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Abstract: In this paper we propose a formal theory of partiti ons (ways of 
dividing up or sorting or mapping realit y) and we show how the theory can be 
applied in the geospatial domain. We characterize partiti ons at two levels: as 
systems of cell s (theory A), and in terms of their projective relation to realit y 
(theory B). We lay down conditions of well -formedness for partiti ons and we 
define what it means for partiti ons to project truly onto realit y. We continue 
by classifying well -formed partiti ons along three axes: (a) degree of 
correspondence between partiti on cell s and objects in realit y; (b) degree to 
which a partiti on represents the mereological structure of the domain it is 
projected onto; and (c) degree of completeness and exhaustiveness with which 
a partiti on represents realit y. This classification is used to characterize three 
types of partiti ons that play an important role in spatial information science: 
cadastral partiti ons, categorical coverages, and the partiti ons involved in folk 
categorizations of the geospatial domain. 

1 Introduction  

Imagine that you are standing on a bridge above a highway checking off the makes 
and models of the cars that are passing underneath. Or that you are a postal clerk 
dividing envelopes into bundles or a laboratory technician sorting samples of 
bacteria into species and sub-species. Or imagine that you are making a li st of the 
fossil s in your museum or of the guests in your hotel on a certain night. In each of 
these cases you are employing a certain grid of cell s, and you are recognizing certain 
objects as being located in those cell s. We shall call such a grid of cell s a partition, 
and we shall argue that partitions are involved in all li sting, sorting, cataloguing and 
mapping activities.  

Partitions are ways of structuring and understanding realit y. Some partitions are 
flat: they amount to nothing more than a mere li st. Other partitions are hierarchical: 
they consist of cell s and subcells, the latter being contained within the former. Some 
partitions are built i n order to reflect independently existing divisions on the side of 
objects in the world (the subdivision of the animal kingdom into species, the 
subdivision of heavenly bodies into galaxies, stars, planets, moons). Other partitions 
– for example the partitions created by nightclub doormen or electoral redistricting 
commissions – are themselves such as to create the necessary divisions on the side 
of their objects, and sometimes they create those very objects themselves.  

In Smith and Brogaard (2000) the notion of partition is introduced as a 
generali zation of David Lewis’s (1991) conception of classes as the mereological 
sums of their singletons. Given its set-theoretical roots, our basic formal ontology of 



partitions will have two parts: A. a theory of the relations between cell s and the 
partitions in which they are housed, and B. a theory of the relations between cell s 
and objects in realit y. The counterpart of A in a set-theoretic context would be the 
study of the relations among subsets of a single set; the counterpart of B would be 
the study of the relations between sets and their members.  

Division into units, counting and parceling out, li sting, sorting, pigeonholing, 
cataloguing are activities performed by human beings in their traff ic with the world. 
Partitions are the cogniti ve devices designed and built by human beings to fulfill 
these various purposes. As will be clear from what follows, the notion of partition 
that is hereby implied is only distantly related to the more familiar notion of a 
partition defined in terms of equivalence classes.  

The paper is structured as follows. We start with a discussion of properties of 
partitions as systems of cell s in the sense of theory A. We then consider partitions in 
their projective relation to realit y in the sense of theory B. This provides us with the 
means to define what it means to say that a partition truly projects onto realit y. In 
Section 4 we provide a classification of partition by characterizing various 
properties of the correspondence between partition and realit y. We consider three 
classes of partitions that are relevant in the geographic domain in Section 5.  

2 Partitions as system of cells  

2.1 Partitions 

Theory A studies properties partitions have in virtue of the relations between and the 
operations performed upon the cell s from out of which they are built . All partitions 
involve cell s arranged together in some sort of structure. This structure is intrinsic to 
the partition itself, independently of the objects which may be located in its cell s. 
Cells in partitions may be nested one inside another in the way in which, for 
example, the species crow is nested inside the species bird which in turn is nested 
inside the genus vertebrate in standard biological taxonomies. We say that one cell , 
z1, is a subcell of another, z2, if the first is contained in the latter (‘Cell ’ is ‘Zelle’ in 
German). 

We write z1 ⊆ z2 in order to designate this relationship. The subcell relation ⊆ is a 
reflexive, transiti ve, and antisymmetric relation. Reflexivity means that each cell i s, 
triviall y, a subcell of itself. The property of antisymmetry specifies the relationship 
between identity and the subcell relation: if z1 ⊆ z2 and z2 ⊆ z1 then z1 = 
z2. Transiti vity means that if z1 ⊆ z2 and z2 ⊆ z3 then z1 ⊆ z3. The nestedness of cell s 
inside a partition yields chains of cell s satisfying z1 ⊇ z2 ⊇… ⊇ zn. We shall demand, 
as the first of several master conditions which we shall impose on all partitions, that: 

MA1: The chains z1 ⊇ z2 ⊇… ⊇ zn in a partition are always finite. 

We shall call the cell s at the ends of such chains minimal. MA3 leaves open the 
issue as to whether partitions themselves are finite: thus it does not rule out the 
possibilit y that a given cell within a partition might have infinitely many immediate 
subcells. 

Following Smith (1991) we can define the partition-theoretic sum and product of 
cell s within partitions as follows. The partition-theoretic sum z = z1 ∪ z2 of two cell s 



in a partition as a ⊆-minimal cell satisfying a constraint to the effect that z1 ⊆ z and 
z2 ⊆ z. Notice that this partition-theoretic sum is distinct from the mereological sum 
of cell s. (Relative to the standard geopoliti cal partition of the surface of the globe, 
the partition-theoretic sum of Malta and Cyprus is: the Briti sh Commonwealth.) The 
partition-theoretic product, z = z1 ∩ z2, of two cell s is defined only if z1 and z2 are 
not mereologicall y disjoint. If it is defined, then it yields a largest subcell shared in 
common by z1 and z2.  

Every partition A (‘partition’ is ‘Aufteilung’  in German) has a maximal cell . We 
define the a maximal cell of a partition as: 

 M(z1,A)  ≡  Z(z1, A) and ∀z: Z(z, A) → z ⊆ z1  
where ‘Z(z, A)’ means that z is a cell i n the partition A. (In what follows we shall 
omit the predicate Z(z, A) in cases where it is clear that we are talking about cell s 
within some fixed partition A. In addition, initial universal quantifiers will 
henceforth be taken as understood.) We now define the root of a partition as the 
unique maximal cell:  

 r(A)=z  ≡  M(z,A) and ∀z1: M(z1,A)→ z = z1 
and demand that every partition has a root: 

 MA2: ∃z: r(A)=z 
This root is such that all the cell s in the partition are included in it as subcells. MA2 
implies that there are no partitions which are empty tout court in that they have no 
cell s at all .  

Every pair of distinct cell s in a partition stand to each other within the partition 
either in the subcell relation or in the relation of mereological disjointness. Thus if 
two cell s overlap, then only because one is a subcell of the other: 

 MA3: ∃z: (z = z1 ∩ z2) → z1 ⊆ z2 or z1 ⊃ z2. 

2.2 Trees 

Philosophers since Aristotle have recognized that nested partitions can be 
represented as branching structures which mathematicians nowadays called trees. 
We here take the possibilit y of such representation as a constraint on what will be 
allowed to count as a partition within the terms of our theory.  

 MA4: Partitions can be represented as trees. 
Trees are special sorts of graphs (they are directed graphs without cycles). That a 

tree is without cycles means that, if we move along its edges in such a way as to 
follow the direction of these edges, then we will always move down the tree and in 
such a way that, however far we travel, we will never return to the point from which 
we started.  

The dualit y of trees and partitions can be proved by showing that every tree can 
be transformed into a structure, analogous to a Venn diagram, in which partition 
cell s are represented as topologicall y simple and regular non-intersecting regions of 
the plane. Conversely every array of non-intersecting, possibly nested rings in the 
plain can be transformed into a tree in such a way that each ring is represented by a 
node in the tree, and each directed link in the tree represents an immediately 



contains relation between the corresponding pair of nested rings. We can for 
ill ustrative purposes think of each partition as such a planar map.  

2.3 Partition-theoretic sum and maximal cells 

When we consider a partition as a Venn diagram, then minimal cell s correspond to 
smallest regions within the diagram. It is important to recognize that it i s not in 
general the case that every mereological sum of such regions has a corresponding 
cell i n the partition. There is no cell i n our standard biological partition of the animal 
kingdom consisting of rabbits together with jell yfish, and there is no cell , in our 
standard geopoliti cal partition of the surface of the globe consisting of Hong Kong 
together with Algeria. It is for this reason that the mereological sum of cell s and the 
partition-theoretic sum of cell s defined above are distinct operations. Since, by 
MA2, partitions always have a root cell , the partition-theoretic sum is always 
defined. However the results produced by this operation are not necessaril y identical 
to those produced by the operation of taking standard mereological sums. We can 
however assert that the mereological sum is in every case a part of the partition-
theoretic sum. We can think of ⊆ as the result of restricting mereological parthood 
relation, ≤, to natural units within a mereological whole.  

Consider a collection of subsets of some set forming a partition of this set in the 
standard mathematical sense. These subsets (equivalence classes) are (1) mutually 
exhaustive and (2) pairwise disjoint. An analogue of condition (2) holds for minimal 
cell s in our present framework, since minimal cell s are always mereologicall y 
disjoint. Our non-minimal cell s correspond to mereological sums of equivalence 
classes in the standard mathematical framework. Condition (1) does not necessaril y 
hold within the framework of partition theory however. This is because, even where 
the partition-theoretic sum of minimal cell s is identical to the root cell , the minimal 
cell s still do not necessaril y exhaust the partition as a whole. Consider a partition 
with just three cell s labelled: people, Bill, and Hillary. 

3 Partitions in their projective relation to reality  

3.1 Projection  

Partitions are more than just systems of cell s. They are constructed to serve as 
pictures or maps of realit y. In some cases the cell s of a partition project but there are 
no objects for them to project onto. (Consider the partition cataloguing Aztec gods.) 
Here, however, we are interested primaril y in partitions which do not project out 
into thin air in this way. We write ‘P(z, o)’ as an abbreviation for: cell z is projected 
onto object o. In what follows we shall assume that a unique projection is defined 
for each partition. In a more general theory we can allow projections to vary with 
time while the partition remains fixed (for example when we use a territorial grid of 
cell s to map the presence of birds of given species in given areas from one moment 
to the next).  

The theory of partitions allows us to employ a very general reading of the term 
‘object’ . An object is any portion of realit y: an individual, a part of an individual, a 
class of individuals (for example a biological species), a spatial region, a politi cal 
unit (county, polli ng district, nation), or even (for present purposes) the universe as a 



whole. An object in the partition-theoretic sense is everything onto which some cell 
of a partition can project.  

Objects can be either of the bona fide or of the fiat sort (Smith 1995). Bona fide 
objects exist independently of human partitioning activity. They are, simply, 
recognized by partition cell s. Fiat objects are objects created by human partitioning 
activity. Hence the corresponding partition cell s do not only recognize their fiat 
objects – the latter are in fact created through the very projection of partition cell s 
onto a corresponding portion of realit y. Examples are the States of Wyoming and 
Montana.  

3.2 Location 

We are interested in partitions that succeed – which is to say, in partitions that are 
true of the corresponding portion of realit y. That not all partitions are true follows 
from the fact that the relation P(z, o) is marked by a certain taint of subjectivity and 
by a certain possibilit y of failure. The relation ‘L(o, z)’ abbreviates: object o is 
located at cell z. L(o, z) is free of taints of failure. It is determinately true, of every 
object o, and of every cell z, that o is either located, or not located, in z. When 
projection succeeds, then location is what results. Projection and location thus 
correspond to the two ‘directions of f it’ – from mind to world and from world to 
mind – between an assertion and the corresponding truthmaking portion of realit y. 
(Searle 1983, Smith 1999)  

Location presupposes projection: an object is never located in a cell unless 
through the projection relation associated with the relevant partition. Thus 

 MB1 L(z, o) → P(o, z). 
In the case where no errors have been made in the construction of a partition, L(o, 

z) holds if and only if P(z, o). This is because, in such a case, if a partition projects a 
given cell onto a given object, then that object is indeed located in the corresponding 
cell . Very many partitions – from automobile component catalogues to our maps of 
states and nations – have this qualit y without further ado, and it is such partitions 
upon which we shall concentrate in what follows. Such partitions are transparent to 
the corresponding portion of realit y. In this case projection and location are converse 
relations with respect to the partition in question. Formally we write: 

DTr:  Tr(A) ≡ ∀z∀o: Z(z, A) → (P(z, o) → L(o, z)) 
We now impose a further master condition to the effect that: 

 MB2: All partitions are transparent in the sense of DTr. 
MB2 ensures that objects are actuall y located at the cell s that project onto them. 
Notice however that a transparent partition, according to our definition, may still 
have empty cell s. (Think of the Periodic Table, which leaves empty cell s for 
chemical elements of types which have yet to be detected.) MB2 tell s us only that, if 
a cell i n a partition projects upon some object, then that object is indeed located in 
the corresponding cell . It does not tell us what happens in case a cell fail s to project 
onto anything at all . DTr is correspondingly only a first step along the way towards 
a definition of truth for partitions.  

Following Smith and Brogaard (2000) we define the notion of recognition, of an 
object by a cell , as follows. An object o is recognized by the cell z if and only if z is 
projected onto o and the object o is actuall y located at z. Formally we write: 



 DR1:  R(z, o) ≡ P(z, o) and L(o, z) 
More generall y, a partition recognizes an object if it has a cell that recognizes the 
object. 

 DR2:  R(A, o) ≡ ∃z: Z(z, A) and R(z, o) 
The relation defined in DR2 is the partition-theoretic analogue of the standard set-
membership relation. Since partitions are cogniti ve devices, and cognition is not 
omniscient, it follows that no partition is such as to recognize all objects. Partitions 
have limited domains. In particular, partitions have limitations on their domains 
which have to do with the phenomenon of granularity. This will be discussed in 
Section 3.4 

3.3 Recognizing and preserving mereological structure 

That upon which a partition is projected is a certain domain of objects in realit y. We 
shall conceive the domain of a partition as a mereological sum. It is, as it were, the 
total mass of stuff upon which the partition sets to work: thus it is stuff prior to any 
of the divisions or demarcations effected by the partition itself. The domains of 
partitions will comprehend not only individual objects and their constituents (atoms, 
molecules, limbs, organs), but also groups or populations of individuals (for 
example biological species and genera, battalions and divisions, archipelagos and 
diasporas) and their constituent members. We will see below that spatial partitions, 
for example categorical coverages (Chrisman 1982), are one important family of 
partitions in our more general sense. W shall use the notation D(o,A) in order to 
denote that the object o is a part of the domain of the partition A. 

Partitions – think again of Venn diagrams – reflect the basic part-whole structure 
of realit y through the fact that the cell s in a partition are themselves such as to stand 
in the relation of part to whole. This means that, given the master conditions 
expressed within the framework of theory A above, partitions have at least the 
potential to reflect the mereological structure of the domain onto which they are 
projected. And in feli citous cases this potential is reali zed.  

We say that the cell s z1 and z2 reflect the mereological relationship between the 
objects onto which they are projected if and only if the following holds: 

DR3: RS(z1, z2) ≡ ∀o1,o2: (R(z1, o1) and R(z2, o2)) → (z1 ⊆ z2 → o1 ≤ o2). 
This means that if z1 is a subcell of z2 then any object recognized by z1 is a part of 
any object recognized by z2. A partition reflects the mereological structure of the 
domain it is projected onto if and only if each pair of cell s recognizes in this way the 
mereological structure on the side of their objects: 

 DR4:  RS(A) ≡ ∀z1,z2: (Z(z1, A) and Z(z2, A)) → RS(z1, z2) 
We then impose a new master condition: 

 MB3  All partitions are structure reflecting in the sense of DR4. 
What this means is that all partitions are such that if one cell i s a subcell of another, 
then any object recognized by the first cell i s a part of any object recognized by the 
second.  

MB3 is still very weak. It does littl e more than ensure that partitions which 
satisfy it do not misrepresent the mereological relationships between their objects. 
But partitions might still be blind to (trace over) such relationships. In order to see 



what this involves, we need to take a closer look at the relations ⊆ and ≤. Both 
represent partial rather than total orderings. This means that the axioms ∀x,y: (x ≤ y 
or y < x) and ∀z1,z2: (z1 ⊆  z2 or z2 ⊂ z1) do not hold. There may be objects (or cell s) 
that do not stand in the relations ≤ (or ⊆) to each other at all .  

Objects that do not stand to each other in the part-whole relation are either 
disjoint or they are such as to overlap mereologicall y. On the partition side the 
interpretation of the absence of a part-whole relation between two cell s is somewhat 
different. If z1 and z2 do not stand in the relation ⊆ to each other in a given partition, 
then this means ‘ the partition does not know (or does not care) how z1 and z2 are 
related.’ We note that the minimal cell s in a partition do not stand in the relation ⊆ 
to each other. From this we are entitled to infer nothing at all about the mereological 
relations among the corresponding objects. 

Consider, for example, a partition that contains cell s that recognize John and his 
arm, i.e., L(John, z1) and L(John’s arm, z2). Then cell z1 need not be a proper subcell 
of the cell z2. Partitions may trace over mereological relationships between the 
objects they recognize, but MB3 is strong enough to ensure that, if a partition tell s 
us something about the mereological relationships on the side of the objects which it 
recognizes, then what it tell s us is true.  

Consider a domain consisting of two regions, x and y, that properly overlap, i.e., 
x ∧ y = v and x ∧ y ≠ x and x ∧ y ≠ y where ∧ denotes mereological intersection in 
the realm of objects. Consider now a partition that recognizes x and y, i.e., R(z1, x) 
and R(z2, y). Assume further that z1 and z2 do not stand in any subcell relation to 
each other, i.e., their partition-theoretic intersection is empty. We can now 
distinguish two cases that still satisfy our transparency condition (DTr): (1) our 
partition does not recognize v; (2) it recognizes v but traces over its mereological 
relationships to x and y. At the level of theory A we have explicitl y excluded the 
possibilit y that cell s which are not subcells of each other overlap (MA3). This 
reflects the fact that the tree structure of our partitions rules out cycles (diamonds) in 
their graph-theoretic representation. This condition is satisfied in case (1) as well as 
in case (2).  

3.4 Granularity 

The cell s of a partiti on carry with them the feature of granularity. They recognize 
only single whole units. If a partition recognizes not only wholes but also one or 
more parts of such wholes, then this is because there are additional cell s in the 
partition which do this recognizing job. Consider, for example, a partition that 
recognizes human beings, i.e., it has cell s that project onto John, Mary, and so forth. 
This partition does not recognize parts of human beings – such as John’s arm or 
Mary’s shoulder – unless we add extra cell s for this purpose. If a partition 
recognizes wholes and their parts, then it is not necessaril y the case that it also 
reflects the mereological relationships between the two (as discussed above).  

The theory of partitions inherits from mereology the feature that it is consistent 
with both an axiom to the effect that atoms exist and with the negation of this axiom. 
The theory thus enables us to remain neutral as to the existence of any ultimate 
simples in realit y from out of which other objects would be constructed via 
summation. This is due to the fact that partitions are by definition top-down 
structures. The dualit y with trees puts special emphasis on this aspect: we trace 



down from the root until we reach a leaf. A leaf need not necessaril y be an atom in 
the sense that it projects upon something which has no further parts. The fact that 
there are leaves simply indicates that the partition does not care about what lies 
beneath a certain level of granularity. An object located at a minimal cell i s an atom 
only relative to the partition involved. 

Partitions are cogniti ve devices which have the built -in capabilit y to recognize 
objects and to reflect certain features of the latter’s mereological structure. They 
have two ways of tracing over or ignoring mereological structure: (1) tracing over 
mereological relations between the objects (wholes) which they recognize; (2) 
tracing over parts. (2) is (unless atomism is true) manifested by every partition, for 
partitions are in every case coarse grained. 

4 Varieties of transparent partitions 

In this section we discuss some of the more fundamental varieties of those partitions 
which satisfy the master conditions given above. We classify such partitions along 
three essentiall y orthogonal axes: (a) degree of correspondence to objects; (b) degree 
of structural fit; and (c) degree of completeness.  

4.1 Functionality constraints  

Partitions which possess the maximum degree of correspondence to objects must 
first of all be such as to rule out ambiguity on the side of their cell l abels (or on the 
side of whatever it is in virtue of which projection is effected). This means that they 
must be such that their associated projection is a functional relation: 

CFP:  P(z1, o1) and P(z2, o2) → (o1 = o2 → z1 = z2) 
For partitions satisfying CFP, cell s are projected onto single objects (one rather 

than two).  We can then use a functional notation, p(z)=o, instead of P(z, o), for 
projection. Notice, though, that p might still be a partial function, since CFP does 
not rule out the case where there are empty cell s. An example of a partition not 
satisfying CFP is the partition created by a lazy schoolboy studying the history of 
the Civil War in England. This has one cell l abeled ‘Cromwell ’ – and so it does not 
distinguish between Oliver and his son Richard. Another example might be the 
partition utili zed by those who talk of ‘China’ as if the Republic of China and the 
People’s Republic of China were one object. 

 
Consider a partition labeled ‘heavenly bodies’ and having just three minimal cell s 

labeled ‘The Morning Star’ ‘ The Evening Star’ , and ‘Venus’ , respectively. As we 
know, all three cell s project onto the same object. Yet even so, it is still perfectly 
consistent with our definitions that this partition is true – that its distinct cell s truly, 
though unknowingly, recognize the same object; for these cell s are minimal, and 
thus neutral about the possible mereological relations obtaining on the side of that 
onto which they project. It is not unusual that we give different names (or 
coordinates, or class-labels) to things in cases where we do not know that they are 
actuall y the same. A good partition, though, should clearly be one in which such 
errors are avoided.  

Partitions manifesting the highest degree of correspondence to objects must, in 
other words, be ones in which location is a functional relation: 



CFL:  L(o1, z1) and L(o2, z2) → (z1 = z2 → o1 = o2) 
In partitions that satisfy CFL, location is a (possibly partial) function, i.e., objects 
are located at single cell s (one rather than two). The location function is partial, 
since no partition is omniscient. In transparent partitions satisfying CFP and CFL, 
projection and location are inverse relations wherever both are defined. 

4.2 Structural constraints 

We required of true partitions that they reflect the mereological structure of the 
domain they recognize. Remember that such reflection is to be understood in such a 
way that it leaves room for the possibilit y that a partition is merely neutral about 
(traces over) some aspects of the mereological structure of its target domain. Taking 
this into account, we can order partitions according to the degree to which they 
actuall y represent the mereological structure on the side of the objects onto which 
they are projected. At the one extreme we have: (1) partitions that completely reflect 
the mereological relations holding between the objects they recognize. At the other 
extreme are (2): partitions that completely trace over the mereological structure of 
the objects they recognize. Between these two extremes we have partitions that 
reflect some but not all of the mereological structure of the objects they recognize.  

Under heading (1) are those true partitions which satisfy the weak converse of 
MB3, which means that if o1 is part of o2, and if both o1 and o2 are recognized by the 
partition, then the cell at which o1 is located is a subcell of the cell at which o2 is 
located. Formally we can express this as follows: 

CS1 o1 ≤ o2 and L(o1, z1) and L(o2, z2) → z1 ⊆ z2 

We call partitions satisfying CS1 mereologically monotonic. An example of a 
mereologicall y monotone partition is the Dewey catalogue system used in libraries 
in order to organize the books in stock. 

4.3 Completeness and exhaustiveness 

So far we have allowed partitions to contain empty cell s, i.e., cell s that do not 
project onto any object. We now consider partitions which satisfy the constraint that 
every cell recognizes some object: 

CC: Z(z, A) → ∃o: R(z, o) 
We say that partitions that satisfy CC project completely. Notice that this condition 
is independent of the functional or relational character of projection and location. Of 
particular interest, however, are partitions that project completely and in such a way 
that projection is a total function. These are partitions which satisfy both CFP and 
CC. 
 

So far we have accepted that there are objects in our target domain that are not 
located at any cell . Those partitions are often not very satisfying: governments want 
all their subjects to be located in some cell of their partition of taxable individuals. 
They want their partitions to satisfy a completeness constraint to the effect that 
every object in the domain is indeed recognized. In this case we say location is 
complete. Alternatively we say that the partition exhausts its domain. Unfortunately 
we cannot use  



(* ) D(o, A) → ∃z: Z(z, A) and R(z, o) 
saying that if some object o is part of the domain of the partition A then there is a 
cell z in A that recognizes o to capture the desired constraint. This is because, for 
example, the tax authorities do not (as of this writing) want to tax the separate 
molecules of their subjects.  

We believe that it will be necessary to promote several restricted forms of 
exhaustiveness, each one of which will approximate in different ways to the 
(unrealizable) condition of unrestricted exhaustiveness expressed in (* ). To see how 
one such exhaustiveness condition might work in first (schematic) approximation, 
let us introduce a sortal predicate ϕ that singles out the kinds of objects our taxation 
partition is supposed to recognize (for example, human beings rather than parts of 
human beings). We now demand that the taxation partition recognize all of those 
objects in its domain which satisfy ϕ:  

CE D(o, A) and ϕ(o) → ∃z: Z(z, A) and R(z, o).  
Think of CE as asserting the completeness of one partition relative to another, the ϕ-
totali zer partition, which consists exclusively of minimal cell s in which all and only 
the objects satisfying ϕ are located. Note that the idea underlying CE is closely 
related to the idea of granularity. An alternative means of formulating an 
exhaustiveness condition li ke CE, which constrains what can be located at minimal 
cell s, is via a restriction on object size. 

4.4 Redundancy 

Partitions are natural cogniti ve devices and the designers and users of such devices 
build them in such a way that they will serve practical purposes. This means that 
they will normally avoid certain sorts of redundancy. Here we distinguish two sorts 
of redundancy: correspondence redundancy and structural redundancy.  

Firstly, we have remarked already that necessaril y empty cell s (cell s whose labels 
tell us ex ante that no objects can be located within them) are one type of 
redundancy of correspondence. Another such type would be involved if a partition 
were to contain two distinct cell s whose labels tell us, again ex ante, that they must 
necessaril y project upon the very same object. Thus, triviall y, a partition should not 
contain two cell s with identical labels. Partitions that avoid redundancy of 
correspondence satisfy: 

 CR1: CFP and CFL and CC 

The second sort of redundancy is not quite so trivial. Consider a partition with a 
cell l abeled vertebrates which occurs as a subcell of the cell l abeled chordates in our 
standard biological classification of the animal kingdom. Almost all chordates are in 
fact vertebrates. Suppose (for the sake of argument) that biologists were to discover 
that all chordates must be vertebrates. Then in order to avoid structural redundancy 
they would collapse into one cell the two cell s of chordates and vertebrates which at 
present occupy distinct levels within their zoological partitions. A constraint 
designed to rule out such structural redundancy would be:  

CR2: A cell i n a partition never has exactly one immediate descendant.  



From this it follows that a one-celled partition is identical with its cell . (This rules 
out partition-theoretic analogues of the set-theorist’s {{ a}} .)  

5 Partitions of geographic space  

Partitions are, we repeat, natural cogniti ve devices. We assume that most of them 
are true in the sense that they are transparent and structure reflecting (they satisfy all 
of the master conditions MA1-4 and MB1-3 above). If we imagine the system of 
cell s of a partition as being ranged over against a system of objects, with objects 
located in all the cell s of the partition (under a certain relation of projection), then in 
the best case we have a partition that is mereologically monotone (CS1), projects 
completely (CC) and exhaustively (CE), and establi shes a functional relationship to 
the domain it maps (CFP, CFL). Such ideal partitions are thereby also free of 
redundancy and hence CR1 and CR2 hold. We find examples of such perfection 
above all i n the abstract, fiat domains of databases and spatial subdivisions.  

In what follows we discuss cadastral maps, which come close to representing 
partitions which are perfect in the sense defined. We then move on to discuss 
categorical coverages which fall short of this sort of exact fit between partition and 
the corresponding objects in realit y. Finall y we discuss the ‘f olk’ categorizations of 
geographic realit y.  

5.1 The perfect cadastre  

The perfect cadastre is what exists in the databases of cadastral authorities. It is what 
you see when you examine cadastral maps. You see mathematicall y exact lines that 
separate land parcels. In the remainder we assume for the sake of simplicity that the 
cell s on the map project onto corresponding parcels in realit y (that the map contains 
no errors). We assume also that parcels are recognized by minimal cell s of the 
cadastral partition. Partition cell s are represented, for example, by entries in the 
German ‘Grundbuch’ or in its computational equivalents. There are very strict rules 
for inserting, deleting, or changing cell s in this partition, rules standardly expressed 
in the form of laws. These rules strive to guarantee that the cadastral partition has 
the ideal properties set forth above. 

Land parcels are fiat objects. They are created through the projection of the cell s 
in a cadastre onto realit y itself. This is a geodetic projection of a sort which is 
described by a small number of axioms. It is mathematicall y well defined and can 
even (within certain limits) be computed. This projection imposes fiat boundaries 
onto realit y in the same way that the plotter draws the lines on a cadastral map.  

The projection (in our partition-theoretic sense) has the following properties: 
Cadastral partitions are true in that sense that cell s correctly recognize objects, i.e., 
P(z,o)↔L(o,z). Projection and location are functional relations, i.e., one cell projects 
onto one land parcel and one parcel is located at one cell . Cadastral partitions are 
CE-complete. The intuition underlying this thesis is that ‘ there are no no-mans-
lands’ , which means: no zones within the domain of the cadastral partition that are 
assigned to no cell within the partition itself. Cadastres satisfy also CC-completness, 
in that they satisfy a constraint to the effect that every piece of land is registered. 
These properties are ensured by law and extensive training of those who are charged 
with the task of maintaining the cadastre. 



Cadastral partitions are (li ke most tax partitions) flat, in the sense that they 
recognize no mereological structure on the side of their objects. A tax partition 
recognizing families as well as individuals, and a cadastral partition recognizing 
multi -parcel estates as well as separate single parcels, may however embody some 
mereological structure. Consequently, cadastre partitions are not mereologicall y 
monotone, i.e., CS1 does not necessaril y apply. They have, however, the property 
that they also recognize some mereo-topological structure in that sense that two cells 
are adjacent if and only if the corresponding land parcels are neighbors.  

5.2 Categorical coverages 

Area-class maps (W. Bunge 1966) or categorical coverages (Chrisman 1982) belong 
to a type of thematic maps that show the relationship of a property or attribute to a 
specific geographic area. A prototypical example of a categorical coverage is the 
land use map, in which a taxonomy of land use classes is determined (e.g., 
residential, commercial, industrial, transportation) and the specific area (zone) is 
then evaluated along the values of this taxonomy (Volta and Egenhofer 1993). 
Another prototypical example is soil maps, which are based on the classification of 
soil covering the surface of the earth (clay, slit , sand, …). The zones of a categorical 
coverage are a jointly exhaustive and pair-wise disjoint subdivision of the relevant  
space (Beard 1988). 

Using the notation introduced in this paper, there are two partitions involved in 
categorical coverages: the partition of an attribute domain (e.g., land use or soil ) and 
the corresponding partition of the surface of the earth into zones. The projection of a 
partition onto the attribute domain creates a partition that is then in turn projected 
onto the surface of the earth. Both of the partitions involved satisfy all of the master 
conditions set forth above. The close relationship between the two partitions has 
been discussed for example by Beard (1988) and Frank at al. (1997). The same 
reciprocal relationship is ill ustrated in the way in which every map (a partition of 
space) stands to its legend (a partition of the attribute domain represented on the 
map). 

To begin, consider the spatial component of a categorical coverage, i.e., the 
partition of some part of the surface of the earth. As already discussed in Smith and 
Brogaard (2000) spatial partitions enjoy peculiarly nice properties. Using the notions 
introduced in this paper we are now able to specify four of these properties more 
precisely: 

Firstly, the partition is complete in that sense that there are no empty cell s (CC). 
Secondly the minimal cell s of the spatial partition exhaust a certain domain (a part 
of the surface of the earth) in the sense of CE. Consequently the root of the partition 
recognizes the mereological sum of all regions (zones) recognized by its cell s. 
Thirdly, the correspondence between the cell s in the partition of the spatial 
component of a categorical coverage and the zones it recognizes is one-one and 
onto. The fact that projection and location are here total, functional and mutually 
inverse is exploited extensively in the formalization and representation of 
categorical coverges (e.g. Frank at al 1997, Erwig and Schneider 1999, Bittner and 
Stell 1998). Fourthly, as mentioned above, spatial partitions recognize some of the 
mereotopological structure of their domains even though they fall short of being 
mereologicall y monotone in the sense of CS1. 



Due to these strong properties of their spatial component and the close 
relationship between the spatial and attribute components of categorical coverages, 
their partition of the pertinent attribute domain also satisfies the following rather 
strong constraints: 

Firstly, the partition of the attribute domain is exhaustive relative to the spatial 
component: every minimal cell i n the spatial partition has a corresponding minimal 
cell i n the attribute partition. Consequently, the partition of the attribute domain 
exhausts the domain of all cases that actuall y occur in the region covered by the 
corresponding spatial partition. For example, if our spatial partition projects onto a 
desert, then the corresponding partition of soil types needs to be exhaustive for the 
different types of sand that occur in this area but it does not need to contain a cell 
labeled ‘clay’ . Secondly, projection and location need both to be functional, 
otherwise the regions carved out on the spatial side would not be jointly exhaustive 
and pairwise disjoint. Both functions may however be partial, as long as they are 
exhaustive relative to the pertinent spatial component. 

Partitions of attribute domains are not necessaril y limited to partitions consisting 
only of minimal cell s (and one root cell ). Consider a partition of the attribute domain 
Land-Use / Land-Coverage. There might be, for example, a non-minimal cell 
labeled ‘Agricultural’ in this partition with subcells ‘Culti vated Cropland’ , ‘Pasture’, 
‘Livestock’ , and ‘Poultry’ (Frank at al. 1997). Hierarchical partitions of attribute 
domains are often created by refinement, i.e., we start with a root cell recognizing 
the attribute domain as a whole and add layers of subcells in such a way that the 
mereological sum of everything that is recognized by the cell s of one layer is 
recognized also by the root cell . Consider for example a partition of the attribute 
domain ‘Rainfall i n inches’ . There might be a layer of cell s recognizing values 
falli ng within one or other of the three intervals [0, 5), [5, 10), [10, ∞), together with 
a more refined layer recognizing values in: [0, 2.5), [2.5, 5), [5, 7.5), [7.5, 10), [10, 
∞). 

Hierarchical partitions of the attribute domain create potentiall y hierarchical 
partitions of the spatial domain. Notice that the spatial component of hierarchical 
categorical coverages is not necessaril y non-redundant in the sense of CR2. In the 
spatial component of a hierarchical categorical coverage ‘Land Usage (Chicago)’ 
there might be one single region that is recognized by both the cell s ‘Agricultural’ 
and ‘Culti vated Cropland’ . In this case location is not a function. Technicall y the 
problem is dealt with by always using the most specific cell (the one farthest away 
from the root). The latter then exhaust space at every level of resolution. However, 
again, hierarchical spatial partitions are not mereologicall y monotone.  

It is important to see that the regularity of these partition structures is due to the 
fact that the objects recognized by the given partitions are fiat objects carved out by 
the projecting partitions themselves. For example, in the categorical coverage for 
soil types there are certainly bona fide differences between sand and solid rock but 
the distinction between the many soil -types in between are certainly of the fiat sort. 
They are carved out or created by imposing a partition onto the attribute domain 
‘Soil on the surface of Earth’ . This partition creates a spatial partition that, in being 
projected onto the surface of the earth, imposes fiat boundaries demarking 
‘categorical zones’ . Those boundaries sometimes coincide with bona fide 
boundaries in realit y but in most cases they do not. 



5.3 A partition recognizing water bodies 

We discussed spatial partitions or attribute partitions that induce spatial partitions. 
Those partitions are characterized by a high degree of structure and order not only 
due to the fact that they are spatial subdivisions but also due to the fact that there are 
well defined and strict rules (of scientific methodology or of law) which govern their 
construction and projection. In general partitions are much less well structured.  

 … 
lake* 
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pond 
pool 

sea 

… 

body  
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water 

loch 

tarn 
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millpond 
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* = term appears  twice  

Figure 1: Ontology of Water Bodies and Related Entiti es, based on Definiti ons in the 
American Heritage Dictionary (taken from Smith and Mark 1999) 

Smith and Mark 1999 analyzed the partition of water bodies and related entities 
which can be extracted from the definitions contained in the American Heritage 
Dictionary. The graph-theoretic representation of this partition is given in Figure 1. 
If we analyze this graph, then we can see easil y that it is not a tree, since it contains 
cycles (e.g., pond, tank, reservoir, pond). We also can see that there are two cell s 
labelled ‘ lake’ . The latter clearly indicates that location is not a function relative to 
this partition. 

We hypothesize that there are special features of dictionary definitions as hitherto 
compiled in virtue of which their underlying taxonomies appear to deviate from the 
tree structure. Moreover Guarino and Welty (2000) have shown how such 
taxonomies can very easil y be reconstituted as trees in systematic fashion.  This 
gives us some confidence that the ideas presented above may provide a framework 
for the construction of more coherent taxonomies for use in dictionaries and data 
standards in the future. 

6 Summary and conclusions 

This paper is a contribution to the formal ontology of partitions. We defined master 
conditions that need to be satisfied by every partition. These master conditions fall 
into two groups: (A) master conditions characterizing partitions as systems of cell s, 
and (B) master conditions describing partitions in their projective relation to realit y.  

At the level of theory (A) partitions are systems of cell s that are partiall y ordered 
by the partition-theoretic subcell relation. Such systems of cell s are such that they 
can be always represented as trees, i.e., they are finite, have a unique maximal 
element, and they do not have cycles in their graph representation. But partitions are 
more than just systems of cell s. They are cogniti ve devices that are directed towards 
realit y. At the level of theory B we take this feature into account and characterize 
partitions using the relations of projection and location. Cells in partitions are 



projected onto objects in realit y. Objects are located at cell s when projection 
succeeds. We then say that a partition recognizes the objects that are located at its 
cell s.  

Partitions do not only recognize objects, they are also capable of reflecting the 
mereological structure of the objects they recognize in the mereological structure of 
their cell array defined in theory A. This does not mean that all partitions actuall y do 
reflect the mereological structure of the objects they recognize, however, for it is an 
important feature of partitions that they are also capable of tracing over 
mereological structure. There are, for example, large classes of partitions that simply 
li st objects without caring about how these objects hang together mereologicall y. In 
fact there are only very few partitions that completely represent the mereological 
structure of the objects they recognize.  

Our discussion of granularity showed that partitions have two ways of tracing 
over mereological structure: (1) by tracing over mereological relations between the 
objects (wholes) which they recognize; (2) by tracing over parts. The tracing over of 
parts is (unless mereological atomism is true) a feature manifested by every 
partition, for partitions are in every case coarse grained. 

We classified partitions along three essentiall y orthogonal axes: (a) degree of 
correspondence to objects; (b) degree of structural fit; and (c) degree of 
completeness and exhaustiveness. Along axis (a) we characterize partitions 
according to properties that the relations of projection and location have or lack: 
both may be functional relations, meaning that cell s never project onto more than 
one object and that objects are never located at more than one cell . Along axis (b) 
we characterize partition according to the degree to which they reflect or trace over 
the mereological structure of the objects they recognize. We distinguished 
mereological monotony, mereological ignorance, and partitions that reflect some but 
not all mereological structure. Along axis (c) we characterized partitions by 
considering conditions under which every cell i n a partition is projected onto some 
object and under which every object in a given domain is located at some cell . If 
projection or location relations are also functions, then we can recover in these terms 
the usual mathematical distinctions between partial, total, onto, and into mappings. 

Three classes of partitions play an important role in spatial information science: 
cadastral partitions, categorical coverages, and partitions that we find in folk 
categorizations of geographic realit y. We showed that partition theory can be used 
as a framework in whose terms the different properties of those partitions can be 
specified. Partition theory thus provides a formal-ontological foundation for 
understanding human partitioning activity in the geographic domain.  
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