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A UNIFYING FIELD IN LOGICS:
NEUTROSOPHIC LOGIC.
NEUTROSOPHIC PROBABILITY,
NEUTROSOPHIC STATISTICS,
NEUTROSOPHIC SET.

(second version)

Introduction.

Let T, I, F be standard or non-standard real subsets [t 0, 17}
with sup T=t sup,inf T=1t inf;
supl=1i sup,infl=1i_inf,
supF={ sup,infF=1{ inf,
andn sup=t sup+i sup+f sup,
n_inf=t inf~+1i inf+{ inf
The subsets T, I, F are not necessarily intervals, but may be any real
subsets: discrete or continuous; single-element, finite, or (either count-
ably or uncountably) infinite; union or intersection of various subsets;
etc.
They may also overlap. These real subsets could represent the
relative errors in determining t, i. f (in the case when the subsets T, I, F are
reduced 1o points).

This representation is closer to the human mind reasoning. It char-
acterizes/catches the imprecision of knowledge or linguistic inexacti-
tude received by various observers (that’s why T, I, F are subsets - not
necessarily single-elements), uncertainty duc to incomplete knowledge
or acquisition errors or stochasticity (that’s why the subset | exists), and
vagueness due to lack of clear contours or limits (that’s why T, I, I are
subsets and I exists; in particular for the appurtenance to the neutrosophic
sets).

One has to specify the superior (x_sup) and inferior (x_inf) limits of
the subsets because in many problems arises the necessity to compute
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them.

The real number x is said to be infinitesimal if and only if for all
positive intcgers n one has x < I/n. Lct €20 be a such infinitesimal
number. The hyper-real number set is an extension of the real number
set. which includes classes of infinite numbers and classes of infinitesi-
mal numbers. Let’s consider the non-standard finite numbers 1* = 1+e,
where 17 is its standard part and “‘€” its non-standard part, and 0 = 0-¢,
where “07 is its standard part and “€” its non-standard part.

Then, we call 0, 1) a non-standard unit interval. Obviously, 0 and
1, and analogously non-standard numbers infinitely small but less than 0
or infinitely small but greater than 1, belong to the non-siandard unit
interval. Actually, by ““a” one significs a monad, i.e. a set of hyper-real
numbers in non-standard analysis:

u(a)= {a-x: xeR", x is infinitesimal},
and similarly “b*” is a monad:
u(b")= {b+x: xeR’, x is infinitesimal}.

Generally, the left and right borders of a non-standard interval
it a, b are vague, imprecise, themselves being non-standard (sub)sets
u(a)and u(b*)as defined above.

Combining the two before mentioned definitions one gets, what
we would call, a binad of “¢*”":

u(c’)= {c-x: xeR’, x is infinitesimal} U {c+x: xeR", x is infinitesi-
mal}, which is a collection of open punctured neighborhoods (balls) of c.

Of course,a<aand b* > b. No order between "¢t and c.

Addition of non-standard finite numbers with themselves or with
rcal numbers:

a+b =1(a+b)

a+b*=(a+b)

a+ bt =(a+b)

‘a*+ b =7(a+b) (the left monads absorb themselves)

a* ~ b* = (a + b)* (analogously, the right monads absorb them-
selves).

Similarly for subtraction, multiplication, division, roots, and pow-
ers of non-standard finite numbcrs with themselves or with real numbers.

By extension let inf | a, b* = -a and sup |} -a. b* 4= b*.

fukasiewicz, together with Kotarbinski and Lesniewski from the
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Warsaw Polish Logic group (1919-1939), questioned the status of truth:
eternal, sempiternal (everlasting, perpetual), or both?

Let’s borrow from the modal logic the notion of “world”, which is
a semantic device of what the world might have been like. Then, one says
that the neutrosophic truth-value of a statement A, NL (A)= 17 if Ais "truc
in all possible worids’ (syntagme first used by Leibniz) and all conjunc-
tures, that one may call “absolute truth” (in the modal logic it was named
necessary truth, Dinulescu-Campina (2000) names it ‘intangible abso-
lute truth” ), whereas NL (A) = 1 if A is true in at least one world at some
conjuncture, we call this “relative truth” because it is related to a “spe-
cific’ world and a specific conjuncture (in the modal logic it was named
possible truth). Because cach ‘world’ is dynamic, depending on an en-
semble of parameters, we introduce the sub-category ‘conjuncture’ within
it to reflect a particular state of the world.

How can we differentiate <the truth behind the truth>? What about
the <metaphoric truth>, which frequently occurs in the humanistic field?
Let’s take the proposition “99% of the politicians are crooked” (Sonnabend
1997, Problem 29, p. 25). “No,” somebody furiously comments, “100%
of the politicians are crooked, even more!” How do we interpret this
“even more  (than 100%), i. ¢. more than the truth?

One attempts 1o formalize. For n >1 one defines the “n-level rcla-
tive truth” of the stalement A if the statement is true in at least n distinct
worlds, and similarly “countably-* or “uncountably-level relative truth”
as gradual degrees between “first-level relative truth” (1) and “absolute
truth” (1*) in the monad p(1*). Analogue definitions one gets by substi-
tuting “truth” with “falsehood” or “indeterminacy” in the above.

in largo sensu the notion “world” depends on parameters, such as:
space, time, continuity, movement, modality, (meta)language levels, in-
terpretation, abstraction, (higher-order) quantification, predication,
complement constructions. subjectivity, context, circumstances, etc.
Pierre d’Ailly upholds that the truth-value of a proposition depends on
the sense, on the metaphysical level, on the language and meta-language;
the auto-reflexive propositions (with reflection on themselves) depend
on the mode of representation (objective/subjective, formal/informal. real
mental).

In a formal way, let’s consider the world W as being generated by
the formal system FS. One says that statement A belongs to the world W
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if Ais a well-formed formula (wff) in W, i.e. a string of symbols from the
alphabet of W that conforms to the grammar of the formal language
cndowing W. The grammar is conceived as a set of functions (formation
rules) whose inputs are symbols strings and outputs “yes” or “no”. A
formal system comprises a formal language (alphabet and grammar) and
a deductive apparatus (axioms and/or rules of inference). In a formal
system the rules of inference are syntactically and typographically for-
mal in nature, without reference to the mcaning of the strings they ma-
nipulate.

Similarly for the neutrosophic falsehood-value, NL(A) = 1*if the
statement A is false in all possible worlds, we call it “absolute falsehood”,
whereas NL (A) = 1 if the statement A is false in at least one world, we call
it “relative falsehood”. Also, the neutrosophic indeterminacy-value
NL (A) = 1" if the statement A is indeterminate in all possible worlds, we
call it “absolute indeterminacy”, whereas NL(A) =1 if the statement A is
indeterminate in at least one world, we call it “relative indeterminacy”.

On the other hand, NLI(A) = ‘0 if A is false in all possible worlds,
whereas NL (A)=0ifA s falsc in at least one world; NL (A)="0ifA s true
in all possible world, whereas NL((A) =01ifAis true in at least one world;
and NL (A)=-0ifAis indelerminate in no possible world, whereas NL (A)
= 0 1f A is not indcterminate in at least one world. _

The "0 and 1* monads leave room for degrees of super-truth (truth
whose values are greater than 1), super-falsehood, and super-indetermi-
nacy.

Here there are some corner cases:

There are tautologies, some of the form “B is B”, for which NL(B)=
(I*,°0. 0), and contradictions, some of the form “C is not C”, for which
NL(B)=(0,0,1%).

While for a paradox, P, NL(P) = (1,1,1). Let's take the Epimenides
Paradox, also called the Liar Paradox, “This very statement is true”. Ifit
is truc then it is falsc. and if it is falsc then it is true. But the previous
rcasoning, due to the contradictory results, indicates a high indetermi-
nacy too. The paradox is the only proposition true and false in the same
time in the same world, and indeterminate as well!

Let’s take the Grelling's Paradox, also called the heterological para-
dox [Suber, 1999], “If an adjective truly describes itself, call it
"autological’, otherwisc call it “heterological’. Is ‘heterological”
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heterological? ” Similarly, if it is, then it is not; and if it is not, then it is.

For a not well-formed formula, nwff, i.e. a string of symbols which
do not conform to the syntax of the given logic, NL(awfl) = n/a (unde-
fined). A proposition which may not be considered a proposition was
calied by the logician Paulus Venetus flatus voci. NL(flatus voci) = wa.

Let S, and S, be two (unidimensional) standard or non-standard
real subsels then one defines:

Addition of sets:

S,8S,= {x|x=s +s,, wheres,eS ands.eS,},

with inf S @S,=infS +infS,sup S &S, =sup S +supS;;
and, as some particular cases, we have

{a}@®S, = {xIx=ats,, wheres,eS,}

withinf {a}®S,=a+infS,, sup {a}®S,=a+supS,;

also {1}&S, = {xlx—l+s,,wheres €S, }

thhmf{l}éBS =1+infS,, sup {1}@5 =1+supS,.

Subtraction of sets:

S,68, = {x|x=s,-s,, where s €S ands,eS,}.

For real posmve subsets (most of our cases will fall in this range)
one gets:

infS,©S,=infS -supS,,supS ©S,=sup S, -infS;

and, as some particular cases, we have:

{a}es, = {x|x=a-s,, where s,€S,},

withinf {a}©S,=a-supS,, sup {a}©S,=a-infS;

also {1}©S, = {xx=1-s,, where s,€S,},

w1thmf{l}eS =1- supS,,sup {I}eS =1-infS,.

Multiplication of sets:

S,08,= {x|x=s s, wheres €S andseS.}.

For real positive subsets (most of the cases will fall in this range)
one gets:

infS GS,= infSl . infS:, sup S ©S,=sup S, - sup S,

and, as some particular cascs, we have

{a} @S, = {x|x=as,, wheres,eS.},

withinf {a}©S,=a-infS,, sup {a}©S,=a-supS.;
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also {1}0GS, :{xl\ 1, . wheress,eS.},
withinf {1}©S,=1- me sup {1}OS,=1-supS..

Division of a set by a number:
Letke R* then S, 0k = {x] x=s, /k, where $,€S },

Let(T.1,F )and(T.. L, F,) be standard or non-standard triplets of

rcal subscts € 10, 11, 1hcn we define:
(T I }')m(T ;—(T@T I@I,,I“ ®F ) s
(T I !-\EI’T ) (T OT IeI,,I‘ @P ),

(T L F)ETL L F) = (T OT. 1oL, F.oF .

NEUTROSOPHIC PROBABILITY is a generalization of the clas-
sical probability in which the chance that an event A occurs is % truc -
where t varies in the subset T, 1% indeterminate - where i varies in the
subset I, and % false - where {varies in the subset F.

One notes NP(A)=(T, L, F).

NEUTROSOPHIC STATISTICS is the analysis of the cvents de-
scribed by the neutrosophic probability.
This is also a generalization of the classical statistics.

Neutrosophic Probability Space:
The universal set, endowed with a neutrosophic probability de-
fined for cach of its subsct, forms a neutrosophic probability space.

Lct A and B be two neutrosophic cvents, and NP(A) = (T,I,F).
NP(B) = (T,, L, F,) their neutrosophic probabilities. Then we define:

NP(ANB) = NP(A) EINP(B).
NP(-A) = {13 NP(A).
NP(AUB)=NP(A) BNP(13) & NP(A) EINP(B).

t. NP(impossible evcnl)*(T‘mp imp? F!mp).

whercsup T <0.infF__>1: no restriction on Ilmp
NP(surc event) = (TW. | F,w )
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where inf T >1,supF  <0;no restriction onl .
\IP(totaIly mdetermmate even) =(T_,1 ,F )
where inf1_ > 1; norestrictionson T _ orF_;
2.NP(A)e {(T I, F), where T, 1, F are real subsels which may over-
lap}.
3. NP(AUB)=NP(A) BNP(B) = NP(ANB).
4. NP(A)= {1} BNP(-A).

C) Applications:

#1. From a pool of refugees, waiting in a political refugee camp in
Turkey to get the American visa, a% have the chance to be accepted -
where a varies in the set A, r% to be rejected - where r varies in the set R,
and p% to be in pending (not yet decided) - where p varies in P.

Say, for example, that the chance of someone Popescu in the pool
to emigrate to USA is (between) 40-60% (considering different criteria of
emigration one gets different percentages, we have to take care of all of
them), the chance of being rejected is 20-25% or 30-35%, and the chance
of being in pending is 10% or 20% or 30%. Then the neutrosophic
probability that Popescu emigrates to the Unites States is

NP(Popescu) = ( (40-60), (20-25)U(30-35), {10,20,30} ), closer
to the life.

This is a better approach than the classical probability, where
49 < P(Popescu) < 60, because from the pending chance - which will be
converted to acceptance or rejection - Popescu might get extra percent-
age in his will to emigration,

and also the superior limit of the subsets sum

60+35+30> 100

and in other cases one may have the inferior sum < 0,

while in the classical fuzzy set theory the superior sum should be
100 and the inferior sum 0.

In a similar way, we could say about the element Popescu that

Popescu( (40-60), (20-25)U(30-35), {10.20,30} ) belongs to the set
of accepted refugees.

#2. The probability that candidate C will win an election is say 25-
30% truc (percent of people voting for him), 35% false (percent of people
voting against him). and 40% or 41% indeterminate (percent of people
not coming to the ballot box, or giving a blank vote - not selecting
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anyone, or giving a ncgative vote - cutting all candidates on the list).

Dialectic and dualism don’t work in this case anymore.

#3. Another example, the probability that tomorrow it will rain is
say 50-54% true according to meteorologists who have investigated the
past yecars’ weather, 30 or 34-35% false according to today’s very sunny
and droughty summer, and 10 or 20% undecided (indeterminate).

#4. The probability that Yankees will win tomorrow versus Cow-
boys is 60% truc (according to their confrontation’s history giving Yan-
kees’ satisfaction), 30-32% false (supposing Cowboys are actually up 1o
the mark, while Yankees are declining), and 10 or 11 or 12% indetermi-
nate (left to the hazard: sickness of players, referee’s mistakes, atmo-
spheric conditions during the game). These parameters act on players’
psychology.

D) Remarks:

Neutrosophic probability are useful to those events which in-
volve some degree of indeterminacy (unknown) and more criteria of evalu-
ation - as above. This kind of probability is necessary because it provides
a better approach than classical probability to uncertain events.

In the case when the truth- and falsity-components are comple-
mentary, i.€. no indeterminacy and their sum is 100, one falis to the clas-
sical probability. As, for example, tossing dice or coins, or drawing cards
from a well-shuffled deck, or drawing balls from an umn.

An interesting particular case is for n=1, with 0<t.i,f<1, which is
closer to the classical probability.

Forn_sup=1 and i=0, with 0<t,f<1, one obtains the classical prob-
ability.

From the intuitionistic logic, paraconsistent logic, dialetheism,
faillibilism, paradoxism, pseudoparadoxism, and tautologism we trans-
fer the “adjectives” o probabilities, i.c. we define the intuitionistic prob-
ability (when the probability space is incomplete), paraconsistent prob-
ability, faillibilist probability, dialetheist probability, paradoxist prob-
ability. pscudoparadoxist probability, and tautologic probability respec-
tively.

Hence, the neutrosophic probability generalizes:

- the intuitionistic probability, which supports incomplete (not com-
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pletely known/determined) probability spaces (for O<n_sup<1 and i=0,
0<t,f<1) or incomplete events whose probability we need to calculate;

- the classical probability (for n_sup=1 and i=0, and 0<t,{1);

- the paraconsistent probability (for n_sup>1 and i=0, with both
ti<1);

- the dialetheist probability, which says that intersection of some
disjoint probability spaces is not empty (for t=f=1 and i=0; some paradoxist
probabilities can be denoted this way);

- the faillibilist probability (for i>0);

- the pseudoparadoxism (for n_sup>1 or n_inf<0);

- the tautologism (for t_sup>1).

Compared with all other types of classical probabilities, the
neutrosophic probability introduces a percentage of “indeterminacy” -
due to unexpected parameters hidden in some probability spaces, and let
each component t, i, f be, even boiling, over 1 (overflooded) or freezing
under 0 (underdried).

For example: an element in some tautological probability space
may have t>1, called “overprobable”. Similarly, an element in some
paradoxist probability space may be “overindeterminate” (for i>1), or
“overunprobable” (for £>1, in some unconditionally false appurtenances);
or “underprobable” (for 1<0, in some unconditionally false appurte-
nances), “underindeterminate” (for i<0, in some unconditionally true or
false appurtenances), “underunprobable” (for f<0, in some uncondition-
ally true appurtenances).

This is because we should make a distinction between uncondi-
tionally true (t>1, and f<0 or i<0) and conditionally true appurtenances
(1<1, and f<1 or i<l).

NEUTROSOPHIC SET:

Let U be a universe of discourse, and M a set included in U. An
element x from U is noted with respect to the set M as x(T,1,F) and belongs
to M in the {ollowing way:

it is t% true in the set, 1% indeterminate (unknown if it is) in the set,
and % falsc. where t varics in T, i varies in I, f varies in F.

B) Neutrosophic Set Operations:

13
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Lct A and B be two neutrosophic sets.

One can say, by language abuse, that any element neutrosophically
belongs to any sct, duc to the percentages of truth / indeterminacy /
falsity involved, which varies between 0 and 1 or even less than 0 or
greater than 1.

For example: x(50,20,30) belongs to A (which means, with a prob-
ability of 50% x is in A, with a probability of 30% x is not in A, and the
rest is undecidable); or y(0,0,100) belongs to A (which normally means y
is not for sure in A); or 2(0,100,0) belongs to A (which means one does
know absolutely nothing about z’s affiliation with A).

More general, x( (20-30), (40-45)U[50-51], {20,24,28} ) belongs to
the set A, which means:

- with a probability in between 20-30% x is in A (one cannot find an
exact approximate because of various sources used);

- with a probability of 20% or 24% or 28% X is not in A;

- the indeterminacy related to the appurtenance of x to A is in be-
tween 40-45% or between 50-51% (limits included).

The subsets representing the appurtenance, indeterminacy, and fal-
sity may overlap, and n_sup = 30+51+28 > 100 in this case.

For example the Schrodinger’s Cat Theory says that the quantum
statc of a photon can basically be in more than one place in the same time,
which translated to the neutrosophic set means that an element (quantum
state) belongs and does not belong 1o a set (a place) in the same time; or
an clement (quantum statc) belongs to two different sets (two different
places) in the same time. It is a question of “alternative worlds” theory
very well represented by the neutrosophic set theory.

In Schroedinger’s Equation on the behavior of electromagnetic
waves and “matter waves” in quantum theory, the wave function Psi which
describes the superposition of possible states may be simulated by a
neutrosophic function, i.c. a function whose values are not unique for
each argument from the domain of definition (the vertical line test fails,
intersecting the graph in more points).

Don’t we better describe, using the attribute “necutrosophic” than
“fuzzy” or any others, a quantum particle that neither cxists nor non-
exists?

How to describe a particle g in the infinitc micro-universe that

14
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belongs to two distinct places P, and P, in the same time? g€ P andg P,
as a true contradiction, or g€ P andg€P,.

Or, how to calculate the truth-value of Zen (in Japanese) / Chan (in
Chinese) doctrine philosophical proposition: the present is eternal and
comprises in itself the past and the future?

In Eastern Philosophy the contradictory utterances form the core of
the Taoism and Zen/Chan (which emerged from Buddhism and Taoism)
doctrines.

How to judge the truth-value of a metaphor, or of an ambiguous
statement, or of a social phenomenon which is positive from a standpoint
and negative from another standpoint?

There are many ways to construct them, in terms of the practical
problem we need to simulate or approach. Below there are mentioned the
easiest ones:

Let U be a universe.
One notes, with respect to the sets A and B over U,
x=x(T,[,F)€eA andx =x(T,, L, F,) € B, by mentioning Xx’s

neutrosophic probability appurtenance.

And, similarly, y=y(T",I’,F’) €B.

[The components may be normalized (except for the case of
paraconsistent set, intuitionistic set, dialetheist set, paradoxist set) by
dividing each of them to their sum.]

Complement of A:

Ifx(T,1,F,) €A,
thenx( 18T, 181, 16F ) € C(A).

Intersection:

Ifx(T,I,F) €A xT,1,F,)€EB,
thenx(T,OT..1OL, F OF,) EANB.

15
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Union:

IfX(T,1,,F,)€A,x(T,1,F,)€B,
then x(T, @T,OT,0OT,.1,BLEOILOL, F ©F OF OF,) e AUB.

Difference:

Ifx(T,I,F)EAXT,L,F,)€EB,
thenx(T, ©T OT,, 1 ©1 OL, F, OF OF,) €A\B,
becausc A\B=ANCB).

Cartesian Product:

Ifx(T,1,F )eA, y(T',I',F’)eB.
then (x(T,I,,F,),y(T',I,F’)) €A B.

M is a subset of N if

X(T,1,F)eM =x( T,L,F,)€EN,

where inf T< inf T, sup T, < sup T,, and inf F > inf F,
supF > supF..

LetA A, ...,A_be arbitrary non-empty sets.

A Neutrosophic n-ary Relation R on A XA, x .. XA _isdefined as
a subsct of the cartesian product A, x A, X ... X A_. such that for each
ordered n-tuple (X, X, ..., X XT, I, F), T represents the degree of validity,
I the degree of indeterminacy, and F the degree of non-validity respec-
tively of the relation R.

It is related to the definitions for the Intuitionistic Fuzzy Relation
independently given by Atanassov (1984, 1989), Toader Buhaescu (1989),
Darinka Stoyanova (1993), Humberto Bustince Sola and P. Burilio Lopez
(1992-1995),

In a rough set RS, an clement on its boundary-line cannot be clas-
sified neither as a member of RS nor of its complement with certainty. In
the neutrosophic sct a such element may be characterized by x(T. 1. F),

16
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with corresponding set-values for T, I, F €|} 0, l"_ﬂ

NEUTROSOPHIC LOGIC is a logic in which each proposition P
has the logical values NL(P) = (T, I, F), where T represents the percentage
of truth, I the percentage of indeterminacy, and F the percentage of false-
hood.

As an alternative to the existing logic we propose the Neutrosophic
Logic to represent a mathematical model of uncertainty, vagueness, am-
biguity, imprecision, undefined, unknown, incompleteness, inconsistency,
redundancy, contradiction. It is a non-classical logic.

Eksioglu (1999) explains some of them:

“Imprecision of the human systems is due to the imperfection of
knowledge that human receives (observation) from the external world.
Imperfection leads to a doubt about the value of a variable, a decision to
be taken or a conclusion to be drawn for the actual system. The sources of
uncertainty can be stochasticity (the case of intrinsic imperfection where
a typical and single value does not exist), incomplete knowledge (igno-
rance of the totality, limited view on a system because of its complexity)
or the acquisition errors (intrinsically imperfect observations, the quanti-
tative errors in measures).”

“Probability (called sometimes the objective probability) process
uncertainty of random type (stochastic) introduced by the chance. Un-
certainty of the chance is clarified by the time or by events’ occurrence.
The probability is thus connected to the frequency of the events’ occur-
rence.”

“The vagueness which constitutes another form of uncertainty is
the character of those with contours or limits lacking precision, clearness.
[...JFor certain objects, the fact to be in or out of a category is difficult to
mention. Rather, it is possible to express a partial or gradual member-
ship.”

Indeterminacy means degrees of uncertainty, vaguencss, impreci-
sion, undefined, unknown, inconsistency, redundancy.

A question would be to try, if possible, to get an axiomatic system

for the ncutrosophic logic. Intuition is the base for any formalization,
because the postulates and axioms derive from intuition.
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We use a subset of truth (or indeterminacy, or falsity), instead of a
number only, because in many cases we are not able to exactly determine
the percentages of truth and of falsity but to approximate them: for ex-
ample a proposition is between 30-40% true and between 60-70% false,
even worst: between 30-40% or 45-50% true (according to various ana-
lyzers), and 60% or between 66-70% false.

The subsets are not necessary intervals, but any sets (discrete, con-
tinuous, open or closed or half-open/half-closed interval, intersections or
unions of the previous sets, ¢tc.) in accordance with the given proposi-
tion.

A subsct may have one element only in special cases of this logic.

Constants: (T, I, F) truth-values, where T, I, F are standard or non-
standard subsets of the non-standard interval |} 0, 1% .

Atomic formulas: a, b, c, ....

Arbitrary formulas: A, B, C, ...

The neutrosophic logic is a formal frame trymg to measure the
truth, indeterminacy, and falsehood.

My hypothesis is that no theory is exempted from paradoxes,
because of the language imprecision, metaphoric expression, various lev-
cls or meta-levels of understanding/interpretation that might overlap.

History:

The Classical Logic, also called Bivalent Logic for taking only
two values {0, 1}, or Boolean Logic from British mathematician George
Boole (1815-64), was named by the philosopher Quine (1981) “sweet
simplicity”.

Peirce, before 1910, developed a semantics for three-valued logic
in an unpublished note, but Emil Post’s dissertation (1920s) is cited for
originating the three-valued logic. Here “1” is used for truth, “1/2” for
indeterminacy, and “0” for falsehood. Also, Reichenbach, leader of the
logical empiricism, studied it.

The threc-valued logic was employed by Halldén (1949), Kérner
(1960), Tye (1994) to solve Sorites Paradoxes. They used truth tables,
such as Kleenc’s, but everything depended on the definition of validity.

A three-valued paraconsistent system (LP) has the values: ‘true’,
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‘false’, and ‘both true and false’. The ancient Indian metaphysics consid-
ered four possible values of a statement: ‘true (only)’, ‘false (only)’, *both
truc and false’, and ‘neither true nor false’; J. M. Dunn (1976) formalized
this in a four-valued paraconsistent system as his First Degree Entailment
semantics;

The Buddhist logic added a fifth valuc to the previous ones, ‘non¢
of these’ (called catushkoti).

In order to clarify the anomalies in science, Rugina (1949, 1981)
proposed an original method, starting first from an economic point of
view but generalizing it to any science, to study the equilibrium and
disequilibrium of systems. His Oricntation Table comprises seven basic
models:

Model M, (which is 100% stable)
Model M, (which is 95% stable, and 5% unstable),
~ Model M, (which is 65% stable, and 35% unstable),
Model M, (which is 50% stable, and 50% unstable),
Model M, (which is 35% stable, and 65% unstable),
Model M, (whichis 5% stable, and 95% unstable),
Model M, (which is 100% unstable).
He gives Orientation Tables for Physical Sciences and Mechanics
(Rugina 1989), for the Theory of Probability. for what he called Inte-
grated Logic, and generally for any Natural or Social Science (Rugina
1989). This is a Seven-Valued Logic.

The {0, 2, ..., a, 1} Multi-Valued, or Plurivalent, Logic was de-
velop by £ukasiewicz, while Post originated the m-valued calculus.

The many-valued logic was replaced by Goguen (1969) and Zadeh
(1975) with an Infinite-Valued Logic (of continuum power, as in the clas-
sical mathematical analysis and classical probability) catled Fuzzy Logic,
where the truth-value can be any number in the closed unit interval [0, 1].
The Fuzzy Set was introduced by Zadeh in 1975.

Rugina (1989) defines an anomaly as “a deviation from a position
of stable equilibrium represented by Model M,”. and he proposes a Uni-
versal Hypothesis of Duality:

“The physical universce in which we are living, including human
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society and the world of idecas, all are composed in different and
changeable proportions of stable (equilibrium) and unstable (disequilib-
rium) elements, forces, institutions, behavior and value”

and a General Possibility Theorem:

“there is an unlimited number of possible combinations or systems
in logic and other sciences”.

According to the last assertions one can extend Rugina’s Orienta-
tion Table in the way that any system in each science is s% stable and u%
unstable, with s+u=100 and both parameters 0 < s, u < 100, somehow
getting to a fuzzy approach.

But, because each system has hidden features and behaviors, and
there would always be unexpected occurring conditions we are not able
to control - we mean the indeterminacy plays a role as well, a better
approach would be the Neutrosophic Model:

Any system in each science is s% stable, i% indeterminate, and u%
unstable, with s+i+u=100 and all three parameters 0 <s,i,u < 100.

Therefore, we finally generalize the fuzzy logic to a transcendental
logic, called “neutrosophic logic”: where the interval [0, 1] is exceeded,
Le., the percentages of truth, indeterminacy, and falsity are approximated
by non-standard subsets - not by single numbers, and these subsets may
overlap and exceed the unit interval in the sense of the non-standard
analysis; also the superior sums and inferior sum, n_ =supT+supl+sup
Fe | -0,3*{ , may be as high as 3 or 3*, while n_=infT+infl+infFe
I 0,3%4 , may be as low as 0 or 0.

Generally speaking, passing from the attribute “classical” (tradi-
tional) to the attribute “modern” (in literature, arts, and philosophy today
one says today “postmodern”) one invalidates many theorems. Voltaire
(1694-1778), a French writer and philosopher, asserted that “the laws in
arts are made in order to encroach upon them”. Therefore, in neutrosophic
logic most of the classical logic laws and its properties are not preserved.
Although at a first look neutrosophic logic appears counter-intuitive,
maybe abnormal, because the neutrosophic-truth values of a proposition
A, NL(A), may even be (1,1,1), i.e. a proposition can completely be true
and false and indeterminate at the same time, studying the paradoxes one
soon observes that it is intuitive.
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The idca of tripartition (truth, falschood, indeterminacy) appeared
in 1764 when J. 1. Lambert investigated the credibility of onc witness
affected by the contrary testimony of another. He generalized Hooper’s
rule of combination of evidence (1680s), which was a Non-Bayesian
approach to find a probabilistic model. Koopman in 1940s introduced
the notions of lower and upper probability, followed by Good, and
Dempster (1967) gave a rule of combining two arguments. Shafer (1976)
extended it to the Dempster-Shafer Theory of Belief Functions by defin-
ing the Belief and Plausibility functions and using the rule of inference
of Dempster for combining two evidences proceeding from two different
sources. Belief function is a connection between fuzzy reasoning and
probability. The Dempster-Shafer Theory of Belief Functions is a gener-
alization of the Bayesian Probability (Bayes 1760s, Laplace 1780s); this
uses the mathematical probability in a more general way, and is based on
probabilistic combination of evidence in artificial intelligence.

In Lambert “there is a chance p that the witness will be faithful and
accuratc, a chance q that he will be mendacious, and a chance 1-p-q that
he will simply be careless” [apud Shafer (1986)]. Therefore, three compo-
nents: accurate, mendacious, careless, which add up to 1.

Van Fraassen introduced the supervaluation semantics in his at-
tempt to solve the sorites paradoxes, followed by Dummett (1975) and
Fine (1975). They all tripartitioned, considering a vague predicate which,
having border cases, is undefined for these border cases. Van Fraassen
took the vague predicate ‘heap’ and extended it positively 1o those ob-
jects to which the predicate definitively applies and negatively to those
objects to which it definitively doesn’t apply. The remaining objects
border was called pcnumbra. A sharp boundary between these two exten-
sions does not exist for a soritical predicate. Inductive reasoning is no
longer valid too; if S is a sorites predicate, the proposition “In(Sa &1Sa, D
is falsc. Thus, the predicate Heap (positive extension) = true, Heap (nega-
tive extension) = false, Heap (penumbra) = indeterminate.

Narinyani (1980) used the tripartition to definc what he called the
“indefinite set”, and Atanassov (1982) continued on tripartition and gave
five generalizations of the fuzzy set, studied their properties and applica-
tions to the neural networks in medicine:
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a) Intuitionistic Fuzzy Set (IFS):

Given an universe E, an IFS A over E is a set of ordered triples
<universe_element, degree_of membership_to_ A(M), degrce of non-
membership_to_ A(N)> such that M+N<1and M, N€ [0, 1]. When M +
N =1 one obtains the fuzzy set, and if M + N < 1 there is an indeterminacy
I=1-M-N.

b) Intuitionistic L-Fuzzy Set (ILFS):

Is similar to IFS, but M and N belong to a fixed lattice L.

¢) Interval-Valued Intuitionistic Fuzzy Set (IVIFS):

Is similar to IFS, but M and N are subsets of [0, 1] and sup M + sup
N<lL

d) Intuitionistic Fuzzy Set of Second Type (IFS2):

Is similar to IFS, but M*+ N? < 1. M and N are inside of the upper

right quarter of unit circle.
¢) Temporal IFS:
Is similar to IFS, but M and N are functions of the time-moment too.

This neutrosophic logic is the (first) attempt to unify many logics
in a single field. However, sometimes a too large generalization may
have no practical impact. Such unification theories, or attempts, have
been done in the history of sciences:

a) Felix Klein (1872), in his Erlangen programme, in geometry,
has proposed a common standpoint from which various branches of ge-
ometries could be re-organized, interpreted, i.c.:

Given a manifold and a group of transformations of the manifold,
to study the manifold configurations with respect to those features that
are not altered by the transformations of the group (Klein 1893, p. 67;
apud Torretti 1999).

b) Einstein tried in physics to build a Unifying Field Theory
that seeks to unite the properties of gravitational, electromagnetic, weak,
and strong interactions so that a single set of equations can be used 1o
predict all their characteristics; whether such a theory may be developed
it is not known at the present (Illingworth 1991, p. 504).

¢) Also, onc mentions the Grand Unified Theory, which is a uni-
fied quantum field theory of the electromagnetic, weak, and strong inter-
actions (Illingworth 1991, p. 200).
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But generalizations become, after some levels, “very general”, and
therefore not serving at much and, if dealing with indeterminacy, under-
lying the infinite improbability drive. Would the gain of such total gen-
erality offset the losses in specificity? A generalization may be done in
one direction, but not in another, while gaining in a bearing but loosing
in another.

How to unify, not too much generalizing? Dezert (1999) suggested
to develop the less limitative possible theory which remains coherent
with certain existing theories. The rules of inferences in this general
theory should satisfy many important mathematical properties.
“Neutrosophic Logic could permit in the future to solving certain practi-
cal problems posed in the domain of research in Data/Information fusion.
So far, almost all approaches are based on the Bayesian Theory, Dempster-
Shafer Theory, Fuzzy Sets, and Heuristic Methods” (Dezert 1999). Theo-
retical and technical advances for Information Fusion are probability and
statistics, fuzzy sets, possibility, evidential reasoning, random sets, neu-
ral networks and neuro-mimetic approaches, and logics (Dezert 2000).

The confidence interval <Bel, P> in Dempster-Shafer Theory is the
truth subset (T) in the neutrosophic set (or logic). The neuirosophic
logic, in addition to it, contains an indeterminacy sct (say indeterminacy
interval) and falsehood set (say in-confidence interval).

An attempt of classification of logics upon the following (among
many other) criteria:

a) The way the connectives, or the operators, or the rules of infer-
ences are defined.

b) The definitions of the formal systems of axioms.

¢) The number of truth-values a proposition can have: two, threc.
finitely many-values, infinitely many (of continuum power).

d) The partition of the interval [0, 1] in propositional values: bi-
partition (in degrees of truth and falsehood), or tri-partition (degrees of
truth, falsehood, and indeterminacy).

¢) The distinction between conjunctural (relative) true,
conjunctural (relative) false, conjunctural (relative) indeterminacy - de-
signed by 1, with respect to absolute true (or super-truth), absolute false
(super-falshood), absolute indeterminacy - designed by 1* . Then, if a
proposition is absolute true, it is underfalse (-0), i.e. NL(P)=(1*, 1, ‘0).
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For example, the neutrosophic truth-value of the proposition *“The
number of planets of the Sun is divisible by three” is 1 because the propo-
sition is necessary de re, i.c. relates to an actual individual mentioned
since its truth depends upon the number nine, whereas the neutrosophic
truth-value of the proposition “The number of planets of the Sun is the
number of its satellites” is 1 because the second proposition is necessary
de dicto, i.c. relates to the expression of a belief, a possibility since its
truth is not dependent upon which number in fact that is. The first propo-
sition might not be true in the future if a new planet is discovered or an
existing planet explodes in an asteroid impact, while the second one is
always true as being a tautology. This is the difference between the truth-
value “1” (dependent truth) and the truth-value “1*” (independent truth).

f) The components of the truth values of a proposition summing
up to 1 (in boolean logic, fuzzy logic, intuitionistic fuzzy logic), being
less than 1 (in intuitionistic logic), or being greater than 1 (in
paraconsistent logic, neutrosophic logic). The maximum sum may be 3
in neutrosophic logic, where NL(paradox)=(1,1,1).

g) Parameters that influence the truth-values of a proposition. For
example in temporal logic the time is involved. - A proposition may be
true at a time t,, but false at a time t,, or may have some degree of truth in
the open interval (0, 1) at a time t,.

h) Using approximations of truth-values, or exact values.

For example, the probabilistic logic, interval-valued fuzzy logic,
interval-valued intuitionistic fuzzy logic, possibility logic (Dubois, Prade)
use approximations.

The boolean logic uses exact values, either 0 or 1.

1) Studying the paradoxes or not.

In the neutrosophic logic one can treat the paradoxes, because
NL(paradox)=(1,1,1), and in dialetheism. In fuzzy logic FL(paradox)=(1,0)
or (0,1)? Because FL(paradox)#(1,1), due to the fact that the sum of the
components should be 1 not greater.

J) The external or internal structure of propositions: Sentential (or
Propositional) Calculus, which is concerned with logical relations of
propositions treatcd only as a whole, and Predicate (or Functional) Cal-
culus which is concerned besides the logical relations treated as a whole
with their internal structure in terms of subject and predicate.

k) Quantification: First-Order (or Lower) Predicate Calculus (quan-
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tification is restricted to individuals only, and predicates take only indi-
viduals as arguments), Second-Order Predicate Calculus (quantification
over individuals and over some classes as well), Higher-Order Calculus
(n-predicates take, and quantifiers bind, order n-1 predicates as argu-
ments, for n>1).

1) In proof-theorctic terms:

- Monotonic Logic: let I' be a collection of statements, v, v,, ..., v ,
and ©, ¢ other statements; if I'+-¢ then also (I, ®) .

- Non-Monotonic Weak Logic: For some I', ©, ¢ one has

'+, @but from (I, ©) doesnot . @;

- Non-Monotonic Strong Logic: For some I', @, ¢, where I' and

I' A @ are consistent, one has
I, @) P, 0

m) From a tradmonal standpoint: Classical or Non-classical.

n) Upon inclusion or exclusion of empty domains (and defining
the logical validity accordingly), there are Inclusive Predicate Logic,
and (Standard) Predicate Logic respectively.

0) Upon the number of arguments the predicates can take, there are
Monadic Predicate Logic (predicates take only one argument), Dyadic
Predicate Logic (predicates take two arguments), Polyadic Predicate Logic
or Logic of Relations (predicates take n>1 arguments).

p) Upon formalization again: Formal Logic, and Informal Logic.

q) Upon types of formalization, there are: Number-Theoretic Predi-
cate Calculus (system with function symbols and individual constants),
Pure Predicate Calculus (system without function symbols nor individual
constants).

r) Upon standardization: Standard Logic, and Non-Standard Logic.

s) Upon identity: Predicate Logic With Identity (with the axiom
(Vx)(x=x), and the axiom schema [(x=y)—(A—A’)], where A’ is obtained
from A by replacing any free occurrence of x in A with y, and B¢ is an
arbitrary closure of B), Predicate Logic Without Identity.

t) According to the ex contradictione quodlibet (ECQ) principle,
from contradictory premises follows anything, there are:

- Explosive logics, which validates it (classical logic, intuitionistic
logic);

- Non-Explosive Logics, which invalidate it (paraconsisteht logic,
neutrosophic logic).
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u) According to the Law of Excluded Middle (LEM), either A or
1A, there are:

- Constructive Logic, which invalidates it (intuitionistic logic,
paraconsistent logic, neutrosophic logic);

- Non-Constructive Logics (classical logic).

The criteria are not exhausted. There are sub-classifications too.

Let’s take the Modal Logic which is an extension of the Proposi-
tional Calculus but with operators that express various modes of truth,
such as: necessarily A, possible A, probably A, it is permissible that A, it is
believed that A, it has always been true that A. The Modal Logic com-
prises:

-Alethic Logic (which formalizes the concepts of pertaining to truth
and falsehood simultaneously, such as possibly true and necessarily true);
only for this case there are more than two hundred systems of axioms!

- Deontic Logic (which seeks to represent the concepts of
obligatoriness and permissibility); it is sub-divided into:

- Standard Deontic Logic, which has two monadic operators added
to the classical propositional calculus: “OQ” = it ought to be that, and “P”
= it is permissible that;

- Dyadic Deontic Logic, which has two similar dyadic operators
added to the classical propositional calculus: “O( /)" = it ought to be that

., given that ..., and P(/) = is il permissible that ..., given that ... ;

- Two-sorted Deontic Logic (Castafieda 1975) , which distinguishes
between propositions (which bear truth-values) and practitions (which
content imperatives, commands, requests). The deontic operators in this
case are: Oi = it is obligatory I that, Pi = it is permissiblc i that, Wi= it is
wrong I that, and Li = it is optional i that. A deontic operator applied to a
practition yields a proposition.

- Epistemic Logic (which seeks to represent to concepts of knowi-
edge, belief, and ignorance);

- and Doxastic Logic (which studies the concept of belief); it is
included in the Epistemic Logic, which is the investigation of epistemic
concepts, the main ones being: knowledge, reasonable belief, justifica-
tion, evidence, certainty.

Dynamic Logic (1970), as a generalization of the modal logic, has
a category of expressions interpretable as propositions and another cat-
egory of expressions interpretable as actions, with two operators:
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[a]A = after every terminating computation according o a it is
the case that A;

<o>A = afier some terminating computation according to a it is
the casc that A,
and it is used in the verification of the computer programs.

Combinatory Logic (Schoenfinkel, Haskell Curry, 1920s) is a sys-
tem for reducing the operational notation of logic, mathematics, or func-
tional language to a sequence of modifications to the input data struc-
ture.

Temporal Logic is an extension of Predicate Calculus that includes
notation for arguing about when (at what time) statements are true, and
employs prefix operators such as:

(Ox = x is true at the next time;

Ox = x is true from now on;

Ox = x is eventually true;

or infix operators such as:

xUy = x is true until y is true;

xPy = x precedes y;

xWy = x is weak until y is true.
Temporal Logic studies the Linear Time, which considers only one pos-
sible future, and Branching Time, which has two extra operators:

“A” = all futures,

and “E” = some futures.

Default Logic (Raymond Reiter 1980) is a formal system with two
default operators:

P:MQ/Q = if P is believed, and Q is consistent with this believe,
then Q must be believed;

P:M-Q/Q = if P is believed, and Q is not consistent with this
believe, then Q must not be believed.

Tense Logic (Arthur Prior 1967), which is related to the Modal
Logic, introduces in the classical logic two operators:

P = it was the case that ... (past tense);
F = it will be the case that ... (future tense).
The truth-value is not static as in classical logic, but changing in time.

Deviant Logics are logics which treat the same classical logic sub-
jects, but in a different way (either by interpreting the connectives and
quantifiers non-classically, or rejecting some classical laws): intuitionistic
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logic, paraconsistent logic, free logic, multi-valued logic.

Free Logic is a system of quantification thcory which aliows non-
denoting singular terms (frec variables and individual constants).

In Webster’s dictionary (1988) denotation of a term mcans the class
of all particular objects to which the term refers, and connotation of a
term means the properties possessed by all the objects in the term’s
extension.

Erotctic Logic is the logic of questions, answers, and the rclations
between them. There are (1) imperative approaches (A. Aqvist, J. Hintikka,
ct al.), epistemic sentcnces embedded in an imperative sentence system,
and (2) interrogative approaches (N. Belnap, T. Kubinski, and others),
system of interrogative expressions and their answers.

Relational Logic (Pierce 1870, 1882) is a formal study of the prop-
crties of the (binary) relations and the operations on relations.

Because the neutrosophic logic is related to intuitionistic logic,
paraconsistent logic, and dialetheism we’ll focus more in these types of
logics.

Intuitionistic Logic (Brouwer 1907) is a deviant logic from the
classic, where the Law of Excluded Middle of Aristotle (AV1A) is invali-
dated. In this logic: a proof of existence, 3xP(x), docs not count unless a
method/algorithm of constructing a such x is giving (the interpretation
of ‘there exists’ as “we can construct’ distinguishes between classical
mathematics and constructive mathematics respectively); and a proof of
AVB counts only if a proof of A exhibits or a proof of B. Similarly
(Bridges 1997), a proof of AAB counts if both a proof of A and a proof of
B exibit, a proof of A—B counts if an algorithm is constructed that con-
verts a proof of A into a proof of B, a proof of 1A means to show that A
implies a contradiction, and a proof of VxP(x) means to construct an
algorithm that applied to any x proves that P(x) holds. As a consequence,
the axiom of choice also fails. Brouwer considered some unsolved prob-
lem from number theory as proposition A, which is not - with our present
knowledge — proved true, neither 7A is proved true. Thus,
ncutrosophically NL(AVIA) < 1, NL(AviA) < 1, and NL(AVB) < 1,
NLf(AvB) <1, for some propositions A, B.

Paraconsistent Logic is a logic in which the principle that anything
follows from contradictory premises, for all formulas A and B onc has

28



COLLECTED PAPERS, vol. 111

AA1ADB, fails. Therefore, AATA is not always false, i.e. for some A
NL (AA1A)>0 or NL(A)= (1, i, f) where t+f>1. Itis motivated by dialetheists
who support the idea that some contradictions are true, by automated
reasoning (information processing) duc to inconsistent data stored in
computers, and by the fact that people impart opposite beliefs.  There
are four types of propositional paraconsistent logics (Priest and Tanaka,
1996):

- Non-Adjunctive Systems (Jaskowski’s discussive logic), where
the inference {A, B}DAAB fails; in a discourse a participant’s opinion A
may be inconsistent with other participant’s opinion B on the same sub-
ject;

- Non-Truth-Functional Logics (da Costa), which maintains the
mechanism of positive logics (classical, intuitionistic) but the value of
the negation, 1A, is interpreted independently of that of A;

- Many-Valued Systems (Asenjo), many-valued logic which al-
lows both A and A to be designated (to function as the analogue of truth
in a two-valued logic); for cxample a three-valued paraconsistent system
(LP) has the values: ‘true’, ‘false’, and ‘both true and false’, while in a
four-valued system (J. M. Dunn 1976) one adds another value ‘neither
true nor false’;

- Relevance Logic (or Relevant Logic) (Withelm Ackermann 1956,
Alan Anderson and Nuel Belnap 1959-1974) promulgates that the pre-
mises of a valid inference must be relevant to the conclusion. The dis-
junctive syllogism, which states that ‘if AVB and 1A are true then so is B,
is not admitted in relevance logic, neither in neutrosophic logic. How-
ever, Ackermann’s rule Gamma, that ‘if AVB and "A are theses then so is
B’, is admitted.

Dialetheism asserts that some contradictions are true, encroaching
upon the Aristotle’s Law of Non-Contradiction (LNC) that not both A and
1A are true. The dialetheism distinguishes from the trivialism, which views
all contradictions as being true. Neither neutrosophic logic is trivialist.

There is a duality (Mortensen 1996) between paraconsistency and
intuitionism (i:¢. between inconsistency and incompleteness respectively),
the Routley * operation (1972) between inconsistent theories and in-
complete theories.

Linear Logic (J. Y. Girard 1987) is a resource sensitive logic that
emphasizes on state. It employs the central notions of truth from classical
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logic and of proof construction from intuitionistic logic. Assumptions
are considered resources, and conclusions as requirements; A implies B
means that the resource A is spent to meet the requirement B. In the
deductions there are two structural rules (Scedrov 1999), that allow us to
discard or duplicate assumptions (distinguishing linear logic from classi-
cal and intuitionistic logics): contraction, which stipulates that any as-
sumption once stated may be reused as often as desired, and weakening
which stipulates that it’s possible to carry out a deduction without using
all the assumptions. They are replaced by explicit modal logical rules
such as: “storage” or “reuse” operator, 'A, which means unlimited cre-
ation of A, and its dual, ?B, which means unlimited consumption of B.

How to adopt the Godel-Gentzen negative translation, which trans-
forms a formula A of a language L into an equivalent formula A* with no
Vor 3, in the neutrosophic predicate logic?

In the Boolean logic a contingent statement is a statement which is
true under certain conditions and false under others. Then a neutrosophic
contingent statement is a statement which has the truth value (T,I, F)
under certain conditions and (T, L, F,)under others.

The Medieval paradox, called Buridan’s Ass after Jean Buridan
(near 1295-1356), is a perfect example of complete indeterminacy. An
ass, equidistantly from two quantitatively and qualitatively heaps of grain,
starves to death because there is no ground for preferring one heap to
another.

The neutrosophic value of ass’s decision, NL = (0, 1, 0).

In a two-valued system one regards all the designated values as
species of truth and all the anti-designated values as species of falsehood,
with truth-value (or falsehood-value) gaps between designated and anti-
designated valucs. In the neutrosophic system one stipulates the non-
designated values as species of indeterminacy and, thus, each neutrosophic
conscquence has degrees of designated, non-designated, and anti-desig-
nated values.

Of course, the Law of Excluded Middle (a proposition is either true
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or false) does not hold in a neutrosophic system.

The Contradiction Law, that no <A> is <Non-A> docs not hold tco.
NL{<A>) may be equivalent with NL(<Non-A>) and often they at lcast
overlap. Neither the law of Reductio ad absurdum (or method of indircct
proof): (A 21A) D1Aand (FA DA) DA,

Some tautologies (propositions logically necessary, or true in vir-
tue of form) in the classical logic might not be tautologies (absolute
truth-value propositions) in the neutrosophic logic and, mutatis mutan-
dis, some contradictions (propositions logically impossible, or false in
virtue of form) in the classical logic might not be contradictions (abso-
lute falsehood-value propositions) in the neutrosophic logic.

The mixed hypothetical syllogism Modus Ponens,

IfPthen Q
P

Q
The mixed hypothetical syllogism Modus Tollens,

If P then Q
Non Q

NonP
The Inclusive (Weak) Disjunctive Syllogism:

If(PorQ)
Non P

Q

The Exclusive (Strong) Disjunctive Syllogism:

If (either P or Q)
NonP

Q
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Hypothetical Syllogism,

IfPthenQ
IfQthenR

IfPthenR
Constructive Dilemma,

PorQ
IfP thenR
IfQthenR

R

Destructive Dilemma,

PorQ
NonP

Q

The Polysyllogism, which is formed by many syllogisms such that
the conclusion of one becomes a premise of another,

and the Nested Arguments, a chainlikc where the conclusion of an
argument forms the premise of another where intermediate conclusions
are typically left out,

are not valid anymore in the neutrosophic logic, but they acquire a
more complex form.

Also. the classical entailment, which is the effect that a proposition
Q is a nccessary vonsequence of another proposition P, P — Q, partially
works in the neutrosopohic logic. Neither the informal fish-hook sym-
bol. — , usc to show that a proposition Q is an accidental consequence
of a proposition P, P — Q, works.

32



COLLECTED PAPERS, vol. IIl

Is it possible in the neutrosophic predicate calculus to transform
cach formula into an equivalent in prenex form one using the prenex
operations?

Prenex (normal) form means a formula formalized as follows:

(Qx,XQX,)...(Qx))S,

where “Q” is a universal or cxistential quantifier, the variables x ,
X,y ...y X, ATE distinct, and S is an open sentence (a well-formed expression
containing a frec variable). Prenex operation is any operation which trans-
forms any well-formed formula into equivalent in prenex form formula;
for example, (3x)Ax — B=(Vx)(Ax— B).

In the classical predicate calculus any well-formed formula can be
transformed into a prenex form formula.

The double negation, (1A) =A, which is not valid in intuitionistic
logic, is not valid in the neutrosophic logic if one considers the negation
operator 17,(A)=1©NL(A), but it is valid for the negation operator n(A)=(F,
L T), where NL(A=(T, L F).

Neutrosophic Logic admits non-trivial inconsistent theories.

In stead of saying “a sentence holds (or is assertible)” as in classical
logic, one extends to “a sentence p% holds (or is p% assertible)” in
neutrosophic logic. In a morc formalized way, “a sentence (T, I, F)%
holds [or is (T, I, F)% assertible]”.

A neutrosophic predicate is a vague, incomplete, or not well known
attribute, property or function of a subject. Itis a kind of three-valued set
function. If a predicate is applied to more than one subject, it is called
neutrosophic relation.

An example: Andrew is tall.

The predicate “tall” is imprecised. Andrew is maybe tall according
to Linda, but short in Jack’s opinion, however his tallness is unknown to
David. Everybody judges him in terms of his/her own taliness and ac-
quaintance of him.

A paradox within a sorites paradox: a frontal bald man, with a hair
high density on the remaining region of his head, may have more hairs on
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The neutrosophic set and logic attempt to better model the non-
determinism. They try:

- to represent the paradoxical results even in science, not talking
in the humanistic where the paradox is very common;

- 1o evaluate the peculiarities;

- to illustrate the contradictions and conflicting theories, each
true from a specific point of view, false from another one, and perhaps
indeterminate from a third perspective;

- to catch the mysterious world of the atom, where the determin-
ism fails; in quantum mechanics we are dealing with systems having an
infinite number of degrees of freedom;

- to study submicroscopic particles which behave non-
Newtonianly, and some macroscopic phenomena which behave in nearly
stmilar way.

In physics, the light is at once a wave and a particle (photon). Two
contradictory theories were both proven true:

The first one, Wave Theory (Maxwell, Huygens, Fresnel), says that
light is a wave due to the interference: two beams of light could cross
each other without suffering any damage.

The second one, Particle Theory (Newton, Hertz, Lenard, Planck,
Einstein), says that light is corpuscular, due to the photoelectric effect
that ultraviolet light is able to evaporate electrons from metal surfaces
and to the manner in which light bounces off electrons.

De Broglie reconciled both theories proving that light is a matter
wave! Matter and radiation are at the same time waves and particles.

Let L1(x) be the predicate: “X is of corpuscular nature”,
and L2(x) the predicate: “X is of wave nature”.

L2(x) is the opposite of L1(x), nonetheless L1(light) = true and
L2(light) = true simultancousty.

Also, there exist four different Atom Theories: of Bohr,
Heisenberg, Dirac, and Schrddinger respectively, each of them plausibly
true in certain conditions (hypotheses).

Another example, from Maxwell’s equations an electron does
radiate energy when orbits the nucleus, from Bohr’s theory an electron
does not radiate energy when orbits the nucleus, and both propositions
arc proved true with our today’s knowledge.

Falsehood is infinite, and truthhood quite alike; in
between, at different degrees. indeterminacy as well.
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In the neutrosophic theory:
between being and nothingness
existence and nonexistence
geniality and mediocrity
certainty and uncertainty
value and nonvalue
and generally speaking <A> and <Non-A>
there are infinitely many transcendental states.
And not even ‘between’, but even beyond them.
An infinitude of infinitudes.
They are degrees of neutralities <Neut-A> combined with <A>and

<Non-A>.

In fact there also are steps:
between being and being
existence and existence
geniality and geniality
possible and possible
certainty and certainty
value and value
and generally speaking between <A> and <A>.
The notions, in a pure form, last in themselves only (intrinsicalness),
but outside they have an interfusion form.

Infinitude of shades and degrees of differentiation:
between white and black there exists an unbounded palette of
colors resulted from thousands of combinations among them.

All is alternative: progress alternates with setback,
development with stagnation and underdevelopment.

In between objective and subjective there is a plurality of shades.
In between good and bad...
In between positive and negative...
In between possible and impossible
In between true and falsc...
In between “A” and “Anti-A”...
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As a neutrosophic cllipse:

Good Neighbourhood

~
S
/
|
\

Indeterminate ‘ ‘ Indetcrminate
Neighbourhood : : Neighbourhood
\ .
L
Bad Neighbourhood

Everything is g% good. i% indeterminate. and b% bad. where g
varies in the real subset G, i varies in the real subset 1. and b varics in the
rcal subset B,

Besides Diderot's dialectics on good and bad ("Rameau’s Nephew ™.
1772), any act has its “good”, “indeterminate”. and of “bad” as well
incorporated.

Rodolph Camap said:

“Metaphysical propositions arc neither true nor false. because they
assert nothing. they contain neither knowledge nor error (...)",

Ience. there are infinitely many states between “Good ™ and “Bad™.
and gencrally speaking between “A” and “Anti-A” (and even beyond
them). like on the real number line:
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1
T

False True

Bad Good
Non-sensc Sense
Anti-A A

f is the absolute falsity (f<0), t the absolute truth (t>0). In between
each oppositing pair, normally in a vicinity of 0.5, are being set up the
neutralities.

There exist as many states in between “True” and “False” as in
between “Good” and “Bad”. Irrational and transcendental standpoints
belong to this interval. .

Even if an act apparently looks to be only good, or only bad, other
hidden sides might be sought. The ratios

Anti-A Non-A

£

A A

vary indefinitely. They may be transcendental.

If a statement is 30%T (true) and 60%I (indeterminate), then it is
15%F (false). This is somehow alethic, meaning to stmultaneously per-
tain to truthhood and falsehood, or to truthhood and indeterminacy, or to
falsehood and indeterminacy, or even to all three components.

More general, if a statement is 30%T and 60%], it may be between
5-20%F or 25%F.

In opposition to Fuzzy Logic, if a proposition <A> is t% true, doesn’t
necessarily mean it is (100-1)% false. A better approach is t% true, %
false, and 1% indeterminate, where t € T, i € I, f € F, and the sum t+i+f as
well as t, i, f may be any real numbers - not necessarily between 0 and 1.

One considcrs subsets of truth, indeterminacy, and falsity instead
of single numbers because of imprecision, uncertainty, and vagueness.

The neutrosophic logical value of <A> is noted by NL(A) = (T,LF).
On components one writes:
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for the true value NL(A) =T;

for the indeterminacy value NL(A)=L

for the falsity value NL(A)=F.

Neutrosophic Logic means the study of neutrosophic logical val-
ues of the propositions.

There exist, for each individual one, PRO parameters, CONTRA
parameters, and NEUTER parameters which influence the above values.

Indeterminacy results from any hazard which may occur, from un-
known parameters, or from new arising conditions.

This resulted from practice.

Applications:
Neutrosophic logic is useful in the real-world systems for de-
signing control logic, and may work in quantum mechanics.

# The candidate C, who runs for clection in a metropolis M of p
people with right to vote, will win.

This proposition is, say, 20-25% true (percentage of people voting
for'him), 35-45% false (percentage of people voting against him), and
40% or 50% indeterminate (percentage of people not coming to the bal-
lot box, or giving a blank vote - not selecting anyone, or giving a nega-
tive vote - cutting all candidates on the list).

# Tomorrow 1t will rain.

This proposition is, say, 50% true according to meteorologists who
have investigated the past years’ weather, between 20-30% false accord-
ing to today’s very sunny and droughty summer, and 40% undecided.

# This is a heap.

As an application to the sorites paradoxes, we may now say that
this proposition is 80% true, 40% false, and 25-35% indeterminate (the
neutrality comes for we don’t know cxactly where is the difference be-
tween a heap and a non-heap; and, if we approximate the border, our
‘accuracy’ is subjective). Vagueness plays here an important role.

We are not able to distinguish the difference between yellow and
red as well if a continuum spectrum of colors is painted on a wall imper-
ceptibly changing from one into another.

We would be able to say at a given moment that a section is both
yellow and red in the same time. or neither one!
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his head that another man who is not bald but the skin surface of his head
and the hair density are smaller than the previous one.

Definition of Neutrosophic Logical Connectives:

The connectives (rules of inference, or operators), in any non-biva-
lent logic, can be defined in various ways, giving rise to lots of distinct
logics. For example, in three-valued logic, where three possible values
are possible: true, false, or undecided, there are 3072 such logics!
(Weisstein, 1998) A single change in one of any connective’s truth table
is enough to form a (completely) different logic.

The rules are hypothetical or factual. How to choose them? The
philosopher Van Fraassen (1980) [see Shafer, 1986] commented that such
rules may always be controvertible “for it always involves the choice of
one out of many possible but nonactual worlds”. There are general rules
of combination, and ad hoc rules.

For an applied logic to artificial intelligence, a better approach, the
best way would be to define the connectives recursively (Dubois, Prade),
changing/adjusting the definitions after each step in order to improve the
next result. This might be comparable to approximating the limit of a
convergent sequence, calculating more and more terms, or by calculating
the limit of a function successively substituting the argument with val-
ues closer and closer to the critical point. The recurrence allows evolu-
tion and self-improvement.

Or to use greedy algorithms, which are combinatorial algorithms
that attempt at each iteration as much improvement as possible unlike
myopic algorithms that look at each iteration only at very local informa-
tion as with steepest descent method.

As in non-monotonic logic, we make assumptions, but we often err
and must jump back, revise our assumptions, and start again. We may add
rules which don’t preserve monotonicity.

In bio-mathematics Heitkoetter and Beasley (1993-1999) present
the evolutionary algorithms, which are used “to describe computer-based
problem solving systems which employ computational models of some
of the known mechanisms of evolution as key elements in their design
and implementation”. They simulate, via processes of selection, muta-
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tion, and reproduction, the evolution of individual structures. The major
evolutionary algorithms studied are: genctic algorithm (a model of ma-
chine learning based on genetic operators), evolutionary programming
(a stochastic optimization strategy based on linkage between parents and
their offspring; conceived by L. J. Fogel in 1960s), evolution strategy,
classifier system, genetic programming.

Pei Wang devised a Non-Axiomatic Reasoning System as an intel-
ligent reasoning system, where intelligence means working and adopt-
ing with insufficient knowledge and resources.

The inference mechanism (endowed with rules of transformation or
rules of production) in neutrosophy should be non-monotonic and should
comprise ensembles of recursive rules, with preferential rules and sec-
ondary ones (priority order), in order to design a good expert system. One
may add new rules and eliminate old ones proved unsatisfactory. There
should be strict rules, and rules with exceptions. Recursivity is seen as a
computer program that learns from itself. The statistical regression method
may be employed as well to determine a best algorithm of inference.

Non-monotonic reasoning means to make assumptions about things
we don’t know. Heuristic methods may be involved in order to find
successive approximations.

In terms of the previous results, a default neutrosophic logic may
be used instead of the normal inference rules. The distribution of pos-
sible neutrosophic results serves as an orientating frame for the new re-
sults. The flexible, continuously refined, rules obtain iterative and gradual
approaches of the result.

A comparaison approach is employed 1o check the result (conclu-
sion) p by studying the opposite of this: what would happen if a non-p
conclusion occurred? The inconsistence of information shows up in the
result, if not eliminated from the beginning. The data bases should be
stratified. There exist methods to construct preferable coherent sub-bases
within incoherent bases. In Multi-Criteria Decision one exploits the
complementarity of different criteria and the complementarity of various
sources.

For example, the Possibility Theory (Zadeh 1978, Dubois, Prade)
gives a better approach than the Fuzzy Set Theory (Zadeh 1965) due to
self-improving connectives. The Possibility Theory is proximal to the
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Fuzzy Set Theory, the difference between these two theories is the way
the fusion operators are defined.

One uses the definitions of neutrosophic probability and
neutrosophic set operations.

Similarly, there are many ways to construct such connectives ac-
cording to each particular problem to solve; here we present the easiest
ones:

One notes the neutrosophic logical values of the propositions A
andA,by NL(A))=(T,,I,F )andNL(A,)=(T,L,F,).

1

Negation:

NL(A))=(1,1, )BNLA )=(1,1, DB(T, I, F,)= (16T, 11,
16F).

Conjunction:

NL(A, AA,)=NL(A )TONL(A))=(T,1,F Y&(T, L,F,)=(T,0T,
1.OL, F,OF,).
(And, in a similar way, generalized for n propositions.)

Weak or inclusive disjunction:

NL(A, VA= NL(A‘) BNL(A,)BNLA )EONLA,)=(T,I,F)H
(T, LF)B(T,1,F)E(T,L,F,)=(T,&T,eT,cT, I‘@Izel OL,F &
I-_eF G)F_)

(And, in a similar way, generalized for n propositions.)

Strong or exclusive disjunction:

NL(A YA,))=
(T, o(1eT)eT,o(1eT)oT oT,0(16T, o(eT,),
I @(lel )@I G(lel )91 OI @(161 o(1eL,),
F 0(19F )@F O(leF )GF OF, O(leF )@(IGF )).
{(And,ina similar way, generallzed forn propositions.)
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Material conditional (implication):
NL(A, »A)=(16T ©T,0T,, 18] 8] O, 16F ®F GF,).

Material biconditional (equivalence):
NL(A, < A)=((16T @TIOT2)(16T,8T,0T,),
(1el @], cL)o(16L8],61),
(16F &F OF )o(16F,®F OF,)).

Sheffer’s connector:
NL(A,]A)= NL(A,V A)=(16T,0T,, 1ol 0L, 16F OF,).
Peirce’s connector:

NL(A, }A)=NL(A AYA,) =
=((1eT)a(1eT,), (1el)o(16L), (16F )(16F)).

Comparison between Fuzzy Logic and Neutrosophic Logic:

The neutrosophic connectives have a better truth-value defini-
tion approach to the real-world systems than the fuzzy connectives. They
are defined on triple subsets, not on double or triple numbers, with no
restrictions on the subsets nor on their superior or inferior limits; while
the components of a fuzzy proposition should sum up to 1 and be greater
than or equal to 0.

Neutrosophical Modal Logic:
In modal logic, the primitive operators ‘it is possible that’ and
it is necessary that’ can be defined by:
t inf(cA)>0,

and, because OA could be regarded as 7(07A),
tsup{OA)<1.
The sufficient reason principle (Aristotle, Leibniz), which asserts

that every statement has a grounding, partially works in this logic.
Also, identity principle, that A—A is true, partially works, because
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ifsay NL (A)=0.3 then NL (A~A)=0.6241,
the only cases when NL (A«<>A)=1are for NL (A)=0or 1.

Same thing for the principles of bivalence (a statement is either
true or false), and of excluded middle (a statement with its ncgation is
always true).

The principle of noncontradiction (a statement and its negation
may not both be true) functions only if NL (A) is straight 0 or 1, otherwise
NL(AANA)#0.

Neutrosophy shows that a philosophical idea, no matter if proven
true by ones or false by others, may get any truth-value depending on the
referential system we are reporting it to.

Lett=NL, . .

The conjunction is well defined, associative, commutative, admits
a unit element U with t(U) = 1*, but no element whose truth-component is
different from 1, inversable.

The conjunction is not absorbent, i.c. t{ AAN(ANAB) ) = t(A),
except for the cases when t(A) <0, or t(A)=t(B) > 1.

The disjunction is well-defined, associative, commutative, admits
a unit element O with t(O) ="0, but no element, whose truth-component is
different from 0, inversable.

The disjunction is not absorbent, i.e. t{ AV(AVB) ) # t(A),
except for the cases when one of t(A) > 1, or t(A) = t(B) <0.

None of them is distributive with respect to the other.

De Morgan laws do not apply either.

Therefore (NL, A, V, C), where NL is the set of neutrosophic logical
propositions, is not an algebra.

Nor (P@0, 19,1 ,U, C), where P(F0, 11}) is the set of all subsets of

10, 1, and C(A) is the neutrosophic complement of A.

One names a set N, endowed by two associative unitary internal
laws * and #, which are not inversable except for their unit elements
respectively, and not distributive with respect to each other, Ninversity.

If both laws are commutative, then N is called a Commutative
Ninversity.

For a better understanding of the neutrosophic logic one needs to
study the commutative ninversity.
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One defines a Neutrosophic Topology on ﬂr'O, 1+4 , considering all
subscts (a, b) of this non-standard interval, where a, b are standard or non-
standard numbers.

The whole set  §°0,1°4, the empty set ¢ = (0,0), and the above ones are
open scts. They are closed under set union and finite intersection.

The union is defined as:

(al’bl) U (az’bz) = (a!+afalaz’ b1+ba'b1b:)’
and the intersection as:

(a,b)N(a,b,)=(aa,bb,).

The complementary of (a,b) is (1t -b, I* -a) wich is a closed set.

The non-standard interval § 0, 11, endowed with this topology,
forms a neutrosophic topological space.
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NEUTROSOPHIC PROBABILITY,
SET, AND LOGIC

(first version)

Abstract.

This project is a part of a National Science Foundation
interdisciplinary project proposal. Starting from a new viewpoint in phi-
losophy, the neutrosophy, one extends the classical “probability theory”,
“fuzzy set” and “fuzzy logic” to <neutrosophic probability>, <neutrosophic
set> and <neutrosophic logic> respectively.

They are useful in artificial intelligence, neural networks, evolution-
ary programming, neutrosophic dynamic systems, and quantum mechan-
ics.

1) NEUTROSOPHY, ANEW BRANCH OF
MATHEMATICAL PHILOSOPHY

A) Etymology:

Neutro-sophy [French neutre < Latin neuter, neutral, and Greek
sophia, skill/wisdom] means knowledge of neutral thought.

B) Definition:

Neutrosophy is a new branch of philosophy which studies the ori-
gin, nature, and scope of neutralities, as well as their interactions with
different ideational spectra.

C) Characteristics:

This mode of thinking:

- proposes new philosophical theses, principles, laws, methods,
formulas, movements;

- interprets the uninterpretable;

- regards, from many different angles, old concepts, systems: show-
ing that an idea, which is true in a given referential system, may be false in
another ane_and vice versa:

- measures the stability of unstable systems,

and instability of stable systems.

D) Methods of Neutrosophic Study:

mathematization (neutrosophic logic, neutrosophic probability and
statistics, duality), generalization, complementarity, contradiction.
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paradox, tautology, analogy, reinterpretation, combination, interference,
aphoristic, linguistic, multidisciplinarity.

E) Formalization:

Let’s note by <A> an idea or theory or concept, by <Non-A> what is
not <A>, and by <Anti-A> the opposite of <A>. Also, <Neut-A> means
what is neither <A>, nor <Anti-A>, i.e. neutrality in between the two
extremes. And <A’> a version of <A>.

<Non-A> is different from <Anti-A>.

For example:

If <A> = white, then <Anti-A> = black (antonym),

but <Non-A> = green, red, blue, yellow, black, etc. (any color, except
white), while <Neut-A> = green, red, blue, yeliow, etc. (any color, except
white and black), and <A’> = dark white, etc. (any shade of white).

<Neut-A> = <Neut-(Anti-A)>, neutralities of <A> are identical with
neutralities of <Anti-A>.

<Non-A> O <Anti-A>, and <Non-A> > <Neut-A> as well,
also

<A> N <Anti-A>=

<A>n <Non-A>=
<A>, <Neut-A>, and <Anti-A> are disjoint two by two.
<Non-A> is the completitude of <A> with respect to the universal set.

F) Main Principle:
Between an idea <A> and its opposite <Anti-A>, there is a con-

tinuum-power spectrum of neutralities <Neut-A>.

G) Fundamental Thesis:
Any idea <A> is t% true, i% indeterminate, and % false,
where t+i+f= 100.

H) Main Laws:

Let <a> be an attribute, and (a, i, b) € [0, 100]’, with a+i+b = 100.
Then: '

- There is a proposition <P> and a referential system <R>,

such that <P> is a% <a>, i% indeterminate or <Neut-o>, and b%
<Anti-o>.
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- For any proposition <P>, there is a referential system <R>, such
that <P> is a% <o>, i% indeterminate or <Neut-c>, and b% <Anti-o>.

- <> is at some degree <Anti-a>, while <Anti-o> is at some degree
<o,

2) NEOTROSOPHIC PROBABILITY AND
NEUTROSOPHIC STATISTICS

Let’s first generalize the classical notions of “probability” and
“statistics” for practical reasons.

A) Definitions:

Neutrosophic Probability studies the chance that a particular event
E will occur, where that chance is represented by three coordinates (vari-
ables): t% true, i% indeterminate, and % false, with t+i+f= 100 and f, i, t €
[0, 100].

Neutrosophic Statistics is the analysis of such events.

B) Neutrosophic Probabi ity Space:
The universal set, endowed with a neutrosophic probability defined
for each of its subset, forms a neutrosophic probability space.

C) Applications:
1) The probability that candidate C will win an election is say 25%

true (percent of people voting for him), 35% false (percent of people vot-
ing against him), and 40% indeterminate (percent of people not coming to
the ballot box, or giving a blank vote - not selecting anyone, or giving a
negative vote - cutting all candidates on the list).

Dialectic and dualism don’t work in this case anymore.

2) Another example, the probability that tomorrow it will rain is say
50% true according to meteorologists who have investigated the past
years’ weather, 30% false according to today’s very sunny and droughty
summer. and 20% undecided (indeterminate).

3)NEUTROSOPHIC SET
Let’s second generalize, in the same way, the fuzzy set.
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A) Definition:

Neutrosophic Set is a set such that an element belongs to the set
with a neutrosophic probability, i.e. 1% is true that the element is in the set,
% false, and i% indeterminate.

B) Neutrosophsc Set Operations:

Let M and N be two neutrosophic sets.

One can say, by language abuse, that any element neutrosophically
belongs to any set, due to the percentage of truth/indeterminacy/falsity
which varies between 0 and 100.

For example: x(50,20,30) € M (which means, with a probability of 50%
X is in M, with a probability of 30% x is not in M, and the rest is undecid-
able) y(0,0,100) € M (which normally means y is not for sure in M), or
2(0,100,0) € M (which means one doesn’t know absolutely anything about
z’s affiliation with M),

Let 0 <t,t,t’ <1 represent the truth-probabilities,

0<i, i, i’ <1 the indeterminacy-probabilities, and

| S dd
0<f,f,, " <1 the falsity-probabilities of an element x to be in the set M and

in the set N respectively, and of an element y to be in the set N, where t+
=L+ +f=lLandt’+i"+f =1

One notes, with respect to the given sets,
x=x(t,i,f)eMandx= X(t, i, f)eN,
by mentioning x’s neutrosophic probability appurtenance.

Y

And, similarly,y =y(t’, ¥, ) e N.

Also, forany 0 <x < | one notes 1-x =x.
Let W(a,b,c) = (1-a)/ (b+c) and W(R) = W(R(t), R(i), R(f) ) for any
tridimensional vector R = (R(t), R(i), R(f) ).

Complement of M:

Let N(x) = I-x = x_ Therefore:
ifx(t,i,f,)eM,
then x( N(t,), N(i, )W(N), N(f )W(N) ) € C(M).

Intersection:
Let C(x.y) = xy.and C(z.z,) = C(z) for any bidimensional vector
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2=(z,z,) . Therefore:
ifx(t,i,f)eM,x(t,i,f,)eN,
then x( C(t), C)W(C), C(HW(C))e M N.

Union:

Let D1(x,y) = x+y-xy = x+Xy =y+xy, and D1(z,z,) = D1(z) for any
bidimensional vector z=(z , z,). Therefore:
ifx(t,i,f)eM,x(t,i,f,)eN,
then x( DI(t), DIG)W(DI), DI(HW(D1) ) e MUN.

Cartesian Product:
ifx(t,i,f)eM,y(v,i",f)eN,
then (x(t,i,f),y(v,1",f))eMXN.

Difference:

Let D(x,y) = x-xy = xy, and D(z,,z,) = D(z) for any bidimensional
vector z=(z,, z,). Therefore:
ifx(t,i,f )eM,x(t,i,f,)eN,thenx(D(t), D(i)W(D), D(HW(D)) e M\
N, because MAN =M N C(N).

C) Applications:

From a pool of refugees, waiting in a political refugee camp to get the
America visa of emigration, a% are accepted, r%rejected, and p% in  pend-
ing (not yet decided), a+r+p=100. The chance of someone in the pool to
emigrate to USA is not a% as in classical probability, but a% true and p%
pending (therefore normally bigger than a%) - because later, the p%  pend-
ing refugees will be distributed into the first two categories, either ac-
cepted or rejected.

Another example, a cloud is a neutrosophic set, because its borders
are ambiguous, and each element (water drop) belongs with a neutrosophic
probability to the set (i.e. there are separated water drops, around a com-
pact mass of water drops, that we don’t know how to consider them: in or
out of the cloud).

We are not sure where the cloud ends nor where it begins, neither if
some elements are or are not in the set. That’s why the percent of indeter-
minacy is required: for a more organic, smooth, and especially accurate
estimation.
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4)NEUTROSOPHIC LOGIC,A GENERALIZATION
OF FUZZY LOGIC

A) Introduction:

Ore passes from the classical {0, 1} Bivalent Logic of George Boole,
to the Three-Valued Logic of Reichenbach (leader of the logical empiri-
cism), then to the {0, a, ..., a, 1} Plurivalent one of £ukasiewicz (and
Post’s m-valued calculus), and finally to the [0. 1] Infinite Logic as in
mathematical analysis and probability: a Transcendental Logic (with val-
ues of the power of continuum), or Fuzzy Logic.

Falsehood is infinite, and truthhood quite alike; in between, at dif-
ferent degrees, indeterminacy as well.

Everything is G% good, 1% indeterminate, and B% bad,
where G +1+ B = 100.

Besides Diderot’s dialectics on good and bad (“Rameau’s Nephew”,
1772), any act has its percentage of “good”, “indeterminate”, and of “bad”
as well incorporated.

Rodolph Carnap said:

“Metaphysical propositions are neither true nor false, because they
assert nothing, they contain neither knowledge nor error (...)”. Hence,
there are infinitely many statuses in between “Good” and “Bad”, and
generally speaking in between “A” and “Anti-A”, like on the real number
segment:

[0, 1]

False True

Bad Good
Non-sense Sense
/\l’lli'/\ A

0 is the absolute falsity, 1 the absolute truth. In between each
oppositing pair, normally in a vicinity of 0.5, are being set up the neutrali-
ties.

There exist as many states in between “True” and “False” as in
between “Good” and “Bad”. Irrational and transcendental standpoints
belong to this interval.

Even if an act apparently looks to be only good, or only bad, the
other haded side should be sought. The ratios

Anti-A | Non-A
A A
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vary indefinitely. They are transfinite.

If a statement is 30%T (true) and 6.0%l (indeterminate), then it is
10%F (false). This is somehow alethic, meaning pertaining to truthhood
and falsehood in the same time.

In opposition to Fuzzy Logic, if a statement is 30%T doesn’t involve
it is 70%F. We have to study its indeterminacy as well.

B) Definition of Neutrosophic Logic:

This is a generalization (for the case of null indeterminacy) of the
fuzzy logic.

Neutrosophic logic is useful in the real-world systems for designing
control logic, and may work in quantum mechanics.

If a proposition P is t% true, doesn’t necessarily mean it is 100-1%
false as in fuzzy logic. There should also be a percent of indeterminacy on
the values of P.

A better approach of the logical value of P is % false, i% indetermi-
nate, and t% true, where t+i+f= 100 and t, i, f € [0, 100], called neutrosophic
logical value of P, and noted by n(P) = (t,i,f).

Neutrosophic Logic means the study of neutrosophic logical val-
ues of the propositions.

There exist, for each individual event, PRO parameters, CONTRA
parameters, and NEUTER parameters which influence the above values.
indeterminacy results from any hazard which may occur, from unknown
parameters, or from new arising conditions.

This resulted from practice.

C) Aplications :

1) The candidate C, who runs for election in a metropolis M of p
people with right to vote, will win.

This proposition is, say, 25% true {percent of people voting for him),
35% false (percent of people voting against him), and 40% indeterminate
(percent of people not coming to the ballot box, or giving a blank vote - not
selecting anyone, or giving a negative vote - cutting all candidates on the
list). '

2) Tomorrow it will rain.

This proposition is, say, 50% true according to meteorologists who
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have investigated the past years’ weather, 30% faise according to today’s
very sunny and droughty summer, and 20% undecided.

3) This is a heap.

As an application to the sorites paradoxes, we may now say this
proposition is t% true, % false, and i% indeterminate (the neutrality comes
for we don’t know exactly where is the difference between a heap and a
non-heap; and, if we approximate the border, our *accuracy’ is subjective).

We are not abie to distinguish the difference between yellow and
red as well if a continuum spectrum of colors is painted on a wall impercep-
tibly changing from one into another.

D) Definition of Neutrosophic Logical Connectors:

One uses the definitions of neutrosophic probability and
neutrosophic set.

Let,0<t, t, < 1 represent the thrut-probabilities,

0<i,i,<1the indeterminacy-probabilities, and

0 <f, f, <1 the falsity-probabilities of two events P, and P, respec-
tively, where t il + fl =1 and t,+ iZ + f2 = 1. One notes the neutrosophic
logical values of P and P, by

n(P)=(t,i,f)andn(P)=(t,i,f)-

Also, for any 0 <x < 1 one notes 1-x = x.

Let W(a,b,c) = (1-a)/ (b+c) and W(R) = W(R(t) ,R(i) ,R(f) ) for any
tridimensional vector R = ( R(t),R(i),R(f) ).

Negation:
LetN(x)=1-x=x."Then:
n(P) = (N(t,), NG )W(N) , N(f )W(N) ).

Conjunction: Let C(x,y) = xy, and C(z,,2,) = C(z) for any bidimensional
vectorz=(z,,z,). Then:

n(P AP,)=(C(t), C()HW(C), C(HW(C)).

(And, in a similar way, generalized for n propositions.)

Weak or inclusive disjunction:

Let D1(x,y) = x+y-xy = x+Xy = y+xy, and DI(z,,z,) = D1(2) for any
bidimensional vector z= (z,,z,). Then:
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n(P VP))=(D1(1), D1())W(D1), DI{(HW(D1)).
(And, in a similar way, generalized for n propositions.)

Strong or exclusive disjunction:

Let D2(xy) = x(1-y)y(1-x)-xy(1-xX1-y) = xy+xy-xyxy, and D2(z, z,) =
D2(z) for any bidimensional vector z=(z,, z,). Then:

n(P1vP2)=(D2(t), D2(i)W(D2), D2(fW(D2)).
(And, in a similar way, generalized for n propositions.)

Material conditional (implication):
LetI(x,y) = 1-x+xy = x+xy= 1-xy, and (z,,z,) = I(z) for any bidimensional
vector z=(z,,z,). Then:

n(P ~P) = (i), WD), (HW(D)).

Material biconditional (echivalence):

Let E(xy)={I-x+xyX1-y+xy) = (x+Xy}y+xy) = (1-xyX1-Xy), and
E(z,,z,) = E(z) for.any bidimensional vector z=(z,,z,).

n(P-Q)=(Eft), EQ)W(E), E(HW(E) ).

Sheffer’s connector:

Let S(x,y) = 1-xy, and S(z,,z,) = S(z) for any bidemensional vector
z=(z,,2,).

n(P|Q)=n(PV1Q) = (S(1), S(HW(S), S(HW(S)).

Peirce’s connector:
Let P(x,y) = (1-xX1-y) = xy, and P(z,,2,) = P(z) for any bidimensional

vector z=(z,,z,).

n(P 1 Q)=n("PAQ) = (P(1), P()W(P), P(OHW(P) ).
E) Properties of Neutrosophic Logical Connectors:

Let’s note by t(P) the truth-component of the neutrosophic value
n(P),and (P)=p, Q) =q.

a) Conjunction:
(PAQ) min< {p,q}.
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€K
A t(P)=0ift(P) 1
k=1

b) Weak disjunction:
(PVQ) >max{p,q}.

V t(P) = 1ift(P)£0

k=1

¢) Implicaticn:
t(P - P)=1if (P)=0o0rl, and ) p otherwise.

limt(P~Q)=1
{P)~0

limt(P-Q)=1
1(Q) ~1

limt(P->Q)=q
{(P)1

limt(P->Q)=1-p
1(Q) -0

d) Equivalence:

t(P=Q)=1(QeP)=t(:-P-Q)

limt(PQ)=1
t (P)-0
1(Q)-0

limt(P—Q)=1
t(P) -1
t(Q) -1
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limt(P < Q)=0
t(P) -0
(Q)~1

limt(P— Q)=0
t(P)-1
1(Q) -0

limt(P - Q)=1-q
t (P) -0

limt(P—~Q)=q
t(P)—~1

Let q #0, 1 be constant, and one notes
P__ (9)=(q*-3q+1)/(2g>-2q) . Then:

max t(P < Q) occurs when:
0<t(P)<1

P=P_ (q)ifp,, (q) €[0,1],

orp=0ifp__ (q)<0,

orp=1lifp  (9>1,
because the equivalence connector is described by a parabola of equa-
tion

e. (P)=(@-9p’+(-¢*+3q-Hp+(1-q),
which is concave down.

5)NEOTROSOPHIC TOPOLOGY

A) Definition:

Let’s construct a Neutrosophic Topology on NT = [0, 1], considering
the associated family of subsets (0, p), for 0 <p < 1, the whole set [ 0, 1],
and the empty set @ = (0,0, called open sets, which is closed under set
union and finite intersection. The union is defined as (0, p) U (0, )= (0, d),
where d = p+g-pq, and the intersection as (0, p) N (0. q) = (0, c), where ¢ =
pq. The complementary of (0, p) is (0. n), where n = 1-p, which is a closed
set.
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B) Neutrosophic Topological Space:

The interval NT, endowed with this topology, forms a neutrosophic
topological space.

C) Isomorphicity:

Neutrosophic Logical Space, Neutrosophic Topological Space, and
Neutrosophic Probability Space are all isomorphic.

A method of Neutrosophy is the:
6) TRANSDISCIPLINARITY:

A) Introduction:
Transdisciplinarity means to find common features to uncommon

entities: <A> ) <Non-A> = @, even if they are disjunct.

B) Multi-Structure and Multi-Space:

Let S, and S, be two distinct structures, induced by the group of
laws L which verlfy the axiom groups A and A respectlvely suchthat A
is strictly included in A,

One says that the set M, endowed with the properties:

a) M has an S -structure,

b) there is a proper subset P (different from the empty set, from the
unitary element, and from M) of the initial set M which has an S,-structure,

¢) M doesn’t have an S,-structure,
is called an S -structure with respect to the S -structure.

LetS, S , S, be distinct space- structures

We deﬁne the Multl -Space (or k-structured-space) as a set M such
that for each structure S, 1 <i< k, there is a proper (different from @ and
from M) subset M of 1t which has that structure. The M, M, , M
proper subsets are dlfferent two by two.

k

Let’s introduce new terms:

C) Psychomathematics:

A discipline which studies psychological processes in connection
with mathematics.

D) Mathematical Modeling of Psychological Process:
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Weber’s law and Fechner’s law on sensations and stimuli are im-
proved.

E) Psychoneutrosophy:

Psychology of neutral thought, action, behavior, sensation, percep-
tion, etc. This is a hybrid field deriving from theology, philosophy, econo-
mics, psychology, etc.

For example, to find the psychological causes and effects of indivi-
duals supporting neutral ideologies (neither capitalists, nor communists),
politics (not in the left, not in the right), etc.

F) Socioneutrosophy:
Sociology of neutralities.

For example the sociological phenomena and reasons which deter-
mine a country or group of people or class to remain neuter in a military,
political, ideological, cultural, artistic, scientific, economical, etc. interna-
tional or internal war (dispute).

G) Econoneutrosophy:

Economics of non-profit organizations, groups, such as: churches,
philanthropic associations, charities, emigrating foundations, artistic or
scientific societies, etc.

How they function, how they survive, who benefits and who loses,
why are they necessary, how they improve, how they interact with for-
profit companies.

These terms are in the process of development.
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ON RUGINA'S SYSTEM OF THOUGHT

I) Introduction.

Coming across Rugina's System of Thought, in his published books
and articles [3-6], I learned about the connection between classic and
modern. It is not a contradiction, but a complementarity from the part of
modern with respect to the classic; and always the new 'modern’ will have
something to bring to the old knowledge.

In a similar way we may talk on the complementarity between theory
and practics, rather than their contradiction. ’

In economics, Rugina negated Marx's social justice for the mass
and Keynes's involuntary unemployment. His methology in science tries
to unite all scientific fields, preserving however independence in think-
ing and judgement.

Einstein worked in the last period of his life on the Unified Field
Theory (a single general theory in physics), but didn’t succeed. At the
present, his supposition that the spced of light is a barrier in the universe
is also being denied.

The economical systems are characterized by free market or cen-
trally-planned and controlled economy. I think each system has a mix-
ture of the previous, where a part of the market is free and another is
centrally-planned and controlled.

Rugina's Universal Hypothesis of Duality:

The physical universe is composed of stable and unstable elements
arranged in various proportions, may be completed with unknown ele-
ments, a strip border between stable and unstable, which are continously
changing from the state of equilibrium to disequilibrium and vice-versa,
and which therefore are giving the dynamics of the universe.

Unknown may be: anomalies, relativities, uncertainties, revolu-
tion risks, hidden parameters.

The internal parameters are involved in Rugina's Universal Law of
Natural Parameter (NaPa):
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Any system in order to reach and maintain a position of stable
equilibrium must have a very strong natural parameter (center of weight).

Whereas the external parameters are involved in Rugina's Univer-
sal Law of General Consistency:

Any system produces and maintains a position of stable equilib-
rium if there is a suitable space-time frame work.

Leon Walras's Economics of Stable Equilibrium and Keynes's Eco-
nomics of Disequilibrium are combined in Rugina's Orientation Table in
systems which are s% stable and 100-s% unstable, where s may be 100,
95, 65, 50, 35, 5,and 0.

The Classical Logic and Modern Logic are united in Rugina's Inte-
grated Logic, and then generalized in the Neutrosophic Logic.

IT) Theory of Paradoxes

How did I get to the Theory of Paradoxes?

I have observed that: what's good for someones, may be bad for
others - and reciprocally. There are peoples who are considered therorists
by their enemies, and patriots by their friends. All of them are right and
wrong in the same time. If one changes the referential system, the result is
different.

Nice paradoxes can be seen in [1], the first chapter.

III) ON RUGINA'S ORIENTATION TABLE

Starting from a new viewpoint in philosophy, the neutrosophy, one
extends the classical ‘probability theory', 'fuzzy set' and 'fuzzy logic’ to
<ncutrosophic probability>, <neutrosophic set> and <neutrosophic logic>
respectively.

They are useful in artificial intelligence, neural networks, evolu-
tionary programming, neutrosophic dynamic systems, quantum theory,
and decision making in economics.

With the neutrosophic logic help one explores Rugina's Orienta-
tion Table, a remarkable tool of study, at the micro- and macro-level, of
probiems in all sciences.
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III. RUGINA’S ORIENTATION TABLE

In order to clarify the anomalies in science, Rugina (1989, 1998)
proposes an original method, starting first from an economic point of
view but generalizing it to any science, to study the equilibrium and
disequilibrium of systems. His Table comprises seven basic models:

Model M| (which is 100% stable),

Model M, (which is 95% stable, and 5% unstable),
Model M, (which is 65% stable, and 35% unstable),
Model M, (which is 50% stable, and 50% unstable),
Model M, (which is 35% stable, and 65% unstabie),
Model M, (which is 100% unstable).

He gives Orientation Tables for Physical Sciences and Mechanics
(Rugina, 1989, p. 18), for the Theory of Probability, for Logic, and gener-
ally for any Natural or Social Science (Rugina, 1989, pp. 286-288).

"An anomaly can be simply defined as a deviation from a position
of stable equilibrium represented by Model M," (Rugina, 1989, p. 17).

Rugina proposes the Universal Hypothesis of Dualit :

"The physical universe in which we are living, including human
society and the world of ideas, all are composed in different and change-
able proportions of stable {equilibrium) and unstable (disequilibrium)
elements, forces, institutions, behavior and value”

and the General Possibility Theorem:

"there is an unlimited number of possible combinations or systems
in logic and other sciences”.

According to the last assertations one can extend Rugina's Orienta-
tion Table in the way that any system in each science is s% stable and u%
unstable, with s+u=100 and both parameters 0 < s, u £ 100, somehow
getting to a fuzzy approach.

But, because each system has hidden features and behaviors, and
there would always be unexpected occuring conditions we are not able to
control - we mean the indeterminacy plays a role as well, a better ap-
proach would be the Neutrosophic Model:

Any system in each sciencc is s% stable, 1% indeterminate, and u%
unstable, with s+i+u=100 and all three parameters 0 < s,i,u< 100.
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EXAMPLE OF MODEL M3 IN RUGINA'S ORIENTATION TABLE:
The Paradoxis Geometry (actually the percentage of instability is
between 20-35): in [7], the paper "Paradoxist Mathematics".

FIRST EXAMPLE OF MODEL M7 INRUGINA'S ORIENTATION
TABLE:

The Non-Geometry (the percentage of instability is 100): in {7], the
paper "Paradoxist Mathematics".

SECOND EXAMPLE OF MODEL M7 IN RUGINA'S ORIENTA-
TION TABLE:

The Counter-Projective Geometry (the percentage of instability is
100): in {7], the paper "Paradoxist Mathematics".

THIRD EXAMPLE OF MODEL M7 IN RUGINA'S ORIENTATION
TABLE:

The Anti-Geometry (the percentage of instability is 100 - even...
more, this is the geometry of total chaos!): in {7], the paper Paradoxist
Mathematics. '

FOURTH EXAMPLE OF MODEL M7 IN RUGINA'S ORIENTA-
TION TABLE:

The Inconsistent System of Axioms, and The Contradictory Theory
(the percentage of instability is 100 - even... more, this is the system of
chaos!): in [7], the paper "Paradoxist Mathematics".

References:

[1] Andronescu, Serban C., "Analogii estetice / Teoria spatiului-
timp in arte i literaturd”, Editura Fundatiei <Romania de Maiine>,
Bucharest, 1998.

[2] McNeil, F. Martin, Thro, Ellen, "Fuzzy Logic / A Practical Ap-
proach”, Foreword by Ronald R. Yager, Academic Press, Florida 1994.

[3) Rugina, Anghel N., "A Long Journey to the Third Revolution in
Economic Thinking", <International Journal of New Ideas>, Vol. III, No.
1/2, 1994.

[4] Rugina, Anghel N., "Principia Methologica 1: A Bridge from

76



COLLECTED PAPERS, vol. 11l

Economics to all other Natural Sciences / Towards a Methodological
Unification of all Sciences", MCB University Press Ltd., 1989.

[5] Rugina, Anghel N., "The Problem of Values and Value Judge-
ments in Science and a Positive Solution", <International Journal of So-
ciology and Social Policy>, Vol. 4, No. 3, 1984.

[6] Rugina, Anghel N., "Prolegomena to any Future Study in Eco-
nomics, Finance and Other Social Sciences: The Road to a Third Revolu-
tion in Economic, Financial, Social, Ethical, Logical and Political Think-
ing", <International Journal of Social Economics>, Vol. 25, No. 5, 1998.

[7) Smarandache, Florentin, "Collected Papers”, Vol. IT, University
of Kishinev, Kishinev, 1997.

[8] Smarandache, Florentin, "Neutrosophy: Neutrosophic Probabil-
ity, Set, and Logic", American Research Press, Rehoboth 1998.

[9] "The Florentin Smarandache papers”, Special Collection , Cen-
ter for American History, Archives of American Mathematics, University
of Texas at Austin, TX.

[10] "The Florentin Smarandache papers”, Special Collection ,
Hayden Library, Arizona State University, Tempe, AZ.

["Octogon”, Brasov, Vol. 7, No. 2. 89-93, 1999.]

77



FLORENTIN SMARANDACHE

SPECIAL ALGEBRAIC STRUCTURES

Abstract.

New notions are introduced in algebra in order to better study the
congruences in number theory. For example, the <special semigroups>
make an important such contribution.

Introduction.

By <proper subset> of a set A we consider a set P included in A, and
different from A, different from the empty set, and from the unit element
mnA-ifany.

We rank the algebraic structures using an order relationship:
we say that the algebraic structures S1 « S2 if:

- both are defined on the same set;

- all S1 laws are also S2 laws;

- all axioms of an S1 law are accomplished by the corresponding S2
law;

- 82 laws accomplish strictly more axioms than S1 laws, or S2 has
more laws than S1.

For example: semigroup « monoid « group « ring « field,
Or semigroup « commutative semigroup, ring « unitary ring, etc.

We define a GENERAL SPECIAL STRUCTURE to be a structure
SMonasetA, different from a structure SN, such that a proper subset of A
is an SN structure, where SM « SN.

1) The SPECIAL SEMIGROUP is defined to be a semigroup A,
different from a group, such that a proper subset of A is a group (with
respect to the same induced operation).

For example, if we consider the commutative multiplicative group
SG= {182, 183, 1874, 18"5} (mod 60) we get the table:

X | 24123648
74 36 48 24 12
12 48 24 1236
36 241236 48
48 12 36 48 24
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Unitary element is 36.

Using the algorithm [Smarandache 1972] we get that 18°2 is con-
gruent to 182 (mod 60).

Now we consider the commutative multiplicative semigroup SS =
{1871, 1872, 18”3, 18"4, 18”5} (mod 60) and we get the table:

X 18 24123648
18 24 1236 48 24
24 12 364824 12
12 36 4824 12 36
36 48 24123648
438 24 12 36 48 24

Because SS contains a proper subset SG, which is a group, then SS
is a Special Semigroup. This is generated by the element 18. The powers
of 18 form a cyclic sequence: 18, 24, 12, 36, 48, 24, 12, 36, 48, ...

Similarly are defined:

2) The SPECIAL MONOID is defined to be a monoid A, different
from a group, such that a proper subset of A is a group (with respect with
the same induced operation).

3) The SPECIAL RING is defined to be a ring A, different from a
ficld, such that a proper subset of A is a field (with respect with the same
induced operations).

We consider the commutative additive group
M={0,18"2,18"3,18"4,18"5} (mod 60) [using the module 60 residuals of
the previous powers of 18], M={0,12,24,36,48}, unitary additive unit is
0.

(M,+,x) is a field.
While (SR, +,x)={0,6,12,18,24,30,36,42,48,54} (mod 60) is a ring whose
proper subset {0,12,24,36,48} (mod 60) is a field.

Therefore (SR, +,x) (mod 60) is a Special Ring.

This feels very nice.

4) The SPECIAL SUBRING is defined to be a Special Ring B which
is a proper subset of a Special Ring A (with respect to the same induced
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operations).

5) The SPECIAL IDEAL is defined to be an ideal A, different from
a field, such that a proper subset of A is a field (with respect to the same
induced operations).

6) The SPECIAL LATTICE is defined to be a lattice A,
coiea—

different from a® such%(';llq’airi a proper subset of A is a (with
respect to the same mduced operations). Boclean a.lgeérg.
7) The SPECIAL FIELD is defined to be a field (A,+,x), different

from a K-algebra, such that a proper subset of A is a K-algebra (with
respect to the same induced operations, and an external operation).

8) The SPECIAL R-MODULE is defined to be an R-MODULE
(A, +,x), different from an S-algebra, such that a proper subset of A is an S-
algebra (with respect to the same induced operations, and another "x"
operation internal on A), where R is a commutative unitary ring and S is
its proper subset field.

9) The SPECIAL K-VECTORIAL SPACE is defined to be a K-vec-
torial space (A,+,.), different from a K-algebra, such that a proper subset of
A is a K-algebra (with respect to the same induced operations, and an-
other "x" internal operation on A), where K is a commutative field.

1973
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About the characteristic function of the set

In our paper we give a method, based on characteristic function
of the set, of resolving some difficult problem of set theory found in high
school study.

Definition:Let be A — E # 6 (a universal set), then the
fA :E - {0, 1}, where the function { 1, ifxeA;
A= 0, ifx gA,
is named the characteristic function of the set A.
Theorem 1. Let A, B E. In this case f, = f, if and only if A=B.
Proof.
1, ifxeA=B
LOZVU o itxga-B  ~H®)

Reciprocally: In case of any x €A, f,(x) = 1, but f, = f, and for that
f,(x) =1, namely x € B from where A © B. The same way we prove
that B C A, namely A=B.
" Theorem 2. f;=1-f,, where A= CA.

Proof.

1, ifxe X {l,ifxeA
E= o, ifxek U 0,ifxeA
:{1-0, itxeAa _, foiftxeA —j_f (x).
1-1, ifxeA if, xgA
Theorem3.f,_ =f *f,
Proof.

1, ifxe ANB 1, ifxeAandxeB
fa®=0, ifxeANB  ~U 0, ifxeAorxeB
1, ifxeA,xeB

0,ifxeA,xeB ({lifxeA).({l ifxeB
=)0, ifxgA,xeB ~ 0ifxegA 0ifxeB

0,ifxegA,xeB

=L,00f,(0)
The theorem can be generaliged by induction:
Theorem 4. fr,= Ilr,

k
k!k k1

! Together with Mihaly Bencze
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Consequence. For any neN” f =1,

Proof. In the previous theorem we wnteA =A,=.=A =M.
Theorem 5.
fAJ} f f f/\fli
Proof. f/\ B fA—n B fA”B fMB =1- f/\ﬂxs =
=1-(1 f)(l f) f _qu f/\fn

Can be generalized by induction:
Theorem 6. f;;\f kg;:l ('l)k_] i ('l)k-‘ f,'\1 fA1 o

1< <...<i<n S

Theorem 7. f —f(l £)

A-B

Proof. f, =f f (-1

A-B A?"-ﬂ' A B_
Can be generalized by mducnon .
Theorem 8. fAI_A’ AT Z(-l)“ fa fa .f
. k=1 Lot
Theorem9.f,, =1, +f, - 2fAfB
PrOOf /\AB‘ f/\\,li»/\. 3 = /\ B 1 A"B) =
=+, -fL)(A-££)=f +f-20 1 .
Can be generalized by induction:
Theorem 10.

Fab. o = - fa a .a .
K k; 2" lsil<;<ik5n b
Theorem 11.f,, .(x,¥) =f (x)f,(y)

Proof. If (x,y) e AXB, then fm;(x,y) =landx €A, namely f (x)=1
andy € B, namely f (y) = 1, so f, (0)f (y) = 1. If (x,y) € AXB, then f pXoY)
=0and x ¢ A, namely f,(x) =0 ory € B, namely fy(B) =0sof,(f (y)=0.
Can be generalized by induction.

Theorem 12

n
P AKXy x) = [T, Ta %)

n
Theorem 13. (De Morgan) g {’\k =Ny Ay -

foi— =1-fpn =
Proof. kunAk kaAk
D S DI YN VN VN SR
= 1<i<.<i<n oo
I T
-fa )= fa =1
N
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&4

We prove in the same way the following theorem:
no_
Theorem 14. (De Morgan) kg lAk '

i D:i

Theorem 15.

(lQlA“)nM:kgl(AkmM) ‘
Proof. f(kQIAk)ﬂM:kaiJlAk fM:

i(])k-! i: fA fA w iy £, =

k=1 I<i <. <i<n 1 2 'k
|
i( l)kl 2 fA H . fAlka -
1<, <..<i<n -

Sy ﬁfAmeAqM fa am=1f" .
o= Banm

k=1 1<i <.<i<n
In the same way we prove that:
H :
Theorem 16. (m{\ UM=(IWI(AUM) .
k=17 k=I\ *

Theorem 17.
(A;=1Ak) AM=AL, AkmM) .
Application.

(A;:{X) UM=AL, (AkU M) if and only if M=¢ .
Theorem 18.

MX( IQIA“) :le (MXA*) )

Proof. f n — n =
MX (ki{") xy) =1 ) f&i, A (X)

S S AR 0 A () =

k= i< <ign *

¥ & TAG) TA00 - £ 400 5, (3) =

k= 1<i <. <ij<n

Sap F oy LAy = f

k=1 1< <..<i<n' ,g,(m’\k)
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In the same way we prove that:
Theorem 19. MX ﬂ A) (MX Ax)

Theorem 20.
MX(A, -A, -..-A)=(MXA )-(MXA)) -~-(MXA) |
Theorem 21. (A -A) U (A,-A)U... U (A _-A)U (A-A)=

Oa-a,.
Kl kel

Proof 1. f (A, A)U UAA)=

k-1 fa-an...fa- A=
g(l) AATTAN
n

l<1< <i<n
n
Z 1)+ Z (fAi fAl-fA‘fA)](fAf af RkA =
1 2 ™2 S T

k=1 I<i, <. <x <n

i( *! Z fA fA(l- Hf\)—
k=1

1q< <l<d 'k
fn n _ n _.n
IEJ=1A1‘ (1 . fp:{\k flk(J=1A“ QlAk ’

Proof 2. Let xe CJ (A-A. ), (where A =A)), then there ex-
i=1

ists k such thatx € (A - A, ), namely

X € (A NA )CSA NAN ..NA_ namelyx ¢ A N... NA_ and

R A

Now we prove the inverse statement:
Let xe LIJ Ak - ﬁ‘ Ak , we show that there exists k such that

x€A andx € A . On the contrary it would result that for any
ke {1 2,...m), xeA andx €A, namely x € UAk it results

that there exists p such that x € A, but from the previous reasoning

itresult thatx e A ,» and using this we conscquently obtain that x € A,
for k =p,n. But from x€A wegetthatxe A usmg consequently, it results
thatx €A k= 1,p, from where xeA k= l ,n, namely

XeAN..NA, thatisa conlradiction. Thus there exists r such thatx e A,
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n
and x € A, ,namely x € (A-A_)Dandso x € Li A -A ).
In the same way we prove the following theorem: n
Theorem 22. (A\AA)U(AAA)U..U(A_AA )= kLi]Ak - Q]Ak

Theorem 23. (A XAX..XA) N (A, XA, X..XA,)
NAXAX XA D=(A NA,N..NA ).

Proof. f (AIx..,xAk)(?...ﬂ(AnxA,x..AxAkAl)(x],...,xn) =

fA x..xA, 16 S X ) ... TAx.xA_ 16 S X )=

(fA!(xl)...fAk(xk)) (fAn(xn)...fAk_l(xk_l) =

A (x)... A (x )=fAN..NA, (XX )=

fian . A (X, ., X).

Theorem 24. (P(E), U) is a commutative monoid.

Proof. For any A, B € P(E); AU B € P(E), namely the intern opera-
tion. Because (AUB) U C =AU (B U C) is associative, AUB=BUA
commutative, and because A U ¢ = A then ¢ is the neutral element.

Theorem 25. (P(E), N) is 2 commutative monoid.

. Proof. Forany A, B € P(E); AN B € P(E) namely intern operation. (A
NB)YNC=AnN BN C) associative, AN B = B N A, commutative
ANE=A, Eisthe neutral element.

Theorem 26. (P(E), A) is an abellan group.

Proof. Forany A, B € P(E); AAB € P(E), namely the intern operation.
AAB = BAA commutative. The proof of associativity is in the XII class
manual as a problem. We prove it, using the characteristic function of the
set.

f(AaB)AC = 4f/\flsf(' - 2fAfB - fdf( T f( fA + f/\ h fn * f( ={AaaBAC)

Because AAg = A, ¢ is the neutral element and because AAA = ¢; A
is the symmetric element itself.

Theorem 27. (P(E), A, N) is a commutative Boole ring with divisor
of zero.

Proof. Because of the previous theorem it satisfies the commutative
ring axioms. Now we prove that it has a divisor of zero. If A # ¢ and
B # ¢ are two disjoint sets, then AN B = ¢, thus it has divisor of zero. From
Theorem 17 we get that it is distributive for n = 2. Because for any A €
P(E); ANA=Aand AAA = ¢ it also satisfies the Boole-type axioms.

Theorem 28. Letbe H= { { | [: E - {0, 1}}, then (H, @) is an Abelian
group, where f, @ f, =1, + £ -2f f and (P(E), A) = (H, ®).

ATB
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Proof. Let F : P(E) - H, where F(A) = f,_, then from the previous
theorem we get that it is bijective and because

F(AAB)=faaB=F(A) @ F(B) it is compatible.

Theorem 29. card(A AA ) <card(A AA )+

teard(A,AA )+ -+ card(A_AA )

Proof. By induction. If n = 2, then it is true, we show that forn=3 it
is also true. Because (A, NA)U(A,NA)CSAUA NA);

card({A, capA,) U(A.NA))) < card(A, ! I(A NA. )) but

card(M U N) = cardM + cardN - card(M N) and thus

cardA, + card(A, NA,) - card(A, NA,) - card(A, N A,) > 0 can be
writen as cardA | + cardA, - 2card(A NA )<

(cardA, +cardA 2card(A r‘IA ))w—(cardA +cardA -2card(A,NA))).
But because of (MAN) cardM + cardN - 2cardM N N) then card(A, AA J
< card(A AA,) + card(A,AA,). The proof of this step of the induction
relies on the above method.

Theorem 30. (P*(E), card(AAB)) is a metric space.

Proof. Let d(A,B) = card(AAB) : P(E)XxP(E) - R.

1. d(A, B) =0 < card(AAB) = 0 < card((A - B) U(B - A)) =0 but
because (A-B)N(B-A)=¢ we get(A-B)+card(B-A)=0and because
(A-B)=0andcard(B-A)=0,thenA-B=¢,B-A=¢ andA=B.

2.d(A, B)=d(B,A) results from AAB = BAA.

3. In consequence of the previous theorem

d(A, C)<d(A,B)+d(B, C).

As result of the above three properties it is a metric space.

PROBLEMS

Problem 1.

Let A=BUCand f: P(A) - P(A)XP(A), where

f(x)=(XUB, XUQ).Prove that fis injective if and only if BNC=¢.

Solution 1. If fis injective. Then

(@) = (FUB,PUC) = (B,C) = (BNC)UB.BNCHUC) - T(131C) from
where BN C= ¢. Now reciprocally: Let BN C = ¢, then f(x) = £(Y), it result,
that XUB=YUBand XUC=Y U CorX=XUd=XUBNC) =
(XUBNXUC)=(YUBI(YUC) = YUBNC)=Y U@ =Y namely it is
injective.
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Solution 2. Let B N C = ¢ passing over the set function £ (x) = f(Y)
ifandonly if XUB=YUBand XUC=YUC, namely f_ =f _ and

fxw: fm‘ or fx + fn - fxfn = fv + fu - fou and

f+f -Lf =1 +f -ff fromwhere

(f, - £,)(f,- £)=0.Because A=B U Cand BN C= ¢ therefore

1,ifueB 0
f -f Yu)= *
(-t Xu) -1,ifueC

therefore f, - £, = 0, namely X =Y and thus it is injective.
Generalization. Let M= L") Akand f: P(A) - P*(A), where
k=1

fX)=(XUA,XUA,, ..., XUA ). Prove that fis injective if and only
ifA NA,N..NA =¢.

Problem 2. Let E # ¢ and A € P(E) and

f: P(E) » P(E)XP(E),where f{lX)= (X NA, X UA).

a. Prove that fis injective

b. Prove that {f(x),x € P(E)} = {M,N)]McAcNcE} =K.

c.Let g: P(E) - K, where g(X) = f{X). Prove that g is bijective and
compute its inverse. '

Solution.

a. f(X)=f(Y), namely (XNA,XUA)=(YNA,YUA)andso

XNA=YNA,XUA=YUA, from where XAA=YAAor

(XAA)AA = (YAA)AA, XA(AAA)=YA(AAA), XA¢=YAd and thus
X =Y, namely fis injective.

b. {f{X),X € P(E)} = f{P(E)). We show that f(P(E)) K. For any (M,N)
e f(P(E)), 3 X e P(E): fiX)=(M,N);

(XNA,XUA)=(M,N). Fromhere XNA=M, XU A=N, namely M
cAand AcNthus McAcNandso (M, N) e X. Now we show thatK <
f(P(E)), forany M, N)e K, 2 X e P(E) so that f (X)=(M, N).L(X )= (M, N),
namely (XN A, X UA)=(M, N) from where XNA=Mand X UA=N,
namely

XAA=N-M, (XAAAA =(N - M)AA, XAd=(N-M)AA,

X = (N-M)AAX=(NNM)AAX=((NNM)-A) U (A-(NAV))=

(NNM)NAYAANNNM) F=INNMNANUANNNM) =

(NNAYX(ANNXXANM) FEINNAXX UM =(N-A)UM.

From here we get the unic solution:

X=(N-A)UM.
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We test f{i(N-AYUM)=(((N-A)UM)NA,((N-A)UM)UA) but

((N-AJUMNA=((NRAYUMNA=((NNAYNA)UMNA =

(NNANA)YUM=(NNUM=¢_M=M and

(N-A}MYUA=N-AYJMUA=(N-AY A=

(NNAYJA=(NUAVAUARENNE=N, (N -A)UM)= (M, N). Thus {
(P(E))=K.

¢. From point a. we get g is injective, from point b. we get g is
surjective, thus g is bijective.The inverse function is :

g'M,N)=(N-A)UM..

Problem 3. Let E=¢,A, BeP(E) and

f: P(E) - P(E)XP(E), where f (X)=(XNA,XNB).

a. Give the necessary and sufficient condition such that f is injec-
tive. .

b. Give the necessary and suffcient condition such that { is surjec-
uve.

¢. Supposing that { is bijective, compute its inverse.

Solution.

a. Suppose fis injective. Then: f(A UB)=

((AUB)NA,(AUBYNB)=(A,B)=(ENA,ENB)=f{(E), from where
AUB=E, Now we suppose that A U B = E, it results that

X=XNE=XNAUBFXNAYUXNB=(YNAYJYNBF YN(AUB)=Y
NE =Y, namely from { (X) = f(Y) we get that

X =Y, namely fis injective.

b. Suppose { is surjective, for any M,N € P(A)XP(B), there exists
X e P(E), f{(X)=(M,N),(XNA, XNB)=(M,N),XNA=M,X"B=N. In special cases
(M,N) = (A,¢), there exists X € P(E), from X = A, ¢=XNB>ANB,AMNB=¢.
Now we suppose thatANB=¢ and show that it is surjective. Let (M,N) €
P(A)XP(B) then M < A, N c B and MNBcANB=¢ andNNAcCBNA=¢
namely MNB=¢, NNA=¢ and f(MUN)=((MUNNA, (MUN)NB=
(MNA)YU(NNA), (MNB)U(NNB)) = (MU@, JUN)=(M,N), for any (M, N)
there exists X =M U N such that f (X) = (M, N), namely fis surjective.

¢. We show that £{((M,N))=MUN.

Observation. In the previous two problems we can use the charac-
teristic function of the set as in the first problem. This method we leave to
the readers.

Application. LetE #¢,A e P(E)(k=1,...,n) and
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f:P(E) » P'(E), where f(X)=(XNA,, XNA,, ..., XNA).
Prove that {is injective if and only if U Ak E

Application. Let E+ ¢, A, e P(E)(k=1,...,n) and
fmhyqn@)wmmﬂx)(XnApan..an)
Prove that f is surjective if and only if N} A=¢

Problem 4. We name the set M convex if for any x,y e M

tx +(1-t)yeM, forany te [0, 1]. n

Prove that if A (k=1,...,n) are convex sets, then le A s also
convex. n
Problem 5.1fA (k= 1,. .., n) are convex sets, then le A, isalso
convex .

Problem 6. Give the necessary and sufficient condition such that if
A, B are convex /concave sets then A U B is also convex /concave. Gener-
alization for n set.

Problem 7. Give the necessary and sufficient condition such that if
A, B are convex /concave sets then AAB is also convex /concave. Gener-
alization for n set.

Problem 8. Let f,g : P(E) - P(E), wherefiX) =A-X and g(X) =AAX, A
€ P(E). Prove that {, g are bijective and compute their inverse functions.

Problem 9. Let

AoB= {(x,y)eRxR|3zeR:(x,z) eAand (z,y) € B}. Ina particular
case letA= {(x, {x})ixeR} and B= {({y}.y)| yeR}.
Representthe Ao A, Bo A, BoB cases.

Problem 10.
LITAUBUC=D,AUBUD=C,AUCUD=B8,
BUCUD=A,thenA=B=C=D.

ii. Are there different A, B, C, D sets such that

AUBUC=AUBUD=AUCUD=BUCUD?

Problem 11. Prove that AAB=AUB ifandonly if ANB = ¢.

Problem 12. Prove the following identity.

A AUA= () ﬂ@)

1J Li<j i=1 =1, j#1 !
Problem 13. Prove the followmg identity.
(AUB)-(BNC)=[A-(BNCHUB-C)=(A-BYU(A-C)U(B-C)and
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A-[(ANC)- (AN B)]=(A-B)U(A-C).

Problem 14. Prove thatAU (BN C)=(AUB)N C=(AUC)N Bif
andonly ifAc BandAcC.

Problem 15. Prove the following identities:

(A-B)-C=(A-B)-(C-B),

(AUB)-(AUC)=B-(ANC),

(ANB)-(ANCY(ANB)-C.

Problem 16. Solve the following system of equations:

AUXUY =(AUXINAUY)

ANXNY = (ANXYHANY).

Problem 17. Solve the following system of equations:

{ AAXAB=A

AAYAB=B.

Problem 18. Let XY, Z CA.

Prove that: Z=(XNZYU(YNZ)U(XNZNY)ifand only if

X=Y=¢.

Problem 19. Prove the following identity:

n (n lnl
G IAUBO) = ( dAK)u [( uAK) st
=1 - k=1 k=1

Problem 20. Prove thatt AUB=(A-B)U(B-AYU(ANB).
Problem 21. Prove that:
(AAB)AC=(ANBNC)Y U (ANBNC) U (ANBNC) U(ANBNC) .
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About Very Perfect Numbers'

A natural number n is named very perfect if 6(o(n})=2n (sce [1]).

Theorem. The square of an odd prime number can't be very perfect
number.

Proof. Let be n=p?, where p is an odd prime number, t en
a(n)=1-p-p". o(c(n))=o(1 *p*p )= 2p V\e decompose o(n) in canenical

form, from where 1 —p+p°= p pﬂ po‘ Because p(p~1)~1 is
odd, in the canonical decompose must be only odd primes.

N R
a(c(n))= (I-p-..~ p, {Ip -~ ffk): 5T - =2p-,
Because p(f‘ -1 pat -1 ; Px .
— > —E )
p, -1 i p -1 <

one gets that 2p can't be decomposcd in more than two factors, so each
onc > 2, therefore k < 2.

Case l.Fork=1wefindo(n)=1-p~p°= p%, from where one
gets p*~*=p(l+p-p’) and p&io1 ;

o(o(n))= -7 2p*,

p.(I-p~p’)-1=2p*(p.-1). from wheré p-1 = p {pp.-2p-p,). Theright
side is divisible by p, thus p; - 1 is 2 p multiple. Because p!'> 2 it results
p,2p-! and o

5 >(p*1) >p2+p+l =P, . _
thus o= 1 and o(n)= p=p~1=p.o(c(n))=c(p,)=1~p,.fnisvery perfect
then 1 ~p, = 2p° or p*+p~2 =2p°. The solutions of the equation are p = -1
and p = 2 which is a contradiction.

Case2. Fork=2 we have o(n)=p+p~1= p%p-.

pet-1 pRt-l
o(om)= (I-p-.~ PH1-p.~.& PpP)= — - = =<p~
(om)= (I=p..x PHI-p, s

Because  p*7-1 5 and p(}:‘l: i >2
N -
pl 1 an p: -1
it results -l IR
D —pand B =2p
p -1
) p, - 1 p.
(or mnverse), i
thus p&-1=p(p-1), p='- 1 =2p(p,-1),
then o -1 el

PP P B 1= 2p7 (b, ) (o1,

‘Togcther wuh Mihély Bencze and Florin Popovici
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thus o(n) = p*+p+1= p&"'p%’

and p,p, (p* + p+ 1)=2p(p,-D(p,-1)+ P +p' -1

or p,p,p(p+1) + pp, - 1 =2p* (p-1)(p,-1) + (p 1)+ (1) =
2p? (- DD+ p(pI 1) + 2p(p,-1) accordlngly p divides p,p.-1, thus
p,p.>pt 1 and P P~>(p+l)>p'+p*1—P p, Hence:

IM)Ifa, =1andn=2p* theno(n)= p*+p+1= pp,

p2 _ 1 (X.,+I
1 -_ —
and — P and p I =2p,

i 2

thus p + 1= p wich is a contradiction.

I1,)If o, = 1 and n = 2p°, then o(n) = p>+p+1 = Py P,
(s 251 2
b p. -1 _

—— =pand p T 2p,

1 2

and

p% .
thusp, +1=2p,p,=2p- 1 and o(n) = p*+p+l = (2ptD),
from where 40(n)=(2p-1)(2p+3)+7= 4p?2p~1) accordmgly 7 is divisible
by 2p- 1 and thus p is divisible by 4 which is a centradiction:

Reference :
I Suryanarayama, Elemente der Mathematik, 1969.

[“Octogon”, Bragov, Vol. 5, No. 2, 53-4, October 1997.]
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Inequalities For The Integer Part
Function'

In this paper we prove some inequalities for the integer part func-
tion and we give some applications in the number th:eory.

Theorem 1. For any x, y > 0 we have the inequality

(1) [5x] +[3y} = [3x+y] = [3y=x], where ['] means the integer part
function.

Proof. We use the notations x = [x],y =[yL.u= {x}.v={y}, 2.y,
€ Nand u,v € [0, 1). We can write the inequality (1) as

x, 7y, +[5ul+[5v] = [But+v]+[3v+u]. We distinguish the following
cases:

o) Letu>v. Ifu<2v, then Sv > 3v+uand [Sv] > [3v+u}, analogously
Su>3u+v and {Su] > [3u+v], from where by addition we obtain (1). It
u>2v and Su=a+b, Sv=c+d, a,ceN, 0 < b < 1,0<d <1, then we have to

prove the following inequality ; .
atctxty, > [ 3a+c+3b+d ] n [3cw-a+3dfb ] ).
' 5 5

But, considering that 1 > u > 2v, we get 5 > 5u > 10v, from where
5>atb>2c¢+2d, thusatb<Sanda<4.Ifa<2c,thena<2c-1and a
+1-2¢<0, thus a+b-2¢ < 0; contradiction with a+b-2¢>2d, thus 4>a,
a>2¢ and 3b+d<4, 3d+b<4. From 4 > a > 2¢ we have the cases from the
table and in each of the nine cases is verified the inequality (2).

al444332210
c}210011000

Application L. For any m, n € N, (5m)!(5n)! is divisible by
m!'n!'(3m+n)!(3a+m)!.

Proof. If p is a prime number, the power exponent of p in decompo-
sition of m! is olefm] +.. It is sufficient to prove that

D

GGGty
forany reN, 1> 2.Ifm=rm +x,n=m +y, where 0 <x <r, 0 <y <r, m,
n € Z, is sufficient to prove that

[57" + [»S—rx]z [3"—;1]+[§¥]’ but this inequality verifies the

theoréem™1.

Remark. Ifx, y > 0, then we have the inequatity

[SxI+[5y] 2 [XIHy+[3x+y]+ [3y+x].

! Togcther with Mihaly Bencze and Florin Popovici.
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Theorem 2. (Szilard Andras). Ifx, y, z > 0, then we have the inequal-
ity Bx[+[3y1+[3z] 2 [y 2]+ [x+yltiy+z]+[z+x].

Application 2. For any a,b,c € N, (3a)!(3b)!(3c)! is divisible by
alblc!(a+b)!(b+c)!(cta)!l.

Proof. Letk k, .k, be the biggest power for whick p* (3a)!, pe
| 3b)!, P (3¢)! respectively, and r{ie{1,2,34,5,6})the biggest
power for which pr‘j al, pr|bl, el p~ | (atb)!, pl (b+c) !, P |
{c+a)! respectively, then

ko (L 1)) (0 30-) (B3 G-
2n (BB =) (B )+ (51 )
(1 B ) (Bl ) - (14 159+ -

We have to prove thatk +k,+k. > 3 r,, but this inequality reduces
to theorem 2. =1

Theorem 3. If x, y, z >0, then we have the inequality

x}2y)+{2z]) < [x)+Hy]H [z} [x+y+z].

Application 3. If a,b,c € N, then alb!cl(at+b+c)! is divisible by
(2a)!(2b)!(2c)!.

Theorem 4. If x, y >0 and n, k € N so thatn >k >0, then we have the
inequality [nx] + [ny] > k[x] +k[y] + (n - k)[x +y].

Application 4. [fa, b, n, k € Nand n > k, then (na)!(nb)! is divisible
by (al)<(b!)*((a+b)!)™*.

Theorem §. If x, 20 (k =1, 2, .., n), then we have the inequality

1
22 [2x,]>2 : ][xk] + X)X ] F e+ X x ]
k=1 = : - n

Application 5.1fa, e N(k=1,2,...,n), then ‘}:Il ((Zak)!)2 is divis-
ible by klr:lll(ak!): (a+a)!(a,+a)! ... (a+a ).

Theorem 6. If x. >0 (k = 1, 2, ..., n), then we have the inequality

m m
m i [2x]+ n 2 [2x]> m i xj+ n X (x 1+ i i“ [x+x ].
k=1 p=ti k=1 p=1 k=1p=1
Application 6. Ifak eN(k=1,2,..,n) then
n m n m , n m
H@abr HQaly is divisible by @™ I @b IT @,
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Theorem 7. If X,y > 1, then we have the incquality

el Wb e ] [as - s |

Proof. By the concavity of the square root function

S e s LAy E

—J2y 2
5 ]

it follows that [\/x +y ]2 [] 2 x 1' + {;—

|
Therefore it is sufficient to show that [\/_ ]
for x>1. The identity [, 1~

r |
-
We usc it to replace + 5V2¥

X +

1

has a straxghtforward proof.
with [Jz_x] f; J2x o+ 1—1,

This yields [J_ ] 2 [L-\/Z_x + i—l for x>1. This lastJ inequal-
ity followed by notice that xL>_4 implies (2 - \/f)\/ﬂl or

V1 IL;—\/’ZT, J and 1< x < 4 implies _;_sz + _]2_<2
Application 7.1fa,b € N, then a!b!l Va' + b’ !J is divisible by
lav2] 1 [pv2] 1

[“Octogon”, Brasov, Vol. 5, No. 2, 60-2, 1997.]
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About Bernoulli’s Numbers!

Many methods to compute the sum of the same powers of the f{irstn
natural numbers (see ([4]) are well-known.

In this paper we present a simple proof of the method from {3].

The B(.moulli s numbers are defined by

(]) n+1 B + Cn+l -+ C: Ian I)’

where BO— l.It is known that Bn,l=0ifn21.By calculation we find that
(2) B, =-1/2, B, = 1/6, B, = -1/30, B, = 1/42, B, = -1/30, B, = 5/66,
B, = = -691/2730, B, = 7/6 B,=- 3617/510 B,, = 43867/798,
B,,= -174611/330, B,,— 854513/138 B, =-236364091/2730 elc.
Let S, =1+2+ _+n*sumof the first » natural numbers which
have the same power.
Theorem,
@ gk 1 (s Lol pticr Bty Lt B n)
M T k+1 k+1472 k1% n
k+1 2 _
Proof. (1) can be writien as:

4 Z C”H n21.

p(x)zzck-] e then P(n+1) - P(n) =

)(10
- z CinB ((n+ l)"”" - nk+1_,) _

k+1-1
= Z CiaB.( Z Claan*™' ™)

Let A be the coeﬁcxenls of n“ wherete {0, 1, ..., k}.
:Z C1~1C11"’1,3,=C1t11[z C:’~1B/)~
i 0 t-0

Ift> 1,then A =0.onlydo = C,.\- On behalf of these
P(n+1y—P(n)=C, n". Using this
-1

LS G- PO )

Toglhcr vmh ‘vhhalv Bcnczc
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because P(0)=0. Then 5/} = P P (n )+ n* From here onc gets (3).
Note. From the previous result we can also find the formula

SE o= p ! ’ P (= + 1.)Wsing the previsious, we find the next cqualitics:
+

S,‘,‘:n,f\";:l—n(n»l),,ﬂ'::éﬁn(n~l)(2n+]),5'5:l—n:(nq-l):‘
S::}:} n(n+])(2nr])(3n3+3n—!)
]7:(”‘?1):(2’7:‘.'2”—1)

St = —l—n(n+])(2n*l)(3n4+6;1’—3n+])
s, = (n*l)(pn + n’—n:».,n+2)
Sr:“—"("*l)(7n+l)(>n +15n'+"'~]5n‘7n:+9n—3)

(2"10 +10 7% +15 % - 14 n° + 10 174—3n:),

SO = L on™ +33 0" + S5 n® - 66 nT 4 66 n° - 33 nt+ Sn)
i ] 12 [ A 10 3 3 4 2
S,,:—(zn + 12"+ 2% -3+ 44 n°-33nt+10n
SF = 730 (210n’+1365 n'? +3630 n'' — 4935 n° + 115 n® + 9640 n’

+1960 n® — 5899 n* +35n* + 4550 n® + 1382 n’ - 691 n ) el

Problems.

1). Using the mathematical induction on the base of (1), we prove
thatB, =0,ifn>1.

2). Prove that s, kis d1v181ble by n(n+1).

3). Prove that s: is divisible by n*(n + 1)*.

4). Determine those natural numbers n, k for which § ,,le divis-
ible n(n + 1)(2n + 1). 0 noon

5). Detach in parts the sums s, neSe s noSa.

6). Using (2), (3), compute the sums s s;' .
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The Solution Of 0Q.102!

In the “Octogon” Vol.5, No.2, Zoltan Blazik, in the open problem
0Q.102, asked if there exists a polynomial P(x,y) of at most second de-
gree such that on the set {1,2,3}x{1,2,3} it takes the values 1, 2, 3,4, 5, 6,
7, 8, 10, each of them cxactly once. We show that doesn't exist such a
polynom. Let P(x,y)=Ax*+Bxy+Cy-+Dx+Ey+F be a such polynom. It
results that P(1,1)-2P(1,2)+P(1,3)-2P(2,1)+4P(2,2)-2P(2,3)+P(3,1)-
-2P(3,2)+P(3,3)=0. In this sum there are only integer numbers, and each
coefficient divided by 3 give one remainder. From this one gets that

0=P(1,1)-2P(1,2)+P(1,3)-2P(2,1)+4P(2,2)-2P(2,3)+P(3,1)- -
2P(3,2)+P(3, 3) = P(1,1) +P(1,2) +P(1,3)+P(2,1)+P(2,2)+P(2,3)+P(3,
1)+P(3,2)+P(3,3)= 1 +2+3+4+5+6+7+8+10=46(mod3) and this is a con-
tradiction.

Next we propose the following open question:

Is there a polynomial P(x .x,.....X ) of at most degree n such that on the set
{1,2,...n,n+1}x{1,2,..,n,n+1}x..x{1,2,....n,n+1} (the braces are repeated
n times) it takes the values 1,2.3, ....n,...,(n+1)* -2,(n+1)* -1,(n+1)* +1 ex-
actly once?

[“Octogon”, Vol.6, No.1, 81, 1998.]
"Togcther with Mihaly Benceze and Florin Popovici
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CONJECTURES ON PRIMES' SUMMATION

A) Any odd integer n can be expressed as a combination of three
primes as follows:

1) As a sum of two primes minus another prime:

n = p+q-r, where p, q, r are all prime numbers.
Do not include the trivial solution: p = p+q-q when p, q arc prime.
Forexample: 1 =3+5-7=5+7-11 =7+11-17=11+13-23= ... ;

3=5+5-7=7+19-23=17+23-37=...;

5=3+13-11=...;
7=11+13-17=...;
9=5+7-3=_.;
11=7+17-13=....

a) Is this conjecture equivalent to Goldbach's Conjecture (any odd inte-
ger >=9 is the sum of three primes)?

b) Is the conjecture true when all three prime numbers are different?

¢) In how many ways can each odd integer be expressed as above?

2) As a prime minus another prime and minus again another prime:
n = p-q-1, where p, q, r are all prime numbers.

For example: 1 =13-5-7=17-5-11=19-5-13 = ._;
3=13-3-7=23-7-13= ..,

5=13-3-5=..;
7=11-3-T=..;
9=17-3-5=..;
11=19-3-5= ...

a) Is this conjecture equivalent 1o Goldbach's Conjecture ?
b)Is the conjecture true when all three prime numbers are different?
¢) In how many ways can each odd integer be expressed as above?

BY Any odd integer nocan he cvprecsed ac g combination of five

primes as follows:

3) n = p¥girtt-u, where p, q, r, t, u are all prime numbers, and
#u.
Forexample: 1 = 3+3+3-5-13 = 3+5+5+17-29 = ... ;
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3=3+5+11+13-29=...;

5=3+7+11+13-29=..;

7=5+7+11+13-29=...;

9=5+7+11+13-29=_..;
11 =5+7+11+17-29= ...

a) Is the conjecture true when all five prime numbers are difforent?

b) In how many ways can each odd integer be cxpressed as above?

4) n = pqtr-t-u, where p, g, 1, t, u are all prime numbers, and t. u#p,
qr.
For example: 1 = 3+7+17-13-13 = 3+7+23-13-19= ...,
3=5+7+17-13-13=...;
S=7+7+17-13-13=...;
7=5+11+17-13-13= ...
9=7+11+17-13-13=..;
11=7+11+19-13-13= ...
a) Is the conjecture true when all five prime numbers are different?
b) In how many ways can each odd integer be expressed as above?

5)n= p+q-r-t-u, where p, q, 1, t, u are all prime numbers, and r,L.u#p.q.
For example: 1 = 11+13-3-3-17= ...
3=13+13-3-3-17=..;

5=3429-5-5-17=....
7=3+31-5-5-17=...;
9=3+37-7-7-17=...;

11=5+37-7-7-17= ...
a) Is the conjecture true when all five prime numbers are different?
b) In how many ways can each odd integer be expressed as abovc?

6) n= p-g-r-t-u, where p, q. r, t. u are all prime numbers. and g.r.t.up.
For example: 1 =13-3-3-3-3=_.;

3=17-3-3-3-5=...;
5=19-3-3-3-5=...;
7=23-3-3-5-5=...;
9=29-3-5-5-7=...;
11=31-3-5-5-7= ...

a) [s the conjecture true when all five prime numbers are different?

103



FLORENTIN SMARANDACHE

b) In how many ways can cach odd integer be expressed as above?

GENERAL CONJECTURE:

Letk >3, and 1 <s <k, be integers. Then:

1) If k is odd, any odd integer can be expressed as a sum of k-s
primes {first set) minus a sum of's primes (second set)
[such that the primes of the first set is different from the primes of the
sccond set].
a) Is the conjecture true when all k prime numbers are different?
b) In how many ways can each odd integer be expressed as above?

ii) If k is even, any even integer can be expressed as a sum of k-s
primes (first set) minus a sum of s primes (second set)
[such that the primes of the first set is different from the primes of the
second set].
a) Is the conjecture true when all k prime numbers are different?
b) In how many ways can each even integer be expressed as above?

Reference:
{1] Smarandache, Florentin, "Collected Papers”, Vol. 11, Kishinev
University Press, Kishinev, article <Prime Conjecture>, p. 190, 1997.

[“Math Power”, Pima Community College, Tucson, AZ, USA, Vol.5,
No.9, 2-4, September 1999;
“Octogon”, Brasov, Vol.8, No.1, 189-91. 2000.]
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CONJECTURES WHICH GENERALIZE
ANDRICA'S CONJECTURE

Five conjectures on paires of consecutive primes are listed below
with examples in each case.

1 ) The equation p:+1 - p,f =1, (1)
where p_is the n-th prime, has a unique solution situated in between 0.5
and 1. Checking the first 168 prime numbers (less than 1000), one gets
that:

- the maximum occurs of course for n=1, i.e.

3%.2*=1 when x=1.

- the minimum occurs for n=31, i.c.

127*-113*=1 when x =0.567148...=a . 2)

Thus, Andrica's Conjecture

An:‘\/p»wl_ pn<1’

1s generalized to

ad

2) B, =pi,—p. <1, where a<a,. (3)

It is remarkable that the minimum x doesn't occur for

1-7=1
as in Andrica's Conjecture thc maximum value, but in (2).

Also, the function B_in (3) is falling asymptotically as A in (2).
Look at these prime exponential equations solved with a TI-92 Graphing
Calculator (approximately: the bigger the prime number gap is, the smaller
solution x for the equation (1);
for the same gap between two consecutive primes, the larger the primes,
the bigger x):

3* - 2% =1, has the solution x = 1.000000.

5% - 3* = 1, has the solution x = 0.727160.

7% - 5 =1, has the solution x = 0.763203.

11* - 7*= 1, has the solution x = 0.599669.
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13*- 11*= 1, has the solution x = 0.807162.
17* - 13*= 1, has the solution x = 0.647855.
16* - 17* =1, has the solution x = 0.826203.
29¥-23* =1, has the solution x = 0.604284.
37* - 31* =1, has the solution X = 0.624992.
97> - 89* =1, has the solution x = 0.638942.
127*- 113* =1, has the solution x = 0.567148.
149* - 139 = 1, has the solution x = 0.629722.
191* - 181* = 1, has the solution x = 0.643672.
223*-211*=1, has the solution x = 0.625357.
307* - 293 = |, has the solution x =~ 0.620871.
331*-317*= 1, has the solution x = 0.624822.
497 - 467 = 1, has the solution x = 0.663219.
521* - 509* = 1, has the solution x = 0.666917.
541* - 523* = 1, has the solution x = 0.616550.
751* - 743* = 1, has the solution x ~ 0.732706.
787 - 773* = 1, has the solution x =~ 0.664972.
853% - 839% =1, has the solution x = 0.668274.
877* - 863 = 1, has the solution x = 0.669397.
907> - 887* = 1, has the solution x ~ 0.627848.
967 - 953% = 1, has the solution x =~ 0.673292.
997 - 991* = 1, has the solution x = 0.776959.
Ifx > a, the difference of x-powers of consecutive primes is nor-
mally grater than 1. Checking more versions:

3099 - 20.99 = 0.981037.
11099 . Fu-99 ~ 3.874270.
110 _ 7060 ~ 1.001270.
11059 R 70-59 = 0.963334.
1105 _ 70-55 = (0.822980.
11059 N 70:50 = (0.670873 .
389°% - 383°% =z 5.596550.
11059 - 70599 = 0.997426.
170599 _ 1395 =~ (0.810218.
37059 R 31757 = 0.874526.
127059 . 1139%% = 1.230100.
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9970599 - 991959 x~ (0.225749.

12795 - 113%% = 0.639282.

3) C, = p:,-]; - prl./k < 2/k, where p, is the n-th prime,

and k > 2 is an integer.

e 72 = 0.670873.
e 74 = (0.1945837251.
s . 7 = 0.1396211046.
127 - 1135 = 0.060837.
3 27 20317837
35 27 x0.1823285204.
s 37 = 0.2677263764.
L 5% x0.2029552361.
1, - 7% = 0.3110489078.
13 - 117 = 0.1273545972.
177 - 13 = 0.2199469029.
37 31 = 0.1908411993,
12715 - 113 ~0.191938.
s D,=p,. - p, <1l/n, (4)

where a < 3, and n big enough, n = n(a), holds for infinitely many con-
secutive primes.

a) Is this still available fora<1?

b ) Is there any rank n_depending on a and n such that ( 4 ) is
verified foralln>n, ?

A few examples:

508 - 3% = 1.21567.

708 - 5% = 1.11938.

1104 - 7% 2206621

127s 113°% = 4.29973.

3079 - 293°F = 3.57934.

997"% - 991°* = 1.20716.

5)P, /P, <573, (5)

the maximum occurs at n=2.
{The ratio of two consecutive primes is limited, while the
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difference p_, - p, can be as big as we want!}
However. 1/p_ - 1/p_, < 1/6, and the maximum occurs at n=1.

Reference:
[1] Sloane, N. I. A, Sequence A001223/M0296 in <An On-Line
Version of the Encyclopedia of Integer Sequences>.

[“Octogon”, Brasov, Vol.7, No.1, 173-6, 1999 ]
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A Generalization Of The Leibniz Theorem'

In this paper we show a generalization of Leibniz's theorem and an
application of this.

Leibniz's theorem. Let M be an arbitrary point in the plane of the
ABC triangle, then MA™*MB*+MC? = 1/3(a*+b*+c?)+3MG?, where G is
the centroid ofthe triarigle. We generalize this theorem:

Theorem.LetA ,A.....,A_be arbitrary points in the space and G the
centroid of this points system; then for an arbitrary M point of the space
is valid the following equation

iMA,?:’- > AAl+n-MG®.
i=1

nsic sn

Proof. First, we interpret thé centroid of the n points system in a
recurrent way. If n =2, then is the midpoint of the segment. If n= 3, then it
is the centroid of the triangle. Suppose that we found the centroid of the
n-1 points created system. Now we join each of the n points with the
centroid of the n-1 points created system; so we obtain n bisectors of the
sides. It is easy to show that these n medians are concurrent segments. In
this way we obtain the centroid of the n points created system. Denote G,
the centroid of the Ak = 1,2,...,i-1,i+1,...,n points created system. It can
be showed that (n-1)A G=GG,_. Now by induction we prove the theorem.
Ifn=2the MA +MA]=—A4,A4]+2MG" or

MG * == —(2(m4 7 + M4 ?)), where G is the midpoint of the A A,
scgment. The above formula is the side bisector's formula in the MA A,
triangle. The proof can be done by Stewart's theorem, cosines theorem,
generalized theorem of Pythagoras or can be done vectorially. Suppose
that the assertion of the theorem is true for n = k. If A ,A,, ..,A, arc
arbitrary points in the space, G, is the centroid of this points system, then
we have the following relationzk: MA? = 1 3 442+ kMG,

o=l i<k

Now we prove forn=k+1.Let A _ € {A ,A,,..,A,, G } anarbitrary
point in the spacc and let G be the centroid of the A ,A.....,A A _ |, points
system. Taking into account that G is on the A, G segment and

‘Together with Mihaly Bencze and Florin Popovici
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k'A, ,G=GG,, we apply Stewart's thcorem to the M,G .G.A . points,
from where

‘MAI(ZH ' G(}o + A[Goz ’ Gl4'k+] —IMGZ : Ak+]G() = GG() .G‘Akﬂ ’ Ak+1G/)'

A

According to the previous observation 4,.,G = Tl 4,.,G,
] T+
and GG, =—4, G, .
k+1
Using these, the above relation becomes
k
MA, +k-MG? = Ak-,Gj+(k+1)MG2.
+1
Fromhere ) ,
k- MG Zm -— ZAAJ.
1<l</<l(
Prom the supposmon of the induction with M=A_ | as substitution
WeBL N 4 Al = — S 4 A k- A, G}
Z ]<;<k k- and thus
_k_A - __Z - _;_ Z FvE
kg ¢ S TUS RSt

Substituting this in the above relation we oblam Ihal

oo (11
2 MA? - k k(k+l)] 2 A ZAA**‘

=1 1<i< j<k

+(k+1)MG* = k—l— DAAL +(k+ I)MGZ.

1< j<k+1

With this we proved that our assertion is true for n = k+ 1.
According to the induction it is true for every n > 2 natural numbers.

1. Application. If the Al,A,, ..., A_points are on the sphere with the
center O and radius R, then usmg in lhe theorem thc substitution M=0O
we get the identity 0G>=R> -

1<i< /<n
In casc of a triangle  OG? = R —]—(a +b° +c') .
2 1 2 2 2 2 2 2
In casc of a tetrahedron OG’ = R 'E(a +bh +c+d e+ f ) .
2.Application. If the A A, ... A_ points are on the sphere with the
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center O and radius R, then Z A:A/Z < n’R2.
1<i<j<n

Equality holds if and only if G=O. In case of a triangle a>+b*+c* <
9R?, in case of a tetrahedron a*+b*+c*+d*+e* > < 16R>.

3. Application. Using the arithmetic and harmonic mean inequal-
ity, from the previous application results the following inequality re-
sults: 5~ [ 6': -1y

4,477 4R’
In case of a triangle L2+ '_2+ LZ > -1_2
a b c R
1 1 1 1 1 1 9

— et —+ —+ — 2 .
a® b ¢ d° e f° 4R-

I<i<jsn

in case of a tetrahedron

v

4, Application. Considering the Cauchy-Buniakowski-Schwarz in-
equality from the application 2 we obtain the following inequality

Y 4,4, < nR ,/”i(”_]i
s e 2

In case of a triangle a+b+c <3\/7 3R, in case of a tetrahedron
a+b+c+d+e+fs4«/€R.
5. Application. Using the arithmetic and harmonic mean inequal-
ity, from the previous application we get the following inequality
Z 1 2(n—l).\/nin—1;.
1si< j<n A,A, 2 R /2

In case of a triangle LI ;—+
a

, in case of a tetrahedron

6. Applicalion Considering application 3, we obtain the following

i hity: n(n -1 ; l
inequahty (" ) Z" 4 }[ SZ,SH 4,47 } <
o emrruy et
l e I even |
j(u\o»m)’n (,,-1)—4(&1—"1)2 n(n-1) odd
[ 16 41 -m T

where m = min {A,A’,‘ } and M = max {A,A’,‘} In case of a triangle

Ky “)5 2M S +5M -m +2m-°

9$(a‘+b‘+c‘Xa"+b v
M -m

in case of a tetrahedron
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36s(a‘ bt vd et s f‘Xa Yabtactsdt et +f")£2(—';%ﬁ)—.
-m
7. Application. Let A, A,, ..., A_ be the vertexes of the polygon
inscribed in the sphere with the center O and radius R. First we interpret
the orthocenters of the A A,...A_inscribable polygon. For three arbitrary
vertexes, one orthocenter corresponds. Now we take four vertexes. In the
obtained four orthocenters of the triangles we construct the circles with
radius R, which has one common point. This will be the orthocenter of
the inscribable quadrilateral. We continue in the same way. The circles
with radius R that we construct in the orthocenters of the n-1 sides
inscribable polygons have one common point. This will be the ortho-
center of the n sides, inscribeable polygon. It can be shown that O, H, G
are collinears and n-OG=0OH. From the first application
2
OH*® =nR* - Z A,Af and GH2=(n—1)RZ—(1—%) > A

isi<ygn
Ii< j<n /

In case of a triangle OH?=9R>- (a>*+b*+c*) and GH * = 4R’ ~ %(a: +bi+c?)

8. Appllcatlon In.the case of an A A,...A_inscribable polygon
2 A 47 =n'R" ifand only if O=H=G. In case of a triangle this is

cqmvalent with an equilateral triangle.

9. Application. Now we compute the length of the midpoints cre-
ated by the A ,A,,...,A_space points system. Let S={1,2,...,i-1, i+ 1,...,n}
and G_ be the centroid of the A, k € S, points system. By substituting
M=A in the theorem, for lhc lenglh of the midpoints we obtain the fol-
lowmg relation 4,G? = Z 4,4} (l—l)— > 4,4

- " —

ke S HvES W=y

Z(b:+c:)—a:
4

10. Application. In case of a triangle
and its pgrmulahons From here
m>+m;+m’ =—(a +b 4’ )

m! =

R.

| o

ki 2 3 —~
m>+m!+m><Z—R* m +m, +m <
o b b 7 b
. ' ¢ .

ll, /?p(phcanon In case ()1 a lclrahcdro
and its p«,nnuﬁaéxons

Promhcre > om =——(Z ).Z m3< R*)> m SR

12. Application. Denote m_ the length of the segments which join
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midpoint of the a and f skew sides of the tetrahedron (bimedian). In the
interpretation of the application

1
9m§f :—(b2 +c’+d*+eé’-ad’ —fz)
T4
and its permutations. From here
2 2 2 1 2
ml,emi, Aml, = X(Z a*)

2 2 2 2 ; <
ma,f+mb,d+mc,eS4R s ma~/+mb.d+mc,‘,_2R\/§.

References:

1. Hajos Gy., Bevezetés a geometriaba, Tankonyvkiado, Bp. 1966.

2. Kazarinoff N.D., Geometriai egyenlotlenségek, Gondolat, 1980.

3. Stoica Gh., Egy ismert maximum feladatrol, Matematikai Lapok,
Kolozsvar, 9/1987, pp. 330-332.

4. Caius Jacob, Lagrange egyik képletérol és ennek kiterjesztésérol,
Matematikai Lapok, Kolozsvar, 2/1987, pp. 50-56.

5. Sandor Jozsef, Geometriai egyenlotlenségek, Kolozsvar, 1988.

[“Octogon”, Vol .6, No.1, 67-70, 1998.]
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A Solution of 0Q. 128!

In “Octogon”, vol. 6, Nr. 1, April 1998, Mihély Bencze proposed the
following open question:

"Let A  A,..A be aconvex polygon and {B} =AA N AA,
{B,}=AANAA, .. {B}=AA_NAA _ Prove that

4,8, . 4,8, e 4,8, =1".
B4, B,4, B, 4,

Let:

=m(A,AB)),x,= (AAB), x,= m(AAA,),
=m(A,AB,). ..x, =m(A,  AB),
,=mAA B),...x, =m(A AB),

X
X, =m(A AB)andAA = a(k=1,2,..,n).

1
4
k

Using the sinus theorem in the triangle A B A |, we obtain:
A, B, sin x, '

& B, 4,., sin x,

Using again the sinus theorem in the triangle A A, A, ., we obtain:

@) AA _ _SnX.s
Aadi, @, sinx,

From (1) and (2), by multiplication, we obtain the proposed rela-
tion.

[*Octogon”, Vol. 7, No.1, 183-4, 1999]

Together with Marian Dinca, Mihaly Beneze, and Szilard Andras.
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NEGARI ALE POSTULATULUI V
AL LUI EUCLID

Postulatul V al lui Euclid se enunti sub forma: daca o dreapta, care
intersecteaza doui drepte, formeaza unghiuri interioare de aceeasi parte
mai mici decit doud unghiuri drepte, aceste drepte, prelungite la infinit,
se Intdlnesc in partea unde unghiurile interioare sunt mai mici decat doua
unghiuri drepte.

Insi el este mai cunoscut sub forma: printr’un punct exterior unei
drepte se poate duce o paraleld si numai una la acea dreapta.

in acest articol vom prezenta cele doud negiri clasice (Lobacevski-
Bolyai-Gauss si Riemann), plus alta negare partiald (combinand, totusi,
negdarile anterioare).

Postulatul V al lui Euclid (315? - 2557 i.C.) este recunoscut, de
toatd lumea, consistent (logic) in sine, dar §i impreuna cu celelalte patru
postulate formeaza un sistem axiomatic consistent.

intrebarea, care s-a pus din antichitate, era daci al cincilea postulat
este dependent de celelalte patru? Pentru ci un sistem axiometic, in viziune
clasica, trebuie sa fie:

1) consistent (axiomele si nu fie contradictorii intre ele: adica unele
sa afirme ceva, iar celelalte opusul);

* 2) independent (o axiomd si nu fie o consecinta rezultatd din
celelalte axiome prin aplicarea unor reguli, teoreme, leme, metode valabile
in acel sistem;
daca o axioma se dovedeste a fi dependenti (rezultati din) de altele, se
elimina din sistem;
sistemul trebuie s3 fie minimal);

3) complet (axiomele s@ dezvolte intreaga teorie, nu doar
partialitati).

Deci, geometrii au crezut c¢i postulatul (= axioma) V se deduce din
primele patru postulate ale lui Euclid. insusi Fuclid a incitat la aceste
cercetari. Deci, cé sistemul propus de Euclid, care a pus bazele geometriei,
n’ar fi independent.

In acel caz, postulatul V ar fi putut sa fie eliminat, fara a altera deloc
dezvoltarea geometriei.

Au fost numeroase incercri de-a “demonstra” aceastd “dependenta”,
desigur nereusite. Asadar, postulatul 5 are importanta istorica fiindca multi
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s’au ocupat de el.

Atunci, s’a trecut la negarea postulatului 5, si constituirea unui
sistern axiomatic din primele patru postulate cuclidiene neschimbate plus
negatia postulatului 5. S’a observat ci se obtin geometrii total dfiferite,
bizare, curioase, aparent rupte de practica.

a) Lobacevski (1793-1856), rus, primul a negat astfel:

“Printr’un punct exterior unei drepte se pot duce o infinitate de paralele
la acea dreaptd”, )
care s’a numit Geometrie Lobacevskiana sau hiperbolica.

Dupai el, independent, au facut acelasi lucru: Bolyai (1802-1860),
ungur din Transilvania, gi Gauss (1777-1855), neam{. Dar Lobacevski a
publicat primul.

Beltrami (1835-1900), italian, a gasit §i un model (= constructie
geometricd §i conventii in definirea notiunilor de spatiu, dreapta,
paralelism) la aceastd geometrie hiperbolici, marcind un progres si dand
o importanta ¢i. Analog Pointcaré (1854-1912), francez.

b) Riemann (1826-1866), neamt, a urmat cu o altfel de negatie:
“Printr’un punct exterior unei drepte nu se poate duce nici o paraleli la
acea dreapta”, '
care s’a numit Geometrie Riemanniana sau eliptica.

¢) Smarandache (n. 1954) a negat partial postulatul V:

“Exista drepte §i puncte exterioare lor astfel incét prin acele puncte
exterioare se puteau duce la acele drepte:

1) numai o singurd paraleld - intr’o anumitd zona a spatiului
geometric [deci, aici functiona Geometria Euclidiand];

2) mai multe paralele, dar in numdr finit - in altd zona a spatiului;

3) un numar infinit de paralele, dar numarabile - in aitd zona a
spatiului;

4) un numdr infinit de paralele, dar nenumairabile - in altd zond a
spatiului [deci, aici functiona Geometria Lobacevski];

5) nici o paraleld - in altd zona a spatiului [deci, aici functiona
Geometria Riemann]}.

Adicd, intregul spatiu era impartit in cinci regiuni (zone), iar fiecare
zona functiona diferit. Eram clev, idcea mi-a venit in 1969. De ce? Fiindca
am observat cd in practica spatiile nu sunt pure, omogene, ci un melanj.
Asa am unit cele trei geometrii legate de postulatul V, si Ic-am chiar
extins (cu alte 2 zone aliturate).
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Problema era: cum conectezi un punct dintr’o zona, cu un punct
din alta zon3 diferiti (trecerea peste “frontiere”)?

in “Bulletin of Pure and Applied Science” (Dclhi, India), apoi in
prestigioasa revistd germani care recenzeazi articole de matematica
“Zentralblatt fiir Mathematik” (Berlin) exista patru variante de Geometrii
Neeuclidiene Smarandache [urmand traditia: Geometria lui Euclid (cea
clasica, traditionald), Geometria Lobacevski, Geometria Riemann,
Geometrii Smarandache]. E bine si 1isdm si noi, romanii, urme prin stiinte
si arte - ca si nu ne mai desconsidere atita occidentalii. Ma obsedeaza
acest lucru... Eu caut si citez mereu roméni in tot ce fac - pentru promovare.
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One Application Of Wallis Theorem'

Theorem 1. (Wallis, 1616-1703)
L ot ‘x/l s _ 2.4.“(2")
6|'sm xdx = !cos xdx T3 GnzD) Gn 1)
Proof Using mtegratxon by parts, we obtain

xi
7( 2

-+

l = 'fsm 2 xdx = jsm xsin xdx = —cos x-sin 2nx

n

0
a2 from where 2n
+2n Jsin _'X(l—Si" x)dx=2n["_,—2nl,, I"=2n+l
hy multiplication we obtain the statement. We prove in the same
way for cos x. < 13..0@n-nx
Theorem 2. ,[ sin " xav = [ cos *xde = 2_4f Gn) )-7
Proof. Same as the first theorem.
Theorem3.If 7 ()= Z a, x*, then

i3 7 1.3...2k-1)
J' S (sin x)dx = I S (cos x)dx Z a,, 74 (2k)
Proof Inthe f (x) Z a,, x* functlon we substltutcxby sin x

and then integrate from 0 to 7/2, and we use the second theorem.
Theorem 4. If g(x) Z a,,. x*', then

e 5 = 2.4.. (2k)
Ig(sm x)dx jg(COS x)dx = a, +Azla il m
Theorem 5. If ;,(x) Z a,x* . then

13...{2k-1) 24...(2%)
j Hsinxhdx= I Hoosxhdx = a"+a’+z(2 YR T) M“"l.s....(zul))

n-1°

R Apphcatlonl 2
J’ sin_(sin x )dx = ‘([ sin (cos x)dx = Z 1) ———(—m—

0

Proof. We use that  sin x-Z( Y(Zk 1) T

Application 2. .

J(: cos (sin x)dx = '[ cos (cos x)= Z (‘_(L')‘
Proof. We use that <05 * = ‘Z::U vy (2k) '
Application 3. .

_"sh (sin x)d.x = Jsh (cos x)dr =Z (;k l)
n O 'n *

\

Proof. We use that i TENE

Tog,clhcr with Mlhaly Bcnczc
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Application 4.” _"ch (sin x)dx = j'ch (cos x)ax = %i
k

Proof. We usc that ch x=
Application 5.

1 2
Zk“?

k=t

4 (k1)
Soi

1.3 2k —1)x2*!
Proof. In the 27°Si" ¥ = HZ 2.4... 2k X2k +1) expres-

sion we substitute x by sin x, and use lheorem 4. It results that

\ 1
/8 = ————— . Because ¥ 1/k? —_ 1/k?
Y ey IR T e
wegel Sy ka6 .
k=1
22 Application6.
sinx clglsinx cosx ct, cosx)dx———
I g{sinx)dx= I g 575 Z](k')z
where B, is the k-th Bemoulh type number (see[l]).
Proof We use that = 4'B,
xctg x=1- x
Application 7. £t (2k) 1

x/2

J. arctg (sm x)dx f arctg (cos x)dx =
2.4..Q2k)
=1+ -1 5
,z:,( Y1.3 ..... @k -1)2k +1)
Proof. We use that arctg x=Y (- .
Application 8. 1230: Zk +1

Jargth(smx)dx Iarglh(cosx)dx 1+Z,§4"[2(k2k| (21(11)2

Proof. We use that £ 2ol
argth x= Z .
Apphcatlon 9, &5 k 1

"'argsl(smx)dx j argsHcosx)dx= Z

5 7 @)

Proof. We use that 13....(2k [
yp/_r
e Z( Y 4. (2&f2k+1)

Application 10.

xi2 /2 2k-1
J' {sinx)dx= I 1g(cosx)dx = Z%—%Zk—l);zik .
° " Proof. We use that 2%
2B
154 X—;“-—(y‘) | X .
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Application 11.

"t sin x "t cos x z = 227 -1)B

-[ sin (sin x) x) '([ sin (cos x)dx B 7*”;] 23 (kY A
Proof. We use that =1+22 279N _1)B, 4,

sin x ~ (Zk) !

Apphcatlon 12

”j—z sin x j cosx TS !2“"—1)_@

J sh(sin A) sh{cos x) 2 e 2%k
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Application 13
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Application 14.
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LINGUISTIC PARADOXES AND TAUTOLOGIES

Abstract.

Classes of linguistic paradoxes are introduced with examples and
explanations. They are part of the author's work on the Paradoxist Phi-
losophy based on mathematical logic.

The general cases exposed below are modeled on the English lan-
guage structure in arigid way. In order to find nice particular examples of
such paradoxes one grammatically adjusts the sentences.

Let <N>, <V>, <A> be some noun, verb, and attribute respectively,
and <Non-N>, <Non-V>, <Non-A> respectively their antonyms. For ex-
ample, if <A> is <small> then <Non-A> is <big> or <large>, etc.

Also let <N™>, <N " >, etc. represent synonyms of <N> or just <N>,
and so<V'™>, <V "> etc.

or<A™>,<A"> etc.

Let <NV> represent a noun-ed verb, and <NV'> a synonym, etc.
Then, one defines the following classes of linguistic paradoxes and semi-
paradoxes:

1. Allis <A>, the <Non-A> too.
Examples:
All is possible, the impossible too.
All is real, the unreal too.
All is justice, the injustice too.
All life is complex, the simple life too.
All people are actors, the non-actors too.
All can be happy, even the unhappy.
It's 5o near, but yet so far away.
All is weird, the natural t00.
All is joyful, the sorrow too.

2.<Non-N>is a better <N>,
<Non-A> is a better <A>.
<Non-V>is abetter <V>,
Examples:
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Not to speak is sometimes a better speech.

Not to complain is a better complain.

Unattractive is sometimes better than attractive.
Slow is sometimes better than fast.

No government is a better government.

A non-ruler is a better ruler.

No news is good news.

Not to stare is sometimes better to look.

Not to love is a better love.

Not to move is sometimes a better move.
Impoliteness is a better politeness.

Not to hear is better than not listening.

No reaction is sometimes the best reaction.

Not to show kindness is a better kindness [welfare].
She is better than herself.

No fight is a better fight [i.e. to fight by non-violent means].

3. Only <N>is truly a <Non-N>.
Only <A> is truly a <Non-A>.
Examples:
Only a rumor is truly a gossip.
Only a fiction is truly a fact.
Only normal is truly not normal.
Nobody is truly a 'somebody’.
Only fiction is truly real.
The friend is the most dangerous hidden enemy.
Only you are truly not you [=you act strangely].
Only mercy can be truly merciless.
If you spit at the sky, it will fall in your face.
Only gentleness is truly wild.

4. This is so <A>, that it looks <Non-A>.
Examples:

This is so true, that it looks falsc!

This is so ripe, that it looks spoilt.

This is so friendly, that it looks hostile.

He seemed so trustworthy, that he looks untrustworthy.
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This is so fake, it looks real!

This is so proper, that it looks improper.
This is so beautiful, that it looks unreal.
This is so simple, that it looks difficult.
The story was so real, that it looked fiction.
Can't sce the trees for the forest.

5. There is some <N> which is <A> and <Non-A> at the samc time.
Examples:
There are events which are good and bad at the same time.
There are laws which are good and bad at the same time.
There are some news which are real and wrong at the same time.
There are some insects which are helpful and dangerous at the same time.
[like the spider]
There are men who arc handsome and ugly at the same time.
There are classes that are fun and boring at the same time.
There are some ministers which are believers and mis-believers at the
same time.
There are moments that are sweet and sour.
There are games which are challenged and not competitive at the same
time.
Food which are simultanecously hot and cold.
The game was exciting, yet boring [because we were losing].
People are smart and foolish at the same time [i.e., smart at something,
and foolish at other thing].

6. There is some <N> which <V> and really <Non-V> at the same
time.

Examples:
There are people who trick and do not really trick at the same time.
There are some children who play and don't play at the same time. Some
of life’s experiences are punishments and rewards at the same time.
Exercise is exhausting but also invigorating.
There are children who listen and do not really listen at the same time.
There are teachers who teach and don't teach at the same time.
There are students who spell and misspell at the same time.
Nice and rough men concomitantly.
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Politicians who lic and tell the truth all the ume!

7. To<V> even when <Non-V>,
Ixamples:
A sagc thinks even when he doesn't think.
I exist when I don't exist.
A clown is funny even when he isn't being funny.
To dic of thirst surrounded by watcr. [saltwatcr]
To be a poet and not know it.
A mother worries even when she doesn't worry.
Tahelieve even when van dan' helieve
Is matching even when not-matching.
I sleep even when I am awake.
Always running around.
To drcam, cven when not slecping.

8. This <N> is enough <Non-N>,
Examples:
This silence is enough noise.
This vacation from work is hard work. [when you come back!]
The supcriority brings enough inferiority. [=listlessness]
This day is my night.
This diary is cnough non-diary.
This sleep is enough awake.
This sweet truthfulness is enough sarcasm.
This table of four is enough for six pcople.
I had cnough.
This job is enough recreation. [when enjoying the job]

9. <Non-V> sometimes means <V>,
L xamples:
Not 1o speak sometimes means 10 speak.
Not to touch sometimes means to touch.
The preserve peace sometimes means going to war,
To destroy hife (as in viruses) sometimes means to preserve life. Not to
listen sometimes means to listen.
Two fect forward sometimes means standing still.
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Not to litter sometimes means to litter.
Speeding is sometimes not speeding [in case of cmergency].
Not to show anger is somctimes to show anger.

10. <N> without <N>.
Examples:
Hell without hell.
The style without style.
The rule applied: there were no rule!
Our culture is our lack of culture.
Live without living.
Some people are so afraid of death, that they do not live.
Work without work.
Can't live with them, can't live without them.
Death without death. [for a Christian dying is going on to eternal life]
Guilt without guilt. [sometimes is guilty but doesn't feel guilty}

11. a) <N> inside/within the <Non-N>.
Examples:

Movement inside the immobility.

Silence within the noise.

Slavery within the freedom.

Loneliness within a crowd.

A circle within a circle.

The wrestling ring inside a squared section.

To find wealth in poverty [i.e., happiness and love].

b) <Non-N> in the <N>.
Examples:
Immobility inside the movement.
Noise inside the silence.
The eye of the storm.
Government. Burcaucracics.
Inequality insidc the cquality.
Single inside the marriage.
Anger inside the happiness.
Warmth in the cold.
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Cold in the heat.

Laughing without being happy.

Has not gottcn anywhere.

Poverty in wealth. [no poverty or love in a wealth family]

12. The <A> of the <Non-A>.
Examples:
The shadow of the light.
Music of silence.
Relaxing of exercise effect.
The restrictions of the free.
Life through death.
The sound/loudness of the silence.
I can see the light of the tunnel.
The stave of freedom. {someone who couldn't give up his freedom, even
in marriage]

13. <V>what one <Non-V>.
Examples:
To sce what one can't see.
To heat what one can't hear.
To tasti ‘vhat one can't taste.
To accej¥ what on can't understand.
To say what one can't say. [to tell a secret]
To wait | Wiently when one doesn't know how to wait.
To breath what one can't breath.
To feel what one can't feel.
To appreciate what one dis-appreciates.
To believe what one can't believe. [faith]
To smell what one can't smell.

14. Let's <V> by <Non-V>,
Examples:
Let s strike by not striking. [=Japancse strike]
Let's talk by not talking: [means to think].
To vote by not voting at all.
To help someone by not helping. [using experience as a teacher}
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Let's justify by not justifying.

Let's win by not winning.

Let's strip by not stripping. [to make bare or clear]
Let's fight by not fighting. [Ghandi's Motto]

15. <N> of the <Non-N>.
Examples:
The benefits we get from non-benefits.
The smoke we got from non-smokers.
The easy work we get from hard work.
The service we get from non-service.
The good that comes from bad.
The pleasure we get from the pain.

16. <Non-A>is<A>.
Examples:
The bad is good. [because makes you try harder]
The good is bad. [because doesn't leave any room for improvement]
Work is a blessing. ’
The poor is spiritually rich.
Sometimes ugly is beauty. [because beauty is in the eyes of the beholden]
You have to kiss a lot of frogs before you find a prince.
Hurt is healing.
"There is no absolute” is an absolute.
Not to commit any error is an error.

17. A<Non-N><N>,
Examples:
A positive negative. [which means: a failure enforces you to do better]
A sad happiness.
An impossible possibility.
Genuine imitation leather.
Alov - whisper.
A beautiful disaster. [which mcans beauty can be found anywhere] A bit-
ter sweet.
A harsh gentleness. [a gentleness that is very firm with you]
A guiltless sinner. {someone who doesn't regret sinning]
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18. Everything has an <A> and a <Non-A>.
Examples:
Everything has a sensc and a non-sensc.
Everything has a truthful side and a wrong side.
Everything has a beginning and an ending.
Everything has a birth and a death.
Everything has its time and a non-time.
Everything has an appcarance and a non-appearance.
Everything around you resolves and also dissolves.
Everybody has a good side and a bad side.
Everyone has a right and a wrong.

19. <V> what <Non-V>.
Examples:
To be what you are not.
One needs what one doesn't need.
Expect the unexpected!
Culture exists by its non-existence.
No matter how rich we are, we never make enough money.
One purchases what one doesn't purchase.
To work when we are not working.
To die might mean to live for ever. [= for an artist]
One wants because one doesn't want. [sometimes one wants something
only because someone clse likes it}

Linguistic Tautologies:

A tautology is a redundacy, a pleonasm. a needless repetition of an idea.
according to the "Webster's New World Dictionary", Third College Edi-
tion, 1988.

However, the following classes of tautologics - using repetition - goto a
deeper meaning, and even changes the sense. A double assertation re-
verses to a negation.

Onc also may play with the synonyms.

20. Mirror semi-paradox:
<N>ofthe <N">.
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<N>of the <N"> of the <N" >...
Examples:
Best of the best.
Worst of the worst of the worst.
Mother of the mother of the mother... {the maternal grand grandmother]
Follower of the followers.
The rows of the rows. {lots of rows]

21. This is not an <N>, this is an <N">.
Examples:

This is not a teacher, this is a professor.

This is not a car, this is a Wolswagen.

This is not a truck, this is a Chevy.

This is not noise, this is music.

This is not music, this is noise.

This is not a cedar tree, this is a <gad>. [gad = Navaho name for cedar tree]

This is not me, this is 1.

This is not a sword, this is a saber.

This is not a problem, this is an exercise. [= easier}

Practice makes you practice.

This is not a girl, this is Katie.

This is not a horse, this is a pony.

22. <N> is not enough <N">.
<A>is not enough <A"™>.
Examples:
Sufficient is not enough sufficient [which means: to do more than "suffi-
cient"].
Punishment is not enough punishment.
Health is not enough wealth.
Clean is not cnough clean.
Studying is not enough studying. {which means to do more than just
getting by, i.¢. to do research]
Iixtravagant is not enough extravagant.
Time is not enough time.
The more you have, the more you want.
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Attention is not enough attention. [some people need action t0o]

23. More <A>than <A">.
Examples:
Better than better. [=perfection]
Worst than worst. [=evil]
Sweeter than sweeter. [=honey]
More life than life. [=spirituality}]
Morc depressed than depressed.
Foster than foster.
More beautiful than pretty.
More ugly than ugly. [really ugly]
Smarter than smart. {like a genius]

24. How <A>isan <A™ <N>?

Examples:
How democratic is a so called democratic society.
How republican is a so called republic an society?
How civilized is a so called civilized person?
How free is a free country?
How commanding is a so called commanding officer?
How Pop Culture is a so called Pop Culture?
How strong is a strong man?
How lone is a lone ranger? [not very, he has tanto]

25.No <A>isreally <A"™>.
Examples:
No friend is really a friend. [s/he betrays you when you don t even ex-
pect!]
No luck is really a luck.
No original is really original.
No husband is really a husband. {you learn to depend on yourself] No
tomboy is really a tomboy. [gir] considered boyish]
No work is really less work.
No true Marxist is really a true Marxist. [they contradict their own
beliefs]
No magic is really magic [all is only a trick].
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26. I would rather prefer <A>, than <A'>.
Examples:
I would rather prefer pretty, than prettier.
I want that, not that.
I would rather prefer this, than this.
1 would rather be old, than old.
I would rather prefer great than big.
I would rather be crazy than crazy. [crazy like foolish, than crazy like
insane]

27. More <A> than <A">.
Examples:
Prettier than pretty.
More real than real.
More advantage than advantage.
More help than help.
More smiles than smiles. [she didn’t psychically smile, but there were
smiles written over her face]
He earns more than himself.
More suspicious than suspected.
More cries than cries.
More meters than kilometers.
Make everyday a rainbow day.

28. <V>those who <V'>you.
Examples:
Ignore those who ignore you.
Criticize those who criticize you.
Defend those who defend you.

29. <V> because <V"™>.
Examples:

I want because I want.

1 think because I think.

I hear because I listen.

I see because I look.

I need because I need.

132



COLLECTED PAPERS, vol. IIf

I know because I know.

I live because [ live.

I believe what is unbelievable. [faith}

I am happy because I am happy. [there is no reason for my happiness]

30. <V>the <NV'>.
Examples:
I hate the haters. [therefore I hate myself!]
I envy the enviers. [therefore [ envy myself]
I am strange to strangers.
I cheat the cheaters. {therefore I cheat myself]
I lie to liars. {therefore [ lie to myself]
I kick the kickers. [therefore I kick myself]
I love the lovers.

Exercises for readers:

Tryto c@struct a general scheme - using <N>, <V>, <A> etc. nota-
tions as above - and then give particular cases for each of the following
paradoxes or semi-paradoxes:

- Dream the impossible dream.

- It is not a question of what we are, but more of who we are.

- Only a small dream/output is really a big dream/output.

- One vote is cnough to make a difference; and yet one vote isn't often
enough to make a difference.

- Good times come and good times go, but memories last for lifetime.
- The dark and light of infinity.

- The sense we get from non-sense.

- Think before you think.

- Sometimes less is more.

- Enjoy life today, tomorrow may never come.

- Make it happen, by making it happen.

- Less is more.

- My shoes arc cleaner than my fect.

- No matter how hard it scems, it will get easier.

- See the things as they are not. [see their hidden spot}

- Quitters never win, and winners never quit.
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- My needs exist for needs.
- Bad things happen for a good reason.

Look at this Funny Law example:
A Paradoxist Government:
Suppose you have two cows. Then the government kills them and milks
you!

A poem:

Sometimes in life we see but do not have sight
or don't see what we should see
we hear but do not listen
we speak but do not communicate
we live but do not know how to live
we love but do not love
And then we die but we've already have been dead

The list of such invented linguistic paradoxes can be indefinitely
extended. It is specific to each language, and it is based on language
expressions and types of sentence and phrase constructions and struc-
tures.

One can also play with antonymic/synonymic adverbs, preposi-
tions, etc. to construct other categories of linguistic paradoxes.
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FUNNY PROBLEMS

In this paper we present original or collected recreational math-
ematical problems.

1) Prove that 2= 1.

Solution:
2 pints = 1 quart.

2) A man weights the following weights on the following dates.
How is it possible?

6/1/70 150 Ibs.
6/3/70 0 Ibs.
6/5/70 25 1bs.
6/7/70 0 lbs.
6/9/70 145 1bs.
Solution:

Man is astronaut who went to Moon and back.
Outerspace weightlessness: O lbs.
% of his Earth Gravity, or Gravity of Moon: 25 lbs.

3) If you have a couple of three’s and divided them in half, why do
you end up with 4 pieces?
Solution:
33

4)How 70>3=LOVE?

Solution:
Move the characters up or dow, or reverse them.

5)10-1=0.

Solution:
If you have a stick (1) and egg (0) and you give away the stick
(1), you still have the egg (0) lefi.
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7) Twelve minus one is egual to two.

Solution:
12 - 1 =2 (take di git 1 out from 12).

8)7+7 ="

Solution:
Take the four sticks from the 7’s, rearrange them to form a rect-
angle.

9)3x 2578 =heLL

Solution:
Read your calculator upside down: 7734
(the product of the first two numbers) becomes heLi. (aproximatively).

10) An earthworm is cut down the middle. How many halves are
there?

Solution:
One,
because the other half can still be one whole earthworm !

11) From two false hypotheses get a true statement.
Examples:

a) Qrass is edible. False
Edible things are green.  False
Therefore, grassis green.  True

b) All dogs arc poodles.

Spot is a dog.
Thus, spot is a poodle.

12) How can you add 3 with 3 and get 8 ?

Solution:

&3=28

13) If 10 trees fall down, and no one is around to hear them falling,
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how many of the trees fall ?

Solution:
Ten.

14) When algebraically 1 = 07

Solution:

In a null ring, wich is a set with one element only, and on¢ binary
operation. If we take for “+” and for “-” in the same time this operation, we
get a commutative, unitary ring.

In this case the unitary element for *“” (wich normally is noted by “1”)
and the null element for “+” (wich normally is noted by “0”) coincide.

15) When is it possible tohace : 1 + 1 =10 ?

Solution:
In base 2.

16) Another logic:
How can we have ten divided by two egual to zero ?

Answer:
Ten cookies divided by two kids are eaten and nothing is
remained !

17) You are lost and walking down a road. You want to get to town
and know the road leads to town but don’t know wich direction. You
meet two twin boys. You know one boy always tells the truth and one
always lies. The boys know the direction to town. You cannot tell the
boys apart and can only ask one question to one boy to find out the
direction to town. What question would you ask?

Solution:

Ask either boy what the other boy would say is the direction to
town. This would be a lie because if you were asking the dishonest boy.
he would tell you a lie. If you were asking the honest boy he would tell
you the truth about what the dishonest boy would say (wich would be a
lic) so he would give you the wrong direction. Town wold be in the
opposite dircction.
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18) Why are manhole covers round?
You know, the manholes on the streets, is there a reason why they
made them round or could they be square or triangular?

Solution:
Manhole covers are round because a circle cannot fall inside of
itself. If they were square, triangular or some other shape they could be
dropped into the hole, wich would be dangerous to traffic.

19) You have eleven lines. How can you move five lines and still
have nine?

R IR AN A O A A

Solution:
Pl i
<-move-—->

to form:

NINE

20) You have a cannon and two identical cannon balls. You take
the cannon to a large open location that is perfectly flat and you adjust
the cannon barrel so that it is perfectly level. You load one of the cannon
balls into the cannon and you hold the other cannon ball at the same
height as the barrel. You fire the cannon and drop the other cannon ball at
the same time. Wich cannon ball will hit the ground first?

Solution:

Both cannon balls should hit the ground at the same time, since
gravity acts equally on two objects having the same mass. The cannon
barrel was leveled and the cannon ball would begin to fall as it moved
forward out of the barrel at the same rate as the cannon ball that dropped
by hand. They would hit at the same time but the cannon ball fired from
the cannon would hit the ground far away.

21) I am invisible but can be mesured. I affect everyone and every-

thing that is anything. I span the universe and change from place to place.
What am 1?
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Solution:
[ am “gravity”.

22) The Moon rotates at a rate of one rotation to every 27.3 Earth
days and revolves around the Earth at a rate of one revolution to every
27.3 Earth days. This seems to be a strange coincidence. How does it
relate to our perception of the Moon as veiwed from Earth?

Solution:

People on Earth only see one side of the Moon because the same
side is always facing us. If you lived on the far side of the Moon you
would never see Earth. Man first saw the far or “dark side of the Moon” in
the 1960°s.

23) A semantic puzzle:

GEOMETRY IS THE MEASUREMENT OF THE WORLD, THE
GEO, THE SAME GEO WE PICTURE OR GRAPH IN GEOGRAPHY.
THESE ARE EASY AND SENSIBLE. THE ONE I COULD NEVER MAKE
HEADS OR TAILS OF, THOUGH IS

TRI... GON (O)... METRY
METRY IS MEASURE AND TRI IS THREE. BUT WHAT THE
HECK’S A GON-(O) THAT ONE HAS TO HAVE THREE OF IT TO
METRY?
EXPONENTIAL SILLINESS. ..

24) What is a hungry man’s multiplication factor?

Solution:
8x8.

25) Spell out the number NINE!

Selution:
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EERREREEEN

(cleven bars!)
26) There are two 24 x 24 corrals. In each corral there are 6 steers.
The farmer expects to produce a calf from each steer. How many calves

will be produced?

Solution:
Zero! (Steers can’t produce calves.)

27) How would a mathematician measure the intensity of an
carthquake on a meter as in the movie Armageddon?

Solution:
It is impossible to have an earthquake on a meteor!

28) 15 Hunters Went Bear Hunting. One Killed 2 Bears. How Many
Bears Iave One Killed? ’

Solution:
Two. (“One” is the name of one of the hunters.)

29) w /2 =u. F¥ind a logic for this equality.

Solution:
Double “u” divided by 2 is “u”.

142



COLLECTED PAPERS, vol. IIl

HOW TO CREATE A PROGRAM ON T.I.-92
CALCULATORS

Here it is a program created on T.1.-92 Graphing Calculator to sim-
plify a given fraction. The program has two inputs: N (the numerator) and
D (the denominator) of the initial fraction, and two outputs: a (the nu-
merator) and b (the denominator) of the simplified fraction. Also, the
program tells you if a fraction is undefined.

The steps are the following:

- pressAPPS (applications); —

- move the menu bar down and select 7: Program Editor;

- press Enter;

- move the new menu bar down and select 3: New (new program):
- press:Enter};

- move thls other menu bar down (using ) to:|Variable and

type your program’s name, say FRACT’ (fraction);

- press Enter twice;

the first two lines of your program and the last line of the program
are displayed on the screen ; type n, d on the first line in between the
empty parentheses of the title, i.e, FRACT (n,d},

where n,d are parameters of the program

(n is the numerator, d is the denominator);

- press F2 and select 9: © (which meens comment :

it is ignored by the calculator, but is useful to someorne reading the
program);

type: This program simplifies a fraction..

- press Enter to move down to the next line;

- press F3 and select 2: Dlsp (display);

- press Enter ; hence Disp will be pasted up in the program;

- type on the same line “N=",n, “D=", d, where N is the numerator
and D the denominator of the fraction;

- pressEn ‘Enter for movmg again to the next line;

- press F2jand sclect 2: If ... then ;

press; I:nterand selech If _then ... else ... endif],

on the screen you w1ll get three new lines (related to IF instruction);
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type, after If, d =0

- press. 'F3 and select 2: Dlsp ;

press Enter ;

- type “undefined fraction”;

- use the ¥ arrow to move to the next line after Else

- type n/(ged (n,d)) > a;

you get ged from? MATH ,then select 1 : Number then select
C: gcd( ged is the greatest common divisor ;

you get —, wich means store, from STO— ;

- similar thing; type on the next line:: d/(gcd (nd) »>b
- press Enter ;

- press | F3 select 2: Disp, press I:mer

type ; “Slmphﬁed fraction is”;
- on the next line: press k3’ F3/, select 2: Dlsp press Enter’;

-typeia,“/’,b.
- type2™ rqut; to exit the program.

*

The program will look on the screen in the following way :

: fract (n,d)

: Prgm

:© This program simplifies a fraction.
:Disp “N=",“D=", d

:Ifd=o0 Then

: Disp “Undefined fraction”

: Else

:n/(ged (n,d)) —a

: d/(ged(n,d))—>b

: Disp “Simplified fraction is”
:Dispa,“/",b

: EndIf

: EndPrgm

*

Now, to call the program , in the home page, type :
FRACT (8 ,0) and press Fmer
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The answer, you’ll get, is: Undefined fraction , because 8 is
0

undefined. Press 2*/Qui to exit the Prgm 10!'s page.
Try again by typing, for example :
GFRAFT*(@_,@ and press Enter .
The new answer on the screen is :
Ne
42
D=
54
. Simplified fraction is
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A PROGRAM (AN IN-OUT MACHINE) ON T.I.-83
CALCULATORS

This program takes an input number, performs some rule on it, and
shows the output number that results.

Steps to Follow

Comments

ENTER.

1. Press PRGM, highlight NEW, and press

This is how you start to writc a ncw program.

2. Typc INOUT, and press ENTER.

INOUT will be the name of the program.

3. Press PRGM, highlight 1/0, highlight
Disp, and press ENTER.

Disp is uscd for showing something on the
serecn

4. Press 2nd ALPHA.

The blinking A mcans you arc using the
Ietters abovi the keys.

ENTER.

5. Type "INPUT NUMBER", and prcss

The blank spacer is the "|J" symbol.

6. Press PRGM, highlight 1/0, highlight
Input, and press ENTER.

Input is used for getting a valuc from the
program uscr and storing it.

ENTER.

7. Press ALPHA, and type [, and press

The input number is storcd in a bin labcled
with the letter 1.

8. Press 2nd ALPHA, and type "APPLY
RULE:", and press ENTER.

This linc will act as a marker for the rule
which follows.

9. PressALPHA, and type 1.

You start your rule with the value given
as the input.

10. Press cach of the following keys: +4
STO— ALPHA O, and press ENTER.

The rule is to add 4 to the input valuc and stord]
(—) the result in a bin labeled with the Ictter O.

11. Press PRGM, highlight 1/0, highlight
Disp, and press ENTER.

12. Press 20d ALPHA, type "OUTPUT
NUMBER", and prcss ENTER .

13. Press PRGM, highlight 10, highlight
Disp, press ENTER, press ALPHA, type O,
and press ENTER.

The valuc that 1s storcd in the bin labeled
with the O is shown on the screen.

14, Press QUIT.

This will get you out of the programming
arca and back to the homc screen.
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To use the program:

Press PRGM, highlight EXEC, highlight the program number, and
press ENTER. The screen wiil show the name of the program. If this is
correct, press ENTER. Type a number as an input value, and you will get
the corresponding output value. The program wili execute again by press-
ing ENTER.

To end the program, press QUIT.
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NOTES ON USING T.I.-82 CALCULATORS
TO FIND SUMS

Definition: The set of integers is denoted Z. (After the German word
for number, Zahl).

Definition: 4 sequence is the range of a function whose domain is
a subset of Z.

Example: Define fin) = 2n + 1 for n in the set {1,2,3,4,5,... }. To
determine the sequence produced by f just plug some of the first few
values of the domain.

f(1)=3,f(2)=5,f(3)=7,f(4)=9,.... Sofproduces all of the odd
integers beginning with 3.

We say that the sequence is the set {3, 5,7, 9,..}.

A common kind of question that you have probably seen in your
past math classes and on many kinds of standardized tests is "find the
next term in the sequence...". _

For example find the next term in the sequence {-1,2,5,8, ...}

Find the number was easy. A little harder is coming up with a for-
mula for that sequence, give that a whirl, clearly state what the domain is.

We will use the calculator to produce the numbers in a sequence.
Then we can do things like add up all of those numbers. Here’s how it
works:

The sequence above could be written f (n) = 3n - 4. Suppose we
want to produce all of the values in the sequence for n = 1 to 50. That
sequence would be { - 1,2, ..., 146}. To get atl of these numbers in your
calculator carry out the following steps:

o LIST

nd STAT

You will now sec this OPS  MATII
1: Sort A(
2: Sort D(
3: dim
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4: Fill {
5:seql
Select 5: (press the 5 key)
You will now sce seq( on the screen. Enter the following:

the formule the “step” or
w 1,?;,1,59,1 ) increment for x
A O
specifies the / \‘ . ending value for x

variable starting value for x

Now press ENTER . The sequence should appear on your screen.
You won't be able to sec any of the numbers past '14', unfortunately, but
they are in the catculator. To get better access to the numbers in the
scquence we need to put them in a better place.
- L1
Re-enter seq(3x - 1, x, 1, 50, 1), press STO » and then 2nd 1 .
You should sce this on your calculator:

seq(3z-1,x,1,50,1) - L1... Now press ?EER

The entire sequence is stored safely in L1, (List 1). To view Lido the
following:
- STAT! Then, in the menu that appcars on the screen, select 1: Lidit
“You should sce this L1 L2 L3
-1
2
5
(There might be some numbers in L2 or L3 from previous work you
have done.)

Finding Sums of the terms in a scquence.

Supposc we want o find the sum of all the numbers in List 1:
S=-1+2+5+ ... +149,
Symbolically we write this as S - % (3n - 4). (The symbol . is the

n=1
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capital Greek letter sigma.)

To do this on the calculator, do the following:
_LIST
Zd_ STAT' In the resulting menu, use the » key to select MATH.
From that menu select 5: sum. You will now see sum at the top of

be 3625.
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THE AM.A.T.Y.C. COMPETITION

The American Mathematical Association of Two-Year Colleges or-
ganizes each year a mathematical competition.

The Student Mathematical League was founded in 1970 by Nassau
Community College in New York. In 1981 the AMATYC assumcd spon-
sorship of it.

Now the competition involves more than 120 colleges in more
than 20 states, involving more than 3000 students.

Each U.S. or Canada College may cnier a team of 5 students.

They are 3 year’s rounds :

Round One : November 7 - November 22, 1997 ;
Round Two : lanuary 30 - February 16, 1998 ;
Round Three :  March 27 - April 11, 1998 .

Each exam coniains 20 multi-choice questions, up to College Al-
gebra level.

For the first time at UNM - Gallup the AMATYC Competition has
been introduced in the Fall 1997 by Dr. Florentin Smarandache, a new
hired tenure track assistant professor of mathematics, who is the modera-
tor in charge of grading the three exams and sending the results to the
director Glenn Smith (Santa Fe Community College, Gainesville, Florida)
and to Mrs. Sharon MacKendirek (NMSU-Grants, coordinator for the State
of New Mexico). Dr. Smarandache is known for a few notions in Numbers
Theory that bear his name: Smarandache type Functions Smarandache
type Sequences, and he is the author of 30 books of proposed problems
and articles of mathematics, of poetry, drames, novels, essays, philoso-
phy.

The other two full-time mathematics instructors, Dr. Mark Wilson
(Math & Science Department Chair) and Dr. Val Shirley help as well in
mobilizing the students.

This university year the UNM-Gallup student team participating
for the first time) occuped the first place in the state of New Mexico, and
cleventh place in the South west region.

The best results were obtained by the following students: LUKL
W.BULTHNIS. BRAN COX, DAVID YAZZIE, BEN GORDON, BRIAN
WEEKS, MARKOS CHAVEZ, HEATHER ESCUDERO, MIKE
SHIRLEY.
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The first five of them will be awarded.

Luke W. Bulthnis got the nineth place, individual standing, in the
Southwest region.

Fall 1997
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“CAIETUL DE INFORMARE MATEMATICA”
LA 20 DE ANI

Siiatd cd timpul trece...

Mi-amintesc zilele cand luam intaia data contact cu revista Liceului
“N. Grigorescu” din Campina, pe cand eram in tara, student la Facultatea
din Craiova, in 1979.

Pe urma, proaspit inca absolvent, si analist-programator la
Intreprinderea de Utilaj Greu, apoi profesor la Bilcesti $i’n Maroc (Lycée
Sidi El Hassan Lyoussi), tineam legdtura cu remarcabilul animator al
revistei, profesorul Gane Policarp.

Dupa tacerea lagarului turcesc, 1988-1990, odata cu emigrarea in
America i deschiderea Romaniei catre lume, am putut relua corespondenta
cu amabilul editor, I-am i sunat la telefon de céteva ori, dar niciodata nu
l-am intélnit personal, desi mi-o dorisem. In scurtele peripluri prin tara,
cand traseul meu trecea prin Oltenia ca s3-mi vad rudele si prietenii din
copilarie i adolescentd, imi lipsea timpul necesar si m’abat si pe Valea
Prahovei...

Am avut placerea sa colaborez la CIM cu probleme si note
matematice, §i mai ales s’0 depun (revista) in doua biblioteci americane:
de la Arizona State University (Tempe) si University of Texas (Austin),
alawuri de alte publicatii romanesti pe care le-am donat (literatura,
matematicd) - pentru a imbogati fondul de carte roméncasci in striinatate.
Autoril, interesali in raspandirea publicatiilor lor, mi le pot expedia pe
adresa Universitatii New Mexico.

Mare mi-a fost bucuria cand, dupd trimiterea “Caietului” citre
editorul David E. Zitarelli, de la Pennsylvania State University, responsabil
cu recenzarca articolclor de istorie matematica, sa citesc in revista
internationald HHISTORIA MATHEMATICA, Vol. 24, No. 1, p. 464, din
noicmbrie 1997, ci articolele “Aniversari in 1995 si “100 ani de la
infiintarea «Gazetei matematice»” semnate de Gane Policarp in CIM, Nr.
34, 1995, au fost recenzate de 1. Erdelyi (din Philadelphia).

Am atagat copia paginii respective §i am expediat-o la Campina.

Astept in continuarc s3 primesc noi numerc ale “Caictului de
Informare Matematica”.
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ENSEIGNEMENT ET RECHERCHE
SCIENTIFIQUE
(DANS LES MATHEMATIQUES)

De nos jours on met un accent puissant sur la correlation de
I’enseignement avec la recherche et la production. Entre ces deux
domaines il v a d’ailleurs une liaison étroite (“osmose™) une union
dialectique, mais chacun d’eux maintenant sa personalité.

L’enseignement dott se développer en concordance avec les besoins
et les exigences de la révolution technique-scientifique.

L’intégration de I’enseignement avec la recherche et la production
signifie Uintroduction des facultés au milieu de la production et de la
recherche (de la projection), et aussi I'introduction de la production et de
la recherche dans les unités scolaires; ainsi, on tient compte que les projets
de diplome des éléves et des étudiants soient utilisés immédiatement
dans la production; c’est a ’école que revient la tAche de préparer et de
former les futurs spécialistes dans toutes les branches de production.

Aux conditions dans lesquelles nous assistons a une explosion
informatinnelle dans tous les domaines d’activité, on remarque un effort
soutenu de la part de ’enseignement pour s’adapter aux exigences
augmentant sans cesse de la société, pour tenir le pas avec les nouvelles
conquétes de la science et de la technique. Et dans le cadre de ces
conquétes scientifiques les mathématiques occupent une place centrale
“reine des sciences’, comme les a summommées Gauss.

Les mathématiques donnent, a ceux qui les étudient, la précision
des formules et des expressions, une discipline intellectuelle, discrétion,
modestie, désintérét, mesure, abnégation, sensibilité artistique. A notre
€poque, celles-ci ont beaucoup évolug, se transformant d’une science des
nombres et des quantités (comme on les appelait dans 1’ Antiquit¢) dans
une science des structurcs essentielles. Des nouvelles branches des
mathématiques ont fait leur apparition (beaucoup d’entre elles grace a
son interpénétration avec les autres “sciences”) et méme des branches
comme: linguistique mathématique. poétique mathématique (dans cette
derniére discipline ayant unec contribution remarquable le professer
universitaire dr. Solomn Marcus a ['Université de Bucarest). (La
linguistique mathématique, ayant pour point de départ les modéles
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logiques de la langue naturelle et développant une grammaire algebrique,
étudic d’une maniere simplifiée les phénoménes des langues naturelles).

*“(...) lcs mathématiques n’ont pas de limites, come ’cspacc qu’clics
trouvent trop réduit pour leurs aspirations; les possibilités des
mathématiques sont aussi illimitées que celles des mondes qui ne cessent
plus d’augmenter de I’astronomic ; les mathématiques ne porraicnt €tre
restreintes a des limites précises ou réduites a des définitions valables,
¢éternellement, comme la conscience, la vie, qui semble sommeiller en
chaque nonade, chaque atome de matiére, chaque feuille, chaque bouton
de fleur et en chaque cellule et qui est toujours préte a faire explosions
sous les nouvelles formes de I’éxistence animale et végetale” (James-
Joseph Sylvester, mathématicien anglais).

On observe la pénétration de plus en plus prégnante des
mathématiques dans les autres science. Nous disons qu’il s’agit de leur
mathématisation. Toutes ces sciences ne pouvaient progresser si clles
n’étaient pas mathématisées. Ainsi, toute une séric de découvertes
n’auraient pas cu lieu si I’on n’avait pas connu certains procédés
mathématiques, si les mathématiques n’avaient pas possédé une certaine
quantité¢ de connaissance {par exemple, Einstein n’aurait pas découvert
la théorie de la relativité si I’on n’avait pas découvert avant lui le calcul
tensoriel). D’autres découvertes ont €té faites tout d’abord par des calculs
mathématiques et ultérieurement prouvées expérimentalement (le
physicien Maxwell a généralisé la conception du champ de forces
électromagnetiques, en précisant que méme s’il s’agit d’une champ
électrique, celui-ci se propage a la distance par des ondes avec la vitesse
de la lumiére).

Les mathématiques se mettent aussi, toujours, 2 la disposition de la
technique, en résolvant certains problémes qui surgissent dans les
processus de production.

L’ abstractisation trés grande des mathématiques n’empéche pas son
applicabilit¢ immédiate dans la practique et il en serait a remarquer
quelques exemples:

- le géométre romain Gh. Tileica a fait des découvertes en matiére
de géométric différentiélle, mais il a constaté a peine 20 ans plus tard
qu’elle pouvaient étre appliquées dans la théorie de la relativité
généralisée;

- Cayley a découvert les matrices, découverte appliquée 87 ans
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plus tard par lleisenberg a la mécanique des quanta;

- le mathématicien anglais George Boole découvre vers le milieu
du XIX-¢ siécle I’algebre qui porte son nome; pendant longtemps clle a
¢1¢ envisagée comme une “curiosité” mathématique; c’est a peinc 100
ans plus tard qu’on a trouvé sa place bien méritée dans le logiciel des
calculateurs électroniques.

Une interessante corrélation existe entre les mathématiques, et les
arts: musique, peinture, sculpture, architecture, ct poésie.

L’art est I’expression pure du “sentiment”, tardis que les
mathématiques sont I’expression cristalline de la “raison” pure. L’art, en
partant du sentiment, est plus chaud, plus humain, les mathématiques en
partant de la raison, sont plus froides, mais brillantes. Une intéressante
correlation entre I’art (littérature, en special) et les mathématiques essaie
de faire Solomon Marcus, a la Faculté de Mathématiques et 2 celle de
Philologie. Mais il montrait la supériorité du language artistique par
rapport a celui scientifique: tandis que le langage scientifique a un sens
unique, celui littéraire a une infinité. Et, d’ailleurs, dans la science est
¢liminé le langage ambigu.

En rappelant ce “point lumineux ou la géométric rencontre la
poésie”, comme disait le mathématicien et le poéte Dan Barbilian alias
Ion Barbu, notons aussi I’idée suivante: “La poésie de I’avenir, la poésie
sublime par excellence, sera empruntée de la science.” (Pierre-Jules-César
Janssen).

En parlant de la recherche en général, il faut mentionner aussi les
risques que ’homme de science peut courir:

- il peut trouver des résultats déja connus (mais cela ne doit pas étre
désillusion, mais aussi satisfaction);

- ses recherses peuvent ne mener a aucun résultat, ou peuvent mener
a des résultats suggestifs (il faut avoir la patience, il faut persévérer);

- il peut commetre des erreurs dans ses démonstrations (déductions)
- (presque tous les mathématiciens ont commis des erreurs).

Ces risques sont dus an fait que dans le travait de recherche la
découverte n’est pas une illumination subite sans travail cérébral, sans
beaucoup, beaucoup de travail.

156



COLLECTED PAPERS, vol. III

THERE IS NO SPEED BARRIER
IN THE UNIVERSE

In this short paper one promotes the hypothesis that: There is no
speed barrier in the universe, and onc asks if it’s possible to have an
infinite speed?

What’s new in science (physics)? According to reseaschers from the
University of Innsbruck in Austria (December 1997):

- photon is a bit of light, the quantum of electromagnetic radiation
(quantum is the smallcst amount of energy that a system can gain or lese);

- polarization refers to the direction and characteristics of the light
wave vibration;

- if one uses the entanglement phenomenon, in order to transfer the
polarization between two photons, then: whatever happens to one is the
opposite of what happens to the other; hence, their polarizations are
opposite of each other;

- in quantum mechanics, objects such as subatomic particles do not
have specific, fixed characteristic at any given instant in time until they
are measured - suppose a certain physical process produces a pair of
entangled particles A and B (having opposite or complementary charac-
teristics), which fly off into space in the opposite direction and, when
they are billions of miles apart, one measures particle A; because B is the
opposite , the act of measuring A instantancously tells B what to be;
therefore those instructions would somehow have to travel between A
and B faster than the speed of light; hence, one can extend the Einstein-
Podolsky-Rosen paradox and Bell’s inequality and assert that the light
speed is not a speed barrier in the universe. We even promote the scien-
tific hypothesis that: THERE IS NO SPEED BARRIER IN TIE
UNIVERSE, which would theoretically be proved by increasing, in the
previous example, the distance between particles A and B as much as the
universc allows it, and then measuring particle A.

Now an Open Question: If the space is infinite, is the maximum
speed infinite? We say yes.

157



FLORENTIN SMARANDACHE

[Early versions presented at the University of Blumenau, Brazil, in
May 1993, and at the University of Kishinev, in a Scientific Confcrence
chaired by Professors Gheorghe Ciocan, Ion Goian, and Vasile Marin, in
December 1994.]

References:

[1] lllingworth, Valerie, editor, “Dictionary of Physics”, The Pen-
guin, London, New York, Victoria, Toronto, 1990.

[2] Smarandache Florentin, “Eternal Life at Infinite Speed”, Ari-
zona State University Special Collection, Hayden Library, Tempe, 1993.

[3] Suplee, Curt, “‘Beaming Up’ No Longer Science Fiction”, <Al-
buquerque Journal>, December 11, 1997.

{“Bulletin of Pure and Applied Sciences™, Delhi, India, Vol. 17D
(Physics), No. 1, 61, January-June 1998.]

158



COLLECTED PAPERS, vol. III

CONTENTS:

A Unifying Field in Logics: Neutrosophic Logic. / Neutrosophic Prob-

ability, Neutrosophic Statistics, Neutrosophic Set (second version): ........ 5
Neutrosophy: Neutrosophic Probability, Neutrosophic Set, and
Neutrosophic Logic (first VErSIOon): ...........oveomrveeesoveeoeeeoeeeooooooeoooooeoeooo 59
On Rugina’s System of ThOUGht: ..............oocoveeeeroeeoeeoeeoeoeeoooooo 73
Special AlgebraiC SIUCIUIES: «.........eu.vveveeoeeceeee e 78
About the Caracteristic Function of the Set: .............oovovvveeesoovvoeoooo 82
About Very Perfect NUMDETS: ................ccmoeeeereeeeeesoeoeeeeoeoeoooeooosooooooon .93
Inequalities for the Integer Part FUnction: ..............o.cooeoomvvvvveoooeovooso 95
About Bernoulli’s NUMDETS: ............oooeoeeeeeeeeeeeeereseeeeeoeeoeeeeeoeoeoo 98
The Solution 0f OQ. 102: ..o 101
Conjectures on Primes’ Summation: 102
Conjectures wich Generalize Andrica’s Conjecture: ...............oooo........... 105
A Solution of OQ. 128: 114
Negari ale Postulatului V al lui Euchid: ...........co.covervoveresrerrre 115
One Application of Wallis Theorem: .... 119
Linguistic Paradoxes and Tautologies: 122
Funny Problems: 137
How to Create a Program on T.1.-92 Calculators: 143
A Program (An In-Out Machine) on T.1.-83 Calculators: ......................... 146
Notes on Using T.1.-82 Calculators to Find Sums: 148
The AM.A.T.Y.C. Competition: 151
“Caietul de Informare Matematici™ la 20 de ani!: 153
Enseigment ¢t Recherche Scientifique (dans les Mathématiques).......... 154
There is not Speed Barrier in the Universe: 157

159



Editura ABADDABA

Dircctor: Amalia Tampdu
Rcdactor dc cartc: Ocravian Blaga
3700, Oradca, Romania

Sovata 32/4

Telcfax +59-153792

E-mail: abaddaba@rdsor.ro
abaddaba@hotmail.com

ISBN 973-8102-01-4






