ(g), iσ(n)

)
, fσ(g − n) ≤ F

(
fσ(g), fσ(n)

)
(ii) tσ(g · n) ≥ T

(
tσ(g), tσ(n)

)
, iσ(g · n) ≥ I

(
iσ(g), iσ(n)

)
, fσ(g · n) ≤ S

(
fσ(g), fσ(n)

)
.

Here, T and I are two TNs and S is a SN.

Proposition 2.2. [80] Let σ1, σ2 ∈ NSR(Q). Then σ1 ∩ σ2 ∈ NSR(Q).

Theorem 2.3. [80] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

homomorphism. If σ is a NSR of Q then h(σ) is a NSR of Y .

Theorem 2.4. [80] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

homomorphism. If σ′ is a NSR of Y then h−1(σ′) is a NSR of Q.

Definition 2.14. [80] Let σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
be a NSR of Q. Then

∀s ∈ [0, 1] the s-level sets of Q are defined as

(i) (tσ)s = {g ∈ Q : tσ(g) ≥ s},
(ii) (iσ)s = {g ∈ Q : iσ(g) ≥ s}, and

(iii) (fσ)s = {g ∈ Q : fσ(g) ≤ s}.

Proposition 2.5. [80] A NS σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
of a crisp ring (Q,+, ·) is

a NSR of Q iff ∀s ∈ [0, 1] the s-level sets of Q, i.e. (tσ)s, (iσ)s, and (fσ)s are crisp rings of

Q.
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2.2. Neutrosophic soft subring

Definition 2.15. [83] Let (Q,+, ·) be a crisp ring and A be a set of parameters. Then a NSS

δ =
{(
r, lδ(r)

)
: r ∈ A

}
with lδ : A→ NS(Q) is called a NSSR if ∀r ∈ A, lδ(r) ∈ NSR(Q).

The set of all NSSR of a crisp ring (Q,+, · ) will be expressed as NSSR(Q).

Proposition 2.6. [83] A NSS δ =
{(
r,
{(
g, tlδ(r)(g), ilδ(r)(g), flδ(r)(g)

)
: g ∈ Q

})
: r ∈ A

}
over a crisp ring (Q,+, ·) is called a NSSR iff the following conditions hold:

(i) tlδ(r)(g−n) ≥ T
(
tlδ(r)(g), tlδ(r)(n)

)
, ilδ(r)(g−n) ≥ I

(
ilδ(r)(g), ilδ(r)(n)

)
, flδ(r)(g−n) ≤

F
(
flδ(r)(g), flδ(r)(n)

)
and

(ii) tlδ(r)(g · n) ≥ T
(
tlδ(r)(g), tlδ(r)(n)

)
, ilδ(r)(g · n) ≥ I

(
ilδ(r)(g), ilδ(r)(n)

)
, flδ(r)(g · n) ≤

S
(
flδ(r)(g), flδ(r)(n)

)
.

Proposition 2.7. [83] Let δ1, δ2 ∈ NSSR(Q). Then δ1 ∩ δ2 ∈ NSSR(Q).

Theorem 2.8. [83] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be an

isomorphism. If δ is a NSSR of Q then h(δ) is a NSSR of Y .

Theorem 2.9. [83] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

homomorphism. If δ′ is a NSSR of Y then h−1(δ′) is a NSSR of Q.

Theorem 2.10. δ1 ∈ NSSR(Q) and δ2 ∈ NSSR(Y ), then their cartesian product δ1 × δ2 ∈
NSSR(Q× Y ).

Definition 2.16. [83] A NSSR δ =
{(
r, lδ(r)

)
: r ∈ A

}
of a crisp ring (Q,+, ·) is known as a

NNSSR of Q iff tlδ(r)(g ·n) = tlδ(r)(n ·g), ilδ(r)(g ·n) = ilδ(r)(n ·g), and flδ(r)(g ·n) = flδ(r)(n ·g).

The set of all NNSSR of Q will be expressed as NNSSR(Q).

Proposition 2.11. [83] Let δ1, δ2 ∈ NNSSR(Q). Then δ1 ∩ δ2 ∈ NNSSR(Q).

Theorem 2.12. [83] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q→ Y be an

isomorphism. If δ is a NNSSR of Q then h(δ) is a NNSSR of Y .

Theorem 2.13. [83] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

ring homomorphism. If δ′ is a NNSSR of Y then h−1(δ′) is a NNSSR of Q.

3. Proposed notion of interval-valued neutrosophic soft subring

Definition 3.1. Let (Q,+, ·) be a crisp ring and A be a set of parameters. An IVNSS

Ψ =
{(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Q

})
: r ∈ A

}
is called an IVNSSR of (Q,+, ·)

if ∀g, n ∈ Q, and ∀r ∈ A, the followings can be concluded:
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(i)


t̄lΨ(r)(g + n) ≥ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
,

īlΨ(r)(g + n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
,

f̄lΨ(r)(g + n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
(ii)


t̄lΨ(r)(−r) ≥ tlΨ(r)(g),

īlΨ(r)(−r) ≤ ilΨ(r)(g),

f̄lΨ(r)(−r) ≤ flΨ(r)(g)

(iii)


t̄lΨ(r)(g · n) ≥ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
,

īlΨ(r)(g · n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
,

f̄lΨ(r)(g · n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
,

The set of all IVNSSR of a crisp ring (Q,+, · ) will be expressed as IVNSSR(Q).

Example 3.2. Let (Z,+, ·) be the ring and N be a set of parameters. Also, let Ψ ={(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Z

})
: e ∈ N

}
be an IVNSS of Z, where

lΨ : N→ IVNS(Q) and ∀g ∈ Z, ∀r ∈ N corresponding memberships are

t̄lΨ(r)(g) =


[ 1

r + 1
,
1

r

]
if g ∈ 2Z

[0, 0] if g ∈ 2Z+ 1

,

īlΨ(r)(g) =


[0, 0] if g ∈ 2Z[ 1

2r + 2
,

1

2r

]
if g ∈ 2Z+ 1

, and

f̄lΨ(r)(g) =


[0, 0] if g ∈ 2Z[r − 1

r
,

r

r + 1

]
if g ∈ 2Z+ 1

.

Here, considering minimum TN and maximum SNs ∀r ∈ N, Ψ ∈ IVNSSR(Z).

Example 3.3. Let (Z4,+, ·) be the ring of integers modulo 4 and A = {r1, r2, r3} be a set

of parameters. Also, let Ψ =
{(
r,
{(
r, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Z4

})
: r ∈ A

}
be an

IVNSS of Z4, where lΨ : A → IVNS(Q). Again, let the membership values of the elements

belonging to Ψ are specified in Table 2, 3, and 4.

Table 2. Membership values of elements with respect to parameter r1

Ψ(r1) t̄lΨ(r1) īlΨ(r1) f̄lΨ(r1)

0̄ [0.64, 0.66] [0.33, 0.35] [0.13, 0.14]

1̄ [0.7, 0.72] [0.21, 0.23] [0.77, 0.79]

2̄ [0.74, 0.76] [0.24, 0.26] [0.51, 0.53]

3̄ [0.66, 0.68] [0.31, 0.33] [0.28, 0.3]
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Table 3. Membership values of elements with respect to parameter r2

Ψ(r2) t̄lΨ(r2) īlΨ(r2) f̄lΨ(r2)

0̄ [0.68, 0.7] [0.3, 0.32] [0.31, 0.33]

1̄ [0.61, 0.63] [0.31, 0.33] [0.41, 0.43]

2̄ [0.57, 0.59] [0.4, 0.42] [0.65, 0.67]

3̄ [0.7, 0.72] [0.26, 0.28] [0.52, 0.54]

Table 4. Membership values of elements with respect to parameter r3

Ψ(r3) t̄lΨ(r3) īlΨ(r3) f̄lΨ(r3)

0̄ [0.71, 0.73] [0.2, 0.23] [0.15, 0.17]

1̄ [0.83, 0.85] [0.15, 0.17] [0.24, 0.26]

2̄ [0.68, 0.7] [0.3, 0.32] [0.38, 0.4]

3̄ [0.78, 0.8] [0.18, 0.2] [0.4, 0.43]

Here, considering the  Lukasiewicz TN (T (g, n) = max{0, g + n − 1}) and bounded sum SNs

(S(g, n) = min{g + n, 1}), ∀r ∈ A, Ψ ∈ IVNSSR(Z4).

Proposition 3.1. An IVNSS Ψ =
{(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Q

})
: r ∈ A

}
of a crisp ring (Q,+, ·) is an IVNSSR iff the following conditions hold (considering idempotent

IVTN and IVSNs):

(i) t̄lΨ(r)(g − n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
, īlΨ(r)(g − n) ≤ Ī

(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, f̄lΨ(r)(g −

n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
and

(ii) t̄lΨ(r)(g · n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
, īlΨ(r)(g · n) ≤ Ī

(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, f̄lΨ(r)(g · n) ≤

F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
.

Proof. Let Ψ ∈ IVNSSR(Q). Then

t̄lΨ(r)(g − n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(−n)

)
[by Definition 3.1]

≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
[by Definition 3.1]

Similary, we will have

īlΨ(r)(g − n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, and

f̄lΨ(r)(g − n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
,

Again, (ii) follows immediately from condition (iii) of Definition 3.1.

Conversely, let conditions (i) and (ii) of Proposition 3.1 hold. Assuming θQ as the additive
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neutral member of (Q,+, ·), we have

t̄lΨ(r)(θQ) = t̄lΨ(r)(g − g)

≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(g)

)
= t̄lΨ(r)(g) (3.1)

Similaly,

īlΨ(r)(θQ) ≤ īlΨ(r)(g) (3.2)

f̄lΨ(r)(θQ) ≤ f̄lΨ(r)(g) (3.3)

Now,

t̄lΨ(r)(−g) = t̄lΨ(r)(θQ − g)

≥ T̄
(
t̄lΨ(r)(θQ), t̄lΨ(r)(g)

)
≥ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(g)

)
[by 3.1]

= t̄lΨ(r)(g) [since T̄ is idempotent] (3.4)

Similarly,

īlΨ(r)(−g) ≤ īlΨ(r)(g) [since Ī is idempotent] (3.5)

f̄lΨ(r)(−g) ≤ f̄lΨ(r)(g) [since F̄ is idempotent] (3.6)

Hence,

t̄lΨ(r)(g + n) = t̄lΨ(r)(g − (−n))

≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(−n)

)
≥ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
[by 3.4] (3.7)

Similarly,

īlΨ(r)(g + n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
[by 3.5] (3.8)

f̄lΨ(r)(g + n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
[by 3.6] (3.9)

Hence, Equations 3.7, 3.8, and 3.9 prove part (i) of Proposition 3.1. Again, part (ii) of

Proposition 3.1 is similar to condition (iii) of Definition 3.1. So, Ψ ∈ IVNSSR(Q).

Theorem 3.2. Let (Q,+, ·) be a crisp ring. If Ψ1,Ψ2 ∈ IVNSSR(Q), then Ψ1 ∩ Ψ2 ∈
IVNSSR(Q) (considering idempotent IVTN and IVSNs).
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Proof. Let Ψ = Ψ1 ∩Ψ2. Now, ∀g, n ∈ Q and ∀r ∈ A

t̄lΨ(r)(g + n) = T̄
(
t̄lΨ1

(r)(g + n), t̄lΨ2
(r)(g + n)

)
≥ T̄

(
T̄
(
t̄lΨ1

(r)(g), t̄lΨ1
(r)(n)

)
, T̄
(
t̄lΨ2

(r)(g), t̄lΨ2
(r)(n)

))
= T̄

(
T̄
(
t̄lΨ1

(r)(g), t̄lΨ1
(r)(n)

)
, T̄
(
t̄lΨ2

(r)(n), t̄lΨ2
(r)(g)

))
[as T̄ is commutative]

= T̄
(
T̄
(
t̄Ψ1(g), t̄lΨ2

(r)(g)
)
, T̄
(
t̄lΨ1

(r)(n), t̄lΨ2
(r)(n)

))
[as T̄ is associative]

= T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
(3.10)

and

t̄lΨ(r)(−g) = T̄
(
t̄lΨ1

(r)(−g), t̄lΨ2
(r)(−g)

)
≥ T̄

(
t̄lΨ1

(r)(g), t̄lΨ2
(r)(g)

)
[by Definition 3.1]

= t̄lΨ(r)(g) (3.11)

Similarly, we can show

īlΨ(r)(g + n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
(3.12)

f̄lΨ(r)(g + n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
(3.13)

and

īlΨ(r)(−g) ≤ īlΨ(r)(g) (3.14)

f̄lΨ(r)(−g) ≤ f̄lΨ(r)(g) (3.15)

Also, we can show that

t̄lΨ(r)(g · n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
, (3.16)

īlΨ(r)(g · n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, and (3.17)

f̄lΨ(r)(g · n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
(3.18)

So, from Equations 3.10–3.18 Ψ ∈ IVNSSR(Q).

Remark 3.3. In general, if Ψ1,Ψ2 ∈ IVNSSR(Q), then Ψ1∪Ψ2 may not always be an IVNSSR

of (Q,+, ·).

The following Example 3.4 will prove Remark 3.3.

Example 3.4. Let (Z,+, ·) be the ring of integers and N be a set of parameters. Again,

let Ψ1 =
{(
r,
{(
g, t̄lΨ1

(r)(g), īlΨ1
(r)(g), f̄lΨ1

(r)(g)
)

: g ∈ Z
})

: r ∈ N
}

and Ψ2 =
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{(
r,
{(
g, t̄lΨ2

(r)(g), īlΨ2
(r)(g), f̄lΨ2

(r)(g)
)

: g ∈ Z
})

: r ∈ N \ {1}
}

be two IVNSSs of Z, where

lΨ1 : N→ IVNSS(Q) be defined as

t̄lΨ1
(r)(g) =


[ 1

r + 1
,
1

r

]
if g ∈ 2Z

[0, 0] if g ∈ 2Z+ 1

,

īlΨ1
(r)(g) =


[0, 0] if g ∈ 2Z[ 1

2r + 2
,

1

2r

]
if g ∈ 2Z+ 1

, and

f̄lΨ1
(r)(g) =


[0, 0] if g ∈ 2Z[r − 1

r
,

r

r + 1

]
if g ∈ 2Z+ 1

.

and lΨ2 : N \ {1} → IVNSS(Q) be defined as

t̄lΨ2
(r)(g) =


[1

r
,

1

r − 1

]
if g ∈ 3Z

[0, 0] if g ∈ 3Z+ 1

,

īlΨ2
(r)(g) =


[0, 0] if g ∈ 3Z[ 1

2r
,

1

2r − 2

]
if g ∈ 3Z+ 1

, and

f̄lΨ2
(r)(g) =


[0, 0] if g ∈ 3Z[r − 2

r − 1
,
r − 1

r

]
if g ∈ 3Z+ 1

.

Here, considering minimum TN and maximum SNs Ψ1,Ψ2 ∈ IVNSSR(Z). Let Ψ = Ψ1 ∪Ψ2.

Now considering r = 3 we will have

t̄lΨ1
(3)(g) =


[1

4
,
1

3

]
if g ∈ 2Z

[0, 0] if g ∈ 2Z+ 1
and

t̄lΨ2
(3)(g) =


[1

3
,
1

2

]
if g ∈ 3Z

[0, 0] if g ∈ 3Z+ 1

Now, taking g = 10 and n = 15, we will have

t̄lΨ(3)(g + n) = t̄lΨ(3)(10 + 15)

= t̄lΨ(3)(25)

= max{t̄lΨ1
(3)(25), t̄lΨ2

(3)(25)}

= max{[0, 0], [0, 0]}

= [0, 0]
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Again, if Ψ ∈ IVNSSR(Q), then ∀g, n ∈ Q, t̄lΨ(3)(g+ n) ≥ min{t̄lΨ(3)(g), t̄lΨ(3)(n)}. But, here

for g = 10 and n = 15, min{t̄lΨ(3)(10), t̄lΨ(3)(15)} = min
{[

1
4 ,

1
3

]
,
[

1
3 ,

1
2

]}
=
[

1
4 ,

1
3

]
� [0, 0] =

t̄lΨ(3)(10 + 15). So, Ψ 6∈ IVNSSR(Q).

Corollary 3.4. If Ψ1,Ψ2 ∈ IVNSSR(Q), then Ψ1 ∪ Ψ2 ∈ IVNSSR(Q) iff one is a subset of

other.

Definition 3.5. let Ψ =
{(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Z4

})
: r ∈ A

}
be an

IVNSS of a crisp ring (Q,+, ·). Also, let [g1, n1], [g2, n2], and [g3, n3] ∈ φ(K). Then the CS

Ψ(
[g1,n1],[g2,n2],[g3,n3]

) is called a level set of IVNSSR Ψ, where for any g ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

)
the following inequalities will hold: t̄lΨ(r)(g) ≥ [g1, n1], īlΨ(r)(g) ≤ [g2, n2], and f̄lΨ(r)(g) ≤
[g3, n3].

Theorem 3.5. Let (Q,+, ·) be a crisp ring. Then Ψ ∈ IVNSSR(Q) iff

∀[g1, n1], [g2, n2], [g3, n3] ∈ φ(K) with t̄lΨ(r)(θQ) ≥ [g1, n1], īlΨ(r)(θQ) ≤ [g2, n2], and

f̄lΨ(r)(θQ) ≤ [g3, n3], Ψ(
[g1,n1],[g2,n2],[g3,n3]

) is a crisp subring of (Q,+, ·) (considering idem-

potent IVTN and IVSNs).

Proof. Since, t̄lΨ(r)(θQ) ≥ [g1, n1], īlΨ(r)(θQ) ≤ [g2, n2], and f̄lΨ(r)(θQ) ≤ [g3, n3], θQ ∈
Ψ(

[g1,n1],[g2,n2],[g3,n3]
), i.e., Ψ(

[g1,n1],[g2,n2],[g3,n3]
) is non-empty. Now, let Ψ ∈ IVNSSR(Q) and

g, n ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

). To show that, (g − n) and g · n ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

). Here,

t̄lΨ(r)(g − n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
[by Proposition 3.1]

≥ T̄
(
[g1, n1], [g1, n1]

) [
as g, n ∈ Ψ(

[g1,n1],[g2,n2],[g3,n3]
)]

≥ [g1, n1] [as T̄ is idempotent] (3.19)

Again,

t̄lΨ(r)(g · n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
[by Proposition 3.1]

≥ T̄
(
[g1, n1], [g1, n1]

) [
as g, n ∈ Ψ(

[g1,n1],[g2,n2],[g3,n3]
)]

≥ [g1, n1] [as T̄ is idempotent] (3.20)

Similarly, as Ī and F̄ are idempotent, we can prove that

īlΨ(r)(g − n) ≤ [g2, n2], (3.21)

īlΨ(r)(g · n) ≤ [g2, n2], (3.22)

f̄lΨ(r)(g − n) ≤ [g3, n3], and (3.23)

f̄lΨ(r)(g · n) ≤ [g3, n3]. (3.24)
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So, from Equations 3.19–3.24 (g−n) and g ·n ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

), i.e., Ψ(
[g1,n1],[g2,n2],[g3,n3]

)
is a crisp subring of (Q,+, ·).
Conversely, let Ψ(

[g1,n1],[g2,n2],[g3,n3]
) is a crisp subring of (Q,+, ·). To show that, Ψ ∈

IVNSSR(Q).

Let g, n ∈ Q, then there exists [g1, n1] ∈ φ(K) such that T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
= [g1, n1].

Wherefrom t̄lΨ(r)(g) ≥ [g1, n1] and t̄lΨ(r)(n) ≥ [g1, n1]. Also, let there exist [g2, n2], [g3, n3] ∈
φ(K) such that Ī

(̄
ilΨ(r)(g), īlΨ(r)(n)

)
= [g2, n2] and F̄

(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
= [g3, n3]. Then

g, n ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

).
Now, as Ψ(

[g1,n1],[g2,n2],[g3,n3]
) is a crisp subring, g − n ∈ Ψ(

[g1,n1],[g2,n2],[g3,n3]
) and g · n ∈

Ψ(
[g1,n1],[g2,n2],[g3,n3]

).
Hence,

t̄lΨ(r)(g − n) ≥ [k1, s1]

= T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
and (3.25)

t̄lΨ(r)(g · n) ≥ [k1, s1]

= T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
(3.26)

Similarly, we can prove that

īlΨ(r)(g − n) ≤ [k2, s2]

= Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, (3.27)

īlΨ(r)(g · n) ≤ [k2, s2]

= T̄
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, (3.28)

f̄lΨ(r)(g − n) ≤ [k3, s3]

= F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
, and (3.29)

f̄lΨ(r)(g · n) ≤ [k3, s3]

= F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
(3.30)

Hence, from Equations 3.25–3.30 Ψ ∈ IVNSSR(Q).

Definition 3.6. Let Ψ and Ψ′ be two IVNSSs of two CSs Q and Y , respectively. Also, let

h : Q→ Y be a function. Then

(i) image of Ψ under h will be

h(Ψ) =
{(
r,
{(
n, t̄h(lΨ(r))(n), īh(lΨ(r))(n), f̄h(lΨ(r))(n)

)
: n ∈ Y

})
: r ∈ A

}
,

where t̄h(lΨ(r))(n) = ∨
s∈h−1(n)

t̄lΨ(r)(s), īh(lΨ(r))(n) = ∧
s∈h−1(n)

īlΨ(r)(s), and f̄h(lΨ(r))(v) =
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∧
s∈h−1(n)

f̄lΨ(r)(s). Wherefrom, if h is injective then t̄h(lΨ(r))(n) = t̄lΨ(r)

(
h−1(n)

)
,

īh(lΨ(r))(n) = īlΨ(r)

(
h−1(n)

)
, f̄h(lΨ(r))(n) = f̄lΨ(r)

(
h−1(n)

)
.

(i) preimage of Ψ′ under h will be

h−1(Ψ′) =
{(
r,
{(
g, t̄h−1(lΨ′ (r))

(g), īh−1(lΨ′ (r))
(g), f̄h−1(lΨ′ (r))

(g)
)

: g ∈ Q
})

: r ∈ A
}

,

where t̄h−1(lΨ′ (r))
(g) = t̄lΨ′ (r)

(
h(g)

)
, īh−1(lΨ′ (r))

(g) = īlΨ′ (r)
(
h(g)

)
, f̄h−1(lΨ′ (r))

(g) =

f̄lΨ′ (r)
(
h(g)

)
.

Theorem 3.6. Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be an

isomorphism. If Ψ is an IVNSSR of Q then h(Ψ) is an IVNSSR of Y .

Proof. Let n1 = h(g1) and n2 = h(g2), where g1, g2 ∈ Q and n1, n2 ∈ Y . Now,

t̄h(lΨ(r))(n1 − n2) = t̄lΨ(r)

(
h−1(n1 − n2)

)
[as h is injective]

= t̄lΨ(r)

(
h−1(n1)− h−1(n2)

)
[as h−1 is a homomorphism]

= t̄lΨ(r)(g1 − g2)

≥ T̄
(
t̄lΨ(r)(g1), t̄lΨ(r)(g2)

)
= T̄

(
t̄lΨ(r)

(
h−1(n1)

)
, t̄lΨ(r)

(
h−1(n2)

))
= T̄

(
t̄h(lΨ(r))(n1), t̄h(lΨ(r))(n2)

)
(3.31)

Again,

t̄h(lΨ(r))(n1 · n2) = t̄lΨ(r)

(
h−1(n1 · n2)

)
[as h is injective]

= t̄lΨ(r)

(
h−1(n1) · h−1(n2)

)
[as h−1 is a homomorphism]

= t̄lΨ(r)(g1 · g2)

≥ T̄
(
t̄lΨ(r)(g1), t̄lΨ(r)(g2)

)
= T̄

(
t̄lΨ(r)

(
h−1(n1)

)
, t̄lΨ(r)

(
h−1(n2)

))
= T̄

(
t̄h(lΨ(r))(n1), t̄h(lΨ(r))(n2)

)
(3.32)

Similarly,

īh(lΨ(r))(n1 − n2) ≤ Ī
(̄
ih(lΨ(r))(n1), īh(lΨ(r))(n2)

)
, (3.33)

īh(lΨ(r))(n1 · n2) ≤ Ī
(̄
ih(lΨ(r))(n1), īh(lΨ(r))(n2)

)
, (3.34)

f̄h(lΨ(r))(n1 − n2) ≤ F̄
(
f̄h(lΨ(r))(n1), f̄h(lΨ(r))(n2)

)
, and (3.35)

f̄h(lΨ(r))(n1 · n2) ≤ F̄
(
f̄h(lΨ(r))(n1), f̄h(lΨ(r))(n2)

)
(3.36)

So, from Equations 3.31–3.36 h(Ψ) is an IVNSSR of Y .
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Theorem 3.7. Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

homomorphism. If Ψ′ is an IVNSSR of Y then h−1(Ψ′) is an IVNSSR of Q. (Note that, h−1

may not be an inverse function but h−1(Ψ′) is an inverse image of Ψ′).

Proof. Let n1 = h(g1) and n2 = h(g2), where g1, g2 ∈ Q and n1, n2 ∈ Y . Now,

t̄h−1(lΨ′ (r))
(g1 − g2) = t̄lΨ′ (r)

(
h(g1 − g2)

)
= t̄lΨ′ (r)

(
h(g1)− h(g2)

)
[as h is a homomorphism]

= t̄lΨ′ (r)(n1 − n2)

≥ T̄
(
t̄lΨ′ (r)(n1), t̄lΨ′ (r)(n2)

)
= T̄

(
t̄lΨ′ (r)

(
h(g1)

)
, t̄lΨ′ (r)

(
h(g2)

))
= T̄

(
t̄h−1(lΨ′ (r))

(g1), t̄h−1(lΨ′ (r))
(g2)

)
(3.37)

Again,

t̄h−1(lΨ′ (r))
(g1 · g2) = t̄lΨ′ (r)

(
h(g1 · g2)

)
= t̄lΨ′ (r)

(
h(g1) · h(g2)

)
[as h is a homomorphism]

= t̄lΨ′ (r)(n1 · n2)

≥ T̄
(
t̄lΨ′ (r)(n1), t̄lΨ′ (r)(n2)

)
= T̄

(
t̄lΨ′ (r)

(
h(g1)

)
, t̄lΨ′ (r)

(
h(g2)

))
= T̄

(
t̄h−1(lΨ′ (r))

(g1), t̄h−1(lΨ′ (r))
(g2)

)
(3.38)

Similarly,

īh−1(lΨ′ (r))
(g1 − g2) ≤ Ī

(̄
ih−1(lΨ′ (r))

(g1), īh−1(lΨ′ (r))
(g2)

)
(3.39)

īh−1(lΨ′ (r))
(g1 · g2) ≤ Ī

(̄
ih−1(lΨ′ (r))

(g1), īh−1(lΨ′ (r))
(g2)

)
(3.40)

f̄h−1(lΨ′ (r))
(g1 − g2) ≤ F̄

(
f̄h−1(lΨ′ (r))

(g1), f̄h−1(lΨ′ (r))
(g2)

)
(3.41)

f̄h−1(lΨ′ (r))
(g1 · g2) ≤ F̄

(
f̄h−1(lΨ′ (r))

(g1), f̄h−1(lΨ′ (r))
(g2)

)
(3.42)

So, from Equations 3.37–3.42 h−1(Ψ′) is an IVNSSR of Q.

Definition 3.7. Let (Q,+, ·) be a crisp ring and Ψ ∈ IVNSSR(Q). Again, let ᾱ = [α1, α2], ν̄ =

[ν1, ν2], χ̄ = [χ1, χ2] ∈ φ(K). Then
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(i) Ψ is called a (ᾱ, ν̄, χ̄)−identity IVNSSR over Q, if ∀g ∈ Q

t̄lΨ(r)(g) =

ᾱ if g = θQ

[0, 0] if g 6= θQ
,

īlΨ(r)(g) =

ν̄ if g = θQ

[1, 1] if g 6= θQ
, and

f̄lΨ(r)(g) =

χ̄ if g = θQ

[1, 1] if g 6= θQ
,

where θQ is the additive zero element of Q.

(ii) Ψ is called a (ᾱ, ν̄, χ̄)−absolute IVNSSR over Q, if ∀g ∈ Q, t̄lΨ(r)(g) = ᾱ, īlΨ(r)(g) = ν̄,

and f̄lΨ(r)(g) = χ̄.

Theorem 3.8. Let (Q,+, ·) and (Y,+, ·) be two crisp rings and Ψ ∈IVNSSR (Q). Again, let

h : Q→ Y be a homomorphism. Then

(i) h(Ψ) will be a (ᾱ, ν̄, χ̄)−identity IVNSSR over Y , if ∀g ∈ Q

t̄lΨ(r)(g) =

ᾱ if g ∈ Ker(h)

[0, 0] otherwise
,

īlΨ(r)(g) =

ν̄ if g ∈ Ker(h)

[1, 1] otherwise
, and

f̄lΨ(r)(g) =

χ̄ if g ∈ Ker(h)

[1, 1] otherwise
,

(ii) h(Ψ) will be a (ᾱ, ν̄, χ̄)−absolute IVNSSR over Y , if Ψ is a (ᾱ, ν̄, χ̄)−absolute IVNSSR

over Q.

Proof. (i) Clearly, by Theorem 3.6 h(Ψ) ∈ IVNSSR(Y ). Let g ∈ Ker(h), then h(g) = θY .

So,

t̄h(lΨ(r))(θY ) = t̄lΨ(r)

(
h−1(θY )

)
= t̄lΨ(r)(g)

= ᾱ (3.43)

Similarly,

īh(lΨ(r))(θY ) = ν̄, and (3.44)

f̄h(lΨ(r))(θY ) = χ̄ (3.45)
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Again, let g ∈ Q \Ker(h) and h(g) = n. Then

t̄h(lΨ(r))(n) = t̄lΨ(r)

(
h−1(n)

)
= t̄lΨ(r)(g)

= [0, 0] (3.46)

Similarly,

īh(lΨ(r))(n) = [1, 1] and (3.47)

f̄h(lΨ(r))(n) = [1, 1] (3.48)

So, from the Equations 3.43–3.48 h(Ψ) is a (ᾱ, ν̄, χ̄)−identity IVNSSR over Y .

(ii) Let h(g) = n, for g ∈ Q and n ∈ Y . Then

t̄h(lΨ(r))(n) = t̄lΨ(r)

(
h−1(n)

)
= t̄lΨ(r)(g)

= ᾱ (3.49)

Similarly,

īh(lΨ(r))(n) = ν̄ and (3.50)

f̄h(lΨ(r))(n) = χ̄ (3.51)

So, from the Equations 3.48–3.51 h(Ψ) is a (ᾱ, ν̄, χ̄)−absolute IVNSSR over Y .

3.1. Product of interval-valued neutrosophic subrings

Definition 3.8. Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Again, let Ψ1 ∈ IVNSSR(Q)

and Ψ2 ∈ IVNSSR(Y ), where Ψ1 =
{(
r1,
{(
g, t̄lΨ1

(r1)(g), īlΨ1
(r1)(g), f̄lΨ1

(r1)(g)
)

: g ∈ Q
})

:

r1 ∈ A
}

and Ψ2 =
{(
r2,
{(
v, t̄lΨ2

(r2)(n), īlΨ2
(r2)(n), f̄lΨ2

(r2)(n)
)

: n ∈ Y
})

: r2 ∈ A
}

. Then

cartesian product of Ψ1 and Ψ2 will be

Ψ = Ψ1 ×Ψ2

=
{(

(r1, r2), lΨ1×Ψ2(r1, r2)
)

: (r1, r2) ∈ A×A
}

where the approximate function lΨ1×Ψ2 : A×A→ IVNS(Q× Y ) is defined as

t̄lΨ1×Ψ2
(r1,r2)(g, n) = T̄

(
t̄lΨ1

(r1)(g), t̄lΨ2
(r2)(n)

)
,

īlΨ1×Ψ2
(r1,r2)(g, n) = Ī

(̄
ilΨ1

(r1)(g), īlΨ2
(r2)(n)

)
, and

f̄lΨ1×Ψ2
(r1,r2)(g, n) = F̄

(
f̄lΨ1

(r1)(g), f̄lΨ2
(r2)(n)

Similarly, product of 3 or more IVNSSRs can be defined.
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Theorem 3.9. Let (Q,+, ·) and (Y,+, ·) be two crisp rings with Ψ1 ∈ IVNSSR(Q) and Ψ2 ∈
IVNSSR(Y ). Then Ψ1 ×Ψ2 ∈ IVNSSR(Q× Y ).

Proof. Let Ψ = Ψ1 ×Ψ2 and (g1, n1), (g2, n2) ∈ Q×R. Then

t̄lΨ(r1,r2)

(
(g1, n1)− (g2, n2)

)
= t̄lΨ1×Ψ2

(r1,r2)

(
(g1 − g2, n1 − n2)

)
= T̄

(
t̄lΨ1

(r1)(g1 − g2), t̄lΨ2
(r2)(n1 − n2)

)
≥ T̄

(
T̄
(
t̄lΨ1

(r1)(g1), t̄lΨ1
(r1)(g2)

)
, T̄
(
t̄lΨ2

(r2)(n1), t̄lΨ2
(r2)(n2)

))
= T̄

(
T̄
(
t̄lΨ1

(r1)(g1), t̄lΨ2
(r2)(n1)

)
, T̄
(
t̄lΨ1

(r1)(g2), t̄lΨ2
(r2)(n2)

))
[as T̄ is associative]

= T̄
(
t̄lΨ(r1,r2)(g1, n1), t̄lΨ(r1,r2)(g2, n2)

)
(3.52)

Again,

t̄lΨ(r1,r2)

(
(g1, n1) · (g2, n2)

)
= t̄lΨ1×Ψ2

(r1,r2)

(
(g1 · g2, n1 · n2)

)
= T̄

(
t̄lΨ1

(r1)(g1 · g2), t̄lΨ2
(r2)(n1 · n2)

)
≥ T̄

(
T̄
(
t̄lΨ1

(r1)(g1), t̄lΨ1
(r1)(g2)

)
, T̄
(
t̄lΨ2

(r2)(n1), t̄lΨ2
(r2)(n2)

))
= T̄

(
T̄
(
t̄lΨ1

(r1)(g1), t̄lΨ2
(r2)(n1)

)
, T̄
(
t̄lΨ1

(r1)(g2), t̄lΨ2
(r2)(n2)

))
[as T̄ is associative]

= T̄
(
t̄lΨ(r1,r2)(g1, n1), t̄lΨ(r1,r2)(g2, n2)

)
(3.53)

Similary,

īlΨ(r1,r2)

(
(g1, n1)− (g2, n2)

)
≤ Ī
(̄
ilΨ(r1,r2)(g1, n1), īlΨ(r1,r2)(g2, n2)

)
, (3.54)

īlΨ(r1,r2)

(
(g1, n1) · (g2, n2)

)
≤ Ī
(̄
ilΨ(r1,r2)(g1, n1), īlΨ(r1,r2)(g2, n2)

)
, (3.55)

f̄lΨ(r1,r2)

(
(g1, n1)− (g2, n2)

)
≤ F̄

(
f̄lΨ(r1,r2)(g1, n1), f̄lΨ(r1,r2)(g2, n2)

)
, and (3.56)

f̄lΨ(r1,r2)

(
(g1, n1) · (g2, n2)

)
≤ F̄

(
f̄lΨ(r1,r2)(g1, n1), f̄lΨ(r1,r2)(g2, n2)

)
(3.57)

So, by Proposition 3.1 and from Equations 3.52–3.57 Ψ1 ×Ψ2 ∈ IVNSSR(Q× Y ).

Corollary 3.10. Let ∀i ∈ {1, 2, ..., n}, (Qi,+, ·) are crisp rings and Ψi ∈ IVNSSR(Qi). Then

Ψ1 ×Ψ2 × · · · ×Ψn is a IVNSSR of Q1 ×Q2 × · · · ×Qn, where n ∈ N.
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3.2. Subring of a interval-valued neutrosophic soft subgring

Definition 3.9. Let (Q,+, ·) be a crisp ring and Ψ1,Ψ2 ∈ IVNSSR(Q), where

Ψ1 =
{(
r,
{(
g, t̄lΨ1

(r)(g), īlΨ1
(r)(g), f̄lΨ1

(r)(g)
)

: g ∈ Q
})

: r ∈ A
}

and Ψ2 ={(
r,
{(
g, t̄lΨ2

(r)(g), īlΨ2
(r)(g), f̄lΨ2

(r)(g)
)

: g ∈ Q
})

: r ∈ A
}

. Then Ψ1 is called a subring

of Ψ2 if ∀g ∈ Q, t̄lΨ1
(r)(g) ≤ t̄lΨ2

(r)(g), īlΨ1
(r)(g) ≥ īlΨ2

(r)(g), and f̄lΨ1
(r)(g) ≥ f̄lΨ2

(r)(g).

Theorem 3.11. Let (Q,+, ·) be a crisp ring and Ψ ∈ IVNSSR(Q). Again, let Ψ1 and Ψ2 be

two subrings of Ψ. Then Ψ1 ∩Ψ2 is also a subring of Ψ, considering all the IVTN and IVSNs

as idempotent.

Proof. Here, ∀g ∈ Q

t̄lΨ1∩Ψ2
(r)(g) = T̄

(
t̄lΨ1

(r)(g), t̄lΨ2
(r)(g)

)
≤ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(g)

)
= t̄lΨ(r)(g) [as T̄ is idempotent] (3.58)

Similarly, since Ī and F̄ are idempotent we have,

īlΨ1∩Ψ2
(r)(g) ≥ īlΨ(r)(g) and (3.59)

f̄lΨ1∩Ψ2
(r)(g) ≥ f̄lΨ(r)(g) (3.60)

So, from Equations 3.58–3.60 Ψ1 ∩Ψ2 is a subring of Ψ.

Theorem 3.12. Let (Q,+, ·) be a crisp ring and Ψ1,Ψ2 ∈ IVNSSR(Q) such that Ψ1 is a

subring of Ψ2. Let (Y,+, ·) is another crisp ring and h : Q→ Y be an isomorphism. Then

(i) h(Ψ1) and h(Ψ2) are two IVNSSRs over Y and

(i) h(Ψ1) is a subring of h(Ψ2).

Proof. (i) can be proved by using Theorem 3.6.

(ii) Let n = h(g), where g ∈ Q and n ∈ Y . Then

t̄lΨ1
(r)(g) ≤ t̄lΨ2

(r)(g) [as Ψ1 is a subring of Ψ2]

⇒t̄lΨ1
(r)

(
h−1(n)

)
≤ t̄lΨ2

(r)

(
h−1(n)

)
⇒t̄h(lΨ1

(r))(n) ≤ t̄h(lΨ2
(r))(n) (3.61)

Similarly,

īh(lΨ1
(r))(n) ≥ īh(lΨ2

(r))(n) and (3.62)

f̄h(lΨ1
(r))(n) ≥ f̄h(lΨ2

(r))(n) (3.63)

So, from Equations 3.61–3.63 h(Ψ1) is a subring of h(Ψ2).
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3.3. Interval-valued neutrosophic normal soft subrings

Definition 3.10. Let (Q,+, ·) be a crisp ring and Ψ is an IVNSS of Q, where Ψ ={(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Q

})
: r ∈ A

}
. Then Ψ is called an IVNNSSR

over Q if

(i) Ψ is an IVNSSR of Q and

(ii) ∀g, n ∈ Q, t̄lΨ(r)(g · n) = t̄lΨ(r)(n · g), īlΨ(r)(g · n) = īlΨ(r)(n · g), and f̄lΨ(r)(g · n) =

f̄lΨ(r)(n · g).

The set of all IVNNSSR of (Q,+, · ) will be expressed as IVNNSSR(Q).

Example 3.11. Let (Z,+, ·) be the ring and N be the set of parameters. Also, let Ψ ={(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Z

})
: r ∈ N

}
be an IVNSS of Z, where lΨ(r) : N→

IVNSS(Q) and ∀g ∈ Z, ∀r ∈ N corresponding membership values are

t̄lΨ(r)(g) =


[ 1

r + 1
,

1

r − 1

]
if g ∈ 2Z

[0, 0] if g ∈ 2Z+ 1

,

īlΨ(r)(g) =


[0, 0] if g ∈ 2Z[ 1

2r + 2
,

1

2r − 2

]
if g ∈ 2Z+ 1

, and

f̄lΨ(r)(g) =


[0, 0] if g ∈ 2Z[r − 2

r − 1
,

r

r + 1

]
if g ∈ 2Z+ 1

.

Here, considering minimum TN and maximum SNs ∀r ∈ N, Ψ ∈ IVNNSSR(Z).

Theorem 3.13. Let (Q,+, ·) be a crisp ring. If Ψ1,Ψ2 ∈ IVNNSSR(Q), then Ψ1 ∩ Ψ2 ∈
IVNNSSR(Q).

Proof. As Ψ1,Ψ2 ∈ IVNSSR(Q) by Theorem 3.2 Ψ1 ∩Ψ2 ∈ IVNSSR(Q). Again,

t̄lΨ1∩Ψ2
(r)(g · n) = T̄

(
t̄lΨ1

(r)(g · n), t̄lΨ2
(r)(g · n)

)
= T̄

(
t̄lΨ1

(r)(n · g), t̄lΨ2
(r)(n · g)

)
[as Ψ1,Ψ2 ∈ IVNNSSR(Q)]

= t̄Ψ1∩Ψ2(n · g) (3.64)

Similarly,

īlΨ1∩Ψ2
(r)(g · n) = īlΨ1∩Ψ2

(r)(n · g) (3.65)

f̄lΨ1∩Ψ2
(r)(g · n) = f̄lΨ1∩Ψ2

(r)(n · g) (3.66)

Hence, Ψ1 ∩Ψ2 ∈ IVNNSSR(Q).
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Remark 3.14. In general, if Ψ1,Ψ2 ∈ IVNNSSR(Q), then Ψ1 ∪ Ψ2 may not always be an

IVNNSSR of (Q,+, ·).

Remark 3.14 can be shown by Example 3.4.

Theorem 3.15. Let (Q,+, ·) be a crisp ring. Then Ψ ∈ IVNNSSR(Q) iff

∀[g1, n1], [g2, n2], [g3, n3] ∈ φ(K) with t̄lΨ(r)(θQ) ≥ [g1, n1], īlΨ(r)(θQ) ≤ [g2, n2], and

f̄lΨ(r)(θQ) ≤ [g3, n3], Ψ(
[g1,n1],[g2,n2],[g3,n3]

) is a crisp normal subring of (Q,+, ·) (considering

idempotent IVTN and IVSNs).

Proof. This can be proved using Theorem 3.5.

Theorem 3.16. Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a ring

isomorphism. If Ψ is an IVNNSSR of Q then h(Ψ) is an IVNNSSR of Y .

Proof. As Ψ is an IVNSSR of Q, by Theorem 3.6 h(Ψ) is an IVNSSR of Y . Let h(g1) = n1

and h(g2) = n2, where g1, g2 ∈ Q and n1, n2 ∈ Y . Then

t̄h(lΨ(r))(n1 · n2) = t̄lΨ(r)

(
h−1(n1 · n2)

)
[as h is injective]

= t̄lΨ(r)

(
h−1(n1) · h−1(n2)

)
[as h−1 is a homomorphism]

= t̄lΨ(r)(g1 · g2)

= t̄lΨ(r)(g2 · g1) [as Ψ is an IVNNSSR of Q]

= t̄lΨ(r)

(
h−1(n2) · h−1(n1)

)
= t̄lΨ(r)

(
h−1(n2 · n1)

)
= t̄h(lΨ(r))(n2 · n1) (3.67)

Similarly,

īh(lΨ(r))(n1 · n2) = īh(lΨ(r))(n2 · n1) and (3.68)

f̄h(lΨ(r))(n1 · n2) = f̄h(lΨ(r))(n2 · n1) (3.69)

So, from Equations 3.67–3.69 h(Ψ) is an IVNNSSR of Y .

4. Conclusions

Interval-valued neutrosophic field is a dynamic research domain. Under soft environment,

it becomes more general and productive. For this reason, we have adopted this mixed envi-

ronment and defined the notions of interval-valued neutrosophic soft subring along with its

normal version. Also, we have studied several homomorphic attributes of these newly intro-

duced notions. Again, we have introduced the product of two interval-valued neutrosophic
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soft subrings. Furthermore, we have given several fundamental theories to understand some

of its algebraic characteristics. These newly introduced notions have the potentials to become

fruitful research domains. In future, for generalizing this concepts one can introduce them

under the hypersoft set environment.
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81. E. İnan and M. A. Öztürk. Fuzzy soft rings and fuzzy soft ideals. Neural Computing and Applications,

21(1):1–8, 2012.

82. Z. Zhang. Intuitionistic fuzzy soft rings. International Journal of Fuzzy Systems, 14(3):420–435, 2012.

83. T. Bera and N. K. Mahapatra. On neutrosophic soft rings. Opsearch, 54(1):143–167, 2017.

84. T. Bera and N. K. Mahapatra. Neutrosophic soft normed linear space. Neutrosophic Sets and Systems,

23(1):52–71, 2018.

85. T. Bera and N. Mahapatra. Behaviour of ring ideal in neutrosophic and soft sense. Neutrosophic Sets and

Systems, 25:1–24, 2019.

86. H. Hashim, L. Abdullah, and A. Al-Quran. Interval neutrosophic vague sets. Neutrosophic Sets and Systems,

25:66–75, 2019.

87. P. Muralikrishna and D. S. Kumar. Neutrosophic approach on normed linear space. Neutrosophic Sets and

Systems, 30:225–240, 2019.

88. D. Preethi, S. Rajareega, J. Vimala, G. Selvachandran, and F. Smarandache. Single-valued neutrosophic

hyperrings and single-valued neutrosophic hyperideals. Neutrosophic Sets and Systems, 29:121–128, 2019.

89. P. Arulpandy and M. T. Pricilla. Some similarity and entropy measurements of bipolar neutrosophic soft

sets. Neutrosophic Sets and Systems, 25:174–194, 2019.

Florentin Smarandache (author and editor) Collected Papers, XII

782



90. H. Hashim, L. Abdullah, and A. Al-Quran. Interval neutrosophic vague sets. Neutrosophic Sets and Systems,

25:66–75, 2019.

91. M. A. Qamar and N. Hassan. Characterizations of group theory under Q-neutrosophic soft environment.

Neutrosophic Sets and Systems, 27:114–130, 2019.

92. M. M. Gupta and J. Qi. Theory of t-norms and fuzzy inference methods. Fuzzy Sets and Systems, 40(3):431–

450, 1991.

93. E. P. Klement, R. Mesiar, and E. Pap. Triangular norms. Springer Science & Business Media, 2013.

94. P. K. Maji. Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics, 5(1):157–168, 2013.

Florentin Smarandache (author and editor) Collected Papers, XII

783



Introduction to Interval-valued Neutrosophic Subring

Abstract. The main purpose of this article is to develop and study the notion of interval-valued neutrosophic

subring. Also, we have studied some homomorphic characteristics of interval-valued neutrosophic subring.

Again, we have defined the concept of product of two interval-valued neutrosophic subrings and analyzed some

of its important properties. Furthermore, we have developed the notion of interval-valued neutrosophic normal

subring and studied some of its basic characteristics and homomorphic properties.

Keywords: Neutrosophic set; Interval-valued neutrosophic set; Interval-valued neutrosophic subring; Interval-

valued neutrosophic normal subring

—————————————————————————————————————————–

ABBREVIATIONS

TN signifies “T-norm”.

SN signifies “S-norm”.

IVTN signifies “interval-valued T-norm”.

IVSN signifies “interval-valued S-norm”.

CS signifies “crisp set”.

FS signifies “fuzzy set”.

IFS signifies “intuitionistic fuzzy set”.

NS signifies “neutrosophic set”.

PS signifies “plithogenic set”.

FSG signifies “fuzzy subgroup”.

IFSG signifies “intuitionistic fuzzy subgroup”.

NSG signifies “neutrosophic subgroup”.

CR signifies “crisp ring”.

FSR signifies “fuzzy subring”.

IFSR signifies “intuitionistic fuzzy subring”.

Sudipta Gayen, Florentin Smarandache, Sripati Jha, Ranjan Kumar (2020). Introduction 
to Interval-valued Neutrosophic Subring. Neutrosophic Sets and Systems 36, 220-245

Sudipta Gayen, Florentin Smarandache, Sripati Jha, Ranjan Kumar 
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NSR signifies “neutrosophic subring”.

IVFSR signifies “interval-valued fuzzy subring”.

IVIFSR signifies “interval-valued intuitionistic fuzzy subring”.

IVNSR signifies “interval-valued neutrosophic subring”.

IVNNSR signifies “interval-valued neutrosophic normal subring”.

DMP signifies “decision making problem”.

ψ(P ) signifies “power set of P”.

L signifies “the set [0, 1]”.

1. Introduction

Zadeh’s vision behind introducing the revolutionary concept of FS [1] theory was to tackle

uncertainty in a better way than CS theory, which has certain drawbacks. Later on, following

his vision Atanassov introduced a more general version of it, which is known as IFS [2] theory.

These IFSs are a little step ahead in managing ambiguities and hence are welcomed by numer-

ous researchers. Furthermore, following their footsteps Smarandache introduced NS [3] theory,

which is more capable of handling vague situations. It is a significant generalization over CS,

FS, and IFS theories. Smarandache has also initiated the concept of PS [4] theory which has

broader aspects than those previously discussed concepts. In NS and PS theory, he has also

developed the notions of neutrosophic calculus [5], neutrosophic probability [6], neutrosophic

statistics [7], integral, measure [8], neutrosophic psychology [9], neutrosophic robotics [10],

neutrosophic triplet group [11], plithogenic hypersoft set [12], plithogenic fuzzy whole hyper-

soft set [13], plithogenic logic, probability [14], plithogenic subgroup [15], plithogenic hypersoft

subgroup [16], etc. Again, NS theory has various other contributions in different scientific re-

searches, like in linear programming [17–20], decision making [21–27], healthcare [28,29], short-

est path problem [30–37], neutrosophic forecasting [38], resource leveling [39], transportation

problem [40,41], project scheduling [42], brain processing [43], etc.

Gradually, interval-valued versions of FS [44], IFS [45], and NS [46] were introduced, which

are further generalizations of their CS, FS, IFS, and NS counterparts. Presently, these set

theories are extensively used in different scientific domains. From the very start, various

researchers have carried out this concepts and explored them in different dimensions. In the

subsequent Table 1 we have referred some significant aspects of these notions.

Table 1. Importance of interval-valued notions in different domains.

Author & references Year Contributions in various fields

Biswas [47] 1994 Introduced interval-valued FSG.

continued . . .
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Author & references Year Contributions in various fields

Atanassov [45] 1999 Studied basic definition and some properties of

IVFS.

Mondal & Samanta [48] 2001 Defined and studied topology of IVIFSs.

Wang et al. [46] 2005 Proposed and studied IVNS and interval-valued

neutrosophic logic.

Ye [49] 2009 Worked on multi-criteria DMP under IVIFSs.

Kang & Hur [50] 2010 Introduced and studied the notion of IVFSR.

Akram & Dudek [51] 2011 Defined some basic operations on interval-valued

fuzzy graphs and studied some of their properties.

Aygünoğlu et al. [52] 2012 Introduced interval-valued IFSG and studied some

homomorphic properties of it.

Moorthy & Arjunan [53] 2014 Introduced and studied some properties of IVIFSR.

Aiwu et al. [54] 2015 Worked on multi-attribute DMP under IVNSs.

Broumi et al. [56] 2016 Worked on interval-valued neutrosophic graph the-

ory.

Deli [55] 2017 Applied soft version of IVNS in DMP.

Broumi et al. [56] 2019 Studied some properties of interval-valued neutro-

sophic graphs.

Group theory and ring theory are fundamental building blocks of abstract algebra, which

are utilized in different scientific domains. But, initially, these concepts were introduced upon

crisp environment. Gradually, from 1971 on-wards researchers started introducing these con-

cepts under various uncertain environments. Some significant developments of these notions

under uncertainty are the concepts of FSG [57], IFSG [58], NSG [59], FSR [60,61], IFSR [62],

NSR [63], etc. Again some researchers have introduced these concepts under interval-valued

environments and initiated the notions of interval-valued FSG [47], interval-valued IFSG [52],

interval-valued NSG [64], interval-valued FSR [50], interval-valued IFSR [53], etc. Some more

articles which can be helpful to different researchers are [65–71], etc. But, still, the notion

of interval-valued NSR is undefined. Hence, by mixing interval-valued environment with neu-

trosophic environment, we can introduce a more general version of NSR, which will be called

IVNSR. Also, their homomorphic properties can be studied. Again, their product and normal

forms can be developed and analyzed. Based on these observations, the followings are some

of our main objectives for this article:

• Introducing the notion of IVNSR and a analyzing its homomorphic properties.

• Introducing the product of IVNSRs.

• Introducing subring of a IVNSR.
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• Introducing the notion of IVNNSR and a analyzing its homomorphic attributes.

The subsequent arrangement of this article is: in Section 2, some desk researches of FS,

IFS, NS, IVFS, IVIFS, IVNS, FSR, IFSR, NSR, IVFSR, IVIFSR, etc., are discussed. In

Section 3, the idea of IVNSR has been introduced and some basic theories are provided. Also,

their product and normal versions are defined. Also, some theories are given to understand

their algebraic attributes. Lastly, in Section 4, the concluding segment is given and also some

opportunities for further studies are mentioned.

2. Literature Review

Definition 2.1. [1] A FS of a CS P is defined as the function ν : P → L.

Definition 2.2. [2] An IFS ρ of a CS P is defined as ρ =
{(
r, tρ(r), fγ(r)

)
: r ∈ P

}
, where

∀r ∈ P , tρ(r) and fρ(r) known as the degree of membership and non-membership which satisfy

the inequality 0 ≤ tρ(r) + fρ(r) ≤ 1.

Definition 2.3. [3] A NS κ of a CS P is defined as κ =
{(
r, tκ(r), iκ(r), fκ(r)

)
: r ∈ P

}
,

where ∀r ∈ P , tκ(r), iκ(r), and fκ(r) are known as degree of truth, indeterminacy, and falsity

which satisfy the inequality −0 ≤ tκ(r) + iκ(r) + fκ(r) ≤ 3+.

Definition 2.4. [52] An interval number of L = [0, 1] is denoted as k̄ = [k−, k+], where

1 ≥ k+ ≥ k− ≥ 0.

Definition 2.5. [44] An IVFS of P is defined as the mapping ν : P → ψ(L).

Definition 2.6. [45] An IVIFS of P is defined as the mapping ρ̄ : P → ψ(L) × ψ(L), It is

denoted as ρ̄ =
{(
r, t̄ρ̄(r), f̄ρ̄(r)

)
: r ∈ P

}
, where t̄ρ̄(r), f̄ρ̄(r) ⊆ [0, 1].

Definition 2.7. [46] An IVNS of P is defined as the mapping κ̄ : P → ψ(L)×ψ(L)×ψ(L), It

is denoted as κ̄ =
{(
r, t̄κ̄(r), īκ̄(r), f̄κ̄(r)

)
: r ∈ P

}
where ∀r ∈ P , t̄κ̄(r), īκ̄(r), and f̄κ̄(r) ⊆ L.

Definition 2.8. [46] Let κ̄1 =
{(
r, t̄κ̄1(r), īκ̄1(r), f̄κ̄1(r)

)
: r ∈ P

}
and κ̄2 ={(

r, t̄κ̄2(r), īκ̄2(r), f̄κ̄2(r)
)

: r ∈ P
}

be two IVNSs of P . Then union of κ̄1 and κ̄2 is defined as

t̄κ̄1∪κ̄2 =
[

max
{
t̄−κ̄1 , t̄

−
κ̄2

}
,max

{
t̄+κ̄1 , t̄

+
κ̄2

}]
t̄κ̄1∪κ̄2 =

[
min

{
ī−κ̄1 , ī

−
κ̄2

}
,min

{
ī+κ̄1 , ī

+
κ̄2

}]
t̄κ̄1∪κ̄2 =

[
min

{
f̄−κ̄1 , f̄

−
κ̄2

}
,min

{
f̄+
κ̄1 , f̄

+
κ̄2

}]
Then intersection of κ̄1 and κ̄2 is defined as

t̄κ̄1∩κ̄2 =
[

min
{
t̄−κ̄1 , t̄

−
κ̄2

}
,min

{
t̄+κ̄1 , t̄

+
κ̄2

}]
t̄κ̄1∩κ̄2 =

[
max

{
ī−κ̄1 , ī

−
κ̄2

}
,max

{
ī+κ̄1 , ī

+
κ̄2

}]
t̄κ̄1∩κ̄2 =

[
max

{
f̄−κ̄1 , f̄

−
κ̄2

}
,max

{
f̄+
κ̄1 , f̄

+
κ̄2

}]
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Definition 2.9. [72] A function T : L→ L is called a TN iff ∀r, v, z ∈ L, the followings can

be concluded

(i) T (r, 1) = r

(ii) T (r, v) = T (v, r)

(iii) T (r, v) ≤ T (z, v) if r ≤ z
(iv) T (r, T (v, z)) = T (T (r, v), z)

Definition 2.10. [73] A function T̄ : ψ(L) × ψ(L) → ψ(L) defined as T̄ (k̄, w̄) =

[T (k−, w−), T (k+, w+)], where T is a TN is known as an IVTN.

Definition 2.11. [72] A function S : L→ L is called a SN iff ∀r, v, z ∈ L, the followings can

be concluded

(i) S(r, 0) = r

(ii) S(r, v) = S(v, r)

(iii) S(r, v) ≤ S(z, v) if r ≤ z
(iv) S(r, S(v, z)) = S(S(r, v), z)

Definition 2.12. [73] The function S̄ : ψ(L) × ψ(L) → ψ(L) defined as S̄(k̄, w̄) =

[S(k−, w−), S(k+, w+)], where S is a SN is called an IVSN.

2.1. Fuzzy, Intuitionistic fuzzy & Neutrosophic subrings

Definition 2.13. [60] Let (P,+, ·) be a crisp ring. A FS λ is called a FSR of P , iff ∀r, v ∈ P ,

(i) λ(r − v) ≥ min{λ(r), λ(v)},
(ii) λ(r · v) ≥ min{λ(r), λ(v)}

The set of all FSR of a crisp ring (P,+, · ) will be denoted as FSR(P ).

Theorem 2.1. [61] Any FS λ of a ring (P,+, ·) is a FSR of P iff the level sets λs (λ(θP ) ≥
s ≥ 0) are crisp subrings of P , where θP is the zero element of P .

Definition 2.14. [61] Let λ be a FSR of (P,+, ·) and λ(θP ) ≥ s ≥ 0, where θP is the zero

element of P . Then λs is called a level subring of λ.

Proposition 2.2. [61] Let λ1, λ2 ∈ FSR(P ). Then λ1 ∩ λ2 ∈ FSR(P ).

Theorem 2.3. [61] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If λ is a FSR of P then l(λ) is a FSR of R.

Theorem 2.4. [61] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If λ′ is a FSR of R then l−1(λ′) is a FSR of P .
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Definition 2.15. [62] Let (P,+, ·) be a crisp ring. An IFS γ =
{(
r, tγ(r), fγ(r)

)
: r ∈ P

}
is

called an IFSR of P , iff ∀r, v ∈ P ,

(i) tγ(r + v) ≥ T
(
tγ(r), tγ(v)

)
, fγ(r + v) ≤ S

(
fγ(r), iγ(v)

)
(ii) tγ(−r) ≥ tγ(r), fγ(−r) ≤ fγ(r)

(iii) tγ(r · v) ≥ T
(
tγ(r), tγ(v)

)
, fγ(r · v) ≤ S

(
fγ(r), iγ(v)

)
.

Here, T is a TN and S is a SN.

The set of all IFSR of a crisp ring (P,+, · ) will be denoted as IFSR(P ).

Proposition 2.5. [62] Let γ ∈ IFSR(P ). Then the followings will hold

(i) tγ(−r) = tγ(r), fγ(−r) = fγ(r) and

(ii) tγ(θP ) ≥ tγ(r), fγ(θP ) ≤ fγ(r), where θP is the zero element of P .

Proposition 2.6. [62] An IFS γ =
{(
r, tγ(r), fγ(r)

)
: r ∈ P

}
is called an IFSR of P , iff

∀r, v ∈ P ,

(i) tγ(r − v) ≥ T
(
tγ(r), tγ(v)

)
, fγ(r − v) ≤ S

(
fγ(r), fγ(v)

)
(ii) tγ(r · v) ≥ T

(
tγ(r), tγ(v)

)
, fγ(r · v) ≤ S

(
fγ(r), fγ(v)

)
Proposition 2.7. [62] Let γ1, γ2 ∈ IFSR(P ). Then γ1 ∩ γ2 ∈ IFSR(P ).

Theorem 2.8. [62] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If γ is an IFSR of P then l(γ) is an IFSR of R.

Theorem 2.9. [62] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If γ′ is an IFSR of R then l−1(γ′) is an IFSR of P .

Definition 2.16. [63] Let (P,+, ·) be a crisp ring. A NS ω =
{(
r, tω(r), iω(r), fω(r)

)
: r ∈ P

}
is called a NSR of P , iff ∀r, v ∈ P ,

(i) tω(r + v) ≥ T
(
tω(r), tω(v)

)
, iω(r + v) ≥ I

(
iω(r), iω(v)

)
, fω(r + v) ≤ F

(
fω(r), fω(v)

)
(ii) tω(−r) ≥ tω(r), iω(−r) ≥ iω(r), fω(−r) ≤ fω(r)

(iii) tω(r · v) ≥ T
(
tω(r), tω(v)

)
, iω(r · v) ≥ I

(
iω(r), iω(v)

)
, fω(r · v) ≤ S

(
fω(r), fω(v)

)
.

Here, T and I are two TNs and S is a SN.

The set of all NSR of a crisp ring (P,+, · ) will be denoted as NSR(P ).

Proposition 2.10. [63] A NS ω =
{(
r, tω(r), iω(r), fω(r)

)
: r ∈ P

}
is called a NSR of P , iff

∀r, v ∈ P ,

(i) tω(r − v) ≥ T
(
tω(r), tω(v)

)
, iω(r − v) ≥ I

(
iω(r), iω(v)

)
, fω(r − v) ≤ F

(
fω(r), fω(v)

)
(ii) tω(r · v) ≥ T

(
tω(r), tω(v)

)
, iω(r · v) ≥ I

(
iω(r), iω(v)

)
, fω(r · v) ≤ S

(
fω(r), fω(v)

)
.

Here, T and I are two TNs and S is a SN.
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Proposition 2.11. [63] Let ω1, ω2 ∈ NSR(P ). Then ω1 ∩ ω2 ∈ NSR(P ).

Theorem 2.12. [63] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If ω is a NSR of P then l(ω) is a NSR of R.

Theorem 2.13. [63] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If ω′ is a NSR of R then l−1(ω′) is a NSR of P .

Definition 2.17. [63] Let ω =
{(
r, tω(r), iω(r), fω(r)

)
: r ∈ P

}
be a NSR of P . Then

∀s ∈ [0, 1] the s-level sets of P are defined as

(i) (tω)s = {r ∈ P : tω(r) ≥ s},
(ii) (iω)s = {r ∈ P : iω(r) ≥ s}, and

(iii) (fω)s = {r ∈ P : fω(r) ≤ s}.

Proposition 2.14. [63] A NS ω =
{(
r, tω(r), iω(r), fω(r)

)
: r ∈ P

}
of a crisp ring (P,+, ·)

is a NSR of P iff ∀s ∈ [0, 1] the s-level sets of P , i.e. (tω)s, (iω)s, and (fω)s are crisp rings of

P .

2.2. Interval-valued Fuzzy and intuitionistic fuzzy subrings

Definition 2.18. [50] Let (P,+, ·) be a crisp ring. An IVFS Λ =
{(
r, t̄Λ(r)

)
: r ∈ P

}
is called

an IVFSR of (P,+, ·) with respect to IVTN T̄ if ∀r, v ∈ P, the followings can be concluded:

(i) t̄Λ(r + v) ≥ T̄
(
t̄Λ(r), t̄Λ(v)

)
,

(ii) t̄Λ(−r) ≥ Λ(r), and

(iii) t̄Λ(r · v) ≥ T̄
(
t̄Λ(r), t̄Λ(v)

)
,

The set of all IVFSR of a crisp ring (P,+, · ) with respect to an IVTN T̄ will be denoted as

IVFSR(P, T̄ ).

Proposition 2.15. [50] Let λ =
{(
r, tλ(r)

)
: r ∈ P

}
be a FSR of (P,+, ·). Then Λ = [tλ, tλ]

is an IVFSR of P .

Proposition 2.16. [50] Let Λ =
{(
r, t̄Λ(r)

)
: r ∈ P

}
be an IVFSR of (P,+, ·). Then

Λ− =
{(
r, t̄−Λ(r)

)
: r ∈ P

}
and Λ+ =

{(
r, t̄+Λ(r)

)
: r ∈ P

}
are FSRs of P .

Definition 2.19. [53] Let (P,+, ·) be a crisp ring. An IVIFS Γ =
{(
r, t̄Γ(r), f̄Γ(r)

)
: r ∈ P

}
is called an IVIFSR of (P,+, ·) if ∀r, v ∈ P, the followings can be concluded:

(i) t̄Γ(r + v) ≥ T̄
(
t̄Γ(r), t̄Γ(v)

)
, f̄Γ(r + v) ≤ F̄

(
f̄Γ(r), f̄Γ(v)

)
,

(ii) t̄Γ(−r) ≥ t̄Γ(r), f̄Γ(−r) ≤ f̄Γ(r), and

(iii) t̄Γ(r · v) ≥ T̄
(
t̄Γ(r), t̄Γ(v)

)
, f̄Γ(r · v) ≤ F̄

(
f̄Γ(r), f̄Γ(v)

)
.

The set of all IVIFSR of a crisp ring (P,+, · ) will be denoted as IVIFSR(P ).
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Theorem 2.17. [53] If Γ =
{(
r, t̄Γ(r), f̄Γ(r)

)
: r ∈ P

}
∈ IVIFSR(P ), then t̄Γ(r) ≤ t̄Γ(θP )

and f̄Γ(r) ≥ f̄Γ(θP ).

Theorem 2.18. [53] If Γ1 and Γ2 ∈ IVIFSR(P ), then Γ1 ∩ Γ2 ∈ IVIFSR(P ).

Theorem 2.19. [53] Let Γ =
{(
r, t̄Γ(r), f̄Γ(r)

)
: r ∈ P

}
∈ IVIFSR(P ), then ∀r, v ∈ P

(i) t̄Γ(r − v) = t̄Γ(θP ) implies that t̄Γ(r) = t̄Γ(v).

(ii) f̄Γ(r − v) = f̄Γ(θP ) implies that f̄Γ(r) = f̄Γ(v).

3. Proposed notion of interval-valued neutrosophic subring

Definition 3.1. Let (P,+, ·) be a crisp ring. An IVNS Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ P

}
is called an IVNSR of (P,+, ·) if ∀r, v ∈ P, the followings can be concluded:

(i)


t̄Ω(r + v) ≥T̄

(
t̄Ω(r), t̄Ω(v)

)
,

īΩ(r + v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
,

f̄Ω(r + v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
(ii)


t̄Ω(−r) ≥tΩ(r),

īΩ(−r) ≤iΩ(r),

f̄Ω(−r) ≤fΩ(r)

(iii)


t̄Ω(r · v) ≥T̄

(
t̄Ω(r), t̄Ω(v)

)
,

īΩ(r · v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
,

f̄Ω(r · v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
,

where T̄ is an IVTN, Ī and F̄ are two IVSNs.

The set of all IVNSR of a crisp ring (P,+, · ) will be denoted as IVNSR(P ).

Example 3.2. Let (Z,+, ·) be the ring of integers with respect to usual addition and multi-

plication. Let Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ Z

}
be an IVNS of Z, where ∀r ∈ Z

t̄Ω(r) =

[0.2, 0.25] if r ∈ 2Z

[0, 0] if r ∈ 2Z+ 1
,

īΩ(r) =

[0, 0] if r ∈ 2Z

[0.1, 0.12] if r ∈ 2Z+ 1
, and

f̄Ω(r) =

[0, 0] if r ∈ 2Z

[0.75, 0.8] if r ∈ 2Z+ 1
.

Now, if we consider minimum TN and maximum SNs, then Ω ∈ IVNSR(Z).
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Example 3.3. Let (Z4,+, ·) be the ring of integers modulo 4 with usual addition and multi-

plication. Let Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ Z4

}
be an IVNS of Z4, where interval-valued

memberships of elements belonging to Ω are mentioned in Table 2.

Table 2. Membership values of elements belonging to Ω

Ω t̄Ω īΩ f̄Ω

0̄ [0.6, 0.7] [0.33, 0.35] [0.2, 0.3]

1̄ [0.7, 0.8] [0.21, 0.23] [0.5, 0.6]

2̄ [0.75, 0.85] [0.24, 0.26] [0.3, 0.7]

3̄ [0.75, 0.9] [0.31, 0.33] [0.5, 0.7]

Now, if we consider the  Lukasiewicz T-norm (T (r, v) = max{0, r + v − 1}) and bounded sum

S-norms (S(r, v) = min{r + v, 1}), then Ω ∈ IVNSR(Z4).

Proposition 3.1. An IVNS Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ P

}
of a crisp ring (P,+, ·)

is an IVNSR iff the followings can be concluded (assuming that all the IVTN and IVSNs are

idempotent):

(i)


t̄Ω(r − v) ≥T̄

(
t̄Ω(r), t̄Ω(v)

)
,

īΩ(r − v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
,

f̄Ω(r − v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
(ii)


t̄Ω(r · v) ≥T̄

(
t̄Ω(r), t̄Ω(v)

)
,

īΩ(r · v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
,

f̄Ω(r · v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
.

Proof. Let Ω ∈ IVNSR(P ). Then we have

t̄Ω(r − v) ≥ T̄
(
t̄Ω(r), t̄Ω(−v)

)
[by condition (i) of Definition 3.1]

≥ T̄
(
t̄Ω(r), t̄Ω(v)

)
[by condition (ii) of Definition 3.1]

Similary, we will have

īΩ(r − v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
, and

f̄Ω(r − v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
,

which proves (i).

Again, (ii) follows immediately from condition (iii) of Definition 3.1.

Conversely, let (i) and (ii) of Proposition 3.1 hold. Also, let θP be the additive neutral element
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in (P,+, ·). Then

t̄Ω(θP ) = t̄Ω(r − r)

≥ T̄
(
t̄Ω(r), t̄Ω(r)

)
= t̄Ω(r) (3.1)

Similaly, we can show that

īΩ(θP ) ≤ īΩ(r) (3.2)

f̄Ω(θP ) ≤ f̄Ω(r) (3.3)

Now,

t̄Ω(−r) = t̄Ω(θP − r)

≥ T̄
(
t̄Ω(θP ), t̄Ω(r)

)
≥ T̄

(
t̄Ω(r), t̄Ω(r)

)
[by 3.1]

= t̄Ω(r) [since T̄ is idempotent] (3.4)

Similarly, we can prove

īΩ(−r) ≤ īΩ(r) [since Ī is idempotent] (3.5)

f̄Ω(−r) ≤ f̄Ω(r) [since F̄ is idempotent] (3.6)

Hence,

t̄Ω(r + v) = t̄Ω(r − (−v))

≥ T̄
(
t̄Ω(r), t̄Ω(−v)

)
≥ T̄

(
t̄Ω(r), t̄Ω(v)

)
[by 3.4] (3.7)

Similarly,

īΩ(r + v) ≤ Ī
(
t̄Ω(r), t̄Ω(v)

)
[by 3.5] (3.8)

f̄Ω(r + v) ≤ F̄
(
t̄Ω(r), t̄Ω(v)

)
[by 3.6] (3.9)

So, by Equations 3.7, 3.8, and 3.9 condition (i) of Proposition 3.1 has been proved. Also,

condition (ii) of Proposition 3.1 is same as condition (iii) of Definition 3.1. Hence, Ω ∈
IVNSR(P ).

Theorem 3.2. Let (P,+, ·) be a crisp ring. If Ω1,Ω2 ∈ IVNSR(P ), then Ω1∩Ω2 ∈ IVNSR(P )

(assuming all the IVTN and IVSNs are idempotent).
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Proof. Let Ω = Ω1 ∩ Ω2. Now, ∀r, v ∈ P

t̄Ω(r + v) = T̄
(
t̄Ω1(r + v), t̄Ω2(r + v)

)
≥ T̄

(
T̄
(
t̄Ω1(r), t̄Ω1(v)

)
, T̄
(
t̄Ω2(r), t̄Ω2(v)

))
= T̄

(
T̄
(
t̄Ω1(r), t̄Ω1(v)

)
, T̄
(
t̄Ω2(v), t̄Ω2(r)

))
[as T̄ is commutative]

= T̄
(
T̄
(
t̄Ω1(r), t̄Ω2(r)

)
, T̄
(
t̄Ω1(v), t̄Ω2(v)

))
[as T̄ is associative]

= T̄
(
t̄Ω(r), t̄Ω(v)

)
(3.10)

Similarly, as both Ī and S̄ are commutative as well as associative, we will have

īΩ(r + v) ≤ Ī
(̄
iΩ(r), īΩ(v)

)
(3.11)

f̄Ω(r + v) ≤ F̄
(
f̄Ω(r), f̄Ω(v)

)
(3.12)

Again,

t̄Ω(−r) = T̄
(
t̄Ω1(−r), t̄Ω2(−r)

)
≥ T̄

(
t̄Ω1(r), t̄Ω2(r)

)
[by Definition 3.1]

= t̄Ω(r) (3.13)

Also,

īΩ(−r) ≤ īΩ(r) (3.14)

f̄Ω(−r) ≤ f̄Ω(r) (3.15)

Similarly, we can show that

t̄Ω(r · v) ≥ T̄
(
t̄Ω(r), t̄Ω(v)

)
, (3.16)

īΩ(r · v) ≤ Ī
(̄
iΩ(r), īΩ(v)

)
, and (3.17)

f̄Ω(r · v) ≤ F̄
(
f̄Ω(r), f̄Ω(v)

)
(3.18)

Hence, by Equations 3.10–3.18 Ω = Ω1 ∩ Ω2 ∈ IVNSR(P ).

Remark 3.3. In general, if Ω1,Ω2 ∈ IVNSR(P ), then Ω1 ∪Ω2 may not always be an IVNSR

of (P,+, ·).

The following Example 3.4 will prove our claim.

Example 3.4. Let (Z,+, ·) be the ring of integers with respect to usual addition and multi-

plication. Let Ω1 =
{(
r, t̄Ω1(r), īΩ1(r), f̄Ω1(r)

)
: r ∈ Z

}
and Ω2 =

{(
r, t̄Ω2(r), īΩ2(r), f̄Ω2(r)

)
:
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r ∈ Z
}

be two IVNSs of Z, where ∀r ∈ Z

t̄Ω1(r) =

[0.25, 0.4] if r ∈ 2Z

[0, 0] if r ∈ 2Z+ 1
,

īΩ1(r) =

[0, 0] if r ∈ 2Z

[0.17, 0.2] if r ∈ 2Z+ 1
, and

f̄Ω1(r) =

[0, 0] if r ∈ 2Z

[0.33, 0.4] if r ∈ 2Z+ 1
.

and

t̄Ω2(r) =

[0.5, 0.67] if r ∈ 3Z

[0, 0] if r ∈ 3Z+ 1
,

īΩ2(r) =

[0, 0] if r ∈ 3Z

[0.2, 0.25] if r ∈ 3Z+ 1
, and

f̄Ω2(r) =

[0, 0] if r ∈ 3Z

[0.33, 0.5] if r ∈ 3Z+ 1
.

Now, if we consider minimum TN and maximum SNs, then Ω1,Ω2 ∈ IVNSR(Z).

Now let Ω = Ω1 ∪ Ω2. Then for r = 4 and v = 9

t̄Ω(r + v) = t̄Ω(4 + 9)

= t̄Ω(13)

= max{t̄Ω1(13), t̄Ω2(13)}

= max{[0, 0], [0, 0]}

= [0, 0]

Again, if Ω ∈ IVNSR(P ), then ∀r, v ∈ P , t̄Ω(r + v) ≥ min{t̄Ω(r), t̄Ω(v)}. But, here for r = 4

and v = 9, min{t̄Ω(4), t̄Ω(9)} = min{[0.25, 0.4], [0.5, 0.67]} = [0.25, 0.4] � [0, 0] = t̄Ω(4 + 9).

Hence, Ω 6∈ IVNSR(P ).

Corollary 3.4. If Ω1,Ω2 ∈ IVNSR(P ), then Ω1 ∪ Ω2 ∈ IVNSR(P ) iff one is contained in

other.

Definition 3.5. Let Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ P

}
be an IVNS of a crisp ring (P,+, ·).

Also, let [k1, s1], [k2, s2] and [k3, s3] ∈ Ψ(L). Then the crisp set Ω(
[k1,s1],[k2,s2],[k3,s3]

) is called

a level set of IVNSR Ω, where for any r ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

) the following inequalities will

hold: t̄Ω(r) ≥ [k1, s1], īΩ(r) ≤ [k2, s2], and f̄Ω(r) ≤ [k3, s3].
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Theorem 3.5. Let (P,+, ·) be a crisp ring. Then Ω ∈ IVNSR(P ) iff ∀[k1, s1], [k2, s2], [k3, s3] ∈
Ψ(L) with t̄Ω(θP ) ≥ [k1, s1], īΩ(θP ) ≤ [k2, s2], and f̄Ω(θP ) ≤ [k3, s3], Ω(

[k1,s1],[k2,s2],[k3,s3]
) is a

crisp subring of (P,+, ·) (assuming all the IVTN and IVSNs are idempotent).

Proof. Since, t̄Ω(θP ) ≥ [k1, s1], īΩ(θP ) ≤ [k2, s2], and f̄Ω(θP ) ≤ [k3, s3], θP ∈
Ω(

[k1,s1],[k2,s2],[k3,s3]
), i.e., Ω(

[k1,s1],[k2,s2],[k3,s3]
) is non-empty.

Now, let Ω ∈ IVNSR(P ) and r, v ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

). To show that, (r − v) and

r · v ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

). Here,

t̄Ω(r − v) ≥ T̄
(
t̄Ω(r), t̄Ω(v)

)
[by Proposition 3.1]

≥ T̄
(
[k1, s1], [k1, s1]

) [
as r, v ∈ Ω(

[k1,s1],[k2,s2],[k3,s3]
)]

≥ [k1, s1] [as T̄ is idempotent] (3.19)

Again,

t̄Ω(r · v) ≥ T̄
(
t̄Ω(r), t̄Ω(v)

)
[by Proposition 3.1]

≥ T̄
(
[k1, s1], [k1, s1]

) [
as r, v ∈ Ω(

[k1,s1],[k2,s2],[k3,s3]
)]

≥ [k1, s1] [as T̄ is idempotent] (3.20)

Similarly, we can show that

īΩ(r − v) ≤ [k2, s2], (3.21)

īΩ(r · v) ≤ [k2, s2], (3.22)

f̄Ω(r − v) ≤ [k3, s3], and (3.23)

f̄Ω(r · v) ≤ [k3, s3] (3.24)

Hence, by Equations 3.19–3.24 (r−v) and r ·v ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

), i.e., Ω(
[k1,s1],[k2,s2],[k3,s3]

)
is a crisp subring of (P,+, ·).
Conversely, let Ω(

[k1,s1],[k2,s2],[k3,s3]
) is a crisp subgroup of (P,+, ·). To show that, Ω ∈

IVNSR(P ).

Let r, v ∈ P , then there exists [k1, s1] ∈ Ψ(L) such that T̄
(
t̄Ω(r), t̄Ω(v)

)
= [k1, s1]. So,

t̄Ω(r) ≥ [k1, s1] and t̄Ω(v) ≥ [k1, s1]. Also, let there exist [k2, s2], [k3, s3] ∈ Ψ(L) such that

Ī
(̄
iΩ(r), īΩ(v)

)
= [k2, s2] and F̄

(
f̄Ω(r), f̄Ω(v)

)
= [k3, s3]. Then r, v ∈ Ω(

[k1,s1],[k2,s2],[k3,s3]
).

Again, as Ω(
[k1,s1],[k2,s2],[k3,s3]

) is a crisp subring, r − v ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

) and r · v ∈
Ω(

[k1,s1],[k2,s2],[k3,s3]
).
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Hence,

t̄Ω(r − v) ≥ [k1, s1]

= T̄
(
t̄Ω(r), t̄Ω(v)

)
and (3.25)

t̄Ω(r · v) ≥ [k1, s1]

= T̄
(
t̄Ω(r), t̄Ω(v)

)
(3.26)

Similarly, we can prove that

īΩ(r − v) ≤ [k2, s2]

= Ī
(̄
iΩ(r), īΩ(v)

)
, (3.27)

īΩ(r · v) ≤ [k2, s2]

= Ī
(̄
iΩ(r), īΩ(v)

)
, (3.28)

f̄Ω(r − v) ≤ [k3, s3]

= F̄
(
f̄Ω(r), f̄Ω(v)

)
, and (3.29)

f̄Ω(r · v) ≤ [k3, s3]

= F̄
(
f̄Ω(r), f̄Ω(v)

)
(3.30)

So, Equations 3.25–3.30 imply that Ω follows Proposition 3.1, i.e., Ω ∈ IVNSR(P ).

Definition 3.6. Let Ω and Ω′ be two IVNSs of two CSs P and R, respectively. Also, let

l : P → R be a function. Then

(i) image of Ω under l will be l(Ω) =
{(
v, t̄l(Ω)(v), īl(Ω)(v), f̄l(Ω)(v)

)
: v ∈ R

}
, where

t̄l(Ω)(v) = ∨
s∈l−1(v)

t̄Ω(s), īl(Ω)(v) = ∧
s∈l−1(v)

īΩ(s), f̄l(Ω)(v) = ∧
s∈l−1(v)

f̄Ω(s). Wherefrom, if

l is injective then t̄l(Ω)(v) = t̄Ω
(
l−1(v)

)
, īl(Ω)(v) = īΩ

(
l−1(v)

)
, f̄l(Ω)(v) = f̄Ω

(
l−1(v)

)
,

and

(ii) preimage of Ω′ under l will be l−1(Ω′) =
{(
r, t̄l−1(Ω′)(r), īl−1(Ω′)(r), f̄l−1(Ω′)(r)

)
: r ∈ R

}
,

where t̄l−1(Ω′)(r) = t̄Ω′
(
l(r)
)
, īl−1(Ω′)(r) = īΩ′

(
l(r)
)
, f̄l−1(Ω′)(r) = f̄Ω′

(
l(r)
)
.

Theorem 3.6. Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a ring

isomorphism. If Ω is an IVNSR of P then l(Ω) is an IVNSR of R.
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Proof. Let v1 = l(r1) and v2 = l(r2), where r1, r2 ∈ P and v1, v2 ∈ R. Now,

t̄l(Ω)(v1 − v2) = t̄Ω
(
l−1(v1 − v2)

)
[as l is injective]

= t̄Ω
(
l−1(v1)− l−1(v2)

)
[as l−1 is a homomorphism]

= t̄Ω(r1 − r2)

≥ T̄
(
t̄Ω(r1), t̄Ω(r2)

)
= T̄

(
t̄Ω
(
l−1(v1)

)
, t̄Ω
(
l−1(v2)

))
= T̄

(
t̄l(Ω)(v1), t̄l(Ω)(v2)

)
(3.31)

Again,

t̄l(Ω)(v1 · v2) = t̄Ω
(
l−1(v1 · v2)

)
[as l is injective]

= t̄Ω
(
l−1(v1) · l−1(v2)

)
[as l−1 is a homomorphism]

= t̄Ω(r1 · r2)

≥ T̄
(
t̄Ω(r1), t̄Ω(r2)

)
= T̄

(
t̄Ω
(
l−1(v1)

)
, t̄Ω
(
l−1(v2)

))
= T̄

(
t̄l(Ω)(v1), t̄l(Ω)(v2)

)
(3.32)

Similarly,

īl(Ω)(v1 − v2) ≤ Ī
(̄
il(Ω)(v1), īl(Ω)(v2)

)
, (3.33)

īl(Ω)(v1 · v2) ≤ Ī
(̄
il(Ω)(v1), īl(Ω)(v2)

)
, (3.34)

f̄l(Ω)(v1 − v2) ≤ F̄
(
f̄l(Ω)(v1), f̄l(Ω)(v2)

)
, and (3.35)

f̄l(Ω)(v1 · v2) ≤ F̄
(
f̄l(Ω)(v1), f̄l(Ω)(v2)

)
(3.36)

Hence, Equations 3.31–3.36 imply that l(Ω) follows Proposition 3.1, i.e., l(Ω) is an IVNSR of

R.

Theorem 3.7. Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a ring

homomorphism. If Ω′ is an IVNSR of R then l−1(Ω′) is an IVNSR of P (Note that, l−1 may

not be an inverse mapping but l−1(Ω′) is an inverse image of Ω′).
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Proof. Let v1 = l(r1) and v2 = l(r2), where r1, r2 ∈ P and v1, v2 ∈ R. Now,

t̄l−1(Ω′)(r1 − r2) = t̄Ω′
(
l(r1 − r2)

)
= t̄Ω′

(
l(r1)− l(r2)

)
[as l is a homomorphism]

= t̄Ω′(v1 − v2)

≥ T̄
(
t̄Ω′(v1), t̄Ω′(v2)

)
= T̄

(
t̄Ω′
(
l(r1)

)
, t̄Ω′

(
l(r2)

))
= T̄

(
t̄l−1(Ω′)(r1), t̄l−1(Ω′)(r2)

)
(3.37)

Again,

t̄l−1(Ω′)(r1 · r2) = t̄Ω′
(
l(r1 · r2)

)
= t̄Ω′

(
l(r1) · l(r2)

)
[as l is a homomorphism]

= t̄Ω′(v1 · v2)

≥ T̄
(
t̄Ω′(v1), t̄Ω′(v2)

)
= T̄

(
t̄Ω′
(
l(r1)

)
, t̄Ω′

(
l(r2)

))
= T̄

(
t̄l−1(Ω′)(r1), t̄l−1(Ω′)(r2)

)
(3.38)

Similarly,

īl−1(Ω′)(r1 − r2) ≤ Ī
(̄
il−1(Ω′)(r1), īl−1(Ω′)(r2)

)
(3.39)

īl−1(Ω′)(r1 · r2) ≤ Ī
(̄
il−1(Ω′)(r1), īl−1(Ω′)(r2)

)
(3.40)

f̄l−1(Ω′)(r1 − r2) ≤ F̄
(
f̄l−1(Ω′)(r1), f̄l−1(Ω′)(r2)

)
(3.41)

f̄l−1(Ω′)(r1 · r2) ≤ F̄
(
f̄l−1(Ω′)(r1), f̄l−1(Ω′)(r2)

)
(3.42)

Hence, Equations 3.37–3.42 imply that l−1(Ω′) follows Proposition 3.1, i.e., l−1(Ω′) is an

IVNSR of P .

Definition 3.7. Let (P,+, ·) be a crisp ring and Ω ∈ IVNSR(P ). Again, let σ̄ = [σ1, σ2], τ̄ =

[τ1, τ2], δ̄ = [δ1, δ2] ∈ Ψ(L). Then
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(i) Ω is called a (σ̄, τ̄ , δ̄)−identity IVNSR over P , if ∀r ∈ P

t̄Ω(r) =

σ̄ if r = θP

[0, 0] if r 6= θP
,

īΩ(r) =

τ̄ if r = θP

[1, 1] if r 6= θP
, and

f̄Ω(r) =

δ̄ if r = θP

[1, 1] if r 6= θP
,

where θP is the zero element of P .

(ii) Ω is called a (σ̄, τ̄ , δ̄)−absolute IVNSR over P , if ∀r ∈ P , t̄Ω(r) = σ̄, īΩ(r) = τ̄ , and

f̄Ω(r) = δ̄.

Theorem 3.8. Let (P,+, ·) and (R,+, ·) be two crisp rings and Ω ∈IVNSR (P ). Again, let

l : P → R be a ring homomorphism. Then

(i) l(Ω) will be a (σ̄, τ̄ , δ̄)−identity IVNSR over R, if ∀r ∈ P

t̄Ω(r) =

σ̄ if r ∈ Ker(l)

[0, 0] otherwise
,

īΩ(r) =

τ̄ if r ∈ Ker(l)

[1, 1] otherwise
, and

f̄Ω(r) =

δ̄ if r ∈ Ker(l)

[1, 1] otherwise
,

(ii) l(Ω) will be a (σ̄, τ̄ , δ̄)−absolute IVNSR over R, if Ω is a (σ̄, τ̄ , δ̄)−absolute IVNSR

over P .

Proof. (i) Clearly, by Theorem 3.6 l(Ω) ∈ IVNSR(R). Let r ∈ Ker(l), then l(r) = θR.

So,

t̄l(Ω)(θR) = t̄Ω
(
l−1(θR)

)
= t̄Ω(r)

= σ̄ (3.43)

Similarly, we can show that

īl(Ω)(θR) = τ̄ , and (3.44)

f̄l(Ω)(θR) = δ̄ (3.45)
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Again, let r ∈ P \Ker(l) and l(r) = v. Then

t̄l(Ω)(v) = t̄Ω
(
l−1(v)

)
= t̄Ω(r)

= [0, 0] (3.46)

Similarly, we can show that

īl(Ω)(v) = [1, 1] and (3.47)

f̄l(Ω)(v) = [1, 1] (3.48)

Hence, by the Equations 3.43–3.48 l(Ω) is a (σ̄, τ̄ , δ̄)−identity IVNSR over R.

(ii) Let l(r) = v, for r ∈ P and v ∈ R. Then

t̄l(Ω)(v) = t̄Ω
(
l−1(v)

)
= t̄Ω(r)

= σ̄ (3.49)

Similarly, we can show that

īl(Ω)(v) = τ̄ and (3.50)

f̄l(Ω)(v) = δ̄ (3.51)

Hence, by the Equations 3.48–3.51 l(Ω) is a (σ̄, τ̄ , δ̄)−absolute IVNSR over R.

3.1. Product of interval-valued neutrosophic subrings

Definition 3.8. Let (P,+, ·) and (R,+, ·) be two crisp rings. Again, let Ω1 ={(
r, t̄Ω1(r), īΩ1(r), f̄Ω1(r)

)
: r ∈ P

}
and Ω2 =

{(
v, t̄Ω2(v), īΩ2(v), f̄Ω2(v)

)
: v ∈ R

}
are IVNSRs

of P and R respectively. Then Cartesian product of Ω1 and Ω2 will be

Ω = Ω1 × Ω2

=
{(

(r, v), T̄
(
t̄Ω1(r), t̄Ω2(v)

)
, Ī
(̄
iΩ1(r), īΩ2(v)

)
, F̄
(
f̄Ω1(r), f̄Ω2(v)

))
: (r, v) ∈ P ×R

}
Similarly, product of 3 or more IVNSRs can be defined.

Theorem 3.9. Let (P,+, ·) and (R,+, ·) be two crisp rings with Ω1 ∈ IVNSR(P ) and Ω2 ∈
IVNSR(R). Then Ω1 × Ω2 is a IVNSR of P ×R.
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Proof. Let Ω = Ω1 × Ω2 and (r1, v1), (r2, v2) ∈ P ×R. Then

t̄Ω
(
(r1, v1)− (r2, v2)

)
= t̄Ω1×Ω2

(
(r1 − r2, v1 − v2)

)
= T̄

(
t̄Ω1(r1 − r2), t̄Ω2(v1 − v2)

)
[by Definition 3.8]

≥ T̄
(
T̄
(
t̄Ω1(r1), t̄Ω1(r2)

)
, T̄
(
t̄Ω2(v1), t̄Ω2(v2)

))
[by Proposition 3.1]

= T̄
(
T̄
(
t̄Ω1(r1), t̄Ω2(v1)

)
, T̄
(
t̄Ω1(r2), t̄Ω2(v2)

))
[as T̄ is associative]

= T̄
(
t̄Ω(r1, v1), t̄Ω(r2, v2)

)
(3.52)

Again,

t̄Ω
(
(r1, v1) · (r2, v2)

)
= t̄Ω1×Ω2

(
(r1 · r2, v1 · v2)

)
= T̄

(
t̄Ω1(r1 · r2), t̄Ω2(v1 · v2)

)
[by Definition 3.8]

≥ T̄
(
T̄
(
t̄Ω1(r1), t̄Ω1(r2)

)
, T̄
(
t̄Ω2(v1), t̄Ω2(v2)

))
[by Proposition 3.1]

= T̄
(
T̄
(
t̄Ω1(r1), t̄Ω2(v1)

)
, T̄
(
t̄Ω1(r2), t̄Ω2(v2)

))
[as T̄ is associative]

= T̄
(
t̄Ω(r1, v1), t̄Ω(r2, v2)

)
(3.53)

Similary, the followings can be shown

īΩ
(
(r1, v1)− (r2, v2)

)
≤ Ī
(̄
iΩ(r1, v1), īΩ(r2, v2)

)
, (3.54)

īΩ
(
(r1, v1) · (r2, v2)

)
≤ Ī
(̄
iΩ(r1, v1), īΩ(r2, v2)

)
, (3.55)

f̄Ω

(
(r1, v1)− (r2, v2)

)
≤ F̄

(
f̄Ω(r1, v1), f̄Ω(r2, v2)

)
, and (3.56)

f̄Ω

(
(r1, v1) · (r2, v2)

)
≤ F̄

(
f̄Ω(r1, v1), f̄Ω(r2, v2)

)
(3.57)

Hence, using Proposition 3.1 and by Equations 3.52–3.57 Ω1 × Ω2 ∈ IVNSR(P ×R).

Corollary 3.10. Let ∀i ∈ {1, 2, ..., n}, (Pi,+, ·) are crisp rings and Ωi ∈ IVNSR(Pi). Then

Ω1 × Ω2 × · · · × Ωn is a IVNSR of P1 × P2 × · · · × Pn, where n ∈ N.

3.2. Subring of a interval-valued neutrosophic subgring

Definition 3.9. Let (P,+, ·) be a crisp ring and Ω1,Ω2 ∈ IVNSR(P ), where Ω1 ={(
r, t̄Ω1(r), īΩ1(r), f̄Ω1(r)

)
: r ∈ P

}
and Ω2 =

{(
r, t̄Ω2(r), īΩ2(r), f̄Ω2(r)

)
: r ∈ P

}
. Then

Ω1 is called a subring of Ω2 if ∀r ∈ P , t̄Ω1(r) ≤ t̄Ω2(r), īΩ1(r) ≥ īΩ2(r), and f̄Ω1(r) ≥ f̄Ω2(r).

Theorem 3.11. Let (P,+, ·) be a crisp ring and Ω ∈ IVNSR(P ). Again, let Ω1 and Ω2 be two

subrings of Ω. Then Ω1 ∩ Ω2 is also a subring of Ω, assuming that all the IVTN and IVSNs

are idempotent.
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Proof. Here, ∀r ∈ P

t̄Ω1∩Ω2(r) = T̄
(
t̄Ω1(r), t̄Ω2(r)

)
≤ T̄

(
t̄Ω(r), t̄Ω(r)

)
= t̄Ω(r) [as T̄ is idempotent] (3.58)

Similarly, as Ī and F̄ are idempotent we can show that,

īΩ1∩Ω2(r) ≥ īΩ(r) and (3.59)

f̄Ω1∩Ω2(r) ≥ f̄Ω(r) (3.60)

Hence, by Equations 3.58–3.60 Ω1 ∩ Ω2 is a subring of Ω.

Theorem 3.12. Let (P,+, ·) be a crisp ring and Ω1,Ω2 ∈ IVNSR(P ) such that Ω1 is a subring

of Ω2. Let (R,+, ·) is another crisp ring and l : P → R be a ring isomorphism. Then

(i) l(Ω1) and l(Ω2) are two IVNSRs over R and

(ii) l(Ω1) is a subring of l(Ω2).

Proof. (i) can be proved by using Theorem 3.6.

(ii) Let v = l(r), where r ∈ P and v ∈ R. Then

t̄Ω1(r) ≤ t̄Ω2(r) [as Ω1 is a subring of Ω2]

⇒t̄Ω1

(
l−1(v)

)
≤ t̄Ω2

(
l−1(v)

)
⇒t̄l(Ω1)(v) ≤ t̄l(Ω2)(v) (3.61)

Similarly, we can prove that

īl(Ω1)(v) ≥ īl(Ω2)(v) and (3.62)

f̄l(Ω1)(v) ≥ f̄l(Ω2)(v) (3.63)

Hence, by Equations 3.61–3.63 l(Ω1) is a subring of l(Ω2).

3.3. Interval-valued neutrosophic normal subrings

Definition 3.10. Let (P,+, ·) be a crisp ring and Ω is an IVNS of P , where Ω ={(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ P

}
. Then Ω is called an IVNNSR over P if

(i) Ω is an IVNSR of P and

(ii) ∀r, v ∈ P , t̄Ω(r · v) = t̄Ω(v · r), īΩ(r · v) = īΩ(v · r), and f̄Ω(r · v) = f̄Ω(v · r).

The set of all IVNNSR of a crisp ring (P,+, · ) will be denoted as IVNNSR(P ).
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Example 3.11. Let (Z,+, ·) be the ring of integers with respect to usual addition and mul-

tiplication. Let Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ Z

}
be an IVNS of Z, where ∀r ∈ Z

t̄Ω(r) =

[0.67, 1] if r ∈ 2Z

[0, 0] if r ∈ 2Z+ 1
,

īΩ(r) =

[0, 0] if r ∈ 2Z

[0.33, 0.5] if r ∈ 2Z+ 1
, and

f̄Ω(r) =

[0, 0] if r ∈ 2Z

[0, 0.33] if r ∈ 2Z+ 1
.

Now, if we consider minimum TN and maximum SNs, then Ω ∈ IVNNSR(Z).

Theorem 3.13. Let (P,+, ·) be a crisp ring. If Ω1,Ω2 ∈ IVNNSR(P ), then Ω1 ∩ Ω2 ∈
IVNNSR(P ).

Proof. As Ω1,Ω2 ∈ IVNSR(P ) by Theorem 3.2 Ω1 ∩ Ω2 ∈ IVNSR(P ). Again,

t̄Ω1∩Ω2(r · v) = T̄
(
t̄Ω1(r · v), t̄Ω2(r · v)

)
= T̄

(
t̄Ω1(v · r), t̄Ω2(v · r)

)
[as Ω1,Ω2 ∈ IVNNSR(P )]

= t̄Ω1∩Ω2(v · r) (3.64)

Similarly,

īΩ1∩Ω2(r · v) = īΩ1∩Ω2(v · r) (3.65)

f̄Ω1∩Ω2(r · v) = f̄Ω1∩Ω2(v · r) (3.66)

Hence, Ω1 ∩ Ω2 ∈ IVNNSR(P ).

Remark 3.14. In general, if Ω1,Ω2 ∈ IVNNSR(P ), then Ω1 ∪ Ω2 may not always be an

IVNNSR of (P,+, ·).

Remark 3.14 can be proved by Example 3.4.

Theorem 3.15. Let (P,+, ·) be a crisp ring. Then Ω ∈ IVNNSR(P ) iff

∀[k1, s1], [k2, s2], [k3, s3] ∈ Ψ(L) with t̄Ω(θP ) ≥ [k1, s1], īΩ(θP ) ≤ [k2, s2], and f̄Ω(θP ) ≤ [k3, s3],

Ω(
[k1,s1],[k2,s2],[k3,s3]

) is a crisp normal subring of (P,+, ·) (assuming all the IVTN and IVSNs

are idempotent).

Proof. This can be proved using Theorem 3.5.
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Theorem 3.16. Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a ring

isomorphism. If Ω is an IVNNSR of P then l(Ω) is an IVNNSR of R.

Proof. As Ω is an IVNSR of P by Theorem 3.6 l(Ω) is an IVNSR of R. Let l(r1) = v1 and

l(r2) = v2, where r1, r2 ∈ P and v1, v2 ∈ R. Then

t̄l(Ω)(v1 · v2) = t̄Ω
(
l−1(v1 · v2)

)
[as l is injective]

= t̄Ω
(
l−1(v1) · l−1(v2)

)
[as l−1 is a homomorphism]

= t̄Ω(r1 · r2)

= t̄Ω(r2 · r1) [as Ω is an IVNNSR of P ]

= t̄Ω
(
l−1(v2) · l−1(v1)

)
= t̄Ω

(
l−1(v2 · v1)

)
= t̄l(Ω)(v2 · v1) (3.67)

Similarly,

īl(Ω)(v1 · v2) = īl(Ω)(v2 · v1) and (3.68)

f̄l(Ω)(v1 · v2) = f̄l(Ω)(v2 · v1) (3.69)

Hence, by Equations 3.67–3.69 l(Ω) is an IVNNSR of R.

4. Conclusions

As interval-valued neutrosophic environment is more general than regular one, we have

adopted it and defined the notions of interval-valued neutrosophic subring and its normal

version. Also, we have analyzed some homomorphic properties of these newly defined notions.

Again, we have studied product of two interval-valued neutrosophic subrings. Furthermore,

we have provided some essential theories to study some of their algebraic structures. These

newly introduced notions have potentials to become fruitful research areas. For instance, soft

set theory can be implemented and the notion of interval-valued neutrosophic soft subring can

be defined.
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Generalized Aggregate Operators on Neutrosophic 
Hypersoft Set 

Rana Muhammad Zulqarnain, Xiao Long Xin, Muhammad Saqlain, Florentin Smarandache

Abstract: Multi-criteria decision making (MCDM) is concerned about coordinating as well as 

looking after selection as well as planning problems which included multi-criteria. The 

neutrosophic soft set cannot handle the environment which involved more than one attribute. To 

overcome those hurdles neutrosophic hypersoft set (NHSS) is defined. In this paper, we proposed 

the generalized aggregate operators on NHSS such as extended union, extended intersection, OR-

operation, AND-operation, etc. with their properties. Finally, the necessity and possibility 

operations on NHSS with suitable examples and properties are presented in the following 

research. 

Keywords: Soft set; Neutrosophic Set; Neutrosophic soft set; Hypersoft set; Neutrosophic hypersoft set. 

1. Introduction

Zadeh developed the notion of fuzzy sets [1] to solve those problems which contain uncertainty 

and vagueness. It is observed that in some cases circumstances cannot be handled by fuzzy sets, to 

overcome such types of situations Turksen [2] gave the idea of interval-valued fuzzy set. In some 

cases, we must deliberate membership unbiassed as the non- membership values for the suitable 

representation of an object in uncertain and indeterminate conditions that could not be handled by 

fuzzy sets nor interval-valued fuzzy sets. To overcome these difficulties Atanassov presented the 

notion of Intuitionistic fuzzy sets in [3]. The theory which was presented by Atanassov only deals the 

insufficient data considering both the membership and non-membership values, but the intuitionistic 

fuzzy set theory cannot handle the incompatible and imprecise information. To deal with such 

incompatible and imprecise data the idea of the neutrosophic set (NS) was developed by 

Smarandache [4].  

A general mathematical tool was proposed by Molodtsov [5] to deal with indeterminate, fuzzy, 

and not clearly defined substances known as a soft set (SS). Maji et al. [6] extended the work on SS 

and defined some operations and their properties. In [7], they also used the SS theory for decision 

making. Ali et al. [8] revised the Maji approach to SS and developed some new operations with their 

properties. De Morgan’s Law on SS theory was proved in [9] by using different operators. Cagman 

and Enginoglu [10] developed the concept of soft matrices with operations and discussed their 

properties, they also introduced a decision-making method to resolve those problems which contain 

uncertainty. In [11], they revised the operations proposed by Molodtsov’s SS. In [12], the author’s 

proposed some new operations on soft matrices such as soft difference product, soft restricted 

difference product, soft extended difference product, and soft weak-extended difference product 

with their properties. 

Maji [13] offered the idea of a neutrosophic soft set (NSS) with necessary operations and 

properties. The idea of the possibility NSS was developed by Karaaslan [14] and introduced a 

possibility of neutrosophic soft decision-making method to solve those problems which contain 

uncertainty based on And-product. Broumi [15] developed the generalized NSS with some 

operations and properties and used the proposed concept for decision making. To solve MCDM 

problems with single-valued Neutrosophic numbers presented by Deli and Subas in [16], they 
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constructed the concept of cut sets of single-valued Neutrosophic numbers. On the base of the 

correlation of intuitionistic fuzzy sets, the term correlation coefficient of SVNSs [17] was introduced. 

In [18], the idea of simplified NSs introduced with some operational laws and aggregation operators 

such as real-life Neutrosophic weighted arithmetic average operator and weighted geometric average 

operator. They constructed an MCDM method on the base of proposed aggregation operators. 

Smarandache [19] generalized the SS to hypersoft set (HSS) by converting the function to a multi-

attribute function to deal with uncertainty. Saqlain et al. [20] developed the generalization of TOPSIS 

for the NHSS, by using the accuracy function they transformed the fuzzy neutrosophic numbers to 

crisp form. In [21],s the author’s proposed the fuzzy plithogenic hypersoft set in matrix form with 

some basic operations and properties. Martin and Smarandache developed the plithogenic hypersoft 

set by combining the plithogenic sets and hypersoft set in [22]. Saqlain et al. [23] proposed the 

aggregate operators and similarity measure [24] on NHSS. In [25], Abdel basset et al. applied TODIM 

and TOPSIS methods based on the best-worst method to increase the accuracy of evaluation under 

uncertainty according to the neutrosophic set. They also used the plithogenic set theory to solve the 

uncertain information and evaluate the financial performance of manufacturing industries, they used 

the AHP method to find the weight vector of the financial ratios to achieve this goal after that they 

used the VIKOR and TOPSIS methods to utilized the companies ranking in [26]. 

In the following paragraph, we explain some positive impacts of this research. The main focus 

of this study is too generalized the aggregate operators of the neutrosophic hypersoft set. We will use 

the proposed aggregate operators to solve multi-criteria decision-making problems after developing 

distance-based similarity measures. Saqlain et al. [23], developed the aggregate operators on NHSS 

but in some cases, we face some limitations such as in union and intersection. To overcome these 

limitations we develop the generalized version of aggregate operators on NHSS. 

The following research is organized as follows: In section 2, we recall some basic definitions used 

in the following research such as SS, NS, NSS, HSS, and NHSS. We develop the generalized aggregate 

operators on NHSS such as extended union, extended intersection, And-operation, etc. in section 3 

with properties. In section 4, the necessity and possibility of operations are presented with examples 

and properties. 

2. Preliminaries

In this section, we recall some basic definitions such as SS, NSS, and NHSS which use in the following 

sequel. 

Definition 2.1 [5] Soft Set 

The soft set is a pair (F, Ʌ) over Ṹ if and only if F: Ʌ → 𝑃(Ṹ) is a mapping. That is the parameterized 

family of subsets of Ṹ known as a SS. 

Definition 2.2 [4] Neutrosophic Set 

Let Ṹ be a universe and Ʌ be an NS on Ṹ is defined as Ʌ = {< 𝑢, 𝑇Ʌ(𝑢), 𝐼Ʌ(𝑢), 𝐹Ʌ(𝑢) >: 𝑢 ∈ Ṹ}, where T, 

I, F: Ṹ → ]0−, 1+[ and 0− ≤ 𝑇Ʌ(𝑢) + 𝐼Ʌ(𝑢) + 𝐹Ʌ(𝑢) ≤ 3+.

Definition 2.3 [13] Neutrosophic Soft Set 

Let Ṹ and Ḝ are universal set and set of attributes respectively. Let P(Ṹ) be the set of Neutrosophic 

values of Ṹ and Ʌ ⊆ Ḝ. A pair (F, Ʌ) is called an NSS over Ṹ and its mapping is given as  

F: Ʌ → 𝑃(Ṹ)  

Definition 2.4 [19] Hypersoft Set 

Let Ṹ be a universal set and 𝑃(Ṹ ) be a power set of Ṹ and for 𝑛 ≥ 1, there are 𝑛 distinct attributes such 

as 𝑘1, 𝑘2, 𝑘3, …, 𝑘𝑛 and 𝐾1, 𝐾2, 𝐾3, …, 𝐾𝑛 are sets for corresponding values attributes respectively 

with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair (F, 𝐾1 × 𝐾2 

× 𝐾3× … × 𝐾𝑛) is said to be Hypersoft set over Ṹ where F is a mapping from 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 

to 𝑃(Ṹ).  
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Definition 2.5 [22] Neutrosophic Hypersoft Set (NHSS)  

Let Ṹ be a universal set and 𝑃(Ṹ ) be a power set of Ṹ and for 𝑛 ≥ 1, there are 𝑛 distinct attributes such 

as 𝑘1, 𝑘2, 𝑘3, …, 𝑘𝑛 and 𝐾1, 𝐾2, 𝐾3, …, 𝐾𝑛 are sets for corresponding values attributes respectively 

with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair (F, Ʌ) is said 

to be NHSS over Ṹ if there exists a relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = Ʌ.  F is a mapping from 𝐾1 × 

𝐾2 × 𝐾3× … × 𝐾𝑛 to 𝑃(Ṹ) and F(𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛) = {< 𝑢, 𝑇Ʌ(𝑢), 𝐼Ʌ(𝑢), 𝐹Ʌ(𝑢) > : 𝑢 ∈  Ṹ} where 

T, I, F are membership values for truthness, indeterminacy, and falsity respectively such that T, I, F: 

Ṹ → ]0−, 1+[ and 0− ≤ 𝑇Ʌ(𝑢) + 𝐼Ʌ(𝑢) + 𝐹Ʌ(𝑢) ≤ 3+.

Example 2.6 Assume that a person examines the attractiveness of a living house. Let Ṹ be a universe 

which consists of three choices Ṹ = {𝑢1, 𝑢2} and E = {έ1, έ2, έ3} be a set of decision parameters. Then, 

the NHSS is given as 

𝐹Ʌ = {< u1 , (έ1{0.4, 0.7, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.6, 0.5, 0.9}) > 

< u2, (έ1{0.1,0.5,0.7}, έ2{0.5, 0.6, 0.2}, έ3{0.7, 0.4, 0.6}) >} 

3. Generalized Aggregate Operators on Neutrosophic Hypersoft Set and Properties

In this section, we present the generalized aggregate operations on NHSS with examples. We prove 

commutative and associative laws by using proposed aggregate operators in the following section. 

Definition 3.1  

Let 𝐹Ʌ ∈ NHSS, then its complement, is written as (𝐹Ʌ)𝑐  = 𝐹𝑐(Ʌ) and defined as

𝐹𝑐(Ʌ) = {< 𝑢, 𝑇(𝐹𝑐(Ʌ)), 𝐼(𝐹𝑐(Ʌ)), 𝐹(𝐹𝑐(Ʌ)) > : 𝑢 ∈  U} such that  

𝑇(𝐹𝑐(Ʌ)) = 1- 𝑇Ʌ(𝑢),

𝐼(𝐹𝑐(Ʌ)) = 1- 𝐼Ʌ(𝑢),

𝐹(𝐹𝑐(Ʌ)) = 1- 𝐹Ʌ(𝑢).

Example 3.2 Reconsider example 2.6 

𝐹𝑐(Ʌ) = {< u1 , (έ1{0.6, 0.3, 0.5}, έ2{0.2, 0.5, 0.7}, έ3{0.4, 0.5, 0.1}) >

< u2, (έ1{0.9, 0.5, 0.3}, έ2{0.5, 0.4, 0.8}, έ3{0.3, 0.6, 0.4}) >} 

Proposition 3.3 

If 𝐹Ʌ ∈ NHSS, then (𝐹𝑐(Ʌ))𝑐 = 𝐹Ʌ.

Proof 

By using definition 3.1, we have 

𝐹𝑐(Ʌ) = {< 𝑢, 𝑇(𝐹𝑐(Ʌ)), 𝐼(𝐹𝑐(Ʌ)), 𝐹(𝐹𝑐(Ʌ)) > : 𝑢 ∈  U} 

= {< 𝑢, 1 −  𝑇 (𝐹Ʌ), 1 −  𝐼 (𝐹Ʌ), 1 −  𝐹 (𝐹Ʌ) > : 𝑢 ∈  U}, 

Thus 

(𝐹𝑐(Ʌ))𝑐 = {< 𝑢, 1 −  (1 −  𝑇(𝐹Ʌ)), 1 −  (1 −  𝐼(𝐹Ʌ)), 1 – (1 −  𝐹(𝐹Ʌ)) > : 𝑢 ∈  U},

(𝐹𝑐(Ʌ))𝑐 = {< 𝑢, 𝑇(𝐹Ʌ), 𝐼(𝐹Ʌ), 𝐹(𝐹Ʌ)  > : 𝑢 ∈  U} = 𝐹Ʌ.

Which completes the proof. 

Definition 3.4 Extended Union of Two Neutrosophic Hypersoft Set 

Let 𝐹Ʌ1
, 𝐹Ʌ2

 ∈ NHSS, then their extended union is

𝑇 (𝐹Ʌ1
 ∪ 𝐹Ʌ2

) = {

𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝑇(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥 (𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

))  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2
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𝐼 (𝐹Ʌ1
 ∪ 𝐹Ʌ2

) = {

𝐼(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛 (𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

))  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

𝐹 (𝐹Ʌ1
 ∪ 𝐹Ʌ2

) = {

𝐹(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐹(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛 (𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

))  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Example 3.5 Let U = {𝑢1, 𝑢2, 𝑢3, 𝑢4} be a universal set and E = {έ1, έ2, έ3, έ4} be a set of decision 

parameters and 𝐹Ʌ1
 = {u1, u4} and 𝐹Ʌ2

 = {u2, u4}

𝐹Ʌ1
 = {< u1 , (έ1{0.4, 0.7, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.6, 0.5, 0.9}, έ4{0.3, 0.7, 0.2}) >

< u4, (έ1{0.4, 0.7, 0.2}, έ2{0.6, 0.5, 0.3}, έ3{0.8, 0.4, 0.7}, έ4{0.6, 0.4, 0.3}) >} 

𝐹Ʌ2
 = {< u2, (έ1{0.7, 0.4, 0.6}, έ2{0.4, 0.6, 0.9}, έ3{0.7, 0.4, 0.6}, έ4{0.7, 0.6, 0.3}) >

< u4, (έ1{0.6, 0.2, 0.7}, έ2{0.5, 0.7, 0.3}, έ3{0.4, 0.8, 0.5}, έ4{0.5, 0.6, 0.4}) >} 

𝐹Ʌ1
 ∪ 𝐹Ʌ2

 = {< u1 , (έ1{0.4, 0.7, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.6, 0.5, 0.9}, έ4{0.3, 0.7, 0.2}) >

< u2, (έ1{0.7, 0.4, 0.6}, έ2{0.4, 0.6, 0.9}, έ3{0.7, 0.4, 0.6}, έ4{0.7, 0.6, 0.3}) > 

< u4, (έ1{0.6, 0.7, 0.7}, έ2{0.6, 0.7, 0.3}, έ3{0.8, 0.8, 0.7}, έ4{0.6, 0.6, 0.4}) >} 

Proposition 3.6 

Let 𝐹Ʌ1
, 𝐹Ʌ2

 and 𝐹Ʌ3
 are NHSSs than

1. (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = (𝐹Ʌ2
 ∪  𝐹Ʌ1

) (Commutative law)

2. (𝐹Ʌ1
 ∪  𝐹Ʌ2

) ∪ 𝐹Ʌ3
 = 𝐹Ʌ1

 ∪ (𝐹Ʌ2
 ∪  𝐹Ʌ3

) (Associative law)

Proof 1. In the following proof first two cases are trivial, we consider only the third case in this 

proposition 

(𝐹Ʌ1
 ∪  𝐹Ʌ2

) = {< u, (𝑚𝑎𝑥 {𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}, 𝑚𝑖𝑛 {𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}, 𝑚𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}) >}

= {< u, (𝑚𝑎𝑥{𝑇(𝐹Ʌ2
), 𝑇(𝐹Ʌ1

)}, 𝑚𝑖𝑛 {𝐼(𝐹Ʌ2
), 𝐼(𝐹Ʌ1

)}, 𝑚𝑖𝑛{𝐹(𝐹Ʌ2
), 𝐹(𝐹Ʌ1

)}) >}

= (𝐹Ʌ2
 ∪  𝐹Ʌ1

)

Proof 2: Let 𝐹Ʌ1
, 𝐹Ʌ2

 and 𝐹Ʌ3
 are NHSSs than

𝐹Ʌ1
 ∪  𝐹Ʌ2

 = {< u, (𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}, 𝑀𝑖𝑛 {𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}, 𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}) >}

(𝐹Ʌ1  ∪  𝐹Ʌ2 ) ∪ 𝐹Ʌ3  =

{< u, max {max{𝑇(𝐹Ʌ1), 𝑇(𝐹Ʌ2)}, 𝑇(𝐹Ʌ3)}, min {min{ 𝐼(𝐹Ʌ1), 𝐼(𝐹Ʌ2)}, 𝐼(𝐹Ʌ3)}, min {min {𝐹(𝐹Ʌ1), 𝐹(𝐹Ʌ2)}, 𝐹(𝐹Ʌ3)} >} 

= {< u, max { 𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

), 𝑇(𝐹Ʌ3
)}, min { { 𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)}, 𝐼(𝐹Ʌ3

)}, min {{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}, 𝐹(𝐹Ʌ3
)} >}

= {<  u, max {𝑇(𝐹Ʌ1), max {𝑇(𝐹Ʌ2), 𝑇(𝐹Ʌ3)}} , min {𝐼(𝐹Ʌ1), min {𝐼(𝐹Ʌ2), 𝐼(𝐹Ʌ3)}} , min {𝐹(𝐹Ʌ1), min {𝐹(𝐹Ʌ2), 𝐹(𝐹Ʌ3)}} >} 

= 𝐹Ʌ1
 ∪ (𝐹Ʌ2

 ∪  𝐹Ʌ3
)

Definition 3.7 Extended Intersection of Two Neutrosophic Hypersoft Set  

Let 𝐹Ʌ1
, 𝐹Ʌ2

 ∈ NHSS, then their extended intersection is

𝑇 (𝐹Ʌ1
 ∩ 𝐹Ʌ2

) = {

𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝑇(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛 (𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

))  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

𝐼 (𝐹Ʌ1
 ∩ 𝐹Ʌ2

) = {

𝐼(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑎𝑥 (𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

))  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2
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𝐹 (𝐹Ʌ1
 ∩ 𝐹Ʌ2

) = {

𝐹(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐹(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥 (𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

))  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Proposition 3.8 Let 𝐹Ʌ1
, 𝐹Ʌ2

 and 𝐹Ʌ3
 are NHSSs than

1. 𝐹Ʌ1
 ∩ 𝐹Ʌ2

 = 𝐹Ʌ2
 ∩ 𝐹Ʌ1

 (Commutative law)

2. (𝐹Ʌ1
 ∩  𝐹Ʌ2

) ∩ 𝐹Ʌ3
 = 𝐹Ʌ1

 ∩ (𝐹Ʌ2
 ∩  𝐹Ʌ3

) (Associative law)

Proof 1. Similar to Proposition 3.6. 

Proposition 3.9 Let 𝐹Ʌ1
, 𝐹Ʌ2

 are NHSSs then

1. (𝐹Ʌ1
 ∪  𝐹Ʌ2

)𝒄 = 𝐹𝑐(Ʌ1) ∩ 𝐹𝑐(Ʌ2)

2. (𝐹Ʌ1
 ∩  𝐹Ʌ1

)𝒄 = 𝐹𝑐(Ʌ1) ∪ 𝐹𝑐(Ʌ2)

Proof 1. Let 𝐹Ʌ1
 and 𝐹Ʌ1

 ∈ NHSS, such as follows

𝐹Ʌ1
 = {< u, {𝑇(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} >} and 𝐹Ʌ2
 = {< u, {𝑇(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} >}

(𝐹Ʌ1
 ∪  𝐹Ʌ2

)𝒄 = {< u, (𝑚𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}, 𝑚𝑖𝑛 {𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}, 𝑚𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)) >}
𝒄

= {< u, (𝑚𝑖𝑛{1 − 𝑇(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ2

)}, 𝑚𝑎𝑥 {1 − 𝐼(𝐹Ʌ1
), 1 −  𝐼(𝐹Ʌ2

)}, 𝑚𝑎𝑥{1 − 𝐹(𝐹Ʌ1
), 1 − 𝐹(𝐹Ʌ2

)) >}

= {< u, (𝑚𝑖𝑛{𝑇(𝐹𝑐(Ʌ1)), 𝑇(𝐹𝑐(Ʌ2))}, 𝑚𝑎𝑥 {𝐼(𝐹𝑐(Ʌ1)), 𝐼(𝐹𝑐(Ʌ2))}, 𝑚𝑎𝑥{𝐹(𝐹𝑐(Ʌ1)), 𝐹(𝐹𝑐(Ʌ2))}) >}

= 𝐹𝑐(Ʌ1) ∩ 𝐹𝑐(Ʌ2)

Proof 2. Similarly, we can prove 2.  

Definition 3.10 OR-Operation of Two Neutrosophic Hypersoft Set 

Let 𝐹Ʌ1
, 𝐹Ʌ2

 ∈ NHSS. Consider 𝑘1, 𝑘2, 𝑘3, …, 𝑘𝑛  for , be  well-defined attributes, whose

corresponding attributive values are respectively the set 𝐾1, 𝐾2, 𝐾3, …, 𝐾𝑛 with 𝐾𝑖 ∩ 𝐾𝑗 = ∅, for 𝑖 ≠ 

𝑗 and 𝑖, 𝑗𝜖{1,2,3 … 𝑛} and their relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = Ʌ, then 𝐹Ʌ1
 ˅ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, then

𝑇 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑎𝑥 (𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)),

𝐼 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑖𝑛 (𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)),

𝐹 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑖𝑛 (𝐹(𝐹Ʌ1

), 𝐹(𝐹Ʌ2
)).

Example 3.11 Reconsider example 3.5 

𝐹Ʌ1
 ˅ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2

 = {< (u1, u2), (έ1{0.7, 0.4, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.7, 0.4, 0.6}, έ4{0.7, 0.6, 0.2}) > 

< (u1, u4), (έ1{0.6, 0.2, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.6, 0.5, 0.5}, έ4{0.5, 0.6, 0.2}) > 

< (u4, u2), (έ1{0.7, 0.4, 0.2}, έ2{0.6, 0.5, 0.3}, έ3{0.8, 0.4, 0.6}, έ4{0.7, 0.4, 0.3}) > 

< (u4, u4), (έ1{0.6, 0.2, 0.2}, έ2{0.6, 0.5, 0.3}, έ3{0.8, 0.4, 0.5}, έ4{0.6, 0.4, 0.3}) >} 

Definition 3.12 AND-Operation of Two Neutrosophic Hypersoft Set  

Let 𝐹Ʌ1
, 𝐹Ʌ2

 ∈ NHSS. Consider 𝑘1, 𝑘2, 𝑘3, …, 𝑘𝑛  for , be  well-defined attributes, whose

corresponding attributive values are respectively the set 𝐾1, 𝐾2, 𝐾3, …, 𝐾𝑛 with 𝐾𝑖 ∩ 𝐾𝑗 = = ∅, for 𝑖 

≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3 … 𝑛} and their relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = Ʌ then 𝐹Ʌ1
 ˄ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, then
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𝑇 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑖𝑛 (𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)),

𝐼 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑎𝑥 (𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)),

𝑭 (𝑭Ʌ𝟏 × Ʌ𝟐
) = 𝑴𝒂𝒙 (𝑭(𝑭Ʌ𝟏

), 𝑭(𝑭Ʌ𝟐
)).

Proposition 3.13 Let 𝐹Ʌ1
, 𝐹Ʌ2

 are NHSSs then

1. (𝐹Ʌ1
 ˅ 𝐹Ʌ2

)
𝑐
 = 𝐹𝑐(Ʌ1) ˄ 𝐹𝑐(Ʌ2)

2. (𝐹Ʌ1
 ˄ 𝐹Ʌ2

)
𝑐
 = 𝐹𝑐(Ʌ1) ˅ 𝐹𝑐(Ʌ2)

Proof 1. Let 𝐹Ʌ1
 and 𝐹Ʌ1

 ∈ NHSS, such as follows

𝐹Ʌ1
 = {< 𝑢𝑖, {𝑇(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} > : 𝑢𝑖  ∈ 𝑈} and 𝐹Ʌ2
 = {< 𝑢𝑗 , {𝑇(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} > : 𝑢𝑗  ∈ 𝑈}

By using definition 3.10 we get 

𝐹Ʌ1
 ˅ 𝐹Ʌ2

 = {< (𝑢𝑖, 𝑢𝑗), [𝑒, max{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)} , min{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >}

(𝐹Ʌ1 ˅ 𝐹Ʌ2)
𝑐
 = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − max{𝑇(𝐹Ʌ1), 𝑇(𝐹Ʌ2)} , 1 − min{𝐼(𝐹Ʌ1), 𝐼(𝐹Ʌ2)} , 1 − min{𝐹(𝐹Ʌ1), 1 − 𝐹(𝐹Ʌ2)}] >}

(𝐹Ʌ1
 ˅ 𝐹Ʌ2)

𝑐
 = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{1 − 𝑇(𝐹Ʌ1), 1 − 𝑇(𝐹Ʌ2

)} , max{1 − 𝐼(𝐹Ʌ1), 1 − 𝐼(𝐹Ʌ2
)} , max{1 − 𝐹(𝐹Ʌ1), 1 − 𝐹(𝐹Ʌ2

)}] >} 

(𝐹Ʌ1
 ˅ 𝐹Ʌ2)

𝑐
 = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹𝑐(Ʌ1)), 𝑇(𝐹𝑐(Ʌ2))} , max{𝐼(𝐹𝑐(Ʌ1)), 𝐼(𝐹𝑐(Ʌ2))} , max{𝐹(𝐹𝑐(Ʌ1)), 𝐹(𝐹𝑐(Ʌ2))}] >} 

Since 

𝐹𝑐(Ʌ1) = {< 𝑢𝑖, {𝑇(𝐹𝑐(Ʌ1)), 𝐼(𝐹𝑐(Ʌ1)), 𝐹(𝐹𝑐(Ʌ1))} > : 𝑢𝑖  ∈ 𝑈} and

𝐹𝑐(Ʌ2) = {< 𝑢𝑗 , {𝑇(𝐹𝑐(Ʌ2)), 𝐼(𝐹𝑐(Ʌ2)), 𝐹(𝐹𝑐(Ʌ2))} > : 𝑢𝑗  ∈ 𝑈}

By using definition 3.12, we get 

𝐹𝑐(Ʌ1) ˄ 𝐹𝑐(Ʌ2) = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹𝑐(Ʌ1)), 𝑇(𝐹𝑐(Ʌ2))} , max{𝐼(𝐹𝑐(Ʌ1)), 𝐼(𝐹𝑐(Ʌ2))} , max{𝐹(𝐹𝑐(Ʌ1)), 𝐹(𝐹𝑐(Ʌ2))}] >} 

So 

(𝐹Ʌ1
 ˅ 𝐹Ʌ2

)
𝑐
 = 𝐹𝑐(Ʌ1) ˄ 𝐹𝑐(Ʌ2).

Similarly, we can prove 2. 

4. Necessity and Possibility Operations

The necessity and possibility operations on NHSS with some properties are presented in the 

following section.  

Definition 4.1 Necessity operation 

Let 𝐹Ʌ ∈ NHSS, then necessity operation on NHSS represented by ⊕ 𝐹Ʌ and defined as follows 

⊕ 𝐹Ʌ = {< u, {𝑇(𝐹Ʌ), 𝐼(𝐹Ʌ), 1 − 𝑇(𝐹Ʌ)} >} for all 𝑢 ∈ 𝑈. 

Example 4.2 Reconsider example 2.6 

⊕ 𝐹Ʌ = {< u1 , (έ1{0.4, 0.7, 0.6}, έ2{0.8, 0.5, 0.2}, έ3{0.6, 0.5, 0.4}) > 

< u2, (έ1{0.1,0.5,0.9}, έ2{0.5, 0.6, 0.5}, έ3{0.7, 0.4, 0.3}) >} 

Proposition 4.3 

1. ⊕ (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = ⊕ 𝐹Ʌ2
 ∪ ⊕ 𝐹Ʌ1

2. ⊕ (𝐹Ʌ1
 ∩  𝐹Ʌ2

) = ⊕ 𝐹Ʌ2
 ∩ ⊕ 𝐹Ʌ1

Proof 1. Let 𝐹Ʌ1
 ∪  𝐹Ʌ2

 = 𝐹Ʌ3
, then

𝑇 (𝐹Ʌ3
) = {

𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝑇(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2
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𝐼 (𝐹Ʌ3
) = {

𝐼(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐹 (𝐹Ʌ3
) = {

𝐹(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐹(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

By using the definition of necessity operation 

⊕𝐹Ʌ3
 = {< 𝑢, {⊕ 𝑇(𝐹Ʌ3

),⊕ 𝐼(𝐹Ʌ3
),⊕ 𝐹(𝐹Ʌ3

)} >: 𝑢 ∈ 𝑈}, where

⊕ 𝑇 (𝐹Ʌ3
) = {

𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝑇(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊕ 𝐼 (𝐹Ʌ3
) = {

𝐼(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐼(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊕ 𝐹 (𝐹Ʌ3
) = {

1 − 𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

1 − 𝑇(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

1 − 𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}   𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Assume  

⊕𝐹Ʌ1
 = {< 𝑢, {𝑇(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ1

)} >: 𝑢 ∈ 𝑈}

⊕𝐹Ʌ2
 = {< 𝑢, {𝑇(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 1 − 𝑇(𝐹Ʌ2

)} >: 𝑢 ∈ 𝑈}

⊕𝐹Ʌ1
 ∪ ⊕𝐹Ʌ2

 = 𝐹𝛿, where

𝐹𝛿 = {< 𝑢, {𝑇(𝐹𝛿), 𝐼(𝐹𝛿), 𝐹(𝐹𝛿)} >: 𝑢 ∈ 𝑈}, such that 

𝑇 (𝐹𝛿) = {

𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝑇(𝐹Ʌ2
)   𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐼 (𝐹𝛿) = {

𝐼(𝐹Ʌ1
)   𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)   𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐹 (𝐹𝛿) = {

1 − 𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

1 − 𝑇(𝐹Ʌ2
)                                              𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{1 − 𝑇(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 OR

𝐹 (𝐹𝛿) = {

1 − 𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

1 − 𝑇(𝐹Ʌ2
)   𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

1 − 𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Consequently ⊕𝐹Ʌ3
 and 𝐹𝛿 are same. So

⊕ (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = ⊕ 𝐹Ʌ2
 ∪ ⊕ 𝐹Ʌ1

.

Similarly, we can prove 2. 

Definition 4.4 Possibility operation 

Let 𝐹Ʌ ∈ NHSS, then possibility operation on NHSS represented by ⊗ 𝐹Ʌ and defined as follows 

⊗ 𝐹Ʌ = {< u, {1 − 𝐹(𝐹Ʌ), 𝐼(𝐹Ʌ), 𝐹(𝐹Ʌ)} >} for all 𝑢 ∈ 𝑈. 

Example 4.5 Reconsider the example 2.6 

⊗ 𝐹Ʌ = {< u1 , (έ1{0.5, 0.7, 0.5}, έ2{0.7, 0.5, 0.3}, έ3{0.1, 0.5, 0.9}) > 
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< u2, (έ1{0.3, 0.5, 0.7}, έ2{0.8, 0.6, 0.2}, έ3{0.4, 0.4, 0.6}) >} 

Proposition 4.6 

1. ⊗ (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = ⊗ 𝐹Ʌ2
 ∪ ⊗ 𝐹Ʌ1

2. ⊗ (𝐹Ʌ1
 ∩  𝐹Ʌ2

) = ⊗ 𝐹Ʌ2
 ∩ ⊗ 𝐹Ʌ1

Proof 1. Let 𝐹Ʌ1
 ∪  𝐹Ʌ2

 = 𝐹Ʌ3
, then

𝑇 (𝐹Ʌ3
) = {

𝑇(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝑇(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐼 (𝐹Ʌ3
) = {

𝐼(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐼(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐹 (𝐹Ʌ3
) = {

𝐹(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐹(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}   𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

By using the definition of necessity operation 

⊗ 𝐹Ʌ3
 = {< u, {⊗ 𝑇(𝐹Ʌ3

),⊗ 𝐼(𝐹Ʌ3
),⊗ 𝐹(𝐹Ʌ3

)} >: 𝑢 ∈ 𝑈}, where

⊗  𝑇 (𝐹Ʌ3
) = {

1 − 𝐹(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

1 − 𝐹(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

1 − 𝑀𝑎𝑥{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

= {

1 − 𝐹(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

1 − 𝐹(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{1 − 𝐹(𝐹Ʌ1
), 1 − 𝐹(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊗  𝐼 (𝐹Ʌ3
) = {

𝐼(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐼(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊗  𝐹 (𝐹Ʌ3
) = {

𝐹(𝐹Ʌ1
)   𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐹(𝐹Ʌ2
)   𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Assume  

⊗ 𝐹Ʌ1
 = {< u, {1 − 𝐹(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} >: 𝑢 ∈ 𝑈}

⊗ 𝐹Ʌ2
 = {< u, {1 − 𝐹(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} >: 𝑢 ∈ 𝑈}

⊗ 𝐹Ʌ1
 ∪ ⊕𝐹Ʌ2

 = 𝐹𝛿, where

𝐹𝛿 = {< u, {𝑇(𝐹𝛿), 𝐼(𝐹𝛿), 𝐹(𝐹𝛿)} >: 𝑢 ∈ 𝑈}, such that 

⊗  𝑇 (𝐹𝛿) = {

1 − 𝐹(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

1 − 𝐹(𝐹Ʌ2
)   𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

1 − 𝑀𝑎𝑥{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊗  𝐼 (𝐹𝛿) = {

𝐼(𝐹Ʌ1
)  𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)  𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊗  𝐹 (𝐹𝛿) = {

𝐹(𝐹Ʌ1
)   𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐹(𝐹Ʌ2
)   𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}  𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2
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Consequently ⊗ 𝐹Ʌ3
 and 𝐹𝛿 are same. So

⊗ (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = ⊗ 𝐹Ʌ2
 ∪ ⊗ 𝐹Ʌ1

Similarly, we can prove 2. 

Proposition 4.7 Let 𝐹Ʌ1
 and 𝐹Ʌ2

 ∈ NHSS, than we have the following

1. ⊕(𝐹Ʌ1
 ˄ 𝐹Ʌ2

) = ⊕𝐹Ʌ1
 ˄ ⊕𝐹Ʌ2

2. ⊕(𝐹Ʌ1
 ˅ 𝐹Ʌ2

) = ⊕𝐹Ʌ1
 ˅ ⊕𝐹Ʌ2

3. ⊗ (𝐹Ʌ1
 ˄ 𝐹Ʌ2

) = ⊗ 𝐹Ʌ1
 ˄ ⊗ 𝐹Ʌ2

4. ⊗ (𝐹Ʌ1
 ˅ 𝐹Ʌ2

) = ⊗ 𝐹Ʌ1
 ˅ ⊗ 𝐹Ʌ2

Proof 1. Assume 𝐹Ʌ1
 ˄ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, where (𝑢𝑖 , 𝑢𝑗) ∈ Ʌ1  ×  Ʌ2

𝐹Ʌ1 × Ʌ2
 = {< (𝑢𝑖, 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)} , max{𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)} , max{𝐹(𝐹Ʌ1

), 𝐹(𝐹Ʌ2
)}] >}

By using definition 4.1, we have 

⊕(𝐹Ʌ1
 ˄ 𝐹Ʌ2

) = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , 1 − min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}] >}

Since  

⊕ 𝐹Ʌ1
 = {< u, {𝑇(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ1

)} >}, and

⊕ 𝐹Ʌ2
 = {< u, {𝑇(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 1 − 𝑇(𝐹Ʌ2

)} >}, then by using AND-operation, we get

⊕ 𝐹Ʌ1
 ˄ ⊕ 𝐹Ʌ2

 =

{< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , max{1 − 𝑇(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ2

)}] >}

= {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , 1 −  min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}] >}

= ⊕(𝐹Ʌ1
 ˄ 𝐹Ʌ2

)

Proof 2. Similar to Assertion 1. 

Proof 3. Assume 𝐹Ʌ1
 ˄ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, where (𝑢𝑖 , 𝑢𝑗) ∈ Ʌ1  ×  Ʌ2

𝐹Ʌ1 × Ʌ2
 = {< (𝑢𝑖, 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)} , max{𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)} , max{𝐹(𝐹Ʌ1

), 𝐹(𝐹Ʌ2
)}] >}

By using definition 4.4, we have 

⊗ (𝐹Ʌ1
 ˄ 𝐹Ʌ2

) = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >}

Since  

⊗ 𝐹Ʌ1
 = {< u, {1 − 𝐹(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} >}, and

⊗ 𝐹Ʌ2
 = {< u, {1 −  𝐹(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} >}, then by using AND-operation, we get

⊗ 𝐹Ʌ1
 ˄ ⊕ 𝐹Ʌ2

 =

{< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{1 − 𝐹(𝐹Ʌ1
), 1 − 𝐹(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >}

= {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >}

= ⊗ (𝐹Ʌ1
 ˄ 𝐹Ʌ2

)

Proof 4. Assume 𝐹Ʌ1
 ˅ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, where (𝑢𝑖, 𝑢𝑗) ∈ Ʌ1  ×  Ʌ2

𝐹Ʌ1 × Ʌ2
 = {< (𝑢𝑖, 𝑢𝑗), [𝑒, max{𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)} , min{𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)} , min{𝐹(𝐹Ʌ1

), 𝐹(𝐹Ʌ2
)}] >}

By using definition 4.4, we have 

⊗ (𝐹Ʌ1
 ˅ 𝐹Ʌ2

) = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)} , min{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >}

Since  

⊗ 𝐹Ʌ1
 = {< u, {1 − 𝐹(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} >}, and

⊗ 𝐹Ʌ2
 = {< u, {1 −  𝐹(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} >}, then by using OR-operation, we get

⊗ 𝐹Ʌ1
 ˅ ⊕ 𝐹Ʌ2

 =

{< (𝑢𝑖, 𝑢𝑗), [𝑒, max{1 − 𝐹(𝐹Ʌ1
), 1 − 𝐹(𝐹Ʌ2

)} , min{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >}
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= {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)} , min{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >}

= ⊗ (𝑭Ʌ𝟏
 ˄ 𝑭Ʌ𝟐

)

5. Conclusion

In this paper, we study neutrosophic hypersoft set with some basic definition. We proposed the 

generalized aggregate operators on neutrosophic hypersoft sets such as complement, extended 

union, extended intersection, And-operation, and Or-operation with their properties and proved the 

commutative and associative laws on NHSS by using extended union and extended intersection. 

Finally, the concept of necessity and possibility operations on NHSS with suitable numerical 

examples and properties are presented. For future trends, we can develop the distance-based 

similarity measure and will be used for decision making, medical diagnoses, pattern recognition, etc. 

We also develop the neutrosophic hypersoft matrices with its operations and properties by using 

proposed operations and use for decision making.  

Acknowledgments: This research is partially supported by a grant of National Natural Science Foundation of 

China (11971384).  
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Composite Neutrosophic Finite Automata

Abstract. The idea behind the neutrosophic set is we can connect the concept by dynamics of opposite interacts

and its neutral that are uncertain and get common parts. Automata theory is beneficial to solve computational

complexity problem and also it is an influential mathematical modeling tool in computer science. Inspired by

the concepts of neutrosophic sets and automata theory, here, we are introducing and discussing the algebraic

concept of neutrosophic finite automata based on the paper [10]. Generally, composite machines can be achieved

by the output of the one machine that will be used as input for another machines. This paper introduced the

concept of composite automata under the environment of the neutrosophic set and also examined the box

function between the composite neutrosophic finite automata.

Keywords: automata theory, stable, composite, box function, neutrosophic set

—————————————————————————————————————————-

1. Introduction

Smarandache [27, 28] has proposed an idea of neutrosophic sets which was extending from

fuzzy sets. Neutrosophic sets have membership values lies in ]0−, 1+[, the nonstandard unit

interval [23] which includes the degree of truth, indeterminacy, and falsity. It is a device for

handling the computational complexity of real-life and scientific problems whereas the fuzzy

set has limited sources to depict it. The neutrosophic sets are different from intuitionistic fuzzy

sets, it is because the neutrosophic set degree of indeterminacy can be defined independently

since it is quantified explicitly. Aftermath, there are lots of research works done in various fields

J. Kavikumar, D. Nagarajan, S. P. Tiwari, Said Broumi, Florentin Smarandache (2020). 
Composite Neutrosophic Finite Automata. Neutrosophic Sets and Systems 36, 282-291

J. Kavikumar, D. Nagarajan, S. P. Tiwari, Said Broumi, Florentin Smarandache 
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such as algebraic structures [5,21,29], topological structures [8,20,24], control theory [17,18,36],

decision-making [2, 3, 14,22,34], medical [1, 25,35] and smart product-service system [4].

Generally, computational complexity problems are solved by the automata theory. It has a

wide application in computer science and discrete mathematics which is also used to study the

behavior of dynamical discrete systems. Fuzzy automata emerge from the inclusion of fuzzy

logic into automata theory. Fuzzy finite automata are beneficial to model uncertainties which

inherent in many applications [6]. Wee [33] and Santos [26] first introduced the theory of

fuzzy finite automata to deal with the notions frequently encountered in the study of natural

languages such as vagueness and imprecision. Malik et al [16] introduced a considerably simpler

notion of a fuzzy finite state machine that is almost identical to fuzzy finite automatons and

greatly contributed to the algebraic study of the fuzzy automaton and fuzzy languages. In

addition, several researchers contributed to the development of the theory of fuzzy automata

( [11]). Fuzzy finite automata with output offer further inclination in providing output compare

to one without outputs. For each assigning input, the machine will generate output and its

value is a function of the current state and the current input. Verma and Tiwari [32] recently

introduced and studied the concepts of state distinguishability, input-distinguishability, and

output completeness of states of a crisp deterministic fuzzy automaton with output function

based on [7].

In recent years neutrosophic sets and systems have become an area of interest for many

researchers in different areas because it can provide a practical way to address real-world prob-

lems more efficiently along with indeterminacy naturally especially in the realm of decision-

making. Neutrosophic automata is a newer model, which is extended from a fuzzy automata

theory. The neutrosophic set idea was incorporated in automata theory by many researchers

in different forms such as finite state machine and its switchboard machine was introduced by

under the concept of interval neutrosophic sets [30] and single-valued neutrosophic sets [31].

Further, the finite automata theory has been extended by the concept of general fuzzy au-

tomata under the environment of neutrosophic sets, which is called as neutrosophic general

finite automata [12]. In addition, the concept of distinguishability and inverse of neutrosophic

finite automata was introduced by Kavikumar et al. in [10]. However, still, there are many

algebraic structures of neutrosophic automata theory that haven’t been studied yet especially

automaton with output. Hence, it is important to study more algebraic structures on neutro-

sophic automata theory with outputs. Therefore, our motive is to study and introduce the

concept of composite neutrosophic finite automata which we can obtain by using the outputs

of one automaton as inputs to another automaton.
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2. Preliminaries

Definition 2.1. Let X be a universe of discourse. The neutrosophic set is an object having the

form A = {≺ x, δ1(x), δ2(x), δ3(x) � |∀x ∈ X} where the functions can be defined by δ1, δ2, δ3 :

X →]0, 1[ and δ1 is the degree of membership or truth, δ2 is the degree of indeterminancy and

δ3 is the degree of non-membership or false of the element x ∈ X to the set A with the

condition δ1(x) + δ2(x) + δ3(x) ≤ 3.

Let X be a universe of discourse and λ is a neutrosophic subset of X. A map λ : X → L,

where L is a lattice-ordered monoid. The definition of lattice-ordered monoid is as follows:

Definition 2.2. An algebra L = (L,≤,∧,∨, •, 0, 1) is called a lattice-ordered monoid if

(1) L = (L,≤,∧,∨, 0, 1) is a lattice with the least element 0 and the element element 1.

(2) (L, •, 1) is a monoid with 1 identity 1 ∈ L such that a, b, c ∈ L.

(a) a • 0 = 0 • a = 0,

(b) a ≤ b⇒ a • x ≤ b • b, ∀x ∈ L,

(c) a • (b ∨ c) = (a • b) ∨ (b • c) and (b ∨ c) • a = (b • a) ∨ (c • a).

Throughout, we work with a lattice-ordered monoid L so that the monoid (L, •, 1) satisfies

the left cancellation law. A neutrosophic finite automaton with outputs (in short; neutrosophic

finite automata (NFA)) has considered with neutrosophic transition function and neutrosophic

output function.

Definition 2.3. A NFA is a five-tuple M = (Q,Σ, Z, δ, σ), where Q is a finite non-empty

set of states, Σ is a finite set of input alphabet, Z is a finite set of output alphabet, δ is a

neutrosophic subset of Q×Σ×Q which represents neutrosophic transition function, and σ is

a neutrosophic subset of Q× Σ× Z which represents neutrosophic output function.

Definition 2.4. Let M = (Q,Σ, Z, δ, σ) be a NFA.

(1) Q = {q1, q2, . . . , qn}, is a finite set of states,

(2) Σ = {x1, x2, . . . , xn}, is a finite set of input symbols,

(3) Z = {y1, y2, . . . , yn}, is a finite set of output symbols,

(4) Let δ =≺ δ1, δ2, δ3 � is a neutrosophic subset of Q×Σ×Q such that the neutrosophic

transition function δ : A × Σ × Q → L × L × L is defined as follows: ∀qi, qj ∈ Q and

x1, x2 ∈ Σ,

δ1(qi,Λ, qj) =

{
1 if qi = qj

0 if qi 6= qj

δ2(qi,Λ, qj) =

{
0 if qi = qj

1 if qi 6= qj

δ3(qi,Λ, qj) =

{
0 if qi = qj

1 if qi 6= qj

Florentin Smarandache (author and editor) Collected Papers, XII

822



and

δ1(qi, x1x2, qj) =
∨
r∈Q
{δ1(qi, x1, r) ∧ δ1(r, x2, qj)}

δ2(qi, x1x2, qj) =
∧
r∈Q
{δ2(qi, x1, r) ∨ δ2(r, x2, qj)}

δ3(qi, x1x2, qj) =
∧
r∈Q
{δ3(qi, x1, r) ∨ δ3(r, x2, qj)}

(5) Let σ =≺ σ1, σ2, σ3 � is a neutrosophic subset of Q×Σ×Z such that the neutrosophic

output function σ : Q×Σ×Z → L×L×L is defined as follows: ∀qi, qj ∈ Q, x1, x2 ∈ Σ

and y1, y2 ∈ Z,

σ1(qi, x1, qj) =

{
1 if x1 = y1 = Λ

0 if x1 = Λ, y1 6= Λ or x1 6= Λ, y1 = Λ

σ2(qi, x1, qj) =

{
0 if x1 = y1 = Λ

1 if x1 = Λ, y1 6= Λ or x1 6= Λ, y1 = Λ

σ3(qi, x1, qj) =

{
0 if x1 = y1 = Λ

1 if x1 = Λ, y1 6= Λ or x1 6= Λ, y1 = Λ

and

σ1(qi, x1x2, y1y2) = σ1(qi, x1, y1) •
∨
r∈Q
{δ1(qi, x1, r) ∧ σ1(r, x2, y2)}

σ2(qi, x1x2, y1y2) = σ2(qi, x1, y1) •
∧
r∈Q
{δ2(qi, x1, r) ∨ σ2(r, x2, y2)}

σ3(qi, x1x2, y1y2) = σ3(qi, x1, y1) •
∧
r∈Q
{δ3(qi, x1, r) ∨ σ3(r, x2, y2)}

3. Composite Neutrosophic Finite Automata

This section is interested in the concept of composite finite automata under the environment

of neutrosophic sets.

Definition 3.1. For i ≤ n, let Mi = (Qi,Σi, Zi, δ
i, σi) be NFA’s. Let MT = M1 → M2 →

· · · →Mn be a composite NFA, where (q1, q2, . . . , qn) = qT ∈ QT and each qi ∈ Qi if

(1) Zi ⊆ Σi+1, for i ≤ n− 1.

(2) let {(xT ∈ ΣT ⇒ x1 ∈ Σ1)(yT ∈ ZT ⇒ yn ∈ Zn)|σ11(q1, xT , y1) > 0, σ12(q1, xT , y1) <

1, σ13(q1, xT , y1) < 1, for i = 1} then define

δT1
[
(q1, q2, . . . , qn), xT , (q

′
1, q
′
2, . . . , q

′
n)
]

=

{
δ11(q1, x1, q

′
1) > 0 for i = 1,

δi1(qi, (σ
i
1(qi, yi−1, yi)), q

′
i) for i > 1.

,

δT2
[
(q1, q2, . . . , qn), xT , (q

′
1, q
′
2, . . . , q

′
n)
]

=

{
δ12(q1, x1, q

′
1) < 1 for i = 1,

δi2(qi, (σ
i
2(qi, yi−1, yi)), q

′
i) for i > 1.
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δT3
[
(q1, q2, . . . , qn), xT , (q

′
1, q
′
2, . . . , q

′
n)
]

=

{
δ13(q1, x1, q

′
1) < 1 for i = 1,

δi3(qi, (σ
i
3(qi, yi−1, yi)), q

′
i) for i > 1.

and

σT1 ((q1, q2, . . . , qn), xT , yn) =

{
1 if xT = yn = Λ

0 if either xT 6= Λ and yn = Λ or xT = Λ and yn 6= Λ

σT2 ((q1, q2, . . . , qn), xT , yn) =

{
0 if xT = yn = Λ

1 if either xT 6= Λ and yn = Λ or xT = Λ and yn 6= Λ

σT3 ((q1, q2, . . . , qn), xT , yn) =

{
0 if xT = yn = Λ

1 if either xT 6= Λ and yn = Λ or xT = Λ and yn 6= Λ

Example 3.2. Let M = (Q,Σ, Z, δ, σ) is a NFA, where Q = {q1, q2}, Σ = {a, b} and Z = {0, 1}
and the transition diagram is given below:

q1 q2

0(0.6,0.25,0.3)/0(0.35,0.37,0.45)

1(0.2,0.3,0.6)/1(0.4,0.4,0.5)

1(0.7,0.15,0.2)/0(0.7,0.1,0.25)

0(0.8,0.0,0.1)/1(0.9,0.1,0.2)

Now, we define the composite NFA, MT = M→M and its transition diagram is given below:

q1q1 q2q1

q1q2 q2q2

0(0.6,0.25,0.3)/0(0.35,0.37,0.45)
1(0.7,0.15,0.2)/0(0.7,0.1,0.25)

1(0.2,0.3,0.6)/1(0.4,0.4,0.5)

0(0.6,0.0,0.2) / 0(0.35,0.4,0.3)

1(0.8,0.4,0.5)/0(0.9,0.4,0.5)

1(0.8,0.2,0.4)/1(0.4,0.1,0.2)

0(0.8,0.0,0.1)/1(0.9,0.1,0.2)

0(0.6,0.3,0.5)/1(0.3,0.4,0.5)

Then the output for input xT = 1001 is yT = 0010.
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Definition 3.3. Let M = (Q,Σ, Z, δ, σ) be a NFA. A non-empty set of states QA ⊆M is said

to be stable if

δ1(q, x, p) > 0, δ2(q, x, p) < 1, δ3(q, x, p) < 1,

for all q, p ∈ QA and x ∈ Σ.

Definition 3.4. Two NFA’s M1 = (Q1,Σ1, Z1, δ
1, σ1) and M2 = (Q2,Σ2, Z2, δ

2, σ2)

are said to be homomorphism if α
[
δ1(q, x, p)

]
= δ2(α(q), β(x), α(p)) and σ1(q, x, y) ≤

σ2(α(q), β(x), γ(y)), ∀q, p ∈ Q1, x ∈ Σ1 and y ∈ Z1, where the mapping α : Q1 → Q2,

β : Σ1 → Σ2 and γ : Z1 → Z2 are monoid homomorphisms. Moreover, two NFA’s are said to

be isomorphism when the mapping α, β and γ are bijective.

Lemma 3.5. Let M1 = (Q1,Σ1, Z1, δ
1, σ1), M2 = (Q2,Σ2, Z2, δ

2, σ2) and M3 =

(Q3,Σ3, Z3, δ
3, σ3) be NFA’s. Then M1 → (M2 →M3) and (M1 →M2)→M3 are isomorphic.

Proof. Since one neutrosophic finite automaton outputs are used as the another neutrosophic

finite automaton inputs and omit the parentheses as follows M1 → M2 → M3. Now, we have

an initial inputs for M1 and its outputs will become an input of M2. Then, the outputs of

M2 will be an input of M3. In this manner, M1 → (M2 → M3) and (M1 → M2) → M3 are

isomorphic.

Remark 3.6. Lemma 3.5 can be easily extend to four or more NFA’s.

Lemma 3.7. Let Mi = (Qi,Σi, Zi, δ
i, σi), where i = 1, 2, . . . , n, be NFA’s. If M1 → M2 →

· · · →Mn is a composite NFA if and only if Mn is a NFA.

Proof. Assume that M1 → M2 → · · · → Mn is a composite NFA. Then, by lemma 3.5, it is

clear that Mn is a NFA. Conversely, since Mn is a NFA, the input of Mn is a output of the

Mn−1, so in this manner, M1 →M2 → · · · →Mn is a composite NFA.

Definition 3.8. A NFA M = (Q,Σ, Z, δ, σ) is called free if ∀qi ∈ Q, x ∈ Σ ∃ y ∈ Z such that

σ1(qi, x, y) > 0, σ2(qi, x, y) < 1, and σ3(qi, x, y) < 1.

Theorem 3.9. For each positive integer i ≤ n, let Mi is a free NFA, then M1 →M2 → · · · →
Mn is a composite NFA.

Proof. Suppose Mi, i = 1, 2, . . . , n is a NFA. Let q, p ∈ Q1 and x1 ∈ Σ1 and y1 ∈ Z1. We prove

the theorem by induction on |i| = n.

If n = 1, then M1 is a free NFA. Now, we have

σ11(q1, x1, y1) > 0, σ12(q1, x1, y1) < 1, and σ13(q1x1, y1) < 1,

since δ11(q1, x1, p1) > 0, δ12(q1, x1, p1) < 1 and δ13(q1, x1, p1) < 1. This implies that M1 is a

composite NFA. Hence, the theorem is true for n = 1.
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Suppose the result is true for all xi ∈ Σi and yi ∈ Zi such that |i| = n − 1. Let Zi ⊆ Σi+1

for i ≤ n− 1, n > 1, so that Mn−1 is a free NFA. Now, we have,

σn−11 (qn−1, xn−1, yn−1) > 0, σn−12 (qn−1, xn−1, yn−1) < 1, and σn−13 (qn−1, xn−1, yn−1) < 1.

Then by Definition 3.1, we have

δn1 (qn, yn−1, pn) > 0, δn2 (qn, yn−1, pn) < 1 and δn3 (qn, yn−1, pn) < 1.

By the induction hypothesis and consider yn−1 = xn, then we have

δn1 (qn, xn, pn) > 0, δn2 (qn, xn, pn) < 1 and δn3 (qn, xn, pn) < 1.

This implies that, for xn ∈ Σn there exists yn ∈ Zn such that

σn1 (qn, xn, yn) > 0, σn2 (qn, xn, yn) < 1, and σn3 (qn, xn, yn) < 1.

Hence, the theorem is true for induction.

Remark 3.10. The converse of Theorem 3.9 is not true since the outputs of composite NFA

need not be satisfy the condition of free NFA.

Definition 3.11. Let M1 = (Q1,Σ1, Z1, δ
1, σ1) and M2 = (Q2,Σ2, Z2, δ

2, σ2) be NFA’s. A

box function β of (M1,M2) is satisfy the following conditions, where β : Q1 → Q2 such that

(1) Σ1 ⊆ Z2

(2) for all q, p ∈ Q1 and x ∈ Σ1 there exists y ∈ Z1 such that

β
[
δ1(q, x, p)

]
= δ2

[
β(q), σ1(q, x, y), β(p)

]
.

Definition 3.12. Let Mi = (Qi,Σi, Zi, δ
i, σi), i=1,2,. . . ,n, be NFA’s. To each box functions

βi of (Mi,Mi+1) for 1 ≤ i ≤ n − 1, there is a corresponding sub NFA N(β1, β2, . . . , βn−1) of

MT = M1 →M2 → · · · →Mn.

Proposition 3.13. Let MT = (QT ,ΣT , ZT , δ
T , σT ) be a composite NFA and N =

(QN ,ΣN , ZN , δ
N , σN ) ⊆ M, where QN = {(q1, q2, . . . , qn)|q1 ∈ M and qi = βi−1(qi−1) for i >

1}. If QT is stable, then N is a compositie NFA.

Proof. Let q = (q1, . . . , qn), q′ = (q′1, . . . , q
′
n) ∈ QN , xT ∈ ΣT and yi ∈ ZT . Then, by definition

3.1 and yi−1 = xi. Since QN ⊆ QT , it is enough to prove that QN is stable, for each i > 1.

Then

δi1(qi, xi, q
′
i) = δi1

[
βi−1(qi−1), (σ

i−1
1 (qi−1, yi−2, yi−1)), βi−1(q

′
i−1)

]
= βi−1

[
δi−11 (qi−1, xi−1, q

′
i−1)

]
, since βi−1 is a box function of (Mi−1,Mi),

= δi−11

[
βi−1(qi−1), xi−1, βi−1(q

′
i−1)

]
This implies that δi−11

[
βi−1(qi−1), xi−1, βi−1(q

′
i−1)

]
is stable, since δi−11 (qi−1, xi−1, q

′
i−1) is sta-

ble. Hence, QN is stable. Therefore, N is a composite NFA.
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Theorem 3.14. Let M1 = (Q1,Σ1, Z1, δ
1, σ1) and M2 = (Q2,Σ2, Z2, δ

2, σ2) be two NFA’s

and let H be a NFA with inputs ΣH which generating inputs set for Σ1. Suppose Z1 ⊆ Σ2

and for all p, q ∈ Q1, x1 ∈ ΣH , the map β : Q1 → Q2 such that β[δ1(q, x1, p)] =

δ2[β(q), σ1(q, x1, y1), β(p)]. Then β is a box function of (M1,M2).

Proof. We will prove the result by mathematical induction on the generated set of inputs ΣH .

For n = 1, let x1 ∈ ΣH the result follows from 3.11.

For n = 2, let x1, x2 ∈ ΣH and q, p ∈ Q1, then

β
[
δ1(q, x1x2, p)

]
= β

[∨
r∈Q1

{
δ1(q, x1, r) ∧ δ1(r, x2, p)

}]
=
∨
r∈Q1

{
β(δ1(q, x1, r)) ∧ β(δ1(r, x2, p))

}
=
∨
β(r)∈Q2

{
δ2(β(q), σ1(q, x1, y1), β(r)) ∧ δ2(β(r), σ1(q, x2, y2), β(p))

}
= δ2

[
β(q), σ1(q, x1, y1) • σ1(q, x2, y2), β(p)

]
= δ2

[
β(q), σ1(q, x1x2, y1y2), β(p)

]
If the induction continues for any finite sequence of inputs such as n > 2 for each xi ∈ ΣH ,

the results follows by induction. Hence β is a box function of (M1,M2).

4. Conclusions

The main focus of this paper is to study the algebraic automata theory based on the concept

of neutrosophic sets. Thus, this investigation contributes a small portion to algebraic automata

theory such as composite neutrosophic finite automata which is established by outputs of one

automaton as the inputs of another automaton. The future study will be concerned with

similar concepts but the approaches are based on the combination of N -fuzzy structures [9,13]

and type-2 fuzzy structures [15,19] under the environment of neutrosophic sets [27,28].
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Fixed Point Results for Contraction Theorems 
in Neutrosophic Metric Spaces

S Sowndrarajan, M Jeyaraman, Florentin Smarandache

Abstract. In this article, we present fixed and common fixed point results for Banach and Edelstein contraction

theorems in neutrosophic metric spaces. Then some properties and examples are given for neutrosophic metric

spaces. Thus, we added a new path in neutrosophic theory to obtain fixed point results. we investigate and

prove some contraction theorems that are extended to neutrosophic metric space with the assistance of Grabiec.

Keywords: Fixed point; Neutrosophic Metric Space; Banach Contraction; Edelstein Contraction.

—————————————————————————————————————————

1. Introduction

Fuzzy Sets was presented by Zadeh [20] as a class of elements with a grade of membership.

Kramosil and Michalek [9] defined new notion called Fuzzy Metric Space (FMS). Later, many

authors have examined the concept of fuzzy metric in various aspects. In 1984 Kaleva and

Seikkala [8] have characterized the FMS, where separation between any two points to be posi-

tive number. In particular, George and Veeramani [4,5] redefined the concept of fuzzy metric

space with the assistance of continuous t-norm, and continuous t-co norm. FMS has utilized in

applied science fields such as fixed point theory, decision making, medical imaging and signal

processing. Heilpern [7] defined fuzzy contraction for Fixed point theorem. Park [14] de-

fined Intuitionistic Fuzzy Metric Space (IFMS) from the concept of FMS and given some fixed

point results. Fixed point theorems related to FMS and IFMS given by Alaca et al [2] and

nemerous researchers [13,19].In 1998, Smarandache [16] characterized the new concept called

S. Sowndrarajan, M. Jeyaraman, Florentin Smarandache (2020). Fixed Point Results for 
Contraction Theorems in Neutrosophic Metric Spaces. Neutrosophic Sets and Systems 
36, 308-318
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neutrosophic logic and neutrosophic set. In the idea of neutrosophic sets, there is T degree

of membership, I degree of indeterminacy and F degree of non-membership. A neutrosophic

value is appeared by (T, I, F). Hence, neutrosophic logic and neutrosophic set assists us to

brief many uncertainties in our lives. In addition, several researchers have made significant

development on this theory [26–30]. Recently, Baset et al. [22–25] explored the neutrosophic

applications in different fields such as model for sustainable supply chain risk management,

resource levelling problem in construction projects, Decision Making and financial performance

evaluation of manufacturing industries. In fact, the idea of fuzzy sets deals with only a degree

of membership. In addition, the concept of intuitionistic fuzzy set established while adding

degree of non - membership with degree of membership. But these degrees are characterized

relatively one another. Therefore, neutrosophic set is a generalized state of fuzzy and intu-

itionistic fuzzy set by incorporating degree of indeterminacy. In 2019, Kirisci et al [10, 11]

defined neutrosophic metric space as a generalization of IFMS and brings about fixed point

theorems in complete neutrosophic metric space.

In this paper, we investigate and prove some contraction theorems that are extended to neu-

trosophic metric space with the assistance of Grabiec [6].

2. Preliminaries

Definition 2.1 [17] Let Σ be a non-empty fixed set. A Neutrosophic Set (NS for short) N

in Σ is an object having the form N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} where the functions

ξN (a), %N (a) and νN (a) represent the degree of membership, degree of indeterminacy and the

degree of non-membership respectively of each element a ∈ N to the set Σ.

A neutrosophic set N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} is expressed as an ordered triple

N = 〈a, ξN (a), %N (a), νN (a)〉 in Σ.

In NS, there is no restriction on (ξN (a), %N (a), νN (a)) other than they are subsets of ]−0, 1+[

Remark 2.2 [10] Neutrosophic Set N is included in another Neutrosophic set Γ ( N ⊆ Γ)

if and only if

inf ξN (a) ≤ infξΓ(a) sup ξN (a) ≤ sup ξΓ(a)

inf %N (a) ≥ inf%Γ(a) sup %N (a) ≥ sup %Γ(a)

inf νN (a) ≥ infνΓ(a) sup νN (a) ≥ sup νΓ(a)

Triangular Norms (TNs) were initiated by menger. Triangular co norms(TCs) knowns as

dual operations of triangular norms (TNs).

Definition 2.3 [4] A binary operation ? : [0, 1]× [0, 1]→ [0, 1] is called continuous t - norm

(CTN) if it satisfies the following conditions;

For all ε1, ε2, ε3, ε4 ∈ [0, 1]

(i) ε1 ? 0 = ε1;

Florentin Smarandache (author and editor) Collected Papers, XII

831



(ii) If ε1 ≤ ε3 and ε2 ≤ ε4 then ε1 ? ε2 ≤ ε3 ? ε4;

(iii) ? is continuous;

(iv) ? is commutative and associative.

Definition 2.4 [4] A binary operation � : [0, 1] × [0, 1] → [0, 1] is called continuous t - co

norm (CTC) if it satisfies the following conditions;

For all ε1, ε2, ε3, ε4 ∈ [0, 1]

(i) ε1 � 0 = ε1;

(ii) If ε1 ≤ ε3 and ε2 ≤ ε4 then ε1 � ε2 ≤ ε3 � ε4;

(iii) � is continuous;

(iv) � is commutative and associative.

Remark 2.5 From the definitions of CTN and CTC, we note that if we take 0 < ε1, ε2 < 1

for ε1 < ε2 then there exist 0 < ε3, ε4 < 1 such that ε1 ? ε3 ≥ ε2 and ε1 ≥ ε2 � ε4.

Further we choose ε5 ∈ (0, 1) then there exists ε6, ε7 ∈ (0, 1) such that ε6 ? ε6 ≥ ε5 and

ε7 � ε7 ≤ ε5.

Definition 2.6 [13] A Sequence {tn} is called s - non-decreasing sequence if there exists

m0 ∈ N such that tm ≤ tm+1 for all m > m0.

3. Neutrosophic Metric Space

In this section, we apply neutrosophic theory to generalize the Intuitionistic fuzzy metric

space. we also discuss some properties and examples in it.

Definition 3.1 A 6 - tuple (Σ,Ξ,Θ,Υ, ?, �)is called Neutrosophic Metric Space(NMS), if Σ is

an arbitrary non empty set, ? is a neutrosophic CTN and � is a neutrosophic CTC and Ξ,Θ,Υ

are neutrosophic sets on Σ2 × R+ satisfying the following conditions:

For all ζ, η, ω ∈ Σ, λ ∈ R+

(i) 0 ≤ Ξ(ζ, η, λ) ≤ 1; 0 ≤ Θ(ζ, η, λ) ≤ 1; 0 ≤ Υ(ζ, η, λ) ≤ 1;

(ii) Ξ(ζ, η, λ) + Θ(ζ, η, λ) + Υ(ζ, η, λ) ≤ 3;

(iii) Ξ(ζ, η, λ) = 1 if and only if ζ = η ;

(iv) Ξ(ζ, η, λ) = Ξ(η, ζ, λ) for λ > 0;

(v) Ξ(ζ, η, λ) ? Ξ(η, ζ, µ) ≤ Ξ(ζ, ω, λ+ µ), for all λ, µ > 0;

(vi) Ξ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(vii) limλ→∞Ξ(ζ, η, λ) = 1 for all λ > 0;

(viii) Θ(ζ, η, λ) = 0 if and only if ζ = η ;

(ix) Θ(ζ, η, λ) = Θ(η, ζ, λ) for λ > 0;

(x) Θ(ζ, η, λ) �Θ(ζ, ω, µ) ≥ Θ(ζ, ω, λ+ µ), for all λ, µ > 0;

(xi) Θ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xii) limλ→∞Θ(ζ, η, λ) = 0 for all λ > 0;

(xiii) Υ(ζ, η, λ) = 0 if and only if ζ = η;
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(xiv) Υ(ζ, η, λ) = Υ(η, ζ, λ) for λ > 0;

(xv) Υ(ζ, η, λ) �Υ(ζ, ω, µ) ≥ Υ(ζ, ω, λ+ µ), for all λ, µ > 0;

(xvi) Υ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xvii) limλ→∞Υ(ζ, η, λ) = 0 for all λ > 0;

(xviii) If λ > 0 then Ξ(ζ, η, λ) = 0,Θ(ζ, η, λ) = 1,Υ(ζ, η, λ) = 1.

Then (Ξ,Θ,Υ) is called Neutrosophic Metric on Σ. The functons Ξ,Θ and Υ denote degree of

closedness, neturalness and non - closedness between ζ and η with respect to λ respectively.

Example 3.2 Let (Σ, d) be a metric space. Define ζ ?η = min{ζ, η} and ζ �η = max{ζ, η},
and Ξ,Θ,Υ : Σ2 × R+ → [0, 1] defined by , we define

Ξ(ζ, η, λ) =
λ

λ+ d(ζ, η)
; Θ(ζ, η, λ) =

d(ζ, η)

λ+ d(ζ, η)
; Υ(ζ, η, λ) =

d(ζ, η)

λ

for all ζ, η ∈ Σ and λ > 0. Then (Σ,Ξ,Θ,Υ, ?, �) is called neutrosophic metric space induced

by a metric d the standard neutrosophic metric.

Example 3.3 If we take Σ = N, consider the CTN, CTC are ζ ? η = min{ζ, η} and

ζ � η = max{ζ, η}, Ξ,Θ,Υ : Σ2 × R+ → [0, 1] defined by

Ξ(ζ, η, λ) =


ζ
η if ζ ≤ η
η
ζ if η ≤ ζ

Θ(ζ, η, λ) =


η−ζ
η if ζ ≤ η
ζ−η
ζ if η ≤ ζ

Υ(ζ, η, λ) =

η − ζ if ζ ≤ η

ζ − η if η ≤ ζ

for all ζ, η ∈ Σ and λ > 0. Then Ξ,Θ,Υ : Σ2 × R+ → [0, 1] is a NMS.

Remark 3.4 In Neutrosophic Metric space Ξ is non - decreasing , Θ is a non - increasing , Υ

is decreasing for all ζ, η ∈ Σ.

Definition 3.5 Let (Σ,Ξ,Θ,Υ, ?, �) be neutrosophic metric space . Then

(a) a sequence {ζn} in Σ is converging to a point ζ ∈ Σ if for each λ > 0

limλ→∞Ξ(ζ, η, λ) = 1; limλ→∞Θ(ζ, η, λ) = 0; limλ→∞Υ(ζ, η, λ) = 0.

(b) a sequence ζn in Σ is said to be Cauchy if for each ε > 0 and λ > 0 there exist N ∈ N
such that Ξ(ζn, ζm, λ) > 1− ε ; Θ(ζn, ζm, λ) < ε ; Υ(ζn, ζm, λ) < ε for all n, m ≤ N.

(c) (Σ,Ξ,Θ,Υ, ?, �) is said to be complete neutrosophic metric space if every Cauchy

sequence is convergent.

(d) (Σ,Ξ,Θ,Υ, ?, �) is called compact neutrosophic metric space if every sequence contains

convergent sub sequence.
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4. Main Results

Theorem 4.1 (Neutrosophic Banach Contraction Theorem) Let (Σ,Ξ,Θ,Υ, ?, �) be a

complete neutrosophic metric space. Let z : Σ→ Σ be a function satisfying

Ξ(zζ,zη, λ) ≥ Ξ(ζ, η, λ); Θ(zζ,zη, λ) ≤ Θ(ζ, η, λ); Υ(zζ,zη, λ) ≤ Υ(ζ, η, λ) (4.1.1)

for all ζ, η ∈ Σ. 0 < k < 1. Then z has unique fixed point.

Proof: Let ζ ∈ Σ and {ζn} = zn(a) (n ∈ N). By Mathematical induction, we obtain

Ξ(ζn, ζn+1, λ) ≥ Ξ(ζ, ζ1,
λ

kn
); Θ(ζn, ζn+1, λ) ≤ Θ(ζ, ζ1,

λ

kn
); Υ(ζn, ζn+1, λ) ≤ Υ(ζ, ζ1,

λ

kn
) ....(4.1.2)

for all n > 0 and λ > 0. Thus for any non-negative integer p, we have

Ξ(ζn, ζn+p, λ) ≥ Ξ(ζ, ζn+1,
λ

p
) ? · · ·(p−times) · · · ? Ξ(ζn+p−1, ζn+p,

λ

p
)

≥ Ξ(ζ, ζ1,
λ

pkn
) ? · · ·(p−times) · · · ? Ξ(ζ, ζ1,

λ

pkn+p−1
)

Θ(ζn, ζn+p, λ) ≤ Θ(ζ, ζn+1,
λ

p
) � · · ·(p−times) · · · �Θ(ζn+p−1, ζn+p,

λ

p
)

≤ Θ(ζ, ζ1,
λ

pkn
) � · · ·(p−times) · · · �Θ(ζ, ζ1,

λ

pkn+p−1
)

Υ(ζn, ζn+p, λ) ≤ Υ(ζ, ζn+1,
λ

p
) � · · ·(p−times) · · · �Υ(ζn+p−1, ζn+p,

λ

p
)

≤ Υ(ζ, ζ1,
λ

pkn
) � · · ·(p−times) · · · �Υ(ζ, ζ1,

λ

pkn+p−1
)

by (4.1.2) and the definition of NMS conditions, we get

limn→∞Ξ(ζn, ζn+p, λ) ≥ 1 ? · · ·(p−times) · · · ? 1 = 1

limn→∞Θ(ζn, ζn+p, λ) ≤ 0 � · · ·(p−times) · · · � 0 = 0

limn→∞Υ(ζn, ζn+p, λ) ≤ 0 � · · ·(p−times) · · · � 0 = 0.

Therefore, {ζn} is Cauchy sequence and it is convergent to a limit, let the limit point is η.

Thus, we get

Ξ(zη, η, t) ≥ Ξ(zη,zζn,
λ

2
) ? Ξ(ζn+1, η,

λ

2
)

≥ Ξ(η, ζn,
λ

2k
) ? Ξ(ζn+1, η,

λ

2
)→ 1 ? 1 = 1.

Θ(zη, η, λ) ≤ Θ(zη,zζn,
λ

2
) �Θ(ζn+1, η,

λ

2
)

≤ Θ(η, ζn,
λ

2k
) �Θ(ζn+1, η,

λ

2
)→ 0 � 0 = 0.

Υ(zη, η, λ) ≤ Υ(zη,zζn,
λ

2
) �Υ(ζn+1, η,

λ

2
))

≤ Υ(η, ζn,
λ

2k
) �Υ(ζn+1, η,

λ

2
)→ 0 � 0 = 0.
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Since we see that

Ξ(ζ, η, λ) = 1 iff ζ = η; Θ(ζ, η, λ) = 0 iff ζ = η; Υ(ζ, η, λ) = 0 iff ζ = η

we get zη = η, which is the fixed point of Neutrosophic metric space.

To show the uniqueness, let us assume that zω = ω for some ω ∈ Σ

1 ≥ Ξ(ζ, ω, λ) = Ξ(zη,zω, λ) ≥ Ξ(ζ, ω,
λ

k
) = Ξ(zη,zη,

λ

k
) ≥ Ξ(ζ, ω,

λ

k2
)

≥ · · · ≥ Ξ(ζ, ω,
λ

kn
)→ 1 as n→∞

0 ≤ Θ(ζ, ω, λ) = Θ(zη,zωzω, λ) ≤ Θ(ζ, ω,
λ

k
) = Θ(zη,zω,

λ

k
) ≤ Θ(ζ, ω,

λ

k2
)

≤ · · · ≤ Θ(ζ, ω,
λ

kn
)→ 0 as n→∞

0 ≤ Υ(ζ, ω, λ) = Υ(zη,zω, λ) ≤ Υ(ζ, ω,
λ

k
) = Υ(zη,zω,

λ

k
) ≤ Υ(ζ, ω,

λ

k2
)

≤ · · · ≤ Υ(ζ, ω,
λ

kn
)→ 0 as n→∞.

From the definition of NMS, We get η = ω. Therefor, z has a unique fixed point.

Lemma 4.2 (a) If limn→∞ζn = ζ and limn→∞ηn = η, then

Ξ(ζ, η, λ− ε) ≤ limn→∞inf Ξ(ζn, ηn, λ)

Θ(ζ, η, λ− ε) ≥ limn→∞sup Θ(ζn, ηn, λ)

Υ(ζ, η, λ− ε) ≥ limn→∞sup Υ(ζn, ηn, λ)

(b) If limn→∞ζn = ζ and limn→∞ηn = η, then

Ξ(ζ, η, λ+ ε) ≥ limn→∞sup Ξ(ζn, ηn, λ)

Θ(ζ, η, λ+ ε) ≤ limn→∞inf Θ(ζn, ηn, λ)

Υ(ζ, η, λ+ ε) ≤ limn→∞inf Υ(ζn, ηn, λ)
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for all λ > 0 and 0 < ε < λ.

Proof for(a): By the definition of NMS, conditions (v),(x) and (xv)

Ξ(ζn, ηn, λ) ≥ Ξ(ζn, ζ,
ε

2
) ? Ξ(ζ, η, λ− ε) ? Ξ(η, ηn,

ε

2
)

limn→∞inf Ξ(ζn, ηn, λ) ≥ 1 ? Ξ(ζ, η, λ− ε) ? 1

Hence, limn→∞inf Ξ(ζn, ηn, λ) ≥ Ξ(ζ, η, λ− ε)

Θ(ζn, ηn, λ) ≤ Θ(ζn, ζ,
ε

2
) �Θ(ζ, η, λ− ε) �Θ(η, ηn,

ε

2
)

limn→∞sup Θ(ζn, ηn, λ) ≤ 0 �Θ(ζ, η, λ− ε) � 0

Hence, limn→∞sup Θ(ζn, ηn, λ) ≤ Θ(ζ, η, λ− ε)

Υ(ζn, ηn, λ) ≤ Υ(ζn, ζ,
ε

2
) �Υ(ζ, η, λ− ε) �Υ(η, ηn,

ε

2
)

limn→∞sup Υ(ζn, ηn, λ) ≤ 0 �Υ(ζ, η, λ− ε) � 0

Hence, limn→∞sup Υ(ζn, ηn, λ) ≤ Θ(ζ, η, λ− ε)

Proof for (b):By the definition of NMS, conditions (v),(x) and (xv)

Ξ(ζ, η, λ+ ε) ≥ Ξ(ζ, ζn,
ε

2
) ? Ξ(ζn, ηn, ε) ? Ξ(ηn, η,

ε

2
)

Hence, Ξ(ζ, η, λ+ ε) ≥ limn→∞supΞ(ζn, ηn, ε)

Θ(ζ, η, λ+ ε) ≤ Ξ(ζ, ζn,
ε

2
) �Θ(ζn, ηn, ε) �Θ(ηn, η,

ε

2
)

Hence, Θ(ζ, η, λ+ ε) ≤ limn→∞infΘ(ζn, ηn, ε)

Υ(ζ, η, λ+ ε) ≤ Υ(ζ, ζn,
ε

2
) �Υ(ζn, ηn, ε) �Υ(ηn, η,

ε

2
)

Hence, Υ(ζ, η, λ+ ε) ≤ limn→∞infΥ(ζn, ηn, ε)

Corollary 4.3 If limn→∞ζn = a and limn→∞ηn = η, then

(a) Ξ(ζ, η, λ) ≤ limn→∞inf Ξ(ζn, ηn, λ);

Θ(ζ, η, λ) ≥ limn→∞sup Θ(ζn, ηn, λ);

Υ(ζ, η, λ) ≥ limn→∞sup Υ(ζn, ηn, λ)....(4.3.1)

(b) Ξ(ζ, η, λ) ≥ limn→∞sup Ξ(ζn, ηn, λ)

Θ(ζ, η, λ) ≤ limn→∞inf Θ(ζn, ηn, λ)

Υ(ζ, η, λ) ≤ limn→∞inf Υζn, ηn, λ)....(4.3.2)

for all λ > 0 and 0 < ε < λ.

Theorem 4.4 (Neutrosophic Edelstein Contraction Theorem) Let (Σ,Ξ,Θ,Υ, ?, �) be com-

pact neutrosophic metric space. Let z : Σ→ Σ be a function satisfying

Ξ(zζ,zη, .) > Ξ(ζ, η, .); Θ(zζ,zη, .) < Θ(ζ, η, .); Υ(zζ,zη, .) < Υ(ζ, η, .).....(4.4.1)
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Then z has fixed point.

Proof: Let a ∈ Σ and an = znζ (n ∈ N). Assume ζn 6= ζn+1 for each n (If not zζn = ζn)

consequently an 6= an+1 (n 6= m), For otherwise we get

Ξ(ζn, ζn+1, .) = Ξ(ζm, ζm+1, .) > Ξ(ζm−1, ζm, .) > · · · > Ξ(ζn, ζn+1, .)

Θ(ζn, ζn+1, .) = Θ(ζm, ζm+1, .) < Θ(ζm−1, ζm, .) < · · · < Θ(ζn, ζn+1, .)

Υ(ζn, ζn+1, .) = Υ(ζm, ζm+1, .) < Υ(ζm−1, ζm, .) < · · · < Υ(ζn, ζn+1, .)

where m > n , which is a contradiction. Since Σ is compact set, {ζn} has convergent sub

sequence {ζni}. Let η = limi→∞ζni , Also we assume that η such that zη ∈ {ζni ; i ∈ N}.
According to the above assumption, we may now write,

Ξ(zζni ,zη, .) > Ξ(ζni , η, .); Θ(zζni ,zη, .) < Θ(ζni , η, .); Υ(zζni ,zη, .) < Υ(ζni , η, .)

for all i ∈ N. Then by equation (4.3.1) we obtain

lim infΞ(zζni ,zη, λ) ≥ lim Ξ(ζni , η, λ) = Ξ(η, η, λ) = 1

lim supΘ(zζni ,zη, λ) ≤ lim Θ(ζni , η, λ) = Θ(η, η, λ) = 0

lim supΥ(zζni ,zη, λ) ≤ lim Υ(ζni , η, λ) = Υ(η, η, λ) = 0

for each λ > 0. Hence

lim zζni = zη....(4.4.2)

Simillarly

lim z2ζni = limz2η...(4.4.3)

(we recall that lim zζni = zη for all (i ∈ N)), Now observe that,

Ξ(ζni ,zζni , λ) ≤ Ξ(zζni ,z
2ζni , λ) ≤ · · · ≤ Ξ(ζni ,zζni , λ)

≤ Ξ(zζni ,z
2ζni , λ) ≤ · · · ≤ Ξ(zζni+1 ,z

2ζni+1 , λ)

≤ Ξ(zζni+1 ,z
2ζni+1 , λ) ≤ · · · ≤ 1.

Θ(ζni ,zζni , λ) ≥ Θ(zζni ,z
2ζni , λ) ≥ · · · ≥ Θ(ζni ,zζni , λ)

≥ Θ(zζni ,z
2ζni , λ) ≥ · · · ≥ Θ(zζni+1 ,z

2ζni+1 , λ)

≥ Θ(zζni+1 ,z
2ζni+1 , λ) ≥ · · · ≥ 0.

Υ(ζni ,zζni , λ) ≥ Υ(zζni ,z
2ζni , λ) ≥ · · · ≥ Υ(ζni ,zζni , λ)

≥ Υ(zζni ,z
2ζni , λ) ≥ · · · ≥ Υ(zζni+1 ,z

2ζni+1 , λ)

≥ Υ(zζni+1 ,z
2ζni+1 , λ) ≥ · · · ≥ 0.
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for all λ > 0. Thus {Ξ(ζni ,zζni , λ)}, {Θ(ζni ,zζni , λ)}, {Υ(ζni ,zζni , λ)} and {(zζni ,z2ζni , λ)}
(λ > 0) are convergent to a common limit point . So by equations (4.3.1) , (4.3.2) and (4.4.1)

and we get,

Ξ(η,zη, λ) ≥ lim sup Ξ(ζni ,zζni , λ) = lim sup (zζni ,z
2ζni , λ)

≥ lim infΞ(zζni ,z
2ζni , λ)

≥ Ξ(zη,z2η, λ)

Θ(η,zη, λ) ≤ lim inf Θ(ζni ,zζni , λ) = lim inf Θ(zζni ,z
2ζni , λ)

≤ lim supΘ(zζni ,z
2ζni , λ)

≤ Θ(zη,z2η, λ)

Υ(η,zη, λ) ≤ liminf Υ(ζni ,zζni , λ) = lim inf Υ(zζni ,z
2ζni , λ)

≤ lim supΥ(zζzζni ,z
2ζni , λ)

≤ Υ(zη,z2η, λ)

for all λ > 0. Suppose b 6= zη, By equation (4.4.1)

Ξ(η,zη, .) < Ξ(zη,z2η, .); Θ(η,zη, .) > θ(zη,z2η, .); Υ(η,zη, .) > Υ(zη,z2η, .).

which is a contradiction , because all the above functions are left continuous , non -decreasing

and right continuous , non - increasing respectively. Hence η = zη is a fixed point.

To prove the uniqueness of the fixed point, let us consider z(ζ) = ω for some ζ ∈ Σ.

Then

1 ≥ Ξ(ζ, ω, λ) = Ξ(zη,zω, λ) ≥ Ξ(ζ, ω,
λ

k
) = Ξ(zη,zω,

λ

k
) ≥ · · · ≥ Ξ(ζ, ω,

λ

kn
)

0 ≤ Θ(ζ, ω, λ) = Θ(zη,zω, λ) ≤ Θ(ζ, ω,
λ

k
) = Θ(zη,zω,

λ

k
) ≤ · · · ≤ Θ(ζ, ω,

λ

kn
)

0 ≤ Υ(ζ, ω, λ) = Υ(zη,zω, λ) ≤ Υ(ζ, ω,
λ

k
) = Υ(zω,zω,

λ

k
) ≤ · · · ≤ Υ(ζ, ω,

λ

kn
)

Now , we easily verify that { λkn } is an s - increasing sequence, then by assumption for a given

ε ∈ (0, 1), there exists n0 ∈ N such that

Ξ(ζ, ω,
λ

kn
) ≥ 1− ε; Θ(ζ, ω,

λ

kn
) ≤ ε; Υ(ζ, ω,

λ

kn
) ≤ ε.

Clearly

limn→∞Ξ(ζ, ω,
λ

kn
) = 1; limn→∞Θ(ζ, ω,

λ

kn
) = 0; limn→∞Υ(ζ, ω,

λ

kn
) = 0.

Hence Ξ(ζ, ω, λ) = 1; Θ(ζ, ω, λ) = 0; Υ(ζ, ω, λ) = 0. Thus η = ω. Hence proved.
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Conclusion: In this study, we have investigated the concept of Neutrosophic Metric Space

and its properties. We have proved fixed point results for contraction theorems in the setting

of neutrosophic metric Space. There is a scope to establish many fixed point results in the

areas such as fuzzy metric, generalized fuzzy metric, bipolar and partial fuzzy metric spaces

by using the concept of Neutrosophic Set.
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Neutrosophy for Survey Analysis in Social 
Sciences

Abstract. The survey is a research procedure used in sociology to determine the thoughts and feelings of a social group at a 
given time and context. Within the survey, the questionnaire is considered as a very useful instrument used to measure the state 
of opinions of social groups. Although it has been demonstrated that fuzzy responses to questionnaires are more appropriate than 
crisp ones, there may be indeterminacy and thus fuzzy processing does not accurately capture the thought that the respondent 
wants to express, due to doubts, unclear and vague thoughts, among others. Modeling such scenario by means of neutrosophic 
sets provides respondents a greater range of possible responses and hence it is more appropriate. In this paper, we propose a 
method to design single-valued neutrosophic sets from questionnaires to social groups. This method, inspired by another fuzzy 
one, allows us to create membership functions of truthfulness, indeterminacy and falseness through experimental data, which 
will let us find the essence of the thought of the human group under study to be captured with greater accuracy. 

Keywords: Neutrosociology, survey, questionnaire, single-valued neutrosophic set.

1 Introduction 

Sociology is the social science that studies the collective phenomena produced by the social activity of human 
beings, within the historical-cultural context in which they are immersed. In sociology, multiple interdisciplinary 
research techniques are used to analyze and interpret from different theoretical perspectives the causes, meanings 
and cultural influences that motivate the appearance of various behavioral trends in the human being, especially 
when it is in social coexistence and within a shared habitat. One of the most widely used research methods is the 
survey. 

A survey is a research procedure, within descriptive research designs (not experimental) in which the re-
searcher seeks to collect data through a previously designed questionnaire or an interview with someone, without 
modifying the environment or the phenomenon where the information is collected (just like in an experiment), [1]. 
The data are obtained by carrying out a set of standardized questions addressed to a representative sample or to 
the total set of the statistical population under study, often made up of people, companies or institutional entities, 
in order to know states of opinion, ideas, characteristics or facts. The researcher must select the most suitable 
questions, according to the nature of the investigation. 

On the other hand, a questionnaire is a research instrument that consists of a set of questions and other indica-
tions to obtain information from those consulted [1,2]. Although they are often designed to allow statistical analysis 
of responses, this is not always the case. The questionnaire is a document formed by a set of questions that must 
be drafted in a coherent way. Those questions must be organized, sequenced and structured according to a certain 
planning, so that answers can offer us all the required information. 

The survey is often carried out based on a questionnaire, which is therefore the basic document to obtain 
information in the vast majority of research and market studies. Questionnaires have advantages over other types 
of surveys in that they are inexpensive, do not require much effort on the part of the respondent, such as oral or 
telephone surveys, and often have standardized responses that make data tabulation simpler. 

In sociology, surveys are usually designed such that the possible responses to the questionnaires are fixed 
values. An example of a sociological questionnaire is the opinion on the number of children that an ideal family 
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should have, which can force respondents to answer with a number (2, 3, 4) even though the respondent wishes to 
answer more exactly, although imprecise as in interval form such as 2 to 4, [3]. Some authors have studied and 
demonstrated the fuzzy rather than crisp essence of surveys, [3-7]. Fuzzy sets have been proven more effective in 
dealing with measurements related to human thought than classical sets. 

In this paper, we defend the thesis that neutrosophic sets are even more suitable than fuzzy sets to represent 
the possible responses to questionnaires. The former one allow the surveyed person to be able to express even 
more accurately and also with greater indeterminacy about their true thoughts and feelings, due to the indetermi-
nacy membership function [8], which allows modeling the lack of knowledge, doubts or contradictions that may 
exist in the responses of any human being. 

Neutrosophic Sociology or Neutrosociology is the study of sociology using neutrosophic scientific methods, 
[9-13], because the data of sociology can be vague, incomplete, contradictory, hybrid, biased, ignorant, redundant, 
superfluous, meaningless, ambiguous, and unclear, among others. In this new approach to the study of sociology, 
the concepts are represented in the form of <A>, which is the primary concept, <Anti A>, which is its opposite, 
and <Neut A>, which represents those that are neither <A> nor <Anti A>. 

In this paper, we are inspired by a method in [4] for the construction of fuzzy membership functions [14,15] 
to construct neutrosophic sets as a result of the responses of a survey by a group of individuals under study. To 
design a priori fuzzy membership functions or neutrosophic sets is not sufficient and yet it is of great interest 
finding a more adequate application of these theories. With the use of neutrosophic sets instead of fuzzy sets, 
greater accuracy of the results is obtained, since the single-valued neutrosophic sets allow a greater range of ex-
pression of the thoughts and feelings of the respondents, since they cannot only express their ideas, but also what 
they consider false and what they consider indeterminate. This method, like its predecessor, stands out for its 
simplicity and applicability. 

This paper is structured into the following sections: Section 2, which recalls the main concepts of Neutrosophy 
that will be used in the proposed method. In Section 3, we introduce the method proposed in the paper and we 
develop two illustrative examples. The last section contains the conclusions. 

2 Basic concepts of Neutrosophy 
This section describes the main concepts of Neutrosophy, such as neutrosophic sets, single-valued neutro-

sophic sets, and single-valued neutrosophic numbers, among others. In addition, the main definitions of neutro-
sophic statistics are described. 

Definition 1: ([8]) Let X be a universe of discourse. A Neutrosophic Set (NS) is characterized by three mem-
bership functions, uA(x), rA(x), vA(x) ∶ X →  ] 0− , 1+[, which satisfy the condition 0 ≤− inf uA(x) + inf rA(x) +
inf vA(x) ≤ sup uA(x) + sup rA(x) + sup vA(x) ≤ 3+   for all xX. uA(x), rA(x) and vA(x) are the membership
functions of truthfulness, indeterminacy and falseness of x in A, respectively, and their images are standard or 
non-standard subsets of ] 0− , 1+[.

Definition 2: (8]) Let X be a universe of discourse. A Single-Valued Neutrosophic Set (SVNS) A on X is a set 
of the form: 

A =  {〈x, uA(x), rA(x), vA(x)〉: x ∈ X}c (1) 
Where uA, rA, vA ∶ X →  [0,1] , satisfy the condition 0 ≤ uA(x) + rA(x) + vA(x) ≤  3  for all xX .

uA(x), rA(x) and vA(x) denotes the membership functions of truthfulness, indeterminate and falseness of x in A,
respectively. For convenience a Single-Valued Neutrosophic Number (SVNN) will be expressed as A =  (a, b, c), 
where a, b, c  [0,1] and satisfy 0 ≤  a +  b +  c ≤  3. 

Definition 3: (8]) A neutrosophic number N is defined as a number in the following expression: 
N = d + I (2) 
Where d is called determinate part and I is called indeterminate part. 

Given N1 = a1 + b1I and N2 = a2 + b2I two neutrosophic numbers, some operations between them are de-
fined as follows: 

N1 + N2 = a1 + a1 + (b1 + b2)I (Addition); 

N1 − N2 = a1 − a1 + (b1 − b2)I (Difference), 

N1 × N2 = a1a2 + (a1b2 + b1a2 + b1b2)I (Multiplication), 
N1

N2
=

a1+b1I

a2+b2I
=

a1

a2
+

a2b1−a1b2

a2(a2+b2)
I (Division). 

Neutrosophy studies triads, where if <A> is an item or a concept then the triad is (<A>, <neut A>, <anti 
A>),[9,10]. Neutrosociology is based on triads. E.g., the concept A = imperialist society, has an antiA = communist 
society, and neutA = neutral society. 

Neutrosophic Statistics extends the classical statistics, such that we deal with set values rather than crisp values, 
[16-22]. Neutrosophic Statistics can be used as a quantitative research method in sociology for testing social hy-
potheses. 
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Neutrosophic Descriptive Statistics is comprised of all techniques to summarize and describe the neutrosophic 
numerical data characteristics. 

Neutrosophic Inferential Statistics consists of methods to allow the generalization of a neutrosophic sampling 
to a population from which the sample was selected. 

Neutrosophic Data is the piece of information that contains some indeterminacy. Similar to the classical sta-
tistics, it can be classified as: 

 Discrete neutrosophic data, if the values are isolated points.
 Continuous neutrosophic data, if the values form one or more intervals.
Another classification is:
 Quantitative (numerical) neutrosophic data; for example: a number in the interval [2, 5] (we do not know

exactly), 47, 52, 67 or 69 (we do not know exactly);
 Qualitative (categorical) neutrosophic data; for example: blue or red (we do not know exactly), white,

black or green or yellow (not knowing exactly).
The univariate neutrosophic data is a neutrosophic data that consists of observations on a neutrosophic single 

attribute. 
Multivariable neutrosophic data is neutrosophic data that consists of observations on two or more attributes. 
A Neutrosophic Statistical Number N has the form N = d + i, like Equation 2. 
A Neutrosophic Frequency Distribution is a table displaying the categories, frequencies, and relative frequen-

cies with some indeterminacies. Most often, indeterminacies occur due to imprecise, incomplete or unknown data 
related to frequency. Therefore, relative frequency becomes imprecise, incomplete, or unknown too. 

Neutrosophic Survey Results are survey results that contain some indeterminacy. 
A Neutrosophic Population is a population not well determined at the level of membership (i.e. not sure if 

some individuals belong or not to the population). 
A simple random neutrosophic sample of size n from a classical or neutrosophic population is a sample of n 

individuals such that at least one of them has some indeterminacy. 
A stratified random neutrosophic sampling the researcher groups the (classical or neutrosophic) population by 

a strata according to a classification; afterwards the researcher takes a random sample (of appropriate size accord-
ing to a criterion) from each group. If there is some indeterminacy, we deal with neutrosophic sampling. 

3 Application of neutrosophic theory in sociological surveys 

In the study carried out by Li in [4] about how to measure the people’s thoughts, the author acknowledges the 
existence of possible responses like “1 or 2 (sorry)” with respect to the size of an small family, whereas other 
answer is “not an exact age” for the question about the exact age of a “young person”. Thus, it is necessary to 
include the indeterminacy like a possible result of a survey. On the other hand, Li deals with indeterminacy when 
the range of responses is an interval rather than a single value. 

In this section, we deal with indeterminacy based on single-valued neutrosophic sets and Neutrosociology 
concepts. The method consists of the following aspects: 

1. Firstly, the sociologist must determine the primary concept he/she wants to measure, e.g., A = “small
family”. Next, he/she determines anti A, e.g. “big family”, and neut A, e.g. “optimal family”. In addition,
he/she establishes the social group to analyse.

2. He/she asks to the group the questions he/she designed aiming to have information about the triad (<A>,
<neut A>, <anti A>). Every question should have three variants, one of them related to one of the three
elements of the triad.
The ambiguous or vague answers like “I don’t know”, “certain number”, and so on are associated with
<neut A>, even though they were responses for questions of <A> or <anti A>.
The interviewer remarks that the responses can be given in form of intervals in case it makes sense or if
respondent considers it better corresponds to his/her opinions.
Questionnaires can also include answers in form of linguistic values.
The respondent should feel free to write what he/she thinks on the subject of the questions.

Let us denote as Xj = {xi
j
}

i=1

mj  the set of possible responses to question qj (j = 1, 2,…, n). 

The frequency of every possible response is calculated for every element of the triad, let us call them f<𝐴>(xi
j
),

f<𝑛𝑒𝑢𝑡 𝐴>(xi
j
), and f<𝑎𝑛𝑡𝑖 𝐴>(xi

j
).

If N is the size of the social group to study, we calculate the following probabilities: 

𝑝<𝐴>(xi
j
) =

f<𝐴>(xi
j
)

N
(3)
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𝑝<𝑛𝑒𝑢𝑡 𝐴>(xi
j
) =

f<𝑛𝑒𝑢𝑡 𝐴>(xi
j
)

N
(4) 

𝑝<𝑎𝑛𝑡𝑖 𝐴>(xi
j
) =

f<𝑎𝑛𝑡𝑖 𝐴>(xi
j
)

N
(5) 

The properties of 𝑝<𝐴>(xi
j
), 𝑝<𝑛𝑒𝑢𝑡 𝐴>(xi

j
), and 𝑝<𝑎𝑛𝑡𝑖 𝐴>(xi

j
) are the following:

 For every Xj then 𝑝<𝐴>(xi
j
), 𝑝<𝑛𝑒𝑢𝑡 𝐴>(xi

j
), 𝑝<𝑎𝑛𝑡𝑖 𝐴>(xi

j
) ∈ [0, 1].

 For every Xj then ∑ (𝑝<𝐴>(xi
j
) +  𝑝<𝑎𝑛𝑡𝑖 𝐴>(xi

j
))

mj

𝑖=1
≤ 1. 

 For every Xj then ∑ (𝑝<𝐴>(xi
j
) +  𝑝<𝑛𝑒𝑢𝑡 𝐴>(xi

j
) + 𝑝<𝑎𝑛𝑡𝑖 𝐴>(xi

j
))

mj

𝑖=1
≥ 1.

Let us remark that the probabilities 𝑝<𝐴>(xi
j
) and 𝑝<𝑎𝑛𝑡𝑖 𝐴>(xi

j
) should satisfy the property of subjective prob-

ability approach, [23], whereas, when 𝑝<𝑛𝑒𝑢𝑡 𝐴>(xi
j
) is included then the sum can exceed the unity. This is because

of 𝑝<𝑛𝑒𝑢𝑡 𝐴>(xi
j
) and the others two may have common answers for some individuals.

Now, for every concept A the sociologists have a single-valued neutrosophic set defined as follows: 

𝐴 = {〈x, minj (𝑝<𝐴>(xi
j
)) , maxj (𝑝<𝑛𝑒𝑢𝑡 𝐴>(xi

j
)) , maxj (𝑝<𝑎𝑛𝑡𝑖 𝐴>(xi

j
))〉 : x ∈ Πj=1

n Xj} (6) 

Let us note that Π is the Cartesian product and the set A contains the definition of n-norm, [17]. Also, let us 
remark we are using neutrosophic statistics with neutrosophic data. 

The single-valued neutrosophic set A can be de-neutrosophied to a crisp set where the elements of the triad are 
reduced to numerical values using the scoring function or a precision index. 

A scoring function s: [0, 1]3 → [0, 3] is defined in Formula 7, it is an adapted scoring function from the one 
defined in [24]. 

s(a) = 2 + T − F − I  (7) 

Where a is a SVNN with values (T, I, F). 
The definition of precision index is given in Equation 8. 

𝑎(a) = T − F  (8) 

Where 𝑎: [0, 1]3 → [−1, 1]. 
Below, we illustrate the method through two examples. 

Example 1 
Here, we revisit the example appeared in [4]. The survey aims to investigate what people considers is an ideal 

family size, thus <A> = <ideal family size>, <anti A> = <non- ideal family size>, and <neut A> = <indeterminate 
ideal family size>. Let us note we are dealing with three variants of the same concept instead of only one of them. 
Here, we use only one question, which is: 

1. Use any number (0, 1,2,...) or any range (1-4, 2-3,...) to indicate your perception of:
1.1. the ideal family size.
1.2. you cannot determinate it is neither ideal nor not an ideal family size.
1.3. non- ideal family size.

Let us assume that the population contains 6 respondents, which answer in the following way, where 𝑅𝑖 =
(𝑅𝑖

<𝐴>,  𝑅𝑖
<𝑛𝑒𝑢𝑡 𝐴>, 𝑅𝑖

<𝑎𝑛𝑡𝑖 𝐴>) , correspond to the responses given by the i-th respondent for the triad
(< 𝐴 >, < 𝑛𝑒𝑢𝑡 𝐴 >, < 𝑎𝑛𝑡𝑖 𝐴 >), respectively: 

𝑅1 = ({1,2,3,4}, {5}, {0,6,7,8,9,10})

𝑅2 = ({2}, {3,4}, {0,1,5,6,7,8,9,10})

𝑅3 = ({2,3}, {1}, {0,4,5,6,7,8,9,10})

𝑅4 = ({1,2}, {0}, {3,4,5,6,7})

𝑅5 = ({0}, ∅, {𝑥: 𝑥 > 0})

𝑅6 = ({2,3,4}, {5,6}, {1,7,8,9,10}).
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That means, e.g., the first respondent thinks the ideal family size (number of children) is from 1 to 4, whereas 
to have not child or more than 6 is not ideal, however, 5 children is indeterminate for him/her. Contrarily, respond-
ent 5 is against to have any child. 

Table 1 summarizes the frequency of each possible response in the example: 
Responses X1 f<𝐴>(xi

1) f<𝑛𝑒𝑢𝑡 𝐴>(xi
1), f<𝑎𝑛𝑡𝑖 𝐴>(xi

1).

0 1 1 3 
1 2 1 2 
2 5 0 1 
3 3 1 2 
4 2 1 3 
5 0 1 4 
6 0 1 5 
7 0 0 6 
8 0 0 5 
9 0 0 5 
10 0 0 5 

Table 1: Frequencies of the responses. 

The probabilities are obtained dividing the frequencies by N = 6. The truthfulness, indeterminacy and falseness 
membership functions are depicted in Figure 1. 

Figure 1: Truthfulness-membership function in blue lines, indeterminacy-membership function in red lines, and falseness-membership func-
tion in yellow lines, for the concept “ideal family size”. 

In Figure 2 shows the scoring function using Equation 7 for the possible responses about the concept “ideal 
family size”. 

Figure 2: Scoring function of the single-valued neutrosophic set in Figure 1. 
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Evidently, the ideal family size can be considered equal to 2 for this social group. 
Example 2 
In a community, sociologists want to know how members perceive two concepts: young and educated. To do 

this, they design a questionnaire, one where the triad is that of (<young>, <middle-aged>, <old>), while the second 
triad is (<instructed>, <borderline instruction>, <unlearned>). 

Questions are: 
1. How old must a person be to be considered:

1.1. young?
1.2. middle-aged?
1.3. old?

2. ¿What level of education must a person have to be considered:
2.1. instructed?
2.2. borderline educated?
2.3. not educated?

For the first question, the possible answer is an age between 0 and 120 years old, it can also be expressed in 
the form of intervals, that is, X1 = {G: G ⊂ [0, 120]}.

For the second question, the possible answers are: "primary level of education", "secondary level of education", 
"upper secondary level of education", "higher level of education", and "MSc. or PhD degrees ”, these are the 
elements of X2. 

Suppose the population of study consists of 180 members. The results are shown in Figure 3: 

Figure 3: Truthfulness-membership function in solid lines, indeterminacy-membership function in dotted lines, and falseness-membership 
function in dashed lines, for the concept “young”. 

In Figure 4 it is depicted the scoring function of the triad related with young people. 

Figure 4: Scoring function for the single-valued neutrosophic set in Figure 3.

Regarding the level of instruction, let us assume that the results were the following: 
 Primary level of education has the triple (0, 0.01, 0.93),
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 Secondary level of education has the triple (0.1, 0.6, 0.8),
 Upper secondary level of education has the triple (0.6, 0.4,0.1),
 Higher level of education has the triple (1, 0.1, 0), and
 MSc. or PhD degrees has the triple (1,0,0).

Thus, to define the conjunction of young and instructed person, it is necessary to obtain the Cartesian product 
between the pair age and education level, where the n-norm of the triple of each of them is calculated. E.g., one 
young 20 years old person AND having a primary level of instruction has a triad value obtained since the n-norm 
between (1, 0, 0) for young and (0, 0.01,0.93) for educated, which results in (0, 0.01,0.93) for this combination. 
Calculating the scoring function we have the value -0.94, thus it is very low. 

Conclusion 

This paper introduces a neutrosophic method for survey analysis in social sciences. The new method is inspired 
by another one where fuzzy sets were used. The advantage of the neutrosophic approach is that the respondents 
can express more accurately their thoughts and feelings, because indeterminacy is considered as well as an inde-
pendent membership function of falseness. The method consists of designing a single-valued neutrosophic set from 
the collected data. This set serves to evaluate the satisfaction of a concept by a social group. The method is also 
based on the Neutrosociology theory, where the set A includes the notion of the triad of the aforementioned theory. 
This neutrosophic approach is applied to questionnaires where both discrete numerical and linguistic responses are 
possible. 
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Neutrosophic Sociogram for Group Analysis
Gustavo Alvarez Gómez, Jorge Fernando Goyes García, Sharon Dinarza Álvarez Gómez, 

Florentin Smarandache

Abstract. The sociogram is a technique of sociometry widely used in the field of sociology due to its simplicity and effectiveness. 
The purpose of this method is the graphical visualization of the relationships among the members of a social group. The socio-
gram has been extended to the fuzzy framework to include uncertainty in the so-called fuzzy sociograms. However, there could 
be indeterminate relationships among some members of the group, because they have not experience in performing some activ-
ities together, although potentially either future links or disagreements could be established among them. In this paper, we pro-
pose a neutrosophic sociogram, which allows representing the indeterminacies in the relationships among some members of a 
group. The advantage of neutrosophic sociograms over fuzzy sociograms is that the representation and calculation considering 
indeterminacy, allow us to achieve greater accuracy in the results, and a greater approach to the potentialities of the group in 
terms of the future bond among the members. A hypothetical example is proposed to illustrate the applicability of the method. 

Keywords: Sociogram, neutrosophic sociogram, Neutrosociology, group analysis, sociometry analysis.

1 Introduction 

The sociogram is a data analysis technique that focuses its attention on the way in which social relationships 
are established within any group, [1]. Jacob Levy Moreno, a Romanian psychiatrist, developed the technique in 
the mid-30s of the 20th century as a tool for exploratory and diagnostic purposes. Since its creation, sociometry 
appears as one of the most advanced and ordered strategies to describe and measure group dynamics, since it 
allows the quantitative study of interpersonal relationships in groups. The sociogram is an important example 
within sociometry. 

In essence, the sociogram allows us to study the existing interpersonal preferences in a group of people. Cur-
rently it is widely used in various organizational settings, from small schools to large companies. It is also used in 
intelligence work in order to detect criminal networks. They can be briefly defined as graphics or tools used to 
determine the sociometry of a social space. 

A social bond is a set of social relationships established between two or more individuals, which together, 
results in a group of social interaction, that is, when several members establish social bonds between them, forming 
a small social group. The social position is the specific place that every member occupies either in relation to the 
group of interaction or to the group in general. 

This way, when applying a sociometric test or sociogram in a social group, the researcher may have knowledge 
of the way in which the group is socially related to each other, as well as the benefits and repercussions that this 
interaction has on each one of the members individually. This is very useful, since many times the degree of 
integration of an individual directly influences their performance. It is not groups dynamic but an easy-to-apply 
technique that can help us to better understand the world of relationships that is established in a social group. 

Specifically, the sociogram starts from a questionnaire applied to the social group under investigation, where 
each member of the group specifies, in order of preference, with which other members they would like to carry 
out the activities asked in the questionnaire. This way, it starts with a matrix that is represented in the form of a 
graph, where the individual of the group preferred by the others and the isolated individual are determined. 

In the classical sociogram, each member evaluates their preference through crisp values; however, some au-
thors introduce the uncertainty that exists in these relationships, by using fuzzy graphs instead of crisp graphs with 
the so-called fuzzy sociogram, [2, 3]. Others make this type of graph even more complex with the definition of 
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fuzzy graphs for polyfactor analysis, that is, fuzzy graphs that allow us studying more than one relationship be-
tween members of the social group. Some of these methods link this tool with classic cooperative game solutions 
such as Shapley value [2]. Sociograms can be applied in more than one moment to measure the change in relation-
ships within the group. 

It is not difficult to accept that the relationships between the members of the social groups may contain inde-
terminacies. Some members of the group may not know each other well, or may doubt on the behavior of the other 
in some activity. Therefore, in the classical sociogram and in the fuzzy sociogram it is not differentiated whether 
there is a mutual rejection between these individuals and therefore there is no possibility of a future relationship, 
or there is simply a potential bond that has not developed yet. 

This fact has motivated the authors to propose a neutrosophic sociogram, where indeterminacy is included as 
part of the relationships between two individuals, because they are not well known, or there has been no possibility 
of creating a link between them or they have not determined the impossibility of such relationship. 

Neutrosophy has served as the basis for sociology with the so-called Neutrosophic Sociology or Neutrosoci-
ology, which is defined as the study of sociology using neutrosophic scientific methods, [4, 5]. There are also 
neutrosophic graphs that allow us to measure concepts using graphs within the framework of Neutrosophy. 

In this paper, neutrosophic sociograms are introduced, where the relationships among the members of a social 
group are graphically represented and quantitatively measured, including the indeterminacy of these relationships. 
Indeterminate relationships are considered as potential relationships in short, medium or long term, therefore it is 
a more accurate indicator than sociograms or fuzzy sociograms, since it guarantees a more precise measurement 
of group dynamics. 

The paper is structured into the following sections: section 2 contains the main concepts related to sociograms 
and Neutrosophy. In section 3 the method proposed in this paper is introduced and a hypothetical example is used 
to illustrate how to apply it. The last section contains the conclusions. 

2 Preliminaries 
In this section, we summarize the main concepts of sociogram and Neutrosophy that will be used in this paper. 

2.1 Sociogram 
A sociogram is a graph that represents the relationship among the members of a social group. Firstly, the social 

group is identified. Then the investigator explains to the members the objective of the research. Next, the investi-
gator designs a questionnaire for each member about the other members of the group he/she prefers to join in 
certain activities. E.g., in a group of students the teacher can ask every one of the members the following three 
questions [1]: 

In order of preference, write the friends with whom 
Q1 : you want to join a quiz program. 
Q2 : you want to study in group. 
Q3 : you want to do volunteer activity. 
Let us assume S = {s1, s2, ⋯ , sn} denotes the set of interviewed. The results are represented in Table 1:

Q1 Q2 Q3 

s1 S11 S12 S13 

s2 S21 S22 S23 

⋮ ⋮ ⋮ ⋮ 

sn Sn1 Sn2 Sn3 

Table 1: Generic table representing the relationship among the members of the social group. 

The elements of Table 1 are the sets of members Sij ⊂ S (i  =  1,2, … , n)(j =  1,2,3) such that the member si 
has chosen for answering the j-th question (Q1, Q2, or Q3). 

The classical sociogram is formed from a square matrix where every member of S is represented in one row 
and one column, such that elements of the matrix contain one number from 1 to 3, which is used by every sk to 
evaluate his/her preference for member sl. 

The results are depicted in a directed graph, where every node represents a member of the social group and the 
edges Ekl represent that k-th member of the group selected the l-th member. An example of sociogram is depicted 
in Figure 1. 
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Figure 1: Example of sociogram of a group with seven members. 

For example, in Figure 1 a social group of 7 members is investigated, where every node represents a member 
and every edge represents that one member prefers the other. Let us note in the example most of the members 
preferred s1, while s7 is isolated, he/she does not prefer anybody and nobody prefers him/her. 

In the crisp sociogram, the graph is the final result, whereas in fuzzy sociogram the strength of every node 
(member) is measured with a function. f: {1, 2, ⋯ , n} → [0, 1], where the closer is f(i) to 0 the more isolated mem-
ber i is, thus it is an unpopular member possibly discriminated by the others, and the closer is f(i) to 1 the more 
linked member i is, then, i is a popular member or possibly the group’s leader. This function can depend on fuzzy 
operators like t-norms or compensatory ones. 

On the other hand, the preferred member can be selected using Shapley value [2]. Sometimes dendrograms are 
used to represent the sociogram [3]. 

2.2 Basic concepts on Neutrosophy 
Definition 1: [6] Let X be a universe of discourse. A Neutrosophic Set (NS) is characterized by three mem-

bership functions, uA(x), rA(x), vA(x) ∶ X →  ] 0− , 1+[, which satisfy the condition -0 ≤ inf uA(x) + inf rA(x) +
inf vA(x) ≤ sup uA(x) + sup rA(x) + sup vA(x) ≤ 3+ for all xX. uA(x), rA(x) and vA(x) denote the membership
functions of truthfulness, indetermination and falsehood of x in A, respectively, and their images are standard or 
non-standard subsets of ] 0− , 1+[.

NS are useful only as a philosophical approach, so a Single-Valued Neutrosophic Set is defined to guarantee 
the applicability of Neutrosophy, see Definition 2. 

Definition 2: ([6]) Let X be a universe of discourse. A Single-Valued Neutrosophic Set (SVNS) A on X is an 
object of the form: 

A =  {〈x, uA(x), rA(x), vA(x)〉: x ∈ X} (1) 

Where uA, rA, vA ∶ X →  [0,1], satisfy the condition 0 ≤ uA(x) + rA(x) + vA(x)≤ 3 for all xX. uA(x), rA(x)
and vA(x) denote the membership functions of truthfulness, indetermination and falsehood of x in A, respectively. 
For convenience, a Single-Valued Neutrosophic Number (SVNN)[7, 8] will be expressed as A =  (a, b, c), where 
a, b, c [0,1] and satisfies 0 ≤  a +  b +  c ≤  3. 

Neutrosophic Logic (NL) extends fuzzy logic. As stated by Florentin Smarandache, its author, a proposition P 
is characterized by three components; see [9-12]: 

NL(P) =(T,I,F) (2) 
Where component T is the degree of truthfulness, F is the degree of falsehood and I is the degree of indeter-

mination. T, I and F belong to the interval [0, 1], and they are independent from each other. 
A neutrosophic number is formed by the algebraic structure a+bI, where I = indetermination. Below we for-

mally describe some important concepts. 
Definition 3: ([13-18]) Let R be a ring. The neutrosophic ring 〈R ∪ I〉 is also a ring, generated by R and I 

under the operation of R, where I is a neutrosophic element that satisfies the property I2 = I. Given an integer n, 
then, n+I and nI are neutrosophic elements of 〈R ∪ I〉 and in addition 0·I = 0. Also, I-1, the inverse of I is not defined. 

E.g., a neutrosophic ring is 〈ℤ ∪ I〉 generated by ℤ, which is the set of integers.
Some operation using I is I + I+. . . +I =  nI.
Definition 4: ([19, 20]) A neutrosophic number N is also defined as a number:

N=d+I (3)
Where d is the determined part and I is the indeterminate part of N.
Example 1. N = 1+I, where 1 is the determined part and I is the indeterminate part, and for I = [0, 1] we have

N = [1, 2]. 
Let N1 = a1 + b1I and N2 = a2 + b2I be two neutrosophic numbers, then some operations between them are: 

1. N1 + N2 = a1 + a1 + (b1 + b2)I (Addition),

s1 

s2 

s3 

s5 

s4 

s6 

s7 
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2. N1 − N2 = a1 − a1 + (b1 − b2)I (Difference),

3. N1 × N2 = a1a2 + (a1b2 + b1a2 + b1b2)I (Multiplication),

4. N1

N2
=

a1+b1I

a2+b2I
=

a1

a2
+

a2b1−a1b2

a2(a2+b2)
I (Division). 

A neutrosophic matrix is a matrix whose components are elements of 〈R ∪ I〉. 
Thus, it is possible to generalize the operations between vectors and matrices on R to the ring 〈R ∪ I〉. See 

Example 2. 

Example 2. Given two matrices, A = (
3 9

−1 7
) and B = (

1 8 I
1 3 2I

), AB = (
12 51 21I
6 13 13I

). 

A neutrosophic graph is a graph with at least one neutrosophic edge linking two nodes, that is to say, there is 
an edge with an indetermination on its two nodes connection, [6, 21-23], see Figure 2. 

Figure 2: Example of neutrosophic graph. Source [6]. 

The de-neutrosophication process was introduced by Salmeron and Smarandache in [19], which converts a 
neutrosophic number in one numeric value. This process provides a range of numbers for centrality using as a base 
the maximum and minimum values of I =  [a1, a2]  [0, 1], based on Equation 4: 

λ([a1, a2]) =
a1 +  a2

2
(4) 

3 Neutrosophic sociogram 

In this section, we introduce for the first time the concepts of neutrosophic sociograms. Firstly, the interviewers 
have to explain to the members of the social group the goal for applying the questionnaire and the type of possible 
answers required by the researchers[24, 25]. 

The new questionnaire is a variant of that summarized in Table 1. Now, we have Q1, Q2,…, Qm the questions 
to be answered. Again, S = {s1, s2, ⋯ , sn} denotes the set of interviewed.

The possible questions are the following: 
In order of preference, write the friends with whom: 
Q1 : you want to join quiz program. 
Q2 : you want to study in group. 
Q3 : you want to do volunteer activity. 
Apart, write the members of the group with whom: 
Q1 : you are not sure to join quiz program. 
Q2 : you are not sure to study in group. 
Q3 : you are not sure to do volunteer activity. 

With this new method we maintain the elements of Table 1 like Sij ⊂ S (i  =  1,2, … , n)(j =  1,2, ⋯ , m) mean-
ing the answers of si about his/her preferred members for doing activity asked in Qj. Additionally, Oij ⊂ S (i  =

 1,2, … , n)(j =  1,2, ⋯ , m) means the list of the members of the group which si is not sure to join in the activity 
asked in question Qj , they satisfy Sij ∩ Oij = ∅. Also, interviewer provides a weight to every question, which is 
denoted by Ω = {𝜔1, 𝜔2, ⋯ , 𝜔𝑚}, where ∑ 𝜔𝑗 = 1𝑚

𝑗=1  and 𝜔𝑗 ∈ [0, 1].

Then Table 1 converts into Table 2, where sets Oij are included. 
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Q1 Q2 ⋯ Qm 
s1 S11; O11 S12; O12 ⋯ S1m; O1m 
s2 S21; O21 S22; O22 ⋯ S2m; O2m 
⋮ ⋮ ⋮ ⋮ ⋮ 
sn Sn1; On1 Sn2; On2 ⋯ Snm; Onm 
Table 2: Generic table representing the relationship among the members of the social group for the neutrosophic sociogram. 

According to Table 2, the interviewed has also the possibility to include those members of the group whom 
he/she is not sure to carry out the activity. We consider this indeterminate selected group is the potential extension 
of the links among the members of the group. The advantage is that we can influence those imprecise relationships 
to strength the group unity, instead of carrying out some external exercise, e.g. didactic activity in the group class, 
and later to apply another sociogram to study the dynamical changes in the social group. 

Using Table 2 the evaluation matrix Rj = (rkl 
j

), where rkl 
j  is the number of times (0 or 1) that sk selects sl in 

Qj. When k = l we define rkl 
j

= 1. 

Thus, F = ∑ 𝜔𝑗Rjm
j=1 , F = (fkl) and if k = l we have fkl = 1. fkl means the degree of preference of sl by sk. If

fkl = 1 then sk strongly prefers sl and fkl = 0 means sk never prefers sl. 

The fuzzy amicable degree gkl between sk and sl is calculated through formula 5: 

2

gkl
=

1

fkl
+

1

flk
 (5)

Where the arithmetic 1 0⁄ = ∞ and 1 ∞⁄ = 0 is used.

Equivalently, Tj = (tkl 
j

), where tkl 
j  is the number of times that sk selects or hesitates about sl in Qj (0 or 1), 

T = ∑ 𝜔𝑗Tjm
j=1 . When k = l we define tkl 

j
= 1. Matrix T determines the preferences of sl by sk or the possibility 

that he/she would prefer him/her in the future. Therefore, the neutrosophic amicable degree ukl between sk and sl 
is calculated with Equation 6: 

2

ukl
=

1

tkl
+

1

tlk
(6) 

The fuzzy sociogram is represented with the elements of F, whereas the neutrosophic sociogram is a neutro-
sophic graph, such that the elements of the fuzzy sociogram are represented with continuous lines, and the other 
edges are represented with dashed lines. Every edge of the neutrosophic sociogram is associated with the fuzzy 
value gkl and the other edges are associated with symbol I. Let us note that we are dealing with non-directed graphs. 

The interval of indeterminacy is calculated as Ikl = [gkl, ukl]. λ(Ikl) indicates a unique value for represent-
ing the amicable relationship between sk and sl, according to Equation 4, whereas Ikl = ukl − gkl measures the 
degree of indeterminacy. 

The leadership of the k-th member of the group is measured with the following index [2]: 

μ(k) =  
∑ gkll

∑ ∑ gkllk

(7) 

Additionally, the potential leadership of the k-th member of the group is measured with the following index: 

θ(k) =  
∑ ukll

∑ ∑ ukllk

(8) 

Below, we use an example for demonstrating how to use neutrosophic sociograms in a simulated case. 
Example 3. 
A teacher of a group of 10 elementary school students wants to investigate the relationships between the chil-

dren and the potential links among the group members. To do this, he asks three questions to analyze preferences 
and possible future links among students. He also uses this study to determine current and potential leaders within 
the group and if there is any isolated student. That is why he decides to apply the neutrosophic sociogram. 

The total questionnaire consists of the following pairs of questionnaires: 
Write your friends with whom: 
Q1: you want to join a quiz program. 
Q2: you want to study in group. 
Q3: you want to do volunteer activity. 

Apart, write the members of the group in with whom: 
Q1

I  : you are not sure to join quiz program.
Q2

I  : you are not sure to study in group.
Q3

I  : you are not sure to do volunteer activity.
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We denote by S = {s1, s2, ⋯ , s10} the set of members of the group of class. Results are shown in Table 3.

Q1; Q1
I  Q2; Q2

I Q3; Q3
I  

s1 s3, s6, s8; s4 s2, s6, s10; s4 s3, s6, s9; s4 

s2 s3, s4, s5; s7 s1, s4, s9; s7 s1, s3, s4; s7 
s3 s1, s2, s9; s6 s5, s8, s9; s2 s2, s6, s7; s10

s4 s2, s5, s6; s9 s3, s6, s10; s9 s3, s5, s6; s2

s5 s3, s7, s10; s9 s4, s7, s8; s1 s4, s8, s10; s1

s6 s1, s7, s8; s9 s1, s7, s8; s9 s1, s2, s9; s3

s7 s4, s5, s9; s2 s2, s4, s9; s5 s6, s8, s9; s1

s8 s5, s7, s9; s3 s4, s6, s9; s7 s1, s2, s5; s3

s9 s1, s8, s10; s2 s2, s4, s5; s1 s1, s4, s5; s2

s10 s2, s5, s7; s9 s2, s3, s5; s4 s2, s4, s5; s8 

Table 3: Preferences and potential links between the members of the group. 

In Table 3, for every child in the row, before the semicolon we have the children he/she prefers for performing 
the activity asked in questions Qj. After the semicolon there are the children that the student is not sure about to 
perform activity asked in Qj

I. Interestingly, student denoted by s3 prefers to join quiz program with s2, however
he/she is not sure to study in group with s2. This shows the capacity of the neutrosophic method to model more 
feelings of the members than its precedents do. 

Here we assumed the three questions are equally important, thus, 𝜔𝑗 =
1

3
 (j = 1,2,3). 

Tables 4, 5, and 6 contains the evaluation matrices for Q1, Q2, and Q3, respectively. 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 1 0 1 0 0 1 0 1 0 0 

s2 0 1 1 1 1 0 0 0 0 0 

s3 1 1 1 0 0 0 0 0 1 0 

s4 0 1 0 1 1 1 0 0 0 0 

s5 0 0 1 0 1 0 1 0 0 1 

s6 1 0 0 0 0 1 1 1 0 0 

s7 0 0 0 1 1 0 1 0 1 0 

s8 0 0 0 0 1 0 1 1 1 0 

s9 1 0 0 0 0 0 0 1 1 1 

s10 0 1 0 0 1 0 1 0 0 1 

Table 4: Evaluation matrix R1for Q1. 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 1 1 0 0 0 1 0 0 0 1 
s2 1 1 0 1 0 0 0 0 1 0 
s3 0 0 1 0 1 0 0 1 1 0 
s4 0 0 1 1 0 1 0 0 0 1 
s5 0 0 0 1 1 0 1 1 0 0 
s6 1 0 0 0 0 1 1 1 0 0 
s7 0 1 0 1 0 0 1 0 1 0 
s8 0 0 0 1 0 1 0 1 1 0 
s9 0 1 0 1 1 0 0 0 1 0 
s10 0 1 1 0 1 0 0 0 0 1 

Table 5: Evaluation matrix R2for Q2
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 1 0 1 0 0 1 0 0 1 0 
s2 1 1 1 1 0 0 0 0 0 0 
s3 0 1 1 0 0 1 1 0 0 0 
s4 0 0 1 1 1 1 0 0 0 0 
s5 0 0 0 1 1 0 0 1 0 1 
s6 1 1 0 0 0 1 0 0 1 0 
s7 0 0 0 0 0 1 1 1 0 1 
s8 1 1 0 0 1 0 0 1 0 0 
s9 1 0 0 1 1 0 0 0 1 0 
s10 0 1 0 1 1 0 0 0 0 1 

Table 6: Evaluation matrix R3for Q3.

Table 7 contains the result of F, the fuzzy matrix. 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 1 0.33 0.66 0 0 1 0 0.33 0.33 0.33 
s2 0.66 1 0.66 1 0.33 0 0 0 0.33 0 
s3 0.33 0.66 1 0 0.33 0.33 0.33 0.33 0.66 0 
s4 0 0.33 0.66 1 0.66 1 0 0 0 0.33 
s5 0 0 0.33 0.66 1 0 0.66 0.66 0 0.66 
s6 1 0.33 0 0 0 1 0.66 0.66 0.33 0 
s7 0 0.33 0 0.66 0.33 0.33 1 0.33 0.66 0.33 
s8 0.33 0.33 0 0.33 0.66 0.33 0.33 1 0.66 0 
s9 0.66 0.33 0 0.66 0.66 0 0 0.33 1 0.33 
s10 0 1 0.33 0.33 1 0 0.33 0 0 1 

Table 7: Fuzzy matrix. 

Table 8 summarizes the matrix G of fuzzy amicable degree. 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 1 0.44 0.44 0 0 1 0 0.33 0.44 0 
s2 0.44 1 0.66 0.5 0 0 0 0 0.33 0 
s3 0.44 0.66 1 0 0.33 0 0 0 0 0 
s4 0 0.5 0 1 0.66 0 0 0 0 0.33 
s5 0 0 0.33 0.66 1 0 0.44 0.66 0 0.8 
s6 1 0 0 0 0 1 0.44 0.44 0 0 
s7 0 0 0 0 0.44 0.44 1 0.33 0 0.33 
s8 0.33 0 0 0 0.66 0.44 0.33 1 0.44 0 
s9 0.44 0.33 0 0 0 0 0 0.44 1 0 
s10 0 0 0 0.33 0.8 0 0.33 0 0 1 

Table 8: Matrix of fuzzy amicable degree. 

Equivalently, we calculate matrices T1, T2, and T3, which are summarized in Tables 9, 10, and 11, respectively. 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

s1 1 0 1 1 0 1 0 1 0 0 

s2 0 1 1 1 1 0 1 0 0 0 

s3 1 1 1 0 0 1 0 0 1 0 
s4 0 1 0 1 1 1 0 0 1 0 
s5 0 0 1 0 1 0 1 0 1 1 
s6 1 0 0 0 0 1 1 1 1 0 
s7 0 1 0 1 1 0 1 0 1 0 
s8 0 0 1 0 1 0 1 1 1 0 
s9 1 1 0 0 0 0 0 1 1 1 
s10 0 1 0 0 1 0 1 0 1 1 

Table 9: Evaluation matrix T1for Q1. 
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 
s1 1 1 0 1 0 1 0 0 0 1 
s2 1 1 0 1 0 0 1 0 1 0 

s3 0 1 1 0 1 0 0 1 1 0 
s4 0 0 1 1 0 1 0 0 1 1 
s5 1 0 0 1 1 0 1 1 0 0 
s6 1 0 0 0 0 1 1 1 1 0 
s7 0 1 0 1 1 0 1 0 1 0 
s8 0 0 0 1 0 1 1 1 1 0 
s9 1 1 0 1 1 0 0 0 1 0 
s10 0 1 1 1 1 0 0 0 0 1 

Table 10: Evaluation matrix T2for Q2. 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 
s1 1 0 1 1 0 1 0 0 1 0 
s2 1 1 1 1 0 0 1 0 0 0 

s3 0 1 1 0 0 1 1 0 0 1 
s4 0 1 1 1 1 1 0 0 0 0 
s5 1 0 0 1 1 0 0 1 0 1 
s6 1 1 1 0 0 1 0 0 1 0 
s7 1 0 0 0 0 1 1 1 0 1 
s8 1 1 1 0 1 0 0 1 0 0 
s9 1 1 0 1 1 0 0 0 1 0 
s10 0 1 0 1 1 0 0 1 0 1 

Table 11: Evaluation matrix T3for Q3. 

Table 12 contains the values of matrix T. 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

s1 1 0.33 0.66 1 0 1 0 0.33 0.33 0.33 
s2 0.66 1 0.66 1 0.33 0 1 0 0.33 0 

s3 0.33 1 1 0 0.33 0.66 0.33 0.33 0.66 0.33 
s4 0 0.66 0.66 1 0.66 1 0 0 0.66 0.33 
s5 0.66 0 0.33 0.66 1 0 0.66 0.66 0.33 0.66 
s6 1 0.33 0.33 0 0 1 0.66 0.66 1 0 
s7 0.33 0.66 0 0.66 0.66 0.33 1 0.33 0.66 0.33 
s8 0.33 0.33 0.66 0.33 0.66 0.33 0.66 1 0.66 0 
s9 1 1 0 0.66 0.66 0 0 0.33 1 0.33 
s10 0 1 0.33 0.66 1 0 0.33 0.33 0.33 1 

Table 12: Matrix T. 

Table 13 summarizes the values of the amicable degrees in matrix U = (ukl)

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 1 0.44 0.44 0 0 1 0 0.33 0.5 0 
s2 0.44 1 0.8 0.8 0 0 0.8 0 0.5 0 
s3 0.44 0.8 1 0 0.33 0.44 0 0.44 0 0.33 
s4 0 0.8 0 1 0.66 0 0 0 0.66 0.44 
s5 0 0 0.33 0.66 1 0 0.66 0.66 0.44 0.8 
s6 1 0 0.44 0 0 1 0.44 0.44 0 0 
s7 0 0.8 0 0 0.66 0.44 1 0.44 0 0.33 
s8 0.33 0 0.44 0 0.66 0.44 0.44 1 0.44 0 
s9 0.5 0.5 0 0.66 0.44 0 0 0.44 1 0.33 
s10 0 0 0.33 0.44 0.8 0 0.33 0 0.33 1 

Table 13: Matrix U. 

According to Tables 8 and 13 we have that, for example, the relationship between the students s2 and s3 and 
its potentiality is I23 = I32 = [0.66, 0.8], which means that currently the amicable degree between them is 0.66,
however this degree can be potentially increased up to 0.8 in the future. Thus, the teacher should work to 
strengthen
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the relationship between these two students, instead of students s1 and s2 with I12 = I21 = [0.44, 0.44], which
seems to do not have the opportunity of changing and is weaker than the relationship between s2 and s3. 

Calculating the leadership index with Equations 7 and 8, we have the following results: 
μ =

(0.127217, 0.102159, 0.084811, 0.086739, 0.135698, 0.100231, 0.088666, 0.111796, 0.077101, 0.085582). 
Whereas, θ =

(0.098068, 0.114461, 0.100117, 0.094262, 0.120609, 0.087822, 0.097190, 0.099532, 0.102459, 0.085480). 
It is interpreted that student 5 is the leader according to μ(5) = 0.135698 that is a maximum; however, po-

tentially his/her leadership can slightly diminish because of θ(5) = 0.120609. 
Finally, we depict the neutrosophic sociogram of the example. See Figure 3. 

Figure 3: Neutrosophic sociogram of the example. 

Let us note that the neutrosophic sociogram in Figure 3 shows in black continuous lines the relationships 
between the pair of students with fuzzy amicable degree bigger than 0, from Table 8. With dashed lines in red, we 
represent the edges with amicable degree bigger than 0 in matrix U and null value in matrix G, according to Table 
13. 

The results represented with continuous lines model the current preferences and the dashed lines represent the 
potential future links. For simplicity, we omitted in the graph the fuzzy amicable degrees values associated with 
the edges and the symbol I associated with the lines in red. Let us remark that this is a non-directed graph. 

Conclusion 

This paper introduces the neutrosophic sociograms. The crisp and fuzzy sociograms only take into account the 
preference relationships between individuals of the social group under investigation. However, it is possible that 
there are individuals in the group, especially if it is a large group, where some individuals do not know each other 
well and therefore are not designated as preferred ones. This type of relationship with lack of knowledge or lack 
of trust between two members can be consider an indeterminate relationship, where the future of the bond may be 
a preference relationship or a non-preference relationship, depending on group dynamics. Neutrosophic socio-
grams consider these indeterminacies, which are measured a possible future relationship. They are non-directed 
neutrosophic graphs. In this paper, we introduce a method to calculate the matrix of the graph, which is a neutro-
sophic matrix. The calculations include the weights or importance of each of the questions used to measure the 
preferred individuals to carry out the activities with. The advantage of defining a neutrosophic sociogram, instead 
of a crisp or fuzzy sociogram, is that it achieves greater accuracy in the representation of social relationships, and 
offers a better idea of what group dynamics is like and in which individuals the group cohesion can be strengthened. 
In future works we will study in depth the relationship of neutrosophic sociograms with Shapley value, taking into 
account that in the offsets [26, 27] there is an example of a solution for cooperative n-personal games using these 
neutrosophic sets [28]. 
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The Score, Accuracy, and Certainty 
Functions determine a Total Order on the Set 

of Neutrosophic Triplets (T, I, F) 
Florentin Smarandache 

Abstract: In this paper we prove that the Single-Valued (and respectively Interval-Valued, as well 

as Subset-Valued) Score, Accuracy, and Certainty Functions determine a total order on the set of 

neutrosophic triplets (T, I, F). This total order is needed in the neutrosophic decision-making 

applications. 

Keywords: single-valued neutrosophic triplet numbers; single-valued neutrosophic score function; 

single-valued neutrosophic accuracy function; single-valued neutrosophic certainty function. 

1. Introduction

We reveal the easiest to use single-valued neutrosophic score, accuracy, and certainty functions 

that exist in the literature and the algorithm how to use them all together. We present Xu and Da’s 

Possibility Degree that an interval is greater than or equal to another interval, and we prove that this 

method is equivalent to the intervals’ midpoints comparison. Also, Hong-yu Zhang et al.’s interval-

valued neutrosophic score, accuracy, and certainty functions are listed, that we simplify these 

functions. Numerical examples are provided. 

2. Single-Valued Neutrosophic Score, Accuracy, and Certainty Functions

We firstly present the most known and used in literature single-valued score, accuracy, and 

certainty functions. 

Let M be the set of single-valued neutrosophic triplet numbers,  

𝑀 = {(𝑇, 𝐼, 𝐹), where 𝑇, 𝐼, 𝐹 ∈ [0, 1], 0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3}.        (1) 

Let 𝑁 = (𝑇, 𝐼, 𝐹) ∊ M be a generic single-valued neutrosophic triplet number. Then: 

𝑇 = truth (or membership) represents the positive quality of 𝑁; 

𝐼 = indeterminacy represents a negative quality of 𝑁,  

hence 1 − 𝐼 represents a positive quality of 𝑁; 

𝐹  = falsehood (or nonmembership) represents also a negative quality of 𝑁 , hence 1 − 𝐹 

represents a positive quality of 𝑁. 

We present the three most used and best functions in the literature: 

2.1. The Single-Valued Neutrosophic Score Function 

𝑠:𝑀 → [0, 1] 

𝑠(𝑇, 𝐼, 𝐹) =
𝑇+(1−𝐼)+(1−𝐹)

3
=

2+𝑇−𝐼−𝐹

3
(2) 

that represents the average of positiveness of the single-valued neutrosophic components 𝑇, 𝐼, 𝐹. 

Florentin Smarandache (2020). The Score, Accuracy, and Certainty Functions determine a Total 
Order on the Set of Neutrosophic Triplets (T, I, F). Neutrosophic Sets and Systems 38, 1-14
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2.2. The Single-Valued Neutrosophic Accuracy Function 

𝑎:𝑀 → [−1, 1]  

𝑎(𝑇, 𝐼, 𝐹) = 𝑇 − 𝐹 (3) 

2.3. The Single-Valued Neutrosophic Certainty Function 

𝑐:𝑀 → [0, 1] 

𝑐(𝑇, 𝐼, 𝐹) = 𝑇 (4) 

3. Algorithm for Ranking the Single-Valued Neutrosophic Triplets

Let (𝑇1, 𝐼1, 𝐹1)  and (𝑇2, 𝐼2, 𝐹2)  be two single-valued neutrosophic triplets from 𝑀 , i.e. 

𝑇1, 𝐼1, 𝐹1, 𝑇2, 𝐼2, 𝐹2 ∈ [0, 1]. 

Apply the Neutrosophic Score Function. 

1. If 𝑠(𝑇1, 𝐼1 , 𝐹1) > 𝑠(𝑇2, 𝐼2, 𝐹2), then (𝑇1, 𝐼1 , 𝐹1) > (𝑇2, 𝐼2, 𝐹2).

2. If 𝑠(𝑇1, 𝐼1 , 𝐹1) < 𝑠(𝑇2, 𝐼2, 𝐹2), then (𝑇1, 𝐼1 , 𝐹1) < (𝑇2, 𝐼2, 𝐹2).

3. If 𝑠(𝑇1, 𝐼1 , 𝐹1) = 𝑠(𝑇2, 𝐼2, 𝐹2), then apply the Neutrosophic Accuracy Function:

3.1 If 𝑎(𝑇1, 𝐼1, 𝐹1) > 𝑎(𝑇2, 𝐼2, 𝐹2), then (𝑇1, 𝐼1, 𝐹1) > (𝑇2, 𝐼2, 𝐹2).

3.2 If 𝑎(𝑇1, 𝐼1, 𝐹1) < 𝑎(𝑇2, 𝐼2, 𝐹2), then (𝑇1, 𝐼1, 𝐹1) < (𝑇2, 𝐼2, 𝐹2).

3.3 If 𝑎(𝑇1, 𝐼1, 𝐹1) = 𝑎(𝑇2, 𝐼2, 𝐹2), then apply the Neutrosophic Certainty Function.

3.3.1 If 𝑐(𝑇1, 𝐼1, 𝐹1) > 𝑐(𝑇2, 𝐼2, 𝐹2), then (𝑇1, 𝐼1, 𝐹1) > (𝑇2, 𝐼2, 𝐹2).

3.3.2 If 𝑐(𝑇1, 𝐼1, 𝐹1) < 𝑐(𝑇2, 𝐼2, 𝐹2), then (𝑇1, 𝐼1, 𝐹1) < (𝑇2, 𝐼2, 𝐹2).

3.3.1 If 𝑐(𝑇1, 𝐼1, 𝐹1) = 𝑐(𝑇2, 𝐼2, 𝐹2), then (𝑇1, 𝐼1, 𝐹1) ≡ (𝑇2, 𝐼2, 𝐹2), i.e. 𝑇1 = 𝑇2, 𝐼1 = 𝐼2, 𝐹1 = 𝐹2.

3.1. Theorem 

We prove that the single-valued neutrosophic score, accuracy, and certainty functions all 

together form a total order relationship on 𝑀. Or: 

for any two single-valued neutrosophic triplets (𝑇1, 𝐼1, 𝐹1) and (𝑇2, 𝐼2, 𝐹2) we have: 

a) Either (𝑇1, 𝐼1, 𝐹1) > (𝑇2, 𝐼2, 𝐹2)

b) Or (𝑇1, 𝐼1, 𝐹1) < (𝑇2, 𝐼2, 𝐹2)

c) Or (𝑇1, 𝐼1, 𝐹1) ≡ (𝑇2, 𝐼2, 𝐹2), which means that 𝑇1 = 𝑇2, 𝐼1 = 𝐼2, 𝐹1 = 𝐹2.

Therefore, on the set of single-valued neutrsophic triplets 𝑀 = {(𝑇, 𝐼, 𝐹), with 𝑇, 𝐼, 𝐹 ∈

[0, 1], 0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3}, the score, accuracy, and certainty functions altogether form a total order 

relationship. 

Proof. 

Firstly we apply the score function. 

The only problematic case is when we get equality: 

𝑠(𝑇1, 𝐼1, 𝐹1) = 𝑠(𝑇2, 𝐼2, 𝐹2).              (5) 

That means: 

2+𝑇1−𝐼1−𝐹1

3
=

2+𝑇2−𝐼2−𝐹2

3

or 𝑇1 − 𝐼1 − 𝐹1 = 𝑇2 − 𝐼2 − 𝐹2. 

Secondly we apply the accuracy function. 

Again the only problematic case is when we get equality: 

𝑎(𝑇1, 𝐼1 , 𝐹1) = 𝑎(𝑇2, 𝐼2, 𝐹2) or 𝑇1 − 𝐹1 = 𝑇2 − 𝐹2. 
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Thirdly, we apply the certainty function. 

Similarly, the only problematic case may be when we get equality: 

𝑐(𝑇1, 𝐼1, 𝐹1) = 𝑐(𝑇2, 𝐼2, 𝐹2) or 𝑇1 = 𝑇2. 

For the most problematic case, we got the following linear algebraic system of 3 equations of 

6 variables: 

{

𝑇1 − 𝐼1 − 𝐹1 = 𝑇2 − 𝐼2 − 𝐹2
𝑇1 − 𝐹1 = 𝑇2 − 𝐹2

𝑇1 = 𝑇2

Let’s solve it. 

Since 𝑇1 = 𝑇2, replacing this into the second equation we get 𝐹1 = 𝐹2. 

Now, replacing both 𝑇1 = 𝑇2 and 𝐹1 = 𝐹2 into the first equation, we get 𝐼1 = 𝐼2. 

Therefore the two neutrosophic triplets are identical: (𝑇1, 𝐼1, 𝐹1) ≡ (𝑇2, 𝐼2, 𝐹2), i.e. equivalent 

(or equal), or 𝑇1 = 𝑇2, 𝐼1 = 𝐼2, and 𝐹1 = 𝐹2. 

In conclusion, for any two single-valued neutrosophic triplets, either one is bigger than the 

other, or both are equal (identical). 

4. Definition of Neutrosophic Negative Score Function

We have introduce in 2017 for the first time [1] the Average Negative Quality Neutrosophic Function 

of a single-valued neutrosophic triplet, defined as:  

3 (1 ) 1: [0,1] [0,1], ( , , ) .
3 3

t i f t i fs s t i f       
   (6) 

4.1. Theorem 

The average positive quality (score) neutrosophic function and the average negative quality 

neutrosophic function are complementary to each other, or 

( , , ) ( , , ) 1.s t i f s t i f   (7) 

Proof. 

2 1( , , ) ( , , ) 1.
3 3

t i f t i fs t i f s t i f       
    (8) 

The Neutrosophic Accuracy Function has been defined by: 

h: [0, 1]3  [-1, 1], h(t, i, f) = t - f.             (9) 

We have also introduce [1] for the first time the Extended Accuracy Neutrosophic Function, defined 

as follows: 

he: [0, 1]3  [-2, 1], he(t, i, f) = t – i – f,            (10) 

which varies on a range: from the worst negative quality (-2) [or minimum value], to the best 

positive quality (+1) [or maximum value].  

4.2. Theorem 

If s(T1, I1, F1) = s(T2, I2, F2), a(T1, I1, F1) = a(T2, I2, F2), and c(T1, I1, F1) = c(T2, I2, F2), 

then T1 = T2, I1 = I2, F1 = F2, or the two neutrosophic triplets are identical: 

(T1, I1, F1) ≡ (T2, I2, F2). 
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Proof: 

It results from the proof of Theorem 3.1. 

5. Xu and Da’s Possibility Degree

Xu and Da [3] have defined in 2002 the possibility degree 𝑃(. ) that an interval is greater than 

another interval: 

[𝑎1, 𝑎2] ≥ [𝑏1, 𝑏2]  

for 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ [0,1] and 𝑎1 ≤ 𝑎2, 𝑏1 ≤ 𝑏2, in the following way: 

𝑃([𝑎1, 𝑎2] ≥ [𝑏1, 𝑏2]) = 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
𝑏2−𝑎1

𝑎2−𝑎1+𝑏2−𝑏1
, 0) , 0}, 

where 𝑎2 − 𝑎1 + 𝑏2 − 𝑏1  ≠ 0 (i.e. 𝑎2 ≠ 𝑎1 𝑜𝑟 𝑏2 ≠ 𝑏1. 

They proved the following: 

5.1. Properties 

1) 𝑃([𝑎1, 𝑎2] ≥ [𝑏1, 𝑏2]) ∈ [0,1];

2) 𝑃([𝑎1, 𝑎2] ≈ [𝑏1, 𝑏2]) = 0.5;

3) 𝑃([𝑎1, 𝑎2] ≥ [𝑏1, 𝑏2]) + 𝑃([𝑏1, 𝑏2] ≥ [𝑎1, 𝑎2]) = 1.

5.2. Example 

Let [0.4, 0.7] and [0.3, 0.6] be two intervals. 

Then,  

𝑃([0.4, 0.7] ≥ [0.3, 0.6]) = 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
0.6 − 0.4

0.7 − 0.4 + 0.6 − 0.3
, 0) , 0} = 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (

0.2

0.6
) , 0}

= 𝑚𝑎𝑥 {1 −
0.2

0.6
, 0} =

0.4

0.6
≈ 0.66 > 0.50, 

therefore [0.4, 0.7] ≥ [0.3, 0.6]. 

The opposite:  

𝑃((0.3, 0.6) ≥ ([0.4, 0.7])) = 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
0.7 − 0.3

0.6 − 0.3 + 0.7 − 0.4
, 0) , 0} = 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (

0.4

0.6
, 0) , 0}

= 𝑚𝑎𝑥 {1 −
0.4

0.6
, 0} =

0.2

0.6
≈ 0.33 < 0.50, 

therefore [0.3, 0.6] ≤ [0.4, 0.7]. 

We see that  

𝑃([0.4, 0.7] ≥ [0.3, 0.6]) + 𝑃([0.3, 0.6] ≥ [0.4, 0.7]) =
0.4

0.6
+

0.2

0.6
= 1. 

Another method of ranking two intervals is the midpoint one. 

6. Midpoint Method

Let A = [a1, a2] and B = [b1, b2] be two intervals included in or equal to [0, 1], with  

𝑚𝐴 = (a1 + a2)/2 and 𝑚𝐵 = (b1 + b2)/2 the midpoints of A and respectively B. Then: 

1) If 𝑚𝐴 < 𝑚𝐵 then 𝐴 < 𝐵.

2) If 𝑚𝐴 > 𝑚𝐵 then 𝐴 > 𝐵.

3) If 𝑚𝐴 = 𝑚𝐵 then 𝐴 =𝑁 𝐵, i.e. A is neutrosophically equal to B.
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6.1. Example 

1) We take the previous example,

where 𝐴 = [0.4, 0.7], and 𝑚𝐴 =
0.4+0.7

2
= 0.55; 

and B = [0.3, 0.6], and 𝑚𝐵 =
0.3+0.6

2
= 0.45. 

Since 𝑚𝐴 = 0.55 > 0.45 = 𝑚𝐵, we have 𝐴 > 𝐵. 

Let 𝐶 = [0.1, 0.7] and 𝐷 = [0.3, 0.5]. 

Then 𝑚𝐶 =
0.1+0.7

2
= 0.4, and 𝑚𝐷 =

0.3+0.5

2
= 0.4. 

Since 𝑚𝐶 = 𝑚𝐷 = 0.4, we get 𝐶 =𝑁 𝐷. 

Let’s verify the ranking relationship between C and D using Xu and Da’s possibility degree 

method. 

𝑃([0.1, 0.7] ≥ [0.3, 0.5]) = 𝑚𝑎𝑥 {1 −𝑚𝑎𝑥 (
0.5 − 0.1

0.7 − 0.1 + 0.5 − 0.3
, 0) , 0} = 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (

0.4

0.8
, 0) , 0}

= 𝑚𝑎𝑥 {1 −
0.4

0.8
, 0} = 𝑚𝑎𝑥 {

0.4

0.8
, 0} = 0.5; 

and 𝑃([0.3, 0.5] ≥ [0.1, 0.7]) = 𝑚𝑎𝑥 {1 −𝑚𝑎𝑥 (
0.7−0.3

0.5−0.3+0.7−0.1
, 0) , 0} = 𝑚𝑎𝑥 {1 −

𝑚𝑎𝑥 (
0.4

0.8
, 0) , 0} = 𝑚𝑎𝑥 {1 −

0.4

0.8
, 0} = 𝑚𝑎𝑥 {

0.4

0.8
, 0} = 0.5; 

thus, [0.1, 0.7] =𝑁 [0.3, 0.5]. 

6.2. Corollary 

The possibility method for two intervals having the same midpoint gives always 0.5. 

For example: 

p([0.3, 0.5] ≥ [0.2, 0.6])  = max{1 - max(  ((0.6-0.3) / (0.5-0.3 + 0.6-0.2)), 0 ), 0} = 

=  max{1 - max(  ((0.3) / (0.6)), 0 ), 0}  =  max{1 - max(  0.5, 0 ), 0} = 0.5. 

Similarly, 

p([0.2, 0.6] ≥ [0.3, 0.5])  = max{1 - max(  ((0.5-0.2) / (0.6-0.2 + 0.5-0.3)), 0 ), 0} =  0.5. 

Hence, none of the intervals [0.3, 0.5] and [0.2, 0.6]) is bigger than the other. 

Therefore, we may consider that the intervals [0.3, 0.5] =𝑁 [0.2, 0.6] are neutrosophically equal 

(or neutrosophically equivalent). 

7. Normalized Hamming Distance between Two Intervals

Let’s consider the Normalized Hamming Distance between two intervals [a1, a2] and [b1, b2] 

h : int([0, 1])⨯ int([0, 1])  [0, 1] 

defined as follows: 

h([a1, b1], [a2, b2])= ½(|a1 - b1| + |a2 - b2|). 

7.1. Theorem 

7.1.1. The Normalized Hamming Distance between two intervals having the same midpoint 

and the negative-ideal interval [0, 0] is the same. 
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7.1.2. The Normalized Hamming Distance between two intervals having the same midpoint 

and the positive-ideal interval [1, 1] is also the same (Jun Ye [4, 5]). 

Proof. 

Let A = [m – a, m + a] and B = [m – b, m + b] be two intervals from [0, 1], where m-a, m+a, m-b, m+b, 

a, b, m ∊ [0, 1]. A and B have the same midpoint m. 

7.1.1. h([m - a, m + a], [0, 0])= ½(|m – a - 0| + |m + a - 0|) = ½(m – a + m + a) = m, and 

   h([m - b, m + b], [0, 0])= ½(|m – b - 0| + |m + b - 0|) = ½(m – b + m + b) = m, 

7.1.2. h([m - a, m + a], [1, 1])= ½(|m – a - 1| + |m + a - 1|) = ½(1 - m + a + 1 - m - a) = 1 - m, and 

 h([m - b, m + b], [1, 1])= ½(|m – b - 1| + |m + b - 1|) = ½(1 - m + b + 1 - m - b) = 1 – m. 

8. Xu and Da’s Possibility Degree Method is equivalent to the Midpoint Method

We prove the following: 

8.1. Theorem 

The Xu and Da’s Possibility Degree Method is equivalent to the Midpoint Method in ranking 

two intervals included in [0, 1]. 

Proof. 

Let A and B be two intervals included in [0,1]. Without loss of generality, we write each interval 

in terms of each midpoint: 

𝐴 = [𝑚1 − 𝑎,𝑚1 + 𝑎] and 𝐵 = [𝑚2 − 𝑏,𝑚2 + 𝑏], 

where 𝑚1, 𝑚2 ∈ [0,1] are the midpoints of A and respectively B, and 𝑎, 𝑏 ∈ [0,1], 𝐴, 𝐵 ⊆ [0,1]. 

(For example, if 𝐴 = [0.4, 0.7], 𝑚𝐴 =
0.4+0.7

2
= 0.55, 0.55-0.4=0.15, then 𝐴 = [0.55 − 0.15, 0.55 +

0.15]). 

1) First case: 𝑚1 <  𝑚2. According to the Midpoint Method, we get 𝐴 < 𝐵. Let’s prove the same

inequality results with the second method. 

Let’s apply Xu and Da’s Possibility Degree Method: 

𝑃(𝐴 ≥ 𝐵) = 𝑃([𝑚1 − 𝑎,𝑚1 + 𝑎] ≥ [𝑚2 − 𝑏,𝑚2 + 𝑏])

= 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
(𝑚2 + 𝑏) − (𝑚1 − 𝑎)

(𝑚1 + 𝑎) − (𝑚1 − 𝑎) + (𝑚2 + 𝑏) − (𝑚2 − 𝑏)
, 0) , 0}

= 𝑚𝑎𝑥 {1 −𝑚𝑎𝑥 (
𝑚2 −𝑚1 + 𝑎 + 𝑏

2𝑎 + 2𝑏
, 0) , 0}

= 𝑚𝑎𝑥 {1 −
𝑚2 −𝑚1 + 𝑎 + 𝑏

2𝑎 + 2𝑏
, 0} , because 𝑚1 < 𝑚2,

= 𝑚𝑎𝑥 {
2𝑎 + 2𝑏 − 𝑚2 +𝑚1 − 𝑎 − 𝑏

2𝑎 + 2𝑏
, 0} = 𝑚𝑎𝑥 {

𝑎 + 𝑏 +𝑚1 −𝑚2

2𝑎 + 2𝑏
, 0} 

i) If 𝑎 + 𝑏 +𝑚1 −𝑚2 ≤ 0, then 𝑝(𝐴 ≥ 𝐵) = 𝑚𝑎𝑥 {
𝑎+𝑏+𝑚1−𝑚2

2𝑎+2𝑏
, 0} = 0, hence 𝐴 < 𝐵. 

ii) If 𝑎 + 𝑏 + 𝑚1 −𝑚2 > 0,

then 𝑝(𝐴 ≥ 𝐵) = 𝑚𝑎𝑥 {
𝑎+𝑏+𝑚1−𝑚2

2𝑎+2𝑏
, 0} =

𝑎+𝑏+𝑚1−𝑚2

2𝑎+2𝑏
> 0.
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We need to prove that 
𝑎+𝑏+𝑚1−𝑚2

2𝑎+2𝑏
< 0.5, 

or 𝑎 + 𝑏 +𝑚1 −𝑚2 < 0.5(2𝑎 + 2𝑏), 

or 𝑎 + 𝑏 +𝑚1 −𝑚2 < 𝑎 + 𝑏, 

or 𝑚1 −𝑚2 < 0, 

or 𝑚1 < 𝑚2, which is true according to the first case assumption. 

2) Second case: 𝑚1 = 𝑚2. According to the Midpoint Method, A is neutrosophically equal to B

(we write 𝐴 =𝑁 𝐵). 

Let’s prove that we get the same result with Xu and Da’s Method. 

Then 𝐴 = [𝑚1 − 𝑎,𝑚1 + 𝑎], and 𝐵 = [𝑚1 − 𝑏,𝑚1 + 𝑏]. 

Let’s apply Xu and Da’s Method: 

𝑃(𝐴 ≥ 𝐵) = 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
(𝑚1 + 𝑏) − (𝑚1 − 𝑎)

(𝑚1 + 𝑎) − (𝑚1 − 𝑎) + (𝑚1 + 𝑏) − (𝑚1 − 𝑏)
, 0) , 0}

= 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
𝑎 + 𝑏

2𝑎 + 2𝑏
, 0) , 0} = 𝑚𝑎𝑥 {1 −

1

2
, 0} = 0.5 

Similarly: 

𝑃(𝐵 ≥ 𝐴) = 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
(𝑚1 + 𝑎) − (𝑚1 − 𝑏)

(𝑚1 + 𝑏) − (𝑚1 − 𝑏) + (𝑚1 + 𝑎) − (𝑚1 − 𝑎)
, 0) , 0}

= 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
𝑎 + 𝑏

2𝑎 + 2𝑏
, 0) , 0} = 0.5 

Therefore, again 𝐴 =𝑁 𝐵. 

3) If 𝑚1 > 𝑚2, according to the Midpoint Method, we get 𝐴 > 𝐵.

Let’s prove the same inequality using Xu and Da’s Method. 

𝑃(𝐴 ≥ 𝐵) = 𝑃([𝑚1 − 𝑎,𝑚1 + 𝑎] ≥ [𝑚2 − 𝑏,𝑚2 − 𝑏]) = 

𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
(𝑚2 + 𝑏) − (𝑚1 − 𝑎)

(𝑚1 + 𝑎) − (𝑚1 − 𝑎) + (𝑚2 + 𝑏) − (𝑚2 − 𝑏)
, 0) , 0}

= 𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
𝑚2 −𝑚1 + 𝑎 + 𝑏

2𝑎 + 2𝑏
, 0) , 0} 

i) If 𝑚2 −𝑚1 + 𝑎 + 𝑏 ≤ 0, then 𝑃(𝐴 ≥ 𝐵) = 𝑚𝑎𝑥{1 − 0, 0} = 1, therefore 𝐴 > 𝐵.

ii) If 𝑚2 −𝑚1 + 𝑎 + 𝑏 > 0, then

𝑃(𝐴 ≥ 𝐵) = 𝑚𝑎𝑥 {1 −
𝑚2 −𝑚1 + 𝑎 + 𝑏

2𝑎 + 2𝑏
, 0} =

2𝑎 + 2𝑏 − 𝑚2 +𝑚1 − 𝑎 − 𝑏

2𝑎 + 2𝑏
=
𝑎 + 𝑏 + 𝑚1 −𝑚2

2𝑎 + 2𝑏

We need to prove that 
𝑎+𝑏+𝑚1−𝑚2

2𝑎+2𝑏
> 0.5,

or 𝑎 + 𝑏 +𝑚1 −𝑚2 > 0.5(2𝑎 + 2𝑏) 

or 𝑎 + 𝑏 +𝑚1 −𝑚2 > 𝑎 + 𝑏 

or 𝑚1 −𝑚2 > 0 

or 𝑚1 > 𝑚2, which is true according to the third case. Thus 𝐴 > 𝐵. 

8.2. Consequence 

All intervals, included in [0, 1], with the same midpoint are considered neutrosophically equal. 

𝐶(𝑚) = {[𝑚 − 𝑎,𝑚 + 𝑎], where all 𝑚, 𝑎,𝑚 − 𝑎,𝑚 + 𝑎 ∈ [0, 1]}  

represents the class of all neutrosophically equal intervals included in [0, 1] whose midpoint is 𝑚. 
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i) If 𝑚 = 0 or 𝑚 = 1, there is only one interval centered in 0, i.e. [0, 0], and only one interval

centered in 1, i.e. [1, 1]. 

ii) If 𝑚 ∉ {0, 1}, there are infinitely many intervals from [0, 1], centered in 𝑚.

8.3. Consequence 

Remarkably we can rank an interval [𝑎, 𝑏] ⊆ [0,1] with respect to a number 𝑛 ∈ [0, 1] since the 

number may be transformed into an interval [𝑛, 𝑛] as well. 

For example [0.2, 0.8] > 0.4 since the midpoint of [0.2, 0.8] is 0.5, and the midpoint of [0.4, 0.4]= 

0.4, hence 0.5 > 0.4. 

Similarly, 0.7 > (0.5, 0.8). 

9. Interval (-Valued) Neutrosophic Score, Accuracy, and Certainty Functions

Let 𝑇, 𝐼, 𝐹 ⊆ [0,1] be three open, semi-open / semi-closed, or closed intervals. 

Let 𝑇𝐿 = 𝑖𝑛𝑓𝑇 and 𝑇𝑈 = 𝑠𝑢𝑝𝑇; 𝐼𝐿 = 𝑖𝑛𝑓𝐼 and 𝐼𝑈 = 𝑠𝑢𝑝𝐼; 𝐹𝐿 = 𝑖𝑛𝑓𝐹 and 𝐹𝑈 = 𝑠𝑢𝑝𝐹. 

Let 𝑇𝐿 , 𝑇𝑈, 𝐼𝐿 , 𝐼𝑈 , 𝐹𝐿 , 𝐹𝑈 ∈ [0,1], with 𝑇𝐿 ≤ 𝑇𝑈, 𝐼𝐿 ≤ 𝐼𝑈, 𝐹𝐿 ≤ 𝐹𝑈. 

We consider all possible types of intervals: open (a, b), semi-open / semi-closed (a, b] and [a, b), 

and closed [a, b]. For simplicity of notations, we are using only [a, b], but we understand all types. 

Then 𝐴 = ([𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈]) is an Interval Neutrosophic Triplet. 

𝑇𝐿 is the lower limit of the interval 𝑇, 

𝑇𝑈 is the upper limit of the interval 𝑇, 

and similarly for 𝐼𝐿 , 𝐼𝑈, and 𝐹𝐿 , 𝐹𝑈 for the intervals 𝐼, and respectively 𝐹. 

Hong-yu Zhang, Jian-qiang Wang, and Xiao-hong Chen [2] in 2014 defined the Interval 

Neutrosophic Score, Accuracy, and Certainty Functions as follows. 

Let’s consider int([0, 1]) the set of all (open, semi-open/semi-closed, or closed) intervals included 

in or equal to [0, 1], where the abbreviation and index int stand for interval, and Zhang stands for 

Hong-yu Zhang, Jian-qiang Wang, and Xiao-hong Chen. 

9.1. Zhang Interval Neutrosophic Score Function 

3
int :{int([0,1])} int([0,1])Zhangs 

𝑆𝑖𝑛𝑡
𝑍ℎ𝑎𝑛𝑔(𝐴) = [𝑇𝐿 + 1 − 𝐼𝑈 + 1 − 𝐹𝑈,  𝑇𝑈 + 1 − 𝐼𝐿 + 1 − 𝐹𝐿] (11) 

9.2. Zhang Interval Neutrosophic Accuracy Function 

3
int :{int([0,1])} int([0,1])Zhanga 

int
Zhanga (𝐴) = [𝑚𝑖𝑛{𝑇𝐿 − 𝐹𝐿 , 𝑇𝑈 − 𝐹𝑈},𝑚𝑎𝑥{𝑇𝐿 − 𝐹𝐿 , 𝑇𝑈 − 𝐹𝑈}]

 (12) 

9.3. Zhang Interval Neutrosophic Certainty Function 

3
int :{int([0,1])} int([0,1])Zhangc 

𝑐𝑖𝑛𝑡
𝑍ℎ𝑎𝑛𝑔(𝐴) = [𝑇𝐿 ,  𝑇𝑈] (13)
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9. New Interval Neutrosophic Score, Accuracy, and Certainty Functions

Since comparing/ranking two intervals is equivalent to comparing/ranking two members (i.e. 

the intervals’ midpoints), we simplify Zhang Interval Neutrosophic Score ( 𝑆𝑖𝑛𝑡
𝑍ℎ𝑎𝑛𝑔 ), Accuracy 

(𝑎𝑖𝑛𝑡
𝑍ℎ𝑎𝑛𝑔), Certainty (𝑐𝑖𝑛𝑡

𝑍ℎ𝑎𝑛𝑔) functions, as follows: 

3
int

3
int

3
int

:{int([0,1])} [0,1]
:{int([0,1])} [ 1,1]
:{int([0,1])} [0,1]

FS

FS

FS

s
a
c



 



where the upper index FS stands for our name’s initials, in order to distinguish these new functions 

from the previous ones: 

10.1. New Interval Neutrosophic Score Function 

int
FSs (([𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈])) =

𝑇𝐿+𝑇𝑈+(1−𝐼𝐿)+(1−𝐼𝑈)+(1−𝐹𝐿)+(1−𝐹𝑈)

6
=

4+𝑇𝐿+𝑇𝑈−𝐼𝐿−𝐼𝑈−𝐹𝐿−𝐹𝑈

6
,

which means the average of six positivenesses; 

10.2. New Interval Neutrosophic Accuracy Function 

int
FSa (([𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈])) =

𝑇𝐿+𝑇𝑈−𝐹𝐿−𝐹𝑈

2

, which means the average of differences 

between positiveness and negativeness; 

10.3. New Interval Neutrosophic Certainty Function 

int
FSc (([𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈])) =

𝑇𝐿+𝑇𝑈

2

, 

which means the average of two positivenesses. 

10.4. Theorem 

Let ℳ𝑖𝑛𝑡 = {(𝑇, 𝐼, 𝐹), where 𝑇, 𝐼, 𝐹 ⊆ [0, 1], and 𝑇, 𝐼, 𝐹 are intervals} , be the set of interval 

neutrosophic triplets. 

The New Interval Neutrosophic Score, Accuracy, and Certainty Functions determine a total 

order relationship on the set ℳ𝑖𝑛𝑡 of Interval Neutrosophic Triplets. 

Proof. 

Let’s assume we have two interval neutrosophic triplets: 

𝑃1 = ([𝑇1
𝐿 , 𝑇1

𝑈], [𝐼1
𝐿 , 𝐼1

𝑈], [𝐹1
𝐿 , 𝐹1

𝑈]),

and 𝑃1 = ([𝑇2
𝐿 , 𝑇2

𝑈], [𝐼2
𝐿 , 𝐼2

𝑈], [𝐹2
𝐿 , 𝐹2

𝑈]), both from Mint.

We have to prove that: either 𝑃1 > 𝑃2, or 𝑃1 < 𝑃2, or 𝑃1 = 𝑃2. 

Apply the new interval neutrosophic score function ( int
FSs ) to both of them:

int
FSs (𝑃1) =

4 + 𝑇1
𝐿 + 𝑇1

𝑈 − 𝐼1
𝐿 − 𝐼1

𝑈 − 𝐹1
𝐿 − 𝐹1

𝑈

6

int
FSs (𝑃2) =

4 + 𝑇2
𝐿 + 𝑇2

𝑈 − 𝐼1
𝐿 − 𝐼1

𝑈 − 𝐹1
𝐿 − 𝐹1

𝑈

6
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If 
int
FSs (𝑃1) > int

FSs (𝑃2)
, then 𝑃1 > 𝑃2. 

If 
int
FSs (𝑃1) < int

FSs (𝑃2)
, then 𝑃1 < 𝑃2. 

If 
int
FSs (𝑃1) = int

FSs (𝑃2)
, then we get from equating the above two equalities that:

𝑇1
𝐿+𝑇1

𝑈 − 𝐼1
𝐿 − 𝐼1

𝑈 − 𝐹1
𝐿−𝐹1

𝑈 = 𝑇2
𝐿+𝑇2

𝑈 − 𝐼2
𝐿 − 𝐼2

𝑈 − 𝐹2
𝐿−𝐹2

𝑈

In this problematic case, we apply the new interval neutrosophic accuracy function 

 ( int
FSa ) to both 𝑃1and 𝑃2, and we get: 

1 1 1 1
int 1( )

2

L U
F

L U
S T T FP Fa  




2 2 2 2
int 2( )

2

L U
F

L U
S T T FP Fa  




If 
int
FSa (𝑃1) > int

FSa (𝑃2)
, then 𝑃1 > 𝑃2. 

If 
int
FSa (𝑃1) < int

FSa (𝑃2)
, then 𝑃1 < 𝑃2. 

If 
int
FSa (𝑃1) = int

FSa (𝑃2)
, then we get from equating the two above equalities that:

𝑇1
𝐿+𝑇1

𝑈 − 𝐹1
𝐿−𝐹1

𝑈 = 𝑇2
𝐿+𝑇2

𝑈 − 𝐹2
𝐿−𝐹2

𝑈

Again, a problematic case, so we apply the new interval neutrosophic certainty function ( int
FSc ) 

to both 𝑃1 and 𝑃2, and we get: 

int
FSc (𝑃1) = 𝑇1

𝐿+𝑇1
𝑈

int
FSc (𝑃2) = 𝑇2

𝐿+𝑇2
𝑈

If 
int
FSc (𝑃1) > int

FSc (𝑃2)
, then 𝑃1 > 𝑃2. 

If 
int
FSc (𝑃1) < int

FSc (𝑃2)
, then 𝑃1 < 𝑃2. 

If 
int
FSc (𝑃1) = int

FSc (𝑃2)
, then we get:

𝑇1
𝐿+𝑇1

𝑈 = 𝑇2
𝐿+𝑇2

𝑈

We prove that in the last case we get: 

𝑃1 =𝑁 𝑃2 (or 𝑃1 is neutrosophically equal to 𝑃2). 

We get the following linear algebraic system of 3 equations and 12 variables: 

{

𝑇1
𝐿+𝑇1

𝑈 − 𝐼1
𝐿−𝐼1

𝑈 − 𝐹1
𝐿−𝐹1

𝑈 = 𝑇2
𝐿+𝑇2

𝑈 − 𝐼2
𝐿−𝐼2

𝑈 − 𝐹2
𝐿−𝐹2

𝑈

𝑇1
𝐿+𝑇1

𝑈 − 𝐹1
𝐿−𝐹1

𝑈 = 𝑇2
𝐿+𝑇2

𝑈 − 𝐹2
𝐿−𝐹2

𝑈

𝑇1
𝐿+𝑇1

𝑈 = 𝑇2
𝐿+𝑇2

𝑈
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Second equation minus the third equation gives us: 

−𝐹1
𝐿−𝐹1

𝑈 = −𝐹2
𝐿−𝐹2

𝑈, or 𝐹1
𝐿 + 𝐹1

𝑈 = 𝐹2
𝐿 + 𝐹2

𝑈.

First equation minus the second equation gives us:

−𝐼1
𝐿−𝐼1

𝑈 = −𝐼2
𝐿−𝐼2

𝑈, or 𝐼1
𝐿 + 𝐼1

𝑈 = 𝐼2
𝐿 + 𝐼2

𝑈.

The previous system is now equivalent to the below system:

{

𝑇1
𝐿+𝑇1

𝑈 = 𝑇2
𝐿+𝑇2

𝑈

𝐼1
𝐿+𝐼1

𝑈 = 𝐼2
𝐿+𝐼2

𝑈

𝐹1
𝐿+𝐹1

𝑈 = 𝐹2
𝐿+𝐹2

𝑈

⟺

{

𝑇1
𝐿+𝑇1

𝑈

2
=
𝑇2
𝐿+𝑇2

𝑈

2
𝐼1
𝐿+𝐼1

𝑈

2
=
𝐼2
𝐿+𝐼2

𝑈

2
𝐹1
𝐿+𝐹1

𝑈

2
=
𝐹2
𝐿+𝐹2

𝑈

2

which means that: 

i) the intervals [𝑇1
𝐿 , 𝑇1

𝑈]  and [𝑇2
𝐿 , 𝑇2

𝑈]  have the same midpoint, therefore they are

neutrosophically equal. 

ii) the intervals [𝐼1
𝐿 , 𝐼1

𝑈] and [𝐼2
𝐿 , 𝐼2

𝑈] have also the same midpoint, so they are neutrosophically

equal. 

iii) similarly, the intervals [𝐹1
𝐿 , 𝐹1

𝑈] and [𝐹2
𝐿 , 𝐹2

𝑈] have the same midpoint, and again they are

neutrosophically equal. 

Whence, the interval neutrosophic triplets 𝑃1 and 𝑃2 are neutrosophically equal, i.e. 𝑃1 =𝑁 𝑃2. 

10.5. Theorem 

Let’s consider the ranking of intervals defined by Xu and Da, which is equivalent to the ranking 

of intervals’ midpoints. Then, the algorithm by Hong-yu Zhang et al. for ranking the interval 

neutrosophic triplets in equivalent to our algorithm. 

Proof 

Let’s consider two interval neutrosophic triplets, 𝑃1 and 𝑃2 ∈ ℳ𝑖𝑛𝑡, 

𝑃1 = ([𝑇1
𝐿 , 𝑇1

𝑈], [𝐼1
𝐿 , 𝐼1

𝑈], [𝐹1
𝐿 , 𝐹1

𝑈]),

and 𝑃2 = ([𝑇2
𝐿 , 𝑇2

𝑈], [𝐼2
𝐿 , 𝐼2

𝑈], [𝐹2
𝐿 , 𝐹2

𝑈]).

Let’s rank them using both methods and prove we get the same results. We denote by int
Zhangs , 

int
Zhanga , int

Zhangc , and 𝑠𝑖𝑛𝑡
𝐹𝑆 , 𝑎𝑖𝑛𝑡

𝐹𝑆 , 𝑐𝑖𝑛𝑡
𝐹𝑆  the Interval Neutrosophic Score, Accuracy, and Certainty 

Functions, by Hong-yu Zhang et al. and respectively by us. 

Interval Neutrosophic Score Function 

int
Zhangs (𝑃1) = [𝑇1

𝐿 + 1 − 𝐼1
𝑈 + 1 − 𝐹1

𝑈 , 𝑇1
𝑈 + 1 − 𝐼1

𝐿 + 1 − 𝐹1
𝐿]

int
Zhangs (𝑃2) = [𝑇2

𝐿 + 1 − 𝐼2
𝑈 + 1 − 𝐹2

𝑈 , 𝑇2
𝑈 + 1 − 𝐼2

𝐿 + 1 − 𝐹2
𝐿]

a) If 
int
Zhangs (𝑃1) > int

Zhangs (𝑃2)
, then

the midpoint of the interval 
int
Zhangs (𝑃1) >

 midpoint of the interval
int
Zhangs (𝑃2)

,
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or 
𝑇1
𝐿+1−𝐼1

𝑈+1−𝐹1
𝑈+ 𝑇1

𝑈+1−𝐼1
𝐿+1−𝐹1

𝐿

2
>

𝑇2
𝐿+1−𝐼2

𝑈+1−𝐹2
𝑈+ 𝑇2

𝑈+1−𝐼2
𝐿+1−𝐹2

𝐿

2
 , 

or 𝑇1
𝐿 + 𝑇1

𝑈 − 𝐼1
𝐿 − 𝐼1

𝑈 − 𝐹1
𝐿 − 𝐹1

𝑈 > 𝑇2
𝐿 + 𝑇2

𝑈 − 𝐼2
𝐿 − 𝐼2

𝑈 − 𝐹2
𝐿 − 𝐹2

𝑈,

or 
4+𝑇1

𝐿+𝑇1
𝑈−𝐼1

𝐿−𝐼1
𝑈−𝐹1

𝐿−𝐹1
𝑈

6
>

4+𝑇2
𝐿+𝑇2

𝑈−𝐼2
𝐿−𝐼2

𝑈−𝐹2
𝐿−𝐹2

𝑈

6
 ,

or 𝑠𝑖𝑛𝑡
𝐹𝑆 (𝑃1) > 𝑠𝑖𝑛𝑡

𝐹𝑆 (𝑃2).

b) If
int
Zhangs (𝑃1) < int

Zhangs (𝑃2)
, the proof is similar, we only replace the inequality symbol > by

< into the above proof. 

c) If
int
Zhangs (𝑃1) = int

Zhangs (𝑃2)
, the proof again is similar with the above, we only replace > by =

into the above proof. 

Interval Neutrosophic Accuracy Function 

int
Zhanga (𝑃1) = [𝑚𝑖𝑛{𝑇1

𝐿 − 𝐹1
𝐿 , 𝑇1

𝑈 − 𝐹1
𝑈},𝑚𝑎𝑥{𝑇1

𝐿 − 𝐹1
𝐿 , 𝑇1

𝑈 − 𝐹1
𝑈}]

,

int
Zhanga (𝑃2) = [𝑚𝑖𝑛{𝑇2

𝐿 − 𝐹2
𝐿 , 𝑇2

𝑈 − 𝐹2
𝑈},𝑚𝑎𝑥{𝑇2

𝐿 − 𝐹2
𝐿 , 𝑇2

𝑈 − 𝐹2
𝑈}]

.

a) If
int
Zhanga (𝑃1) > int

Zhanga (𝑃2)
, then

the midpoint of the interval 𝑎𝑖𝑛𝑡
𝐻𝑜𝑛𝑔

(𝑃1) > the midpoint of the interval 𝑎𝑖𝑛𝑡
𝐻𝑜𝑛𝑔

(𝑃2), 

or 
𝑇1
𝐿−𝐹1

𝐿+𝑇1
𝑈−𝐹1

𝑈

2
>

𝑇2
𝐿−𝐹2

𝐿+𝑇2
𝑈−𝐹2

𝑈

2
 ,

or 𝑎𝑖𝑛𝑡
𝐹𝑆 (𝑃1) > 𝑎𝑖𝑛𝑡

𝐹𝑆 (𝑃2).

b) Similarly, if
int
Zhanga (𝑃1) < int

Zhanga (𝑃2)
, just replacing > by < into the above proof.

c) Again, similarly if
int
Zhanga (𝑃1) = int

Zhanga (𝑃2)
, only replacing > by = into the above proof. 

Interval Neutrosophic Certainty Function 

int
Zhangc (𝑃1) = [𝑇1

𝐿 , 𝑇1
𝑈]

int
Zhangc (𝑃2) = [𝑇2

𝐿 , 𝑇2
𝑈]

a) If
int
Zhangc (𝑷𝟏) > int

Zhangc (𝑷𝟐)
, then 

b) the midpoint of the interval
int
Zhangc (𝑷𝟏) >

 the midpoint of the interval 
int
Zhangc

(𝑷𝟐)
, 

or 
𝑇1
𝐿+𝑇1

𝑈

2
>

𝑇2
𝐿+𝑇2

𝑈

2

or 𝑐𝑖𝑛𝑡
𝐹𝑆 (𝑃1) > 𝑐𝑖𝑛𝑡

𝐹𝑆 (𝑃2).

b) Similarly, if
int
Zhangc (𝑃1) < int

Zhangc (𝑃2)
, just replacing > by < into the above proof.
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c) Again, if
int
Zhangc (𝑃1) = int

Zhangc (𝑃2)
, only replace > by = into the above proof.

Therefore, we proved that, for any interval neutrosophic triplet 𝑃, 

int
Zhangs (𝑃)~𝑠𝑖𝑛𝑡

𝐹𝑆 (𝑃)
, where ~ means equivalent;

int
Zhanga (𝑃)~𝑎𝑖𝑛𝑡

𝐹𝑆 (𝑃)
, 

and 
int
Zhangc (𝑃)~𝑐𝑖𝑛𝑡

𝐹𝑆 (𝑃)
. 

11. Subset Neutrosophic Score, Accuracy, and Certainty Functions

Let 𝑀subset = {(𝑇subset, 𝐼subset, 𝐹subset), where the subsets  𝑇subset, 𝐼subset, 𝐹subset [0, 1]}.

We approximate each subset by the smallest closed interval that includes it. 

Let’s denote: 

𝑇𝐿 = 𝑖𝑛𝑓(𝑇subset) and 𝑇
𝑈 = 𝑠𝑢𝑝(𝑇subset); therefore Tsubset   [TL, TU];

𝐼𝐿 = 𝑖𝑛𝑓(𝐼subset) and 𝐼
𝑈 = 𝑠𝑢𝑝(𝐼subset); therefore Isubset   [IL, IU];

𝐹𝐿 = 𝑖𝑛𝑓(𝐹subset) and 𝐹
𝑈 = 𝑠𝑢𝑝(𝐹subset); therefore Fsubset   [FL, FU].

Then: 

𝑀subset ≈ {
([ , ],[ , ],[ , ]),L U L U L UT T I I F F where 𝑇𝐿 , 𝑇𝑈, 𝐼𝐿 , 𝐼𝑈 , 𝐹𝐿 , 𝐹𝑈 ∈ [0, 1],

and 𝑇𝐿 ≤ 𝑇𝑈, 𝐼𝐿 ≤ 𝐼𝑈 , 𝐹𝐿 ≤ 𝐹𝑈
} 

11.1. Definition of Subset Neutrosophic Score, Accuracy, and Certainty Functions 

Then, the formulas for Subset Neutrosophic Score, Accuracy, and Certainty Functions will 

coincide with those for Interval Neutrosophic Score Accuracy, and Certainty Functions by Hong-yu 

Zhang, and respectively by us: 

11.2. Theorem 

Let N be the Interval Neutrosophic Triplet 

𝑁 = ([𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈]),  

where 𝑇𝐿 ≤ 𝑇𝑈, 𝐼𝐿 ≤ 𝐼𝑈, 𝐹𝐿 ≤ 𝐹𝑈,  

and all [𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈] ⊆ [0, 1]. 

If each interval collapses to a single point, i.e. 

𝑇𝐿 = 𝑇𝑈 = 𝑇, then [𝑇𝐿 , 𝑇𝑈] = [𝑇, 𝑇] ≡ 𝑇 ∈ [0, 1], 

𝐼𝐿 = 𝐼𝑈 = 𝐼, then [𝐼𝐿 , 𝐼𝑈] = [𝐼, 𝐼] ≡ 𝐼 ∈ [0, 1], 

𝐹𝐿 = 𝐹𝑈 = 𝐹, then [𝐹𝐿 , 𝐹𝑈] = [𝐹, 𝐹] ≡ 𝑇 ∈ [0, 1], 

then 𝑠𝑖𝑛𝑡
𝐹𝑆 (𝑁) = 𝑠(𝑁), 𝑎𝑖𝑛𝑡

𝐹𝑆 (𝑁) = 𝑎(𝑁), and 𝑐𝑖𝑛𝑡
𝐹𝑆 (𝑁) = 𝑐(𝑁).

Proof 

𝑠𝑖𝑛𝑡
𝐹𝑆 (𝑁) =

4 + 𝑇𝐿 + 𝑇𝑈 − 𝐼𝐿 − 𝐼𝑈 − 𝐹𝐿 − 𝐹𝑈

6
=
4 + 𝑇 + 𝑇 − 𝐼 − 𝐼 − 𝐹 − 𝐹

6
=
4 + 2𝑇 − 2𝐼 − 2𝐹

6

=
2 + 𝑇 − 𝐼 − 𝐹

3
= 𝑠(𝑁). 

𝑎𝑖𝑛𝑡
𝐹𝑆 (𝑁) =

𝑇𝐿 + 𝑇𝑈 − 𝐹𝐿 − 𝐹𝑈

2
=
𝑇 + 𝑇 − 𝐹 − 𝐹

2
=
2(𝑇 − 𝐹)

2
= 𝑎(𝑁). 
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𝑐𝑖𝑛𝑡
𝐹𝑆 (𝑁) =

𝑇𝐿 + 𝑇𝑈

2
=
𝑇 + 𝑇

2
=
2𝑇

2
= 𝑐(𝑁). 

12. Conclusion

The most used and easy for ranking the Neutrosophic Triplets (T, I, F) are the following

functions, that provide a total order: 

Single-Valued Neutrosophic Score, Accuracy, and Certainty Functions: 

𝑠(𝑇, 𝐼, 𝐹) =
2 + 𝑇 − 𝐼 − 𝐹

3

𝑎(𝑇, 𝐼, 𝐹) = 𝑇 − 𝐹 

𝑐(𝑇, 𝐼, 𝐹) = 𝑇 

 Interval-Valued Neutrosophic Score, Accuracy, and Certainty Functions: 

int
FSs (([𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈])) =

4 + 𝑇𝐿 + 𝑇𝑈 − 𝐼𝐿 − 𝐼𝑈 − 𝐹𝐿 − 𝐹𝑈

6

 

int
FSa (([𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈])) =

𝑇𝐿 + 𝑇𝑈 − 𝐹𝐿 − 𝐹𝑈

2

 

int
FSc (([𝑇𝐿 , 𝑇𝑈], [𝐼𝐿 , 𝐼𝑈], [𝐹𝐿 , 𝐹𝑈])) =

𝑇𝐿 + 𝑇𝑈

2

 

All these functions are very much used in decision-making applications. 
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Some Fundamental Operations on Interval Valued 
Neutrosophic Hypersoft Set with Their Properties 

Rana Muhammad Zulqarnain, Xiao Long Xin, Muhammad Saqlain, Muhammad Saeed, 
Florentin Smarandache, Muhammad Irfan Ahamad

Abstract: Multi-criteria decision-making (MCDM) focuses on coordination, choice and planning 

issues, including multi-criteria. the neutrosophic soft set cannot handle environments involving 

multiple attributes. In order to overcome these obstacles, the neutrosophic hypersoft set (NHSS) 

and Interval Value neutrosophic hypersoft set (IVNHSS) are defined. In this paper, we extend 

the concept of IVNHSS with basic properties. We also developed some basic operations on 

IVNHSS such as union, intersection, addition, difference, Truth-favorite, and False-favorite, etc. 

with their desirable properties. Finally, the necessity and possibility operations on IVNHSS with 

properties are presented in the following research. 

Keywords: Soft set; Neutrosophic Set; Interval-valued neutrosophic set; Hypersoft set; Interval-

valued neutrosophic hypersoft set. 

1. Introduction

Anxiety performs a dynamic part in lots of areas of life such as modeling, medicine, and 

engineering. However, people have raised a general question, that is, how can we verbalize anxiety in 

mathematical modeling. Several investigators all over the world have recommended and advised 

different methodologies to minimize uncertainty. First of all, Zadeh planned the idea of fuzzy sets [1] 

to resolve these complications which contain anxiety as well as ambiguity. It is seen that sometimes; 

fuzzy sets can't deal with scenarios. To overcome such scenarios, Turksen [2] suggested the concept 

of interval-valued fuzzy sets (IVFS). In some cases, we need to debate the suitable representation of 

the object under the circumstances of anxiety and uncertainty, and regard its unbiased 

membership value and non-membership value of the suitable representation of the object, that cannot 

be processed by these fuzzy sets or IVFS. To overcome such concerns, Atanassov projected the theory 

of IFS in [3]. The theory proposed by Atanassov only considers membership and non-membership 

values to deal with insufficient data, but the IFS theory cannot deal with incompatible and imprecise 

information. To deal with this incompatible and imprecise data, Smarandache proposed the idea of 

NS [4]. Molodtsov [5] proposed a general mathematical tool to deal with uncertain, ambiguous, and 

undefined substances, called soft sets (SS). Maji et al. [6] extended the work of SS and defined some 

operations and their attributes. In [7], they also use SS theory to make decisions. Ali et al. [8] Modified 

the Maji method of SS and developed some new operations with its properties. In [9], they proved 

De Morgan's SS theory and law by using different operators. Cagman and Enginoglu [10] proposed 

the concept of soft matrices with operations and discussed their properties. They also introduced a 

decision-making method to solve problems that contain uncertainty. In [11], they modified the 

Rana Muhammad Zulqarnain, Xiao Long Xin, Muhammad Saqlain, Muhammad Saeed, 
Florentin Smarandache, Muhammad Irfan Ahamad (2021). Some Fundamental Operations on 
Interval Valued Neutrosophic Hypersoft Set with Their Properties. Neutrosophic Sets and 
Systems 40, 134-148
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actions proposed by Molodtsov's SS. In [12], the author proposed some new operations for soft 

matrices, such as soft difference product, soft restricted difference product, soft extended difference 

product, and weak extended difference product.  

Maji [13] put forward the idea of NSS with necessary operations and characteristics. The idea of 

Possibility NSS was proposed by Karaaslan [14] and introduced a neutrosophic soft decision method 

to solve those uncertain problems based on And-product. Broumi [15] developed a generalized NSS 

with certain operations and properties and used the proposed concept for decision-making. To solve 

the MCDM problem with single-valued neutrosophic numbers proposed by Deli and Subas in [16], 

they constructed the concept of the cut set of single-valued neutrosophic numbers. Based on the 

correlation of IFS, the term correlation coefficient of SVNS is introduced [17]. In [18], the idea of 

simplifying NS introduced some algorithms and aggregation operators, such as weighted arithmetic 

operators and weighted geometric average operators. They constructed the MCDM method based on 

the proposed aggregation operator. Zulqarnain et al. [19] extended the fuzzy TOPSIS technique to 

the Neutrosophic TOPSIS technique and used the developed approach to solve the MCDM problem. 

Abdel-basset et al [20] presented the integration of TOPSIS methodology decision-making test as well 

as evaluation laboratory (DEMATEL) solution (TOPSIS) CIIC environment delivers a new method to 

pick out the proper project. Abdel-basset Mohamed [21] developed an MCDM model to discover 

along with display screen cancer addressing obscure, anxiety, the incompleteness of reported signs 

as well as handicapping apparently within cancer or replaceable ailments in the signs and symptoms. 

Abdel-Basset et al. [22] raised the issue of assessment of the smart emergency response techniques is 

interpreted as MCDM problem. they suggested a framework by combining three common MCDM 

strategies which are AHP, TOPSIS, and VIKOR. 

All the above-mentioned studies cannot deal with the problems in which attributes of the 

alternates have their corresponding sub-attributes. To handle such compilations Smarandache [23] 

generalized the SS to HSS by converting the function to a multi-attribute function to deal with 

uncertainty. Saqlain et al. [24] developed the generalization of TOPSIS for the NHSS, by using 

accuracy function they transformed the fuzzy neutrosophic numbers to crisp form. Zulqarnain et al. 

[25] extended the notion of NHSSs and presented the generalized operations for NHSSs, they also

developed the necessity and possibility operations and discussed their desirable features. In [26], the

author’s proposed the fuzzy Plithogenic hypersoft set in matrix form with some basic operations and

properties. Saqlain et al. [27] proposed the aggregate operators on NHSS. In [28], the author extended

the NHSS approach and introduced IVNHSS, m-polar, and m-polar IVNHSS. Zulqarnain et al. [29]

presented the intuitionistic fuzzy hypersoft set, they developed the TOPSIS technique by developing

a correlation coefficient to solve multi-attribute decision making problems. Many other novel

researchers are done under neutrosophic environment and their applications in everyday life [30-34].

The following research is organized as follows: Some basic definitions recalled in section 2, 

which are used in the following research such as SS, NS, NSS, HSS, NHSS, and IVNHSS. We present 

different operators on IVNHSS such as union, intersection, addition, difference, extended union, 

extended intersection, truth-favorite, and false-favorite operations in section 3 with properties and 

prove the De Morgan laws by using union and intersection operators. We also proposed the necessity 

and possibility operators, OR, and operations with some properties in section 4. 

2. Preliminaries

In this section, we recollect some basic definitions such as SS, NSS, NHSS, and IVNHSS which use in 

the following sequel. 

Definition 2.1 [5] 

The soft set is a pair (F, Ʌ) over 𝕌 if and only if F: Ʌ → 𝑃 (𝕌) is a mapping. That is the parameterized 

family of subsets of 𝕌 known as a SS. 

Definition 2.2 [4] 
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Let 𝕌 be a universe and Ʌ be an NS on 𝕌 is defined as Ʌ = {< 𝑢, 𝓊𝐴(𝑢), 𝓋𝐴(𝑢), 𝓌𝐴(𝑢) > : 𝑢 ∈ 𝕌}, 

where 𝓊, 𝓋, 𝓌: 𝕌 → ]0−, 1+[ and 0− ≤ 𝓊Ʌ(𝑢) + 𝓋Ʌ(𝑢) + 𝓌Ʌ(𝑢) ≤ 3+.

Definition 2.3 [13] 

Let 𝕌 and Ḝ are universal set and set of attributes respectively. Let P(𝕌) be the set of Neutrosophic 

values of 𝕌 and Ʌ ⊆ Ḝ. A pair (F, Ʌ) is called an NSS over 𝕌 and its mapping is given as  

F: Ʌ → (𝕌) 

Definition 2.4 [35] 

Let 𝕌 be a universal set, then interval valued neutrosophic set can be expressed by the set 𝑨 = 

{< 𝒖, 𝓾𝑨(𝒖), 𝓿𝑨(𝒖), 𝔀𝑨(𝒖) > : 𝒖 ∈  𝕌}, where 𝓾𝑨, 𝓿𝑨, and 𝔀𝑨 are truth, indeterminacy and falsity 

membership functions for 𝑨 respectively, 𝓾𝑨, 𝓿𝑨, and 𝔀𝑨 ⊆ [0, 1] for each 𝒖 ∈  𝕌. Where    

𝓾𝑨(𝒖) = [𝓾𝑨
𝑳  (𝒖), 𝓾𝑨

𝑼 (𝒖)]

𝓿𝑨(𝒖) = [𝓿𝑨
𝑳  (𝒖), 𝓿𝑨

𝑼 (𝒖)]

𝔀𝑨(𝒖) = [𝔀𝑨
𝑳  (𝒖), 𝔀𝑨

𝑼 (𝒖)]

For each point 𝒖 ∈ 𝕌, 0 ≤ 𝓾𝑨(𝒖) + 𝓿𝑨(𝒖) + 𝔀𝑨(𝒖) ≤ 3 and IVN(𝕌) represents the family of all 

interval valued neutrosophic sets. 

Definition 2.5 [23] 

Let 𝕌 be a universal set and 𝑃(𝕌) be a power set of 𝕌 and for 𝑛 ≥ 1, there are 𝑛 distinct attributes 

such as 𝑘1 , 𝑘2 , 𝑘3 , …, 𝑘𝑛  and 𝐾1 , 𝐾2 , 𝐾3 , …, 𝐾𝑛  are sets for corresponding values attributes 

respectively with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair 

(F, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛) is said to be HSS over 𝕌 where F is a mapping from 𝐾1 × 𝐾2 × 𝐾3× … × 

𝐾𝑛 to 𝑃(𝕌).  

Definition 2.6 [23]  

Let 𝕌 be a universal set and 𝑃(𝕌) be a power set of 𝕌 and for 𝑛 ≥ 1, there are 𝑛 distinct attributes 

such as 𝑘1 , 𝑘2 , 𝑘3 , …, 𝑘𝑛  and 𝐾1 , 𝐾2 , 𝐾3 , …, 𝐾𝑛  are sets for corresponding values attributes 

respectively with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair 

(F, Ʌ) is said to be NHSS over 𝕌 if there exists a relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = Ʌ.  F is a mapping 

from 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛  to 𝑃(𝕌) and F(𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛) = {< 𝑢, 𝓊𝐴(𝑢), 𝓋𝐴(𝑢), 𝓌𝐴(𝑢) >

: 𝑢 ∈ 𝕌}  where 𝓊 , 𝓋 , 𝓌  are membership values for truthness, indeterminacy and falsity 

respectively such that 𝓊, 𝓋, 𝓌: 𝕌 → ]0−, 1+[ and 0− ≤ 𝓊Ʌ(𝑢) + 𝓋Ʌ(𝑢) + 𝓌Ʌ(𝑢) ≤ 3+.

Definition 2.7 [28] 

Let 𝕌 be a universal set and 𝑃(𝕌 ) be a power set of 𝕌 and for 𝑛 ≥ 1, there are 𝑛 distinct attributes 

such as 𝑘1 , 𝑘2 , 𝑘3 , …, 𝑘𝑛  and 𝐾1 , 𝐾2 , 𝐾3 , …, 𝐾𝑛  are sets for corresponding values attributes 

respectively with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair 

(𝐹, 𝐴) is said to be IVNHSS over 𝕌 if there exists a relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = 𝐴. Where   

𝐹: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 → (𝕌) and  

𝐹 (𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛 ) = {< 𝑢, [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)], [𝓋𝐴
𝐿  (𝑢), 𝓋𝐴

𝑈  (𝑢)], [𝓌𝐴
𝐿  (𝑢), 𝓌𝐴

𝑈  (𝑢)] > : 𝑢 ∈ 𝕌} ,

where 𝓊𝐴
𝐿 , 𝓋𝐴

𝐿 , and 𝓌𝐴
𝐿  are lower and 𝓊𝐴

𝑈 , 𝓋𝐴
𝑈 , and 𝓌𝐴

𝑈  are upper membership values for

truthiness, indeterminacy, and falsity respectively for 𝐴  and  [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)] , [𝓋𝐴
𝐿  (𝑢), 𝓋𝐴

𝑈  (𝑢)],

[𝓌𝐴
𝐿  (𝑢), 𝓌𝐴

𝑈  (𝑢)] ⊆ [0, 1] and 0 ≤ 𝑠𝑢𝑝𝓊𝐴(𝑢) + 𝑠𝑢𝑝𝓋𝐴(𝑢) + 𝑠𝑢𝑝 𝓌𝐴(𝑢) ≤ 3 for each 𝑢 ∈  𝕌.

Example 1 Assume 𝕌 = {𝑢1 , 𝑢2} be a universe of discourse and 𝐸 = {𝓍1 , 𝓍2 , 𝓍3 , 𝓍4} be a set of 

attributes. Consider 𝐹𝐴 be an IVNHSS over 𝕌 can be expressed as follows 
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𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, 0.9], [.1, .4]〉, 〈𝑢2, [. 4, .7], [. 3, .9], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [. 3, .9], [.3, .5]〉, 〈𝑢2, [0, .3], [. 6, .8], [.3, .7]〉}), 

(𝓍3, {〈𝑢1, [. 2, .9], [. 1, .5], [.7, .8]〉, 〈𝑢2, [. 4, .9], [. 1, .6], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 5, .9], [. 6, .8], [.1, .8]〉})}. 

Tablur representation of IVNHSS 𝐹𝐴 over 𝕌 given as follows 

Table 1: Tablur representation of IVNHSS 𝑭𝑨 

𝕌 𝒖𝟏 𝒖𝟏 

𝔁𝟏 〈[. 6, .8], [. 5, .9], [.1, .4]〉 〈[. 4, .7], [. 3, .9], [.2, .6]〉 

𝔁𝟐 〈[. 4, .7], [. 3, .9], [.3, .5]〉 〈[0, .3], [. 6, .8], [.3, .7]〉 

𝔁𝟑 〈[. 2, .9], [. 1, .5], [.7, .8]〉 〈[. 4, .9], [. 1, .6], [.5, .7]〉 

𝔁𝟒 〈[. 6, .9], [. 6, .9], [1, 1]〉 〈[. 5, .9], [. 6, .8], [.1, .8]〉 

3. Operations on Interval Valued Neutrosophic Hypersoft Set with Properties

In this section, we extend the concept of IVNHSS and introduce some fundamental operations on 

IVNHSS with their properties. 

Definition 3.1 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then 𝐹𝐴 ⊆ 𝐺𝐵 if   

𝑖𝑛𝑓𝓊𝐴(𝑢) ≤ 𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢) ≤ 𝑠𝑢𝑝𝓊𝐵(𝑢) 

𝑖𝑛𝑓𝓋𝐴(𝑢) ≥ 𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢) ≥ 𝑠𝑢𝑝𝓋𝐵(𝑢) 

𝑖𝑛𝑓𝓌𝐴(𝑢) ≥ 𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢) ≥ 𝑠𝑢𝑝𝓌𝐵(𝑢) 

Example 2 Assume 𝕌 = {𝑢1 , 𝑢2} be a universe of discourse and 𝐸 = {𝓍1 , 𝓍2 , 𝓍3 , 𝓍4} be a set of 

attributes. Consider 𝐺𝐵 be an IVNHSS over 𝕌 can be expressed as follows and 𝐹𝐴 given in example 

1 

𝐺𝐵 = {(𝓍1, {〈𝑢1, [. 6, .9], [. 3, .7], [.1, .3]〉, 〈𝑢2, [. 6, .9], [. 3, .5], [.1, .4]〉}), 

(𝓍2, {〈𝑢1, [. 6, .8], [. 2, .5], [.2, .3]〉, 〈𝑢2, [. 3, .5], [. 4, .7], [.1, .4]〉}), 

(𝓍3, {〈𝑢1, [. 4, .9], [. 1, .3], [.4, .6]〉, 〈𝑢2, [. 6, 1], [. 1, .4], [.3, .4]〉}), 

(𝓍4, {〈𝑢1, [. 7, .9], [. 4, .6], [.6, 1]〉, 〈𝑢2, [. 5, .7], [. 4, .7], [.1, .4]〉})}. 

Thus  

𝐹𝐴 ⊆ 𝐺𝐵. 

Definition 3.2  

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then 

i. Empty IVNHSS can be represented as 𝐹0̌, and defined as follows 𝐹0̌ =  {< 𝑢, [0, 0], [1, 1],

[1, 1] > : 𝑢 ∈ 𝕌}.

ii. Universal IVNHSS can be represented as 𝐹�̌�, and defined as follows 𝐹�̌� =  {< 𝑢, [0, 0], [1, 1],

[1, 1] > : 𝑢 ∈ 𝕌}.
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iii. The complement of IVNHSS can be defined as follows 𝐹𝐴
𝑐  = {< 𝑢, [𝓌𝐴

𝐿  (𝑢), 𝓌𝐴
𝑈 (𝑢)],

[1 − 𝓋𝐴
𝑈  (𝑢), 1 − 𝓋𝐴

𝐿  (𝑢)], [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)]  > : 𝑢 ∈ 𝕌}.

Example 3 Assume 𝕌 = {𝑢1 , 𝑢2} be a universe of discourse and 𝐸 = {𝓍1 , 𝓍2 , 𝓍3 , 𝓍4} be a set of 

attributes. The tabular representation of 𝐹0̌  and 𝐹�̌�  given as follows in table 2 and table 3 

respectively.  

Table 2:Tablur representation of IVNHSS 𝑭�̌�

𝕌 𝒖𝟏 𝒖𝟏 

𝔁𝟏 〈[0, 0], [1, 1], [1, 1]〉 〈[0, 0], [1, 1], [1, 1]〉 

𝔁𝟐 〈[0, 0], [1, 1], [1, 1]〉 〈[0, 0], [1, 1], [1, 1]〉 

𝔁𝟑 〈[0, 0], [1, 1], [1, 1]〉 〈[0, 0], [1, 1], [1, 1]〉 

𝔁𝟒 〈[0, 0], [1, 1], [1, 1]〉 〈[0, 0], [1, 1], [1, 1]〉 

Table 3:Tablur representation of IVNHSS 𝑭�̌�

𝕌 𝒖𝟏 𝒖𝟏 

𝔁𝟏 〈[1, 1], [0, 0], [0, 0]〉 〈[1, 1], [0, 0], [0, 0]〉 

𝔁𝟐 〈[1, 1], [0, 0], [0, 0]〉 〈[1, 1], [0, 0], [0, 0]〉 

𝔁𝟑 〈[1, 1], [0, 0], [0, 0]〉 〈[1, 1], [0, 0], [0, 0]〉 

𝔁𝟒 〈[1, 1], [0, 0], [0, 0]〉 〈[1, 1], [0, 0], [0, 0]〉 

Proposition 3.3 

If 𝐹A ∈ IVNHSS, then 

1. (𝐹𝐴
𝑐)𝑐 = 𝐹A

2. (𝐹0̌)𝑐 = 𝐹�̌�

3. (𝐹�̌�)𝑐 = 𝐹0̌

Proof 1 Let 𝐹A  = {< 𝑢, [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)], [𝓋𝐴
𝐿  (𝑢), 𝓋𝐴

𝑈  (𝑢)], [𝓌𝐴
𝐿  (𝑢), 𝓌𝐴

𝑈  (𝑢)] > : 𝑢 ∈ 𝕌}  be an

IVNHSS. Then by using definition 3.3(iii), we have  

𝐹𝐴
𝑐 = {< 𝑢, [𝓌𝐴

𝐿 (𝑢), 𝓌𝐴
𝑈  (𝑢)], [1 − 𝓋𝐴

𝑈  (𝑢), 1 − 𝓋𝐴
𝐿  (𝑢)], [𝓊𝐴

𝐿  (𝑢), 𝓊𝐴
𝑈  (𝑢)]  > : 𝑢 ∈ 𝕌}

Thus  

(𝐹𝐴
𝑐)𝑐 = {< 𝑢, [𝓊𝐴

𝐿  (𝑢), 𝓊𝐴
𝑈  (𝑢)], [1 − (1 − 𝓋𝐴

𝐿  (𝑢)), 1 − (1 − 𝓋𝐴
𝑈  (𝑢))], [𝓌𝐴

𝐿  (𝑢), 𝓌𝐴
𝑈  (𝑢)] > : 𝑢 ∈ 𝕌}

(𝐹𝐴
𝑐)𝑐 = {< 𝑢, [𝓊𝐴

𝐿  (𝑢), 𝓊𝐴
𝑈  (𝑢)], [𝓋𝐴

𝐿  (𝑢), 𝓋𝐴
𝑈  (𝑢)], [𝓌𝐴

𝐿  (𝑢), 𝓌𝐴
𝑈  (𝑢)] > : 𝑢 ∈ 𝕌}

(𝐹𝐴
𝑐)𝑐 = 𝐹A

Proof 2 

As we know that 𝐹0̌ =  {< 𝑢, [0, 0], [1, 1], [1, 1] > : 𝑢 ∈ 𝕌} 

By using definition 3.3(iii), we get 

(𝐹0̌)𝑐 = {< 𝑢, [1, 1], [0, 0], [0, 0] > : 𝑢 ∈ 𝕌} = 𝐹�̌�. 
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Similarly, we can prove 3. 

Definition 3.4 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then 

𝐹𝐴 ∪ 𝐺𝐵= {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

  [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}.  (1) 

Example 4 Assume 𝕌 = {𝑢1 , 𝑢2} be a universe of discourse and 𝐸 = {𝓍1 , 𝓍2 , 𝓍3 , 𝓍4} be a set of 

attributes. Consider 𝐹𝐴 and 𝐺𝐵 are IVNHSS over 𝕌 can be given as follows 

𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, .9], [.1, .4]〉, 〈𝑢2, [. 4, .7], [. 3, .9], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [. 3, .9], [.3, .5]〉, 〈𝑢2, [. 2, .8], [. 6, .8], [.3, .7]〉}), 

(𝓍3, {〈𝑢1, [. 2, .9], [. 1, .5], [.4, .7]〉, 〈𝑢2, [. 4, .9], [. 1, .6], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 5, .9], [. 6, .8], [.1, .8]〉})} 

𝐺𝐵 = {(𝓍1, {〈𝑢1, [. 5, .7], [. 5, .7], [.4, .6]〉, 〈𝑢2, [. 3, .9], [. 3, .6], [.4, .7]〉}), 

(𝓍2, {〈𝑢1, [. 3, .8], [. 4, .5], [.4, .9]〉, 〈𝑢2, [. 4, .7], [. 5, .9], [.4, .6]〉}), 

(𝓍3, {〈𝑢1, [. 3, .5], [. 2, .6], [.3, .8]〉, 〈𝑢2, [. 3, 1], [. 2, .7], [.3, .8]〉}), 

(𝓍4, {〈𝑢1, [. 4, .6], [. 7, .8], [.4, 1]〉, 〈𝑢2, [. 4, .8], [. 3, .6], [.2, .6]〉})} 

Then 

𝐹𝐴 ∪ 𝐺𝐵= {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, .7], [.1, .4]〉, 〈𝑢2, [. 4, .9], [. 3, .6], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .8], [. 3, .5], [.3, .5]〉, 〈𝑢2, [. 4, .8], [. 5, .8], [.3, .6]〉}), 

(𝓍3, {〈𝑢1, [. 3, .9], [. 1, .5], [.3, .7]〉, 〈𝑢2, [. 4, 1], [. 1, .6], [.3, .7]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .8], [.4 1]〉, 〈𝑢2, [. 5, .9], [. 3, .6], [.1, .6]〉})} 

Proposition 3.5 

Let ℱ𝐴, 𝒢�̌�, ℋ�̌� ∈ IVNHSS over 𝕌. Then 

1. ℱ𝐴 ∪ ℱ𝐴 = ℱ𝐴

2. ℱ𝐴 ∪ ℱ0̌ = ℱ0̌

3. ℱ𝐴 ∪ ℱ�̌� = ℱ𝐴

4. ℱ𝐴 ∪ 𝒢�̌� = 𝒢�̌� ∪ ℱ𝐴

5. (ℱ𝐴 ∪ 𝒢�̌�) ∪ ℋ�̌� = ℱ𝐴 ∪ (𝒢�̌�  ∪ ℋ�̌�)

Proof By using definition 3.4 we can prove easily. 

Definition 3.6 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then  

𝐹𝐴 ∩ 𝐺𝐵 = {

< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

  [𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. (2) 

Example 5 Reconsider example 4 

𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, .9], [.1, .4]〉, 〈𝑢2, [. 4, .7], [. 3, .9], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [. 3, .9], [.3, .5]〉, 〈𝑢2, [. 2, .8], [. 6, .8], [.3, .7]〉}), 
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(𝓍3, {〈𝑢1, [. 2, .9], [. 1, .5], [.4, .7]〉, 〈𝑢2, [. 4, .9], [. 1, .6], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 5, .9], [. 6, .8], [.1, .8]〉})} 

𝐺𝐵 = {(𝓍1, {〈𝑢1, [. 5, .7], [. 5, .7], [.4, .6]〉, 〈𝑢2, [. 3, .9], [. 3, .6], [.4, .7]〉}), 

(𝓍2, {〈𝑢1, [. 3, .8], [. 4, .5], [.4, .9]〉, 〈𝑢2, [. 4, .7], [. 5, .9], [.4, .6]〉}), 

(𝓍3, {〈𝑢1, [. 3, .5], [. 2, .6], [.3, .8]〉, 〈𝑢2, [. 3, 1], [. 2, .7], [.3, .8]〉}), 

(𝓍4, {〈𝑢1, [. 4, .6], [. 7, .8], [.4, 1]〉, 〈𝑢2, [. 4, .8], [. 3, .6], [.2, .6]〉})} 

Then 

𝐹𝐴 ∩ 𝐺𝐵= {(𝓍1, {〈𝑢1, [. 5, .7], [. 5, .9], [.4, .6]〉, 〈𝑢2, [. 3, .7], [. 3, .9], [.4, .7]〉}), 

(𝓍2, {〈𝑢1, [. 3, .7], [. 4, .9], [.4, .9]〉, 〈𝑢2, [. 2, .7], [. 6, .9], [.4, .7]〉}), 

(𝓍3, {〈𝑢1, [. 2, .5], [. 2, .6], [.4, .8]〉, 〈𝑢2, [. 3, .9], [. 2, .7], [.5, .8]〉}), 

(𝓍4, {〈𝑢1, [. 4, .6], [. 7, .9], [1, 1]〉, 〈𝑢2, [. 4, .8], [. 6, .8], [.2, .8]〉})} 

Proposition 3.7 

Let ℱ𝐴, 𝒢�̌�, ℋ�̌� ∈ IVNHSS over 𝕌. Then 

1. ℱ𝐴 ∩ ℱ𝐴 = ℱ𝐴

2. ℱ𝐴 ∩ ℱ0̌ = ℱ𝐴

3. ℱ𝐴 ∩ ℱ�̌� = ℱ�̌�

4. ℱ𝐴 ∩ 𝒢�̌� = 𝒢�̌� ∩ ℱ𝐴

5. (ℱ𝐴 ∩ 𝒢�̌�) ∩ ℋ�̌� = ℱ𝐴 ∩ (𝒢�̌�  ∩ ℋ�̌�)

Proof By using definition 3.6 we can prove easily. 

Proposition 3.8  

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then 

1. (𝐹𝐴 ∪ 𝐺𝐵)𝐶= 𝐹𝐴
𝐶 ∩  𝐺𝐵

𝐶

2. (𝐹𝐴 ∩ 𝐺𝐵)𝐶= 𝐹𝐴
𝐶 ∪  𝐺𝐵

𝐶

Proof 1 As we know that  

𝐹𝐴 = {< 𝑢, 𝓊𝐴(𝑢), 𝓋𝐴(𝑢), 𝓌𝐴(𝑢) > : 𝑢 ∈ 𝕌} and 𝐺𝐵 = {< 𝑢, 𝓊𝐵(𝑢), 𝓋𝐵(𝑢), 𝓌𝐵(𝑢) > : 𝑢 ∈ 𝕌}. Where  

𝓊𝐴(𝑢) = [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)] or  [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)], 𝓊𝐴
𝐿  (𝑢) = 𝑖𝑛𝑓𝓊𝐴(𝑢) and 𝓊𝐴

𝑈  (𝑢) = 𝑠𝑢𝑝𝓊𝐴(𝑢)

𝓋𝐴(𝑢) = [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)] or  [𝓋𝐴
𝐿  (𝑢), 𝓋𝐴

𝑈  (𝑢)], 𝓋𝐴
𝐿  (𝑢) = 𝑖𝑛𝑓𝓋𝐴(𝑢) and 𝓋𝐴

𝑈  (𝑢) = 𝑠𝑢𝑝𝓋𝐴(𝑢)

𝓌𝐴(𝑢) = [ 𝑖𝑛𝑓𝓌𝐴(𝑢) , 𝑠𝑢𝑝𝓌𝐴(𝑢) ] or  [𝓌𝐴
𝐿 (𝑢), 𝓌𝐴

𝑈  (𝑢)] , 𝓌𝐴
𝐿  (𝑢)  = 𝑖𝑛𝑓𝓌𝐴(𝑢)  and 𝓌𝐴

𝑈  (𝑢)  =

𝑠𝑢𝑝𝓌𝐴(𝑢) 

𝓊𝐵(𝑢) = [𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)] or  [𝓊𝐵
𝐿  (𝑢), 𝓊𝐵

𝑈  (𝑢)], 𝓊𝐵
𝐿  (𝑢) = 𝑖𝑛𝑓𝓊𝐵(𝑢) and 𝓊𝐵

𝑈  (𝑢) = 𝑠𝑢𝑝𝓊𝐵(𝑢)

𝓋𝐵(𝑢) = [𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)] or  [𝓋𝐵
𝐿  (𝑢), 𝓋𝐵

𝑈  (𝑢)], 𝓋𝐵
𝐿  (𝑢) = 𝑖𝑛𝑓𝓋𝐵(𝑢) and 𝓋𝐵

𝑈  (𝑢) = 𝑠𝑢𝑝𝓋𝐵(𝑢)

𝓌𝐵(𝑢) =[ 𝑖𝑛𝑓𝓌𝐵(𝑢) , 𝑠𝑢𝑝𝓌𝐵(𝑢) ] or  [𝓌𝐵
𝐿 (𝑢), 𝓌𝐵

𝑈  (𝑢)] , 𝓌𝐵
𝐿  (𝑢)  = 𝑖𝑛𝑓𝓌𝐵(𝑢)  and 𝓌𝐵

𝑈  (𝑢)  =

𝑠𝑢𝑝𝓌𝐵(𝑢) 

Then by using Equation 1 

𝐹𝐴 ∪ 𝐺𝐵= {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 
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By using definition 3.3(iii), we get 

(𝐹𝐴 ∪ 𝐺𝐵)𝐶= {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}],
[1 − 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}, 1 − 𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)}],

[𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

Now 

𝐹𝐴
𝐶  = {< 𝑢, [𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)], [1 − 𝑠𝑢𝑝𝓋𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓋𝐴(𝑢)], [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)] > : 𝑢 ∈ 𝕌}

𝐺𝐵
𝐶 = {< 𝑢, [𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)], [1 − 𝑠𝑢𝑝𝓋𝐵(𝑢), 1 − 𝑖𝑛𝑓𝓋𝐵(𝑢)], [𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)] > : 𝑢 ∈ 𝕌}

𝐹𝐴
𝐶  ∩  𝐺𝐵

𝐶  = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}],
[𝑚𝑎𝑥{1 − 𝑠𝑢𝑝𝓋𝐴(𝑢), 1 − 𝑠𝑢𝑝𝓋𝐵(𝑢)}, 𝑚𝑎𝑥{1 − 𝑖𝑛𝑓𝓋𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓋𝐵(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

𝐹𝐴
𝐶  ∩  𝐺𝐵

𝐶  = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}],
[1 − 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}, 1 − 𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

Hence  

(𝐹𝐴 ∪ 𝐺𝐵)𝐶= 𝐹𝐴
𝐶 ∩  𝐺𝐵

𝐶

Proof 2 

Similar to assertion 1. 

Proposition 3.9 

Let ℱ𝐴, 𝒢�̌�, ℋ�̌� ∈ IVNHSS over 𝕌. Then 

1. ℱ𝐴 ∪ (𝒢�̌� ∩ ℋ𝐶) = (ℱ𝐴 ∪ 𝒢�̌�) ∩ (ℱ𝐴  ∪ ℋ�̌�)

2. ℱ𝐴 ∩ (𝒢�̌� ∪ ℋ𝐶) = (ℱ𝐴 ∩ 𝒢�̌�) ∪ (ℱ𝐴 ∩ ℋ�̌�)

3. ℱ𝐴 ∪ (ℱ𝐴 ∩ 𝒢�̌�) = ℱ𝐴

4. ℱ𝐴 ∩ (ℱ𝐴 ∪ 𝒢�̌�) = ℱ𝐴

Proof 1 From Equation 2, we have 

𝒢�̌� ∩ ℋ�̌� = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑖𝑛𝑓𝓋𝐶 (𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐶(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

ℱ𝐴 ∪ (𝒢�̌� ∩ ℋ�̌�)= 

{

(< 𝑢, [max {𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)}} , max {𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}}],

[min {𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑖𝑛𝑓𝓋𝐶(𝑢)}} , min {𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐶 (𝑢)}}],

 [𝑚𝑖𝑛 {𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)}} , 𝑚𝑖𝑛 {𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}}] >/ 𝑢 ∈ 𝕌)

} 

ℱ𝐴 ∪ 𝒢�̌� = {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

ℱ𝐴  ∪ ℋ�̌�  = {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐶 (𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐶(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

(ℱ𝐴 ∪ 𝐺�̌�) ∩ (ℱ𝐴  ∪ ℋ�̌�) = 
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{

(< 𝑢, [min {𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)}, 𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)} , min {𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}, 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}],

[max {𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐶(𝑢)} , max {𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}, 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐶(𝑢)}],
[𝑚𝑎𝑥 {𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)} , 𝑚𝑎𝑥{𝑚𝑖𝑛 {𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}, 𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}] >/ 𝑢 ∈ 𝕌)

}

(ℱ𝐴 ∪ 𝒢�̌�) ∩ (ℱ𝐴  ∪ ℋ𝐶) = 

{

(< 𝑢, [max {𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)}} , max {𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}}],

[min {𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑖𝑛𝑓𝓋𝐶(𝑢)}} , min {𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐶 (𝑢)}}],

 [𝑚𝑖𝑛 {𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)}} , 𝑚𝑖𝑛 {𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}}] >/ 𝑢 ∈ 𝕌)

} 

Hence 

ℱ𝐴 ∪ (𝒢�̌� ∩ ℋ�̌�) = (ℱ𝐴 ∪ 𝒢�̌�) ∩ (ℱ𝐴  ∪ ℋ�̌�). 

Similarly, we can prove other results. 

Definition 3.10  

Let 𝐹𝐴, 𝐺𝐵 ∈ IVNHSS, then their extended union is 

𝓊 (𝐹𝐴 ∪ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)]         𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)]         𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}]  𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

𝓋 (𝐹𝐴 ∪ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)]         𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)]         𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}]  𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

𝓌 (𝐹𝐴 ∪ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)]         𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌(𝑢)]         𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}]  𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

Definition 3.11 

Let 𝐹𝐴, 𝐺𝐵 ∈ IVNHSS, then their extended intersection is 

𝓊 (𝐹𝐴 ∩ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)]         𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)]         𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}]  𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

𝓋 (𝐹𝐴 ∩ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)]         𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)]         𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}]  𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

𝓌 (𝐹𝐴 ∩ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)]         𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌(𝑢)]         𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}]  𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

Definition 3.12 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then their difference defined as follows 

𝐹𝐴 \ 𝐺𝐵 = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐴(𝑢), 1 − sup𝓋𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐴(𝑢), 1 − inf𝓋𝐵(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. (3) 

Example 6 Reconsider example 4 

𝐹𝐴 \ 𝐺𝐵 = {(𝓍1, {〈𝑢1, [. 5, .7], [. 5, .9], [.4, .6]〉, 〈𝑢2, [. 3, .7], [. 4, .9], [.4, .7]〉}), 

(𝓍2, {〈𝑢1, [. 3, .7], [. 5, .9], [.4, .9]〉, 〈𝑢2, [. 2, .7], [. 6, .8], [.4, .7]〉}), 
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(𝓍3, {〈𝑢1, [. 2, .5], [. 4, .8], [.4, .8]〉, 〈𝑢2, [. 3, .9], [. 3, .8], [.5, .8]〉}), 

(𝓍4, {〈𝑢1, [. 4, .6], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 4, .8], [. 6, .8], [.2, .8]〉})} 

Definition 3.13 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then their addition defined as follows 

𝐹𝐴 + 𝐺𝐵 = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢) +  𝑖𝑛𝑓𝓊𝐵(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢) +  𝑠𝑢𝑝𝓊𝐵(𝑢), 1}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢) + 𝑖𝑛𝑓𝓋𝐵(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢) + 𝑠𝑢𝑝𝓋𝐵(𝑢), 1}],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢) +  𝑖𝑛𝑓𝓌𝐵(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢) + 𝑠𝑢𝑝𝓌𝐵(𝑢), 1}] >/ 𝑢 ∈ 𝕌)

}. (4) 

Example 7 Reconsider example 4 

𝐹𝐴 + 𝐺𝐵 = {(𝓍1, {〈𝑢1, [1.0, 1.0], [1.0, 1.0], [0.5, 1.0]〉, 〈𝑢2, [0.7, 1.0], [0.6, 1.0], [0.6, 1.0]〉}), 

(𝓍2, {〈𝑢1, [0.7, 1.0], [0.7, 1.0], [0.7,1.0]〉, 〈𝑢2, [0.6, 1.0], [1.0, 1.0], [0.7, 1.0]〉}), 

(𝓍3, {〈𝑢1, [0.5, 1.0], [0.3, 1.0], [0.7, 1.0]〉, 〈𝑢2, [0.7, 1.0], [0.3, 1.0], [0.8, 1.0]〉}), 

(𝓍4, {〈𝑢1, [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]〉, 〈𝑢2, [0.9, 1.0], [0.9, 1.0], [0.3, 1.0]〉})}. 

Definition 3.14 

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then its scalar multiplication is represented as 𝐹𝐴.�̌�, where �̌� ∈ [0, 1] and 

defined as follows 

𝐹𝐴.�̌� = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢). �̌�, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢). �̌�, 1}],
[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢). �̌�, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢). �̌�, 1}],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢). �̌�, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢). �̌�, 1}] >/ 𝑢 ∈ 𝕌)

}. (5) 

Definition 3.15 

Let 𝐹𝐴  ∈ IVNHSS over 𝕌, then its scalar division is represented as 𝐹𝐴/�̌�, where �̌� ∈ [0, 1] and 

defined as follows 

𝐹𝐴/�̌� = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢)/�̌�, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢)/�̌�, 1}],
[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢)/�̌�, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢)/�̌�, 1}],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢)/�̌�, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢)/�̌�, 1}] >/ 𝑢 ∈ 𝕌)

}. (6) 

Definition 3.16 

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then Truth-Favorite operator on 𝐹𝐴 is denoted by Δ̃𝐹𝐴 and defined as 

follows 

Δ̃𝐹𝐴 = {
(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢) + 𝑖𝑛𝑓𝓋𝐴(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢) + 𝑠𝑢𝑝𝓋𝐴(𝑢), 1}], [0, 0],

[𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)] >/ 𝑢 ∈ 𝕌)
}. (7) 

Example 8 Reconsider example 1 

Δ̃𝐹𝐴 = {(𝓍1, {〈𝑢1, [1, 1], [0, 0], [.1, .4]〉, 〈𝑢2, [. 7, 1], [0, 0], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 7, 1], [0, 0], [.3, .5]〉, 〈𝑢2, [. 6, 1], [0, 0], [.3, .7]〉}), 

(𝓍3, {〈𝑢1, [. 3, 1], [0, 0], [.7, .8]〉, 〈𝑢2, [. 5, 1], [0, 0], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [1, 1], [0, 0], [1, 1]〉, 〈𝑢2, [1, 1], [0, 0], [.1, .8]〉})} 

Proposition 3.17 

Let ℱ𝐴, 𝒢�̌� ∈ IVNHSS over 𝕌, then 

1. Δ̃Δ̃ℱ𝐴 = Δ̃ℱ𝐴

2. Δ̃(ℱ𝐴  ∪  𝒢�̌�) ⊆ Δ̃ℱ𝐴 ∪ Δ̃𝒢�̌�
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3. Δ̃(ℱ𝐴  ∩  𝒢�̌�) ⊆ Δ̃ℱ𝐴 ∩  Δ̃𝒢�̌�

4. Δ̃ (ℱ𝐴 + 𝒢�̌�) = Δ̃ℱ𝐴 + Δ̃𝒢�̌�

Proof of the above proposition is easily obtained by using definitions 3.4, 3.6, 3.13, and 3.16. 

Definition 3.18 

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then False-Favorite operator on 𝐹𝐴 is denoted by �̃�𝐹𝐴 and defined as 

follows 

�̃�𝐹𝐴 = {
(< 𝑢, [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)], [0, 0],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢) + 𝑖𝑛𝑓𝓋𝐴(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢) + 𝑠𝑢𝑝𝓋𝐴(𝑢), 1}] >/ 𝑢 ∈ 𝕌)
}. (8) 

Example 9 Reconsider example 1 

�̃�𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [0, 0], [.6, 1]〉, 〈𝑢2, [. 4, .7], [0, 0], [.5, 1]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [0, 0], [.6, 1]〉, 〈𝑢2, [0, .3], [0, 0], [.9, 1]〉}), 

(𝓍3, {〈𝑢1, [. 2, .9], [0, 0], [.8, 1]〉, 〈𝑢2, [. 4, .9], [0, 0], [.6, 1]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [0, 0], [1, 1]〉, 〈𝑢2, [. 5, .9], [0, 0], [.7, 1]〉})} 

Proposition 3.19 

Let ℱ𝐴 and 𝒢�̌� ∈ IVNHSS over 𝕌, then 

1. �̃��̃�ℱ𝐴 = �̃�ℱ𝐴

2. �̃�(ℱ𝐴 ∪  𝒢�̌�) ⊆ �̃�ℱ𝐴 ∪ �̃�𝒢�̌�

3. �̃�(ℱ𝐴  ∩  𝒢�̌�) ⊆ �̃�ℱ𝐴 ∩  �̃�𝒢�̌�

4. �̃� (ℱ𝐴 + 𝒢�̌�) = �̃�ℱ𝐴 + �̃�𝒢�̌�

Proof of the above proposition is easily obtained by using definitions 3.4, 3.6, 3.13, and 3.18. 

4. Necessity and Possibility Operations on IVNHSS

In this section, some further operations on IVNHSS are developed such as OR-Operation, And-

Operation, necessity, and possibility operations with some properties. 

Definition 4.1  

Let 𝐹𝐴  and 𝐺𝐵  ∈ IVNHSS over 𝕌, then OR-Operator is represented by 𝐹𝐴  ˅ 𝐺𝐵  and defined as 

follows  

𝓊 (𝐹𝐴 × B) = [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}], 

𝓋 (𝐹𝐴 × B) = [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}], 

𝓌 (𝐹𝐴 × B) = [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}]. 

Definition 4.2  

Let 𝐹𝐴 and 𝐺𝐵  ∈ IVNHSS over 𝕌, then And-Operator is represented by 𝐹𝐴 ˄ 𝐺𝐵  and defined as 

follows  

𝓊 (𝐹𝐴 × B) = [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}], 

𝓋 (𝐹𝐴 × B) = [𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}], 

𝓌 (𝐹𝐴 × B) = [𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}]. 

Proposition 4.3  

Let ℱ𝐴, 𝒢�̌�, ℋ�̌� ∈ IVNHSSs, then 
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1. ℱ𝐴 ˅ 𝒢�̌� = 𝒢�̌�  ˅ ℱ𝐴

2. ℱ𝐴 ˄ 𝒢�̌� = 𝒢�̌�  ˄ ℱ𝐴

3. ℱ𝐴 ˅ (𝒢�̌�  ˅ ℋ�̌�) = (ℱ𝐴 ˅ 𝒢�̌�) ˅ ℋ�̌�

4. ℱ𝐴 ˄ (𝒢�̌�  ˄ ℋ�̌�) = (ℱ𝐴 ˄ 𝒢�̌�) ˄ ℋ�̌�

5. (ℱ𝐴 ˅ 𝒢�̌�)𝑐 = ℱ𝑐(�̌�) ˄ 𝒢𝑐(�̌�)

6. (ℱ𝐴 ˄ 𝒢�̌�)𝑐 = ℱ𝑐(�̌�) ˅ 𝒢𝑐(�̌�)

Proof We can prove easily by using definitions 4.1 and 4.2. 

Definition 4.4  

Let 𝐹𝐴  ∈ IVNHSS over 𝕌, then necessity operator IVNHSS represented as ⊕ 𝐹𝐴  and defined as 

follows 

⊕ 𝐹𝐴 = {< 𝑢, [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)], [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)], [1 − 𝑠𝑢𝑝𝓊𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐴(𝑢)] > : 𝑢 ∈ 𝕌} 

Example 10 Reconsider example 1 

⊕𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, 0.9], [.2, .4]〉, 〈𝑢2, [. 4, .7], [. 3, .9], [.3, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [. 3, .9], [.3, .6]〉, 〈𝑢2, [0, .3], [. 6, .8], [.7, 1]〉}), 

(𝓍3, {〈𝑢1, [. 2, .9], [. 1, .5], [.1, .8]〉, 〈𝑢2, [. 4, .9], [. 1, .6], [.1, .6]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .9], [.1, .4]〉, 〈𝑢2, [. 5, .9], [. 6, .8], [.1, .5]〉})} 

Definition 4.5 

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then possibility operator on IVNHSS represented as ⊗ 𝐹𝐴 and defined 

as follows 

⊗ 𝐹𝐴 = {(< 𝑢, [1 − 𝑠𝑢𝑝𝓌𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓌𝐴(𝑢)], [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)], [𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)] >/ 𝑢 ∈ 𝕌})} 

Example 11 Reconsider example 1 

⊗ 𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .9], [. 5, 0.9], [.1, .4]〉, 〈𝑢2, [. 4, .8], [. 3, .9], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 5, .7], [. 3, .9], [.3, .5]〉, 〈𝑢2, [. 3, .7], [. 6, .8], [.3, .7]〉}), 

(𝓍3, {〈𝑢1, [. 2, .3], [. 1, .5], [.7, .8]〉, 〈𝑢2, [. 3, .5], [. 1, .6], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [0, 0], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 2, .9], [. 6, .8], [.1, .8]〉})} 

Proposition 4.6 

Let ℱ𝐴 and 𝒢�̌� ∈ IVNHSS over 𝕌, then 

1. ⊕ (ℱ𝐴  ∪  𝒢�̌�) = ⊕ ℱ𝐴 ∪ ⊕ 𝒢�̌�

2. ⊕ (ℱ𝐴  ∩  𝒢�̌�) = ⊕ ℱ𝐴 ∩ ⊕ 𝒢�̌�

Proof 1. As we know that 

ℱ𝐴= {(< 𝑢, [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)], [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)], [𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)] >/ 𝑢 ∈ 𝕌})} and 

𝒢�̌�= {(< 𝑢, [𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)], [𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)], [𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)] >/ 𝑢 ∈ 𝕌})} 

Then by using definition 3.5, we get  

ℱ𝐴 ∪ 𝒢�̌�= {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

By using the necessity operator, we get 
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⊕ (ℱ𝐴  ∪  𝒢�̌�) = {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [1 − 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}, 1 − 𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

⊕ (ℱ𝐴  ∪  𝒢�̌�) = 

{

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],
[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{1 − 𝑠𝑢𝑝𝓊𝐴(𝑢), 1 − 𝑠𝑢𝑝𝓊𝐵(𝑢)}, 𝑚𝑖𝑛{1 − 𝑖𝑛𝑓𝓊𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

⊕ ℱ𝐴 = {(< 𝑢, [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)], [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)], [1 − 𝑠𝑢𝑝𝓊𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐴(𝑢)] >/ 𝑢 ∈

𝕌})} and  

⊕ 𝒢�̌� = {(< 𝑢, [𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)], [𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)], [1 − 𝑠𝑢𝑝𝓊𝐵(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐵(𝑢)] >/ 𝑢 ∈

𝕌})} 

Again, by using definition 3.5 we get 

⊕ ℱ𝐴 ∪ ⊕ 𝒢�̌� = 

{

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],
[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{1 − 𝑠𝑢𝑝𝓊𝐴(𝑢), 1 − 𝑠𝑢𝑝𝓊𝐵(𝑢)}, 𝑚𝑖𝑛{1 − 𝑖𝑛𝑓𝓊𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

Hence 

⊕ (ℱ𝐴  ∪ 𝒢�̌�) = ⊕ ℱ𝐴 ∪ ⊕ 𝒢�̌� 

Similarly, we can prove assertion 2. 

Proposition 4.7  

Let ℱ𝐴 and 𝒢�̌� ∈ IVNHSS, then we have the following 

1. ⊕(ℱ𝐴 ˄ 𝒢�̌�) = ⊕ℱ𝐴 ˄ ⊕𝒢�̌�

2. ⊕(ℱ𝐴 ˅ 𝒢�̌�) = ⊕ℱ𝐴 ˅ ⊕𝒢�̌�

3. ⊗ (ℱ𝐴 ˄ 𝒢�̌�) = ⊗ ℱ𝐴 ˄ ⊗ 𝒢�̌�

4. ⊗ (ℱ𝐴 ˅ 𝒢�̌�) = ⊗ ℱ𝐴 ˅ ⊗ 𝒢�̌�

Proof By using definitions 4.1, 4.2, 4.4, and 4.5 the proof of the above proposition can be obtained 

easily.  

5. Conclusion

In this paper, we study NHSS and IVNHSS with some basic definitions and examples. We extend 

the work on IVNHSS and proposed some fundamental operations on IVNHSS such as union, 

intersection, extended union, extended intersection, addition, and difference, etc. are developed with 

their properties and proved the De Morgan laws by using union, intersection, OR-operation, and 

And-Operation. We also developed the addition, difference, scalar multiplication, Truth-Favorite, 

and False-Favorite operators on IVNHSS. Finally, the concept of necessity and possibility operations 

on IVNHSS with properties are presented. For future trends, we can develop the interval-valued 

neutrosophic hypersoft matrices by using proposed operations and use them for decision making. 

Furthermore, several other operators such as weighted average, weighted geometric, interaction 

weighted average, interaction weighted geometric, etc. can be developed with their decision-making 

approaches to solve MCDM problems.  
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An integrated model of Neutrosophic TOPSIS 
with application 

in Multi-Criteria Decision-Making Problem 

Abstract: Multi-criteria decision making (MCDM) is the technique of selecting the best alternative 

from multiple alternatives and multiple conditions. The technique for order preference by 

similarity to an ideal solution (TOPSIS) is a crucial practical technique for ranking and 

selecting different options by using a distance measure. In this article, we protract the fuzzy 

TOPSIS technique to neutrosophic fuzzy TOPSIS and prove the accuracy of the method by 

explaining the MCDM problem with single-valued neutrosophic information and use the method 

for supplier selection in the production industry. We hope that this article will promote 

future scientific research on numerous existing issues based on multi-criteria decision making. 

Keywords: Neutrosophic set, Single valued Neutrosophic set, TOPSIS, MCDM 

1. Introduction

We faced a lot of complications in different areas of life which contain vagueness such as 

engineering, economics, modeling, and medical diagnoses, etc. However, a general question is raised 

that in mathematical modeling how we can express and use the uncertainty. A lot of researchers in 

the world proposed and recommended different approaches to solve those problems that contain 

uncertainty. In decision-making problems, multiple attribute decision making (MADM) is the most 

essential part which provides us to find the most appropriate and extraordinary alternative. 

However, choosing the appropriate alternative is very difficult because of vague information in some 

cases. To overcome such situations, Zadeh developed the notion of fuzzy sets (FSs) [1] to solve those 

problems which contain uncertainty and vagueness. Fuzzy sets are like sets whose components have 

membership (Mem) degrees. In the classical set theory, the Mem degree of the elements in the set is 

checked in binary form according to the bivalent condition of whether the elements completely 

belong to the set. In contrast, the fuzzy set theory allows modern ratings of the Mem of elements in 

the set. This is represented by the Mem function, and the effective unit interval of the Mem function 

is [0, 1]. The fuzzy set is the generalization of the classical set because the indicator function of the 

classic set is a special case of the Mem function of the fuzzy set if the latter only takes the value 0 or 

1. In the fuzzy set theory, the classical bivalent set is usually called the crisp set. Fuzzy set theory can

be used in a wide range of fields with incomplete or imprecise information.
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It is observed that in some cases circumstances cannot be handled by fuzzy sets, to overcome 

such types of situations Turksen [2] gave the idea of interval-valued fuzzy sets (IVFSs). In some cases, 

we must deliberate membership unbiassed as the non-membership values for the suitable 

representation of an object in uncertain and indeterminate conditions that could not be handled by 

FSs nor IVFSs. To overcome these difficulties Atanassov offered the concept of Intuitionistic fuzzy 

sets (IFSs) [3]. The theory which was presented by Atanassov only deals the insufficient data 

considering both the membership and non-membership values, but the intuitionistic fuzzy set theory 

cannot handle the incompatible and imprecise information. To deal with such incompatible and 

imprecise data Smarandache [4] extended the work of Atanassov IFSs and proposed a powerful tool 

comparative to FSs and IFSs to deal with indeterminate, incomplete, and inconsistent information’s 

faced in real-life problems. Since the direct use of Neutrosophic sets (NSs) for TOPSIS is somewhat 

difficult. To apply the NSs, Wang et al. introduced a subclass of NSs known as single-valued 

Neutrosophic sets (SVNSs) in [5]. In [6] the author proposed a geometric interpretation by using NSs. 

Gulfam et al. [7] introduced a new distance formula for SVNSs and developed some new techniques 

under the Neutrosophic environment. The concept of a single-valued Neutrosophic soft expert set is 

proposed in [8] by combining the SVNSs and soft expert sets. To solve MCDM problems with single-

valued Neutrosophic numbers (SVNNs) presented by Deli and Subas in [9], they constructed the 

concept of cut sets of SVNNs. On the base of the correlation of IFSs, the term correlation coefficient 

of SVNSs [10] introduced and proposed a decision-making method by using a weighted correlation 

coefficient or the weighted cosine similarity measure of SVNSs. In [11] the idea of simplified 

Neutrosophic sets introduced with some operational laws and aggregation operators such as real-life 

Neutrosophic weighted arithmetic average operator and weighted geometric average operator. They 

constructed an MCDM method based on proposed aggregation operators and cosine similarity 

measure for simplified neutrosophic sets. Sahin and Yiğider [12] extended the TOPSIS method to 

MCDM with a single-valued neutrosophic technique.  

Hwang and Yoon [13] established TOPSIS to solve the general difficulties of DM. The TOPSIS 

method can effectively maintain the minimum distance from the ideal solution, thereby helping to 

select the finest choice. After the TOPSIS technique came out, some investigators utilized the TOPSIS 

technique for DM and protracted the TOPSIS technique to several other hybrid structures of FS. The 

most important determinant of current scientific research is to present an integrated model for 

neutrosophic TOPSIS to solve the MCDM problem. Chen & Hwang [14] extended the idea of the 

TOPSIS method and proposed a new TOPSIS model. The author uses the newly proposed decision-

making method to solve uncertain data [15]. Zulqarnain et al. [16] utilized the TOPSIS method for the 

prediction of diabetic patients in medical diagnosis. They also utilized the TOPSIS extensions of 

different hybrid structures of FS [17–19] and used them for decision making. Pramanik et al. [21] 

established the TOPSIS to resolve the multi-attribute decision-making problem under a single-valued 

neutrosophic soft set expert scenario. Zulqarnain et al. [21] presented the generalized neutrosophic 

TOPSIS to solve the MCDM problem. Zulqarnain et al. [22] utilized fuzzy TOPSIS to solve the MCDM 

problem. Maji [23] proposed the concept of neutrosophic soft sets (NSSs) with some properties and 

operations. The authors studied NSSs and gave some new definitions on NSSs [24], they also gave 

the idea of neutrosophic soft matrices with some operations and proposed a decision-making 

method. Many researchers developed the decision-making models by using the NSSs reported in the 

literature [25–27]. Elhassouny and Smarandache [28] extended the work on a simplified TOPSIS 

method and by using single-valued Neutrosophic information they proposed Neutrosophic 

simplified TOPSIS method. The concept of single-valued neutrosophic cross-entropy measure 

introduced by Jun [29], he also constructed an MCDM method and claimed that this proposed 

method is more appropriate than previous methods for decision making.  

Saha and Broumi [31] studied the interval-valued neutrosophic sets (IVNSs) and developed 

some new set-theoretic operations on IVNSs with their properties. The idea of an Interval-valued 

generalized single valued neutrosophic trapezoidal number (IVGSVTrN) was presented by Deli [32] 

with some operations and discussed their properties based on neutrosophic numbers. Hashim et al 
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[33], studied the vague set and interval neutrosophic set and established a new theory known as 

interval neutrosophic vague set (INVS), they also presented some operations for INVS with their 

properties and derived the properties by using numerical examples. Abdel basset et al. [34] applied 

TODIM and TOPSIS methods based on the best-worst method to increase the accuracy of evaluation 

under uncertainty according to the NSs. They also used the Plithogenic set theory to resolve the 

indeterminate information and evaluate the economic performance of manufacturing industries, they 

used the AHP method to find the weight vector of the financial ratios to achieve this goal after that 

they used the VIKOR and TOPSIS methods to utilize the companies ranking [35, 36]. Nabeeh et al. 

[37] utilized the integrating neutrosophic analytical hierarchy process (AHP) with the TOPSIS for

personal selection. Nabeeh et al. [38] developed the AHP neutrosophic by merging the AHP and NS.

Abdel-Basset et al. [39] merged the AHP, MCDM approach, and NS to handle the indefinite and

irregularity in decision making. Abdel-Basset et al. [40] constructed the TOPSIS technique for type-2

neutrosophic numbers and utilized the presented approach for supplier selection. Abdel-Basset et al.

[41] utilized the neutrosophic TOPSIS for the selection of medical instruments and many. Saqlain et.

al. applied TOPSIS for the prediction of sports, and in MCDM problems [42-44].

The FS and IFS theories do not provide any information about the indeterminacy part of the 

object. Because the above work is considered to examine the environment of linear inequality 

between the degree of membership (MD) and the degree of non-membership (NMD) of the 

considered attributes. However, all existing studies only deal with the scenario by using MD and 

NMD of attributes. If any decision-maker considers the truthiness, falsity, and indeterminacy of any 

attribute of the alternatives, then clearly, we can see that it cannot be handled by the above-mentioned 

FS and IFS theories. To overcome the above limitations, Smarandache [4] proposed the NS to solve 

uncertain objects by considering the truthiness, falsity, and indeterminacy. In the following article, 

we explain some positive impacts of this research. The concentration of this study is to evaluate the 

best supplier for the production industry. This research is a very suitable illustration of Neutrosophic 

TOPSIS. A group of decision-makers chooses the best supplier for the production industry. The 

Neutrosophic TOPSIS method increases alternative performances based on the best and worst 

solutions. Classical TOPSIS uses clear techniques for language assessment, but due to the imprecision 

and ambiguity of language assessment, we propose neutrosophic TOPSIS. In this paper, we discuss 

the NSs and SVNSs with some operations. We presented the generalization of TOPSIS for the SVNSs 

and use the proposed method for supplier selection. 

In Section 2, some basic definitions have been added, which will help us to design the structure 

of the current article. In section 3, we develop an integrated model to solve the MCDM problem under 

single-valued neutrosophic information. We also established the graphical and mathematical 

structure of the proposed TOPSIS approach. To ensure the validity of the developed methodology 

we presented a numerical illustration for supplier selection in the production industry in section 4. 

2. Preliminaries

In this section, we remind some basic definitions such as NSs and SVNSs with some operations that 

will be used in the following sequel. 

Neutrosophic Set (NS) [30]: Let X be a space of points and x be an arbitrary element of X. A 

neutrosophic set A in X is defined by a Truth-membership function TA(x) , an Indeterminacy-

membership function IA(x) and a falsity-membership function FA(x). TA(x), IA(x) and FA(x) are 

real standard or non-standard subsets of ]0−, 1+[ i.e.; TA(x), IA(x), FA(x): X → ]0−, 1+[, and 0− ≤

sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

Single Valued Neutrosophic Sets [5]: Let E be a universe. An SVNS over E is an NS over E, but 

truthiness, indeterminacy, and falsity membership functions are defined  
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TA(x): X → [0, 1], IA(x): X → [0, 1], FA(x): X → [0, 1], and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Multiplication of SVNS [11]: Let A = {𝛼1, 𝛼2, 𝛼3} and B = {𝛽1, 𝛽2, 𝛽3} are two SVN numbers, then 

their multiplication is defined as follows  A ⊗ B = (𝛼1𝛽1, 𝛼2 + 𝛽2 − 𝛼2𝛽2, 𝛼3 + 𝛽3 − 𝛼3𝛽3). 

3. Neutrosophic TOPSIS [11]

3. 1. Algorithm for Neutrosophic TOPSIS using SVNNs

To explain the procedure of Neutrosophic TOPSIS using SVNNs the following steps 

are followed. Let A = {A1, A2, A3, …., Am} be a set of alternatives and C = {C1, C2, C3, …., Cn} be a set of 

evaluation criteria and DM be a set of “l” decision-makers as follows DM = {DM1, DM2, DM3,…, DMl}. 

In the form of linguistic variables, the importance of the evaluation criteria, DMs, and alternative 

ratings are given in Table 1. 

Step 1: Computation of weights of the DMs 

Let the SVN number for rating the kth DM is denoted by  

𝐷𝑘 = (𝑇𝑘
𝑑𝑚, 𝐼𝑘

𝑑𝑚, 𝐹𝑘
𝑑𝑚)

The weight of the kth DM can be found by the following formula 

𝜆𝑘 = 
1−[

1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]

0.5

∑ (1−[
1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

 ; where 𝜆𝑘 ≥ 0 and ∑  𝜆𝑘
𝑙
𝑘=1  = 1 (1) 

Step 2: Computation of the Aggregated Neutrosophic Decision Matrix (ANDM) 

The ANDM is given as follows 

𝐷 = 

𝐴1
𝐴2
⋮
𝐴𝑚

[

𝑟11 𝑟12 ⋯ 𝑟1𝑛
𝑟21 𝑟22 ⋯ 𝑟1𝑛
⋮ ⋮ ⋱ ⋮
𝑟𝑚1 𝑟𝑚2 ⋯ 𝑟𝑚𝑛

] = [𝑟𝑖𝑗]𝑚×𝑛 (2) 

where 𝑟𝑖𝑗  can be defined as 

𝑟𝑖𝑗  = (𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗) = (𝑇𝐴𝑖 (𝑥𝑗), 𝐼𝐴𝑖 (𝑥𝑗), 𝐹𝐴𝑖 (𝑥𝑗)), where   𝑖 = 1, 2, 3, …., m; 𝑗 = 1, 2, 3, …., n

Therefore, ANDM written as follows 

D = 

[

(𝑇𝐴1 (𝑥1), 𝐼𝐴1 (𝑥1), 𝐹𝐴1 (𝑥1)) (𝑇𝐴1 (𝑥2), 𝐼𝐴1 (𝑥2), 𝐹𝐴1 (𝑥2)) ⋯ (𝑇𝐴1 (𝑥𝑛), 𝐼𝐴1 (𝑥𝑛), 𝐹𝐴1 (𝑥𝑛))

(𝑇𝐴2 (𝑥1), 𝐼𝐴2 (𝑥1), 𝐹𝐴2 (𝑥1)) (𝑇𝐴2 (𝑥2), 𝐼𝐴2 (𝑥2), 𝐹𝐴2 (𝑥2)) ⋯ (𝑇𝐴2 (𝑥𝑛), 𝐼𝐴2 (𝑥𝑛), 𝐹𝐴2 (𝑥𝑛))

⋮ ⋮ ⋱ ⋮
(𝑇𝐴𝑚 (𝑥1), 𝐼𝐴𝑚 (𝑥1), 𝐹𝐴𝑚 (𝑥1)) (𝑇𝐴𝑚 (𝑥2), 𝐼𝐴𝑚 (𝑥2), 𝐹𝐴𝑚 (𝑥2)) ⋯ (𝑇𝐴𝑚 (𝑥𝑛), 𝐼𝐴𝑚 (𝑥𝑛), 𝐹𝐴𝑚 (𝑥𝑛))]

rating for the ith alternative w.r.t. the jth criterion by the kth DM 

𝑟𝑖𝑗
(𝑘)

 = (𝑇𝑖𝑗
(𝑘)

, 𝐼𝑖𝑗
(𝑘)

, 𝐹𝑖𝑗
(𝑘)

)

For DM weights and alternative ratings 𝑟𝑖𝑗  can be calculated by using a single-valued neutrosophic 

weighted averaging operator (SVNWAO)   

𝑟𝑖𝑗  = [1 −  ∏ (1 − 𝑇𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ]         (3)

Step 3: Computation of the weights for the criteria  

Let an SVNN allocated to the criterion by 𝑋𝑗 the kth DM is denoted as 

𝑤𝑗
(𝑘)

 = (𝑇𝑗
(𝑘)
, 𝐼𝑗
(𝑘)
, 𝐹𝑗

(𝑘)
)

SVNWAO to compute the weights of the criteria is given as follows 
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𝑤𝑗  = [1 −  ∏ (1 − 𝑇𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ] (4) 

The aggregated weight for the criterion 𝑋𝑗 is represented as 

𝑤𝑗  = (𝑇𝑗, 𝐼𝑗, 𝐹𝑗)  𝑗 = 1, 2, 3, …., n 

W = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛]
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

Step 4: Computation of Aggregated Weighted Neutrosophic Decision Matrix (AWNDM) 

The AWNDM is calculated as follows 

𝑅′ = [

𝑟11
′ 𝑟12

′ ⋯ 𝑟1𝑛
′

𝑟21
′ 𝑟22

′ ⋯ 𝑟2𝑛
′

⋮ ⋮ ⋱ ⋮
𝑟𝑚1
′ 𝑟𝑚2

′ ⋯ 𝑟𝑚𝑛
′

] = [𝑟𝑖𝑗
′ ]
𝑚×𝑛

(5) 

where 𝑟𝑖𝑗
′ = (𝑇𝐴𝑖.𝑊 (𝑥𝑗), 𝐼𝐴𝑖.𝑊 (𝑥𝑗), 𝐹𝐴𝑖.𝑊 (𝑥𝑗)) where 𝑖 = 1, 2, 3, …., m; 𝑗 = 1, 2, 3, …., n.

Therefore, 𝑅′ can be written as 

𝑅′ = 

[

(𝑇𝐴1.𝑊 (𝑥1), 𝐼𝐴1.𝑊 (𝑥1), 𝐹𝐴1.𝑊 (𝑥1)) (𝑇𝐴1.𝑊 (𝑥2), 𝐼𝐴1.𝑊 (𝑥2), 𝐹𝐴1.𝑊 (𝑥2)) ⋯ (𝑇𝐴1.𝑊 (𝑥𝑛), 𝐼𝐴1.𝑊 (𝑥𝑛), 𝐹𝐴1.𝑊 (𝑥𝑛))

(𝑇𝐴2.𝑊 (𝑥1), 𝐼𝐴2.𝑊 (𝑥1), 𝐹𝐴2.𝑊 (𝑥1)) (𝑇𝐴2.𝑊 (𝑥2), 𝐼𝐴2.𝑊 (𝑥2), 𝐹𝐴2.𝑊 (𝑥2)) ⋯ (𝑇𝐴2.𝑊 (𝑥𝑛), 𝐼𝐴2.𝑊 (𝑥𝑛), 𝐹𝐴2.𝑊 (𝑥𝑛))

⋮ ⋮ ⋱ ⋮
(𝑇𝐴𝑚.𝑊 (𝑥1), 𝐼𝐴𝑚.𝑊 (𝑥1), 𝐹𝐴𝑚.𝑊 (𝑥1)) (𝑇𝐴𝑚.𝑊 (𝑥2), 𝐼𝐴𝑚.𝑊 (𝑥2), 𝐹𝐴𝑚.𝑊 (𝑥2)) ⋯ (𝑇𝐴𝑚.𝑊 (𝑥𝑛), 𝐼𝐴𝑚.𝑊 (𝑥𝑛), 𝐹𝐴𝑚.𝑊 (𝑥𝑛))]

To find 𝑇𝐴𝑖.𝑊 (𝑥𝑗), 𝐼𝐴𝑖.𝑊 (𝑥𝑗) and 𝐹𝐴𝑖.𝑊 (𝑥𝑗) we used

R ⊗ W = {‹x, 𝑇𝐴𝑖.𝑊 (x)›, ‹x, 𝐼𝐴𝑖.𝑊 (x)›, ‹x, 𝐹𝐴𝑖.𝑊 (x)›│x ∈  X}         (6)

The components of the product given as 

𝑇𝐴𝑖.𝑊 (x) = 𝑇𝐴𝑖  (x). 𝑇𝑗

𝐼𝐴𝑖.𝑊 (𝑥) = 𝐼𝐴𝑖  (𝑥) + 𝐼𝑗  (𝑥) -  𝐼𝐴𝑖  (𝑥)× 𝐼𝑗  (𝑥)

𝐹𝐴𝑖.𝑊 (𝑥) = 𝐹𝐴𝑖  (𝑥) + 𝐹𝑗  (𝑥) -  𝐹𝐴𝑖  (𝑥)× 𝐹𝑗  (𝑥)

Step 5: Computation of Single Valued Neutrosophic Positive Ideal Solution (SVN-PIS) and Single 

Valued Neutrosophic Positive Ideal Solution (SVN-NIS)  

Let 𝐽1 be the benefit criteria and 𝐽2 be the cost criteria. 𝐴∗ be an SVN-PIS and 𝐴′ be an SVN-NIS as

follows  

𝐴∗ = (𝑇𝐴∗𝑊 (𝑥𝑗), 𝐼𝐴∗𝑊 (𝑥𝑗), 𝐹𝐴∗𝑊 (𝑥𝑗)) and

𝐴′ = (𝑇𝐴′𝑊 (𝑥𝑗), 𝐼𝐴′𝑊 (𝑥𝑗), 𝐹𝐴′𝑊 (𝑥𝑗))

The components of SVN-PIS and SVN-NIS are following 

𝑇𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝐼𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝐹𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝑇𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝐼𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝐹𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))
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Step 6: Computation of Separation Measures 

For the separation measures 𝑑∗and 𝑑′, Normalized Euclidean Distance is used as given as 

𝑑𝑖
∗= (

1

3𝑛
 ∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

(7) 

𝑑𝑖
′= (

1

3𝑛
 ∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴′𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴′𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴′𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

(8) 

Step 7: Computation of Relative Closeness Coefficient (RCC) 

The RCC of an alternative Ai w.r.t. the SVN-PIS A* is computed as 

RCCi = 
𝑑𝑖
′

𝑑𝑖
′+𝑑𝑖

∗ where 0 ≤ RCCi ≤ 1  (9) 

Step 8: Ranking alternatives 

After computation of RCCi for each alternative 𝐴𝑖 , the rank of the alternatives presented in 

descending orders of RCCi.  

The flow chart of the presented technique can be seen in Figure 1. 

Figure 1: Flow chart of the presented approach

4. Application of Neutrosophic TOPSIS in decision making

A production industry wants to hire a supplier, for the selection of supplier managing director of the 

industry decides the criteria for supplier selection. The industry hires a team of decision-makers for 

the selection of the best supplier. Consider A = {Ai: i = 1, 2, 3, 4, 5} be a set of supplier and DM = {DM1, 

DM2, DM3, DM4} be a team of decision-makers (l = 4). The evaluation criteria (n = 5) for the selection 

of supplier given as follows,   

C = {
𝐵𝑒𝑛𝑖𝑓𝑖𝑡 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎
𝐶𝑜𝑠𝑡 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑗1 = {

𝑋1:  𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦
𝑋2:  𝑄𝑢𝑎𝑙𝑖𝑡𝑦
𝑋3:  𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦
𝑋4:  𝑆𝑒𝑟𝑣𝑖𝑐𝑒

𝑗2 = {𝑋5 ∶ 𝑃𝑟𝑖𝑐𝑒 

Step 1
• Computation of weights of decision maker

Step 2
•Computation of the Aggregated Neutrosophic Decision Matrix

Step 3
•Compue the weights for the criteria

Step 4
•Developed the Aggregated Weighted Neutrosophic Decision Matrix

Step 5
•Compute the SVN-PIS and SVN-NIS

Step 6
•Compute the Separation Measures

Step 7
•Find Relative Closeness Coefficient

Step 8
•Ranking alternatives
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Calculations of the problem using the proposed SVN-TOPSIS for the importance of criteria and 

DMs SVN rating scale is given in the following Table 

Table 1. Linguistic variables LV’s for rating the importance of criteria and decision-makers 

LVs SVNNs 

VI (.90, .10, .10) 

I (.75, .25, .20) 

M (.50, .50, .50) 

UI (.35, .75, .80) 

VUI (.10, .90, .90) 

Where VI, I, M, UI, VUI stand for very important, important, medium, unimportant, very 

unimportant respectively. The alternative ratings are given in the following table 

Table 2. Alternative Ratings for Linguistic Variables 

LVs SVNNs 

EG (1.0, 0.0,0.0) 

VVG (.90, .10, .10) 

VG (.80, .15, .20) 

G (.70, .25, .30) 

MG (.60, .35, .40) 

M (.50, .50, .50) 

MB (.40, .65, .60) 

B (.30, .75, .70) 

VB (.20, .85, .80) 

VVB (.10, .90, .90) 

EB (0.0,1.0,1.0) 

Where EG, VVG, VG, G, MG, M, MB, B, VB, VVB, EB are representing extremely good, very very 

good, very good, good, medium good, medium, medium bad, bad, very bad, very very bad, 

extremely bad respectively. 

Step 1: Determine the weights of the DMs  

By using Equation 1, weights for the DMs are calculated as follows: 

𝜆𝑘 = 
1−[

1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]

0.5

∑ (1−[
1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

 ; 𝜆𝑘 ≥ 0 and ∑  𝜆𝑘
𝑙
𝑘=1  = 1 

𝜆1 = 
1−[

1

3
{(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

∑ (1−[
1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

𝜆1 = 
1−[

1

3
{(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

1−[
1

3
{(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

+ 1−[
1

3
{(1−𝑇2

𝑑𝑚(𝑥))
2
+ (𝐼2

𝑑𝑚(𝑥))
2
+(𝐹2

𝑑𝑚(𝑥))
2
}]
0.5

+

1−[
1

3
{(1−𝑇3

𝑑𝑚(𝑥))
2
+ (𝐼3

𝑑𝑚(𝑥))
2
+(𝐹3

𝑑𝑚(𝑥))
2
}]
0.5

+1−[
1

3
{(1−𝑇4

𝑑𝑚(𝑥))
2
+ (𝐼4

𝑑𝑚(𝑥))
2
+(𝐹4

𝑑𝑚(𝑥))
2
}]
0.5

𝜆1 = 
1−[

1

3
{(1−0.9)2+ (0.10)2+(0.10)2}]

0.5

1−[
1

3
{(1−0.9)2+ (0.10)2+(0.10)2}]

0.5
+ 1−[

1

3
{(1−0.75)2+ (0.25)2+(0.20)2}]

0.5
+

1−[
1

3
{(1−0.50)2+ (0.50)2+(0.50)2}]

0.5
+1−[

1

3
{(1−0.35)2+ (0.75)2+(0.80)2}]

0.5
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𝜆1 = 
0.9

0.9+0.76548+0.5+0.26402

𝜆1 = 
0.9

2.42950
 = 0.37045 

𝜆1 = 0.37045 

Similarly, we get the weights for the other decision-makers as follows 

𝜆2 = 
0.76548

2.42950
 = 0.31508 

𝜆2 = 0.31508 

𝜆3 = 
0.5

2.42950
 = 0.20580 

𝜆3 = 0.20580 

𝜆4 = 
0.26402

2.42950
 = 0.10867 

𝜆4 = 0.10867 

The weights for DMs are given in the following Table 

Table 3. Weights of Decision Makers 

Criteria Alternatives Decision Makers 

DM1 DM2 DM3 DM4 

X1 A1 VG (0.80,0.15,0.20) 

𝑟11
(1)

 = (𝑇11
(1)

, 𝐼11
(1)

, 𝐹11
(1)

) 

MG (0.60,0.35,0.40) 

𝑟11
(2)

 = (𝑇11
(2)

, 𝐼11
(2)

, 𝐹11
(2)

) 

VG (0.80,0.15,0.20) 

𝑟11
(3)

 = (𝑇11
(3)

, 𝐼11
(3)

, 𝐹11
(3)

) 

G (0.70,0.25,0.30) 

𝑟11
(4)

 = (𝑇11
(4)

, 𝐼11
(4)

, 𝐹11
(4)

A2 G (0.70,0.25,0.30) 

𝑟21
(1)

 = (𝑇21
(1)

, 𝐼21
(1)

, 𝐹21
(1)

) 

VG (0.80,0.15,0.20) 

𝑟21
(2)

 = (𝑇21
(2)

, 𝐼21
(2)

, 𝐹21
(2)

) 

MG (0.60,0.35,0.40) 

𝑟21
(3)

 = (𝑇21
(3)

, 𝐼21
(3)

, 𝐹21
(3)

) 

MG (0.60,0.35,0.40) 

𝑟21
(4)

 = (𝑇21
(4)

, 𝐼21
(4)

, 𝐹21
(4)

) 

A3 M (0.50,0.50,0.50) 

𝑟31
(1)

 = (𝑇31
(1)

, 𝐼31
(1)

, 𝐹31
(1)

) 

G (0.70,0.25,0.30) 

𝑟31
(2)

 = (𝑇31
(2)

, 𝐼31
(2)

, 𝐹31
(2)

) 

MG (0.60,0.35,0.40) 

𝑟31
(3)

 = (𝑇31
(3)

, 𝐼31
(3)

, 𝐹31
(3)

) 

M (0.50,0.50,0.50) 

𝑟31
(4)

 = (𝑇31
(4)

, 𝐼31
(4)

, 𝐹31
(4)

) 

A4 G (0.70,0.25,0.30) 

𝑟41
(1)

 = (𝑇41
(1)

, 𝐼41
(1)

, 𝐹41
(1)

) 

MG (0.60,0.35,0.40) 

𝑟41
(2)

 = (𝑇41
(2)

, 𝐼41
(2)

, 𝐹41
(2)

) 

G (0.70,0.25,0.30) 

𝑟41
(3)

 = (𝑇41
(3)

, 𝐼41
(3)

, 𝐹41
(3)

) 

MG (0.60,0.35,0.40) 

𝑟41
(4)

 = (𝑇41
(4)

, 𝐼41
(4)

, 𝐹41
(4)

) 

A5 MG (0.60,0.35,0.40) 

𝑟51
(1)

 = (𝑇51
(1)

, 𝐼51
(1)

, 𝐹51
(1)

) 

G (0.70,0.25,0.30) 

𝑟51
(2)

 = (𝑇51
(2)

, 𝐼51
(2)

, 𝐹51
(2)

) 

VG (0.80,0.15,0.20) 

𝑟51
(3)

 = (𝑇51
(3)

, 𝐼51
(3)

, 𝐹51
(3)

) 

VG (0.80,0.15,0.20) 

𝑟51
(4)

 = (𝑇51
(4)

, 𝐼51
(4)

, 𝐹51
(4)

) 

X2 A1 G (0.70,0.25,0.30) 

𝑟12
(1)

 = (𝑇12
(1)

, 𝐼12
(1)

, 𝐹12
(1)

) 

G (0.70,0.25,0.30) 

𝑟12
(2)

 = (𝑇12
(2)

, 𝐼12
(2)

, 𝐹12
(2)

) 

MG (0.60,0.35,0.40) 

𝑟12
(3)

 = (𝑇12
(3)

, 𝐼12
(3)

, 𝐹12
(3)

) 

G (0.70,0.25,0.30) 

𝑟12
(4)

 = (𝑇12
(4)

, 𝐼12
(4)

, 𝐹12
(4)

) 

A2 VG (0.80,0.15,0.20) 

𝑟22
(1)

 = (𝑇22
(1)

, 𝐼22
(1)

, 𝐹22
(1)

) 

MG (0.60,0.35,0.40) 

𝑟22
(2)

 = (𝑇22
(2)

, 𝐼22
(2)

, 𝐹22
(2)

) 

M (0.50,0.50,0.50) 

𝑟22
(3)

 = (𝑇22
(3)

, 𝐼22
(3)

, 𝐹22
(3)

) 

MG (0.60,0.35,0.40) 

𝑟22
(4)

 = (𝑇22
(4)

, 𝐼22
(4)

, 𝐹22
(4)

) 

A3 M (0.50,0.50,0.50) 

𝑟32
(1)

 = (𝑇32
(1)

, 𝐼32
(1)

, 𝐹32
(1)

) 

VG (0.80,0.15,0.20) 

𝑟32
(2)

 = (𝑇32
(2)

, 𝐼32
(2)

, 𝐹32
(2)

) 

G (0.70,0.25,0.30) 

𝑟32
(3)

 = (𝑇32
(3)

, 𝐼32
(3)

, 𝐹32
(3)

) 

G (0.70,0.25,0.30) 

𝑟32
(4)

 = (𝑇32
(4)

, 𝐼32
(4)

, 𝐹32
(4)

) 

A4 MG (0.60,0.35,0.40) 

𝑟42
(1)

 = (𝑇42
(1)

, 𝐼42
(1)

, 𝐹42
(1)

) 

M (0.50,0.50,0.50) 

𝑟42
(2)

 = (𝑇42
(2)

, 𝐼42
(2)

, 𝐹42
(2)

) 

VG (0.80,0.15,0.20) 

𝑟42
(3)

 = (𝑇42
(3)

, 𝐼42
(3)

, 𝐹42
(3)

) 

M (0.50,0.50,0.50) 

𝑟42
(4)

 = (𝑇42
(4)

, 𝐼42
(4)

, 𝐹42
(4)

) 

A5 G (0.70,0.25,0.30) 

𝑟52
(1)

 = (𝑇52
(1)

, 𝐼52
(1)

, 𝐹52
(1)

) 

G (0.70,0.25,0.30) 

𝑟52
(2)

 = (𝑇52
(2)

, 𝐼52
(2)

, 𝐹52
(2)

) 

MG (0.60,0.35,0.40) 

𝑟52
(3)

 = (𝑇52
(3)

, 𝐼52
(3)

, 𝐹52
(3)

) 

VG (0.80,0.15,0.20) 

𝑟52
(4)

 = (𝑇52
(4)

, 𝐼52
(4)

, 𝐹52
(4)

) 

X3 A1 MG (0.60,0.35,0.40) MG (0.60,0.35,0.40) M (0.50,0.50,0.50) M (0.50,0.50,0.50) 
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Table 4. Importance and Weights of Decision-Makers 

DM1 DM2 DM3 DM4 

Linguistic 

Variables 

Weights 

VI(0.90,0.10,0.10) 

(𝑇1
𝑑𝑚, 𝐼1

𝑑𝑚 , 𝐹1
𝑑𝑚)

𝜆𝐷𝑀1= 0.37045 

I (0.75,0.25,0.20) 

(𝑇2
𝑑𝑚, 𝐼2

𝑑𝑚 , 𝐹2
𝑑𝑚)

𝜆𝐷𝑀2= 0.31508 

M (0.50,0.50,0.50) 

(𝑇3
𝑑𝑚, 𝐼3

𝑑𝑚 , 𝐹3
𝑑𝑚)

𝜆𝐷𝑀3= 0.20580 

UI (0.35,0.75,0.80) 

(𝑇4
𝑑𝑚, 𝐼4

𝑑𝑚 , 𝐹4
𝑑𝑚)

𝜆𝐷𝑀4= 0.10867 

Step 2: Computation of Aggregated Single Valued Neutrosophic Decision Matrix (ASVNDM)  

To find the ASVNDM not only the weights of the DMs, but the alternative ratings are also required. 

The alternative ratings, according to the DMs given in the following table. 

Now by using Equation 3, alternative ratings 𝑟𝑖𝑗
(𝑘)

 and the DM weights 𝜆𝑘 we get 

𝑟13
(1)

 = (𝑇13
(1)

, 𝐼13
(1)

, 𝐹13
(1)

) 𝑟13
(2)

 = (𝑇13
(2)

, 𝐼13
(2)

, 𝐹13
(2)

) 𝑟13
(3)

 = (𝑇13
(3)

, 𝐼13
(3)

, 𝐹13
(3)

) 𝑟13
(4)

 = (𝑇13
(4)

, 𝐼13
(4)

, 𝐹13
(4)

) 

A2 VG (0.80,0.15,0.20) 

𝑟23
(1)

 = (𝑇23
(1)

, 𝐼23
(1)

, 𝐹23
(1)

) 

G (0.70,0.25,0.30) 

𝑟23
(2)

 = (𝑇23
(2)

, 𝐼23
(2)

, 𝐹23
(2)

) 

VG (0.80,0.15,0.20) 

𝑟23
(3)

 = (𝑇23
(3)

, 𝐼23
(3)

, 𝐹23
(3)

) 

VG (0.80,0.15,0.20) 

𝑟23
(4)

 = (𝑇23
(4)

, 𝐼23
(4)

, 𝐹23
(4)

) 

A3 M (0.50,0.50,0.50) 

𝑟33
(1)

 = (𝑇33
(1)

, 𝐼33
(1)

, 𝐹33
(1)

) 

G (0.70,0.25,0.30) 

𝑟33
(2)

 = (𝑇33
(2)

, 𝐼33
(2)

, 𝐹33
(2)

) 

MG (0.60,0.35,0.40) 

𝑟33
(3)

 = (𝑇33
(3)

, 𝐼33
(3)

, 𝐹33
(3)

) 

MG (0.60,0.35,0.40) 

𝑟33
(4)

 = (𝑇33
(4)

, 𝐼33
(4)

, 𝐹33
(4)

) 

A4 G (0.70,0.25,0.30) 

𝑟43
(1)

 = (𝑇43
(1)

, 𝐼43
(1)

, 𝐹43
(1)

) 

MG (0.60,0.35,0.40) 

𝑟43
(2)

 = (𝑇43
(2)

, 𝐼43
(2)

, 𝐹43
(2)

) 

G (0.70,0.25,0.30) 

𝑟43
(3)

 = (𝑇43
(3)

, 𝐼43
(3)

, 𝐹43
(3)

) 

MG (0.60,0.35,0.40) 

𝑟43
(4)

 = (𝑇43
(4)

, 𝐼43
(4)

, 𝐹43
(4)

) 

A5 MG (0.60,0.35,0.40) 

𝑟53
(1)

 = (𝑇53
(1)

, 𝐼53
(1)

, 𝐹53
(1)

) 

G (0.70,0.25,0.30) 

𝑟53
(2)

 = (𝑇53
(2)

, 𝐼53
(2)

, 𝐹53
(2)

) 

VG (0.80,0.15,0.20) 

𝑟53
(3)

 = (𝑇53
(3)

, 𝐼53
(3)

, 𝐹53
(3)

) 

G (0.70,0.25,0.30) 

𝑟53
(4)

 = (𝑇53
(4)

, 𝐼53
(4)

, 𝐹53
(4)

) 

X4 A1 G (0.70,0.25,0.30) 

𝑟14
(1)

 = (𝑇14
(1)

, 𝐼14
(1)

, 𝐹14
(1)

) 

M (0.50,0.50,0.50) 

𝑟14
(2)

 = (𝑇14
(2)

, 𝐼14
(2)

, 𝐹14
(2)

) 

MG (0.60,0.35,0.40) 

𝑟14
(3)

 = (𝑇14
(3)

, 𝐼14
(3)

, 𝐹14
(3)

) 

M (0.50,0.50,0.50) 

𝑟14
(4)

 = (𝑇14
(4)

, 𝐼14
(4)

, 𝐹14
(4)

) 

A2 VG (0.80,0.15,0.20) 

𝑟24
(1)

 = (𝑇24
(1)

, 𝐼24
(1)

, 𝐹24
(1)

) 

VG (0.80,0.15,0.20) 

𝑟24
(2)

 = (𝑇24
(2)

, 𝐼24
(2)

, 𝐹24
(2)

) 

M (0.50,0.50,0.50) 

𝑟24
(3)

 = (𝑇24
(3)

, 𝐼24
(3)

, 𝐹24
(3)

) 

G (0.70,0.25,0.30) 

𝑟24
(4)

 = (𝑇24
(4)

, 𝐼24
(4)

, 𝐹24
(4)

) 

A3 MG (0.60,0.35,0.40) 

𝑟34
(1)

 = (𝑇34
(1)

, 𝐼34
(1)

, 𝐹34
(1)

) 

MG (0.60,0.35,0.40) 

𝑟34
(2)

 = (𝑇34
(2)

, 𝐼34
(2)

, 𝐹34
(2)

) 

MG (0.60,0.35,0.40) 

𝑟34
(3)

 = (𝑇34
(3)

, 𝐼34
(3)

, 𝐹34
(3)

) 

MG (0.60,0.35,0.40) 

𝑟34
(4)

 = (𝑇34
(4)

, 𝐼34
(4)

, 𝐹34
(4)

) 

A4 M (0.50,0.50,0.50) 

𝑟44
(1)

 = (𝑇44
(1)

, 𝐼44
(1)

, 𝐹44
(1)

) 

MB (0.40,0.65,0.60) 

𝑟44
(2)

 = (𝑇44
(2)

, 𝐼44
(2)

, 𝐹44
(2)

) 

MG (0.60,0.35,0.40) 

𝑟44
(3)

 = (𝑇44
(3)

, 𝐼44
(3)

, 𝐹44
(3)

) 

VG (0.80,0.15,0.20) 

𝑟44
(4)

 = (𝑇44
(4)

, 𝐼44
(4)

, 𝐹44
(4)

) 

A5 MG (0.60,0.35,0.40) 

𝑟54
(1)

 = (𝑇54
(1)

, 𝐼54
(1)

, 𝐹54
(1)

) 

G (0.70,0.25,0.30) 

𝑟54
(2)

 = (𝑇54
(2)

, 𝐼54
(2)

, 𝐹54
(2)

) 

VG (0.80,0.15,0.20) 

𝑟54
(3)

 = (𝑇54
(3)

, 𝐼54
(3)

, 𝐹54
(3)

) 

G (0.70,0.25,0.30) 

𝑟54
(4)

 = (𝑇54
(4)

, 𝐼54
(4)

, 𝐹54
(4)

) 

X5 A1 M (0.50,0.50,0.50) 

𝑟15
(1)

 = (𝑇15
(1)

, 𝐼15
(1)

, 𝐹15
(1)

) 

MG (0.60,0.35,0.40) 

𝑟15
(2)

 = (𝑇15
(2)

, 𝐼15
(2)

, 𝐹15
(2)

) 

VG (0.80,0.15,0.20) 

𝑟15
(3)

 = (𝑇15
(3)

, 𝐼15
(3)

, 𝐹15
(3)

) 

M (0.50,0.50,0.50) 

𝑟15
(4)

 = (𝑇15
(4)

, 𝐼15
(4)

, 𝐹15
(4)

) 

A2 VG (0.80,0.15,0.20) 

𝑟25
(1)

 = (𝑇25
(1)

, 𝐼25
(1)

, 𝐹25
(1)

) 

M (0.50,0.50,0.50) 

𝑟25
(2)

 = (𝑇25
(2)

, 𝐼25
(2)

, 𝐹25
(2)

) 

G (0.70,0.25,0.30) 

𝑟25
(3)

 = (𝑇25
(3)

, 𝐼25
(3)

, 𝐹25
(3)

) 

G (0.70,0.25,0.30) 

𝑟25
(4)

 = (𝑇25
(4)

, 𝐼25
(4)

, 𝐹25
(4)

) 

A3 G (0.70,0.25,0.30) 

𝑟35
(1)

 = (𝑇35
(1)

, 𝐼35
(1)

, 𝐹35
(1)

) 

G (0.70,0.25,0.30) 

𝑟35
(2)

 = (𝑇35
(2)

, 𝐼35
(2)

, 𝐹35
(2)

) 

M (0.50,0.50,0.50) 

𝑟35
(3)

 = (𝑇35
(3)

, 𝐼35
(3)

, 𝐹35
(3)

) 

MG (0.60,0.35,0.40) 

𝑟35
(4)

 = (𝑇35
(4)

, 𝐼35
(4)

, 𝐹35
(4)

) 

A4 M (0.50,0.50,0.50) 

𝑟45
(1)

 = (𝑇45
(1)

, 𝐼45
(1)

, 𝐹45
(1)

) 

M (0.50,0.50,0.50) 

𝑟45
(2)

 = (𝑇45
(2)

, 𝐼45
(2)

, 𝐹45
(2)

) 

MG (0.60,0.35,0.40) 

𝑟45
(3)

 = (𝑇45
(3)

, 𝐼45
(3)

, 𝐹45
(3)

) 

G (0.70,0.25,0.30) 

𝑟45
(4)

 = (𝑇45
(4)

, 𝐼45
(4)

, 𝐹45
(4)

) 

A5 G (0.70,0.25,0.30) 

𝑟55
(1)

 = (𝑇55
(1)

, 𝐼55
(1)

, 𝐹55
(1)

) 

VG (0.80,0.15,0.20) 

𝑟55
(2)

 = (𝑇55
(2)

, 𝐼55
(2)

, 𝐹55
(2)

) 

VG (0.80,0.15,0.20) 

𝑟55
(3)

 = (𝑇55
(3)

, 𝐼55
(3)

, 𝐹55
(3)

) 

VG (0.80,0.15,0.20) 

𝑟55
(4)

 = (𝑇55
(4)

, 𝐼55
(4)

, 𝐹55
(4)

) 
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𝑟𝑖𝑗= 𝜆1𝑟𝑖𝑗
(1)

 ⊕ 𝜆2𝑟𝑖𝑗
(2)
⊕ 𝜆3𝑟𝑖𝑗

(3)
⊕⋯ ⊕ 𝜆𝑙𝑟𝑖𝑗

(𝑙)

𝑟𝑖𝑗  = (1 − ∏ (1 − 𝑇𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 )

where i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5 and (l = 4). 

For i = j = 1 and l = 4 

𝑟11= 𝜆1𝑟11
(1)

 ⊕ 𝜆2𝑟11
(2)
⊕ 𝜆3𝑟11

(3)
⊕⋯ ⊕ 𝜆𝑙𝑟11

(𝑙)

𝑟11 = (1 − ∏ (1 − 𝑇11
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐼11
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐹11
(𝑘)
)𝜆𝑘4

𝑘=1 ) 

𝑟11 = (1- (1 − 𝑇11
(1)
)𝜆1(1 − 𝑇11

(2)
)𝜆2(1 − 𝑇11

(3)
)𝜆3(1 − 𝑇11

(4)
)𝜆4, (𝐼11

(1)
)𝜆1(𝐼11

(2)
)𝜆2(𝐼11

(3)
)𝜆3(𝐼11

(4)
)𝜆4,

(𝐹11
(1)
)𝜆1(𝐹11

(2)
)𝜆2(𝐹11

(3)
)𝜆3(𝐹11

(4)
)𝜆4)

𝑟11 = (1-((1 − 0.8)0.37045(1 − 0.6)0.31508(1 − 0.8)0.20580(1 − 0.7)0.10867),

((0.15)0.37045(0.35)0.31508(0.15)0.20580(0.25)0.10867) , 

((0.20)0.37045(0.40)0.31508(0.20)0.20580(0.30)0.10867)) 

𝑟11 = (0.740, 0.207, 0.260) 

Similarly, we can find other values 

𝑟21 = (0.711, 0.237, 0.289) 

𝑟31 = (0.593, 0.373, 0.407) 

𝑟41 = (0.661, 0.288, 0.339) 

𝑟51 = (0.706, 0.241, 0.294) 

𝑟12 = (0.682, 0.268, 0.318) 

𝑟22 = (0.676, 0.275, 0.324) 

𝑟32 = (0.681, 0.275, 0.324) 

𝑟42 = (0.619, 0.342, 0.381) 

𝑟52 = (0.695, 0.253, 0.305) 

𝑟13 = (0.505, 0.392, 0.429) 

𝑟23 = (0.773, 0.176, 0.227) 

𝑟33 = (0.603, 0.359, 0.397) 

𝑟43 = (0.661, 0.288, 0.339) 

𝑟53 = (0.693, 0.255, 0.307) 

𝑟14 = (0.605, 0.359, 0.395) 

𝑟24 = (0.748, 0.203, 0.252) 

𝑟34 = (0.600, 0.350, 0.400) 

𝑟44 = (0.542, 0.443, 0.458) 

𝑟54 = (0.693, 0.339, 0.307) 

𝑟15 = (0.614, 0.349, 0.386) 

𝑟25 = (0.697, 0.257, 0.303) 

𝑟35 = (0.656, 0.299, 0.344) 

𝑟45 = (0.548, 0.431, 0.452) 

𝑟55 = (0.768, 0.181, 0.232) 

Table 5. Aggregated Single Valued Neutrosophic Decision Matrix D = [𝑟𝑖𝑗]5×4 

X1 X2 X3 X4 X5 

A1  𝑟11 = (0.740, 0.207, 0.260) 𝑟12 = (0.682, 0.268, 0.318) 𝑟13 = (0.505, 0.392, 0.429) 𝑟14 = (0.605, 0.359, 0.395) r15 = (0.614, 0.349, 0.386) 

A2  𝑟21 = (0.711, 0.237, 0.289) 𝑟22 = (0.676, 0.275, 0.324) 𝑟23 = (0.773, 0.176, 0.227) 𝑟24 = (0.748, 0.203, 0.252) r25 = (0.697, 0.257, 0.303) 
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A3  𝑟31 = (0.593, 0.373, 0.407) 𝑟32 = (0.681, 0.275, 0.324) 𝑟33 = (0.603, 0.359, 0.397) 𝑟34 = (0.600, 0.350, 0.400) r35 = (0.656, 0.299, 0.344) 

A4  𝑟41 = (0.661, 0.288, 0.339) 𝑟42 = (0.619, 0.342, 0.381) 𝑟43 = (0.661, 0.288, 0.339) r43 = (0.661, 0.288, 0.339) r45 = (0.548, 0.431, 0.452) 

A5  𝑟51 = (0.706, 0.241, 0.294) 𝑟52 = (0.695, 0.253, 0.305) 𝑟53 = (0.693, 0.255, 0.307) 𝑟54= (0.693, 0.339, 0.307) 𝑟55 = (0.768, 0.181, 0.232) 

Step 3: Computation of the weights of the criteria  

The individual weights given by each DM is given in Table 6. 

Table 6. Weights of alternatives determined by the DMs 𝑤𝑗
(𝑘)

= (𝑇𝑗
(𝑘)
, 𝐼𝑗
(𝑘)
, 𝐹𝑗

(𝑘)
)

Criteria DM1 DM2 DM3 DM4 

X1 

(DELIVERY) 

VI (0.90,0.10,0.10) 

𝑤1
(1)
=(𝑇1

(1)
, 𝐼1

(1)
, 𝐹1

(1)
) 

VI (0.90,0.10,0.10) 

𝑤1
(2)

 = (𝑇1
(2)

, 𝐼1
(2)

, 𝐹1
(2)

) 

VI (0.90,0.10,0.10) 

𝑤1
(3)

 = (𝑇1
(3)

, 𝐼1
(3)

, 𝐹1
(3)

) 

I (0.75,0.25,0.20) 

𝑤1
(4)

 = (𝑇1
(4)

, 𝐼1
(4)

, 𝐹1
(4)

) 

X2 

(QUALITY) 

I (0.75,0.25,0.20) 

𝑤2
(1)

 = (𝑇2
(1)

, 𝐼2
(1)

, 𝐹2
(1)

) 

M (0.50,0.50,0.50) 

𝑤2
(2)

 = (𝑇2
(2)

, 𝐼2
(2)

, 𝐹2
(2)

) 

M (0.50,0.50,0.50) 

𝑤2
(3)

 = (𝑇2
(3)

, 𝐼2
(3)

, 𝐹2
(3)

) 

I (0.75,0.25,0.20) 

𝑤2
(4)

 = (𝑇2
(4)

, 𝐼2
(4)

, 𝐹2
(4)

) 

X3 

(FLEXIBILITY) 

VI (0.90,0.10,0.10) 

𝑤3
(1)

 = (𝑇3
(1)

, 𝐼3
(1)

, 𝐹3
(1)

) 

VI (0.90,0.10,0.10) 

𝑤3
(2)

 = (𝑇3
(2)

, 𝐼3
(2)

, 𝐹3
(2)

) 

I (0.75,0.25,0.20) 

𝑤3
(3)

 = (𝑇3
(3)

, 𝐼3
(3)

, 𝐹3
(3)

) 

VI (0.90,0.10,0.10) 

𝑤3
(4)

 = (𝑇3
(4)

, 𝐼3
(4)

, 𝐹3
(4)

) 

X4 

(SERVICE) 

I (0.75,0.25,0.20) 

𝑤4
(1)

 = (𝑇4
(1)

, 𝐼4
(1)

, 𝐹4
(1)

) 

I (0.75,0.25,0.20) 

𝑤4
(2)

 = (𝑇4
(2)

, 𝐼4
(2)

, 𝐹4
(2)

) 

M (0.50,0.50,0.50) 

𝑤4
(3)

 = (𝑇4
(3)

, 𝐼4
(3)

, 𝐹4
(3)

) 

UI (0.35,0.75,0.80) 

𝑤4
(4)

 = (𝑇4
(4)

, 𝐼4
(4)

, 𝐹4
(4)

) 

X5 

(PRICE) 

M (0.50,0.50,0.50) 

𝑤5
(1)

 = (𝑇5
(1)

, 𝐼5
(1)

, 𝐹5
(1)

) 

M (0.50,0.50,0.50) 

𝑤5
(2)

 = (𝑇5
(2)

, 𝐼5
(2)

, 𝐹5
(2)

) 

VI (0.90,0.10,0.10) 

𝑤5
(3)

 = (𝑇5
(3)

, 𝐼5
(3)

, 𝐹5
(3)

) 

VI (0.90,0.10,0.10) 

𝑤5
(4)

 = (𝑇5
(4)

, 𝐼5
(4)

, 𝐹5
(4)

) 

By using the values from Table 6, the aggregated criteria weights are calculated as follows 

𝑤𝑗  = (𝑇𝑗, 𝐼𝑗, 𝐹𝑗) =  𝜆1𝑤𝑗
(1)

 ⊕ 𝜆2𝑤𝑗
(2)
⊕ 𝜆3𝑤𝑗

(3)
⊕⋯ ⊕ 𝜆𝑙𝑤𝑗

(𝑙)

𝑤𝑗  = (1-∏ (1 − 𝑇𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ) where j = 1, 2, 3, 4, 5 and (l = 4). 

For j = 1 and l = 4 

𝑤1 = 𝜆1𝑤1
(1)
⊕ 𝜆2𝑤1

(2)
⊕𝜆3𝑤1

(3)
⊕ 𝜆4𝑤1

(4)

𝑤1 = (1-∏ (1 − 𝑇1
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐼1
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐹1
(𝑘)
)𝜆𝑘4

𝑘=1 ) 

𝑤1 = (1- (1 − 𝑇1
(1)
)𝜆1(1 − 𝑇1

(2)
)𝜆2(1 − 𝑇1

(3)
)𝜆3(1 − 𝑇1

(4)
)𝜆4, (𝐼1

(1)
)𝜆1(𝐼1

(2)
)𝜆2(𝐼1

(3)
)𝜆3(𝐼1

(4)
)𝜆4 ,

(𝐹1
(1)
)𝜆1(𝐹1

(2)
)𝜆2(𝐹1

(3)
)𝜆3(𝐹1

(4)
)𝜆4)

𝑤1 = (1 − ((1 − 0.9)0.37045(1 − 0.9)0.31508(1 − 0.9)0.20580(1 − 0.75)0.10867),

((0.10)0.37045(0.10)0.31508(0.10)0.20580(0.25)0.10867) , 

((0.10)0.37045(0.10)0.31508(0.10)0.20580(0.20)0.10867)) 

𝑟11 = (0.740, 0.207, 0.260) 

𝑤1 = (𝑇1, 𝐼1, 𝐹1) = (0.890, 0.110, 0.108) 

Similarly, we can get other values 

Therefore 

𝑊{𝑋1,𝑋2,𝑋3,𝑋4} = 

[

(0.890, 0.110, 0.108)

(0.641, 0.359, 0.322)

(0.879, 0.121, 0.115)

(0.680, 0.325, 0.281)

(0.699, 0.301, 0.301)]

𝑇

Step 4: Construction of Aggregated Weighted Single Valued Neutrosophic Decision Matrix 

(AWSVNDM) 
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After finding the weights of the criteria and the alternative ratings, the aggregated weighted single-

valued neutrosophic ratings are calculated by using Equation 4 as follows: 

𝑟𝑖𝑗
′  = (𝑇𝑖𝑗

′ , 𝐼𝑖𝑗
′ , 𝑟𝐹𝑖𝑗

′ ) = (𝑇𝐴𝑖(𝑥).𝑇𝑗, 𝐼𝐴𝑖(𝑥) + 𝐼𝑗  - 𝐼𝐴𝑖(𝑥).𝐼𝑗, 𝐹𝐴𝑖(𝑥) + 𝐹𝑗 - 𝐹𝐴𝑖(𝑥).𝐹𝑗)

By using the above equation, we can get an aggregated weighted single-valued neutrosophic decision 

matrix. 

Table 7. Aggregated Weighted Single Valued Neutrosophic Decision Matrix 𝑅′ = [𝑟𝑖𝑗
′ ]5×5

X1 X2 X3 X4 X5 

A1 𝑟11
′ =  (0.659,0.294,0.340) 𝑟12

′ = (0.437,0.531,0.538) 𝑟13
′ = (0.444,0.466,0.495) 𝑟14

′ = (0.411,0.567,0.565) 𝑟15
′ =  (0.429,0.545,0.571)

A2 𝑟21
′ = (0.633,0.321,0.366) 𝑟22

′ = (0.433,0.535,0.542) 𝑟23
′ = (0.679,0.276,0.316) 𝑟24

′ = (0.509,0.462,0.462) 𝑟25
′ = (0.487,0.481,0.513)

A3 𝑟31
′ = (0.528,0.442,0.471) 𝑟32

′ = (0.437,0.535,0.542) 𝑟33
′ = (0.530,0.437,0.466) 𝑟34

′ = (0.408,0.561,0.569) 𝑟35
′ = (0.459,0.510,0.541)

A4 𝑟41
′ = (0.588,0.366,0.410) 𝑟42

′ = (0.397,0.578,0.580) 𝑟43
′ = (0.581,0.374,0.415) 𝑟44

′ = (0.037,0.624,0.610) 𝑟45
′ = (0.383,0.602,0.617)

A5 𝑟51
′ = (0.628,0.324,0.3700 𝑟52

′ = (0.445,0.521,0.529) 𝑟53
′ = (0.609,0.345,0.387) 𝑟54

′ = (0.471,0.554,0.502) 𝑟55
′ = (0.537,0.428,0.463)

Step 5: Computation of SVN-PIS and SVN-NIS 

Since Delivery, Quality, Flexibility, and Services are benefit criteria that is why they are in the set 

𝐽1= {𝑋1, 𝑋2, 𝑋3, 𝑋4} 

whereas Price being the cost criteria, so it is in the set 𝐽2= {𝑋2} SVN-PIS and SVN-NIS are calculated 

as, 

Table 8. SVN-PIS and SVN-NIS 

SVN-PIS SVN-NIS 

𝑻𝟏
+ = max {0.659,0.633,0.528,0.588,0.628} = 0.659 

𝑰𝟏
+ = min {0.294,0.321,0.442,0.366,0.324} = 0.294 

𝑭𝟏
+ = min {0.340,0.366,0.471,0.410,0.370} = 0.340 

𝑇1
− = min {0.659,0.633,0.528,0.588,0.628} = 0.528

𝐼1
− = max {0.294,0.321,0.442,0.366,0.324} = 0.442

𝐹1
− = max {0.340,0.366,0.471,0.410,0.370} = 0.471

𝑻𝟐
+ = max {0.437,0.433,0.437,0.397,0.445} = 0.445 

𝑰𝟐
+ = min {0.531,0.535,0.535,0.578,0.521} = 0.521 

𝑭𝟐
+ = min {0.538,0.542,0.542,0.580,0.529} = 0.529 

𝑇2
− = min {0.437,0.433,0.437,0.397,0.445} = 0.397

𝐼2
− = max {0.531,0.535,0.535,0.578,0.521} = 0.578

𝐹2
− = max {0.538,0.542,0.542,0.580,0.529} = 0.580

𝑻𝟑
+= max {0.444,0.679,0.530,0.581,0.609} = 0.679

𝑰𝟑
+ = min {0.466,0.276,0.437,0.374,0.345} = 0.276 

𝑭𝟑
+ = min {0.495,0.316,0.466,0.415,0.387} = 0.316 

𝑇3
− = min {0.444,0.679,0.530,0.581,0.609} = 0.444

𝐼3
− = max {0.466,0.276,0.437,0.374,0.345} = 0.466

𝐹3
− = max {0.495,0.316,0.466,0.415,0.387} = 0.495

𝑻𝟒
+  = max {0.411,0.509,0.408,0.037,0.471} = 0.509 

𝑰𝟒
+  = min {0.567,0.462,0.561,0.624,0.554} = 0.462 

𝑭𝟒
+  = min {0.565,0.462,0.569,0.610,0.502} = 0.462 

𝑇4
−  = min {0.411,0.509,0.408,0.037,0.471} = 0.037

𝐼4
−  = max {0.567,0.462,0.561,0.624,0.554} = 0.624

𝐹4
−  = max {0.565,0.462,0.569,0.610,0.502} = 0.610

𝑻𝟓
+  = min {0.429,0.487,0.459,0.383,0.537} = 0.383 

𝑰𝟓
+  = max {0.545,0.481,0.510,0.602,0.428} = 0.602 

𝑭𝟓
+  = max {0.571,0.513,0.541,0.617,0.463} = 0.617 

𝑇5
−  = max {0.429,0.487,0.459,0.383,0.537} = 0.537

𝐼5
−  = min {0.545,0.481,0.510,0.602,0.428} = 0.428

𝐹5
−  = min {0.571,0.513,0.541,0.617,0.463} = 0.463
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𝐴+ = 

{

(0.659, 0.294, 0.340),
(0.445, 0.521, 0.529),
(0.679, 0.276, 0.316),
(0.509, 0.462, 0.462),
(0.383, 0.602, 0.617)}

𝐴−=

{

(0.528, 0.442, 0.471),
(0.397, 0.578, 0.580),
(0.444, 0.466, 0.495),
(0.037, 0.624, 0.610),
(0.537, 0.428, 0.463)}

Step 6: Computation of Separation Measures 

Normalized Euclidean Distance Measure is used to find the negative and positive separation 

measures 𝒅+ and 𝒅−respectively by using Equation 7, 8. Now for the SVN-PIS, we use 

𝑑𝑖
+= (

1

3𝑛
 ∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

For i = 1and n = 5 

𝑑1
+= (

1

3(5)
 ∑ [(𝑇𝐴1.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴1.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴1.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]5
𝑗=1 )

0.5

𝑑1
+=

(

1

15

[

(𝑇𝐴1.𝑊(𝑋1) − 𝑇𝐴∗𝑊 (𝑋1))
2

+ (𝐼𝐴1.𝑊(𝑋1) − 𝐼𝐴∗𝑊 (𝑋1))
2

+ (𝐹𝐴1.𝑊(𝑋1) − 𝐹𝐴∗𝑊 (𝑋1))
2

+

(𝑇𝐴1.𝑊(𝑋2) − 𝑇𝐴∗𝑊 (𝑋2))
2

+ (𝐼𝐴1.𝑊(𝑋2) − 𝐼𝐴∗𝑊 (𝑋2))
2

+ (𝐹𝐴1.𝑊(𝑋2) − 𝐹𝐴∗𝑊 (𝑋2))
2

+

(𝑇𝐴1.𝑊(𝑋3) − 𝑇𝐴∗𝑊 (𝑋3))
2

+ (𝐼𝐴1.𝑊(𝑋3) − 𝐼𝐴∗𝑊 (𝑋3))
2

+ (𝐹𝐴1.𝑊(𝑋3) − 𝐹𝐴∗𝑊 (𝑋3))
2

+

(𝑇𝐴1.𝑊(𝑋4) − 𝑇𝐴∗𝑊 (𝑋4))
2

+ (𝐼𝐴1.𝑊(𝑋4) − 𝐼𝐴∗𝑊 (𝑋4))
2

+ (𝐹𝐴1.𝑊(𝑋4) − 𝐹𝐴∗𝑊 (𝑋4))
2

+

(𝑇𝐴1.𝑊(𝑋5) − 𝑇𝐴∗𝑊 (𝑋5))
2

+ (𝐼𝐴1.𝑊(𝑋5) − 𝐼𝐴∗𝑊 (𝑋5))
2

+ (𝐹𝐴1.𝑊(𝑋5) − 𝐹𝐴∗𝑊 (𝑋5))
2

])

0.5

𝑑1
+=

(

 
1

15

[

(0659 − 0.659)2 + (0.294 − 0.294)2 + (0.340 − 0.340)2 +

 (0.437 − 0.445)2 + (0.531 − 0.521)2 + (0.538 − 0.529)2 +

 (0.444 − 0.679)2 + (0.466 − 0.276)2 + (0.495 − 0.316)2 +

(0.411 − 0.509)2 + (0.567 − 0.462)2 + (0.565 − 0.462)2 +

(0.429 − 0.383)2 + (0.545 − 0.602)2 + (0.571 − 0.617)2 ])

0.5

𝑑1
+= [

1

15
 (0.000245 + 0.123366 + 0.031238 + 0.007481)]

0.5

𝑑1
+= 0.1040

Similarly, we can find other separation measures. 

Step 7: Computation of Relative Closeness Coefficient (RCC) 

The RCC is calculated by using Equation 9. 

RCCi = 
𝑑𝑖
′

𝑑𝑖
′+ 𝑑𝑖

∗ ; i = 1, 2, 3, 4, 5 

RCC1 = 
𝑑1
′

𝑑1
′+ 𝑑1

∗ = 
0.127532

0.127532+0.104029
 = 0.551 

RCC2 = 0.896 

RCC3 = 0.505 

RCC4 = 0.363 

RCC5 = 0.757 

The separation measure and the value of relative closeness coefficient (RCC) expressed in the 

following Figure 2. 
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Figure 2. Separation measure and the RCC for each Alternative 

Step 8: Ranking alternatives 

From the above figure, we can see the RCC are ranked as follows 

RCC2 > RCC5 > RCC1 > RCC3 > RCC4 ⇒ A2 > A5 > A1 > A3 > A4 

By using the presented technique, we choose the best supplier for the production industry and 

observe that A2 is the best alternative. 

5. Conclusion

In this paper, we studied the neutrosophic set and SVNSs with some basic operations and 

developed the generalized neutrosophic TOPSIS by using single-valued neutrosophic numbers. By 

using crisp data, it is more difficult to solve decision-making problems in uncertain environments. 

Single valued neutrosophic sets can handle these limitations competently and provide the 

appropriate choice to decision-makers. We also developed the integrated model for neutrosophic 

TOPSIS. The closeness coefficient has been defined to compute the ranking of the alternatives by 

using an established approach under-considered environment. Moreover, for the justification of the 

proposed technique an illustrated example has been described for the selection of suppliers in the 

production industry. Consequently, relying upon the obtained results it can be confidently concluded 

that the proposed methodology indicates higher stability and usability for decision-makers in the DM 

process. Future research will surely concentrate upon presenting the TOPSIS technique based on 

correlation coefficient under-considered environment. The suggested approach can be applied to 

quite a lot of issues in real life, including the medical profession, robotics, artificial intelligence, 

pattern recognition, economics, etc. 
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Some New Structures in Neutrosophic 
Metric Spaces 

Abstract: Neutrosophic sets deals with inconsistent, indeterminate and imprecise datas. The concept 

of Neutrosophic Metric Space (NMS) uses the idea of continuous t- norm and continuous t - conorm 

in intuitionistic fuzzy metric spaces. In this paper, we introduce the definition of subcompatible 

maps of types (J-1 and J-2). We extend the structure of weak non-Archimedian with the help of 

subcompatible maps of types (J-1 and J-2) in NMS. Finally, we obtain common fixed point theorems 

for four subcompatible maps of type (J-1) in weak non-Archimedean NMS. 

Keywords: Weak non-Archimedean, NMS, Compatible map, Sub compatible, Subcompatible maps 

of types (J-1) and (J-2). 

_______________________________________________________________________________________ 

1. Introduction

Fuzzy set was presented by Zadeh [22] as a class of elements with a grade of membership. 

Kramosil and Michalek [8] defined new notion called Fuzzy Metric Space (FMS). Later, many 

authors have examined the concept of fuzzy metric in various aspects.  In 2013, Muthuraj and 

Pandiselvi [17] introduced the concept of compatible mappings of type (P-1) andtype (P-2) in 

generalized fuzzy metric spaces and obtains common fixed point theorems are obtained 

forcompatible maps of type (P-1) and type (P- 2).  Since then, many authors have obtained fixed 

point results in fuzzy metric space using these compatible notions.   

Atanassov [1] introduced and studied the notion of intuitionistic fuzzy set by generalizing 

the notion of fuzzy set.  Park [9] defined the notion of intuitionistic fuzzy metric space as a 
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generalization of fuzzy metric space.  In 1998, Smarandache [14-16] characterized the new concept 

called neutrosophic logic and neutrosophic set and explored many results in it. In the idea of 

neutrosophic sets, there is T degree of membership, I degree of indeterminacy and F degree of non-

membership. Baset et al. [2] Explored the neutrosophic applications in dif and only iferent fields 

such as model for sustainable supply chain risk management, resource levelling problem in 

construction projects, Decision Making.  

In 2019, Kirisci et al [9] defined NMS as a generalization of IFMS and brings about fixed 

point theorems in complete NMS.  Erduran et.al.[13] introduced the concept of weak non-

Archimedean intuitionistic fuzzy metric space and proved a common fixed point theorem for a pair 

of generalized (φ, Ψ) – contractive mappings.  Later Jeyaraman at el [19,20] proved Fixed point 

results in non-Archimedean generalized intuitionistic fuzzy metric spaces.  In 2020, Sowndrarajan 

Jeyaraman and Florentin Smarandache [18] proved some fixed point results for contraction theorems 

in neutrosophic metric spaces. 

In this paper, we introduce the definition of sub compatible maps and sub compatible maps 

of types (J-1) and (J-2) in weak non-Archimedean NMS and give some examples and relationship 

between these definitions. We extend the structure of weak non-Archimedian with the help of 

subcompatible maps of types (J-1 and J-2) in NMS. Thereafter, we prove common fixed point 

theorems for four subcompatible maps of type (J-1) in weak non-Archimedean NMS. 

2. Preliminaries

Definition: 2.1

A binary operation * : [0, 1] x [0, 1] → [0, 1] is a continuous t-norm [CTN] if it satisfies the 

following conditions : 

(i) * is commutative and associative,

(ii) * is continuous,

(iii) 𝜀1*1 = 𝜀1 for all  𝜀1∈ [0, 1],

(iv) 𝜀1* 𝜀2  ≤ 𝜀3*𝜀4  whenever  𝜀1 ≤ 𝜀3 and  𝜀2  ≤ 𝜀4  , for each 𝜀1, 𝜀2, 𝜀3, 𝜀4∈ [0, 1].

Definition: 2.2 

A binary operation ⋄ : [0, 1] x [0, 1] → [0, 1] is a continuous t-conorm [CTC] if it satisfies the 

following conditions: 

(i) ⋄ is commutative and associative,

(ii) ⋄ is continuous,

(iii) 𝜀1⋄ 0 = 𝜀1 for all 𝜀1∈ [0, 1],

(iv) 𝜀1⋄ 𝜀2  ≤ 𝜀3⋄ 𝜀4  whenever  𝜀1 ≤ 𝜀3 and  𝜀2  ≤ 𝜀4  , for each 𝜀1, 𝜀2, 𝜀3 and 𝜀4 ∈ [0, 1].

Definition: 2.3 

A 6-tuple (Σ, Ξ, Θ, Υ,∗,⋄) is said to be an NMS (shortly NMS), if Σ is an arbitrary non empty 

set, ∗ is a neutrosophic CTN, ⋄ is a neutrosophic CTC and Ξ, Θ 𝑎𝑛𝑑 Υ are neutrosophic on Σ3 × ℝ+

satisfying the following conditions:   

For all 𝜁, 𝜂, 𝛿,𝜔 ∈ Σ, 𝜆 ∈  ℝ+. 

1. 0 ≤ Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) ≤ 1; 0 ≤ Θ ( 𝜁, 𝜂, 𝛿, 𝜆) ≤ 1; 0 ≤ Υ ( 𝜁, 𝜂, 𝛿, 𝜆) ≤ 1;

2. Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) + Θ ( 𝜁, 𝜂, 𝛿, 𝜆) + Υ ( 𝜁, 𝜂, 𝛿, 𝜆) ≤ 3;

3. Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 1  if and only if  𝜁 =  𝜂 =  𝛿;

4. Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = Ξ ( 𝜌 ( 𝜁, 𝜂, 𝛿, 𝜆)), when 𝜌 is the permutation function;

5. Ξ ( 𝜁, 𝜂, 𝜔, 𝜆)∗ Ξ ( 𝜔, 𝛿, 𝛿, 𝜇) ≤ Ξ ( 𝜁, 𝜂, 𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇> 0;
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6. Ξ ( 𝜁, 𝜂, 𝛿, .) : [ 0, ∞ ) → [ 0 , 1] is neutrosophic continuous ;

7. lim
𝜆→∞

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 1   for all  𝜆 > 0;

8. Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0  if and only if  𝜁 =  𝜂 =  𝛿;

9. Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = Θ ( 𝜌 ( 𝜁, 𝜂, 𝛿, 𝜆)), when 𝜌 is the permutation function;

10. Θ ( 𝜁, 𝜂, 𝜔, 𝜆) ⋄ Θ ( 𝜔, 𝛿, 𝛿, 𝜇) ≥ Θ ( 𝜁, 𝜂, 𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇> 0;

11. Θ ( 𝜁, 𝜂, 𝛿, .) : [ 0, ∞ ) → [ 0 , 1] is neutrosophic continuous;

12. lim
𝜆→∞

Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0   for all  𝜆 > 0;

13. Υ  ( 𝜁, 𝜂, 𝛿, 𝜆) = 0  if and only if  𝜁 =  𝜂 =  𝛿;

14. Υ  ( 𝜁, 𝜂, 𝛿, 𝜆) = Υ  ( 𝜌 ( 𝜁, 𝜂, 𝛿, 𝜆)), when 𝜌 is the permutation function;

15. Υ ( 𝜁, 𝜂, 𝜔, 𝜆) ⋄ Υ  ( 𝜔, 𝛿, 𝛿, 𝜇) ≥ Υ  ( 𝜁, 𝜂, 𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇> 0;

16. Υ( 𝜁, 𝜂, 𝛿, .) : [ 0, ∞ ) → [ 0 , 1] is neutrosophic continuous;

17. lim
𝜆→∞

Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0   for all  𝜆 > 0;

18. If 𝜆 > 0 then Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0;  Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 1;  Υ  ( 𝜁, 𝜂, 𝛿, 𝜆) = 1.

Then, ( Ξ, Θ, Υ ) is called an NMS on Σ . The functions Ξ, Θ 𝑎𝑛𝑑 Υ denote degree of closedness, 

neturalness and non-closedness between 𝜁, 𝜂 𝑎𝑛𝑑  𝛿 with respect to 𝜆 respectively. 

Example: 2.4 

Let (Σ, D) be a metric space. Define 𝜔 ∗ 𝜏 = min { 𝜔 , 𝜏} and  𝜔 ⋄ 𝜏 = max { 𝜔, 𝜏} and 

Ξ, Θ, Υ : Σ3 × ℝ+→[ 0, 1] defined by, we define 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 
𝜆

𝜆 + 𝐷 (𝜁,𝜂,𝛿 )
 ; Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 

𝐷 (𝜁,𝜂,𝛿 )

𝜆 + 𝐷 (𝜁,𝜂,𝛿 )
; Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = 

𝐷 (𝜁,𝜂,𝛿 )

𝜆 
 for all 𝜁, 𝜂, 𝛿 ∈  Σ and 

𝜆 > 0.  Then (Σ, Ξ, Θ, Υ,∗,⋄) is called NMS induced by a metric D the standard neutrosophic metric. 

Remark: 2.5 

In NMSΞ ( 𝜁, 𝜂, 𝛿, 𝜆, .) is non-decreasing, Θ ( 𝜁, 𝜂, 𝛿, .) is non-increasing and Υ ( 𝜁, 𝜂, 𝛿, .) is 

decreasing for all 𝜁, 𝜂, 𝛿 ∈  Σ. 

In the above definition, if the triangular inequality (v), (x) and (xv) are replaced by the 

following: 

Ξ ( 𝜁, 𝜂, 𝛿, max{ 𝜆, 𝜇})≥Ξ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ∗ Ξ (  𝜔,𝛿, 𝛿, 𝜇), 

Θ ( 𝜁, 𝜂, 𝛿, min{ 𝜆, 𝜇}) ≤Θ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ⋄ Θ (  𝜔,𝛿, 𝛿, 𝜇), 

Υ ( 𝜁, 𝜂, 𝛿, min{ 𝜆, 𝜇 }) ≤Υ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ⋄ Υ (  𝜔,𝛿, 𝛿, 𝜇) 

or equivalently 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) ≥Ξ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ∗ Ξ (  𝜔,𝛿, 𝛿, 𝜆), 

Θ ( 𝜁, 𝜂, 𝛿,  𝜆 ) ≤Θ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ⋄ Θ (  𝜔,𝛿, 𝛿, 𝜆), 

Υ ( 𝜁, 𝜂, 𝛿,  𝜆 ) ≤Υ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ⋄ Υ (  𝜔,𝛿, 𝛿, 𝜆). 

Then (Σ, Ξ, Θ, Υ,∗,⋄) is called non-Archimedean NMS.  It is easy to check that the triangle inequality 

(NA) implies (5), (10) and (15), that is, every non-Archimedean NMS is itself an NMS. 

Example:2.6 

Let Σ be a non-empty set with at least two elements.  Define Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) by:  If we define 

the neutrosophic set (Σ, Ξ, Θ, Υ) by  Ξ ( 𝜁, 𝜁,𝜁, 𝜆) = 1,Θ ( 𝜁, 𝜁,𝜁, 𝜆)  = 0 and Υ ( 𝜁, 𝜁,𝜁, 𝜆)  = 0  for all 𝜁 ∈ 
 Σ and 𝜆 > 0, and  Ξ ( 𝜁, 𝜂, 𝛿, 𝜆 ) = 0, Θ ( 𝜁, 𝜂, 𝛿,  𝜆 ) = 1 and Υ ( 𝜁, 𝜂, 𝛿,  𝜆 ) = 1, for 𝜁 ≠ 𝜂 ≠ 𝛿 and 0 <𝜆≤ 1, 

and  Ξ ( 𝜁, 𝜂, 𝛿, 𝜆 ) = 1, Θ ( 𝜁, 𝜂, 𝛿,  𝜆 ) = 0  and Υ ( 𝜁, 𝜂, 𝛿,  𝜆 ) = 0, for 𝜁 ≠ 𝜂 ≠𝛿  and 𝜆 > 1.  Then (Σ, Ξ, Θ, Υ,∗ 
,⋄) is a non-Archimedean NMS with arbitrary ∗ is a neutrosophic CTN, ⋄ is a neutrosophic CTC. 

Clearly (Σ, Ξ, Θ, Υ,∗,⋄) is also an NMS. 

Definition:2.7 
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 In Definition 2.3, if the triangular inequality (v), (x) and (xv) are replaced by the following: 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) ≥ max { Ξ ( 𝜁, 𝜂, 𝜔, 𝜆) ∗ Ξ (𝜔, 𝛿, 𝛿, , 𝜆/2), Ξ ( 𝜁, 𝜂,𝜔, 𝜆/2) ∗ Ξ(𝜔, 𝛿, 𝛿, 𝜆)}, 

Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  ≤ min { Θ ( 𝜁, 𝜂, 𝜔, 𝜆) ⋄ Θ (𝜔, 𝛿, 𝛿, , 𝜆/2  ), Θ  ( 𝜁, 𝜂,𝜔, 𝜆 /2) ⋄ Θ(𝜔, 𝛿, 𝛿, 𝜆)}, 

Υ ( 𝜁, 𝜂, 𝛿, 𝜆)   ≤  min { Υ( 𝜁, 𝜂, 𝜔, 𝜆) ⋄ Υ (𝜔, 𝛿, 𝛿, , 𝜆/2  ), Υ  ( 𝜁, 𝜂,𝜔, 𝜆 /2) ⋄ Υ(𝜔, 𝛿, 𝛿, 𝜆)}, 

for all Ξ, Θ, Υ ∈  Σ and 𝜆 > 0, then (Σ, Ξ, Θ, Υ,∗,⋄)is said to be a Weak Non- Archimedean (WNA) NMS. 

Obviously, every non-Archimedean NMS is itself a weak non-Archimedean NMS. 

The inequality (WNA) does not imply that Ξ ( 𝜁, 𝜂, 𝛿, 𝜆, .) is non-decreasing , Θ ( 𝜁, 𝜂, 𝛿,  .) is non-

increasing and Υ(𝜁, 𝜂, 𝛿, .) is decreasing.   Thus, a weak non-Archimedean NMS is not necessarily an 

NMS. 

Example: 2.8 

Let Σ= [0, ∞) and define Ξ ( 𝜁, 𝜂, 𝛿, 𝜆);  Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  and Υ ( 𝜁, 𝜂, 𝛿, 𝜆)  by 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
1,  𝜁 = 𝜂 = 𝛿
𝜆

𝜆 +1
,  𝜁 ≠ 𝜂 ≠ 𝛿

  , 

Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,  𝜁 = 𝜂 = 𝛿
1

𝜆+1
,    𝜁 ≠ 𝜂 ≠ 𝛿

 , 

Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿

𝜆 + 1,    𝜁 ≠ 𝜂 ≠ 𝛿
 , 

for all 𝜆 > 0. (Σ, Ξ, Θ, Υ,∗,⋄)is a weak non-Archimedean NMS with 𝜔 ∗ 𝜏 =  𝜔𝜏 and 𝜔 ⋄ 𝜏 = { 𝜔 + 𝜏 − 𝜔𝜏} 

for every 𝜔 , 𝜏 ∈ [0, 1]. 

Definition: 2.9 

Let Γ and Ω  be maps from an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ).  Then the mappings are said to be 

compatible if 

lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, and 

lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΓ𝜁n,ΩΓ𝜁n, 𝜆) = 0, 

for all 𝜆 >0, whenever {𝜁n} is a sequence in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 for some 𝜁 Σ. 

Definition: 2.10 

Let Γ and Ω be self mappings of an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ). Then the mappings are        

said to be compatible of type (J-1), if 

lim
𝑛→∞

Ξ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, and 

lim
𝑛→∞

Υ (ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, 

for all 𝜆 >0, whenever {𝜁n} is a sequence in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 for some 𝜁 Σ. 

Definition: 2.11 

Let Γ and Ω be self mappings of an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ). Then the mappings are        

said to be compatible of type (J-2), if 

lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, and 
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lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

for all 𝜆 >0, whenever {𝜁n} is a sequence in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 for some 𝜁 Σ. 

Definition:2.12 

Let Γ and Ω be maps from an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ) into itself.  The maps Γ and Ω are 

said to be Occasionally Weakly Compatible (OWC) if and only if there is a point 𝜁Σ  which 

is a coincidence point of Γ and Ωat which Γ and Ω commute i.e., there is a point 𝜁Σ such that

Γ𝜁 = Ω𝜁 and ΓΩ𝜁 = ΩΓ𝜁. 

Definition:2.13 

Let Γ and Ω be maps from an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ).  The maps Γ and Ω  are said to be 

reciprocally continuous if lim
𝑛→∞

ΓΩ𝜁n =Γ𝜁, lim
𝑛→∞

ΩΓ𝜁n, =Ω𝜁, whenever {𝜁n} is a sequence in Σ such that 

lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 for some 𝜁 Σ. 

3. Types Of Subcompatible Maps In Weak Non-Archimedean NMS.

Definition:3.1 

Let (Σ, Ξ, Θ, Υ,∗,⋄ ) be a weak non-Archimedean NMS.  Self- maps Γ and Ω on Σ are said to be 

subsequently continuous if there exists a sequence {𝜁n} in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n= 𝜁, 𝜁 Σ and 

satisfy  lim
𝑛→∞

Γ𝒮𝜁n =Γ𝜁, lim
𝑛→∞

ΩΓ𝜁n, =Ω𝜁. 

Clearly, if Γ and Ωare continuous or reciprocally continuous, then they are subsequentially 

continuous, but converse is not true in general. 

Example: 3.2 

Let Σ = [0, ∞) and define, for all 𝜆 > 0,  Ξ ( 𝜁, 𝜂, 𝛿, 𝜆);  Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  and Υ ( 𝜁, 𝜂, 𝛿, 𝜆)  by 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
1,     𝜁 = 𝜂 = 𝛿,
𝜆

𝜆 +1
,    𝜁 ≠ 𝜂 ≠ 𝛿,

Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿,
1

𝜆+1
,    𝜁 ≠ 𝜂 ≠ 𝛿,

Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿,

𝜆 + 1,    𝜁 ≠ 𝜂 ≠ 𝛿.

Then (Σ, Ξ, Θ, Υ,∗,⋄) is a weak non-Archimedean NMS with  𝜔 ∗ 𝜏 =  𝜔𝜏 and  𝜔 ⋄ 𝜏 = { 𝜔 + 𝜏 −

𝜔𝜏}  for every 𝜔 , 𝜏 ∈ [0, 1].  Define Γ and Ωas follows: 

Γ𝜁 = {
2,    𝜁 < 3
𝜁,    𝜁 ≥ 3

 , Ω𝜁 = {
2𝜁 − 4,    𝜁 ≤ 3,
3,               𝜁 > 3.

Clearly Γ and Ω are discontinuous at 𝜁 = 3.  Let { 𝜁n} be a sequence in Σ defined by 𝜁n = 3 -
1

𝑛
 for n = 1, 

2 …, then  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 2, 2  Σ and lim
𝑛→∞

ΓΩ𝜁n = 2 = Γ(2), lim
𝑛→∞

ΩΓ𝜁n =0 = Ω(2).  Therefore, Γ and Ω 

are subsequentially continuous.  Now, let { 𝜁n} be a sequence in Σ defined by 𝜁n = 3+ 
1

𝑛
 for n = 1,2,…, 

then  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 3, 3 Σ and lim
𝑛→∞

ΩΓ𝜁n =3 ≠ 2 = Ω(3). Hence  Γ and Ω are not reciprocally 

continuous. 
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Definition: 3.3 

Let ( Σ, Ξ, Θ, Υ,∗,⋄ )be a weak non-Archimedean NMS.  Self- maps Γ and Ω on Σ  are 

said to be subcompatible if and only if there exist a sequence { 𝜁 n} in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 

𝜁, 𝜁 Σ and satisfies 

lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, and 

lim
𝑛→∞

Υ(ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0. 

It is easy to see that two owc maps are subcompatible, however the converse is not true in 

general.  It is also interesting to see the following one-way implication: 

Commuting ⇒ Weakly commuting ⇒ Compatibility ⇒ Weak compatibility ⇒ OWC⇒ Sub 

compatibility. 

Definition:3.4 

Let (Σ, Ξ, Θ, Υ,∗,⋄)be a weak non-Archimedean NMS.  Self- maps Γ and Ωon Σ are said to be 

subcompatible of type (J-1) if there exists a sequence {𝜁n} in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁, 𝜁 Σ and 

satisfies 

lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)= 0,  

lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Ξ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)= 1, 

lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁 n, 𝜆) = 0, and, 

lim
𝑛→∞

Υ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁 n, 𝜆) = 0. 

Clearly, if Γ and Ω are compatible of type (J-1), then they are subcompatible of type (J-1), but 

converse is not true in general.  

Example: 3.5 

Let Σ = [0, ∞).  Define Ξ ( 𝜁, 𝜂, 𝛿, 𝜆);  Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  and Υ ( 𝜁, 𝜂, 𝛿, 𝜆)  by 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 
𝜆

𝜆+|𝜁−𝜂|+|𝜂−𝛿|+|𝛿−𝜁|
, Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 

|𝜁−𝜂|+|𝜂−𝛿|+|𝛿−𝜁|

𝜆+|𝜁−𝜂|+|𝜂−𝛿|+|𝛿−𝜁|
and Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = 

|𝜁−𝜂|+|𝜂−𝛿|+|𝛿−𝜁|

𝜆

for all 𝜆  > 0.  Then, ( Σ, Ξ, Θ, Υ,∗,⋄ ) is a weak non-Archimedean NMS with 𝜔 ∗ 𝜏  =  𝜔𝜏  and

𝜔 ⋄ 𝜏 = { 𝜔 + 𝜏 − 𝜔𝜏} for every 𝜔 , 𝜏 ∈ [0, 1].  

Define Γ and Ω as follows: 

Γx = {
𝜁2 + 1,    𝜁 < 1
2𝜁 − 1,    𝜁 ≥ 1

 ,  Ω𝜁 = {
𝜁 + 1,  𝜁 < 1
3𝜁 − 2,               𝜁 ≥ 1

 . 

Let { 𝜁n} be a sequence in Σ defined by 𝜁n = 1 + 
1

𝑛
, for n = 1, 2…, then lim

𝑛→∞
Γ𝜁n = lim

𝑛→∞
Ω𝜁n = 1, 

1Σ and  

ΓΩ𝜁n = Γ (1 +
3

𝑛
) = 2(1 +

3

𝑛
)-1 =1+ (

6

𝑛
), 

ΩΓ𝜁n =Ω (1 +
2

𝑛
) = 3(1 +

2

𝑛
)-2 =1+ (

6

𝑛
), 
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ΓΓ𝜁n =Γ (1 +
2

𝑛
) = 2(1 +

2

𝑛
)-1 =1+ (

4

𝑛
), 

ΩΩ𝜁n = Ω (1 +
3

𝑛
) = 3(1 +

3

𝑛
)-2 =1+ (

9

𝑛
). 

Therefore, 

lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)= 0, and 

lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

And, 

lim
𝑛→∞

Ξ(ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)= 1, 

lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, and 

lim
𝑛→∞

Υ(ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0. 

That is, Γ and Ω are subcompatible of type (J-1) but if we consider a sequence 𝜁n = 1- 
1

 𝑛
 for 

n = 1,2,…, then  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n  = 2, 2 ∈ Σ and 

ΓΩ𝜁n = Γ (2 −
1

𝑛
) = 2(2 −

1

𝑛
)-1 =3- (

2

𝑛
), ΩΓ𝜁n = Ω ((1 −

1

𝑛
)

2

+ 1)= 3((1 −
1

𝑛
)

2

+ 1)-2,

ΓΓ𝜁n = Γ ((1 −
1

𝑛
)

2

+ 1) = Γ (1 −
2

𝑛
+  

1

𝑛2) = (1 −
2

𝑛
+

1

𝑛2)
2

+ 1,

ΩΩ𝜁n =Ω (2 −
1

𝑛
) = 3(2 −

1

𝑛
)-2 =4 - (

3

𝑛
). 

Therefore, 

lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≠ 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≠ 0, 

lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≠ 0, 

lim
𝑛→∞

Ξ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ≠ 1, 

lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ≠ 0, and 

lim
𝑛→∞

Υ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ≠ 0.  

That is, Γ and Ω are not compatible of type (J-1). 

Definition: 3.6 

Let ( Σ, Ξ, Θ, Υ,∗,⋄ )be a weak non-Archimedean NMS.  Self- maps Γ and Ω on Σ        

are said to be subcompatible of type (J-1)  if and only if there exist a sequence { 𝜁n} in Σ such that 

lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁, 𝜁 Σ and satisfies 

lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)= 0, 

lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

Clearly, if Γ and Ω are compatible of type (J-2), then they are subcompatible of type (J-2), but 

converse is not true in general.  

Example: 3.7 

Let Σ = [0, ∞) and define Ξ ( 𝜁, 𝜂, 𝛿, 𝜆);  Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  and Υ ( 𝜁, 𝜂, 𝛿, 𝜆)  by 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
1,     𝜁 = 𝜂 = 𝛿,
𝜆

𝜆 +1
,    𝜁 ≠ 𝜂 ≠ 𝛿,
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Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿,
1

𝜆+1
,    𝜁 ≠ 𝜂 ≠ 𝛿,

Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿,

𝜆 + 1,    𝜁 ≠ 𝜂 ≠ 𝛿.

Then, ( Σ, Ξ, Θ, Υ,∗,⋄ ) is a weak non-Archimedean NMS with 𝜔 ∗ 𝜏  = 𝜔𝜏  and

𝜔 ⋄ 𝜏 = { 𝜔 + 𝜏 − 𝜔𝜏}  for every 𝜔 , 𝜏 ∈ [0, 1].  Define Γ and Ωas follows: 

Γ𝜁 = 𝜁2,  Ω𝜁 = {
𝜁 + 2,  𝜁 ∈ [0,4] ∪ (5, ∞)

𝜁 + 12,  𝜁 ∈ (4,5]  .

Let { 𝜁n} be a sequence in Σ defined by 𝜁n = 2+ 
1

𝑛
 for n = 1,2…, then lim

𝑛→∞
Γ𝜁n=  lim

𝑛→∞
Ω𝜁n= 4, 

and ΓΓ𝜁n = Γ ((2 +
1

𝑛
)

2

) =  (2 +
1

𝑛
)

4

, ΩΩ𝜁n = Ω (4 +
1

𝑛
) = 4+ 

1

𝑛
+ 12 = 16 + 

1

𝑛
. 

Therefore, 

lim
𝑛→∞

Ξ (ΓΓn, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)= 0, and 

lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

That is, Γ and Ω are subcompatible of type (J-2) but if we consider  a sequence 𝜁n = 2-
1

𝑛
 for     

n = 1, 2,…,  then  lim
𝑛→∞

Γ 𝜁n=  lim
𝑛→∞

Ω𝜁n=  4 and ΓΓ𝜁n = Γ ((2 −
1

𝑛
)

2

) =  (2 −
1

𝑛
)

4

, ΩΩ𝜁n =Ω (4 −
1

𝑛
) = 4- 

1

𝑛
+ 2

= 6 - 
1

𝑛
 . 

Therefore, 

lim
𝑛→∞

Ξ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆) ≠ 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆) ≠ 0, and 

lim
𝑛→∞

Υ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆) ≠ 0. 

That is, Γ and Ω are not compatible of type (J-2). 

Preposition: 3.8 

Let (Σ, Ξ, Θ, Υ,∗,⋄) be a weak non-Archimedean NMS and Γ, Ω: Σ → Σ are subsequentially 

continuous mappings.  Γ and Ω are subcompatible maps if and only if they are not subcompatible of 

type (J-1).      

Proof: 

Suppose Γ and Ω are subcompatible, then there exists a sequence {  𝜁  n} in Σ such that 

lim
𝑛→∞

 Γ𝜁n = lim
𝑛→∞

Ω𝜁n= 𝜁 , 𝜁 Σ and satisfying 

lim
𝑛→∞

Ξ ( ΓΩ𝜁 n, ΩΓ n, ΩΓ n, 𝜆) = 1, 

lim
𝑛→∞

Θ( ΓΩ𝜁n, ΩΓ n, ΩΓ n, 𝜆) = 0, and 

lim
𝑛→∞

Υ( ΓΩ𝜁 n, ΩΓ n, ΩΓ n, 𝜆) = 0. 

Since Γ and Ωare subsequentially continuous, we have 

lim
𝑛→∞

ΓΩ𝜁 n= Γ𝜁=  lim
𝑛→∞

ΓΓ𝜁n,  lim
𝑛→∞

ΩΓ𝜁n= Ω𝜁=  lim
𝑛→∞

ΩΩ𝜁n. 

Thus, from the inequality (WNA), for all 𝜆 > 0, 

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ Ξ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ∗ Ξ (ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

Θ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Θ(ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ⋄ Θ(ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

Υ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Υ(ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ⋄ Υ (ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

and it follows that 

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ 1 ∗ 1 = 1, 
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Θ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ 0 ⋄ 0 = 0, 

Υ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ 0 ⋄ 0 = 0. 

That is, for all 𝜆 > 0, 

lim
𝑛→∞

 Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 0, 

lim
𝑛→∞

Υ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 0. 

By the same way, 

lim
𝑛→∞

 Ξ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  = 1, 

lim
𝑛→∞

Θ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Υ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0. 

Consequently, Γ and Ω are subcompatible of type (J-1). 

Conversely, suppose that Γ and Ω are subcompatible of type (J-1), then there exists a 

sequence {𝜁n} in Σ such that  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 , 𝜁 Σ and satisfying 

lim
𝑛→∞

 Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, lim
𝑛→∞

Θ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 0 and 

lim
𝑛→∞

Υ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 0, lim
𝑛→∞

 Ξ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  = 1, 

lim
𝑛→∞

Θ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁 n, 𝜆) = 0 and lim
𝑛→∞

Υ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁 n, 𝜆) = 0. 

Since Γ and Ω are subsequentially continuous, we have 

lim
𝑛→∞

ΓΩ𝜁n= Γ𝜁=  lim
𝑛→∞

ΓΓ𝜁n,  lim
𝑛→∞

ΩΓ𝜁n= Ω𝜁=  lim
𝑛→∞

ΩΩ𝜁n. 

Now, from the inequality (WNA), for all 𝜆 > 0, 

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)   ≥ Ξ (ΓΩ𝜁 n, ΩΩ𝜁  n,ΩΩ𝜁n, 𝜆) ∗ Ξ (ΩΩ𝜁  n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2), 

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ Θ(ΓΩ𝜁 n, ΩΩ𝜁  n,ΩΩ𝜁n, 𝜆) ⋄  Θ (ΩΩ𝜁  n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2), 

Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ Υ(ΓΩ𝜁 n, ΩΩ𝜁  n,ΩΩ𝜁n, 𝜆) ⋄  Υ (ΩΩ𝜁  n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2),   

and, it follows that, 

lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≥ 1 ∗1 = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ 0 ⋄ 0 = 0, 

lim
𝑛→∞

Υ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ 0 ⋄  0 = 0, 

which implies that 

lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Υ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0. 

Therefore, Γ and Ω are subcompatible. 

Preposition: 3.9 

Let (Σ, Ξ, Θ, Υ,∗,⋄) be a weak non-Archimedean NMS and Γ,Ω : Σ → Σ are subsequentially 

continuous mappings.   Γ and Ω are subcompatible maps if and only if they are not subcompatible 

of type (J-2). 

Proof: 

Suppose Γ and Ω are subcompatible, then there exists a sequence {  𝜁 n} in Σ  such that 

lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n =𝛿, 𝛿 Σ and satisfy  
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lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, lim
𝑛→∞

Θ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, and lim
𝑛→∞

Υ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0. 

Since Γ and Ω are subsequentially continuous, we have 

lim
𝑛→∞

 ΓΩ𝜁 n=  Γ𝜁 =  lim
𝑛→∞

 ΓΓ𝜁n,  lim
𝑛→∞

ΩΓ𝜁n=Ω𝜁 =  lim
𝑛→∞

ΩΩ𝜁n. 

Thus, from the inequality (WNA), 

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)   ≥ Ξ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆)   ∗ Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2) 

≥ Ξ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁 n, 𝜆)∗  Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2)∗ 

Ξ(ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/4), 

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)   ≤  Θ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆)  ⋄ Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2) 

≤  Θ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ⋄  Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) ⋄ 

Θ (ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆/4) and 

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)   ≤  Υ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆)  ⋄ Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2) 

≤  Υ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ⋄  Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) ⋄ 

Υ (ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/4), 

for all 𝜆 > 0, and, it follows that, for all 𝜆 > 0, 

lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ 1 ∗ 1 = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ 0 ⋄ 0 = 0, 

lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≤ 0 ⋄ 0 = 0, 

which implies that, 

lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆) = 0. 

Consequently, Γ and Ω  are subcompatible of type (J-2).  Conversely, suppose that Γ and Ω are 

subcompatible of type (J-2), then there exists a sequence {𝜁n} in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n =𝜁, 𝜁 Σ 

and satisfying 

lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

Now, from the inequality (WNA), we have 

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ≥ Ξ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)   ∗ Ξ (ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

   ≥ Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ∗  Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

* Ξ (ΩΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /4),

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ≤ Θ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  ⋄ Θ(ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

  ≤ Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ⋄  Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

⋄ Θ (ΩΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /4) and 

Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ≤ Υ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  ⋄ Υ(ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

   ≤ Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ⋄  Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

⋄ Υ (ΩΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /4), 

and, it follows that, for all 𝜆 > 0, 

lim
𝑛→∞

 Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≥ 1 ∗ 1∗ 1 = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ≤ 0 ⋄ 0 ⋄ 0 = 0, 

lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ 0 ⋄ 0 ⋄ 0 = 0, 
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which implies that 

lim
𝑛→∞

 Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, 

 lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  = 0. 

Therefore, Γ and Ω are subcompatible. 

Preposition: 3.10 

Let (Σ, Ξ, Θ, Υ,∗,⋄) be a weak non-Archimedean NMS and Γ, Ω: Σ → Σ are subsequentially 

continuous mappings.  Γ and Ω  are subcompatible maps of type (J-1) if and only if they are 

subcompatible of type (J-2). 

Proof: 

Suppose Γ and Ωare subcompatible of type (J-1), then there exists a sequence { 𝜁n} in Σ such 

that  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n =𝜁, 𝜁 Σ and satisfy 

lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, and, 

lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Ξ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, and, 

lim
𝑛→∞

Υ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0. 

Since Γ and Ω are subsequentially continuous, we have 

lim
𝑛→∞

ΓΩ𝜁 n= Γ𝜁=  lim
𝑛→∞

ΓΓ𝜁n, lim
𝑛→∞

ΩΓ𝜁n= Ω𝜁=  lim
𝑛→∞

ΩΩ𝜁n. 

Thus, from the inequality (WNA), 

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ Ξ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ∗ Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Θ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ⋄ Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Υ  (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ⋄ Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

and, it follows that 

lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ 1 ∗ 1 = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ 0 ⋄ 0 = 0, 

lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≤ 0⋄ 0 = 0, 

which implies that 

lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Υ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

Therefore, Γ and Ωare subcompatible of type (J-2). 

Conversely, suppose that Γ and Ω are subcompatible of type (J-2), then there exists a 

sequence { 𝜁n} in Σ such that  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n =𝜁, 𝜁 Σ  and satisfying 

lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

Now, from the inequality (WNA), we have 
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Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≥ Ξ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ∗ Ξ (ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆/2), 

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Θ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ⋄ Θ (ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆/2), 

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Υ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ⋄ Υ (ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆/2), 

and, it follows that 

lim
𝑛→∞

(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≥ 1∗ 1 = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≤ 0 ⋄ 0 = 0, 

lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤  0 ⋄ 0 = 0, 

which implies that, for all 𝜆> 0, 

lim
𝑛→∞

(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 1, 

lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

By the same way, we obtain that 

lim
𝑛→∞

(ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  = 1, 

lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  = 0, 

lim
𝑛→∞

Υ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0. 

Therefore, Γ and Ω are subcompatible of type (J-1). 

4. Main Theorems

Theorem: 4.1

Let Γ, Λ, Ω and Η be self-maps of a weak non-Archimedean NMS (Σ, Ξ, Θ, Υ,∗,⋄) and let the 

pairs (Γ, Ω) and (Λ, Η) are subcompatible maps of type(J-1) and subsequentially continuous.  

Ξ (Γζ, Λη, Λη, λ) ≥ 𝜓 (min {Ξ (Ωζ, Ηη, Ηη, λ), Ξ (Γζ, Ωζ, Ωζ, λ), Ξ (Λη, Ηη, Ηη, λ), 
1

2
[Ξ (Λη, Ωζ, Ωζ, λ) + Ξ (Γζ, Ηη, Ηη, λ)]})  (4.1.1) 

Θ(Γζ, Λη, Λη, λ)  ≤  𝜙(max {Θ(Ωζ, Ηη, Ηη,  λ) , Θ(Γζ, Ωζ, Ωζ,  λ), Θ (Λη, Ηη, Ηη,  λ), 
1

2
[Θ (Λη, Ωζ, Ωζ, λ) + Θ (Γζ, Ηη, Ηη, λ)]})  (4.1.2) 

Υ(Γζ, Λη, Λη, λ)  ≤  𝜑 (max {Υ (Ωζ, Ηη, Ηη,  λ) , Υ(Γζ, Ωζ, Ωζ,  λ), Υ (Λη, Ηη, Ηη,  λ), 
1

2
[Υ (Λη, Ωζ, Ωζ, λ) + Υ (Γζ, Ηη, Ηη, λ)]})  (4.1.3) 

for all ζ, η ∈ Σ,  λ> 0, where  𝜓 , 𝜙, 𝜑  : [0,1] → [0,1] are continuous functions such that 𝜓(s) > s,           

𝜙(s)  <s  and 𝜑(s) < s for each s ∈ (0,1).  Then Γ, Λ, Ω and Η have a unique common fixed point in Σ. 

Proof 

Since the pairs (Γ, Ω) and (Λ, Η) are subcompatible maps of type (J-1) and subsequentially 

continuous, then there exist two sequences {ζn} and {ηn} in Σ such that  lim
𝑛→∞

Γζn =  lim
𝑛→∞

Ωζn =  δ, δ∈ Σ 

and satisfy 

lim
𝑛→∞

Ξ (ΓΩζn, ΩΩζn, ΩΩζn, λ) = Ξ(Γδ, Ωδ, Ωδ, λ) = 1, 

lim
𝑛→∞

Θ (ΓΩζn, ΩΩζn, ΩΩζn, λ) = Θ(Γδ, Ωδ, Ωδ, λ) = 0, 

lim
𝑛→∞

Υ (ΓΩζn, ΩΩζn, ΩΩζn, λ) = Υ(Γδ, Ωδ, Ωδ, λ) = 0, 

lim
𝑛→∞

Ξ (ΩΓζn, ΓΓζn, ΓΓζn, λ) = Ξ(Ωδ, Γδ, Γδ, λ) = 1,  

lim
𝑛→∞

Θ (ΩΓζn, ΓΓζn, ΓΓζn, λ) = Θ (Ωδ, Γδ, Γδ, λ) = 0, 

lim
𝑛→∞

Υ (ΩΓζn, ΓΓζn, ΓΓζn, λ) = Υ(Ωδ, Γδ, Γδ, λ) =0. 

lim
𝑛→∞

Λζn=  lim
𝑛→∞

Ηζn= 𝜔, ω∈ Σ, and 

lim
𝑛→∞

Ξ (ΛΗηn, ΗΗηn, ΗΗηn, λ) = Ξ(Λω, Ηω, Ηω, λ) = 1, 

Florentin Smarandache (author and editor) Collected Papers, XII

917



lim
𝑛→∞

Θ (ΛΗηn, ΗΗηn, ΗΗηn, λ) = Θ (Λω, Ηω, Ηω, λ) = 0, 

lim
𝑛→∞

Υ (ΛΗηn, ΗΗηn, ΗΗηn, λ) = Υ(Λω, Ηω, Ηω, λ) = 0, 

lim
𝑛→∞

Ξ (ΗΛηn, ΛΛηn, ΛΛηn, λ) = Ξ(Ηω, Λω, Λω, λ) = 1, 

lim
𝑛→∞

Θ (ΗΛηn, ΛΛηn, ΛΛηn, λ) = Θ (Ηω, Λω, Λω, λ) = 0, 

lim
𝑛→∞

Υ (ΗΛηn, ΛΛηn, ΛΛηn, λ) = Υ (Ηω, Λω, Λω, λ) = 0. 

Therefore, Γδ = Ωδ and Λω = Ηω, that is δ is a coincidence point of Γ and Ω, ω is a coincidence 

point of  Λ and Η.Now, we prove that δ = ω.  By using (3.1) for ζ = ζn and η = ηn, we get

Ξ(Γζn, Ληn, Ληn, λ)  ≥ 𝜓  (min {Ξ(Ωζn, Ηηn, Ηηn, λ), Ξ(Γζn, Ωζn, Ωζn, λ), Ξ (Ληn, Ηηn, Ηηn, λ),          
1

2
[Ξ (Ληn, Ωζn, Ωζn, λ) + Ξ (Γζn, Ηηn, Ηηn, λ)]}), 

Θ (Γζn, Ληn, Ληn, λ)  ≤  𝜙 (max {Θ (Ωζn, Ηηn, Ηηn, λ) , Θ(Γζn, Ωζn, Ωζn, λ), Θ (Ληn, Ηηn, Ηηn, λ),       
1

2
[Θ (Ληn, Ωζn, Ωζn, λ) + Θ (Γζn, Ηηn, Ηηn, λ)]}). 

Υ(Γζn, Ληn, Ληn, λ)  ≤  𝜑(max {Υ(Ωζn, Ηηn, Ηηn, λ) , Υ(Γζn, Ωζn, Ωζn, λ), Υ  (Ληn, Ηηn, Ηηn, λ),
1

2
[Υ (Ληn, Ωζn, Ωζn, λ) + Υ (Γζn, Ηηn, Ηηn, λ)]}). 

Taking the limit n → ∞, we have 

Ξ (δ, ω, ω, λ) ≥ 𝜓 (min { Ξ (δ, ω, ω, λ), Ξ (δ, δ, δ, λ) , Ξ (ω, ω, ω, λ), 
1

2
 [Ξ (ω, δ, δ, λ) + Ξ (δ, ω, ω, λ)]}), 

Θ (δ, ω, ω, λ) ≤ 𝜙 (max { Θ(δ, ω, ω, λ), Θ (δ, δ, δ, λ) , Θ (ω, ω, ω,  λ), 
1

2
 [Θ (ω, δ, δ, λ) + Θ (δ, ω, ω, λ)]}), 

Υ(δ, ω, ω, λ) ≤ 𝜑 (max { Υ(δ, ω, ω, λ), Υ(δ, δ, δ, λ), Υ(ω, ω, ω, λ), 
1

2
 [Υ(ω, δ, δ, λ) + Υ(δ, ω, ω, λ)]}), 

that  is, 

Ξ (δ., ω, ω, λ) ≥ 𝜓 (Ξ (δ, ω, ω, λ)) > Ξ (δ, ω, ω, λ), 

Θ (δ., ω, ω, λ) ≤ 𝜙 (Θ (δ, ω, ω, λ)) < Θ (δ, ω, ω, λ), 

Υ (δ., ω, ω, λ) ≤ 𝜑 (Υ (δ, ω, ω,  λ)) < Υ (δ, ω, ω, λ), 

which yield δ = ω. 

Again using (3.1) for ζ = δ and η = ηn, we obtain 

Ξ (Γδ, Ληn, Ληn, λ) ≥ 𝜓 (min {Ξ (Ωδ, Ηηn, Ηηn, λ), Ξ (Γδ, Ωδ, Ωδ, λ), Ξ (Ληn, Ηηn, Ηηn, λ), 
1

2
[Ξ (Ληn, Ωδ, Ωδ, λ) + Ξ (Γδ, Ηηn, Ηηn, λ)]}), 

Θ {Γδ, Ληn, Ληn, λ) ≤  𝜙 (max {Θ (Ωδ, Ηηn, Ηηn, λ), Θ (Γδ, Ωδ, Ωδ, λ), Θ (Ληn, Ηηn, Ηηn, λ), 
1

2
[Θ (Ληn, Ωδ, Ωδ, λ) + Θ (Γδ, Ηηn, Ηηn, λ)]}). 

Υ{Γδ, Ληn, Ληn, λ) ≤ 𝜑(max {Υ(Ωδ, Ηηn, Ηηn, λ), Υ(Γδ, Ωδ, Ωδ, λ), Υ(Ληn, Ηηn, Ηηn, λ), 
1

2
[Υ(Ληn, Ωδ, Ωδ, λ) + Υ (Γδ, Ηηn, Ηηn, λ)]}). 

Taking the limit as n → ∞, we have,  

Ξ(Γδ, ω, ω, λ)  ≥ 𝜓 (min {Ξ(Ωδ, ω, ω, λ), Ξ(Γδ, Ωδ, Ωδ,  λ), Ξ (ω, ω, ω, λ), 
1

2
[Ξ (ω, Ωδ, Ωδ, λ) + Ξ (Γδ, ω, ω, λ)]}), 

Θ(Γδ, ω, ω, λ)  ≤ 𝜙 (max {Θ(Ωδ, ω, ω, λ), Θ(Γδ, Ωδ, Ωδ, λ), Θ (ω, ω, ω, λ), 
1

2
[Θ (ω, Ωδ, Ωδ, λ) + Θ (Γδ, ω, ω, λ)]}), 

Υ(Γδ, ω, ω, λ)  ≤ 𝜑 (max {Υ(Ωδ, ω, ω,  λ), Υ(Γδ, Ωδ, Ωδ,  λ), Υ (ω, ω, ω,  λ), 
1

2
[Υ (ω, Ωδ, Ωδ, λ) + Υ (Γδ, ω, ω, λ)]}). 

That is,    

Ξ(Γδ, ω, ω, λ) ≥ 𝜓 (Ξ(Γδ, ω, ω, λ)) >  Ξ(Γδ, ω, ω, λ), 

Θ(Γδ, ω, ω, λ) ≤  𝜙 (Θ(Γδ, ω, ω, λ)) < Θ(Γδ, ω, ω, λ), 

Υ(Γδ, ω, ω, λ) ≤  𝜑 (Υ(Γδ, ω, ω, λ)) < Υ(Γδ, ω, ω, λ). 

which yield Γδ = ω = δ. 

Therefore δ = ω is a common fixed point of Γ, Λ, Ω and Η. 
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For uniqueness, suppose that there exist another fixed point u of Γ, Λ, Ω and Η. 

Then from (3.1), we have 

Ξ(Γδ, Λu, Λu, λ)  ≥ 𝜓(min {Ξ(Ωδ, Ηu, Ηu, λ) , Ξ(Γδ, Ωδ, Ωδ, λ), Ξ (Λu, Ηu, Ηu, λ), 
1

2
[Ξ (Λu, Ωδ, Ωδ, λ) + Ξ (Γδ, Ηu, Ηu, λ)]}) 

   = 𝜓 (min {Ξ(Γδ, Λu, Λu, λ), 1 ,  Ξ (Γδ, Λu, Λu,  λ), 
1

2
[Ξ (Λu, Γδ, Γδ, λ) + Ξ (Γδ, Λu, Λu, λ)]}) 

 = 𝜓 (Ξ(Γδ, Λu, Λu,  λ) 

> Ξ (Γδ, Λu, Λu,  λ),

Θ (Γδ, Λu, Λu,  λ)  ≤  𝜙 (max {Θ(Ωδ, Ηu, Ηu, λ) , Θ(Γδ, Ωδ, Ωδ, λ), Θ (Λu, Ηu, Ηu, λ), 
1

2
[Θ (Λu, Ωδ, Ωδ, λ) + Θ (Γδ, Ηu, Ηu, λ)]}) 

     = 𝜙 (max {Θ(Γδ, Λu, Λu, λ), 0, Θ (Γδ, Λu, Λu, λ), 
1

2
[Θ (Λu, Γδ, Γδ, λ) + Θ (Γδ, Λu, Λu, λ)]}) 

 =  𝜙 (Θ(Γδ, Λu, Λu, λ) 

     < Θ (Γδ, Λu, Λu, λ), 

Υ (Γδ, Λu, Λu, λ)  ≤  𝜑 (max {Υ(Ωδ, Ηu, Ηu, λ) , Υ(Γδ, Ωδ, Ωδ, λ), Υ (Λu, Ηu, Ηu, λ), 
1

2
[Υ (Λu, Ωδ, Ωδ, λ) + Υ (Γδ, Ηu, Ηu, λ)]}) 

  = 𝜑 (max {Υ(Γδ, Λu, Λu, λ), 0,  Υ (Γδ, Λu, Λu, λ), 
1

2
[Υ (Λu, Γδ, Γδ, λ) + Υ (Γδ, Λu, Λu, λ)]}) 

     =  𝜑 (Υ(Γδ, Λu, Λu, λ) 

     < Υ(Γδ, Λu, Λu, λ), 

which yield δ = u.  Therefore, uniqueness follows. 

If we put Ω = Η in Theorem 3.1, we get the following result. 

Corollary: 4.2 

Let Γ, Λ, and Ω be self-maps of a weak non-Archimedean NMS (Σ, Ξ, Θ, Υ,∗,⋄) and let the pairs 

(Γ, Ω) and (Λ, Ω) are subcompatible maps of type (J-1) and subsequentially continuous.  If  

Ξ(Γζ, Λη, Λη, λ)  ≥ 𝜓 (min {Ξ(Ωζ, Ωη, Ωη, λ) , Ξ(Γζ, Ωζ, Ωζ, λ), Ξ (Λη, Ωη, Ωη, λ), 
1

2
[Ξ (Λη, Ωζ, Ωζ, λ) + Ξ (Γζ, Ωη, Ωη, λ)]})  (4.2.1) 

Θ(Γζ, Λη, Λη, λ)  ≤  𝜙 (max {Θ(Ωζ, Ωη, Ωη, λ) , Θ(Γζ, Ωζ, Ωζ, λ), Θ (Λη, Ωη, Ωη, λ), 
1

2
[Θ (Λη, Ωζ, Ωζ, λ) + Θ (Γζ, Ωη, Ωη, λ)]})  (4.2.2) 

Υ(Γζ, Λη, Λη, λ)  ≤  𝜑 (max {Υ(Ωζ, Ωη, Ωη, λ) , Υ(Γζ, Ωζ, Ωζ, λ), Υ (Λη, Ωη, Ωη, λ), 
1

2
[Υ (Λη, Ωζ, Ωζ, λ) + Υ (Γζ, Ωη, Ωη, λ)]})  (4.2.3) 

for all ζ, η ∈ Σ,  λ> 0, where  𝜓, 𝜙, 𝜑 : [0,1] → [0,1] are continuous functions such that 𝜓(s) > s, 

φ(s)  < s  and 𝜑(s)  < s  for each s ∈ (0,1).  Then Γ, Λ and Ω have a unique common fixed point in Σ. 

If we put Γ = Λ and Ω = Η in Theorem 4.1, we get the following result. 

Corollary: 4.3 
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Let Γand Ω be self-maps of a weak non-Archimedean NMS (Σ, Ξ, Θ, Υ,∗,⋄) and let the pairs 

(Γ, Ω)  is  subcompatible maps of type (J-1) and subsequentially continuous.  If 

Ξ(Γζ, Γη, Γη, λ)  ≥ 𝜓 (min {Ξ(Ωζ, Ωη, Ωη, λ) , Ξ(Γζ, Ωζ, Ωζ, λ), Ξ (Γη, Ωη, Ωη, λ), 
1

2
[Ξ (Γη, Ωζ, Ωζ, λ) + Ξ (Γζ, Ωη, Ωη, λ)]}),  (4.3.1) 

Θ(Γζ, Γη, Γη, λ)  ≤  𝜙  (max {Θ(Ωζ, Ωη, Ωη, λ) , Θ(Γζ, Ωζ, Ωζ, λ), Θ (Γη, Ωη, Ωη, λ), 
1

2
[Θ (Γη, Ωζ, Ωζ, λ) + Θ (Γζ, Ωη, Ωη, λ)]}),  (4.3.2) 

Υ(Γζ, Γη, Γη, λ)  ≤  𝜑  (max {Υ(Ωζ, Ωη, Ωη, λ) , Υ(Γζ, Ωζ, Ωζ, λ), Υ (Γη, Ωη, Ωη, λ), 
1

2
[Υ (Γη, Ωζ, Ωζ, λ) + Υ (Γζ, Ωη, Ωη, λ)]}),  (4.3.3) 

for all ζ, η ∈ Σ,  λ> 0, where  𝜓, 𝜙, 𝜑  : [0,1] → [0,1] are continuous functions such that 𝜓 (s) > s,          

φ(s)  < s  and 𝜑 (s)  < s  for each s ∈ (0,1).  Then Γ and Ω have a unique common fixed point in Σ. 

5. Conclusion

In this work, we obtained new structure of weak non-Archimedian with the help of 

subcompatible maps of types (J-1) and (J-2) in NMS.  Also, we proved common fixed point theorems 

for four subcompatible maps of type (J-1) in weak non-Archimedean NMS. 
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Analysis of Neutrosophic Multiple Regression 

D. Nagarajan, S. Broumi, F. Smarandache, J. Kavikumar 

Abstract: The idea of Neutrosophic statistics is utilized for the analysis of the uncertainty 

observation data. Neutrosophic multiple regression is one of a vital roles in the analysis of the 

impact between the dependent and independent variables. The Neutrosophic regression equation 

is useful to predict the future value of the dependent variable. This paper to predict the students' 

performance in campus interviews is based on aptitude and personality tests, which measures 

conscientiousness, and predict the future trend. Neutrosophic multiple regression is to authenticate 

the claim and examine the null hypothesis using the F-test. This study exhibits that Neutrosophic 

multiple regression is the most efficient model for uncertainty rather than the classical regression 

models 

Keywords: Neutrosophic multiple regression; Neutrosophic regression; Neutrosophic correlation 

1. Introduction

The concept of fuzzy logic was introduced by Zadeh [1], the elements in the collections are 

represented by the membership value in the closed interval [0,1]. Atanassov [2,3,4] introduce the 

intuitionistic fuzzy set that is an extension of the fuzzy set. It is useful to examine the real-life 

circumstances by considering membership and non-membership grades but without indeterminate 

membership grades. Smarandache [5, 6] extend the idea of intuitionistic fuzzy sets with the account 

of indeterminate membership grades, which we called Neutrosophic sets. Aftermath, Salama et al., 

[7] introduced the operations on Neutrosophic sets and progressed Neutrosophic sets theory in [8, 9,

10, 11, 12]. 

The important role of analyzing the correlation of dependent and independent variables is 

to estimate the strength and relation between two variables. Hanafy et al., [13] introduced the 

concepts of Neutrosophic correlation and its coefficients for the case of finite spaces. The 

Neutrosophic regression analysis is a powerful method to identify the relationships between the 

dependent and independent variables and also forecasting the uncertainty observation data. Some of 

the applications of Neutrosophic regression can be seen in literature such as Karacoska [14], 

Cervigon, et al., [15], Kumar & Chong [16], and Abdul et al., [17]. Smarandach [18] introduced the 

D. Nagarajan, S. Broumi, F. Smarandache, J. Kavikumar (2021). Analysis of Neutrosophic 
Multiple Regression. Neutrosophic Sets and Systems 43, 44-53
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theory of Neutrosophic statistics that is the extension of classical statistics and also investigated 

Neutrosophic regression analysis. The real-time applications of Neutrosophic regression can be seen 

in Aslam [20], Salama et al., [21]. Prabhu et al., [22] analyzed the real-time multiple analysis. Some 

other contributions are in this domain have already been done by various researchers such as Tanaka 

& Ishibuchi [23] and Aslam [24].  

Broumi & Smarandache [25] studied the weighted correlation and correlation coefficient 

between two interval Neutrosophic sets that were defined by Wang et al., [26]. Zhang et al., [27] 

explained the correlation coefficient measures and their entropy for interval Neutrosophic sets. Ye 

[28] proposed the two correlation coefficients between normal Neutrosophic numbers (NNSs) based

on the score functions of normal Neutrosophic numbers (NNNs) and investigated their properties. 

He also developed a MADM method with NNSs under normal Neutrosophic numbers. Ye [29] 

presented a new correlation coefficient measure between dynamic single-valued Neutrosophic 

multisets. Karaaslan [30] studied the measures between two Neutrosophic sets; two interval-

Neutrosophic sets; two Neutrosophic-refined sets and their applications of these methods are utilized 

in multi-criteria decision-making problems. Broumi and Smarandache [31] also proposed the 

correlation coefficient between interval Neutrosophic sets. Rajarajeswari and Uma [32] put forward 

the correlation measure for IFMS. Recently, Broumi and Smarandache [reference] defined the 

Hausdorff distance between Neutrosophic sets and some similarity measures based on the distance 

such as the set-theoretic approach and matching function to calculate the similarity degree between 

Neutrosophic sets. Broumi [32] explained the concept of correlation measure of Neutrosophic-refined 

sets that is the extension of the correlation measure of Neutrosophic sets and intuitionistic fuzzy 

multi-sets. Le [33] established the fuzzy decision-making method based on the weighted correlation 

coefficient under the intuitionistic fuzzy environment. Le [34] explained the cosine similarity 

measures for intuitionistic fuzzy sets and their applications. Gerstenkorn [35] studied the concept of 

correlation under the environment of intuitionistic fuzzy sets. Further, Hung [36] defined the 

correlation for intuitionistic fuzzy sets based on the centroid method. Ye [37] introduced the 

multicriteria decision-making method by the use of the correlation coefficient under a single-valued 

Neutrosophic environment. Deli [38] studied the concept of Neutrosophic-refined sets and their 

applications in medical diagnosis. Sahin [39] explained the correlation coefficient of single-valued 

Neutrosophic hesitant fuzzy sets and applied them in decision-making problems. Pramanik et al., 

[40] studied the multicriteria decision-making problems by applying a rough Neutrosophic

correlation coefficient. Nagarajan et al., [41] explained Neutrosophic interval valued graphs. Lathamaheswari 

et al., [42] explained type 2 fuzzy in bio medicine. Ye [43] explained the improved correlation coefficients 

of single-valued Neutrosophic sets and interval Neutrosophic sets for multiple attribute decision-

making problems. Liu et al., [44] established a correlation coefficient for the interval-valued 

Neutrosophic hesitant fuzzy sets and applied them in multiple attribute decision-making. Ye [45] 

studied the multi-criteria decision-making method using the correlation coefficient under a single-

valued Neutrosophic environment. González-Rodríguez et al.,[46] explained ANOVA test for 

Fuzzy data. Jiryaei A et al.,[47] studied fuzzy random variables. 
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2.Preliminaries:

Regression line with dependent and one independent equation is 

ebXaY  . (1)

When Y is the output value on dependent, variable X is the input value of the independent variable, 

b is the slope, a is the intercept and e is the residual.  

More than one independent variable equation as: 

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2+. . . +𝑏𝑛𝑋𝑛 + 𝑒  (2)

Here n number of independent variables and 𝑏1, 𝑏2. . . 𝑏𝑛  are number of slopes for each.e is the 

standard error . The estimation of a and b for to minimize the error of prediction equation 

𝑌′ = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2+. . . +𝑏𝑛𝑋𝑛  (3) 

The equation for a with two independent variables is: 

2211 XbXbYa    (4)

For the two-variable case: 
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From the above equations 5 & 6 only for two variables x1 and x2. 

 Smarandache [18] is given the Neutrosophic extended for classical statistics operation. The 

operations are as follows. 

Let’s 𝑆1 and 𝑆2 be two sets of numbers. 

𝑆1+𝑆2 = {𝑥1+𝑥2 | 𝑥1∈𝑆1 and 𝑥2∈𝑆2} 

𝑆1−𝑆2 = {𝑥1−𝑥2 | 𝑥1∈𝑆1 and 𝑥2∈𝑆2} 

𝑆1∙𝑆2 = {𝑥1∙𝑥2 | 𝑥1∈𝑆1 and 𝑥2∈𝑆2} 

𝑎∙𝑆1=𝑆1∙𝑎 = {𝑎∙𝑥1 | 𝑥1∈𝑆1} 

𝑎 + 𝑆1 = 𝑆1+𝑎 = {𝑎+𝑥1 | 𝑥1∈𝑆1}  

𝑎−𝑆1 = {𝑎−𝑥1 | 𝑥1∈𝑆1}  

𝑆1−𝑎 = {𝑥1−𝑎 | 𝑥1∈𝑆1}  

𝑆1𝑆2 = {𝑥1𝑥2 | 𝑥1∈𝑆1 , 𝑥2∈𝑆2, 𝑥2≠0 } 

𝑆1𝑛 = {𝑥1𝑛 | 𝑥1∈𝑆1} 
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 𝑆1𝑎 = {𝑥1𝑎 | 𝑥1∈𝑆1, 𝑎≠0} 

 𝑎𝑆1 = {𝑎𝑥1 | 𝑥1∈𝑆1 ,  𝑥1≠0} 

√𝑆1𝑛 = {√𝑥1𝑛 | 𝑥1∈𝑆1}

3.Numerical example

    In table 1 shows the student performance campus interview based on aptitude and personality 

test, that measure the conscientiousness 

 Y is the dependent variable conscientiousness x1 is the aptitude test and personality test as shown 

in the following table 1. 

 

Y X1 x2 

[1,3] 3 2 

2 2 [2,1] 

[2,4] [1,2] [3,2] 

4 [2,3] 4 

[1,4] [2,1] [4,4] 

6 [2,3] [4,5] 

[2,4] 2 1 

[10,13] [5,6] [6,7] 

[14,15] 7 8 

5 [7,1] 3 

table:1 Database 

 
 


N

YX
YXyx 1

11
 (7)

 
 


N

YX
YXyx 2

22
(8) 

 
 


N

XX
XXxx 21

2121
 (9)

Using the equation 7, 8, and 9 

]9.91,38[1  yx
,

]1.136,23[2  yx ]9.19,35[21  xx

Matrix form of the values is corresponding to the correlation, sum of square, and cross product of the 

variables as shown in the following table 2. 
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Y X1 X2 

Y  2y
=[387,532]  yx1 =[218,247]  yx2 =[245,310] 

X1 
1yxr

=[0.89954, 1.31925] 
2

1x
=[156,1236] 21xx =[146,142] 

X2 
2yxr

=[1.56309, 1.17855] 21xxr
=[1.172603, 0.406182] 

2
2x

=[175,189] 

 Using equation 5 and 6 the value of the regression coefficient 

 b1= [-2.34988, 1.650734],  b2=  [0.965172, 1.093934] 

from equation 4 the value of the intercept is 

a= [-4.29976, 10.18347] 

 Therefore the Neutrosophic regression equation is 

Y=[-4.29976, 10.18347] + [-2.34988, 1.650734] x1 +[0.965172, 1.093934] x2 

The proportion of variance is in the set of independent variables is R square value. The Neutrosophic 

R square value is  

A Neutrosophic residual sum of squares is 𝑁𝑅𝑆𝑆 = ∑(𝑦 − �̂�)2       (9)

  ]7.267,183[)ˆ( 2yyNRSS

A Neutrosophic total sum of squares 𝑁𝑇𝑆𝑆 = ∑(𝑦 − �̄�)2    (10)

]1875,2.2268[)( 2  yyNTSS

A Neutrosophic coefficient of determination is 𝑁𝐶𝐷 = 1 −
𝑁𝑅𝑆𝑆

𝑁𝑇𝑆𝑆
      (11)

]129.0,097.0[1 
NTSS
NRSSNCD

The Neutrosophic mean of Y is [46,50]. The Neutrosophic r square is [0.09,0.12] from the above results 

shows that the variation between independent and dependent variables is 9 % and 12 %.  That means 

the student performance campus interview variation based on aptitude and personality test is 

between 9 % and 12 %. Hence, it is revealed that these variables are also affected by the student 

performance on-campus interview. 

table 2: Matrix form of the values
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Using the F test for significance of R square is 

)1)(1(
/

2

2




KNR
KRF

   (12)     

Which is distributed as F with K and N-K-1 degrees of freedom when the null hypothesis is true. 

Now R2 represents the multiple correlations rather than the single correlation.

The null hypothesis: R square value is not zero population with degrees of freedom is N-K-1 

Using (12), the Neutrosophic F value is [0.007904,0093] 

Comparing the tabulated value using degrees of freedom and the calculated value. It shows that the 

null hypothesis is accepted. 

5.Regression with beta weights

Comparison of correlation and regression equation is 

xxyY ZrZ 


      (13)

But 𝛽   means a b weight when X and Y are in standard scores, so for the simple regression case, 

r = 𝛽 , and we have: 

xY ZZ 


(14)

The bottom line on this is we can estimate 𝛽 weights using a correlation matrix. 

21

21

2121

1 xx

xxyxyx

r

rrr






(15) 

𝛽2 =
𝑟𝑦𝑥2−𝑟𝑦𝑥1𝑟𝑥1𝑥2

1−𝑟𝑥1𝑥2
2 (16)

where ryx1 is the correlation of y with X1, ryx2 is the correlation of y with X2, and r12 is the correlation of 

x1 with x2. Note that the two formulas are nearly identical and the correlation matrix shows in table:3 

4.Significance test of R square
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Y 1 

X1 [-0.89954, -1.31925 1 

X2 [-1.56309, -1.17855] [1.172603, 0.406182] 1 

Using the equation 15 and 16 calculate the Neutrosophic beta coefficients. That is  

]329977.0,2303.1[],3679.1,50399.0[ 21  

Note that there is a surprisingly large difference in beta weights given the magnitude of correlations. 

6.The limitations on statistics

In table 4 shows that limitation on different category statistics 

 

Statistics Limitations 

Classical statistics It is applied for the analysis to 

determining the sample and the 

parameter in the population or 

sample space is determined. 

The analysis only for the determined 

parameter. Testing the analysis of 

variance and significance under 

classical statistics only for 

determined observation. 

Fuzzy statistics The analysis using fuzzy 

statistics applies to the data 

having uncertainty. The statistics 

depend on Fuzzy statistics and 

do not consider indeterminacy. 

It will be applied for observations in 

Fuzzy. 

Under fuzzy statistics testing the 

analysis of variance and significance 

only for the observations are fuzzy 

and uncertain.   

Intuitionistic fuzzy 

statistics 

It is the extension of fuzzy 

statistics and considering 

membership and non-

membership grades.  

It will apply only intervals belongs to 

membership and non-membership. 

Under Intuitionistic statistics testing 

the analysis of variance and 

significance only for the observation 

are membership and non-

membership that belongs to the real 

unit interval. 

Neutrosophic statistics It is based on Neutrosophic logic 

and is considered the measure of 

indeterminacy.  It is the 

It is applied to an uncertain 

environment. Under Neutrosophic 

statistics testing the analysis of 

 

Y X1 X2 

table :3 Correlation matrix 

table:4 Limitation on Statistics 
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extension of intuitionistic fuzzy 

sets.  

variance and significance when the 

observations are not fuzzy in the 

interval and it is an extension of 

classical and fuzzy statistics. 

7. Conclusion

In this paper, we introduce the multiple regression method under the environment of 

Neutrosophic sets. Moreover, we proposed a method to compute the correlation coefficient of 

Neutrosophic sets which is given us information about the degree of the relationships between the 

variables based on Neutrosophic sets. Further, the method is applied to predict the students' 

performance in campus interviews based on aptitude and personality tests. Based on the above 

method the result shows that the variation between independent and dependent variables is 9% and 

12%, which means that the students' performance variations based on aptitude and personality tests 

are between 9% and 12%. Thus, it is revealed that aptitude and personality tests are affected students' 

performance in campus interviews. Future work will be focused on the concept of interval 

Neutrosophic multiple regression analysis.   
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A New Similarity Measure Based on Falsity Value 
between Single Valued Neutrosophic Sets Based on the 

Centroid Points of Transformed Single Valued 
Neutrosophic Numbers with Applications to Pattern 

Recognition
Memet Sahin, Necati Olgun, Vakkas Uluçay, Abdullah Kargın, 

Florentin Smarandache

Abstract. In this paper, we propose some transfor-
mations based on the centroid points between single 
valued  neutrosophic numbers. We introduce these trans-
formations according to truth, indeterminacy and falsity 
value of single valued neutrosophic numbers. We 
propose a new similarity measure based on falsity value 
between single valued neutrosophic sets. Then we prove 
some properties on new similarity measure based on 
falsity value between 

falsity value between single valued neutrosophic sets.
Furthermore, we propose similarity measure based on 
falsity value between single valued neutrosophic sets 
based on the centroid points of transformed single valued 
neutrosophic numbers. We also apply the proposed 
similarity measure between single valued neutrosophic 
sets to deal with pattern recognition problems. 

Keywords: Neutrosophic sets, Single Valued Neutrosophic Numbers, Centroid Points.

1 Introduction 

In [1] Atanassov introduced a concept of intuitionistic 
sets based on the concepts of fuzzy sets [2]. In [3] 
Smarandache introduced a concept of neutrosophic sets 
which is characterized by truth function, indeterminacy 
function and falsity function, where the functions are com-
pletely independent. Neutrosophic set has been a mathe-
matical tool for handling problems involving imprecise, 
indeterminant and inconsistent data; such as cluster analy-
sis, pattern recognition, medical diagnosis and decision 
making.In [4] Smarandache et.al introduced a concept of 
single valued neutrosophic sets. Recently few researchers 
have been dealing with single valued neutrosophic sets [5-
10]. 

The concept of similarity is fundamentally important in 
almost every scientific field. Many methods have been 
proposed for measuring the degree of similarity between 
intuitionistic fuzzy sets [11-15].  Furthermore, in [13-15] 
methods have been proposed for measuring the degree of 

similarity between intuitionistic fuzzy sets based on trans-
formed techniques for pattern recognition. But those meth-
ods are unsuitable for dealing with the similarity measures 
of neutrosophic sets since intuitionistic sets are character-
ized by only a membership function and a non-
membership function. Few researchers dealt with similarity 
measures for neutrosophic sets [16-22]. Recently, Jun [18] 
discussed similarity measures on internalneutrosophic sets, 
Majumdar et al.[17] discussed similarity and entropy of 
neutrosophic sets, Broumi et.al.[16]discussed several simi-
larity measures of neutrosophic sets, Ye [9] discussed sin-
gle-valued neutrosophic similarity measures based on co-
tangent function and their application in the fault diagnosis 
of steam turbine, Deli et.al.[10] discussed multiple criteria 
decision making method on single valued bipolar neutro-
sophic set based on correlation coefficient similarity meas-
ure, Ulucay et.al. [21] discussed Jaccard vector similarity 
measure of bipolar neutrosophic set based on multi-criteria 
decision making and Ulucay et.al.[22] discussed similarity 

Mehmet Sahin, Necati Olgun, Vakkas Uluçay, Abdullah Kargın, Florentin Smarandache (2021). 
A New Similarity Measure Based on Falsity Value between Single Valued Neutrosophic Sets 
Based on the Centroid Points of Transformed Single Valued Neutrosophic Numbers with 
Applications to Pattern Recognition. Neutrosophic Sets and Systems 45, 31-48

Florentin Smarandache (author and editor) Collected Papers, XII

932



measure of bipolar neutrosophic sets and their application 
to multiple criteria decision making. 

       In this paper, we propose methods to transform be-
tween single valued neutrosophic numbers based on cen-
troid points. Here, as single valued neutrosophic sets are 
made up of three functions, to make the transformation 
functions be applicable to all single valued neutrosophic 
numbers, we divide them into four according to their truth, 
indeterminacy and falsity values. While grouping accord-
ing to the truth values, we take into account whether the 
truth values are greater or smaller than the indeterminancy 
and falsity values. Similarly, while grouping according to 
the indeterminancy/falsity values, we examine the inde-
terminancy/falsity values and their greatness or smallness 
with respect to their remaining two values. We also pro-
pose a new method to measure the degree of similarity 
based on falsity values between single valued neutrosophic 
sets. Then we prove some properties of new similarity 
measure based on falsity value between single valued neu-
trosophic sets. When we take this measure with respect to 
truth or indeterminancy we show that it does not satisfy 
one of the conditions of similarity measure. We also apply 
the proposed new similarity measures based on falsity val-
ue between single valued neutrosophic sets to deal with 
pattern recognition problems. Later, we define the method 
based on falsity value to measure the degree of similarity 
between single valued neutrosophic set based on centroid 
points of transformed single valued neutrosophic numbers 
and the similarity measure based on falsity value between 
single valued neutrosophic sets. 

In section 2, we briefly review some concepts of single 
valued neutrosophic sets [4] and property of similarity 
measure between single valued neutrosophic sets. In sec-
tion 3, we define transformations between the single val-
ued neutrosophic numbers based on centroid points. In sec-
tion 4, we define the new similarity measures based on fal-
sity value between single valued neutrosophic sets and we 
prove some properties of new similarity measure between 
single valued neutroshopic sets. We also apply the pro-
posed method to deal with pattern recognition problems. In 
section 5, we define the method to measure the degree of 
similarity based on falsity value between single valued 
neutrosophicset based on the centroid point of transformed 
single valued neutrosophic number and we apply the 
measure to deal with pattern recognition problems. Also 
we compare the traditional and new methods in pattern 
recognition problems. 

2 Preliminaries 

Definition 2.1[3] Let 𝑈  be a universe of discourse. The 
neutrosophic set 𝐴 is an object having the farm 𝐴 =

{〈𝑥: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉 , 𝑥 ∈ 𝑈}  where the functions
𝑇, 𝐼, 𝐹: 𝑈 →]−0, 1+[  respectively the degree of member-

ship, the degree of indeterminacy and degree of non-
membership of the element 𝑥 ∈ 𝑈  to the set 𝐴  with the 
condition: 

0− ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3+

Definition 2.2 [4] Let 𝑈  be a universe of discourse.The 
single valued neutrosophic set 𝐴 is an object having the 
farm 𝐴 = {〈𝑥: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉 , 𝑥 ∈ 𝑈}  where the func-
tions 𝑇, 𝐼, 𝐹: 𝑈 → [0,1]respectively the degree of member-
ship, the degree of indeterminacy and degree of non-
membership of the element  𝑥 ∈ 𝑈 to the set A with the 
condition: 

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3

For convenience we can simply use x = (T,I,F) to represent 
an element x in SVNS, and element x can be called a sin-
gle valued neutrosophic number. 

Definition 2.3 [4] A single valued neutrosophic set 𝐴 is 
equal to another single valued neutrosophic set B, 𝐴 = 𝐵 
if∀𝑥 ∈ 𝑈, 

𝑇𝐴(𝑥) = 𝑇𝐵(𝑥),   𝐼𝐴(𝑥) = 𝐼𝐵(𝑥),    𝐹𝐴(𝑥) = 𝐹𝐵(𝑥).

Definition 2.4[4] A single valued neutrosophic set A is 
contained in another  single valued neutrosophic set B , 
𝐴 ⊆  𝐵 if ∀𝑥 ∈ 𝑈, 

𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥),  𝐼𝐴(𝑥) ≤ 𝐼𝐵(𝑥),  𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥).

Definition 2.5[16] (Axiom of similarity measure) 

A mapping𝑆(𝐴, 𝐵): 𝑁𝑆(𝑥) × 𝑁𝑆(𝑥) →  [0,1]  , where 𝑁𝑆(𝑥)

denotes the set of all NS in𝑥 = {𝑥1, … , 𝑥𝑛},is said to be the
degree of similarity between 𝐴 and 𝐵 if it satisfies the fol-
lowing conditions: 

s𝑃1) 0 ≤ 𝑆(𝐴, 𝐵)  ≤  1 

s𝑝2) 𝑆(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵 , ∀ 𝐴, 𝐵 ∈  𝑁𝑆

s𝑃3) 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴) 

s𝑝4) If 𝐴 ⊆   𝐵 ⊆  𝐶 for all 𝐴, 𝐵, 𝐶 ∈  𝑁𝑆 , then 𝑆(𝐴, 𝐵) ≥

 𝑆(𝐴, 𝐶)and  𝑆(𝐵, 𝐶)  ≥  𝑆(𝐴, 𝐶). 
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     In this section, we propose transformation techniques 
between a single valued neutrosophic  number 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  and a single valued neutrosophic 
number 𝐶(𝑥𝑖). Here 〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉 denote the single 
valued neutrosophic numbers to represent an element 𝑥𝑖 in 
the single valued neutrosophic set A, and 𝐶𝐴(𝑥𝑖)

 is the cen-
ter of a triangle (SLK) which was obtained by the trans-
formation on the three-dimensional 𝑍 − 𝑌 − 𝑀 plane. 

First we transform single valued neutrosophic numbers ac-
cording to their distinct 𝑇𝐴 , 𝐼𝐴 , 𝐹𝐴values in three parts.

3.1 Transformation According to the Truth Value 

In this section, we group the single valued neutrosophic 
numbers after the examination of their truth values  𝑇𝐴 ’s
greatness or smallness against 𝐼𝐴  and 𝐹𝐴 values. We will
shift the 𝑇𝐴(𝑥𝑖)and 𝐹𝐴(𝑥𝑖)values on the Z – axis and𝑇𝐴(𝑥𝑖)

and 𝐼𝐴(𝑥𝑖)values on the Y – axis onto each other. We take
the 𝐹𝐴(𝑥𝑖)value on the M – axis. The shifting on the Z and
Y planes are made such that we shift the smaller value to 
the difference of the greater value and 2, as shown in the 
below figures. 

1. First Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝑇𝐴(𝑥𝑖) ≤ 𝐹𝐴(𝑥𝑖)

and 

𝑇𝐴(𝑥𝑖) ≤ 𝐼𝐴(𝑥𝑖),

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉 into the single valued neutrosophic
number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝑇𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖),   𝑇𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (𝑇𝐴(𝑥𝑖), 2 − 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐼𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) ,

we have 

𝐶𝐴(𝑥𝑖) = (
2− 𝐹𝐴(𝑥𝑖)+ 2 𝑇𝐴(𝑥𝑖)

3
,

2− 𝐼𝐴(𝑥𝑖)+ 2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

2. Second Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝑇𝐴(𝑥𝑖) ≥ 𝐹𝐴(𝑥𝑖)

and 

𝑇𝐴(𝑥𝑖) ≥ 𝐼𝐴(𝑥𝑖),

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic
number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where
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𝑆𝐴(𝑥𝑖) = (𝐹𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖))

LA(𝑥𝑖) = (𝐹𝐴(𝑥𝑖) , 2 − 𝑇𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖))

KA(𝑥𝑖) = (2 − 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝑎(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

CA(𝑥𝑖)

= (
2 − TA(𝑥𝑖) + 2 FA(𝑥𝑖)

3
,
2 −  TA(𝑥𝑖) +  2IA(𝑥𝑖)

3
, FA(𝑥𝑖)) .

3. Third Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, ifIA(𝑥𝑖) ≤ TA(𝑥𝑖) ≤ FA(𝑥𝑖) ,as shown
in the figure below, we transformed 〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉

into the single valued neutrosophic number 𝐶𝐴(𝑥𝑖), the cen-
ter of the SKL triangle, where   
SA(𝑥𝑖) = (TA(𝑥𝑖),   IA(𝑥𝑖),  FA(𝑥𝑖))

LA(𝑥𝑖) = (TA(𝑥𝑖),   2 − TA(𝑥𝑖),  FA(𝑥𝑖))

KA(𝑥𝑖) = (2 − FA(𝑥𝑖),   IA(𝑥𝑖),  FA(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐹𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

CA(𝑥𝑖)

= (
2 − FA(𝑥𝑖) + 2 TA(𝑥𝑖)

3
,
2 −  TA(𝑥𝑖) +  2IA(𝑥𝑖)

3
, FA(𝑥𝑖)) .

4. Fourth Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, ifFA(𝑥𝑖) ≤ TA(𝑥𝑖) ≤ IA(𝑥𝑖),as shown in

Florentin Smarandache (author and editor) Collected Papers, XII

935



the figure below, we transformed 〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  in-
to the single valued neutrosophic number 𝐶𝐴(𝑥𝑖), the center
of the SKL triangle, where   

SA(𝑥𝑖) = (FA(𝑥𝑖),   TA(𝑥𝑖),  FA(𝑥𝑖))

LA(𝑥𝑖) = (FA(𝑥𝑖),   2 − TA(𝑥𝑖),  FA(𝑥𝑖))

KA(𝑥𝑖) = (2 − 𝑇A(𝑥𝑖),   TA(𝑥𝑖),  FA(𝑥𝑖)) .

 

Example3.1.1Transform the following single valued neu-
trosophic numbers according to their truth values. 

〈0.2, 0.5, 0.7〉 ,   〈0.9, 0.4, 0.5〉 ,   〈0.3, 0.2, 0.5〉 ,   〈0.3,

0.2, 0.4〉 . 

𝑖.    〈0.2, 0.5, 0.7〉 single valued neutrosophic number be-
longs to the first group. 

The center is calculated by the formula,𝐶𝐴(𝑥𝑖) =

(
2− 𝐹𝐴(𝑥𝑖)+ 2 𝑇𝐴(𝑥𝑖)

3
,

2− 𝐼𝐴(𝑥𝑖)+ 2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖))

and we haveCA(𝑥) = 〈0.566, 0.633, 0.7〉 .

𝑖𝑖.  〈0.9, 0.4, 0.5〉single valued neutrosophic number is in 
the second group. 

The center for the values of the second group is, CA(𝑥𝑖) =

(
2− TA(𝑥𝑖)+2 FA(𝑥𝑖)

3
,

2− TA(𝑥𝑖)+ 2IA(𝑥𝑖)

3
, FA(𝑥𝑖))

and for  〈0.9, 0.4, 0.5〉,CA(x) = 〈0.7, 0.633, 0.5〉.

𝑖𝑖𝑖.  〈0.3, 0.2, 0.5〉single valued neutrosophic number be-
longs to the third group. 

The formula for the center of  〈0.3, 0.2, 0.5〉  is CA(𝑥𝑖) =

(
2− FA(𝑥𝑖)+2 TA(𝑥𝑖)

3
,

2− TA(𝑥𝑖)+ 2IA(𝑥𝑖)

3
, FA(𝑥𝑖))and therefore we

have CA(x) = 〈0.7, 0.7, 0.5〉.

𝑖𝑣.  〈0.3, 0.2, 0.4〉single valued neutrosophic number is in 
the third group and the center is calculated to be CA(x) =
〈0.733, 0.7, 0.4〉. 

Corollary 3.1.2The corners of the triangles obtained using 
the above method need not be single valued neutrosophic 
number but by definition, trivially their centers are. 

Note 3.1.3As for the single valued neutrosophic number〈1,

ber〈1, 1, 1〉 there does not exist any transformable trian-
gle in the above four groups, we take its transformation 
equal to itself.  

Corollary 3.1.4If  FA(𝑥𝑖) = TA(𝑥𝑖) = IA(𝑥𝑖) the transfor-
mation gives the same  center in all four groups. Also, 
if TA(𝑥𝑖) = IA(𝑥𝑖) ≤ FA(𝑥𝑖) , then the center in the first group
is equal to the one in the third group and if  FA(𝑥𝑖) ≤

TA(𝑥𝑖) = IA(𝑥𝑖) , the center in the second group is equal to
the center in the fourth group. Similarly, if TA(𝑥𝑖) =

FA(𝑥𝑖) ≤ IA(𝑥𝑖) , then the center in the first group is equal to
the center in the fourth group and if IA(𝑥𝑖) ≤ TA(𝑥𝑖) = FA(𝑥𝑖)

, the center in the second group is equal to the one in the 
third group. 

3.2Transformation According to the Indeterminancy 
Value 

In this section, we group the single valued neutrosophic 
numbers after the examination of their indeterminancy val-
ues 𝐼𝐴’s greatness or smallness against 𝑇A and𝐹𝐴values. We
will shift the 𝐼𝐴(𝑥𝑖) and 𝐹𝐴(𝑥𝑖) values on the Z – axis
and 𝑇𝐴(𝑥𝑖) and 𝐼𝐴(𝑥𝑖)values on the Y – axis onto each other.
We take the 𝐹𝐴(𝑥𝑖)value on the M – axis. The shifting on
the Z and Y planes are made such that we shift the smaller 
value to the difference of the greater value and 2, as shown 
in the below figures. 

1. First Group
For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if
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𝐼𝐴(𝑥𝑖) ≤ 𝐹𝐴(𝑥𝑖)

and 

𝐼𝐴(𝑥𝑖) ≤ 𝐹𝐴(𝑥𝑖) ,

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic
number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖),   𝐼𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 2 − 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

We transformed the single valued neutrosophic number 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉into the center of the SKL triangle,
namely 𝐶𝐴(𝑥𝑖). Here, as

𝑇𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) ,

we have 

𝐶𝐴(𝑥𝑖) = (
2− 𝐹𝐴(𝑥𝑖)+ 2 𝐼𝐴(𝑥𝑖)

3
,

2− 𝑇𝐴(𝑥𝑖)+ 2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)) .

2. Second Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝐼𝐴(𝑥𝑖) ≥ 𝐹𝐴(𝑥𝑖)

 and 

𝐼𝐴(𝑥𝑖) ≥ 𝐹𝐴(𝑥𝑖) ,

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutro-
sophic number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle,
where  

𝑆(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (  𝐹𝐴(𝑥𝑖), 2 − 𝐼𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐼𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
( 2 − 𝐼𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
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𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐼𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
,
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

3. Third Group

For the single valued neutrosophic number 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if  TA(𝑥𝑖) ≤ IA(𝑥𝑖) ≤ FA(𝑥𝑖) ,

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutro-
sophic number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle,
where  

𝑆(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (  𝐼𝐴(𝑥𝑖), 2 − 𝐼𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐼𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

4. Fourth Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉 , if FA(𝑥𝑖) ≤ IA(𝑥𝑖) ≤ TA(𝑥𝑖) ,

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic
numbers 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (  𝐹𝐴(𝑥𝑖), 2 − 𝑇𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐼𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .
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𝑇𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
( 2 − 𝐼𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
,
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

Example3.2.1:Transform the single neutrosophic numbers 
of Example 3.1.3 , 

〈0.2, 0.5, 0.7〉 , 〈0.9, 0.4, 0.5〉 , 〈0.3, 0.2, 0.5〉 ,

〈0.3, 0.2, 0.4〉according to their indeterminancy values. 

𝑖.    〈0.2, 0.5, 0.7〉 single valued neutrosophic number is in 
the third group. The center is given by the formula 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)),

and so CA(𝑥) = 〈0.766, 0.633, 0.7〉.

𝑖𝑖.  〈0.9, 0.4, 0.5〉 single valued neutrosophic number is in 
the first group. 

By 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)),

we have CA(x) = 〈0.733, 0.633, 0.5〉. 

𝑖𝑖𝑖.  〈0.3, 0.2, 0.5〉single valued neutrosophic number be-
longs to the first group and the center is 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)),

so,CA(x) = 〈0.633, 0.9, 0.5〉.

𝑖𝑣.  〈0.3, 0.2, 0.4〉single valued neutrosophic number is in 
the first group. 
Using 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)),

we have   CA(x) = 〈0.666, 0.7, 0.4〉.

Corollary 3.2.2 The corners of the triangles obtained using 
the above method need not be single valued neutrosophic 
numbers but by definition, trivially their centers are. 

Note 3.2.3As for the single valued neutrosophic number 
〈1, 1, 1〉 there does not exist any transformable triangle in 
the above four groups, we take its transformation equal to 
itself.  

Corollary 3.2.4 If  FA(𝑥𝑖) = TA(𝑥𝑖) = IA(𝑥𝑖) ,the transfor-
mation gives the same center in all four groups. Also if 
TA(𝑥𝑖) = IA(𝑥𝑖) ≤ FA(𝑥𝑖), then the center in the first group is
equal to the center in the third group, and if FA(𝑥𝑖) ≤

TA(𝑥𝑖) = IA(𝑥𝑖), then the center in the second group is the
same as the one in the fıurth group. Similarly, ifFA(𝑥𝑖) =

IA(𝑥𝑖) ≤ TA(𝑥𝑖), then the center in the first group is equal to
the one in the fourth and in the case that TA(𝑥𝑖) ≤ FA(𝑥𝑖) =

IA(𝑥𝑖),the center in the second group is equal to the center
in the third. 

3.3 Transformation According to the Falsity Value 

In this section, we group the single valued neutrosophic 
numbers after the examination of their indeterminancy val-
ues 𝐹𝐴 ’s greatness or smallness against 𝐼𝐴  and 𝐹𝐴 values.
We will shift the 𝐼𝐴(𝑥𝑖)and 𝐹𝐴(𝑥𝑖)values on the Z – axis and
𝑇𝐴(𝑥𝑖) and 𝐹𝐴(𝑥𝑖)values on the Y – axis onto each other. We
take the 𝐹𝐴(𝑥𝑖)value on the M – axis. The shifting on the Z
and Y planes are made such that we shift the smaller value 
to the difference of the greater value and 2, as shown in the 
below figures. 

Here, as 
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For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝐹𝐴(𝑥𝑖) ≤ 𝑇𝐴(𝑥𝑖)

 and 

𝐹𝐴(𝑥𝑖) ≤ 𝐼𝐴(𝑥𝑖) ,
 then 

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic
number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = ( 2 −  𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 2 − 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
( 2 − 𝐼𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we get 

𝐶𝐴(𝑥𝑖)

= (
2 −  𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
,
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

2. Second Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝐹𝐴(𝑥𝑖) ≥ 𝑇𝐴(𝑥𝑖)

and 

𝐹𝐴(𝑥𝑖) ≥ 𝐼𝐴(𝑥𝑖) ,

 then 

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic
numbers 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 2 − 𝐹𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

1. First Group
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𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐹𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 −  𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
,
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

3. Third Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉 , if  IA(𝑥𝑖) ≤ FA(𝑥𝑖) ≤ TA(𝑥𝑖)  then as
shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic
numbers 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 2 − 𝑇𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 −  𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

4. Fourth Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if  TA(𝑥𝑖) ≤ FA(𝑥𝑖) ≤ IA(𝑥𝑖)  , then as
shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic
numbers 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 2 − 𝐹𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐼𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)).

Example 3.3.1: Transform the single neutrosophic 
numbers of Example 3.1.3.
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〈0.2, 0.5, 0.7〉 , 〈0.9, 0.4, 0.5〉 , 〈0.3, 0.2, 0.5〉 ,

〈0.3, 0.2, 0.4〉according to their falsity values. 

𝑖.    〈0.2, 0.5, 0.7〉 single valued neutrosophic number be-
longs to the second group. So, the center is 

𝐶𝐴(𝑥𝑖) = (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
,
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)), 

and we get CA(𝑥) = 〈0.766, 0.7, 0.7〉.

𝑖𝑖.  〈0.9, 0.4, 0.5〉 single valued neutrosophic number is in 
the third group. Using the formula 

 𝐶𝐴(𝑥𝑖) = (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)) 

we see thatCA(x) = 〈0.766, 0.7, 0.5〉.

𝑖𝑖𝑖.  〈0.3, 0.2, 0.5〉single valued neutrosophic number is in 
the second group. As 

𝐶𝐴(𝑥𝑖) = (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
,
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)), 

the center of the triangle is CA(x) = 〈0.633, 0.7, 0.5〉.

𝑖𝑣.  〈0.3, 0.2, 0.4〉single valued neutrosophic number be-
longs to the second group.  

𝐶𝐴(𝑥𝑖) = (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
,
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)), 

and so we have CA(x) = 〈0.666, 0.733, 0.4〉.

Corollary 3.3.2The corners of the triangles obtained using 
the above method need not be single valued neutrosophic 
numbers but by definition, trivially their centers are single 
valued neutrosophic values. 

Note 3.3.3 As for the single valued neutrosophic 
ber〈1, 1, 1〉 there does not exist any transformable trian-
gle in the above four groups, we take its transformation 
equal to itself. 

Corollary 3.3.4 If FA(𝑥𝑖) = TA(𝑥𝑖) = IA(𝑥𝑖) , the transfor-
mation gives the same center in all four groups. Also, 
if TA(𝑥𝑖) = FA(𝑥𝑖) ≤ IA(𝑥𝑖) , then the center in the first group
is equal to the one in the fourth group, and if IA(𝑥𝑖) ≤

TA(𝑥𝑖) = FA(𝑥𝑖), then the center in the second group is the
same as the center in the third. Similarly, if IA(𝑥𝑖) =

FA(𝑥𝑖) ≤ TA(𝑥𝑖)  , then the centers in the first and third
groups are same and lastly, if TA(𝑥𝑖) ≤ IA(𝑥𝑖) = FA(𝑥𝑖) , then
the center in the second group is equal to the one in the 
fourth group. 

4. A New Similarity Measure Based on Falsity
Value Between Single Valued Neutrosophic Sets

      In this section, we propose a new similarity measure 
based on falsity value between single valued neutrosophic 
sets. 

Definition 4.1   Let A and B two single valued neutrosoph-
ic sets in 𝑥 = {𝑥1 , 𝑥2, … , 𝑥𝑛}.
Let 𝐴 = {〈𝑥, 𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)〉}

and 

𝐵 = {〈𝑥, 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)〉}.

The similarity measure based on falsity value between the 
neutrosophic numbers 𝐴(𝑥𝑖) and 𝐵(𝑥𝑖) is given by

𝑆(A(𝑥𝑖), B(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

  +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
). 

Here, we use the values 

2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖)),

2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖)),

2(FA(𝑥𝑖) − FB(𝑥𝑖)) + (FA(𝑥𝑖) − FB(𝑥𝑖))

= 3(FA(𝑥𝑖) − FB(𝑥𝑖)) .

Since we use the falsity values FA(𝑥𝑖) in all these three val-
ues, we name this formula as “similarity measure based on 
falsity value between single valued neutrosophic num-
bers”.  

Property4.2 :0 ≤  𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) ≤  1 .
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Proof: By the definition of Single valued neut-
rosophic numbers, as 

0 ≤ 𝑇𝐴(𝑥𝑖), 𝑇𝐵(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝐹𝐵(𝑥𝑖) ≤  1,

we have 

0 ≤ 2(𝐹𝐴(𝑥𝑖) −  𝐹𝐵(𝑥𝑖)) − (𝑇𝐴(𝑥𝑖) , 𝑇𝐵(𝑥𝑖)) ≤ 3

0 ≤ 2(𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)) −  (𝐼𝐴(𝑥𝑖) , 𝐼𝐵(𝑥𝑖)) ≤ 3

and 

0 ≤ 3(𝐹𝐴(𝑥𝑖) , 𝐹𝐵(𝑥𝑖)) ≤ 3 .

So, 

0 ≤  1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

+
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) ≤  1 . 

Therefore,0 ≤ 𝑆(𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) ≤  1.

Property 4.3:𝑆(𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) =  1 ⇔ 𝐴(𝑥𝑖) = 𝐵(𝑥𝑖)

Proof.i) First we show 𝐴(𝑥𝑖)  = 𝐵(𝑥𝑖) when 
𝑆(𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) = 1 .

Let (𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) = 1 .

𝑆(𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) =  1 − (
|2(F

A(𝑥𝑖)
− FB(𝑥𝑖)) − (T

A(𝑥𝑖)
− TB(𝑥𝑖))|

9

  +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

     = 1 

and  thus, 

(
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) = 0 

So, 

|(𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖))| = 0,

|2(𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)) − (𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖))| = 0,

and 

|2(𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)) − (𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖))| = 0 .

As |(FA(𝑥𝑖) − FB(𝑥𝑖))|=0 , then  FA(𝑥𝑖) = FB(𝑥𝑖).

If  FA(𝑥𝑖) = FB(𝑥𝑖) ,

|2(FA(𝑥𝑖)− FB(𝑥𝑖)) − (TA(𝑥𝑖)− TB(𝑥𝑖))| = 0

and 

TA(𝑥𝑖)= TB(𝑥𝑖).

When FA(𝑥𝑖) = FB(𝑥𝑖),

|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))| = 0

and 

IA(𝑥𝑖)= IB(𝑥𝑖)

Therefore, if (𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1  , then by Definition 2.3,
A(𝑥𝑖) = B(𝑥𝑖).

ii)Now we show if  A(𝑥𝑖) = B(𝑥𝑖), then𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1.
Let  A(𝑥𝑖) = B(𝑥𝑖). By Definition 2.3 ,

TA(𝑥𝑖)= TB(𝑥𝑖),   IA(𝑥𝑖)=IB(𝑥𝑖),   FA(𝑥𝑖)= FB(𝑥𝑖)

and we have 

TA(𝑥𝑖) − TB(𝑥𝑖) = 0,   IA(𝑥𝑖) − IB(𝑥𝑖) = 0,   FA(𝑥𝑖)− FB(𝑥𝑖) = 0

. 

So, 
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𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

= 1 −
0

9
 =  1 . 

Property4.4 :𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 𝑆(𝐵(𝑥𝑖), 𝐴(𝑥𝑖)) .

Proof: 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

= 1 − (
|2(−(FA(𝑥𝑖) − FB(𝑥𝑖))) − (−(TA(𝑥𝑖) − TB(𝑥𝑖)))|

9

+
|2((−FA(𝑥𝑖) − FB(𝑥𝑖))) − (−(IA(𝑥𝑖) − IB(𝑥𝑖)))|

9

 +
3|−(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

= 1 − (
|2(FB(𝑥𝑖) − FA(𝑥𝑖)) − (TB(𝑥𝑖) − TA(𝑥𝑖))|

9

+
|2(FB(𝑥𝑖) − FA(𝑥𝑖)) − (IB(𝑥𝑖) − IA(𝑥𝑖))|

9

 +
3|(FB(𝑥𝑖) − FA(𝑥𝑖))|

9

= 𝑆(𝐵(𝑥𝑖), 𝐴(𝑥𝑖)).

Property 4.5 : If  𝐴 ⊆ 𝐵 ⊆ 𝐶,   

i) 𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) ≥ 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖))

ii) 𝑆(𝐵(𝑥𝑖), 𝐶(𝑥𝑖)) ≥ 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖))

Proof: 
i) 

By the single valued neutrosophic set proper-
ty, if 𝐴 ⊆ 𝐵 ⊆ 𝐶 , then 

TA(𝑥𝑖) ≤  TB(𝑥𝑖) ≤ TC(𝑥𝑖),

IA(𝑥𝑖) ≤ IB(𝑥𝑖) ≤ IC(𝑥𝑖),

FA(𝑥𝑖) ≥ FB(𝑥𝑖) ≥ FC(𝑥𝑖) .
So, 

TA(𝑥𝑖)− TB(𝑥𝑖) ≤ 0,

IA(𝑥𝑖)− IB(𝑥𝑖) ≤ 0,

FA(𝑥𝑖) − FB(𝑥𝑖) ≥ 0   (1) 

TA(𝑥𝑖)− TC(𝑥𝑖) ≤ 0,

IA(𝑥𝑖)− IC(𝑥𝑖) ≤ 0,

FA(𝑥𝑖) − FC(𝑥𝑖) ≥ 0   (2) 

TA(𝑥𝑖)− TB(𝑥𝑖) ≥ TA(𝑥𝑖)− TC(𝑥𝑖),

IA(𝑥𝑖)− IB(𝑥𝑖) ≥  IA(𝑥𝑖)− IC(𝑥𝑖),

FA(𝑥𝑖) − FB(𝑥𝑖) ≤ FA(𝑥𝑖) − FC(𝑥𝑖)       (3) 

Using (1), we have 

2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖)− TB(𝑥𝑖)) ≥ 0

2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖)− IB(𝑥𝑖)) ≥ 0

and 

3(TA(𝑥𝑖)− TB(𝑥𝑖)) ≥ 0 .

Thus, we get 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

= 1 −
7(FA(𝑥𝑖)−FB(𝑥𝑖))−(TA(𝑥𝑖)−TB(𝑥𝑖))−(IA(𝑥𝑖)−IB(𝑥𝑖))

9
.(4) 
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Similarly, by (2),  we have 

𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − F𝐶(𝑥𝑖)) − (TA(𝑥𝑖) − TC(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FC(𝑥𝑖)) − (IA(𝑥𝑖) − IC(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FC(𝑥𝑖))|

9
) 

= 1 −
7(FA(𝑥𝑖)−FC(𝑥𝑖))−(TA(𝑥𝑖)−TC(𝑥𝑖))−(IA(𝑥𝑖)−IC(𝑥𝑖))

9
  . (5) 

Using (4) and (5) together, we get 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) − 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖))

= 1 −
7(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))

9

−1 +
7(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))

9

=
7(FA(𝑥𝑖) − FB(𝑥𝑖))

9
−

(TA(𝑥𝑖) − TB(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IB(𝑥𝑖))

9

+
7(FA(𝑥𝑖) − FC(𝑥𝑖))

9
−

(TA(𝑥𝑖) − TC(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IC(𝑥𝑖))

9

=
7(FA(𝑥𝑖) − FB(𝑥𝑖))

9
+

7(FA(𝑥𝑖) − FC(𝑥𝑖))

9
−

(TA(𝑥𝑖) − TB(𝑥𝑖))

9

−
(TA(𝑥𝑖) − TC(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IB(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IC(𝑥𝑖))

9

by (1) and (3), 

7(FA(𝑥𝑖) − FB(𝑥𝑖))

9
+

7(FA(𝑥𝑖) − FC(𝑥𝑖))

9
≥ 0, 

−
(TA(𝑥𝑖) − TB(𝑥𝑖))

9
−

(TA(𝑥𝑖) − TC(𝑥𝑖))

9
≥ 0, 

−
(IA(𝑥𝑖) − IB(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IC(𝑥𝑖))

9
 ≥ 0 

and therefore 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) − 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖)) ≥ 0

and 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) ≥ 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖)) .

ii. The proof of the latter part can be similarly done as the
first part.
Corollary 4.6 : Suppose we make similar definitions to
Definition 4.1, but this time based on truth values or inde-
terminancy values. If we define a truth based similarity
measure, or namely,

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(TA(𝑥𝑖) − TB(𝑥𝑖)) − (FA(𝑥𝑖) − FB(𝑥𝑖))|

9

 +
|2(TA(𝑥𝑖) − TB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(TA(𝑥𝑖) − 𝑇B(𝑥𝑖))|

9
), 

or if we define a measure based on indeterminancy values 
like 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(IA(𝑥𝑖) − IB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(IA(𝑥𝑖) − IB(𝑥𝑖)) − (FA(𝑥𝑖) − FB(𝑥𝑖))|

9

+
3|(IA(𝑥𝑖) − IB(𝑥𝑖))|

9
) 

these two definitions don’t provide the conditions of Prop-
erty 4.5 . For instance, for the truth value  

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(TA(𝑥𝑖) − TB(𝑥𝑖)) − (FA(𝑥𝑖) − FB(𝑥𝑖))|

9

 +
|2(TA(𝑥𝑖) − TB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(TA(𝑥𝑖) − 𝑇B(𝑥𝑖))|

9
), 

when we take the single valued neutrosophic numbers 
A(𝑥) = 〈0, 0.1, 0〉,   B(𝑥) = 〈1, 0.2, 0〉 andC(𝑥) = 〈1, 0.3, 0〉,  

we see 𝑆(𝐴(𝑥), 𝐵(𝑥)) = 0.233  and  𝑆(𝐴(𝑥), 𝐶(𝑥)) = 0.244 .
This contradicts with the results of Property 4.5. 

Similarly, for the indeterminancy values, 
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𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(IA(𝑥𝑖) − IB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(IA(𝑥𝑖) − IB(𝑥𝑖)) − (FA(𝑥𝑖) − FB(𝑥𝑖))|

9

+
3|(IA(𝑥𝑖) − IB(𝑥𝑖))|

9
) 

if we take the single valued neurosophic numbers A(𝑥) =

〈0.1, 0, 1〉,   B(𝑥) = 〈0.2, 1, 1〉and C(𝑥) = 〈0.3, 1, 1〉, we have
𝑆(𝐴(𝑥), 𝐵(𝑥)) = 0.233  and  𝑆(𝐴(𝑥), 𝐶(𝑥)) = 0.244.

These results show that the definition 4.1 is only valid for 
the measure based on falsity values. 

Defintion 4.7 As 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
), 

The similarity measure based on the falsity value between 
two single valued neutrosophic sets A and B is; 

SNS(𝐴, 𝐵) = ∑ (𝑤𝑖 × S (A(𝑥𝑖), B(𝑥𝑖)))𝑛
𝑖=1  . 

Here,SNS(𝐴, 𝐵) ∈ [0,1]and 𝑤𝑖’s are the weights of the 𝑥𝑖’s
with the property ∑ 𝑤𝑖

𝑛
𝑖=1 = 1 . Also,

𝐴 = {〈𝑥: 𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)〉},

𝐵 = {〈𝑥: 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)〉}.

Example4.8 Let us consider three patternsP1, P2, P3  repre-
serted by single valued neutrosophic sets P1̃ and P2̃in 𝑋 =

{𝑥1, 𝑥2}  respectively, where 
P1̃ = {〈x1, 0.2, 0.5, 0.7〉, 〈x2, 0.9, 0.4, 0.5〉}   and P2̃ =

{〈x1, 0.3, 0.2, 0.5〉, 〈x2, 0.3, 0.2, 0.4〉}. We want to classify
an unknown pattern represented by a single valued neutro-
sophic set �̃�  in 𝑋 = {𝑥1, 𝑥2}   into one of the patterns
P1̃, P2̃;where �̃� = {〈x1, 0.4, 0.4, 0.1〉, 〈x2, 0.6, 0.2, 0.3〉}.

Let 𝑤𝑖  be the weight of element 𝑤𝑖  , where 𝑤𝑖 =
1

2
 1 ≤

𝑖 ≤ 2 , 

SNS(𝑃1̃, �̃�) = 0.711

and 

SNS(𝑃1̃, �̃�) = 0.772 .

We can see that  SNS(𝑃2̃, �̃�)is the largest value amongthe
values of SNS(𝑃1̃, �̃�) and SNS(𝑃2̃, �̃�) .

Therefore, the unknown pattern represented by single val-
ued neutrosophic set�̃�  should be classified  into the pat-
tern P2.

5. A New Similarity Measure Based on Falsity
Measure Between Neutrosophic Sets Based on the
Centroid Points of Transformed Single Valued
Neutrosophic Numbers

      In this section, we propose a new similarity measure 
based on falsity value between single valued neutrosophic 
sets based on the centroid points of transformed single val-
ued neutrosophic numbers. 

Definition5.1: 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
), 

Taking the similarity measure as defined in the fourth sec-
tion, and letting  CA(𝑥𝑖) andCB(𝑥𝑖)be the centers of the trian-
gles obtained by the transformation of A(𝑥𝑖)and B(𝑥𝑖)in the
third section respectively,the similarity measure based on 
falsity value between single valued neutrosophic sets A 
and B based on the centroid points of transformed single 
valued  neutrosophic numbers is    

SNSC(𝐴, 𝐵 ) = ∑ (𝑤𝑖xS(CA(xi) , CB(xi)))

𝑛

𝑖=1

, 

where 
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𝐴 = {𝑥: 〈𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)〉},

𝐵 = {𝑥: 〈𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)〉} .

Here again, 𝑤𝑖’s are the weights of the 𝑥𝑖’s with the prop-
erty ∑ 𝑤𝑖

𝑛
𝑖=1 = 1 .

Example5.2: Let us consider two patterns P1 and P2 repre-
sented by single valued neutrosophic sets P1̃, P2̃  in
𝑋 = {𝑥1, 𝑥2}respectively in Example 4.8,where

P1̃ = {〈x1, 0.2, 0.5, 0.7〉, 〈x2, 0.9, 0.4, 0.5〉}

 and 

P2̃ = {〈x1, 0.3, 0.2, 0.5〉, 〈x2, 0.3, 0.2, 0.4〉}.

We want to classify an unknown pattern represented by 
single valued neutrosophic set �̃�  in 𝑋 = {𝑥1, 𝑥2} into one
of the patterns P1̃, P2̃, where

�̃� = {〈x1, 0.4, 0.4, 0.1〉, 〈x2, 0.6, 0.2, 0.3〉}.

We make the classification using the measure in Definition 
5.1, namely 

SNSC(𝐴, 𝐵 ) = ∑ (𝑤𝑖 × S(CA(xi) , CB(xi)))𝑛
𝑖=1  . 

Also we find the CA(xi) , CB(xi)  centers according to the
truth values. 

Let 𝑤𝑖  be the weight of element𝑥𝑖 ,  𝑤𝑖 =
1

2
;  1 ≤ 𝑖 ≤ 2 . 

P1̃x1 = 〈0.2, 0.5, 0.7〉transformed based on falsity value
in Example 3.1.1 

CP1̃x1
= (0.566, 0.633, 0.7)

P1̃x2 = 〈0.9, 0.4, 0.5〉 transformed based on falsity value
in Example 3.1.1 

CP1̃x2
= (0.7,0.633,0.5)

P2̃x1 = 〈0.3, 0.2, 0.5〉 transformed based on falsity value
in Example 3.1.1 

CP2̃x1
= (0.7, 0.7,0.5)

P2̃x2 = 〈0.3, 0.2, 0.4〉 transformed based on falsity value
in Example 3.1.1 

CP2̃x2
= (0.733, 0.7, 0.4)

�̃�x1
= 〈x1, 0.4, 0.4, 0.1〉 transformed based on falsity value

in Section 3.1 

C�̃�x1
= 〈0.6, 0.8, 0.1〉(second group)

�̃�x2
= 〈x2, 0.6, 0.2, 0.3〉transformed based on truth falsity

in Section 3.1 

C�̃�x2
= 〈0.666, 0.6, 0.3〉(second group)

SNSC(P1̃, �̃�) = 0.67592

SNSC(P2̃, �̃�) = 0.80927

Therefore, the unknown patternQ,represented by a single 
valued neutrosophic set based on truth value is classified 
into pattern P2.

Example5.3 : Let us consider two patterns P1 and P2   of
example 4.8, represented by single valued neutrosophic 
sets P1̃, P2̃, in 𝑋 = {𝑥1, 𝑥2} respectively, where

P1̃ = {〈x1, 0.2, 0.5, 0.7〉, 〈x2, 0.9, 0.4, 0.5〉}

and 

P2̃ = {〈x1, 0.3, 0.2, 0.5〉, 〈x2, 0.3, 0.2, 0.4〉}.

We want to classify an unknown pattern represented by the 
single valued neutrosophic set �̃�  in 𝑋 = {𝑥1, 𝑥2} into one
of the patterns P1̃, P2̃,where

�̃� = {〈x1, 0.4, 0.4, 0.1〉, 〈x2, 0.6, 0.2, 0.3〉}.

We make the classification using the measure in Definition 
5.1, namely 

SNSC(𝐴, 𝐵 ) = ∑ (𝑤𝑖xS(CA(xi) , CB(xi)))𝑛
𝑖=1 . 

Also we find the CA(xi) , CB(xi) centers according to the in-
determinacy values. 

Let 𝑤𝑖  be the weight of element𝑥𝑖 , 𝑤𝑖 =
1

2
;  1 ≤ 𝑖 ≤ 2 . 

P1̃x1 = 〈0.2, 0.5, 0.7〉 transformed based on falsity value
in Example 3.2.1 

CP1̃x1
= (0.766,0.633, 0.7)
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P1̃x2 = 〈0.9, 0.4, 0.5〉 transformed based on falsity value
in Example 3.2.1 

CP1̃x2
= (0.766, 0.633, 0.5)

P2̃x1 = 〈0.3, 0.2, 0.5〉 transformed based on falsity value
in Example 3.2.1 

CP2̃x1
= (0.633, 0.9, 0.5)

P2̃x2 = 〈0.3, 0.2, 0.4〉 transformed based on falsity value
in Example 3.2.1 

CP2̃x2
= (0.666, 0.7, 0.4)

�̃�x1
= 〈x1, 0.4, 0.4, 0.1〉 transformed based on falsity value

in Section 3.2 

C�̃�x1
= 〈0.6, 0.8, 0.1〉(second group)

�̃�x2
= 〈x2, 0.6, 0.2, 0.3〉transformed based on truth falsity

in Section 3.2 

C�̃�x2
= 〈0.7, 0.666, 0.3〉 (first group)

SNSC(P1̃, �̃�) = 0.67592

SNSC(P2̃, �̃�) = 0.80927

Therefore, the unknown patternQ, represented by a single 
valued neutrosophic set based on indeterminacy value is 
classified into pattern P2.

Example5.4: Let us consider in example 4.8, two patterns 
P1  and P2  represented by single valued neutrosophic sets
P1̃, P2̃ in  𝑋 = {𝑥1, 𝑥2} respectively ,where

P1̃ = {〈x1, 0.2, 0.5, 0.7〉, 〈x2, 0.9, 0.4, 0.5〉}

 and 

P2̃ = {〈x1, 0.3, 0.2, 0.5〉, 〈x2, 0.3, 0.2, 0.4〉}.

We want to classify an unknown pattern represented by 
single valued neutrosophic set �̃� in𝑥 = {𝑥1 , 𝑥2} into one of
the patterns P1̃, P2̃, where

�̃� = {〈x1, 0.4, 0.4, 0.1〉, 〈x2, 0.6, 0.2, 0.3〉}.

We make the classification using the measure in Definition 
5.1, namely 

SNSC(𝐴, 𝐵 ) = ∑ (𝑤𝑖xS(CA(xi) , CB(xi)))𝑛
𝑖=1 . 

Also we find the CA(xi) , CB(xi) centers according to the fal-
sity values. 

Let 𝑤𝑖  be the weight of element𝑥𝑖 , 𝑤𝑖 =
1

2
;  1 ≤ 𝑖 ≤ 2 . 

P1̃x1 = 〈0.2, 0.5, 0.7〉transformed based on falsity value
in Example 3.3.1 

CP1̃x1
= (0.766,0.7,0.7)

P1̃x2 = 〈0.9, 0.4, 0.5〉 transformed based on falsity value
in Example 3.3.1 

CP1̃x2
= (0.766, 0.7,0.5)

P2̃x1 = 〈0.3, 0.2, 0.5〉 transformed based on falsity value
in Example 3.3.1 

CP2̃x1
= (0.633,0.7,0.5)

P2̃x2 = 〈0.3, 0.2, 0.4〉 transformed based on falsity value
in Example 3.3.1 

CP2̃x2
= (0.666, 0.733, 0.4)

�̃�x1
= 〈x1, 0.4, 0.4, 0.1〉 transformed based on falsity value

in Section 3.3 

C�̃�x1
= 〈0.6, 0.6, 0.1〉(first group)

�̃�x2
= 〈x2, 0.6, 0.2, 0.3〉transformed based on truthfalsity

in Section 3.3 

C�̃�x2
= 〈0.7, 0.666, 0.3〉 (third group)

SNSC(P1̃, �̃�) = 0.7091

SNSC(P2̃, �̃�) = 0.8148

Therefore, the unknown pattern Q, represented by a single 
valued neutrosophic set based on falsity value is classified 
into pattern P2.

In Example 5.2, Example 5.3 and Example 5.4, all 
measures according to truth, indeterminancy and falsity 
values give the same exact result. 
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Conclusion 

In this study, we propose methods to transform between 
single valued neutrosophic numbers based on centroid 
points. We also propose a new method to measure the de-
gree of similarity based on falsity values between single 
valued neutrosophic sets. Then we prove some properties 
of new similarity measure based on falsity value between 
single valued neutrosophic sets. When we take this meas-
ure with respect to truth or indeterminancy we show that it 
does not satisfy one of the conditions of similarity measure. 
We also apply the proposed new similarity measures based 
on falsity value between single valued neutrosophic sets to 
deal with pattern recognition problems. 
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On Neutrosophic Uninorms

Erick González-Caballero, Maikel Leyva-Vázquez, Florentin Smarandache 

Abstract. Uninorm generalizes the notion of t-norm and t-conorm in fuzzy logic theory. They are three increasing, 
commutative and associate operators having one neutral element. However, such specific value identifies the kind 
of operator it is; t-norms have the 1 as neutral element, t-conorms have the 0 and uninorms have every number 
lying between 0 and 1. Uninorms have been applied as aggregators in many fields of Artificial Intelligence and 
Decision Making. This theory has also been extended to the framework of interval-valued fuzzy sets, intuitionistic 
fuzzy sets, interval-valued intuitionistic fuzzy sets and L-fuzzy sets. This paper aims to explore neutrosophic 
uninorms. We demonstrate that it is possible to define uninorms operators from neutrosophic logic. Additionally, 
we define neu-trosophic implicators induced by neutrosophic uninorms. The combination of both, Neutrosophy 
and uninorms, enriches the applicability of uninorms operators due to the possibility of incorporating 
indeterminancy as part of the Neutrosophy contribution. 

Keywords: neutrosophic uninorm, uninorm, neutrosophic logic, neutrosophic implicator.

1 Introduction 

Uninorms generalize the concepts of t-norm and t-conorm in fuzzy set theory, see [17]. Uninorm operators 
fulfill commutativity, associativity, increasing monotonicity and the existence of a neutral element e, in the same 
way that t-norm and t-conorm do, see [21]. When e is 1, the uninorm is a t-norm, when e is 0, it is a t-conorm. The 
generalization consists in widening to [0, 1] the range of values where the neutral element can lie. 

Uninorms are not only used to extend theoretically the other aforementioned fuzzy operators, furthermore we 
can find in literature many fields where they are applied as aggregators, for example, in expert systems, image 
processing, neural networks, classifiers, among others, see [4, 10, 13, 16, 19, 22, 27]. Moreover, there exists a 
fuzzy implicator theory based on uninorms, [7]. 

G. Deschrijver and E. Kerre in [15], extend fuzzy uninorms concepts to interval-valued fuzzy sets, 
intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and L-fuzzy sets, see [5-6, 14, 18]. They proved in 
[14], that these four kind of fuzzy sets are isomorphic each another, therefore, it is sufficient to prove uninorm 
properties in the framework of the L*-fuzzy set theory. 

On the other hand, “Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of 
neutralities, as well as their interactions with different ideational spectra”, [23-24, 26]. The novelty of this theory is 
that it includes for the first time the notion of indeterminacy in fuzzy set theory, that is to say, this approach 
admits the membership and non membership of elements or objects to a set, akin to intuitionistic fuzzy set theory 
does, as well as a third function which represents indeterminacy. This theory acknowledges that ignorance, con-
tradiction, paradox and other knowledge representation conditions, which are often considered undesirable from 
the classic logic viewpoint, also should be taken into account. 

Neutrosophy has been applied in wide-ranging kinds of areas, e.g., image processing, decision making, clus-
tering, among others. This is due to the nature of this theory, which allows representing and calculating with 
indeterminacies. 

This paper is devoted to introducing neutrosophic uninorms or N-uninorms, for generalizing uninorm operators 
to the neutrosopic framework. It is worthily to remark that N-uninorms are used to denote neutrosophic uninorms, 
not n-uninorms, see [2]. To our knowledge, this seems to be the first approach to neutrosophic uninorms. In neu-
trosophic logic, neutrosophic norms generalize t-norms and neutrosophic conorms generalize t-conorms, hence, 
N-uninorms extend fuzzy uninorms, uninorms on L*-fuzzy sets, n-norms and n-conorms.

N-uninorms could replace fuzzy uninorms in the mathematical models where usually the latter one are

Erick González-Caballero, Maikel Leyva-Vázquez, Florentin Smarandache (2021). 
On neutrosophic uninorms. Neutrosophic Sets and Systems 45, 340-348

Florentin Smarandache (author and editor) Collected Papers, XII

950

mailto:erickgc@yandex.com
mailto:erickgc@yandex.com


employed, because this new approach keeps the advantages of uninorms as an esteemed aggregator, which is here 
improved with the appropriateness of neutrosophy to deal with human reasoning, knowledge representation, 
vagueness and uncertainty, when indeterminacy is present.  

The present paper is organized as follows; the preliminary definitions and results necessaries to develop our 
work will be given in Section 2. Section 3 is dedicated to exposing the N-uninorm theory, including N-uninorm 
implicators. Finally, Section 4 draws the conclusions. 

2 Preliminaries 
This section is devoted to exposing the preliminary definitions and results necessaries to develop the proposed 

theory of N-uninorms. The first subsection is dedicated to summarizing the basic definitions and results on 
uninorms. In the second one we recall the definition and aspects concerning neutrosophic logic theory. 

2.1 Basic notions of uninorm theory 
Definition 2.1. A uninorm is a commutative, associative and increasing mapping U: [0, 1]2 → [0, 1], where

there exists 𝑒 ∈ [0, 1], called neutral element, such that ∀x ∈ [0, 1], U(𝑒, x) = x, [17]. 
If e = 1, U is a t-norm and if e = 0, U is a t-conorm. 
Deschrijver and Kerre in [15] extend this definition to the framework of interval-valued fuzzy sets, intuition-

istic fuzzy sets, interval-valued intuitionistic fuzzy sets and L-fuzzy sets, which are pairwise isomorphics, there-
fore they restrict their theory to the set L∗ = {(x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1}.

Let us recall two well-known algebraic definitions that we explicitly write for the sake of being self-contained. 
They are namely, Partially Ordered Set or poset and Lattice, [1, 9, 20]. 

Definition 2.2. A Partially Ordered Set or poset is a pair (P, ), where P is a set and  is a binary relation over 
P, which satisfies for every x, y, z  P, the three following conditions: 

1. xx (Reflexive).
2. If  xy and yx, then x = y (Antisymmetry).
3. If xy and yz, then xz (Transitivity).
An upper bound of X, XP, is an element aP, such that xX it holds xa. Equivalently, a lower bound is

an element bP, such that xX, bx. The supremum of X is the least upper bound and the infimum is the greater 
lower bound. 

Definition 2.3. A lattice (L, L) is a poset, where every pair of elements x and y in L have an infimum or 
‘meet’, denoted by xy and a supremum or ‘join’ denoted by xy. 

L is a complete lattice if every of its subsets has an infimum and a supremum in L. 

The lattice (L∗, ≤L∗) is defined by the following poset:

(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1  and x2 ≥ y2  , ∀(x1, x2), (y1, y2) ∈ L∗. The units of L∗are 0L∗ = (0, 1) and
1L∗ = (1, 0). See that x =  (x1, x2) and y = (y1, y2) can be incomparable with regard to ≤L∗, where either x1 <
y1  and x2 < y2  , or x1 > y1  and x2 > y2  . It is denoted by x ∥L∗ y.

Evidently, (x1, x2) ≥L∗ (y1, y2) if and only if (y1, y2) ≤L∗ (x1, x2). If (x1, x2) ≤L∗ (y1, y2) and
(x1, x2) ≥L∗ (y1, y2) then (x1, x2) =L∗ (y1, y2).

Formally, the uninorm on L* is defined as follows: 

Definition 2.4. A uninorm on L* is a commutative, associative and increasing mapping 𝐔: L∗2 → L∗, where
there exists 𝑒 ∈ L∗, called neutral element, such that ∀x ∈ L∗, 𝐔(𝑒, x) = x, [15].

Here, if 𝑒 =  1L∗, U defines a t-norm on L∗and if 𝑒 =  0L∗, it is a t-conorm on L∗. Nevertheless, the most in-
teresting cases of uninorms are those where e satisfies 0L∗ <L∗ 𝑒 <L∗ 1L∗.

In [15] we can find properties and their demonstrations concerning uninorms on L* that generalize the proper-
ties of fuzzy uninorms, including those of the uninorm-based R-implicators and S-implicators. Further, we shall 
guide the exposition of N-uninorms theory through the theory developed in that paper. Our goal is to prove that 
N-uninorms extend uninorms on L*.

2.2 Basic notions of neutrosophic logic 
Definition 2.5. Given X, a universe of discourse containing elements or objects. A is a neutrosophic set ([25-

26]) if it has the form: A =  {(x: TA(x), IA(x), FA(x)), x ∈ X}, where TA(x), IA(x), FA(x) ⊆] 0− , 1+[, i.e., they are
three functions over either the standard or nonstandard subsets of ] 0− , 1+[. TA(x) represents the degree of mem-
bership of x to A, IA(x) represents its degree of indeterminacy and FA(x) its degree of non-membership. They do
not satisfy any restriction, i.e., ∀x ∈ X, 0− ≤ inf TA(x) + inf IA(x) + inf FA(x) ≤ sup TA(x) + sup IA(x) +
sup FA(x) ≤ 3+.
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Another particular definition is that of Single-valued Neutrosophic set, which is formally defined as follows: 

Definition 2.6. Given X, a universe of discourse which contains elements or objects. A is a single-valued 
neutrosophic set (SVNS) [25] if it has the form: A =  {(x: TA(x), IA(x), FA(x)), x ∈ X}, where
TA(x), IA(x), FA(x) ∈ [0, 1]. TA(x) represents the degree of membership of x to A, IA(x) represents its degree of
indeterminacy and FA(x) its degree of non-membership. ∀x ∈ X, 0 ≤ TA(x) +  IA(x) +  FA(x) ≤ 3.

See that SVNS is derived from the definition of neutrosophic sets. In the present paper we prefer to use the 
former one. 

In neutrosophic set theory a lattice can be defined as follows: 
Given the universe of discourse X and x(Tx, Ix, Fx), y(Ty, Iy, Fy) two SVNS, we say that x≤Ny if and only if

Tx ≤ Ty, Ix ≥ Iy and Fx ≥ Fy, (X, ≤N) is a poset. Whereas, (L, ˄, ˅) is a lattice, because it is a triple direct prod-
uct of lattices, see [9]. x ∧ y = (min{Tx, Ty} , max{Ix, Iy} , max{Fx, Fy}) and x ∨ y = (max{Tx, Ty} ,

min{Ix, Iy} , min{Fx, Fy}). Moreover, it is easy to prove that it is complete.
Let us remark that this definition is valid for interval-valued neutrosophic sets, when we substitute their oper-

ators by interval-valued operators. 
See also that there exist two special elements, viz., ON = (0, 1, 1) and 1N = (1, 0, 0), which are the infimum

and the supremum respectively, of every SVNS with regard to ≤N. 
Given two neutrosophic sets, A and B, three basic operations over them are the following [25]: 

1. A ∩ B = A ∧ B (Conjunction).

2. A ∪ B = A ∨ B (Disjunction).

3. A̅ = (FA, 1 − IA, TA) (Complement).

Definition 2.7. A neutrosophic norm or n-norm Nn [25], is a mapping Nn: (] 0− , 1+[×] 0− , 1+[×

] 0− , 1+[)2 →] 0− , 1+[×] 0− , 1+[×] 0− , 1+[, such that Nn (x(Tx, Ix, Fx), y(Ty, Iy, Fy)) =

 (NnT(x, y), NnI(x, y), NnF(x, y)), where NnT means the degree of membership, NnI the degree of indeterminacy
and NnF the degree of non-membership of the conjunction of both, x and y. 

For every x, y and z belonging to the universe of discourse, Nn must satisfy the following axioms: 
1. Nn (x,0N) = 0N and Nn (x,1N) = x (Boundary conditions).
2. Nn (x,y) = Nn (y,x) (Commutativity).
3. If x≤Ny, then Nn (x,z) ≤N Nn (y,z) (Monotonicity).
4. Nn (Nn (x,y), z) = Nn (x, Nn (y,z)) (Associativity).

Definition 2.8. A neutrosophic conorm or n-conorm Nc [25], is a mapping Nc: (] 0− , 1+[×] 0− , 1+[×

] 0− , 1+[)2 →] 0− , 1+[×] 0− , 1+[×] 0− , 1+[, such that Nc (x(Tx, Ix, Fx), y(Ty, Iy, Fy)) =

 (NcT(x, y), NcI(x, y), NcF(x, y)), where NcT means the degree of membership, NcI the degree of indeterminacy
and NcF the degree of non-membership of the disjunction of x with y. 

For every x, y and z belonging to the universe of discourse, Nc must satisfy the following axioms: 
1. Nc (x,0N) = x and Nc (x,1N) = 1N (Boundary conditions).
2. Nc (x,y) = Nc (y,x) (Commutativity).
3. If x≤Ny, then Nc (x,z) ≤N Nc (y,z) (Monotonicity).
4. Nc (Nc (x,y),z) = Nc (x, Nc (y,z)) (Associativity).
According to [8] a Singled-valued neutrosophic negator is defined as follows:

Definition 2.9. a singled-valued neutrosophic negator is a decreasing unary neutrosophic operator 
NN: [0, 1]3 ⟶ [0, 1]3, satisfying the following boundary conditions:
1. NN(0N) = 1N.
2. NN(1N) = 0N.

It is called involutive if and only if NN(NN(x)) = x for every x ∈ [0, 1]3.

In the following, we show the neutrosophic negators that we shall consider hereunder, extracted from the lit-
erature, see [25]. Given a SVNS A(TA, IA, FA), we have:

1. NN((TA, IA, FA)) = (1 − TA, 1 − IA, 1 − FA), NN((TA, IA, FA)) = (1 − TA, IA, 1 − FA),
NN((TA, IA, FA)) = (FA, IA, TA)and NN((TA, IA, FA)) = (FA, 1 − IA, TA) (Involutive negators).

2. NN((TA, IA, FA)) = (FA,
FA+ IA+TA

3
, TA) and NN((TA, IA, FA)) = (1 − TA,

FA+ IA+TA

3
, 1 − FA) (Non-invo-

lutive negators).
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In literature, we found neutrosophic implicators, which extend only the notion of S-implications [11]. More-
over, we did not find a general definition on neutrosophic implications except in [8]. In the following, we con-
clude this section with such definition and properties. 

Definition 2.10. A singled-valued neutrosophic implicator is an operator IN: [0, 1]3 × [0, 1]3 → [0, 1]3

which satisfies the following conditions, for all x, x′, y, y′ ∈ [0, 1]3:
1. If x′ ≤N x, then IN(x, y) ≤N IN(x′, y).
2. If y ≤N y′, then IN(x, y) ≤N IN(x, y′).
3. IN(0N, 0N) =  IN(0N, 1N) =  IN(1N, 1N) = 1N.
4. IN(1N, 0N) = 0N.
Herein we use the term neutrosophic implicator or n-implicator to mean singled-valued neutrosophic 

implicator. 
It can satisfy the following properties for every x, y, z ∈ [0, 1]3 :
1. IN(1N, x) =  x (Neutrality principle)
2. IN(x, y) =  IN(NIN(y), NIN(x)), where NIN(x) = IN(x, 0N )  is an n-negator (Contrapositivity).
3. IN(x, IN(y, z)) =  IN(y, IN(x, z)) (Interchangeability principle).
4. x ≤N y if and only if IN(x, y) = 1N (Confinement principle).
5. IN is a continuous mapping (Continuity).

3 Neutrosophic uninorms 
This section is the core of the present paper, because here we explain the neutrosophic uninorm theory. We 

start defining this concept formally. 

3.1 N-uninorms 
Definition 3.1. A neutrosophic uninorm or N-uninorm UN, is a commutative, increasing and associative 

mapping, 𝐔N: (] 0− , 1+[×] 0− , 1+[×] 0− , 1+[)2 →] 0− , 1+[×] 0− , 1+[×] 0− , 1+[, such that:
𝐔N (x(Tx, Ix, Fx), y(Ty, Iy, Fy)) =  (𝐔NT(x, y), 𝐔NI(x, y), 𝐔NF(x, y)), where UNT means the degree of member-
ship, UNI the degree of indeterminacy and UNF the degree of non-membership of both, x and y. Additionally, 
there exists a neutral element 𝑒 ∈] 0− , 1+[×] 0− , 1+[×] 0− , 1+[, where ∀x ∈] 0− , 1+[×] 0− , 1+[×] 0− , 1+[,
𝐔N(𝑒, x) = x.

Remark 3.1. See that Def. 3.1, extends Def. 2.4 in two ways, according to the differences between L* fuzzy 
sets and neutrosophic sets. First, UN includes the third function representing indeterminacy and secondly, there not 
exists constraints in the relationship among T, I and F. In addition, Def. 3.1 extends Def. 2.7 when 𝑒 =  1N  and
Def 2.8., when 𝑒 =  0N .

Remark 3.2. For the sake of simplicity, we shall develop the theory only for singled-valued neutrosophic 
uninorms. 

A trivial consequence of Def. 3.1 is that the neutral element is unique, which is a uninorm property in Def. 2.1 
and Def. 2.4. 

In the following, we explore the formulas of N-uninorms related to those corresponding to n-norms and n-
conorms. For this end, first we need to describe two kinds of sets, namely, E1 = {x ∈ [0, 1]3: x ≤N 𝑒} and E2 =
{x ∈ [0, 1]3 ∶ x ≥N 𝑒}.

Lemma 3.1. Let 𝑒 ∈]0, 1] × [0, 1[× [0, 1[. The mapping ϕe: [0, 1]3 → [0, 1]3, defined by:

ϕe(x) = (𝑒1x1, x2 + 𝑒2(1 − x2), x3 + 𝑒3(1 − x3))  (1)

for every x ∈ [0, 1]3 is an increasing bijection from [0, 1]3 to E1 and ϕe
−1 is increasing as well.

Proof. To prove ϕe is injective, let x, y ∈ [0, 1]3 and suppose ϕe(x) = ϕe(y).Then, clearly the equation
(𝑒1x1, x2 + 𝑒2(1 − x2), x3 + 𝑒3(1 − x3)) =  (𝑒1y1, y2 + 𝑒2(1 − y2), y3 + 𝑒3(1 − y3)) is fulfilled only if x = y,
and the injection is proved, also taking into account that we excluded the cases 𝑒1 = 0, 𝑒2 = 1 and 𝑒3 = 1.

Let us take any y ∈ E1 and define x = (x1, x2, x3), such that x1 =
y1

𝑒1
, x2 =

y2−𝑒2

1−𝑒2
and x3 =

y3−𝑒3

1−𝑒3
. Then, 

ϕe(x) = y and x1, x2, x3 ∈ [0, 1], which can be proved applying y ≤N 𝑒. Therefore, ϕe is surjective and evi-
dently it is increasing. The equation of the inverse is the following: 

ϕe
−1(x) =  (

x1

𝑒1
,
x2 − 𝑒2

1 − 𝑒2
,
x3 − 𝑒3

1 − 𝑒3
) (2) 
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Lemma 3.2. Let 𝑒 ∈ [0, 1[×]0, 1] ×]0, 1]. The mapping ψe: [0, 1]3 → [0, 1]3, defined by:

ψe(x) = (𝑒1+x1 − 𝑒1x1, 𝑒2x2, 𝑒3x3) (3)

for every x ∈ [0, 1]3 is an increasing bijection from [0, 1]3 to E2 as well as ψe
−1 is increasing.

Proof. This lemma can be proved similarly to the proof carried out in the Lemma 3.1. The equation of the 
inverse is as follows:  

ψe
−1(x) = (

x1 − 𝑒1

1 − 𝑒1
,
x2

𝑒2
,
x3

𝑒3
) (4) 

 

Theorem 3.3. Given UN an N-uninorm with neutral element 𝑒 ∈]0, 1[3. Then the following two conditions
are satisfied: 

i. The mapping Nn,𝐔N
: [0, 1]3 × [0, 1]3 → [0, 1]3 defined for all x, y ∈ [0, 1]3 by the equation:

Nn,𝐔N
(x, y) = ϕe

−1 (𝐔N(ϕe(x), ϕe(y)))  (5)

is an n-norm.
ii. The mapping Nc,𝐔N

: [0, 1]3 × [0, 1]3 → [0, 1]3 defined for all x, y ∈ [0, 1]3 by the equation:

Nc,𝐔N
(x, y) = ψe

−1 (𝐔N(ψe(x), ψe(y)))  (6)

is an n-conorm.
Proof. This theorem is a consequence of Lemmas 3.1 and 3.2. 

Remark 3.3. Some cases of e were excluded in Lemmas 3.1, 3.2 and Theorem 3.3, for instance, 𝑒 =
(0, β, γ), where 0 ≤ β, γ ≤ 1 in Lemma 3.1. It is easy to prove that when e is one of them, there not exist any 
increasing bijection from [0, 1]3 to E1 or E2, because  E1 or E2 have one constant component, and therefore they
only depend on at most two components, however, [0, 1]3 depends on three, and that contradicts the injection.
For example, if 𝑒 = (0, β, γ), then E1 = {0} × [β, 1] × [γ, 1], and there not exists a bijective mapping from
[0, 1]3 to E1.

Corollary 3.4. Given UN an N-uninorm with neutral element 𝑒 ∈]0, 1[3. Then the following two conditions
are satisfied: 

i. For every x, y ∈ E1, 𝐔N(x, y) = ϕe (Nn,𝐔N
(ϕe

−1(x), ϕe
−1(y))).

ii. For every x, y ∈ E2, 𝐔N(x, y) = ψe (Nc,𝐔N
(ψe

−1(x), ψe
−1(y))).

Proof. The proof is obtained immediately from Theorem 3.3. 

Remark 3.4. See that Theorem 3.3 and Corollary 3.4 mean that we can define N-uninorms from n-norms 
and n-conorms, and vice versa. 

Remark 3.5. Comparing the precedent issues with their similar ones appeared in [15], we can find few dif-
ferences and numerous similarities. Indeed, so far we have proved that N-uninorms extend the approach to struc-
tures of uninorms on L* fuzzy sets, which is valid to interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-
valued intuitionistic fuzzy sets and Goguen’s L-fuzzy sets. 

Definition 3.2. We say that Nn(x, y) is an Archimedean n-norm respect to <N if for every x ∈ [0, 1]3it satis-
fies: Nn(x, x) <N x.

Definition 3.3. We say that Nc(x, y) is an Archimedean n-conorm respect to <N if for every x ∈ [0, 1]3it sat-
isfies: Nc(x, x) >N x.

Definition 3.4. UN(x,y) is an Archimedean N-uninorm respect to <N if it satisfies the following conditions:
1. 𝐔N(x, x) <N x for every 0 <N x <N 𝑒.
2. 𝐔N(x, x) >N x for every 𝑒 <N x <N 1N.

Proposition 3.5. Given UN an N-uninorm with neutral element 𝑒 ∈]0, 1[3. It is Archimedean if and only if
the n-norm and n-conorm defined in Eq. 5 and 6, respectively, are Archimedean. 

Proof Let 0 <N x <N 𝑒, and 𝐔N(x, y) an Archimedean N-uninorm, i.e., 𝐔N(x, x) <N x, then taking into ac-
count that ϕe and ϕe

−1 are increasing bijections, we have Nn,𝐔N
(x, x) =

ϕe
−1 (𝐔N(ϕe(x), ϕe(x))) <N ϕe

−1(ϕe(x)) = x. Equivalently, it is easy to prove that Nn,𝐔N
(x, x) <N x implies

𝐔N(x, x) <N x. The proof for the n-conorm is similar.
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Proposition 3.6. Given UN an N-uninorm with neutral element e, and x, y ∈ [0, 1]3 are two elements such
that either x ≤N 𝑒 ≤N y or y ≤N 𝑒 ≤N x, then the following two inequalities hold:

min (x, y) ≤N 𝐔N(x, y) ≤N max (x, y).
Proof. Without loss of generality, suppose x ≤N 𝑒 ≤N y, then because of the monotonicity of the N-un-

inorms 𝐔N(x, y) ≤N 𝐔N(𝑒, y) = y = max (x, y)  and 𝐔N(x, 𝑦) ≥N 𝐔N(x, 𝑒) = x = min (x, y).
The proposition above means that there exists a domain where 𝐔N is compensatory with regard to ≤N.
Let us note that there exists other sets where x ∥≤N

y or x ∥≤N
𝑒.

Example 3.1. Two examples of N-uninorms are the following: 
Recalling the well-known weakest and strongest fuzzy uninorms, respectively, defined as follows: 

U𝑒1
(x1, y1): = {

0  if 0 ≤ x1, y1 < 𝑒1 

max{x1, y1}    if 𝑒1 ≤ x1, y1 ≤ 1

min{x1, y1}    otherwise
and U̅𝑒1

(x1, y1): = {

min{x1, y1}   if 0 ≤ x1, y1 ≤ 𝑒1  
1                      if 𝑒1 < x1, y1 ≤ 1

max{x1, y1}   otherwise

For every x1, y1 ∈ [0, 1] and 𝑒1 ∈ ]0, 1[.
Let us define two N-uninorms as follows: for every x, y ∈ [0, 1]3 and 𝑒 ∈ [0, 1]3is the neutral element:

𝐔𝑒(x, y): = (U𝑒1
(x1, y1), U̅𝑒2

(x2, y2), U̅𝑒3
(x3, y3)) (7) 

and 

�̅�𝑒(x, y): = (U̅𝑒1
(x1, y1), U𝑒2

(x2, y2), U𝑒3
(x3, y3)) (8) 

Both 𝐔𝑒(x, y) and �̅�𝑒(x, y), are N-uninorms, because every one of the components are uninorms, thus, they
are commutative, associative and increasing. The neutral element components are formed by the neutral ele-
ments of every individual uninorm. 

Moreover, 𝐔𝑒(x, y) is a conjunctive N-uninorm and �̅�𝑒(x, y) is a disjunctive N-uninorm, i.e., 𝐔𝑒(0N, 1N) =

 0N and �̅�𝑒(0N, 1N) = 1N.
See that 𝐔𝑒(x, y) = (U𝑒1

(x1, y1), U𝑒2
(x2, y2), U𝑒3

(x3, y3)) is also an N-uninorm, nevertheless, it is neither
conjunctive nor disjunctive, 𝐔𝑒(0N, 1N) =  (0,0,0).

Definition 3.5. An N-uninorm UN is said to be t-representable if there exist three fuzzy uninorms, 
U𝑒1

(x1, y1), U𝑒2
(x2, y2) and U𝑒3

(x3, y3), such that for all x = (x1, x2, x3) and y = (y1, y2, y3) it has the form
𝐔N(x, y) = (U𝑒1

(x1, y1), U𝑒2
(x2, y2), U𝑒3

(x3, y3)) .

Proposition 3.7. Let UN be an N-uninorm with neutral element e and x ∈ [0, 1]3, then the following proper-
ties hold:  

i. 𝐔N(0N, 0N) =  0N and 𝐔N(1N, 1N) =  1N.
ii. If 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}, we have 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), x), for every x ∈ [0, 1]3.

iii. If 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}, then either 𝐔N(0N, 1N) =  0N or 𝐔N(0N, 1N) =  1N or 𝐔N(0N, 1N) ∥≤N
𝑒.

Proof. 
i. See that 𝐔N(𝑒, 0N) =  0N, 𝐔N(𝑒, 1N) =  1N and apply the increasing axiom of N-uninorm.

ii. If x ≤N 𝑒  then because 𝐔N  is increasing, we have 𝐔N(0N, x) ≤N 𝐔N(0N, 𝑒) = 0N , thus,
𝐔N(0N, x) = 0N and 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, x), 1N). Because of the commutativity and the asso-
ciativity, 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), x).
If x ≥N 𝑒  then 𝐔N(1N, x) ≥N 𝐔N(1N, 𝑒) = 1N  and therefore, 𝐔N(1N, x) = 1N . 𝐔N(0N, 1N) =

𝐔N(0N, 𝐔N(1N, x)), and finally due to the commutativity and associativity, we obtain 𝐔N(0N, 1N) =

𝐔N(𝐔N(0N, 1N), x).
If  x ∥≤N

𝑒 then  x ∧ 𝑒 ≤N x ≤N x ∨ 𝑒. We have x ∧ 𝑒 ≤N 𝑒 and 𝑒 ≤N x ∨ 𝑒, thus according to the
precedent results 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), x ∧ 𝑒) = 𝐔N(𝐔N(0N, 1N), x ∨ 𝑒). Applying the in-
creasing axiom of N-uninorms we obtain 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), x) .

iii. Suppose 𝐔N(0N, 1N) ∦≤N
𝑒, that implies either 𝐔N(0N, 1N) ≤N 𝑒 or 𝑒 ≤N 𝐔N(0N, 1N).

If 𝐔N(0N, 1N) ≤N 𝑒, then 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), 0N) = 0N , according to ii.
If 𝐔N(0N, 1N) ≥N 𝑒, then 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), 1N) = 1N , according to ii.

Let us note that the precedent issues are similar to the ones obtained in [15]. 
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This subsection is dedicated to explore the notion of n-implicators induced by N-uninorms. First of all we 
define the concept of neutrosophic R-implicator, which is new in this framework, at least in the scope of our 
knowledge. 

Definition 3.6. A neutrosophic R- implicator or n-R-implicator is an n-implicator defined as follows: 
Given Nn an n-norm, for every x, y ∈ [0, 1]3, RIN(x, y) =  sup{t ∈ [0, 1]3: Nn(x, t) ≤N y}.
Let us note that this definition extends both, the definition of fuzzy R-implicator, see [7], and that of L* fuzzy 

implicator, [15]. As well as others appeared in [3, 12]. 
Indeed, it is an actual n-implicator. Taking into account the properties of  ≤N, and the increasing property of

n-norms with regard to ≤N, we have that RIN(x,∙) is decreasing and RIN(∙, y) is increasing. Additionally, the sat-
isfaction of the boundary conditions by RIN can be verified straightforwardly.

Example 3.2. Let a = (0.6, 0.2, 0.4), b = (0.7, 0.1, 0.3) and c = (0.5, 0.3, 0.5) be three SVNS. Observe 
that c ≤N a ≤N b. Consider the n-norm, Nn−min(x, y) = (min{Tx, Ty}, max{Ix, Iy}, max{Fx, Fy}).

Then, RIN(a, b) = 1N , RIN(a, c) = (0.5, 0.3, 0.5), RIN(b, a) = (0.6, 0.2, 0.4) and RIN(c, a) = 1N. See that
RIN(a, c) ≤N RIN(a, b) and RIN(b, a) ≤N RIN(c, a).

Proposition 3.8. Let RIN be an n-R-implicator induced by the n-norm Nn, then the two following properties
hold: 

i. RIN(1N, y) = y for every y ∈ [0, 1]3 (Neutrality principle).
ii. RIN(x, x) = 1N for every x ∈ [0, 1]3 (Identity principle).

iii. x, y ∈ [0, 1]3 and x ≤N y if and only if RIN(x, y) = 1N (Confinement principle).
Proof. 

i. For y ∈ [0, 1]3, we have RIN(1N, y) =  sup{t ∈ [0, 1]3: Nn(1N, t) = t ≤N y} = y.
ii. For x ∈ [0, 1]3, we have RIN(x, x) =  sup{t ∈ [0, 1]3: Nn(x, t) ≤N x} = 1N, because Nn is increasing

and Nn(x, 1N) = x.
iii. For x, y ∈ [0, 1]3 and x ≤N y, taking into account the inequalities Nn(x, t) ≤N Nn(x, 1N) = x ≤N y for

every t ∈ [0, 1]3, we have RIN(x, y) =  1N. On the other hand, RIN(x, y) = 1N evidently implies x ≤N y,
from the definition.

Theorem 3.9. Let UN be an N-uninorm with neutral element 𝑒 ∈]0, 1[3. Let us establish the mapping
RI𝐔N

: [0, 1]3 × [0, 1]3 → [0, 1]3 defined as follows:
RI𝐔N

(x, y) =  sup{t ∈ [0, 1]3: 𝐔N(x, t) ≤N y} for every x, y ∈ [0, 1]3.
It is an n-implicator if and only if there exists x̃ >N 0N such that every x ≥N x̃ satisfies 𝐔N(0N, x) = 0N .
Proof. It is easy to verify that RI𝐔N

(x,∙) is decreasing and RI𝐔N
(∙, y) is increasing.

On the other hand, RI𝐔N
(0N, 1N) =  RI𝐔N

(1N, 1N) = 1N , because 𝐔N is increasing and 1N is the supremum.
See that for every t ∈ [0, 1]3, 𝐔N(1N, t) ≥N 𝐔N(𝑒, t) = t, then 𝐔N(1N, t) >N 0N if and only if t >N 0N,

therefore RI𝐔N
(1N, 0N) = 0N.

Additionally, if there exists x̃ >N 0N such that every x ≥N x̃ satisfies 𝐔N(0N, x) = 0N, then because 𝐔N is
increasing and 1N is the supremum of that set, 𝐔N(0N, 1N) = 0N and RI𝐔N

(0N, 0N) =  1N.

Remark 3.6. The Theorem 3.9 is valid when 𝐔N is a conjuctive N-uninorm.

Example 3.3. Given again a = (0.6, 0.2, 0.4), b = (0.7, 0.1, 0.3) and c = (0.5, 0.3, 0.5), three SVNS, 
as in Example 3.2. Let us consider 𝐔𝑒 of the Example 3.1, where 𝑒 = (0.5, 0.5, 0.5). Recall that 𝐔𝑒(0N, 1N) =

0N. Then, RI𝐔𝑒
(a, b) = (0.7, 0.1, 0.3), RI𝐔𝑒

(a, c) = (0.5, 0.5, 0.5), RI𝐔𝑒
(b, a) = (0.5, 0.5, 0.5) and RI𝐔𝑒

(c, a) =

(0.6, 0.2, 0.4). 

Proposition 3.10. Given 𝐔N an N-uninorm with 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}. Then, RI𝐔N
(𝑒, x) = x, for every x ∈

[0, 1]3.
Proof. Let us fix x ∈ [0, 1]3, RI𝐔N

(𝑒, x) = sup{t ∈ [0, 1]3: 𝐔N(𝑒, t) = t ≤N x} = x.

Proposition 3.11. Given 𝐔N an N-uninorm with 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}. RI𝐔N
(x, 1N) = 1N, for every x ∈

[0, 1]3 (Right boundary condition).
Proof. Taking into account 𝐔N is increasing and 1N is the supremum of the elements of the lattice, then,

RI𝐔N
(x, 1N) = sup{t ∈ [0, 1]3: 𝐔N(x, t) ≤N 1N} = 1N .

Proposition 3.12. Given 𝐔N an N-uninorm with 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}. If it is contrapositive respect to a ne-
gator NN, which satisfies NN(𝑒) = 𝑒, then NN(x) = NNI𝐔N

(x) = RI𝐔N
(x, 𝑒) for every x ∈ [0, 1]3and NNI𝐔N

is in-
volutive. 

Proof. Reproduce the similar proof in [15] adapted to N-uninorms. 

3.2 Implicators induced by N-uninorms 
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Proposition 3.13. Given 𝐔N an N-uninorm and NN an n-negator. The mapping SI𝐔N
(x, y) = 𝐔N(NN(x), y) is

an n-implicator if and only if 𝐔N is disjunctive.
Proof. Reproduce the similar proof in [15] adapted to N-uninorms. 

Example 3.4. Revisiting Examples 3.2 and 3.3, where a = (0.6, 0.2, 0.4), b = (0.7, 0.1, 0.3) and c =

(0.5, 0.3, 0.5). Now we consider the n-negator NN((Tx, Ix, Fx)) = (Fx, Ix, Tx) and from the Example
3.1, �̅�𝑒(x, y) with 𝑒 = (0.5, 0.5, 0.5). There, we proved it is disjunctive.

Then, we have SI�̅�𝑒
(a, b) = (0.7, 0, 0.3) , SI�̅�𝑒

(a, c) = (0.4, 0, 0.6), SI�̅�𝑒
(b, a) = (0.6, 0, 0.4) and

SI�̅�𝑒
(c, a) = (0.6, 0, 0.4).

Proposition 3.14. Given 𝐔N an N-uninorm and NN an n-negator. The mapping SI𝐔N
 satisfies the Inter-

changeability Principle: 
SI𝐔N

(x, SI𝐔N
(y, z)) =  SI𝐔N

(y, SI𝐔N
(x, z)) for every x, y, z ∈ [0, 1]3.

Proof. It is proved by using the commutativity and associativity of N-uninorms. 

Conclusion 

The proposed paper was devoted to define and study a new operator called neutrosophic uninorm or N-uninorm. 
We demonstrated that it is possible to extend the notion of uninorm to the framework of neutrosophy logic theory. 
In addition, we defined new neutrosophic implicators induced by N-uninorms. Moreover, we introduced a new 
neutrosophic implicator which generalizes the fuzzy notion of R-implicator. The importance of this new theory is 
that the appreciated quality of fuzzy uninorms as aggregators is enriched with the capacity of neutrosophy to deal 
with indeterminacy. 
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H-Max Distance Measure of Bipolar Neutrosophic Sets 
and an Application to Medical Diagnosis 

Roan Thi Ngan, Florentin Smarandache, Said Broumi

Abstract: A single-valued neutrosophic set is one of the advanced fuzzy sets that is capable of 

handling complex real-world information satisfactorily. A development of single-valued 

neutrosophic set and fuzzy bipolar set, called a bipolar neutrosophic set, was introduced. Distance 

measures between fuzzy sets and advanced fuzzy sets are important tools in diagnostics and 

prediction problems. Sometimes they are defined without considering the condition of the 

inclusion relation on sets. In decision-making applications, this condition should be required (here 

it is called the inference of the measure). Moreover, in many cases, a distance measure 

capable of discriminating between two nearly identical objects is considered an effective measure. 

Motivated by these observations, in this paper, a new distance measure is proposed in a bipolar 

neutrosophic environment. Furthermore, an entropy measure is also developed by the similarity 

between two sets of mutual negation. Finally, an application to medical diagnosis is presented to 

illustrate the effective applicability of the proposed distance measure, where entropy values 

are used to characterize noises of different attributes. 

Keywords: neutrosophic distance; similarity measure; bipolar neutrosophic sets; entropy measure; 

medical diagnosis 

1. Introduction

In 1965, the concept of a fuzzy set (FS) was introduced by Zadeh [1] to handle uncertainty of 

information in real-world inference systems. According to him, the degree of membership (positivity) 

of an element u  to a FS on a universe U  is one value ( )u , where     ( ) 0,1 .u The theory of FSs

has reached a huge amount of achievements in a variety of application areas. However, in many real-

life problems, the presence of negativity cannot be ignored. In 1983, Atanassov [2] proposed the 

concept of an intuitionistic fuzzy set (IFS) by considering the membership degree ( )u  as well as 

the non-membership degree  ( )u  with the condition on their sum which is   ( ) ( ) 1u u . The 

theory and applications of IFSs have been strongly developed such as studies on logical operators [3-

5] and applications in decision making [6-10].

From a philosophical perspective on the existence of the field of neutrosophy, Smarandache 

considers that using IFSs to treat indeterminate and inconsistent is not satisfactory enough. In 1999, 

Smarandache [11] introduced the concept of neutrosophic set (NS). He named its three characteristic 

functions the truth membership function, the indeterminacy-membership function, and falsity-

membership function, denoted by ( )T u , ( )I u ,  and ( )F u , respectively. Their outputs are real 

Roan Thi Ngan, Florentin Smarandache, Said Broumi (2021). H-Max Distance Measure of 
Bipolar Neutrosophic Sets and an Application to Medical Diagnosis. Neutrosophic Sets and 
Systems 45, 444-458
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standard or nonstandard subsets of  ] 0,1 [. From the requirement of practical applications about 

representing the featured degrees by real values, Wang et al [12] provided the definition of single-

valued neutrosophic sets (SVNSs). Cuong [13] also proposed the concept of picture fuzzy set (PFS) 

as a particular case of NSs. Some results on PFSs can be found in [14-19]. Because of the independent 

existence between the considered property and its corresponding implicit antagonist, Deli et al. [20] 

introduced the concept of bipolar neutrosophic sets (BNSs). This is a generalization of SVNSs and 

bipolar fuzzy sets [21]. In a BNS X , ( ), ( ), ( )T u I u F u  represent the characteristic degrees of an 

element u U  corresponding to X  and   ( ), ( ), ( )T u I u F u represent characteristic degrees of u

to some implicit counter-property corresponding to X . Some research on NSs and BNSs and their 

applications can be found in [22-36]. 

The advanced fuzzy distance measures are known as effective tools for solving decision-making 

problems [6-10, 13, 37]. Some of distance measures of SVNSs were proposed such as Hausdorff 

distance [38], Cosine similarity measures [39], and the distance measures of Ye [40], Aydoğdu [41], 

Huang [26], and Ngan et al. [42]. In 2018, Vakkas [43] et al. introduced similarity measures of BNSs 

and their application to decision-making problems. Vakkas's measure was defined without 

considering the condition of the inclusion relation on sets. In decision-making applications, this 

condition (in this paper, it is called the inference of the measure) should be required. Moreover, 

Vakkas's proposal does not imply cross-evaluation, which is necessary to distinguish the differences 

and was discussed in intuitionistic fuzzy and single-value neutrosophic environments [7,10,42]. 

Motivated by these observations, in this paper, a new distance measure set that includes cross-

evaluation and the inference of the measure is first proposed in a bipolar neutrosophic environment. 

Furthermore, an entropy measure is also developed by the similarity between two sets of mutual 

negation. Finally, an application to medical diagnosis on the UCI dataset is presented to illustrate the 

effective applicability of the proposed distance measure, where entropy values of different attribute 

sets are used to characterize their noises. 

The next sections of the paper are distributed content as follows. Some basic concepts and the 

related measure formulas are presented in Section 2. In Section 3, the proposals on the distance 

measure, the similarity measure, and the entropy measure on BNSs are introduced. In Section 4, an 

application to medical diagnosis given to show the effectiveness of the proposed distance measure. 

Finally, Section 5 shows the conclusions of the study. 

2. Preliminaries

Definition 1. [25] A NS X  on a universe set U  is characterized by three feature functions including 

a truth-membership function, 
X

T : U →  ] 0,1 [ , an indeterminacy-membership function,
X

I : U

→  ] 0,1 [ , and a falsity-membership function,
X

F : U →  ] 0,1 [ , where 

     0 sup ( ) sup ( ) sup ( ) 3 , .
X X X

U U U

T z I z F z z U (1) 

Definition 2. [20] A BNS X  on U  is defined by the form as follows: 

      , ( ), ( ), ( ), ( ), ( ), ( ) |
X X X X X X

X z T z I z F z T z I z F z z U or 

    , , , , ,
X X X X X X

X T I F T I F , (2) 

where   , , : 0,1 ,
X X X

T I F U  and      , , : 1,0 .
X X X

T I F U

Denoted by  BNS U  the set of all BNSs on U .

Definition 3. [20] Let 
1

X and 
2

X be two BNSs on U , then
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1 2

X X if and only if   
1 2 1 2 1 2

( ) ( ), ( ) ( ), ( ) ( ),T z T z I z I z F z F z  
1 2

( ) ( ),T z T z  
1 2

( ) ( ),I z I z

and  
1 2

( ) ( )F z F z . 

 
1 2

X X if and only if   
1 2 1 2 1 2

( ) ( ), ( ) ( ), ( ) ( ),T z T z I z I z F z F z     
1 2 1 2

( ) ( ), ( ) ( ),T z T z I z I z

and  
1 2

( ) ( )F z F z . 

          , ( ),1 ( ), ( ), ( ), 1 ( ), ( ) | .cX z F z I z T z F z I z T z z U

Definition 4. [43] A similarity measure of BNSs is a       
2

: 0,1S BNS U  mapping satisfying

1.   
1 2

0 , 1S X X , 

2.    
1 2 2 1
, ,S X X S X X , 

3.   1 2
, 1S X X for 

1 2
X X , where  

1 2
.,X BNS UX

In 2018, Vakkas et al. [43] proposed a similarity measure of BNSs as follows: 

          
1 2 1 1 2 2 1 2
, , 1 , ,

V V V
S X X S X X S X X (3) 

where     0,1 ,

 

 
 

   




     



  
 
   
 


     


 



1 2 1 2 1 2

1 2 1 2 1 2

1 1 1 2 2 2

1

1 1 2 2 2 2 2 2 2
1

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

2 ( ) ( ) ( ) ( ) ( ) ( )

( )

X i X i X i X i X i X i

n X i X i X i X i X i X i

V i
i

X i X i X i X i X i X i

X i X

T z T z I z I z F z F z

T z T z I z I z F z F z
S X X

T z I z F z T z I z F z

T z I       

 
 
 
 
 
 
 
      1 1 2 2 2

2 2 2 2 2( ) ( ) ( ) ( ) ( )
i X i X i X i X i

z F z T z I z F z

, 

and 

 

 
 



     





  
 
   
 


     


 



1 2 1 2 1 2

1 2 1 2 1 2

1 1 1 2 2 2

1

2 1 2
2 2 2 2 2 21

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

2 ( ) ( ) ( ) ( ) ( ) ( )

( )

X i X i X i X i X i X i

n X i X i X i X i X i X i

V i
i

X i X i X i X i X i X i

X i

T x T x I x I x F x F x

T x T x I x I x F x F x
S X X

T x I x F x T x I x F x

T x I     

 
 
 
 
 
 
 
      1 1 2 2 2

2 2 2 2 2( ) ( ) ( ) ( ) ( )
X i X i X i X i X i

x F x T x I x F x

. 

Note that: Vakkas’s proposal is without considering the condition related to the inclusion 

relation on sets. Some other measures are built based on the triangle inequality condition instead of 

the condition related to the inclusion relation on sets, such as the Hamming distance and the 

Euclidean distance [44, 45]. 

In 2021, by reasoning about the need for the cross-evaluation, Ngan et al. [42] defined the H-

max distance measure on SVNSs by 

  

   

    

   







     

 

 


1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 3
1

4

5

, ( ) ( ) ( ) ( ) ( ) ( )

max ( ), ( ) max ( ), ( )

max ( ), ( ) max ( ), ( )

n

HN i X i X i X i X i X i X i
i

X i X i X i X i

X i X i X i X i

d X X T z T z I z I z F z F z

T z I z I z T z

T z F z F z T z

(4) 

where    0,1
k , 




5

1

1,
k

k

    0,1
i , 




1

1.
n

i
i
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3. H-max bipolar neutrosophic weighted measure

Now, the provided definition of distance measures of BNSs includes the inference condition. 

Furthermore, a specific distance measure, called H-max bipolar neutrosophic weighted measure, is 

introduced based on the formula of 
HN

d  proposed by Ngan et al. [42]. 

Definition 5. For all  
1 2 3
, ,X X X BNS U where  

1
,...,

n
U z z , then a distance measure of BNSs is 

      
2

: 0,1d BNS U  mapping satisfying

1.    
1 2 2 1
, ,d X X d X X , 

2.   1 2
, 0d X X if and only if 

1 2
X X , 

3. If  
1 2 3

X X X , then    
1 2 1 3
, ,d X X d X X and    

2 3 1 3
, , .d X X d X X

Definition 6. Let  
1 2
,X X BNS U where  

1
,...,

n
U z z  and 

      
1 1 1 1 1 11

, ( ), ( ), ( ), ( ), ( ), ( ) |
X X X X X X

X z T z I z F z T z I z F z z U , 

      
2 2 2 2 2 22

, ( ), ( ), ( ), ( ), ( ), ( ) |
X X X X X X

X z T z I z F z T z I z F z z U . 

Then, the formula of H-max bipolar neutrosophic weighted distance measure between 
1

X and 
2

X

is as follows 

        
  

  
1 2 1 1 2 2 1 2
, , 1 ,

H BN H BN H BN
d X X d X X d X X , (5) 

where 

  

   

    

   








     

 

 


1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 1 2 1 2 3
1

4

5

, ( ) ( ) ( ) ( ) ( ) ( )

max ( ), ( ) max ( ), ( )

max ( ), ( ) max ( ), ( ) ,

n

H BN i X i X i X i X i X i X i
i

X i X i X i X i

X i X i X i X i

d X X T z T z I z I z F z F z

T z I z I z T z

T z F z F z T z

  

   

    

   





         




    

    

     

 

 


1 2 1 2 1 2

1 2 1 2

1 2 1 2

2 1 2 1 2 3
1

4

5

, ( ) ( ) ( ) ( ) ( ) ( )

min ( ), ( ) min ( ), ( )

min ( ), ( ) min ( ), ( ) ,

n

H BN i X i X i X i X i X i X i
i

X i X i X i X i

X i X i X i X i

d X X T z T z I z I z F z F z

T z I z I z T z

T z F z F z T z

where     , 0,1
k k , 




5

1

1,
k

k





5

1

1,
k

k

     , 0,1
i i

,  




1

1,
n

i
i

and    0,1 .  

Proposition 1. 
H BN

d  satisfies the following properties for all  
1 2 3
, ,X X X BNS U . 

1.  
 

1 2
0 , 1

H BN
d X X , 

2.  


1 2
, 0

H BN
d X X  if and only if 

1 2
X X , 

3.     


1 2 2 1
, ,

H BN H BN
d X X d X X , 

4.     


1 2 1 3
, ,

H BN H BN
d X X d X X and     


2 3 1 3
, ,

H BN H BN
d X X d X X  if  

1 2 3
X X X . 

Proof 

1. Apparently, for all 1,...,i n ,


1 2
( ) ( ) ,

X i X i
T z T z 

1 2
( ) ( ) ,

X i X i
I z I z 

1 2
( ) ( )

X i X i
F z F z    0,1 ,
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      1 2 1 2
max ( ), ( ) max ( ), ( ) 0,1 ,

X i X i X i X i
T z I z I z T z

   
1 2 1 2

max ( ), ( ) max ( ), ( )
X i X i X i X i

T z F z F z T z    0,1 , 

and 
           1 2 1 2 1 2

( ) ( ) , ( ) ( ) , ( ) ( ) 0,1 ,
X i X i X i X i X i X i

T z T z I z I z F z F z

         1 2 1 2
min ( ), ( ) min ( ), ( ) 0,1 ,

X i X i X i X i
T z I z I z T z

         1 2 1 2
min ( ), ( ) min ( ), ( ) 0,1 .

X i X i X i X i
T z F z F z T z

Hence,  
 

1 2
0 , 1.

H BN
d X X

2. Clearly,  

 

 



 

  


     


 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

,

, 0 , .

,

X X X X

H BN X X X X

X X X X

T T T T

d X X I I I I X X

F F F F

3. It can be seen that
H BN

d  has the symmetry property. 

4. Let  
1 2 3

X X X then for all 1,...,i n , 

   
1 2 3 1 2 3
( ) ( ) ( ), ( ) ( ) ( )

X i X i X i X i X i X i
T z T z T z I z I z I z , 

     
1 2 3 1 2 3
( ) ( ) ( ), ( ) ( ) ( )

X i X i X i X i X i X i
F z F z F z T z T z T z , 

   
1 2 3
( ) ( ) ( )

X i X i X i
I z I z I z , and    

1 2 3
( ) ( ) ( )

X i X i X i
F z F z F z . 

These lead to 

           

        

        

1 2 1 3 1 2 1 3 1 2 1 3

1 2 1 3 1 2 1 3 1 2 1 3

, , ,

, , .

X X X X X X X X X X X X

X X X X X X X X X X X X

T T T T I I I I F F F F

T T T T I I I I F F F F

Moreover, 

       
              

  

  

3 1 2 1 1 2 1 3

3 1 2 1 1 2 1 3

max , max , max , max , ,

min , min , min , min , ,

X X X X X X X X

X X X X X X X X

T I T I T I T I

T I T I T I T I

       
              

  

  

3 1 2 1 1 2 1 3

3 1 2 1 1 2 1 3

max , max , max , max , ,

min , min , min , min , .

X X X X X X X X

X X X X X X X X

T F T F T F T F

T F T F T F T F

Hence, 

       

              

  

  

2 1 1 2 3 1 1 3

2 1 1 2 3 1 1 3

max , max , max , max , ,

min , min , min , min , ,

X X X X X X X X

X X X X X X X X

T I T I T I T I

T I T I T I T I

       

              

  

  

2 1 1 2 3 1 1 3

2 1 1 2 3 1 1 3

max , max , max , max , ,

min , min , min , min , .

X X X X X X X X

X X X X X X X X

T F T F T F T F

T F T F T F T F

Thus,     


1 2 1 3
, ,

H BN H BN
d X X d X X .  Similarly,     


2 3 1 3
, ,

H BN H BN
d X X d X X  is proven. 
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Definition 7. Let  
1 2
,X X BNS U where  

1
,...,

n
U z z . Then, the formula of H-max bipolar

neutrosophic weighted similarity measure between 
1

X and
2

X is as follows 

    
 

1 2 1 2
, 1 , .

H BN H BN
s X X d X X (6) 

Proposition 2. 
H BN

s  satisfies the following properties, for all  
1 2 3
, ,X X X BNS U : 

1.  
 

1 2
0 , 1,

H BN
s X X

2.  


1 2
, 1

H BN
s X X  if and only if 

1 2
X X , 

3.    1 2 2 1
, ,

H BN H BN
s X X s X X

 
 , 

4.     


1 2 1 3
, ,

H BN H BN
s X X s X X and     


2 3 1 3
, ,

H BN H BN
s X X s X X if  

1 2 3
X X X . 

Remark 1. The proposed distance measure overcomes the limitations of the Hamming distance, the 

Euclidean distance [44, 45], and Vakkas's proposal [43]. Specifically, 

 The proposed measure 
H BN

d  includes cross-evaluations: 

   

   

   

   

   

   









1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

max ( ), ( ) max ( ), ( ) ,

max ( ), ( ) max ( ), ( ) ,

min ( ), ( ) min ( ), ( ) ,

min ( ), ( ) min ( ), ( ) .

X i X i X i X i

X i X i X i X i

X i X i X i X i

X i X i X i X i

T z I z I z T z

T z F z F z T z

T z I z I z T z

T z F z F z T z

 The proposed measure satisfies the property related to the inclusion relation, i.e., the

property 4 in Proposition 1.

Example 1. Let  
1
,...,

n
U z z . Put 

    
1

0 ,0.01 ,1 , 0.15 ,0 , 0.8
U U U U U U

X , 

    
2

0.79 ,0.01 ,0.61 , 0.79 ,0 , 0.61
U U U U U U

X , 

    
3

0.8 ,0 ,0.6 , 0.8 ,0 , 0.6
U U U U U U

X . 

Then,  
1 2 3
, ,X X X BNS U and  

1 2 3
X X X . By the similarity measure of Vakkas et al. [43] and 

choosing specific values for the parameters, we have 

      
1 3 1 1 3 2 1 3

1 1
, , , ,

2 2V V V
S X X S X X S X X

      
2 3 1 2 3 2 2 3

1 1
, , , ,

2 2V V V
S X X S X X S X X

where, 

 
         

   

         

            
 

     


         


1 1 3 2 2 2 2 2 2

2 2 2 22 2

0 0.8 0.01 0 1 0.6 0.15 0.8 0 0.8 0.6
, 0

2 0 0.01 1 0.8 0 0.6

0.15 0 0.8 0.8 0 0.6

V
S X X , 

 
         

       

            
 

     



          



2 1 3
2 2 2 2 2 2

2 2 2 22 2

0 0.8 0.01 0 1 0.6 0.15 0.8 0 0.8 0.6
, 0

2 0 0.01 1 0.8 0 0.6

0.15 0 0.8 0.8 0 0.6

V
S X X , 
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1 2 3 2 2 2 2 2 2

2 2 2 22 2

0.79 0.8 0.01 0 0.61 0.6 0.79 0.8 0 0.61 0.6
, 0

2 0.79 0.01 0.61 0.8 0 0.6

0.79 0 0.61 0.8 0 0.6

V
S X X , 

 
         

       

            
 

     



          



2 2 3
2 2 2 2 2 2

2 2 2 22 2

0.79 0.8 0.01 0 0.61 0.6 0.79 0.8 0 0.61 0.6
, 0

2 0.79 0.01 0.61 0.8 0 0.6

0.79 0 0.61 0.8 0 0.6

V
S X X . 

The obtained calculation results are   1 3
, 0

V
S X X  and   2 3

, 0
V

S X X . 

Now, from Definition 6 and choosing specific values for the parameters, we have 

       
 

1 3 1 1 3 2 1 3

1 1
, , ,

2 2H BN H BN H BN
d X X d X X d X X , 

       
 

2 3 1 2 3 2 2 3

1 1
, , ,

2 2H BN H BN H BN
d X X d X X d X X , 

where 

  

        


     

    

1 1 3

1
, 0 0.8 0.01 0 1 0.6

5

max 0,0 max 0.01,0.8 max 0,0.6 max 1,0.8 0.482,

H BN
d X X

  

        


     

          

2 1 3

1
, 0.15 0.8 0 0 0.8 0.6

5

min 0.15,0 min 0, 0.8 min 0.15, 0.6 min 0.8, 0.8 0.34,

H BN
d X X

  

        


     

    

1 2 3

1
, 0.79 0.8 0.01 0 0.61 0.6

5

max 0.79,0 max 0.01,0.8 max 0.79,0.6 max 0.61,0.8 0.01,

H BN
d X X

  

        


     

          

2 2 3

1
, 0.79 0.8 0 0 0.61 0.6

5

min 0.79,0 min 0, 0.8 min 0.79, 0.6 min 0.61, 0.8 0.008.

H BN
d X X

Hence, 

   

    
 

 

  

  

1 3 2 3

1 3 2 3

, 0.411 , 0.009

, 0.589 , 0.991 .

H BN H BN

H BN H BN

d X X d X X

s X X s X X

In this case, by observation we can also see that 
2

X and 
3

X are almost the same. In addition,

since  
1 2 3

X X X , it can be deduced that the difference between 
1

X and 
3

X is greater than the 

that between
2

X and
3

X . The proposed distance measure is likely to properly represent this 

assessment and inference and overcomes the limitation of the proposal of Vakkas et al. [43]. 

Example 2. Let  
1
,...,

n
U z z . Put 

    
1

0.4 ,0 ,0.4 , 0.8 ,0 , 0.8
U U U U U U

X , 

    
2

0.5 ,0 ,0.5 , 0.7 ,0 , 0.7
U U U U U U

X , 

    
3

0.4 ,0 ,0.6 , 0.6 ,0 , 0.8
U U U U U U

X . 

Then,  
1 2 3
, ,X X X BNS U ,   1 2 2 1

, ,X X X X and 
3 2

X X . 

The Hamming distance [44, 45] on  BNS U  can be defined as follows:
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1 2 1 2 1 2

1 2 1 2 1 2

1 2
1

1
, ( ) ( ) ( ) ( ) ( ) ( )

6

( ) ( ) ( ) ( ) ( ) ( ) .

n

Ham X i X i X i X i X i X i
i

X i X i X i X i X i X i

d X X T z T z I z I z F z F z

T z T z I z I z F z F z

The Euclidean distance [44, 45] on  BNS U  can be defined as follows:

 


     

 
     




      




1 2 1 2 1 2

1 2 1 2 1 2

2 2 2

1 2
1

1

2 2 2 2

1
, ( ) ( ) ( ) ( ) ( ) ( )

6

( ) ( ) ( ) ( ) ( ) ( ) .

n

Eucl X i X i X i X i X i X i
i

X i X i X i X i X i X i

d X X T z T z I z I z F z F z

T z T z I z I z F z F z

Some of the calculation results obtained are as follows: 

    
1 2 3 2

4
, ,

6Ham Ham
d X X d X X  , 

    
1 2 3 2

6
, ,

30Eucl Eucl
d X X d X X , 

    
  

1 2 3 2
, 0.06 , 0.08

H BN H BN
d X X d X X

Clearly, in this case, because of cross-evaluations, the proposed measure can distinguish the 

difference better than two related measures. 

Definition 8. For     : 0,1E BNS U  mapping, if the following conditions are satisfied then E  is

an entropy measure of BNSs. 

1. ( ) 0E X if and only if X or cX is a crisp set, 

2. ( ) ( )cE X E X ; ( ) 1E X  if and only if  cX X , 

3. 
1 2

( ) ( )E X E X   if Ð
1 2

X X , i.e., if 
1 2X X

T T , 
1 2X X

F F ,  
1 2X X

T T ,  
1 2X X

F F for 
2 2X X

T F , 

 
2 2X X

T F ,  
1 2

0.5
X X U

I I ,    
1 2

0.5
X X U

I I ; and 
1 2X X

T T , 
1 2X X

F F ,  
1 2

,
X X

T T  
1 2X X

F F for 


2 2X X

T F ,  
2 2X X

T F ,  
1 2

0.5
X X U

I I ,    
1 2

0.5
X X U

I I . 

Proposition 3. Let  X BNS U , where  
1
,...,

n
U z z , then 


( , )c

H BN
s X X is an entropy measure of 

X . 

Proof. 

1. If X  be a crisp set, i.e.,         1 , 0 , 0 , 1 ,
X U X X U X X U X U

T I F T I F  or

        0 , 1 , 1 , 0
X X U X U X U X X U

T I F T I F , then, 


( , ) 0.c

H BN
s X X  Similarly, if cX is a crisp 

set, then 


( , ) 0.c

H BN
s X X  If 


( , ) 0,c

H BN
s X X  then it's not hard to show that X  or cX is a 

crisp set. 

2. From Proposition 2, we obtain that ( ) ( )cE X E X ; 


( , ) 1c

H BN
s X X  if and only if  .cX X

3. Let Ð
1 2

X X , assume that 
1 2X X

T T , 
1 2X X

F F ,  
1 2X X

T T ,  
1 2X X

F F for 
2 2X X

T F ,  
2 2X X

T F , 

 
1 2

0.5
X X U

I I ,    
1 2

0.5
X X U

I I , then 

   

  

  

1 2 2 1

1 2 2 1

,

,

X X X X

X X X X

T T F F

T T F F

         
1 2 2 1

max ,0.5 max ,0.5 max ,0.5 max ,0.5 ,
X U X U X U X U

T T F F

                
1 2 2 1

min , 0.5 min , 0.5 min , 0.5 min , 0.5 ,
X U X U X U X U

T T F F
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1 3 5 4
1

1 3 5 4
1

max ( ),0.5
, ( ) ( )

max 0.5, ( )

min ( ), 0.5
1 ( ) ( ) , 1,2.

min 0.5, ( )

t

t t

t

t

t t

t

n
X ic

H BN t t i X i X i
i

X i

n
X i

i X i X i
i

X i

T z
d X X T z F z

F z

T z
T z F z t

F z

Therefore,     


1 1 2 2
, ,c c

H BN H BN
d X X d X X  and then     


1 1 2 2
, , .c c

H BN H BN
s X X s X X

Similarly, the remaining case is proved.

4. An application of the H-Max Bipolar Neutrosophic Distance Measure to medical diagnosis

4.1. The H-BN method 

A diagnostic problem is stated as follows: 

 A medical dataset includes

 m records of m corresponding patients , 1,2,...,
i

P i m , 

 n attributes (symptoms) 
j

A ,  1,2...,j n , of a disease D , 

 k disease classes labeled 
t

C ,  1,2,...,t k , of .D

 The problem is to build a diagnostic system with

 the inputs are the symptoms of a patient,

 the output is a disease label.

The proposed method: 

Inspired by the diagnostic method introduced in [42] by Ngan et al, the proposed method (H-

BN) includes four steps as follows. 

 Step 1. Built two relation matrices in the bipolar neutrosophic environment:

 Matrix 1 (M1) presents the relations between the symptoms and patients (
i

P and 
j

A

are the ith row and the jth column of M1, respectively,  1,..., ; 1,...,i m j n ),

 Matrix 2 (M2) shows the relations between the symptoms and the disease or the

classification results. Specifically, M2 is a k n  matrix (
t

C is the tth row of M2, 

1,...,t k ). 

 Step 2. Find the entropies  j
E A of the symptoms

j
A . 

 Step 3. Calculate the similarity  
,

H BN i t
s P C between the symptoms of 

i
P and the disease 

classes 
t

C , where  j
E A is put in the weight of 

j
A . 

 Step 4. Diagnose the ith patient by finding the highest similarity value

    


0

ˆ , ,
H BN i t H BN i t

s P C s P C ,    0
1, .t k  The output is 

0
t . 

4.2. Numeric example 

In this section, we use the data in the numerical example in [42] on 5 male patients (aged about 

30) of Indian Liver Patient Dataset (ILPD) taken from UCI. In the dataset described in Table 1, there

are 2 diagnosis labels which are La-I (liver patient) and La-II (non-liver patient). In Table 1, the

considered attributes (
1

A - 
7

A ) are Alkaline Phosphotase, Alamine Aminotransferase, Aspartate 

Aminotransferase, Total Bilirubin, Direct Bilirubin, Albumin, and Albumin and Globulin Ratio. 
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Table 1. Data of 5 male patients of the ILPD dataset. 

1
A

2
A

3
A

4
A

5
A

6
A

7
A Class 

1
P 1.3 0.4 482 102 80 3.3 0.9 La-I 

2
P 0.8 0.2 198 26 23 4 1 La-II 

3
P 0.9 0.2 518 189 17 2.3 0.7 La-I 

4
P 3.8 1.5 298 102 630 3.3 0.8 La-I 

5
P 0.8 0.2 156 12 15 3.7 1.1 La-II 

The steps of the proposed algorithm are implemented as follows: 

 Step 1: Input data is fuzzified by the following fuzzification functions selected by experts.

 




 

 



 



  


 

,

0
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z
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z

Figure 1. The fuzzification functions are illustrated by graphs. 

Specifically, the symptoms on patients are represented as the following BNSs. 

     

  

1 1 1 1 1 1 1

1.2,5.3 0.2,3 0.6,4 0.9,5 0.5,3.5 0.3,4.5

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z

     

  

2 2 2 2 2 2 2

0.4,2.3 0.1,1 0.15,1.5 0.2,2 0.2,1.2 0.3,2

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z
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3 3 3 3 3 3 3

140,486 80,250 100,400 110,450 90,300 110,420

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z

     

  

4 4 4 4 4 4 4

33,119 5,60 30,100 25,90 10,70 40,95

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z

     

  

5 5 5 5 5 5 5

33,100 10,90 23,95 33,100 10,90 23,95

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z

     

  

6 6 6 6 6 6 6

2.2,3.5 2,4 3,5 2.3,3.3 2.2,4.1 2.8,5.2

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

L z R z R z L z R z R z

     

  

7 7 7 7 7 7 7

0.5,1 0.3,1.5 0.8,2.5 0.6,1.1 0.2,1 0.7 ,2.8

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

L z R z R z L z R z R z

Two bipolar neutrosophic relation matrices M1 and M2 are placed in Tables 2 and 3. 

Table 2. The relations between the symptoms and patients are presented. 

(M1) 
1

A
2

A
3

A
4

A
5

A
6

A
7

A

1
P <0.02,0.6, 

0.8,-0.9, 

-0.3,-0.2>

<0,0.6, 

0.8,-0.9, 

-0.2,-0.06>

<0.9,0, 

0,0, 

-1,-1>

<0.8,0, 

0,0, 

-1,-1>

<0.7,0.1, 

0.2,-0.3, 

-0.9,-0.8>

<0.1,0.6, 

0.1,-1, 

-0.4,-0.8>

<0.2,0.5, 

0.08,-0.6, 

-0.1,-0.9>

2
P <0,0.7,

0.9,-1,

-0.1,-0.1>

<0,0.8,

0.9,-1, 

0,0> 

<0.1,0.3, 

0.6,-0.7, 

-0.5,-0.3>

<0,0.6,

1,-1,

-0.3,0>

<0,0.8,

1,-1, 

-0.2,0>

<0,1,

0.5,-1,

-0.05,-0.5>

<0,0.5,

0.1,-0.8,

0,-0.85>

3
P <0,0.7,

0.9,-1,

-0.1,-0.1>

<0,0.8, 

0.9,-1, 

0,0> 

<1,0,

0,0, 

-1,-1>

<1,0,

0,0,

-1,-1>

<0,0.9,

1,-1,

-0.09,0>

<0.9,0.1,

0,0, 

-0.9,-1>

<0.6,0.3,

0,-0.2,

-0.4,-1>

4
P <0.6,0,

0.05,-0.3,

-1,-0.8>

<0.5,0, 

0,-0.3, 

-1,-0.7>

<0.4,0,

0.3,-0.4,

-1,-0.6>

<0.8,0,

0,0, 

-1,-1>

<1,0,

0,0, 

-1,-1>

<0.1,0.6,

0.1,-1,

-0.4,-0.8>

<0.4,0.4,

0,-0.4,

-0.25,-0.95>

5
P <0,0.7,

0.9,-1,

-0.1,-0.1>

<0,0.8,

0.9,-1,

0,0>

<0.04,0.5,

0.8,-0.9,

-0.3,-0.1>

<0,0.8,

1,-1,

-0.03,0>

<0,0.9,

1,-1,

-0.06,0>

<0,0.8,

0.3,-1,

-0.2,-0.6>

<0,0.6,

0.2,-1, 

0,-0.8> 

Table 3. The relations between the symptoms and the classification results are shown. 

(M2) 
1

A
2

A
3

A
4

A
5

A
6

A
7

A

La-I <1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

La-II <0,1,1, 

-1,0,0>

<0,1,1, 

-1,0,0>

<0,1,1, 

-1,0,0>

<0,1,1, 

-1,0,0>

<0,1,1, 

-1,0,0>

<0,1,1, 

-1,0,0>

<0,1,1, 

-1,0,0>
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 Step 2: Finding the entropies    
  ( , ) 1 ( , )c c

j H BN j j H BN j j
E A s A A d A A  with    

i i

   
1

( , 1,...,5)
5j j

i j  and  
1

2
: 

  1
0.27E A ,   2

0.2E A ,   3
0.33E A ,   4

0.08E A , 

  5
0.13E A ,   6

0.55E A ,   7
0.68E A . 

 Step 3: Calculating the similarities  La - I


 ( ) ,( )
H BN i

S i I s P and    La - II


  ,( )
H BN i

S i II s P

with    
1

( , 1,...,5)
5j j

i j ,  
1

,
2

 and 
 

 
  



 


5

1

.
j

j j

j
j

E A

E A

 The obtained results 

include:             
1 2 3 4 5 6 7

0.12, 0.09, 0.15, 0.035, 0.06, 0.245, 0.3,

    (1 ) 0.49 (1 ) 0.475,S I S II     (2 ) 0.2 (2 ) 0.75,S I S II  

    (3 ) 0.642 (3 ) 0.327,S I S II     (4 ) 0.63 (4 ) 0.33,S I S II

    (5 ) 0.186 (5 ) 0.788.S I S II

 Step 4. The outputs are decided as follows:  The outputs of
1 2 3 4
, , ,P P P P , and 

5
P are La-I, La-

II, La-I, La-I, and La-II, respectively. These decisions and the last column of Table 1 are the same. 

4.3. Experiment 

In this part, we test the proposed method on the ILPD dataset on Matlab programming with the 

evaluation criteria on accuracy is Mean Absolute Error (MAE) and the speed of the algorithms is 

measured in seconds (sec). Also on this data, Ngan et al. [8] tested 14 other diagnostic methods, 

denoted by 
1 1SK

M , 
1 2SK

M , 
1 3SK

M , 
1 4SK

M , 
2SK

M , 
WX

M , 
VS

M , 
ZJ

M , 
W

M , 
J

M , ,
SA

M
maxH

M , 

C QDM
M , and 

P QDM
M , based on the considered intuitionistic fuzzy distance measures (see Table 4). 

Table 4. MAEs and Sec of the considered methods on the ILPD dataset. 

Methods MAE Sec 

1 1SK
M 0.3195 0.6177 

1 2SK
M 0.3158 0.4427 

1 3SK
M 0.3316 0.4827 

1 4SK
M 0.2918 0.4602 

2SK
M 0.2902 0.6527 

WX
M 0.3227 0.4427 

VS
M 0.2893 0.5552 

ZJ
M 0.3096 0.5602 

W
M 0.2915 0.8452 

J
M 0.289 1.2077 

,
SA

M 0.3031 0.8102 

maxH
M 0.2848 0.51 

C QDM
M 0.2836 0.155 

P QDM
M 0.2831 0.469 
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H-BN 0.2729 0.559770 

In Table 4, it can be observed that the MAE value of the proposed method (H-BN), which is 

0.2729, is less (better) than those of the other algorithms on the ILPD datasets. Figure 2 shows the 

MAE values of the considered methods on the ILPD dataset, where the heights of the vertical bars 

present the MAE values of the corresponding algorithms. The heights of the H-BN method (green 

bars) are lower than those of the remaining bars, that means, it is the best algorithm in terms of 

accuracy of the considered algorithms on the ILPD dataset. We note that the computation time of our 

algorithms is very close to the computation time of the other methods. 

Figure 2. MAEs of the considered methods on the ILPD dataset. 

5. Conclusions

In this paper, based on the H-max distance measure on IFSs and SVNSs, a new distance measure 

on BNSs is introduced to overcome the limitations of the related measures by including cross-

evaluations and satisfying the condition of inference of a distance measure. Furthermore, a bipolar 

neutrosophic entropy measure and its basic properties are presented and proven. In addition, an 

application to medical diagnosis is shown to illustrate the effective applicability of the measures. 

There, the proposed diagnostic method called H-BN, a numerical example and real experiment are 

clarified in detail. In the future, we will test the proposed diagnostic method on other real datasets 

taken from UCI. Furthermore, we will develop the distance measure for interval-valued bipolar 

neutrosophic sets. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix 

Source code and dataset of this paper can be found at this link: 

https://sourceforge.net/projects/hbn-datasets-code/. 
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Abstract: In this paper, we present the Neutrosophic quadratic residues and nonresidues with their 

basic interpretation as graphs in an algebraic manner and analog to the algebraic graphs. We 

establish the Neutrosophic, number-theoretic, and graph-theoretic properties of the set of 

Neutrosophic quadratic residues and nonresidues, many of which mirror those of the classical 

quadratic residues and nonresidues of modulo an odd prime. These properties, especially the 

algebraic ones, are connected to algebraic graphs, and thus we conclude the paper by studying the 

structural properties of Neutrosophic quadratic residue and quadratic nonresidue graphs. 

Keywords: Quadratic residues; Quadratic nonresidues; Neutrosophic quadratic residues; 

Neutrosophic quadratic nonresidues; Neutrosophic quadratic residue graph; Neutrosophic 

quadratic nonresidue graph. 

1. Introduction

For any positive integer , the set  is a ring under the usual 

addition and multiplication modulo . Moreover, for any prime , the ring  is a field of order 

and hence  is a group under multiplication modulo , see [1-2]. 

For ,  is a quadratic residue modulo  if and only if  for some . Now 

suppose  denote the set of all quadratic residues modulo . Then  is a nonempty subset of , 

given by . It is clear that for any , there exists  and  in 

 such that . Therefore,  is a subgroup of  and also the index 

. This implies that  if and only if  and  are both in  or neither of them is 

in . This specifies that an element in  as a residue or nonresidue according to whether or not it 

Neutrosophic Quadratic Residues and Non-Residues 

Chalapathi Tekuri, Sajana Shaik, Florentin Smarandache 

Chalapathi Tekuri, Sajana Shaik, Smarandache Florentin (2021). Neutrosophic 
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is a quadratic residue modulo . In particular, the set of all quadratic nonresidues modulo  in 

is denoted by . Hence . So,  is the normal subgroup and  is the only 

nonempty subset of  whose orders are equal. For more information about  and , reader 

refer [3].  

Much of the specific power and utility of modern mathematics arises from its abstraction of 

important features similar to various circumstances and illustrations. But many sets and systems we 

encounter have a usual addition and multiplication defined on their elements. These operations 

often satisfy a few common properties that we want to isolate and study. Besides the obvious 

illustrations in different number systems and algebraic systems, we can operate polynomials, 

functions, matrices, etc. Studying the algebraic structure of groups, rings, and fields based on 

number theoretic and combinatorial properties has caught the interest of many researchers order the 

last decades. Recently, algebraic systems associated with neutrosophic elements and sets [4] seem to 

be more interesting and active area compare to those associated with classical algebraic structures. 

For instance, the Neutrosophic set  is generated by the multiplicative group  and the 

neutrosophic unit element  (  and  does not exist), that is,  or equivalently 

, where  is prime. This is a Neutrosophic group [5] concerning 

Neutrosophic multiplication  for every , . 

The concept of the Neutrosophic graph of Neutrosophic structures was first introduced by 

Vasanth Kandasamy and Smarandache [6], but this work was mostly concerned with the basic 

properties of Neutrosophic algebraic structures. Recently, the authors Chalapathi and Kiran studied 

the Neutrosophic graphs [5] of finite groups. The Neutrosophic graph of a finite group , which is 

denoted by , is an undirected simple graph whose vertices are elements of the neutrosophic 

group  with two distinct vertices  and  which are adjacent if and only if either  or 

. 

In 1879, author Cayley considered the Cayley graph for finite groups. After that, a lot of 

research has been done on various families of Cayley graphs. For instance, Quadratic residue Cayley 

graphs [7], Quartic residue Cayley graphs [8].  Many researchers exist in the literature on Cayley 

graphs quadratic residues on odd prime and prime power modules. The authors studied quadratic 

residues modulo  Cayley graphs in [9]. In this paper, we will focus on Neutrosophic quadratic 

residues and their corresponding algebraic graphs, which are not Cayley graphs. 
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2. Neutrosophic Quadratic and Non Quadratic Residues

In this section, for convenience and also for later use, we define some definitions and 

notations concerning integers modulo an odd prime  , and Neutrosophic quadratic and 

nonquadratic residue modulo . 

First, we recall some results about neutrosophic groups from [5]. 

Theorem 2.1:  

1.

2. , where 

Theorem 2.2: Let  be a finite group with respect to multiplication modulo . Then 

1.  and 

2. 

Let . Then  is a neutrosophic quadratic residue modulo  if and only if 

 for some . Now suppose  denote the set of all neutrosophic quadratic 

residues modulo . Then  is a nonempty subset of  given by 

. 

Further, if for any , then  and  for some 

,  so 

Hence  is a neutrosophic subgroup of  with neutrosophic index, by the 

Theorem 2.1. 

. 

Similarly, the set of all neutrosophic quadratic non-residues modulo  in  is denoted by 

with . 

Example 2.3: The following shortlist shows that the Neutrosophic quadratic and nonquadratic 

residues modulo , respectively.  
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, 

, 

. 

From the above example, we observe the following: 

  and . In particular, 

 and 

. 

Theorem 2.4: Given , , is the neutrosophic prime subgroup of , 

where . 

Proof: It is clear from the well-known result that  is a subgroup of the group , because 

. 

Theorem 2.5: Fundamental Theorem of Neutrosophic Quadratic Residues Modulo 

For each , we have the neutrosophic quotient group is isomorphic to the 

neutrosophic group . 

Proof: For any , we have  and . Therefore, 

 is a neutrosophic subgroup of . So, there exists a 

Neutrosophic quotient group . Now we claim that . For this, we define a 

map  by the relation 

Clearly,  is a well-defined group and Neutrosophic group homomorphism, because 

 and , . 
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Now to find a kernel of . If , then by the definition of kernel of group (classical) 

homomorphism,   

. 

Similarly, if , then by the definition of a kernel of a Neutrosophic group homomorphism, 

. 

Hence, 

. 

Finally, to find image of . 

. 

By the fundamental theorem of a Neutrosophic group homomorphism, . This shows 

that . 

Remark 2.6:  is a Neutrosophic quadratic residue if and only if , otherwise, 

it is called neutrosophic quadratic residue modulo . 
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Example 2.7: For the prime , we have , , 

, ,

.  

Theorem 2.8: The neutrosophic product of two neutrosophic quadratic residues is again a 

neutrosophic a quadratic residue modulo . Similarly, the neutrosophic product of two 

Neutrosophic quadratic nonresidues is a Neutrosophic quadratic residue modulo . 

Proof: Since is a Neutrosophic normal subgroup of the Neutrosophic group 

whose index is . So there exists a Neutrosophic quotient group  such that , that 

is . 

Let  such that . Then , since . Let  such 

that . Then . 

Let   such that . Then . Let  such 

that . Then . 

Because   and , we know that the neutrosophic 

quotient group defined as . 

(1) If , then 
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, since ,  

and thus . 

(2) If , then . So there exists  such that  and . Then 

, since  and 

Hence . 

(3) If  and , then 

, since 

, since  iff . 

Hence . This proves the theorem. 

Now, let us start with simple undirected graphs of neutrosophic quadratic residue and 

Neutrosophic quadratic Nonresidue graphs of the Neutrosophic graph  whose vertices are 

members in the Neutrosophic graph  where  is an odd prime. 

3. Neutrosophic Quadratic Residue Graphs

Structurally, many real-world concepts, aspects, and situations can be described by using and 

applying diagrams of a set of vertices with edges joining pairs of these vertices. So, a mathematical 

abstraction of this type of diagram gives rise to the concept of a graph. A graph  and is denoted by 
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, where  and  vertex and edge sets of , respectively. A graph  is 

said to be connected if there is at least one path between every two vertices in  and disconnected if 

 has at least one pair of vertices between which there is no path. Every graph  consists of one or 

more connected graphs as subgraphs, and each such connected subgraph of  is called a 

component of  , and each component of  is denoted by . It is clear that every connected 

graph contains only one component and every disconnected graph of more than one vertex contains 

two or more components. Now a graph  is said to be complete if every vertex in  is connected to 

another vertex in . 

A complete graph of order  is denoted by  and it has exactly edges, and it is 

called the size of . If  is a vertex of , then the number of edges incident on a vertex  is called 

the degree of  and it is denoted by . In particular, if  for every vertex  in , 

then  is called a regular graph. A graph  is said to be bipartite if its vertex set  can be 

partitioned into two non-empty disjoint subsets and  such that each edge of  connects a 

vertex of  to a vertex of , and the pair  is called bipartite of . Similarly,  is called a 

complete bipartite graph if each vertex of  is adjacent to each vertex of . Now, consider two 

graphs  and , then  and  are isomorphic to each other and it is denoted 

by  if there is a one-to-one correspondence between their vertices and between their edges 

such that the incidence relationship is preserved, see [10]. 

Definition 3.1: An undirected simple graph  is called a Neutrosophic quadratic residue 

graph of the Neutrosophic group  whose vertex set is  and two distinct vertices 

and  are adjacent in  if and only if . 

Before studying the properties of neutrosophic quadratic residue graphs, we give two 

examples to illustrate their usefulness. 
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Example 3.2: Since  is the vertex set of the graph , 

where . 

Figure 1. Neutrosophic Quadratic Residue Graph  of modulo 5. 

Example 3.3: For , we have  and 

. Then the graph  is represented as follows. 

Figure 2. Neutrosophic Quadratic Residue Graph  of modulo 7. 

In this section, the basic properties of  being studied. We begin with the 

disconnectedness of the graph . 

Theorem 3.4: For , the graph  is disconnected. In particular, graph 

is the disjoint union of two complete components. 

Proof: Let  be an odd prime. Then the vertex set of neutrosophic quadratic residue graph 

 is . But 

where . This gives us that the vertex set  is partitioned into 
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two disjoint unions of  and . So, because of Theorem 2.8, we clear that 

 is disconnected. Now consider the following three cases. 

Case 1: Suppose . Then obviously . This implies that there exists an 

edge between any two vertices  and  in the graph . Thus,  has a 

complete subgraph, say  whose vertex set is . 

Case 2: Suppose . Then again by Theorem 2.8, . So, in this case also 

there exists an edge between every two vertices  and  in the graph . Thus, the 

graph,  has another complete subgraph, say  whose vertex set is 

. 

Case 3: Suppose  and . Then . It gives us that there is no 

edge between  and  when  and . 

From the above three cases, we conclude that  and  are two 

disjoint complete components of the graph  such that 

. 

Example 3.5: Two components of the graph as shown below. 

Figure 3. Components of the graph . 

For each odd prime , the structure of  is easy to describe, because it contains 

the following properties: 
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1.  contains two disjoint connected components for each . 

2. Each component of  contains even and odd cycles for . 

3. Each component of  is not a bipartite graph for .

The next result gives useful and important properties of the components of the graph

 when . 

Theorem 3.6: For each prime , . 

Proof: For each prime , the Neutrosophic quadratic residue and non-residue sets of 

are given by  and . 

These are the vertex sets of the components  and , 

respectively. Also, we have . Now to prove that 

 and  are isomorphic as groups. For this, we define a function 

 by the relation  for every  and . Because 

of  and , the map  is a one-to-one correspondence. 

Now, suppose  be an edge with end vertices  and  in the component 

. Then , 

, 

where  be an edge with end vertices  and  in . This shows that 

there is a one-to-one correspondence between their vertices and their edges such that the incidence 

relationship is preserved. Hence, .   

The following example illustrates the procedure of the above theorem 3.6 clearly.  

Example 3.7: Since  and . Using the map 

 as above, write the equations , ,  and 
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. These equations show that  is a one-to-one correspondence between the graph 

components and , and thus which are isomorphic as graphs. 

This special case of the above theorem when  occurs frequently and so we isolate it as a 

corollary.  

Corollary 3.8: Each component of the neutrosophic quadratic residue graph is isomorphic to the 

complete graph 

Proof: Due to Theorem 3.6, the only possibility of the graph  is 

. Therefore, the order and size of each component are 

and , respectively, and thus each component of the graph  is isomorphic to the 

complete graph . 

Example 3.9:  and . 

The integer  is prime if and only if  or . But, this paper 

will denote odd prime integer such that either  or . These prime integers 

are weapons for verifying two components of the graph  are Eulerian or not. It is now 

the time for determining the cases in which the components of the graph  are Eulerian, 

but first, we recall the following well-known result. 

Theorem 3.10 [10]: A connected graph  is Eulerian if and only if the degree of each vertex of  is 

even. 

For  or  the following theorems show that  could 

not be Eulerian. 

Theorem 3.11: If  or , then each component of  is not 

Eulerian. 

Proof: Suppose on contrary that each component of  is Eulerian, which implies that the 

degree of each vertex is even. By Theorem 3.6, it is clear that 

. 
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So, for every vertex  in , we have 

. 

, which is odd. Similarly, we can show that 

, which is also odd. Hence, we found that the degree of each vertex in 

the graph  can not be even. This contraposition shows that each component of 

 is never Eulerian when  or . 

4. Neutrosophic Quadratic Nonresidue Graphs

In this section, we establish a complement graph of the neutrosophic quadratic residue graph 

, which is denoted by  and it is called a Neutrosophic quadratic 

nonresidue graph whose vertex set is the Neutrosophic group  and edge set is 

. 

Example 4.1: Since  and . The Neutrosophic quadratic 

nonresidue graph of  is shown below. 

Figure 4. The graph . 

Now several interesting properties of these graphs on Neutrosophic quadratic nonresidues of 

modulo  have been obtained.  

We begin with the basic properties of . 

Theorem 4.2: The Neutrosophic quadratic nonresidue graph  is connected. 

Proof: By the Theorem 2.8, whenever  and . This relates, 

for each , we have 
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 , 

, 

 and 

.  

These sets determine the elements 

, , ...,  ; 

, , ...,  ; 

...  ...  ... 

, , ...,  ; 

...  ...       ...  

, ( , ..., ( ;  

, ( , ..., ( ; 

     ...  ...       ... 

, ( , ..., ( ; 

    ...     ...           ... 

are elements in  and which are the edges in the graph . Consequently, there is 

a path between any two distinct vertices in  and hence  is connected. 

Theorem 4.3: The Neutrosophic quadratic nonresidue graph  is 

- regular.

Proof: If  is any vertex of the Neutrosophic quadratic nonresidue graph , then 

must be an element of the Neutrosophic group . So there exist Neutrosophic quadratic 

residues  and nonresidues  such that 

. 
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This partition of the vertex set of the graph  implies that either 

 or . 

Now , and if  then by Theorem 

2.8 . 

It gives that the vertex  is adjacent to every element in . This means that 

.  

Next  and if . Then, again by 

the Theorem 2.8, 

. 

It yields that , proving that the Neutrosophic Quadratic nonresidue Graph 

 is  regular. 

Finally looking at another basic property of the Neutrosophic quadratic nonresidue graph, we 

state the following fundamental theorem of graph theory. 

Theorem 4.4 [10]: If  is a simple undirected graph of the size . Then 

Theorem 4.5: The size of the graph  is . 

Proof: By the Theorem 4.3 and theorem 2.5, the size of the graph  is denoted by 

and defined as  
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. 

5. Conclusions

In this paper, we have studied two Neutrosophic graphical representations for determining the

Neutrosophic Quadratic residues and nonresidues of the Neutrosophic group of modulo prime by 

using Neutrosophic algebraic theory, number theory, and classical algebraic theory. In addition to 

these, the Neutrosophic algebraic system can find Neutrosophic properties of Quadratic residues 

and nonresidues. Also, this algebraic-based application produces the complement neutrosophic 

graphs of each disjoint union of Neutrosophic Quadratic residue and nonresidue sets.  
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Practical Applications of the Independent 
Neutrosophic Components and of the 

Neutrosophic Offset Components 
Florentin Smarandache 

Abstract: The newly introduced theories, proposed as extensions of the fuzzy theory, such as the 

Neutrosophic, Pythagorean, Spherical, Picture, Cubic theories, and their numerous hybrid forms, 

are criticized by the authors of [1]. In this paper we respond to their critics with respect to the 

neutrosophic theories and show that the DST, that they want to replace the A-IFS with, has many 

flaws.  

Their misunderstanding, with respect to the partial and total independence of the neutrosophic 

components, is that in the framework of the neutrosophic theories we deal with a MultiVariate 

Truth-Value (truth upon many independent random variables) as in our real-life world, not with a 

UniVariate Truth-Value (truth upon only one random variable) as they believe.  

About the membership degrees outside of the interval [0, 1], which are now in the arXiv and 

HAL mainstream, it is normal that somebody who over-works (works overtime) to have an 

over-membership (i.e., membership degree above 1) to be distinguished from those who do not 

work overtime (whose membership degree is between 0 and 1). And, similarly, a negative 

employee (that who does only damages to the company) to have a negative membership (i.e., 

membership degree below 0) in order to distinguish him from the positive employees (those 

whose membership degree is above 0). There are elementary practical applications in this paper 

that allow us to think out of box (in this case the box is the interval [0, 1]). 

Keywords: Neutrosophy; Neutrosophic Components; Neutrosophic Offset Components; 

TriVariate Truth-Value; MultiVariate Truth-Value; UniVariate Truth-Value. 

1. Independence and Dependence of the Neutrosophic Components

The introduction should briefly place the study in a broad context and highlight why it is 

important. It should define the purpose of the work and its significance. The current state of the 

research field should be reviewed carefully and key publications cited. Please highlight 

controversial and diverging hypotheses when necessary. Finally, briefly mention the main aim of the 

work and highlight the principal conclusions. As far as possible, please keep the introduction 

comprehensible to scientists outside your particular field of research. References should be 

numbered in order of appearance and indicated by a numeral or numerals in square brackets, e.g., 

[1] or [2,3], or [4–6]. See the end of the document for further details on references.

1.1 TriVariate Truth-Value 

Neutrosophy [15], as new branch of philosophy, started from the practical principle that 

everything (E) should be evaluated from three independent points of view (or sources of information, or 

Florentin Smarandache (2021). Practical Applications of the Independent Neutrosophic 
Components and of the Neutrosophic Offset Components. Neutrosophic Sets and Systems 47, 
558-572
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random variables): two opposite ones (positive and negative), and a third one the neutral in between 

them, for a fear evaluation. Thus, a neutrosophic triplet has been constructed, <positive, neutral, 

negative>, for studying especially contrary philosophical concepts, ideas, and schools. Therefore, 

one deals with a TriVariate Truth-Value because one uses three independent random variables 

(sources of information): one that presents the degree of positive side of E, another that presents the 

degree of negative side of E, and a third one that presents the degree of neutral (indeterminate) side 

of E. 

That’s what happens in our everyday life, and the most known one is in the court of law 

(defender, persecutor, jury). Also, everything has good, bad, and common features. 

{Surely, more generally, everything may be evaluated from n points of view (n random 

variables, or n sources of information), for any integer 2 n  , as such dealing with a 

MultiVariate Truth-Value, where the  random variables may have degrees of positiveness, or 

negativeness, or neutrality (indeterminacy), but this case falls under the Refined Neutrosophic Logic 

[13], or under the Plithogenic Logic as generalization of MultiValued Logic [14], or under the 

Plithogenic Probability & Statistics as generalizations of MultiVariate Probability & Statistics [30], 

which are different stories.} 

For example, in general you are evaluated by a friend in a positive way, by an enemy in a 

negative way, and by a neutral person in a neutral way. 

Surely, in the Refined Neutrosophic Set and Logic and Probability , you may be evaluated by 

many friends in positive ways, and by many enemies in negative ways, and by many neutral 

persons in neutral ways.  That’s life, as in neutrosophy. 

This ThreeVariate way of thinking (neutrosophic evaluation) was transferred to the scientific 

disciplines that resulted from neutrosophy:  

Neutrosophic Set (degree of membership, degree of indeterminate-membership, degree of 

nonmembership); 

Neutrosophic Logic (degree of truth (T), degree of indeterminate-truth (I), degree of falsehood 

(F)); 

Neutrosophic Probability (chance of an event to occur, indeterminate-chance of the event to 

occur or not, chance of the event not to occur); etc. 

For simplicity, we preferred to use the descriptive notation (T, I, F) for all neutrosophic triplets. 

Let’s consider the single-valued neutrosophic components, where all , , [0,1]T I F  . 

Depending on each application, in the neutrosophic theories one may encounter three (or more) 

possibilities: 

a. UniVariate Truth-Value, when only one source assigns values to the neutrosophic

components, and thus the neutrosophic components are totally dependent as in the other

fuzzy theories, whence 0 1T I F    .

b. BiVariate Truth-Value, when two independent sources assign values to the neutrosophic

components, for example one source assigns values to two neutrosophic components (let’s

assume to T and F, thus 0 1T F   ) and the second one to the other neutrosophic

component (which is I, thus 0 1I  ), and therefore the neutrosophic components are

partially dependent and partially independent {or T and F are totally dependent of each

other, while I is totally independent from both of them}, whence 0 2T I F    .

c. TriVariate Truth-Value, when three independent sources assign values to the neutrosophic

components, each source to one distinct neutrosophic component, thus 0 3T I F    )

and all three neutrosophic components are totally independent.

d. TriVariate Truth-Value, when the three sources are partially dependent and partially

independent. For example, John’s work is evaluated by three sources: a friend, an enemy,

and a neutral person, which communicate with each other and arrive to some agreement

about John’s work that is interpreted as degree of dependence (d) between these three sources,
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and to some disagreement about John’s work that is interpreted as degree of independence (i) 

between the three sources, where , [0,1], 1.d i d i     

e. MultiVariate Truth-Value, in general, for Refined Neutrosophic Set/Logic/Probability [13],

and for Plithogenic Logic/Probability/Statistics [14, 30].

1.2 “Unfortunately, this fact [independence of components – our note] is not usually taken into 

account in the works, where NST was applied.” 

Their assertation is untrue, the independence of components was used in most of the 

neutrosophic applications.  

The independence of the neutrosophic components comes from the unrestricted summation T + 

I + F that can get any value between 0 and 3. The independence comes from the fact that if a 

neutrosophic component gets a value, it does not affect in no way the other two neutrosophic 

components’ values. Not restricting the value of the sum T + I + F means from the start the existence 

of degrees of independence and dependence between the components.  

In many neutrosophic applications that presented numerical examples, looking at the 

neutrosophic triplets (T, I, F), you would see: some whose sum is < 1, others whose sum is > 1, and 

others whose sum is = 1. For example (0.1, 0.3, 0.5), or (0.9, 0.8, 0.6), or (0.7, 0.1, 0.2), etc. 

Also, in all neutrosophic papers the neutrosophic operators were employed, which means that 

the Indeterminacy (I) was used independently from T and F into the operators’ formulas, which is 

not the case for the previous classical, fuzzy (especially A-IFS) set and logic, and probability theories. 

Unlike in other previous theories (for example in DST), no normalization is done in the 

neutrosophic theories, therefore, after aggregation, the resulted neutrosophic components sum may 

be any number between 0 and 3. 

Yet, the situation is more complex, since the neutrosophic theories comprises all possibilities of 

the neutrosophic components, i.e.: to be totally independent, partially independent and partially 

dependent, and totally dependent. Not only the case of the totally independent components - as they 

have written in their equation (6). 

1.3. In their paper [1], their equation (6): 

     “0 ≤ T + I + F ≤ 3 for the completely independent components” 

is partially wrong. 
The correct one is only: 

“ 0 3T I F    ”

which means that the summation T + I + F can be any number in [0, 3], with , , [0,1]T I F  , 

and consequently, it comprises all possibilities, i.e. the components may be: 

either totally independent, or partially independent and partially dependent, or totally 

dependent. 

The independence and dependence of the components depend on each application and on the 

experts. Practical examples will follow below. 

It is obvious that if , , [0,1],T I F  then of course 0 3T I F    , but we emphasized this 

double inequality to make sure the readers would not take for granted that 0 1T I F     as in 

the previous classical, fuzzy set and logic, and probability theories. Therefore 0 3T I F     is 

no restriction at all! 

1.4. “We have deep doubts about the validity of this hypothesis of the components mutual 

independence from its practical applicability point of view” (p. 3). 
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Ironically, just the practical applications have inspired us to consider the independence of the 

components, and very simple ones, as these authors will see below. 

Their misunderstanding is that these authors are considering only the UniVariate Truth-Value 

{truth that depends on a single parameter (or point of view, or random variable), which enforces the 

sum of the neutrosophic components to be up to 1, and they are totally dependent}. But, in our 

everyday life, we almost always deal with a MultiVariate Truth-Value {truth that depends on many 

independent parameters (or random variables, or sources of information), and the neutrosophic 

components may be:  partially dependent and partially independent, or they may be totally 

independent}. 

Practical Examples will follow below. 

In general, 

UniVariate Truth-Value  MultiVariate Truth-Value. 

Complete Independence of the neutrosophic components means that there are different (and 

independent) sources of information that provide estimations on each of T, I, and F respectively. 

This happens in our everyday life: an item (person, object, event, action, proposition, theory, 

etc.) is evaluated from many points of view (or many random variables). 

1.5 “According to the independence hypothesis, the event T = 1, F = 1 and I = 1 is allowed in the 

NST and in this case, the constraint (6) is fulfilled. Suppose T, F and I are the degrees of truth, 

false and indeterminacy, respectively (this is the notation used in the NST). Thus, if we deal with 

a complete truth (T = 1), then in compliance with the formal logic and common sense, the measure 

of false is 0 (F = 0) without any indeterminacy (I = 0).” 

{We used the notations T, I, F because they are more descriptive for the Truth, Indeterminacy 

(or Neutrality), and Falsehood respectively, instead of the Greek letters , ,   that are not 

descriptive and were used in their paper [1].} 

Here it is their confusion, these authors consider only the UniVariate Truth-Value of a 

proposition. 

As we showed before, from a point of view a proposition may be true, from other point of view 

it may be false, or may be neutral (or indeterminate). 

When these authors talk about “common sense” they are automatically / stereotypically 

referring to a single source of information that provides information about all three neutrosophic 

components of a proposition (therefore the components are all totally dependent). When a single 

source provides information about an event, it knows and adjusts the sum of the components to be 1. 

See the below practical examples. 

1.6 “It is interesting that the events T = 1, F = 1, I = 1 and T = 0, F = 0, I = 0 are interpreted in [9] as a 

paradox, and its definition is treated as a merit of the NST. In our opinion, generally, it seems to 

be more reliable to use theories, which have no paradoxes” (p. 4). 
We agree to these authors with the fact that the theories that have paradoxes are not reliable, 

but the Neutrosophic Logic was not designed for the theories with paradoxes. 

We only proved that a proposition (not theory) P, which is a paradox (totally true and false in 

the same time, and totally uncertain as well), can be represented in the Neutrosophic Logic as P(1, 1, 

1), while in other classical or fuzzy and fuzzy extension set, logic or probability theories the 

proposition P cannot be represented, since the sum of the components is not allowed to be greater 

than 1. 

2. Practical Examples of Independent or Dependent Neutrosophic Components

Let’s see several practical examples, as these authors have required: 

2.1 Practical Example 1 
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The following event E takes place:  

E = {There is a street protest in Minneapolis}. 

a. From the point of view of the Human Rights Activists the protest is positive, because

people have the right to express their view, and consequently the CNN television station

(reflecting the left politics) joys it. Let’s say T(positiveness) = 0.8.

b. But, from the point view of the Police, the protest is negative, since the protesters are violent

and destroy and burn houses and injure people; then the Fox News television station

(reflecting the right politics) presents the negative side of the protests: violence, destruction,

arson, chaos. Let’s say F(negativeness) = 0.9.

c. Let’s consider an unbiased (neutral) Media that reports on the event. This is the neutral

source, it evaluates the event in general as, for example, I(positiveness and negativeness) =

0.4.

As seen, T + I + F > 1, and the three neutrosophic components T, I, and F are totally 

independently assessed, since the Human Right Activists, the Police, and Media are three different 

and independent entities. 

The authors wrote: “Therefore, we can say, e.g., that the high degree of truth is obligatory 

accompanied by the low degrees of false and indeterminacy.” (p. 3). 

This is true ONLY for the UniVariate Truth-Value of the Classical and Fuzzy Logic. This is false 

for the MultiVariate Truth-Value of the Neutrosophic Logic as we previously proved with several 

elementary practical examples. 

To contradict these authors, let’s assume, in this practical example, that the Human Rights 

Activists reassess their evaluation of the event, and they reassign T(positiveness) = 0.7. But this has 

nothing to do with the Police or Media to reassess their evaluations of F(negativeness) and 

I(positiveness and negativeness) respectively. Since all three sources, and thus the T, I, F, are totally 

independent. If a neutrosophic component increases or decreases, it may have no effect on the other 

neutrosophic components. 

This is a TriVariate Truth-Value, since the event E is evaluated by three independent 

parameters (from three different points of view): Human Rights Activists, Police, and Media. 

As seen, it’s not fair to analyze something from only one point of view (from only one 

parameter).  

This is a TriVariate Truth-Value. 

2.2 Practical Example 2 

A murderer John Doe is being tried in the court of law for having committed a crime. There are 

three player parts in the court: 

the Persecutor team, which presents the suspect in a negative way, for example F(Doe) = 0.9; 

the Defense team, that presents the suspect in a positive way, for example T(Doe) = 0.4; 

and the Jury, that is neutral, where ( ) [0,1]I Doe  . 

Herein, the Persecutor and the Defense are totally independent sources (since they are 

opposite). Therefore, T and F are totally independent. 

But the Jury is dependent on the evidences provided by both the Persecutor and the Defense. 

Therefore, the neutrosophic component I is totally dependent on both T and F. 

Let’s assume I = 0 means not guilty, I = 1 means guilty, while (0,1)I  means a hung-jury (i.e. 

some jurors say he is guilty, while others say he is not guilty) or unable to reach a verdict. 

This is a TriVariate Truth-Value. 

2.3 Practical Example 3 that refutes their assertation 

Proposition: G = George is a good student. 

George is evaluated by three different independent professors.  

The math prof: George is excellent in mathematics and he gets only A’s. Hence T(G) = 1. 
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The sport prof: George is the worst athlete in the team since he cannot run, cannot play baseball. 

Hence F(G) = 1. 

The literature prof: I am totally uncertain about George’s ability to write a literary composition 

since he never turned in any of them. Hence I(G) = 1. 

Therefore we got G(1, 1, 1). 

This is a TriVariate Truth-Value. 

2.4 Example 4 that refutes their assertation 

A paradox is a proposition that is true and false at the same time (hence T = F = 1), and 

completely unclear/indeterminate (hence I = 1). 

2.5 Example 5 from mathematics that refutes their assertation 

Assume the proposition M is “1 + 1 = 10”. 

If the base of numeration is 2, then proposition M is true:  T(M) = 1. 

If the base of numeration is 10, the proposition M is false: F(M) = 1. 

This is a proposition that is totally true and totally false, without being a paradox.  

Herein one has a BiVariate Truth-Value (i.e. with respect to two parameters: Base 2, and 

respectively Base 10). 

If the base of numeration is unknown (let’s denote it by b), then the truth-value of M is also 

unknown (indeterminate):  I(M) = 1. 

Now one has a TriVariate Truth-Value (i.e. with respect to three parameters:  Base 2, Base 5, 

and unknown Base b). 

2.6 Example 6 of independent and dependent neutrosophic components 

There will be a football match between Poland and Belarus. For each country there are three 

possibilities: to win, to draw, or to lose. Therefore, as in neutrosophic theories. 

a) Totally independent neutrosophic components

Asking a Polish person what is Poland’s chance to win, he may say T(Poland) = 0.8. 

But a Belarusian person may say that Belarus will win, let’s say F(Poland) = 0.7. 

Another person, from another country (Romania), may answer that it is a chance of a tie game: 

I(Poland) = 0.4. 

It is supposed that the three sources, the Polish, Belarusian, and Romanian persons do not 

communicate nor know the evaluations of the others. They are totally independent and 

consequently are the components T, I, F.  

Herein there is a TriVariate Truth-Value. 

b) Totally Dependent Neutrosophic Components

Let’s assume that a Polish mathematician evaluates all three possibilities of Poland. Being a

mathematician, he knows that the sum of the component has to be 1, as in the classical and fuzzy set 

theories, logic, or probability. 

He then may say: T = 0.7, F = 0.1, I = 0.2. 

The neutrosophic components are totally dependent, since all three depend on a single source. 

Herein there is a UniVariate Truth-Value. 

c) Partially Dependent and Partially Independent Neutrosophic Components
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Another situation. Assume that a scientist George has to evaluate both chances of Poland, to 

win or to lose.  

If he choses T = 0.6, for example, he knows that 0 ≤ F ≤ 1 – 0.6 = 0.4. Suppose he takes F = 0.3. 

A second source Marcel has to evaluate the possibility of tie-game, without nothing anything 

about George’s. Let’s suppose that he says: I = 0.8. 

In this case, T and F are totally dependent of each other, while I is totally independent from both 

T and F. Herein 0 2T I F    . 

Herein there is a BiVariate Truth-Value. 

3. Neutrosophic Overset/Underset/Offset

“In our opinion, the most daring theory was proposed in [*18]. This theory allows negative and 

greater than 1 values of membership degrees. There are some basic definitions introduced in [*18], 

but here, we analyze only the most general one:  

Definition 4. For T(x), I(x) and F(x) being the degrees of truth, indeterminacy and false, 

respectively, a Single-Valued Neutrosophic Offset A is defined as follows: 

A = {(x, <T(x), I(x), F(x)>), x  U}, 

such that there exist some elements in A that have at least one neutrosophic component that is > 

1, and at least another neutrosophic component that is < 0. 

For example: A = {(x1, <1.3, 0.3, 0.2>), (x2, <0.1, 0.4, -0.8>)}, since T(x1) = 1.3 > 1 and F(x2) = -0.8 < 

0.” (p. 6) 

{We took the liberty of updating the reference citation to be adjusted to our paper. Instead of 

[16] as in these authors’ reference, we wrote [*18]. See more papers on Neutrosophic

Overset/Underset/Offset: [27-29].}

These neutrosophic overset (degree > 1), neutrosophic underset (degree < 0), and neutrosophic 

offset (some degree > 1 and other degree < 0) were well understood by the prestigious Cornell 

University arXiv (New York City) mainstream Archives that approved our book: 

https://arxiv.org/ftp/arxiv/papers/1607/1607.00234.pdf 

and by the mainstream French Hal Archives as well: 

https://hal.archives-ouvertes.fr/hal-01340830 . 

These concepts were inspired from our real life [*18, 27, 28, 29]. 

The authors continue with the below citation from our book: 

“There is a crucial example in [*18], which clarifies the author’s reasoning that we critically 

analyze: “In a given company a full-time employer works 40 h per week. Let’s consider the last week 

period. Helen worked part-time, only 30 h, and the other 10 h she was absent without payment; 

hence, her membership degree was 30/40 = 0.75 < 1. 

John worked full-time, 40 h, so he had the membership degree 40/40 = 1, with respect to this 

company. But George worked overtime 5 h, so his membership degree was (40+5)/40 = 45/40 = 1.125 

> 1. Thus, we need to make distinction between employees who work overtime, and those who work

full-time or part-time. That’s why we need to associate a degree of membership strictly greater than

1 to the overtime workers.” (p. 6)

The above was our practical example. 

The authors reject it: 

“The crucial drawback of this reasoning is the lack of the clear definition of fuzzy classes, which 

memberships are estimated. We can see here two distinct fuzzy classes: the class of employees 

working at least no more than 40 h a week and the class of employees that works more than 40 h. The 

first class is presented by the membership function rising from 0 to 1 in the interval [0, 40] of worked 

hours and equal to 0 if the sum of worked hours is greater than 40. The second class is defined by the 

membership function increasing from 0 to 1 in the interval of worked hours from 40 to Hmax, where 

Hmax is the maximal allowed by government (and trade unions) value of worked hours. We can see 

that such an obvious reasoning does not allow membership degrees greater than 1. The incorrect 
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reasoning of the author of [*18] is also based on the implicit mechanical conjunction of two different 

classes with not intersected supports. Of course, such a conjunction can be made, but the resulting 

fuzzy class and the corresponding membership function should have a new sense reflecting a 

synthetic nature of a new class. In the considered case, we can introduce the class of “hard working 

employees” with the membership function rising from 0 to 1 in the interval [0, Hmax].” 

There are people who invent theories and then try to squeeze the reality into them. 

But, we did the opposite, we started from the real-world problems (over-work, negative work) 

and tried to make the theories that model / approximate the reality as accurate as possible. Late on, 

we improved our models little by little. 

First, we do not work with fuzzy classes, but with a neutrosophic approach. 

Also, we see no reason to make two classes where the membership, in both of them, starts from 

0 and ends to 1. What about if one gets the same value, for example the membership degree T = 0.3 in 

both classes [or in the three classes, as they added one more similar class for the negative 

membership]? It’s a confusion. On the other hand, these two classes cannot catch the employees with 

negative membership (those who produce damages to the company, T < 0). 

These authors belong to the category of people that try to squeeze the reality (the membership 

degree of overtime workers which overpasses 1, or T > 1) to the narrow classical set theory, where 

the membership degree has to be T ≤ 1. The classical set theory is not written in stone, so we may 

enlarge it if the reality requires it. 

When Zadeh founded in 1965 the Fuzzy Set and allowed the membership degree to be any 

number between 0 and 1 (not only 0 or 1 as in classical Set Theory) he was criticized at that time by 

several scientists (as he told me in 2003 at an international conference at the University of Berkeley, 

California, where we met). But he prevailed, because in the real world there exist many partial 

memberships. 

About the membership degrees that are outside of the interval [0, 1], it is normal that somebody 

who over-works (works overtime) to have an over-membership (i.e., membership degree above 1) to 

be distinguished from those who do not work overtime (whose membership degree is between 0 

and 1).  

Our example of negative employee who deserves a negative membership (T < 0), is cited by 

these authors: 

“Let us turn to the example: “Yet, Richard, who was also hired as a full-time, not only did not 

come to work last week at all (0 worked hours), but he produced, by accidentally starting a 

devastating fire, much damage to the company, which was estimated at a value half of his salary 

(i.e., as he would have gotten for working 20 h that week). Therefore, his membership degree has to 

be less that Jane’s (since Jane produced no damage). Whence, Richard’s degree of membership, with 

respect to this company, was -20/40 = -0.50 < 0.” ” (p. 6) 

The authors continue: 

“As we are analyzing only the last week, we can see that Richard does not belong to any of the 

classes described above. It is a member of a practically unlimited class of those who do not work for 

a given company. We can significantly narrow this class by considering only those people who, by 

their actions or inaction, cause damage to the company (the most harmful are the top managers of 

competing firms). This way we can estimate the maximum damage Dmax (it does not matter in 

money or equivalent worked hours), which can be inflicted on the company by an external detractor. 

Thus, the class of external (nonworking for the company) people who bring company damages can 

be presented by the membership function varying from 0 to 1 in the interval of damages [0, Dmax]. 

There is no place for any negative membership degree.” 

These authors did not read/understand exactly: Richard is indeed a full-time employee, he 

works for the company, as we have written into our book: “Richard, who was also hired as a 

full-time” it is certainly an employee. The authors make a false statement for Richard as 

“nonworking for the company”. 
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Even so, it is not clear, why did they make a third class varying from 0 to 1 for the negative 

employees? As such, we’d like to return the ancient Occam’s wisdom back to themselves: “Entities 

should not be multiplied unnecessarily.” 

If you have a negative person in your group, for example, which creates only problems to the 

group, you cannot assign him a membership degree equals to zero (as for people that do neither 

positive nor negative things to the group), but you should assign him a negative membership 

degree. It is very logical this way. 

A negative employee (that who does only damages to the company) has to have a negative 

membership (i.e., membership degree below 0) in order to distinguish him from the positive 

employees (those whose membership degree is above 0).  

We see no reason to complicate the problem by creating three classes of membership degrees in 

order to avoid membership degree values greater than 1 or less than 0, instead of keeping a single 

class, but enlarging it to the left-hand side of 0 and respectively to the right-hand side of 1.  

Because neutrosophic set has 3 components, they would need 9 classes, not talking of the 

refined neutrosophic set, that may have any number 2 ≤ n ≤ ∞ of refined neutrosophic components, 

therefore they would need 3n classes! Better they should think out of box (in this case the box is the 

interval [0, 1]). 

4. Applicability

The authors wrote: “there is no need for such somewhat artificial and heuristic theories as the 

Neutrosophic, Pythagorean and Spherical sets and their derivatives” (p. 5). 

We disagree. The neutrosophic theories are not artificial, they started from our real-world 

practicability, where there are so many neutrosophic triplets (<A>, <neutA>, <antiA), where <A> is 

an item (concept, proposition, idea, etc.), formed by two opposites <A> and <antiA>, together with 

their neutrality (indeterminacy) <neutA>.  

For examples: (friend, neutral, enemy), (positive particle, neutral particle, negative particle), 

(masculine, transgender, feminine), (true, indeterminate, false), (win, tie-game, defeat), (yes, 

uncertain, no), (take a decision, pending, not taking a decision), etc. 

The neutrosophic theories have many applications [25] in various fields such as: Artificial 

Intelligence, Information Systems, Computer Science, Cybernetics, Theory Methods, Mathematical 

Algebraic Structures, Applied Mathematics, Automation, Control Systems, Big Data, Engineering, 

Electrical, Electronic, Philosophy, Social Science, Psychology, Biology, Genetics, Biomedical, 

Engineering, Medical Informatics, Operational Research, Management Science, Imaging Science, 

Photographic Technology, Instruments, Instrumentation, Physics, Chemistry, Optics, Economics, 

Mechanics, Neurosciences, Radiology Nuclear, Medicine, Medical Imaging, Interdisciplinary 

Applications, Multidisciplinary Sciences, etc. and there were published over 2,000 papers, books, 

conference presentations, MSc and PhD theses by researchers from 82 countries around the world. 

With respect to what the neutrosophic theories brought new, we invite these authors to read 

our 2019 paper, so we do not repeat the things [26], whose weblink is provided. 

Rather, these authors’ transformation/substitution of the Atanassov-Intuitionistic Fuzzy Set 

(A-IFS) into the Dempster-Shafer Theory (DST) framework is artificial, since their transformation is 

not quite equivalent with the A-IFS, while practically their transformation is useless because of the 

very large intervals they use that supposed to catch the solution. 

5. Publications

They say that the “caution of editors and reviewers of solid old journals is not caused by their 

conservatism at all, but by the desire to see, in addition to formal definitions of these theories and 

numerous theorems, the solution of real methodological and practical problems” (p. 1). 
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In general, in any field of knowledge, when a Theory1 is generalized by the Theory2, the 

proponents of Theory1 are reluctant to publish and even to admit Theory2, and the first reason is the 

rivalry between theories, the conservatism is only an excuse. But each theory has its flavor.  

The authors are less informed, since in the last years there have been books published by 

prestigious publishing houses such as Springer [19, 21], Elsevier [20], IGI Global [22-24] (we cite the 

last ones), etc. and many high rank journals by Springer, Elsevier, IOS Press, Tayler & Francis, MDPI, 

Hindawi, Emerald Publishing, IGI Global, World Academy of Science  Engineering and 

Technology, IEEE, Wiley, etc. have published  papers on the neutrosophic environment, such as: 

Complex & Intelligent Systems, Cognitive Computation, Artificial Intelligence Review, International 

Journal of Fuzzy Systems, Evolving Systems, Complex & Intelligent Systems, Soft Computing, 

Journal of Machine Learning & Cybernetics, Multiple-Valued Logic, Design Automation for 

Embedded Systems, Granular Computing, Neural Computing and Applications, Journal of Systems 

Architecture, Applied Soft Computing, Measurement, Symmetry, Mathematics, Information, 

Axioms, Entropy, Computational and Applied Mathematics, BMC Medical Research Methodology, 

International Journal of Aerospace and Mechanical, Cognitive Systems Research, Theoretical and 

Applied Climatology, Journal of Metrology Society of India, Journal of King Saud University – 

Science, Journal of Intelligent & Fuzzy Systems, IEEE Access, Expert Systems, etc. 

Further on, they will see in this paper many solutions using the neutrosophic theories to 

practical problems. 

6. Critics of the DST

These authors [1] want to destroy the fuzzy extension theories just to promote the 

Dempster-Shafer Theory (DST) that they support, but from the beginning they are going on an 

uncertain way, since DST is a flawed theory which gives many counter-intuitive results [2-8; 

weblinks provided; download the papers and respond to the DST problems], as we’ll show below. 

They assert that all fuzzy extension theories can be substituted by the DST, which is not true. 

6.1 The DST fails in the Zadeh’s Counter-Example 

Zadeh’s Counter-Example [2], as know by all fusion community, is the following: 

Two doctors examine a patient and agree that he suffers from either meningitis (M), contusion 

(C), or brain tumor (T). Thus Θ = {M, C, T} is the frame of discernment. Assume that the doctors 

agree in their low expectation of a tumor, but disagree in likely cause and provide the following 

diagnosis: 

m1(M) = 0.99, m1(T) = 0.01, and m2(C) = 0.99 m2(T) = 0.01, where m1(.) represents the diagnoses 

provided by the first doctor, while m2(.) the diagnoses by the second doctor. If we combine the two 

basic belief functions using the DST (first doing the conjunctive rule, then the Dempster’s rule of 

combination), one gets the unexpected conclusion:  
0.0001( ) 1

1  0.0099  0.0099  0.9801
m T  

  

which means that the patient suffers with certainty from brain tumor, which is wrong. 

Zadeh [2] has clearly written down: “there is a serious flaw in Dempster's rule which restricts its 

use in many applications”. 

Similarly, P. M. Williams questioned the validity of Dempster’s Rule [31]. 

6.2 The A-IFS gives a better solution to Zadeh’s Counter-Example than DST 

After criticizing Atanassov’s Intuitionistic Fuzzy Set (A-IFS), the authors proposed 

“redefining the A-IFS in the framework of the more general Dempster–Shafer theory of evidence 

(DST)” (p. 2). 

Okay, then let’s set and analyze the Zadeh’s Counter-Example in the frame of the A-IFS, and we 

show that A-IFS gives better result than DST. 
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Let: 

D1 = {M(0.99, 0), C(0, 0), T(0.01, 0)}, 

D2 = {M(0, 0), C(0.99, 0), T(0.01, 0)}, 

where D1 represents the diagnoses provided by the first doctor, i.e.  

M(0.99, 0) means that the degree of membership (truth) of the patient to have meningitis is 0.99, 

and the degree of nonmembership (falsehood) of the patient not to have meningitis is 0; 

And similarly for the other diseases. 

And where D2 represents the diagnoses provided by the second doctor. 

Let’s use the A-IFS min/max intersection operator ( A IFS ) for the two doctors’ diagnoses:

1 2 {(0.99,  0) (0,  0), (0,  0) (0.99,  0), (0.01,  0) (0.01,  0)}
{(min{0.99,0},max{0,0}), (min{0,0.99},max{0,0}), (min{0.01,0.01},max{0,0})}
{(0,0), (0,0), (0.01,0)} { (0,0), (0,0), (0.01

A IFS A IFS A IFS A IFSD D

M C T

        



 ,0)}.
A-IFS shows that the chance of the patient of having tumor is 0.01, which is more realistic with

respect to the chance of tumor of the patient, than DST’s. 

More counter-examples to the Dempster’s rule have been published in the literature [3-8]. 

After these failures of the DST, new theories have been proposed, such as TBM, DSmT [9], etc. 

and many quantitative and qualitative fusion rules [10-12] in order to overcome the Dempster’s rule 

counter-intuitive results. 

7. Conversion from A-IFS to DST

The authors [1] propose the conversion from the framework of the A-IFS to the DST in the 

following way (pp. 7-8). 

Let U be a universe of discourse, and: 

{( , ( ), ( ) ), ( ), ( ) [0,1],0 ( ) ( ) 1, }A IFSB x T x F x T x F x T x F x x U         be a non-empty subset of 

it, that is called an Atanassov-Intuitionistic Fuzzy Set (A-IFS). 

Let’s ( ( ), ( ))x T x F x be a generic element that belongs to A IFSB  , with

( ), ( ) [0,1],0 ( ) ( ) 1,T x F x T x F x    whence the indeterminacy (hesitancy) is ( ) 1 ( ) ( ) [0,1].I x T x F x     

From the fusion theory, and especially from Dempster-Shafer Theory, the Basic Believe 

Assignment (bba), denoted by m(.), is defined as: 

: 2 [0,1]A IFSBm   , such that 
( ) 0,m  

where 


 is the empty-set, and 

2

( ) 1.
BA IFSx

m x




 And the Believe Function Bel and the Plausible Function Pl are defined as follows: 

2 ,

: 2 [0,1], ( ) ( )A IFS

BA IFS

B

y y x

Bel Bel x m y

 

  
, 

2 ,

: 2 [0,1], ( ) ( )A IFS

BA IFS

B

y y x

Pl Pl x m y




  

  
. 

Afterwards, they approximate the above A IFSB  to an interval-valued fuzzy set (IVFS), denoted 

as {( ,[ ( ), ( )]), 2 } {( ,[ ( ), ( ) ( )]); ( ), ( ) [0,1], ( ) ( ) 1; 2 }A IFS A IFSB B
IVFSC x Bel x Pl x x x T x T x I x T x I x T x I x x         which is

not equal to A IFSB  . Their approach is similar to that of a Vague Set. 

The interval [ ( ), ( )] ( )Bel x Pl x BI x  was called Believe Interval (BI). 

Mathematically, this is beautiful, but practically it is useless. When converting from an 

approach to another one, it is supposed to diminish the indeterminacy (hesitancy) and get better 

results. But, it is not the case. The higher is indeterminacy (I) the larger is the believe interval that 

suppose to catch the solution. 

As counter-examples, let’s consider the following A-IFS triplets (their components’ sums are 

equal to 1): 

(T, I, F) = (0.2, 0.5, 0.3) produces the BI = [0.2, 0.7]; 

(T, I, F) = (0.3, 0.6, 0.1) produces the BI = [0.3, 0.9]; 
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(T, I, F) = (0.2, 0.8, 0.0) produces the BI = [0.2, 1], etc. 

There are pretty large intervals to deal with, that make the result vaguer.  To say that the 

solution lies inside of the interval, for example [0.2, 1], means almost nothing towards solving the 

problem whose solution is always between 0 and 1. 

Another drawback is the fact that computing with intervals is more complicated than 

computing with crisp numbers. 

8. Differences between A-IFS and NST

“The conceptual difference between the NST and the A - IFS is the introduction of the 

hypothesis of complete independence of the components” (p. 3). 

By NST they meant Neutrosophic Set Theory. 

This is not the only difference, another big distinction is with respect to the construction of the 

neutrosophic operators (negation, intersection, union, implication, equivalence, etc.), since within 

the frame of neutrosophic environment the Indeterminacy (I) is getting full consideration  and “I” is 

involved in the neutrosophic operators’ formulas, while in the A-IFS operators the indeterminacy 

(called hesitancy) is completely ignored and does not appear in none of their operators’ formulas.  

Even for the case when the sum of the neutrosophic components is equal to 1, as occurs for the 

A-IFS components,  the results after applying the neutrosophic operators are different from those

obtained by the A-IFS operators.

A simple example is below, for the neutrosophic conjunction ( NS ) vs. A-IFS conjunction

( A IFS ).

Let’s denote by FS the fuzzy set t-norm, and by FS the fuzzy set co-norm.

Let 
1 1 1( , , )T I F and 

2 2 2( , , )T I F be two neutrosophic triplets, where 
1 1 1 2 2 2, , , , , [0,1],T I F T I F  and there is 

no restriction on the sums of the two neutrosophic triplets. 

Then, the neutrosophic conjunction is: 

1 1 1 2 2 2 1 2 1 2 1 2( , , ) ( , , ) ( , , )NS FS FS FST I F T I F T T I I F F    
, 

where we clearly see that the indeterminacy/hesitancy (I) is involved in the above formula on 

the right-hand side: 1 2FSI I . 

But, for the A-IFS conjunction formula the indeterminacy/hesitancy is completely ignored, 

which makes the operator less accurate. If 1 1 1T F  , 
2 2 1T F  , and 1 1 1 2 2 21, 1,T I F T I F     

in order to comply with the A-IFS constrains, one gets: 

1 1 2 2 1 2 1 2( , ) ( , ) ( , )A IFS FS FST F T F T T F F   
, 

unfortunately, no indeterminacy/hesitancy (I) is involved into the formula. 

Even when the sum pf the neutrosophic components is 1, as in A-IFS, the results of the 

neutrosophic and respectively A-IFS operators are different. Let’s see this numerical example: 

(0.6,0.1,0.3) (0.5,0.4,0.1) (min{0.6,0.5},max{0.1,0.4},max{0.3,0.1}) (0.5,0.4,0.3)NS  

while 

(0.6,0.3) (0.5,0.1) (min{0.6,0.5},max{0.3,0.1}) (0.5,0.3)A IFS  

whence the indeterminacy/hesitancy = 1 – 0.5 – 0.3 = 0.2  0.4. 

In this case these authors agree with us: 

“In the case of mutually dependent components, the main constraint 0 1T F I     in the 

NST seems to be more fruitful than that in the A - IFS (T + F + I = 1). This was quickly discovered and 

the so-called Picture fuzzy sets theory (PFS) was proposed” (p. 4). 

Thanks to the indeterminacy (I), that plays an important role in the neutrosophic environment 

and in the real world that is full of indeterminate (vague, unclear, conflicting, incomplete, etc.) data, 

more fields were developed within the field of neutrosophy, such as: Neutrosophic Algebraic 

Structures (based on neutrosophic numbers of the form a + bI, where I = literal indeterminacy, and a, 
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b are real or complex numbers), Neutrosophic Statistics (using classical statistical procedures and 

inference methods but on indeterminate data), Neutrosophic Probability (chance of an event to 

occur, indeterminate-chance of the event to occurring or not, and chance of the event not to occur), 

etc. 

Therefore, there are many distinctions between the neutrosophic theories and the A-IFS. 

9. Conclusions (authors also should add some future directions points related to her/his research)

Many practical applications have been given in this paper about the independence and 

dependence of the neutrosophic components in our every-day life.  

The misunderstanding of some authors, with respect to the partial and total independence of 

the neutrosophic components, is that in the framework of the neutrosophic theories we deal with a 

MultiVariate Truth-Value (truth upon many independent random variables) as in our real-life world, 

not with a UniVariate Truth-Value (truth upon only one random variable) as they believe. 

Similarly with respect to the degrees of memberships greater than 1 or less than 0, which are 

now mainstream subjects. The neutrosophic theories were inspired from the practical applications.. 
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