A taxonomy of partitions

Thomas Bittner and Barry Smith

Department of Computer Science, Northwestern University, bittner@cs.nwu.edu
Department of Phil osophy, Center for Cogrnitive Science axd NCGIA, State University of
New York, Buffalo, phismith@buffalo.edu

Abstrad: In this paper we propose aformal theory of partitions (ways of
dividing up @ sorting a mapping redity) and we show how the theory can be
applied in the geospatial domain. We dharaderize partitions at two levels: as
systems of cdls (theory A), andin terms of their projediverelationto redity
(theory B). Welay down condtions of well-formednessfor partitions and we
define what it means for partitions to projed truly onto redity. We continue
by classfying well-formed partitions aong three axes: (a) degree of
correspondence between partition cdls and oljeds in redity; (b) degreeto
which a partition represents the mereologicd structure of the domain it is
projeded orto; and (c) degreeof completenessand exhaustivenesswithwhich
a partition represents redity. This classficaion is used to charaderizethree
types of partitions that play an important role in spatial information science
cadastral partitions, categoricd coverages, andthe partitionsinvolved in folk
caegorizations of the geospatial domain.

1 Introduction

Imagine that you are standing ona bridge bove ahighway cheding df the makes
and models of the cas that are passng wnderneah. Or that you are apostal clerk
dividing envelopes into bundes or a laboratory technician sorting samples of
baderia into spedes and sub-spedes. Or imagine that you are making a list of the
fosslsin you museum or of the guestsin you hotel ona cetain night. In ead of
these caesyouare employinga cetain grid o cdls, and youarerecognizing certain
objeds as being locaed in those cdls. We shall cdl such agrid of cdlsa partition,
andwe shall argue that partitionsareinvolved in al li sting, sorting, catalogungand
mapping adivities.

Partitions are ways of structuring and undbrstanding redity. Some partitions are
flat: they amourt to nahing more than amere list. Other partitions are hierarchicd:
they consist of cdlsand subcdl s, the latter being contained within the former. Some
partitions are built in order to refled independently existing dvisions onthe side of
objeds in the world (the subdvison d the animal kingdam into spedes, the
subdvision d heavenly bodesinto galaxies, stars, planets, moons). Other partitions
— for exampl e the partitions creaed by rightclub doamen or elecoral redistricting
commissons — are themselves such asto creae the necessary divisions on the side
of their obeds, and sometimes they creae those very obeds themselves.

In Smith and Brogaad (2000 the notion d partition is introduced as a
generalizaion d David Lewis's (1997 conception d classs as the mereologicd
sums of their singletons. Given its st-theoretica roats, our basic formal ontology o



partitions will have two parts: A. a theory of the relations between cdls and the
partitions in which they are housed, and B. a theory of the relations between cdls
and oljedsin redity. The cournterpart of A in a set-theoretic context would be the
study d the relations among subsets of a single set; the wurterpart of B would be
the study d the relations between sets and their members.

Division into urits, courting and percding ou, listing, sorting, pigeonholing,
caaloguing are adivities performed by human beingsin their traffic with the world.
Partitions are the agnitive devices designed and bult by human beings to fulfill
these various purposes. As will be dea from what follows, the nation d partition
that is hereby implied is only distantly related to the more familiar nation d a
partition defined in terms of equivalence dasses.

The paper is gructured as follows. We start with a discusson d properties of
partitions as gystems of cdlsin the sense of theory A. We then consider partitionsin
their projedive relation to redity in the sense of theory B. This provides uswith the
means to define what it means to say that a partition truly projeds onto redity. In
Sedion 4 we provide a ¢asdficaion d partition by charaderizing various
properties of the corresponcence between partition and redity. We consider three
classes of partitions that are relevant in the geographic domain in Secion 5

2 Partitions as system of cells

2.1 Partitions

Theory A studies properties partitions have in virtue of the relations between andthe
operations performed uponthe céls from out of which they are built. All partitions
invalve cdlsarranged together in some sort of structure. This gructureisintrinsic to
the partition itself, independently of the objeds which may be located in its cdls.
Cells in partitions may be nested ore inside ancther in the way in which, for
example, the spedes crow is nested inside the spedes bird which in turn is nested
inside the genus vertebrate in standard hiologicd taxonamies. We say that one cédl,
z,, isasubcdl of anather, z,, if the first is contained in the latter (‘Cell’ is‘Zelle' in
German).

Wewrite z 0 z, in order to designate thisrelationship. The subcdl relationO isa
reflexive, trangitive, and antisymmetric relation. Reflexivity meansthat ead cdl is,
trivially, a subcdl of itself. The property of antisymmetry spedfiesthe relationship
between identity and the subcdl relation: if z, Oz, and z, Oz then z, =
z,. Transitivity meansthat if z, O z, and z, U z, then z, [ z,. The nestednessof cdls
inside apartition yields chains of cdls stisfyingz, Oz, O... 0 z,. We shall demand,
asthefirst of several master condti onswhich we shall impose onall partiti ons, that:

MAL: The dainsz; Oz, O... O z, in a partition are always finite.

We shall cdl the cdls at the ends of such chains minimal. MA3 leaves open the
isale as to whether partitions themselves are finite: thus it does nat rule out the
posshility that a given cdl within a partition might have infinitely many immediate
subcdls.

Foll owing Smith (1991) we can define the partition-theoretic sum and product of
cell swithin pertitions asfoll ows. The partition-theoretic sum z =z, 00 z, of two cdls



in a partition as a 0-minimal cdl satisfying a mnstraint to the dfed that z, [ z end
z, [0 z. Noticethat this partiti on-theoretic sum is distinct from the mereologica sum
of cdls. (Relative to the standard geopditi cd partition d the surfaceof the globe,
the partiti on-theoretic sum of Malta and Cyprusis:. the Briti sh Commonwedth.) The
partiti on-theoretic product, z = z, n z,, of two cdlsis defined ony if z, and z, are
not mereologicdly digoint. If it isdefined, then it yields alargest subcdl shared in
common byz, andz,.

Every partition A (‘partition’ is‘Aufteilung’ in German) has a maximal cdl. We
define the amaximal cel of a partition as:

M(z1,A) = Z(z5, A) and 0z: Z(z,A) - zO z4
where ‘Z(z, A)’ meansthat z isa cdl in the partition A. (In what foll ows we shall
omit the predicate Z(z, A) in cases where it is clea that we ae talking abou cdls
within some fixed partition A. In addition, initial universal quantifiers will
henceforth be taken as understood) We now define the roat of a partition as the
unique maximal cdl:

r(A)=z = M(z,A) and 0zy: M(z,A) > 2= 2,
and demand that every partition hesaroat:

MA2: [z r(A)=z
Thisroat is such that all the célsinthe partitionareincluded in it as subcdls. MA2
implies that there ae no partitions which are empty tout court in that they have no
cdlsat all.
Every pair of distinct cdlsin a partition stand to ead ather within the partition
either in the subcdl relation a in the relation d mereologicd digointness Thus if
two cdls overlap, then ony because oneisa subcdl of the other:

MA3: [ (z=z1n2) - z702z0rz; 02.

2.2Trees

Philosophers snce Aristotle have recogrized that nested partitions can be
represented as branching structures which mathematicians nowadays cdled trees.
We here take the possbility of such representation as a @wnstraint on what will be
allowed to court as a partition within the terms of our theory.

MA4:  Partitions can be represented as trees.

Trees are spedal sorts of graphs (they are direded graphs without cycles). That a
treeis withou cycles means that, if we move dongits edges in such a way as to
follow the diredion d these alges, then we will always move down the tree andin
such away that, however far we travel, we will never return to the point from which
we started.

The duality of trees and partitions can be proved by showing that every tree ca
be transformed into a structure, analogots to a Venn dagram, in which partition
cdlsarerepresented as topdogicdly simple and regular non-interseding regions of
the plane. Conversely every array of nonrinterseding, possbly nested ringsin the
plain can be transformed into atreein such away that ead ring is represented by a
nock in the tree and ead dreded link in the tree represents an immediately



contains relation between the crrespondng peir of nested rings. We can for
ill ustrative purposes think of ead partition as sich a planar map.

2.3 Partition-theor etic sum and maximal cells

When we nsider a partition as a Venn dagram, then minimal céls correspondto
smallest regions within the diagram. It is important to recogrize that itis not in
general the cae that every mereologicd sum of such regions has a crrespondng
cdl inthe partition. Thereisnocdl in ou standard hiologicd partition d the animal
kingdam consisting d rabhits together with jellyfish, and there is no cdl, in ou
standard geopditi cd partition d the surfaceof the globe consisting of Hong Kong
together with Algeria. It isfor thisreason that the mereologicd sum of cdlsandthe
partition-theoretic sum of cdls defined above ae distinct operations. Since, by
MAZ2, partitions always have aroot cdl, the partition-theoretic sum is always
defined. However the results produced bythisoperation are not necessarily identicd
to those produced by the operation d taking standard mereologicd sums. We can
however asert that the mereologicd sum isin every case apart of the partition
theoretic sum. We can think of 0 as the result of restricting mereologicd parthood
relation, <, to natural units within a mereologicad whale.

Consider a wlledion d subsets of some set forming a partition d this st in the
standard mathematicd sense. These subsets (equivalence das®s) are (1) mutually
exhaustive and (2) pairwise digoint. An analogue of condition (2) holdsfor minimal
cdls in ou present framework, since minimal cdls are dways mereologicdly
digoint. Our nonminimal cdls correspond to mereologicd sums of equivalence
classesin the standard mathematicd framework. Condtion (1) does nat necessrily
haod within the framework of partitiontheory however. Thisisbecause, even where
the partiti on-theoretic sum of minimal cdlsisidenticd to theroot cel, the minimal
cdls dill do nd necessarily exhaust the partition as a whole. Consider a partition
with just three cdl slabelled: people, Bill, and Hillary.

3 Partitionsin their projective relation to reality

3.1 Projection

Partitions are more than just systems of cdls. They are mnstructed to serve &
pictures or maps of redity. In some caesthe cdlsof apartition projed but there ae
no okedsfor them to projed onto. (Consider the partition cataloguing Aztecgods.)
Here, however, we ae interested primarily in partitions which do na projed out
into thin air in thisway. We write ‘' P(z, 0)' asan abbreviationfor: cdl zisprojeded
onto oljea o. In what follows we shall assume that a unique projedion is defined
for ead partition. In a more general theory we can allow projedions to vary with
time whil e the partition remains fixed (for example when we use aterritorial grid of
cdls to map the presence of birds of given spedesin gven areas from one moment
to the next).

The theory of partitions allows us to employ a very general reading d the term
‘objed’. An oljea isany pation d redity: an individual, a part of an individual, a
classof individuals (for example abiologicd spedes), a spatia region, a pdliticd
unit (courty, padli ng dstrict, nation), or even (for present purposes) the universe s a



whae. An oljed in the partition-theoretic senseis everything orto which some cél
of a partition can projed.

Objeds can be dther of the bora fide or of the fiat sort (Smith 1995. Bona fide
objeds exist independently of human pertitioning adivity. They are, smply,
recogrized by partition cdls. Fiat objeds are objeds creaed by human partitioning
adivity. Hence the oorrespondng pertition cdls do nd only recmgrize their fiat
objeds — the latter are in fad creaed throughthe very projedion d partition cels
onto a arrespondng pation o redity. Examples are the States of Wyoming and
Montana.

3.2 Location

We ae interested in partitions that succeal — which isto say, in partitions that are
true of the correspondng pation d redity. That not all partitions are true follows
from the faa that the relation P(z, o) ismarked bya cetain taint of subjedivity and
by a cetain posshility of failure. The relation ‘L(o, z)' abbreviates: objed o is
loceted at cdl z. L(o, z) isfreeof taints of failure. It is determinately true, of every
objed o, and d every cdl z, that o is either locaed, or not located, in z. When
projedion succeals, then location is what results. Projedion and locaion thus
correspond to the two ‘diredions of fit’ — from mind to world and from world to
mind — between an assertion and the wrrespondng truthmaking pation d redity.
(Seale 1983 Smith 1999

Locaion presuppases projedion: an oljed is never located in a cdl unless
throughthe projedion relation associated with the relevant partition. Thus

MB1 L(z,0) - Fo, 2).

In the cae where no errors have been madein the construction d apartition, L (o,
z) hddsif and orly if P(z, 0). Thisisbecause, in such a case, if apartition projedsa
given cdl onto agiven ojed, then that objed isindeed located in the crrespondng
cdl. Very many partitions — from automobile comporent cataloguesto ou maps of
states and retions — have this quality withou further ado, and it is such partitions
uponwhich we shall concentrate in what foll ows. Such partiti ons are transparent to
the correspondng pation d redity. Inthiscase projedionandlocéionare mnverse
relations with resped to the partition in question. Formally we write:

DTr:  Tr(A) = 0z0Oo: Z(z, A) - (P(z, 0) - L(0, 2))
We now impose afurther master condtion to the dfed that:

MB2: All partitions are transparent in the sense of DTr.

MB2 ensures that objeds are acdually locaed at the cdls that projed onto them.
Notice however that a transparent partition, ac@rding to ou definition, may still
have empty cdls. (Think o the Periodic Table, which leaves empty cdls for
chemicd elements of types which have yet to be deteded.) MB2 tellsusonly that, if
a cdl in a partition projeds uponsome objed, then that objed isindeed located in
the correspondng cdl. It does nat tell us what happensin case a cd failsto projed
onto anything at al. DTr is correspondngly only afirst step alongthe way towards
adefinition d truth for partitions.

Foll owing Smith and Brogaad (2000 we define the nation d recognition, of an
objed by a cdl, asfollows. An ojed oisrecognized by thecdl zif and ony if zis
projected onto oand the objed o isadually located at z. Formally we write;



DR1: R(z 0)=P(z,0)andL(o, 2)
More generally, a partition recogrizes an oljed if it has a cdl that recognizes the
objeda.

DR2: R(A, 0)=[Z Z(z, A) and R(z, 0)
The relation defined in DR2 is the partition-theoretic analogue of the standard set-
membership relation. Since partitions are gnitive devices, and cogrition is not
omniscient, it followsthat no pertitionis sich asto recogrize dl objeds. Partitions
have limited damains. In particular, partitions have limitations on their domains
which have to do with the phenomenon d granularity. This will be discussed in
Sedion 34

3.3 Recognizing and preserving mereological structure

That uponwhich a partitionis projeded isa cetain damain o objedsinredity. We
shall conceive the domain of a partition as a mereologicd sum. It is, asit were, the
total massof stuff uponwhich the partition sets to work: thusit is guff prior to any
of the divisions or demarcations effeded by the partition itself. The domains of
partitions will comprehend nd only individual objedsandtheir constituents (atoms,
moleaules, limbs, organs), but aso goups or popdations of individuals (for
example biologicd spedes and genera, battalions and dvisions, archipelagos and
diasporas) and their constituent members. We will seebelow that spatial partitions,
for example cdegoricd coverages (Chrisman 1983, are one important family of
partitions in our more general sense. W shall use the notation D(0,A) in order to
denote that the objed o isa part of the domain of the partition A.

Partitions —think again of Venn dagrams— refled the basic part-whale structure
of redity throughthe faa that the cdlsin a partition are themselves gich asto stand
in the relation o part to whole. This means that, given the master condtions
expresed within the framework of theory A abowe, partitions have & least the
potential to reflea the mereologicd structure of the domain orto which they are
projeded. Andin felicitous cases this potential isredized.

We say that the cdls z, and z, reflect the mereologicd relationship between the
objeds onto which they are projeded if and ony if the following hdds:

DR3: RY(z3, z,) = [001,0,: (R(z1, 01) and R(z,, 02)) —» (z1 0 2, —» 01 £ 0y).
This means that if z, is a subcdl of z, then any ojed recognized by z, is a part of
any oljea remgnrized by z,. A partition refleds the mereologicd structure of the
domain it isprojeced orto if and orly if ead pair of cdlsrecgrizesin thisway the
mereologicd structure onthe side of their objeds:

DR4:  RS(A) = Uz, (Z(z1, A) and Z(z,, A)) ~ RY(z4, 2,)
We then impase anew master condtion:

MB3  All partitions are structure reflecting in the sense of DR4.
What this meansisthat al partitions are such that if one cdl isasubcdl of ancther,
then any oljed recgrized bythe first cel isapart of any oljed recogrized bythe
seoond
MB3 is dill very we&k. It does little more than ensure that partitions which
satisfy it do nd misrepresent the mereologicd relationships between their objeds.
But partitions might still be blind to (traceover) such relationships. In arder to see



what this invalves, we nee to take a d¢oser look at the relations O and <. Both
represent partial rather than total orderings. Thismeansthat the akioms[Ox,y: (x<y
ory<x)andUz,z,;: (z,0 z,orz,0z) do nd hdd. There may be objeds (or cdls)
that do nd standin the relations < (or 0) to ead ather at all.

Objeds that do nd stand to ead ather in the part-whole relation are dther
digoint or they are such as to overlap mereologicdly. On the partition side the
interpretation d the asence of a part-whole relation between two cdlsis smewhat
different. If z, and z, do nd standin the relation [ to ead ather in agiven partition,
then this means ‘the partition daes not know (or does not care) how z, and z, are
related.” We note that the minimal cdlsin apartition do ne stand in the relation [
to ead ather. From thiswe ae antitled to infer nathing at all abou the mereologicd
relations amongthe @rrespondng ohjeds.

Consider, for example, a partition that contains cdl s that recogrize Johnand Hs
arm, i.e., L(John z) andL(Johrisarm, z,). Then cdl z, need na be aproper subcel
of the cdl z,. Partitions may trace over mereologicd relationships between the
objeds they recogrize, but MB3 is drongenoughto ensure that, if a partitiontells
us omething abou the mereologica relationships onthe side of the objedswhich it
reagrizes, then what it tellsusistrue.

Consider adomain consisting d two regions, x and y, that properly overlap, i.e.,
xOy=vand xOy# xand xOy # y where [J denotes mereologicd intersedionin
the redm of objeds. Consider now a partition that recognizesx and vy, i.e., R(z,, X)
and R(z,, y). Asuume further that z, and z, do nd stand in any subcdl relation to
eath aher, i.e., their partitiontheoretic intersedion is empty. We cax now
distinguish two cases that ill satisfy owr transparency condtion (DTr): (1) our
partition daes not recogrize v; (2) it recogrizes v but traces over its mereologicd
relationships to x and y. At the level of theory A we have explicitly excluded the
posshility that cdls which are not subcdls of ead aher overlap (MA3). This
refledsthe faa that the treestructure of our partitionsrules out cycles (diamonds) in
their graph-theoretic representation. This condtionis stisfied in case (1) aswell as
in cese (2).

3.4 Granularity

The cdls of a partition carry with them the feaure of granularity. They recgrize
only single whae units. If a partition recgnizes nat only wholes but also ore or
more parts of such whales, then this is because there ae alditional cdlsin the
partition which do this recognizing job. Consider, for example, a partition that
recgrizes human beings, i.e., it has cdl sthat projed onto John Mary, and so forth.
This partition daes not recognize parts of human beings — such as bhn's arm or
Mary’'s dodder — unless we ald extra cdls for this purpose. If a partition
recgrizes wholes and their parts, then it is not necessarily the cae that it also
refleds the mereologica relationships between the two (as discussed above).

The theory of partitions inherits from mereology the feaure that it is consistent
with bah an axiom to the dfed that atoms exist and with the negation o this axiom.
The theory thus enables us to remain neutral as to the existence of any utimate
smples in redity from out of which ather objeds would be mnstructed via
summation. This is due to the fad that partitions are by definition top-down
structures. The duality with trees puts gpedal emphasis on this asped: we trace



down from the roat until we reat aled. A led need nd necessarily be a atom in
the sense that it projeds uponsomething which has no further parts. The fad that
there ae leaves smply indicates that the partition daes not care eou what lies
beneah a cetain level of granularity. An ohjed locaed at aminimal cdl isanatom
only relative to the partition involved.

Partitions are aogritive devices which have the built-in capability to recogrize
objeds and to refled certain feaures of the latter's mereologicd structure. They
have two ways of tradng ower or ignaing mereologicd structure: (1) tradng ovwer
mereologicd relations between the objeds (wholes) which they recognize (2)
tradng over parts. (2) is (unlessatomism is true) manifested by every partition, for
partitions are in every case coarse grained.

4 Varieties of transparent partitions

In this sedionwe discuss ®me of the more fundamental varieties of those partiti ons
which satisfy the master condtions given above. We dassfy such partitions along
three esentially orthogoral axes: (@) degreeof corresponcenceto oljeds; (b) degree
of structural fit; and (c) degreeof completeness

4.1 Functionality constraints

Partitions which possessthe maximum degree of corresponcence to oljeds must
first of all be such asto rule out ambiguity onthe side of their cdl | abels (or onthe
side of whatever it isin virtue of which projedioniseffeded). This meansthat they
must be such that their associated projedionisafunctional relation:

CFP. P(z3, 00) and P(z;, 05) — (01=0, —» 71 = 2p)

For partitions satisfying CFP, cédls are projeded orto single objeds (one rather
than two). We can then use afunctional natation, p(z)=o, instead of P(z, 0), for
projection. Notice, though that p might till be apartial function, since CFP does
not rule out the cae where there ae enpty cdls. An example of a partition nd
satisfying CFP is the partition creaed by a lazy schodboy studying the history of
the Civil War in England. This has one cdl | abeled ‘ Cromwell’ —and so it does not
distinguish between Oliver and hHs n Richard. Ancther example might be the
partition uili zed by those who talk of ‘China asif the Repuldic of China and the
People’s RepuMlic of Chinawere one objed.

Consider apartitionlabeled ‘ heavenly bodes and havingjust threeminimal cdls
labeled ‘' The Morning Star’ * The Evening Star’, and ‘Venus', respedively. Aswe
know, all three cdls projed onto the same objed. Yet even <o, it is gill perfedly
consistent with ou definitions that this partitionis true —that its distinct cdlstruly,
though unknwingly, recogrize the same objed; for these cdls are minimal, and
thus neutral about the passble mereologicd relations obtaining onthe side of that
onto which they projed. It is not unuwsual that we give different names (or
coordinates, or classlabels) to things in cases where we do nd know that they are
acdualy the same. A good prtition, though shoud clealy be one in which such
errors are avoided.

Partitions manifesting the highest degree of corresponcence to oljeds mugt, in
other words, be onesin which locétionisafunctional relation:



CFL: L(0g, z1) and L(0z, 22) —» (Z1 =25 » 01 =0y)
In partitions that satisfy CFL, location is a (posgbly partial) function, i.e., objeds
are locaed at single cdls (one rather than two). The locaion function is partial,
since no partition is omniscient. In transparent partitions satisfying CFP and CFL,
projedion and location are inverse relations wherever both are defined.

4.2 Structural constraints

We required o true partitions that they reflead the mereologicd structure of the
domain they recgrize Remember that such refledionisto be understoodin such a
way that it leaves room for the passbility that a partition is merely neutral about
(traces over) some aspeds of the mereologicd structure of itstarget domain. Taking
this into acournt, we can arder partitions acarding to the degree to which they
acually represent the mereologicad structure on the side of the objeds onto which
they are projeded. At the one extreme we have: (1) partitionsthat completely reflea
the mereologicd relations hading ketween the objedsthey recogrize. At the other
extreme ae (2): partitions that completely traceover the mereologicd structure of
the objeds they remgrize Between these two extremes we have partitions that
refled some but nat all of the mereologicd structure of the objeds they recgrize

Under heading (1) are thaose true partitions which satisfy the weak conwverse of
MB3, which meansthat if o, ispart of 0,, andif bath o and g arerecogrized bythe
partition, then the cdl at which o, islocaed is a subcdl of the cdl at which g, is
located. Formally we can expressthis as foll ows:

Csi o< 0and L(o, zy) and L(0y, 2) - 2z, 0 2,

We cdl partitions satisfying CS1 mereologically monotonic. An example of a
mereologicdly monaone partition is the Dewey caaogue system used in libraries
in order to organize the books in stock.

4.3 Completeness and exhaustiveness

So far we have dlowed partitions to contain empty cdls, i.e., cdls that do nd
projed onto any ohjed. We now consider partitions which satisfy the mnstraint that
every cdl remgnizes me objed:

CcC Z(z,A) - [ R(z, 0)
We say that partitions that satisfy CC project completely. Noticethat this condtion
isindependent of the functional or relational charader of projedionandlocation. Of
particular interest, however, are partitionsthat projea completely andin such away
that projedionis a total function. These ae partitions which satisfy bath CFP and
CC.

So far we have acceted that there ae objedsin ou target domain that are not
loceted at any cdl. Those partitions are often na very satisfying: governments want
all their subjedsto be locaed in some cdl of their partition d taxable individuals.
They want their partitions to satisfy a completeness constraint to the dfed that
every ohjed in the domain is indead recognized. In this case we say locaion is
complete. Alternatively we say that the partition exhaustsits domain. Unfortunately
we caina use



*) D(o, A) - [Iz: Z(z, A) and R(z, 0)
saying that if some oljed o is part of the domain of the partition A then thereisa
cdl zin A that recogrizes o to capture the desired constraint. This is becaise, for
example, the tax authorities do nd (as of this writing) want to tax the separate
moleaules of their subjeds.

We believe that it will be necessry to promote several restricted forms of
exhaustiveness ead one of which will approximate in dfferent ways to the
(unredizable) condtion d unrestricted exhaustivenessexpressed in (*). To seehow
one such exhaustiveness condtion might work in first (schematic) approximation,
let usintroduce asortal predicate ¢ that singles out the kinds of objeds our taxation
partition is suppcsed to recogrize (for example, human beings rather than parts of
human beings). We now demand that the taxation partition recogrize dl of those
objedsin its domain which satisfy ¢:

CE D(o, A) and ¢(0) — [ Z(z, A) and R(z, 0).
Think of CE asasertingthe cmmpletenessof one partitionrelative to ancther, the ¢-
totalizer partition, which consists exclusively of minimal cdlsinwhich al and oy
the objeds stisfying ¢ are locaed. Note that the idea underlying CE is closely
related to the idea of granularity. An aternative means of formulating an
exhaustivenesscondtion like CE, which constrains what can be located at minimal
cdls, isvia arestriction on olped size

4.4 Redundancy

Partitions are natural cogritive devices and the designers and wsers of such devices
build them in such a way that they will serve practicd purposes. This means that
they will normally avoid certain sorts of redundancy. Here we distinguish two sorts
of redundhncy: correspondence redundancy and structural redundancy.

Firstly, we have remarked already that necessarily empty cdl s (cdlswhaose labels
tell us ex ante that no ohjeds can be located within them) are one type of
redunchncy of correspondence. Anaother such type would be invalved if a partition
were to contain two dstinct cdlswhose labelstell us, again ex ante, that they must
necessarily projed uponthe very same objed. Thus, trivially, a partition shoud na
contain two cedls with identicd labels. Partitions that avoid redundancy of
corresponcence satisfy:

CR1L: CFPand CFL and CC

The second sort of redundancy is nat quite so trivial. Consider a partition with a
cdl | abeled vertebrateswhich occursasasubcdl of the cédl | abeled chordatesin our
standard biologicd clasdfication d the animal kingdam. Almost all chordatesarein
fad vertebrates. Suppase (for the sake of argument) that biologists were to discover
that all chordates must be vertebrates. Then in order to avoid structural redundancy
they would coll apse into ore cdl the two cdl s of chordates and vertebrates which at
present occupy dstinct levels within their zodogicd partitions. A constraint
designed to rule out such structural reduncdancy would be:

CR2: A cdl in apartition never has exactly one immediate descendant.



From this it foll ows that a one-cdled partitionisidenticd with itscdl. (Thisrules
out partition-theoretic analogues of the set-theorist’s{{ a}} .)

5 Partitions of geographic space

Partitions are, we repea, natural cognitive devices. We asaume that most of them
aretruein the sense that they are transparent and structure refleding (they satisfy all
of the master condtions MA1-4 and MB1-3 abowe). If we imagine the system of
cdls of a partition as being ranged over against a system of objeds, with oljeds
located in all the cdlsof the partition (under a cetainrelation d projedion), thenin
the best case we have apartition that is mereologicdly monaone (CS1), projects
completely (CC) and exhaugtively (CE), and establi shes afunctional relationship to
the domain it maps (CFP, CFL). Such ided partitions are thereby also free of
redundancy and hence CR1 and CR2 hdd. We find examples of such perfedion
abowe dl inthe astraa, fiat domains of databases and spatial subdvisions.

In what follows we discuss cadastral maps, which come dose to representing
partitions which are perfed in the sense defined. We then move on to discuss
caegoricd coverages which fall short of this sort of exad fit between partition and
the correspondng ohedsin redity. Finally we discussthe ‘folk’ categorizations of
geographic redity.

5.1 The perfect cadastre

The perfed cadastreiswhat existsin the databases of cadastral authorities. It iswhat
you seewhen youexamine calastral maps. Y ou seemathematicaly exad linesthat
separate land parcds. In the remainder we assume for the sake of simpli city that the
cdlsonthe map projed onto correspondng parcesin redity (that the map contains
no errors). We asaume dso that parcds are recogrized by minimal cdls of the
cadastral partition. Partition cdls are represented, for example, by entries in the
German ‘Grundbuch’ or in its computational equivalents. There ae very strict rules
for inserting, deleting, or changing cdlsin this partition, rules gandardly expressd
in the form of laws. These rules grive to guaranteethat the calastral partition has
theided properties st forth above.

Land parcesarefiat objeds. They are aeaed throughthe projecion o the cdls
in a calastre onto redity itself. This is a geodetic projedion d a sort which is
described by a small number of axioms. It is mathematicaly well defined and can
even (within certain limits) be computed. This projedion imposes fiat boundaries
onto redity in the same way that the plotter draws the lines ona calastral map.

The projedion (in ou partition-theoretic sense) has the following poperties:
Cadastral partitions are true in that sense that cdls corredly recogrizeobjeds, i.e.,
P(z,0) - L(0,2). Projedionandlocationarefunctional relations, i.e., one cdl projeds
onto ore land parce and ore parcd islocated at one cdl. Cadastral partitions are
CE-complete. The intuition undrlying this thesis is that ‘there ae no nemans
lands’, which means. no zones within the domain o the calastral partition that are
asggned to nocdl within the partitionitself. Cadastres stisfy also CC-completness
in that they satisfy a mnstraint to the dfed that every pieceof landis registered.
These properties are ensured bylaw and extensive training o thosewho are charged
with the task of maintaining the calastre.



Cadastral partitions are (like most tax partitions) flat, in the sense that they
reagrize no mereologicd structure on the side of their objeds. A tax partition
recgrizing families as well as individuals, and a calastral partition recogrizing
multi-parcd estates as well as separate single parces, may however embody some
mereologicd structure. Consequently, cadastre partitions are not mereologicdly
monaone, i.e., CS1 dees not necessarily apply. They have, however, the property
that they also recognize some mereo-topdogicd structurein that sense that two cells
are ajacet if and only if the correspondngland parcds are neighbas.

5.2 Categorical coverages

Areaclassmaps (W. Bunge 1966 or caegoricd coverages (Chrisman 1982 belong
to atype of thematic maps that show the relationship of a property or attribute to a
spedfic geographic area A prototypicd example of a cdegoricd coverage is the
land we map, in which a taxonamy of land wse dasses is determined (e.g.,
residential, commercial, industrial, transportation) and the spedfic aea(zone) is
then evaluated along the values of this taxonamy (Volta and Egenhdfer 1993.
Ancther prototypicd example is il maps, which are based onthe dasdfication o
soil coveringthe surfaceof the eath (clay, dit, sand, ...). The 2nesof a caegoricd
coverage ae ajointly exhaustive and peir-wise digoint subdvision d the relevant
space(Bead 1983.

Using the notation introduced in this paper, there ae two partitions invaved in
caegoricd coverages. the partition d an attribute domain (e.g., land use or soil) and
the correspondng pertition d the surfaceof the eath into zones. The projedion o a
partition orto the atribute domain creaes a partition that is then in turn projeded
onto the surfaceof the eath. Both of the partitionsinvolved satisfy all of the master
condtions st forth above. The dose relationship between the two partitions has
been discussed for example by Bead (1988 and Frank at al. (1997. The same
redprocal relationship is ill ustrated in the way in which every map (a partition o
gpace stands to its legend (a partition d the dtribute domain represented on the
map).

To begin, consider the spatial comporent of a cdegoricd coverage, i.e., the
partition of some part of the surfaceof the eath. Asalrealy discussed in Smith and
Brogaad (2000 spatial partitions enjoy peauliarly niceproperties. Usingthe nations
introduced in this paper we ae now able to spedfy four of these properties more
predsely:

Firstly, the partition is complete in that sense that there ae no empty cdls (CC).
Seoondy the minimal cdls of the spatia partition exhaust a cetain damain (a part
of the surfaceof the eath) in the sense of CE. Consequently the roat of the partition
reamgrizes the mereologicd sum of all regions (zones) reagrized by its cdls.
Thirdly, the crrespondence between the cdls in the partition o the spatia
comporent of a cdegoricd coverage and the zones it remgrizes is one-one and
onto. The fad that projecion and location are here total, functional and mutually
inverse is exploited extensively in the formalizetion and representation o
caegoricd coverges (e.g. Frank at al 1997, Erwig and Schneider 1999 Bittner and
Stell 1998. Fourthly, as mentioned abowve, spatial partiti ons recogrize some of the
mereotopdogicd structure of their domains even thoughthey fall short of being
mereologicdly monaone in the sense of CSL.



Due to these strong poperties of their spatiad comporent and the dose
relationship between the spatial and attribute comporents of categoricd coverages,
their partition d the pertinent attribute domain also satisfies the following rather
strong congtraints:

Firstly, the partition d the dtribute domain is exhaustive relative to the spatial
comporent: every minimal cdl in the spatial partition hes a crrespondng minimal
cdl in the atribute partition. Consequently, the partition d the dtribute domain
exhausts the domain of all cases that actually occur in the region covered by the
correspondng spatial partition. For example, if our spatial partition rojedsonto a
desert, then the arrespondng partition d soil types neals to be exhaustive for the
different types of sand that occur in this areabut it does not need to contain a cél
labeled ‘clay’. Sewmndy, projedion and location reed bah to be functional,
otherwise the regions carved ou onthe spatial side would na be jointly exhaustive
and pirwise digoint. Both functions may however be partial, as long as they are
exhaustive relative to the pertinent spatial comporent.

Partiti ons of attribute domains are not necessarily limited to partitions consisting
only of minimal cdls(and oreroct cdl). Consider apartition d the dtribute domain
Land-Use / Land-Coverage. There might be, for example, a nonrminimal cel
labeled ‘ Agricultural’ inthis partitionwith subcedl s* Cultivated Cropland’, * Pasture’,
‘Livestock’, and ‘Poultry’ (Frank at al. 1997). Hierarchicd partitions of attribute
domains are often creaed by refinement, i.e., we start with aroot cdl remgnizing
the atribute domain as a whole and add layers of subcdlsin such a way that the
mereologicd sum of everything that is recognized by the cdls of one layer is
recogrized also by the roat cdl. Consider for example apartition d the atribute
domain ‘Rainfal in inches. There might be alayer of cdls remgnizing values
fallingwithin ore or other of the threeintervals[0, 5), [5, 10), [10, «), together with
amore refined layer recognizing valuesin: [0, 2.5), [2.5, 5), [5, 7.5), [7.5, 10), [10,
00),

Hierarchicd partitions of the dtribute domain creae potentially hierarchicd
partitions of the spatial domain. Notice that the spatial comporent of hierarchicd
caegoricd coverages is nat necessarily nonredundant in the sense of CR2. In the
spatial comporent of a hierarchicd categoricd coverage ‘Land Usage (Chicago)’
there might be one single region that is recogrized by bdh the cdls‘Agricultural’
and ‘Cultivated Cropland'. In this case location is not a function. Technicdly the
problem is dedt with by always using the most spedfic cdl (the one farthest away
from the root). The latter then exhaust space & every level of resolution. However,
again, hierarchicd spatial partitions are not mereologicdly monaone.

It isimportant to seethat the regularity of these partiti on structures is due to the
fad that the objeds recogrized bythe given partitions are fiat objeds carved ou by
the projeding pertitions themselves. For example, in the caegoricd coverage for
soil typesthere ae cetainly bora fide diff erences between sand and solid rock but
the distinction between the many soil -typesin between are cetainly of the fiat sort.
They are caved ou or creaed by impasing a partition orto the &atribute domain
‘Soil onthe surfaceof Earth’. This partition creaes a spatial partition that, in being
projeded orto the surface of the eath, imposes fiat boundries demarking
‘caegoricd zones. Thaose boundries metimes coincide with bora fide
boundxriesin redity but in most casesthey do nd.



5.3 A partition recognizing water bodies

We discussed spatia partitions or attribute partitions that induce spatial partiti ons.
Those partitions are charaderized by a high degreeof structure and ader not only
dueto the fad that they are spatial subdvisions but also dweto thefad that there ae
well defined and strict rules (of scientific methoddogy a of law) which govern their
congtruction and projedion. In general partitions are much lesswell structured.

loch
body ake—Q é tamn

narrow reservoir
of ocean lake*
water pon millpond
pool

tank

* = term appeas twice

Figure 1: Ontology o Water Bodies and Related Entities, based on Definitions in the
American Heritage Dictionary (taken from Smith and Mark 1999

Smith and Mark 1999analyzed the partition d water bodes and related entities
which can be extraded from the definitions contained in the American Heritage
Dictionary. The graph-theoretic representation o this partitionis givenin Figure 1.
If we analyzethis graph, then we can see eaily that it isnot atree sinceit contains
cycles (e.g., pond tank, reservoir, pond. We dso can seethat there ae two cdls
labelled ‘lake’. The latter clealy indicaesthat locaionisnot afunction relative to
this partition.

We hypahesizethat there ae spedal feaures of dictionary definitions as hitherto
compiled in virtue of which their underlying taxonamies appea to deviate from the
tree structure. Moreover Guarino and Welty (2000 have shown haowv such
taxonamies can very easly be recondtituted as trees in systematic fashion. This
gives us me mnfidencethat the ideas presented above may provide aframework
for the mnstruction d more mherent taxonamies for use in dictionaries and data
standards in the future.

6 Summary and conclusions

This paper isa contribution to the formal ontology d partitions. We defined master
condtions that need to be satisfied by every partition. These master condtions fall
into two groups: (A) master condtions charaderizing partitions as /stems of cdls,
and (B) master condti ons describing peartitionsin their projedive relationto redity.

At the level of theory (A) partitions are systems of cdlsthat are partially ordered
by the partiti on-theoretic subcel relation. Such systems of cdls are such that they
can be dways represented as trees, i.e., they are finite, have aunique maximal
element, andthey do nd have ¢yclesin their graph representation. But partitionsare
more than just systems of cells. They are mgnitive devicesthat are direded towards
redity. At the level of theory B we take this feaure into acournt and charaderize
partitions using the relations of projedion and locaion. Cells in partitions are



projeded orto oljeds in redity. Objeds are locaed at cels when projedion
succeals. We then say that a partition recognizes the objeds that are located at its
cdls.

Partitions do nd only reagrize objeds, they are aso cgpable of refleding the
mereologicd structure of the objedsthey recognizein the mereologicd structure of
their cdl array defined intheory A. Thisdoesnat mean that all partitionsadually do
refled the mereologicd structure of the objedsthey recogrize, however, for it isan
important feaure of partitions that they are also cgoable of tradng ower
mereologicd structure. There ae, for example, large dasss of partitionsthat Smply
list ohedaswithou caring abou how these objeds hangtogether mereologicdly. In
fad there ae only very few partitions that completely represent the mereologicd
structure of the objeds they recmgnize

Our discusson d granularity showed that partitions have two ways of tradng
over mereologicd structure: (1) by tradng ower mereologicd relations between the
objeds (wholes) which they recognize (2) by tradng ovwer parts. Thetradng over of
parts is (unless mereologicd atomism is true) a feaure manifested by every
partition, for partitions are in every case coarse grained.

We dasdfied partitions along three eentially orthogoral axes. (a) degree of
corresponcence to obeds; (b) degree of dructura fit; and (c) degree of
completeness and exhaustiveness Along axis (d) we daracterize partitions
acording to properties that the relations of projecion and locaion have or lack:
baoth may be functional relations, meaning that cells never projed onto more than
one objed and that objeds are never located at more than ore cdl. Alongaxis (b)
we charaderize partition acording to the degreeto which they refled or traceover
the mereologicd structure of the objeds they recogrize We distinguished
mereologicd monaony, mereologicd ignarance, and partiti onsthat refled somebut
not all mereologicd sructure. Along axis (c) we daraderized partitions by
considering condtions under which every cdl in a partitionis projeded orto some
objed and under which every ohjed in a given damain is locaed at some cdl. If
projedion a locaionrelationsare dso functions, then we can recver in these terms
the usual mathematicd distinctions between partial, total, onto, and into mappings.

Three dasses of partitions play an important role in spatial information science
cadastral partitions, caegoricd coverages, and partitions that we find in folk
caegorizaions of geographic redity. We showed that partition theory can be used
as a framework in whose terms the different properties of those partitions can be
spedfied. Partition theory thus provides a formal-ontologica foundition for
understanding human partitioning adivity in the geographic domain.
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