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1. Introduction 

In neutrosophic statistics, from the fact that the single true value 𝑣 is in 𝐼, it does not result that 

𝑣  is in 𝑎 + 𝑏𝐼  = N as well, but: 𝑎 + 𝑏𝑣 ∈ 𝑎 + 𝑏𝐼 . That’s why the appurtenance relationship and 

equation must be introduced and studied. 

Even more, if one has a set of true values, from the fact that the set of true values V is included in 

I, it does not mean that V is included in a + bI too, but a + bV  a + bI  (or a + bV   a + bI). That’s 

why the inclusion relationship and equation must be introduced [1, 2]. 

In the same way as the “=” symbol is used for an equality relationship or an equality equation, 

we use the symbol “∈” {belong(s) to} for an appurtenance relationship or appurtenance equation of a 

number to a set, respectively the symbol  (or ) {included in, or included in or equal to} for an 

inclusion relationship or inclusion equation. 

We use in this paper the tautological denomination Equality Equation with Set-Coefficients (=), 

in order to distinguish it from the Appurtenance Equation (∈) and Inclusion Equation { or }. 

Whatever operation we do on the left-hand side of an appurtenance relationship or appurtenance 

equation (respectively, inclusion relationship or inclusion equation), we must do the same on the right-

hand side as well of the appurtenance relationship or appurtenance equation (respectively, inclusion 

relationship or inclusion equation). 

In addition, we also present their complementary NonAppurtenance Equation, NonInclusion 

Equation, and the elementary NonEquality Equation respectively. 

 

2. Definition of the Real Neutrosophic Number 

A Real Neutrosophic Number (𝑁) has the form: 

𝑁 = 𝑎 + 𝑏𝐼, where 𝑎, 𝑏 are real numbers, “a” is called the determinate part of 𝑁, while "𝑏𝐼" is the 

indeterminate part of N, while 𝐼 is a real subset, 𝐼 ⊂ ℝ. 

They are mostly used in Neutrosophic Statistics. 
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The neutrosophic numbers frequently occur in our real world, where one often has imprecise, 

unclear data to deal with. 

For example, let’s have a right triangular shape land whose legs are 5 and 6 kilometers 

respectively, then the length of its hypotenuse is √52 + 62 = √61 = 7.81024967… that we need to 

approximate with some required accuracy. 

Another example, let’s consider the real circular land of radius 10 km, compute its area 𝐴 = 𝜋 ∙

102 = 100𝜋 = 314.159265 … km2 , or to compute the volume or surface of a sphere, but 𝜋  is a 

transcendental number (a number that is not the root of a non-zero polynomial with rational 

coefficients and of finite degree), having infinitely many decimals with no repeated pattern. 

Similarly, the Euler’s constant e = 2.71828182…is a transcendental number and occurs in many 

formulas. 

In the same way when, from real world applications, one arises inexact results (radicals, 

exponential or logarithmic or trigonometric equations, differential equations, transcendental 

functions, etc.). 

Examples of Real Neutrosophic Numbers. 

(i). 𝑁1 = 2 + 3𝐼, where 𝐼1 = [0, 1] is an interval. 

Or 

𝑁1 = 2 + 3 ⋅ [0, 1] = 2 + [3.0, 3.1] = 2 + [0, 3] = [2 + 0, 2 + 3] = [2, 5]  

(ii). Let 𝐼2 = {0.6, 0.8, 0.9}, which is a finite discrete set of three elements. 

Then: 

𝑁2 = 2 + 3𝐼2 = 2 + 3 ⋅ {0.6, 0.8, 0.9} = 2 + {3 ⋅ (0.6), 3 ⋅ (0.8), 3 ⋅ (0.9)}   = 2 + {1.8, 2.4, 2.7}

= {2 + 1.8, 2 + 2.4, 2 + 2.7} = {3.8, 4.4, 4.7} ⊂ [2, 5]. 

(iii). Let 𝐼3 = {
1

𝑛
, 1 ≤ 𝑛 ≤ ∞, 𝑛 is integer}, which is an infinite discrete set. 

Then: 

𝑁3 = 2 + 3𝐼3 = {2 + 3 ∙
1

𝑛
, 1 ≤ 𝑛 ≤ ∞, 𝑛 is integer}

= {2 + 3 ∙
1

1
, 2 + 3 ∙

1

2
, 2 + 3 ∙

1

3
, … , 2 + 3 ∙

1

𝑛
, … } = {5, 3.5, 3, … , 2 + 3 ∙

1

𝑛
, … }

⊂ [2, 5]. 

 

3. Foundation of Appurtenance Relationship and Appurtenance Equation 

The below Theorems 1 and 2 allow us to do operations on both sides of an appurtenance 

relationship and appurtenance equation respectively. 

3.1 Theorem 1 

Let 𝐴 and 𝐵 be real sets. 

If 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, then: 

 Addition 𝑎 + 𝑏 ∈ 𝐴 + 𝐵  

 Subtraction 𝑎 − 𝑏 ∈ 𝐴 − 𝐵  

 Multiplication 𝑎 × 𝑏 ∈ 𝐴 × 𝐵  

 Division 
𝑎

𝑏
∈

𝐴

𝐵
  

 Power 𝑎𝑏 ∈ 𝐴𝐵  

 

Proof 
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Let ⋆ be any of the above operation, then: 

𝐴 ⋆ 𝐵 = {𝑥 ⋆ 𝑦; where 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}, and the operation ⋆ is well-defined. 

If we let 𝑥 = 𝑎 ∈ 𝐴, and 𝑦 = 𝑏 ∈ 𝐵 into the above definition, then: 

𝑎 ⋆ 𝑏 = 𝐴 ⋆ 𝐵. 

 

3.2 Theorem 1 

Let 𝐴 be a real set, 𝑎 ∈ 𝐴,   be a real scalar, and 𝑚, 𝑛 be (positive) integers. Then: 

 Scalar Multiplication of a Set  ∙ 𝑎 ∈  ∙ 𝐴
             (1) 

 Raising to a Power of a Set 𝑎𝑛 ∈ 𝐴𝑛  

 Root Index of a Set nn a A  

 Negative Exponent of a Set 𝑎−𝑛 ∈ 𝐴−𝑛 

 Rational Exponent of a Set 𝑎
𝑚

𝑛 ∈ 𝐴
𝑚

𝑛   

Proof 

Similarly. 

 ∙ 𝐴 = {  ∙ 𝑥, 𝑥 ∈ 𝐴}
                   (2) 

Letting 𝑥 = 𝑎 ∈ 𝐴 into Definition (2), it results that 

  ∙ 𝑎 ∈  ∙ 𝐴
. 

For the next four appurtenance relationships, let p be any of the exponents, n, 
1

𝑛
, −𝑛, or 

𝑚

𝑛
,  then: 

𝐴𝑝 = {𝑥𝑝, 𝑥 ∈ 𝐴}.                   (3) 

Letting 𝑥 = 𝑎 into the Definition (3), it results that: 𝑎𝑝 ∈ 𝐴𝑝, for 𝑝 being any of 𝑛, 
1

𝑛
, −𝑛, or 

𝑚

𝑛
. 

 

3.3 Examples of Operations with Appurtenance Relationships 

 Addition in an Appurtenance Relationship 

(3 + 0.67) ∈ (3 + (0, 1)) or 3.67 ∈ (3 + 0, 3 + 1) or 3.67 ∈ (3,4), which is true. 

 Scalar Multiplication of an Appurtenance Relationship 

2 ∙ (0.67) ∈ 2 ∙ (0, 1) or 1.34 ∈ (2.0, 2.1) or 1.34 ∈ (0, 2), which is true. 

 Power  

0.672 ∈ (0, 1)2 or 0.4489 ∈ (02, 12) or 00.4489 ∈ (0, 1), which is true. 

 Division by a Scalar of an Appurtenance Relationship 

0.67

−2
∈

(0,1)

−2
 or −0.335 ∈ (−0.5, 0), which is true. 

 

3.4 Appurtenance Equations 

Its general form is defined as follows. 

Let R be the set of real numbers, and f and g be real HyperFunctions {“hyper” stands for the fact 

that their domain and/or codomain are powersets P(R)}, 

, : ( ) ( )f g P R P R  
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All procedures done to solve a classical equation (but whose coefficients are sets, not single 

numbers) are similarly allowed to do for solving an appurtenance equation. 

Because sometimes it is not clear what number, either a or b is bigger, we consider that: 

(𝑎, 𝑏) ≡ (𝑏, 𝑎) and [𝑎, 𝑏] ≡ [𝑏, 𝑎]. 

 

3.5 Solution of an Appurtenance Equation   

The solution of an appurtenance equation means a real set S, or ( )S P R , to whom the 

unknown x belongs to, or x S . 

 

3.6 Example 1 of Appurtenance Equation 

Solve for x. 

4 − 5𝑥 ∈ 1 + 2 ∙ (0.5, 0.8). 

Subtract 4 from both sides: 

(−5𝑥) ∈ (−3 + 2(0.5, 0.8)). 

We use parentheses (  ) in order to clearly distinguish between the left-hand side and the right-

hand side of the appurtenance equation. 

(−5𝑥) ∈ (−3 + (1, 1.6))  

(−5𝑥) ∈ (−3 + 1, −3 + 1.6)  

Divide both sides by -5: 
(−5𝑥)

−5
∈

(−3+1,−3+1.6)

−5
  

𝑥 ∈ (
1.4

5
,

2

5
)  

𝑥 ∈ (0.28, 0.40).  

There are infinitely many particular solutions of this appurtenance equation, i.e. all the numbers 

inside the open interval (0.28, 0.40). We do not take the subsets of (0.28, 0.40) as particular solutions, 

since they are included ( or  ) in, not appurtenant () to (0.28, 0.40). 

Check the maximal solution of the appurtenance equation. 

4 − 5 ∙ 𝑥 ∈ 1 + 2 ∙ (0.5, 0.8)  

4 − 5 ∙ (0.28, 0.40)
?

1 + 2 ∙ (0.5, 0.8)  

where 
?

  means that we must check the appurtenance. 

4 − (1.4, 2.0)
?

1 + (1.0, 1.6)  

(4 − 2.0, 4 − 1.4) 
?

 (1 + 1.0, 1 + 1.6) 

or (2, 2.6) ∈ (2, 2.6) 

 

Actually we have an equality here above, which means that any number 𝑥, and any subset inside of 

the left-hand side interval, are solutions. 

Therefore, this appurtenance equation has infinitely solutions, x ∈ (0.28, 0.40). 

Let’s check some of them, a particular solution as a single number: 

𝑥 = 0.35 ∈ (0.28, 0.40)  

The appurtenance equation: 

4 − 5𝑥 ∈ 1 + 2 ∙ (0.5, 0.8) becomes, after substituting x, 

4 − 5 ∙ (0.35) ∈ 1 + 2(0.5, 0.8)  

4 − (1.75) ∈ 1 + (1.0, 1.6)  

2.25 ∈ (2.00, 2.60), which is true. 

( ) ( )f x g x
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Let’s check a particular solution-subset of (0.28, 0.40): 

𝑥 = (0.30, 0.34) ⊂ (0.28, 0.40). 

The appurtenance equation: 4 − 5𝑥 ∈ 1 + 2 ∙ (0.5, 0.8) becomes: 

4 − 5 ∙ (0.30, 0.34) ∈ (2.00, 2.60)  

4 − (5 ∙ 0.30, 5 ∙ 0.34) ∈ (2.00, 2.60)  

4 − (1.50, 1.70) ∈ (2.00, 2.60)  

(4 − 1.70, 4 − 1.50) ∈ (2.00, 2.60)  

(2.30, 2.50) ∈ (2.00, 2.60), 

Actually, the left-hand side is included into the right-hand side. 

 

3.7 Example of Equality Equation with Set-Coefficients 

The maximal solution-set 𝑥 = (0.28, 0.40) of this appurtenance equation becomes the set-solution 

of the following equality equation with set-coefficients: 

4 − 5𝑥 = 1 + 2 ∙ (0.5, 0.8). 

This equation, whose one of the coefficients is a set, (0.5, 0.8), is solved in the same way:  

 Subtract 4 from both sides: −5𝑥 = −3 + 2 ∙ (0.5, 0.8), 

 Then multiply and add the sets: 

−5𝑥 = −3 + (1.0, 1.6)  

−5𝑥 = (−3 + 1.0, −3 + 1.6)  

−5𝑥 = (−2, −1.4), 

 And divide by −5 to get: 

𝑥 = (
−1.4

−5
,

−2

−5
)  

𝑥 = (0.28, 0.40), which is a set-solution. 

 

4. Foundation of Inclusion Relationship and Inclusion Equation 

Similarly for the Inclusion ( ⊂  or ⊆ ) Relationships and Inclusion Equation as we did for 

Appurtenance Relationships and Appurtenance Equation respectively. 

For the case where one has ⊆, the below theorems will be the same, just using ⊆ instead of ⊂. 

 

4.1 Inclusion Equations 

Its general form is defined as follows. 

Let R be the set of real numbers, and f and g be real HyperFunctions {“hyper” stands for the fact 

that their domain and/or codomain are powersets P(R)}, 

, : ( ) ( )f g P R P R  

Then, ( ) ( )f x g x  or ( ) ( )f x g x  are called inclusion equations. 

 

4.2 Theorem 3 

Let 𝐴 and 𝐵 be real sets, and 𝐴1, 𝐵1 also real sets, but: 𝐴1 ⊂ A, and 𝐵1 ⊂ 𝐵. 

Then: 

 Addition of Sets 𝐴1 + 𝐵1 ⊂ A + 𝐵  

 Subtraction of Sets 𝐴1 − 𝐵1 ⊂ A − 𝐵  

 Multiplication of Sets 𝐴1 × 𝐵1 ⊂ A × 𝐵  

 Division of Sets 
𝐴1

𝐵1
⊂

A

𝐵
  

 Power of Sets A1
𝐵1 ⊂ 𝐴𝐵  
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Proof: 

In the same way, let ⋆ be any of above operations +, −,×,÷, ^ (power), then: 

𝐴 ⋆ 𝐵 = {𝑥 ⋆ 𝑦; where 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}              (3) 

and the operation ⋆ is well-defined.  

We let 𝑥 = 𝑎1 ∈ 𝐴1 ⊂ 𝐴, and 𝑦 = 𝑏1 ∈ 𝐵1 ⊂ 𝐵 into the Definition (3), then: 

𝑎1 ⋆ 𝑏1 ∈ 𝐴 ⋆ 𝐵, for all 𝑎1 ∈ 𝐴1 and 𝑏1 ∈ 𝐵1, which means that: 

𝐴1 ⋆ 𝐵1 ⊂ 𝐴 ⋆ 𝐵. 

 

4.3 Theorem 4 

Let 𝐴 and 𝐴1 be real sets, with 𝐴1 ⊂ A, 0   a real number, and 𝑚, 𝑛 positive integers. 

Then: 

 Scalar Multiplication of a Set  ∙ 𝐴1 ⊂   ∙ A  

 Raising to the Power n of a Set 𝐴1
𝑛 ⊂ 𝐴𝑛  

 Root Index n of a Set √𝐴1
𝑛 ⊂ √𝐴

𝑛
  

 Negative Exponent of a Set 𝐴1
−𝑛 ⊂ 𝐴−𝑛  

 Rational Exponent of a Set 𝐴1

𝑚

𝑛 ⊂ 𝐴
𝑚

𝑛   

Proof 

Similarly to the previous theorem. 

 ∙ 𝐴 = {  ∙ 𝑥, 𝑥 ∈ 𝐴}
  and  ∙ 𝐴1 = {  ∙ 𝑥, 𝑥 ∈ 𝐴1 ⊂ 𝐴} ⊂ {  ∙ 𝑥, 𝑥 ∈ 𝐴} =  ∙ 𝐴

. 

For the other inclusion relationships, we let again 𝑝 be any of the exponents 𝑛, 
1

𝑛
, −𝑛, 

𝑚

𝑛
, then: 

𝐴1
𝑝

= {𝑥𝑝, 𝑥 ∈ 𝐴1} ⊂ {𝑥𝑝, 𝑥 ∈ 𝐴} = 𝐴, since 𝐴1 ⊂ 𝐴, where for any 𝑥 ∈ 𝐴, and any p, all 𝑥𝑝 operations 

are well-defined. 

Analogously, these theorems 3 and 4 allow us to do many operations on both sides of an inclusion 

relationship or inclusion equation. 

 

4.4 Examples of Inclusion Relationships 

(2, 3] ⊂ [0, 4]  

 Let’s add 1 in both sides: 

1 + (2, 3] ⊂ 1 + [0, 4] or (1 + 2, 1 + 3] ⊂ [1 + 0, 1 + 4]  

(3, 4] ⊂ [1, 5], which is true. 

 Let’s add an interval (−1, 5) on both sides: 

(2, 3] + (−1, 5) ⊂ {0, 4] + (−1, 5)  

(2 − 1, 3 + 5) ⊂ (0 − 1, 4 + 5)  

(1, 8) ⊂ (−1, 90), which is true. 

 Let’s subtract 2 from both sides: 

(2, 3] − 2 ⊂ [0, 4] − 2  

(2 − 2, 3 − 2] ⊂ [0 − 2, 4 − 2]  

(0, 1] ⊂ [−2, 2], which is true. 

 Let’s subtract a set [0.5, 0.6] from both sides. 

(2,3] − [0.5, 0.6] ⊂ [0, 4] − [0.5, 0.6]  

(2 − 0.6, 3 − 0.5] ⊂ [0 − 0.6, 4 − 0.5]  

(1.4, 2.5] ⊂ [−0.6, 3.5], which is true.  

 Let’s multiply both sides by a positive (non-zero) number 7: 
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7 ⋅ (2, 3] ⊂ 7 ⋅ [0, 4]  

(7.2, 7.3] ⊂ [7.0, 7.4]  

(14, 21] ⊂ [0, 28], which is true.  

 Let’s multiply both sides by a negative (non-zero) number −5: 

−5 ⋅ (2, 3] ⊂ −5 ⋅ [0, 4]  

(−5.3, −5.2] ⊂ [−5.4, −5.0]  

(−15, −10] ⊂ [−20, 0], which is true.  

 Let’s multiply both sides with a set (−1, 1). 

(−1, 1) ⋅ (2, 3] ⊂ (−1, 1) ⋅ (0, 4]  

(−3, 3) ⊂ (−4, 4), which is true. 

 Let’s raise to the second power both sides: 

(2, 3]2 ⊂ [0, 4]2  

(22, 32] ⊂ [02, 42]  

(4, 9] ⊂ [0, 16], which is true. 

 Let’s divide by −5 both sides: 

(2,3]

−5
⊂

[0,4]

−5
  

[−
3

5
, −

2

5
) ⊂ [−

4

5
, −

0

5
]  

 [−0.6, −0.4) ⊂ [−0.8, 0], which is true. 

 Let’s divide each side by a real set [4, 5]. 

(2,3]

[4,5]
⊂

[0,4]

[4,5]
  

(
2

5
,

3

4
] ⊂ [

0

5
,

4

4
]  

 (0.40, 0.75] ⊂ [0, 1], which is true. 

 

4.5 Example 2 of Inclusion Equation 

Solve for x. 

1 + 𝑥 ⋅ (1, 2) ⊂ (0, 5)  

1 + (1, 2𝑥) ⊂ (0, 5)  

(𝑥 + 1, 2𝑥 + 1) ⊂ (0, 5)  

whence 0 < 𝑥 + 1 < 5 or −1 < 𝑥 < 4 and 0 < 2𝑥 + 1 < 5 or −1 < 2𝑥 < 4 or −0.5 < 𝑥 < 2 

whence (−1, 4) ∩ (−0.5, 2) = (−0.5, 2) 

So 𝑥 = (−0.5, 2) is the maximal solution. All subsets of (−0.5, 2) are particular solutions – therefore 

one has infinitely many particular solutions. 

Check it: 

1 + 𝑥(1, 2) ⊂ (0, 5)  

1 + (−0.5, 2) ⋅ (1, 2) ⊂ (0, 5)  

1 + (−1, 2) ⊂ (0, 5)  

(1 − 1, 1 +  2) ⊂ (0, 5)  

(0, 3) ⊂ (0, 5), which is true. 
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4.6 Another Example of Inclusion Equation 

Solve for x. 

(4, 5) + 𝑥 ∙ [1, 2] ⊆ [6, 10]  

(4, 5) + [1 ∙ 𝑥, 2 ∙ 𝑥] ⊆ [6, 10]  

(4, 5) + [𝑥, 2𝑥] ⊆ [6, 10], for 𝑥 ≥ 0, one gets: (4 + 𝑥, 5 + 2𝑥) ⊆ [6, 10]  

Hence: 

6 ≤ 4 + 𝑥 ≤ 10,  

whence 2 ≤ 𝑥 ≤ 6 

and 6 ≤ 5 + 2𝑥 ≤ 10 

or 1 ≤ 2𝑥 ≤ 5 

or 1.5 ≤ 𝑥 ≤ 2.5 

Thus, solution for 𝑥 ≥ 0 is [2, 6] ∩ [1.5, 2.5] = [2, 2.5]. 

For 𝑥 < 0 

(4, 5) + 𝑥 ⋅ [1, 2] ⊆ [6, 10]  

(4, 5) + [2𝑥, 𝑥] ⊆ [6, 10]  

(4 + 2𝑥, 5 + 𝑥) ⊆ [6, 10]  

Whence 

6 ≤ 4 + 2𝑥 ≤ 10, or 2 ≤ 2𝑥 ≤ 6 or 1 ≤ 𝑥 ≤ 3 

and 6 ≤ 5 + 𝑥 ≤ 10, or 1 ≤ 𝑥 ≤ 5. 

But 𝑥 must be negative, therefore this situation doesn’t produce any solution. 

The maximum solution is 𝑥 = [2, 2.5]. 

Let’s check the maximal solution. 

(4, 5) + 𝑥 ⋅ [1, 2] ⊆ [6, 10]  

Then: 

(4, 5) + [2, 2.5] ⊆ [6, 10]  

(4 + 2, 5 + 2.5) ⊆ [6, 10]  

(6, 7.5) ⊆ [6, 10], which is true.  

As particular solutions are all subsets of the maximal solution [2, 2.5], therefore infinitely many. 

 

Verifications: 

Let 𝑥 = 2 ∈ [2, 2.5]. We may also write x as a set, x = [2, 2] ⊆ [2, 2.5]. 

(4, 5) + 𝑥 ∙ [1, 2] ⊆ [6, 10]  

(4, 5) + 2 ∙ [1, 2] ⊆ [6, 10]  

(4, 5) + [2, 4] ⊆ [6, 10]  

(6, 9) ⊆ [6, 10], which is true. 

Let 𝑥 = 2.3 ∈ [2, 2.5]. 

Then: (4, 5) + 2.3[1.2] ⊆ [6, 10] 

(4, 5) + [2.3, 4.6] ⊆ [6, 10]  

(6.3, 9.6) ⊆ [6, 10], which is true. 

Let 𝑥 = [2.1, 2.4) ⊆ {2, 2.5]. 
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Then (4, 5) + 𝑥 ⋅ [1, 2] ⊆ [6, 10] 

(4, 5) + [2.1, 2.4) ⋅ [1, 2] ⊆ [6, 10]  

(4, 5) + [2.1, 4.8] ⊆ [6, 10]  

(6.1, 9.8) ⊆ [6, 10], which is true. 

 

In conclusion, this inclusion equation has one maximal solution and infinitely many particular 

solutions which are actually included into the maximal solution. 

In order to deal with inclusion only, in this problem, since it is an inclusion equation, we take as 

solutions only the subsets of the maximal solution, since: subset ⊆ maximal_solution, not the single 

numbers, since: number ∈ maximal_solution (not⊆); this should better be adjusted as [number, number] 

⊆ maximal_solution, for example[2.1, 2.1] ⊆ [2, 2.5]. 

 

4.7 Example of Inclusion Equation which has No Solution 

Solve for x. 

 (1, 2) − 2𝑥 ⊆ (0, 0.5). 

Hence: 

(1 − 2𝑥, 2 − 2𝑥) ⊆ (0, 0.5), 

whence 0 ≤ 1 − 2𝑥 ≤ 0.5 and 0 ≤ 2 − 2𝑥 ≤ 0.5, 

or −1 ≤ −2𝑥 ≤ −0.5 and −2 ≤ −2𝑥 ≤ −1.5, 

or 0.25 ≤ 𝑥 ≤ 0.50 and 0.75 ≤ 𝑥 ≤ 1. 

But [0.25, 0.50] ∩ [0.75, 1] = ∅, therefore there is no solution 𝑥. 

 

4.8 Inclusion Equation which has only One Solution 

Solve for x. 

(1, 2) − 2𝑥 ⊆ (0, 1). 

Hence: (1 − 2𝑥, 2 − 2𝑥) ⊆ (0, 1), 

whence 0 ≤ 1 − 2𝑥 ≤ 1, and 0 ≤ 2 − 2𝑥 ≤ 1, 

or −1 ≤ −2𝑥 ≤ 0, and −2 ≤ −2𝑥 ≤ −1, 

or 0 ≤ 𝑥 ≤ 0.5, and 0.5 ≤ 𝑥 ≤ 1. 

From [0, 0.5] ∩ [0.5, 1] = 0.5, one gets that the only solution is 𝑥 = 0.5 = [0.5, 0.5]. 

Let’s check the inclusion solution: 

(1, 2) − 2𝑥 ⊆ (0, 1)  

(1, 2) − 2 ∙ 0.5 ⊆ (0, 1)  

(1, 2) − 1 ⊆ (0, 1)  

(1 − 1, 2 − 1) ⊆ (0, 1)  

(0, 1) ⊆ (0, 1), which is true.  

 

5. First Method of Operating with Real Neutrosophic Numbers used in Neutrosophic Statistics 

5.1 The True Value v is a Single Number 

A Neutrosophic Real Number has the form N = a + bI, where a and b are real numbers, while “I” 

is a real set. The determinate part of N is “a” and indeterminate (unclear) part of N is “bI”. 
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Let’s consider the real true value being the single value number v, that we are looking for in 

statistical problems where indeterminate, unclear, partially unknown data occur, where 

this single number 𝑣 belongs to the real set 𝐼, or 𝑣 ∈ 𝐼. 

From the fact that the single true value 𝑣 is in 𝐼, it does not result that 𝑣 is in 𝑎 + 𝑏𝐼 = N as 

well, but: 𝑎 + 𝑏𝑣 ∈ 𝑎 + 𝑏𝐼. 

Let 1 1 1N a b I  and 2 2 2N a b I   be two real neutrosophic numbers, where 

1 1 2 2, , ,a b a b R and I is a subset (not necessarily interval) of real numbers. 

Let the true value, we are looking for in statistics, under indeterminate (unclear, vague) data, be 

v I . Then: 

1 1 1 1 1

2 2 2 2 2

a b v a b I N

a b v a b I N

   

   
  

The previous Theorems 1 and 2 allow us to do straightforward operations with real neutrosophic 

numbers. 

 Addition of Real Neutrosophic Numbers 

1 2 1 2 1 2( ) ( )N N a a b b I      

Proof: 

According to Theorem 1, since  

1 1 1 1a b v a b I    

2 2 2 2a b v a b I    

We add, the left-hand sides, then the right-hand sides, referred to the appurtenance symbol (), and 

we get: 

( 1 1a b v ) + ( 2 2a b v ) ( 1 1a b I ) + ( 2 2a b I ) = 1N + 2N  

Therefore: 

1 2 1 2 1 2( ) ( )a a b b v N N     . 

By similar proofs we can do the next operations with real neutrosophic numbers. 

 

 Subtraction of Real Neutrosophic Numbers 

1 2 1 2 1 2( ) ( )N N a a b b I      

 Scalar Multiplication of Real Neutrosophic Numbers 

Let 0   be a real scalar. Then: 

1 1 1 1 1( )N a b I a b I            

 Multiplication of Real Neutrosophic Numbers 

2

1 2 1 1 2 2 1 2 1 2 2 1 1 2( ) ( ) ( )N N a b I a b I a a a b a b I bb I          

 Square of Real Neutrosophic Numbers 

2 2 2 2 2( ) 2N a bI a abI b I      
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5.2 The True Value V is a Set 

Let’s consider a set of true values V, that we are looking for in statistical problems where 

indeterminate, unclear, partially unknown data occur, where V is included in 𝐼,orV I (orV I ). 

From the fact that the set of true values 𝑉 is in 𝐼, it does not result that 𝑉 is included in 𝑎 + 𝑏𝐼 

= N as well, but: 𝑎 + 𝑏𝑉 𝑎 + 𝑏𝐼. 

Let 1 1 1N a b I  and 2 2 2N a b I  be two real neutrosophic numbers, where 

1 1 2 2, , ,a b a b R and I is a subset (not necessarily interval) of real numbers. 

Let the set of true values, we are looking for in statistics, under indeterminate (unclear, vague) 

data, be V I . Then: 

1 1 1 1 1

2 2 2 2 2

a bV a b I N

a b V a b I N

   

   
  

 

Whence: 

 ( 1 1a bV ) + ( 2 2a b V )   ( 1 1a b I ) + ( 2 2a b I ) = 1N + 2N . 

Similarly, for subtraction, scalar multiplication, multiplication, etc. 

( 1 1a bV ) - ( 2 2a b V )   ( 1 1a b I ) - ( 2 2a b I ) = 1N - 2N . 

   ( 1 1a bV )      ( 1 1a b I ) =   1N . 

( 1 1a bV )   ( 2 2a b V )   ( 1 1a b I )   ( 2 2a b I ) 
2

1 2 1 2 2 1 1 2( )a a a b a b I bb I     

= 1N  2N . 

The previous Theorems 1, 2, 3, and 4 allow us to do straightforward operations with real 

neutrosophic numbers (for both cases: a single true value v, or a set of true values V). 

 

6. Second Method of Operating with Neutrosophic Numbers 

This method is to transform each real neutrosophic number into a real set: 

{ , }N a bI a b x x I      and do operations using sets as below. 

In this case it is not necessarily to have the same indeterminate real set “I”. 

Firstly, we need to recall the operations with real sets. 

6.1 Operations with Sets 

Let ℝ be the set of real numbers, ℂ the set of complex numbers, and ℳ the set of other types 

of numbers. 

Let 𝐴 and 𝐵 be two real or complex, or other type of number sets. 

One or both may also be a scalar, because a scalar α ∈ ℝ may be written as a set,[α, α]. 

Then, 𝐴 ⋆ 𝐵 = {𝑎 ⋆ 𝑏, where 𝑎 ⋆ 𝑏 is well defined; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} , where ⋆  means any operations: 

addition, subtraction, scalar multiplication, multiplication, division, power, radical (root).  

Afterwards, one computes min/inf and max/sup of 𝐴 ⋆ 𝐵. 

In the next sections we are referring only to the sets of real numbers, since they are needed in 

Neutrosophic Statistics, but for the other types of sets the research is similar. 

 Addition of Sets 

𝐴 + 𝐵 = {𝑎 + 𝑏; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}  

Examples: 

𝐴 = (2, 3), 𝐵 = (0, 1) 

𝐴 + 𝐵 = (2, 3) + (0, 1) = (2 + 0, 3 + 1)  

𝐴 + 𝐴 = (2, 3) + (2, 3) = (2 + 2, 3 + 3) = (4, 6) = 2 ∙ (2, 3) = 2𝐴  

The last one is similar to the addition of a number to itself, for example: 
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5 + 5 = 2 ∙ 5. 

 Subtraction of Sets 

𝐴 − 𝐵 = {𝑎 − 𝑏; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}  

Examples: 

𝐴 = (2, 3), 𝐵 = (0, 1) 

𝐴 − 𝐵 = (2, 3) − (0, 1) = (2 − 1, 3 − 0) = (1, 3)  

𝐴 − 𝐴 = (2, 3) − (2, 3) = (2 − 3, 3 − 2) = (−1, 1)  

Therefore: 𝐴 − 𝐴 ≠ 0  (zero) and 𝐴 − 𝐴 ≠ ∅  (empty set), contrarily to the subtraction of a 

number from itself (for example, 5 - 5 = 0). 

 Scalar Multiplication of Sets 

Let the scalar R  , then: 

 ∙ 𝐴 = {  ∙ 𝑎; 𝑎 ∈ 𝐴}
. 

Examples: 

(i).  = 6
, A = (2, 3), then:  ∙ 𝐴 = 6 ∙ (2, 3) = (6 ∙ 2, 6 ∙ 3) = (12, 18)

. 

(ii).  = 0
, A = (2, 3), then:  ∙ 𝐴 = 0 ∙ (2, 3) = (0 ∙ 2, 0 ∙ 3) = (0, 0) = ∅

 (empty set). 

(iii).  = 0
, B = [2, 3], then:  ∙ 𝐵 = 0 ∙ [2, 3] = [0 ∙ 2, 0 ∙ 3] = [0, 0] =

 {0}(a set that has only one element, 0).
 

 Multiplication of Sets 

𝐴 ∙ 𝐵 = {𝑎 ∙ 𝑏; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}  

Examples: 

𝐴 = (2, 3), 𝐵 = (0, 1) 

𝐴 ∙ 𝐵 = (2, 3) ∙ (0, 1) = (2 ∙ 0, 3 ∙ 1) = (0, 3)  

𝐴 ∙ 𝐴 = (2, 3) ∙ (2, 3) = (2 ∙ 2, 3 ∙ 3) = (4, 9) = 𝐴2. 

 Division of Sets 

𝐴 ÷ 𝐵 =
𝐴

𝐵
= {𝑎 ÷ 𝑏; 𝑎 ÷ 𝑏 is well defined, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}  

Examples: 

𝐴 = (2, 3), 𝐵 = (0, 1) 

(i). For (A, B) intervals, one has 𝐴 ÷ 𝐵 = (
𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐵
,

𝑚𝑎𝑥𝐴

𝑚𝑖𝑛𝐵
) = (

2

1
,

3

0
) → (2, +∞) since the 

undefined 
3

0
→ +∞ (not −∞, because B has only positive elements). 

(ii).  Let 𝐴 = (2, 3), and 𝐶 = (−1, 0) be two intervals. Then: 

𝐴 ÷ 𝐶 = (
𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐶
,

𝑚𝑎𝑥𝐴

𝑚𝑖𝑛𝐶
) = (

2

0
,

3

−1
) = (

2

0
, −3) → (−∞, −3), 
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We take 
2

0
 as −∞, because the set 𝐶 contains only negative elements. 

(iii). 𝐴 ÷ 𝐴 = (
𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴
,

𝑚𝑎𝑥𝐴

𝑚𝑖𝑛𝐴
) = (

2

3
,

3

2
). 

Therefore,𝐴 ÷ 𝐴 ≠ 1, contrarily to the division of real numbers, where a non-zero 

number divided by itself is equal to 1, for example: 
5

5
= 1. 

(iv). 𝐵 ÷ 𝐵 = (
𝑚𝑖𝑛𝐵

𝑚𝑎𝑥𝐵
,

𝑚𝑎𝑥𝐵

𝑚𝑖𝑛𝐵
) = (

0

1
,

1

0
) →  

 Power and Root of Sets 

Let 𝑟 be a rational number, i.e. 𝑟 =
𝑚

𝑛
, where 𝑚, 𝑛 are integers, 𝑛 ≠ 0. 

𝐴𝑟 = {𝑎𝑟; where 𝑎𝑟  is well defined, 𝑎 ∈ 𝐴}. 

(i). Positive integer power 

𝐴 = (2, 3), 𝑟 = 4  

𝐴4 = (2, 3)4 = (24, 34) = (16, 81). 

Let 𝐸 = (−2, 3). 

𝐸2 = (−2, 3) ∙ (−2, 3) = (−2 ∙ 3, 3 ∙ 3) = (−6, 9) ≠ ((−2)2, 32) = (4, 9). 

(ii). Power zero 

𝐴 = (2, 3), 𝑟 = 0  

𝐴0 = (2, 3)0 = (20, 30) = (1, 1) = ∅ (Empty set). 

Therefore, 𝐴0 ≠ 1, contrarily to the real numbers, where for example 70 = 1.  

Let 𝐷 = [2, 3], then 𝐷0 = [20, 30] = [1, 1] ≡ {1}, as for real numbers, where for example 

70 = 1. 

(iii). Square Root 

√𝐴 = √(2, 3) = (√2, √3). 

(iv). Partial Square Root 

Let the set 𝐷 = (−2, 3), then: 

√𝐷 = [√0, √3) = [0, √3), since in the set of real numbers one cannot compute square root 

of the negative numbers from the interval (−2, 0). We have only computed a partial 

square root of 𝐷. 

(v). Negative Power 

𝐴 = (2, 3), 𝑟 = −2. 

𝐴−2 = (2, 3)−2 = (2−2, 3−2) = (
1

4
,

1

9
) ≡ (

1

9
,

1

4
). 

Now, the operations with the Real Neutrosophic Numbers follow the rules of operations with 

real sets presented above, because a Real Neutrosophic Number is equivalent to a real subset: 

Let 𝐼 be a real subset, 𝐼 ⊂ ℝ. 

𝑁 = 𝑎 + 𝑏𝐼 = {𝑎 + 𝑏 ∙ 𝑥, where 𝑥 ∈ 𝐼}, which is a real subset of the form as of 𝐼. 

Actually 𝑁 is the enlarged subset 𝐼. 

(0, ) 1 



Neutrosophic Systems with Applications, Vol. 15, 2024                                                 29 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Florentin Smarandache, Foundation of Appurtenance and Inclusion Equations for Constructing the Operations of 

Neutrosophic Numbers Needed in Neutrosophic Statistics 

If 𝐼 is an interval of the form 𝐼 = (𝑐, 𝑑), or [𝑐, 𝑑), or (𝑐, 𝑑], or [𝑐, 𝑑], then 𝑁 will also be an interval 

of the same corresponding open/closed form. 

If 𝐼 = {𝑐1, 𝑐2, … , 𝑐𝑛} is a real discrete subset, of cardinal 𝑛, 1 ≤ 𝑛 ≤ ∞, then 𝑁 will also be a real 

discrete subset of cardinal 𝑛. 

It is a union of several subsets, 𝐼 = 𝐼1 ∪ 𝐼2 ∪ … ∪ 𝐼𝑚, then 𝑁 will also be a union of corresponding 

subsets: 

𝑁 = 𝑁1 ∪ 𝑁2 ∪ … ∪ 𝑁𝑚 = ⋃ 𝑁𝑘
𝑚
𝑘=1 , 

Where 

𝑁𝑘 = 𝑎 + 𝑏 ∙ 𝐼𝑘 = {𝑎 + 𝑏𝑥, where 𝑥 ∈ 𝐼𝑘}. 

6.2 Second Method of Operations with Real Neutrosophic Numbers is the following. 

Transform each real neutrosophic number into an equivalent real subset, especially when the 

indeterminacy (I) are not the same. 

Examples: 

𝑁1 = 1 + 2𝐼1, where 𝐼1 = {02. , 0.5, 0.8}  

𝑁2 = 3 − 𝐼2, where 𝐼2 = [0, 1) 

Then: 

𝑁1 = 1 + 2 ∙ {0.2, 0.5, 0.8} = 1 + {0.4, 1.0, 1.6} = {1.4, 2.0, 2.6}  

and 

𝑁2 = 3 − [0, 1) = (3 − 1, 3 − 0] = (2, 3]  

 Addition of Real Neutrosophic Numbers 

𝑁1 + 𝑁2 = {1.4, 2.0, 2.6} + (2, 3] = {1.4 + (2, 3]} ∪ {2.0 + (2, 3]} ∪ {2.6 + (2, 3]}

= (1.4 + 2, 1.4 + 3] ∪ (2.0 + 2, 2.0 + 3] ∪ (2.6 + 2, 2.6 + 3]

= (3.4, 4.4] ∪ (4, 5] ∪ (4.6, 5.6] = (3.4, 5.6]. 

 Addition of a Scalar with a Neutrosophic Set 

0.9 + N1 = {1.4, 2.0, 2.6} + 0.9 = {1.4 + 0.9, 2.0 + 0.9, 2.6 + 0.9} = {2.3, 2.9, 3.5}. 

0.9 + N2 = 0.9 + (2, 3] = (0.9 + 2, 0.9 + 3] = (2.9, 3.9]. 

 Subtraction of Real Neutrosophic Numbers 

𝑁1 − 𝑁2 = {1.4, 2.0, 2.6} − (2, 3] = {1.4 − (2, 3]} ∪ {2.0 − (2, 3]} ∪ {2.6 − (2, 3]}

= [1.4 − 3, 1.4 − 2) ∪ [2.0 − 3, 2.0 − 2) ∪ [2.6 − 3, 2.6 − 2)

= [−1.6, −0.6) ∪ [−1, 0) ∪ [−0.4, 0.6) = [−1.6, 0.6). 

 Multiplication of Real Neutrosophic Numbers 

𝑁1 ∙ 𝑁2 = {1.4, 2.0, 2.6} ∙ (2, 3] = {1.4 ⋅ (2, 3]} ∪ {2.0 ⋅ (2, 3]} ∪ {2.6 ⋅ (2, 3]}

= (1.4 ⋅ 2, 1.4 ⋅ 3] ∪ (2.0 ⋅ 2, 2.0 ⋅ 3] ∪ (2.6 ⋅ 2, 2.6 ⋅ 3]

= (2.8, 4.2] ∪ (4, 6] ∪ (5.2, 7.8] = (2.8, 7.8]. 

 Multiplication of a Scalar with a Neutrosophic Number 

4 ⋅ 𝑁1 = 4 ⋅ {1.4, 2.0, 2.6} = {4 ⋅ (1.4), 4 ⋅ (2.0), 4 ⋅ (2.6)} = {5.6, 8.0, 10.4}. 

 Division of Real Neutrosophic Numbers 

𝑁1

𝑁2

=
{1.4, 2.0, 2.6}

(2, 3]
=

1.4

(2, 3]
∪

2.0

(2, 3]
∪

2.6

(2, 3]
= (

1.4

3
,
1.4

2
] ∪ (

2.0

3
,
2.0

2
] ∪ (

2.6

3
,
2.6

2
]

= (0.46̅, 0.7] ∪ (0. 6̅, 1] ∪ (0.86̅, 1.3] = (0.46̅, 1.3]. 

 Another Example of Division of Neutrosophic Numbers 

Let N1 = 2 – 3I1 where I1 = [4, 5], and N2 = 1 + 4I2 where I2 = {-1, 3, 5}. 
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Then:  

1 12 3 2 3 [4,5] 2 [3 4,3 5] 2 [12,15]

[2 15,2 12] [ 13, 10]

N I           

     
 

2 21 4 1 4 { 1,3,5} 1 {4 ( 1),4 3,4 5}

1 { 4,12,20} {1 ( 4),1 12,1 20} { 3,13,21}

N I            

         
 

1

2

[ 13, 10] 13 10 13 10 13 10
[ , ] [ , ] [ , ]

{ 3,13,21} 3 3 13 13 21 21

10 13 13 10 13 10
[ , ] [ , ] [ , ]

3 3 13 13 21 21

13 10 13 10 10 13
[ , ] [ , ] [ , ]

13 13 21 21 3 3

N

N

       
    

  

   
   

   
  

 

 Division between a Real Neutrosophic Number and a Scalar 

𝑁1

4
=

{1.4,2.0,2.6}

4
= {

1.4

4
,

2.0

4
,

2.6

4
} = {0.35, 0.50, 0.65}. 

4

𝑁1
=

4

{1.4,2.0,2.6}
= {

4

1.4
,

4

2.0
,

4

2.6
} = {2.857, 2.000, 1.538}. 

4

𝑁2
=

4

(2,3]
= [

4

3
,

4

2
) ≈ [1.333, 2.000)  

𝑁2

4
=

(2,3]

4
= [

2

4
,

3

4
) = [0.50, 0.75). 

 Power of Real Neutrosophic Numbers 

𝑁1
𝑁2 = {1.4, 2.0, 2.6}(2,3] = 1.4(2,3] ∪ 2.0(2,3] ∪ 2.6(2,3] = (1.42, 1.43] ∪ (2.02, 2.03] ∪ (2.62, 2.63]

= (1.960, 2.744] ∪ (4, 8] ∪ (6.760, 17.576] = (1.960, 2.744] ∪ (4.000, 17.576].  

* 

𝑁2
𝑁1 = (2, 3]{1.4,2.0,2.6} = {(21.4, 31.4], (22.0, 32.0], (22.6, 32.6]} 

≈ {(2.639, 4.656], (4.0, 9.0], (6.063, 17.399]} 

≡ {2.639, 4.656] ∪ (4.0, 9.0] ∪ (6.063, 17.399] 

= (2.639, 17.399]. 

 Power of a Neutrosophic Real Numbers to a Scalar 

(𝑁1)4 = {1.4, 2.0, 2.6}4 = {1.44, 2.04, 2.64} = {3.8416, 16.000, 45.6976}; and 4𝑁1 = 4{1.4,2.0,2.6} =

{41.4, 42.0, 42.6} ≈ {6.9644, 16.000, 36.7583}. 

 Real Root of a Neutrosophic Real Number 

√𝑁1 = √{1.4, 2.0, 2.6} = {√1.4, √2.0, √2.6} ≈ {1.183, 1.414, 1.612}  

√𝑁2
3 = √(2, 3]3 = ( √2

3
, √3

3
) ≃ (1.260, 1.442]. 

 

 Real Neutrosophic Root of a Neutrosophic Real Number 
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√𝑁2
𝑁1 = 𝑁2

1
𝑁1 = (2, 3]

1
{1.4,2.0,2.6} = {(2, 3]

1
1.4, (2, 3]

1
2.0, (2, 3]

1
2.6} = {(2

1
1.4, 3

1
1.4] , (2

1
2.0, 3

1
2.0] , (2

1
2.6, 3

1
2.6]}

≈ {(1.641, 2.192], (1.414, 1.732], (1.306, 1.526]} ≡ (1.306, 2.192] 

* 

√𝑁1
𝑁2 = 𝑁1

1
𝑁2 = {1.4, 2.0, 2.6}

1
(2,3] = {1.4, 2.0, 2.6}[

1
3

,
1
2

) = {1.4[
1
3

,
1
2

), 2.0[
1
3

,
1
2

) , 2.6[
1
3

,
1
2

)}

= {[1.4
1
3, 1.4

1
2) , [2.0

1
3, 2.0

1
2) , [2.6

1
3, 2.6

1
2)}

≈ {[1.119, 1.183), [1.260, 1.414), [1.375, 1.612)} ≡ [1.119, 1.183) ∪ [1.260, 1.612). 

 

 

7. Literal Neutrosophic Numbers 

The Literal Neutrosophic Numbers (LNN) have the form: 𝐿𝑁𝑁 = 𝑎 + 𝑏𝐼, where 𝑎, 𝑏 are real or 

complex numbers, and 𝐼 = literal indeterminacy, where 𝐼2 = 𝐼, and 𝐼/ 𝐼 = undefined. 

Their Addition, Subtraction, Scalar Multiplication, Multiplication, Division, Power, Radical are 

straightforward. The Literal Neutrosophic Numbers are not used in Neutrosophic Statistics, but in 

Neutrosophic Algebraic Structures, that’s why we do not present their operations herein. 

 

 

8. NonAppurtenance Equation, NonInclusion Equation, and NonEquality Equation 

They are complementarians of the Appurtenance Equation, Inclusion Equation, and Equality 

Equation respectively. 

We present them as a curiosity, or as recreational mathematics. 

(i). The Appurtenance Equation from previous Example 1 was: 

4 − 5𝑥 ∈ 1 + 2 ∙ (0.5, 0.8) whose solutions are all real numbers 𝑥 ∈ (0.28, 0.40). 

Its corresponding NonAppurtenance Equation is: 

whose solutions are all real numbers , or all 

real numbers . 

(ii). The Inclusion Equation from previous Example 2 was: 

1 + 𝑥 ⋅ (1, 2) ⊂ (0, 5), whose maximal solution is 𝑥 = (−0.5, 2).  

Its corresponding NonInclusion Equation is: 

, whose maximum solution is R -  ( - 0.5, 2 ). 

(iii). An elementary Equality Equation 

3x + 4 = 7, has the unique solution x = 1. 

Its corresponding NonEquality Equation is: 

 has, of course, infinitely many solutions . 

 

4 5 1 2 (0.5,0.8)x    (0.28,0.40)x

(0.28,0.40)x R 

1 (1,2) (0,5)x  

3 4 7x  {1}x R 
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9. Conclusions 

In neutrosophic statistics, from the fact that the single true value 𝑣 is in 𝐼, it does not result that 

𝑣  is in 𝑎 + 𝑏𝐼  = N as well, but: 𝑎 + 𝑏𝑣 ∈ 𝑎 + 𝑏𝐼 . That’s why the appurtenance relationship and 

equation must be introduced and studied. 

Even more, if one has a set of true values, from the fact that the set of true values V is included in 

I, it does not mean that V is included in a + bI too, but a + bV  a + bI  (or a + bV   a + bI). That’s 

why the inclusion relationship and equation must be introduced. 

In the same way as the “=” symbol is used for an equality relationship or an equality equation, 

we use the symbol “∈” {belong(s) to} for an appurtenance relationship or appurtenance equation of a 

number to a set, respectively the symbol  (or  ) {included in, or included in or equal to} for an 

inclusion relationship or inclusion equation. 

We just introduced for the first time the Appurtenance Equation and Inclusion Equation, which 

help in understanding the operations with neutrosophic numbers within the frame of neutrosophic 

statistics. The way of solving them resembles the equations whose coefficients are sets (no single 

numbers). 

In addition, we also presented their complementary NonAppurtenance Equation, NonInclusion 

Equation, and the elementary NonEquality Equation respectively. 
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