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Introduction
Of Chisholm’s many signal contributions to analytic metaphysics, perhaps the most important
is his treatment of boundaries, a category of entity that has been neglected, to say the least,
in the history of ontology. We can gain some preliminary idea of the sorts of problems which
the Chisholmian ontology of boundaries is designed to solve, if we consider the following
Zeno-inspired thought-experiment. 

We are to imagine ourselves proceeding along a line through the middle of a disk that
is divided into two precisely symmetrical segments, one of which is red, the other green, and
that we move continuously from the red to the green segment. What happens as we pass the
boundary between the two? Do we pass through a last point p1 that is red and a first point p2

that is green? Clearly not, given the density of every continuum; for then we should have to
admit an indefinite number of further points between p1 and p2 which would somehow have
no color. To acknowledge the existence of just one of p1 and p2 but not the other, however, as
is dictated by the standard mathematical treatment of the continuum, would be to countenance
a peculiar privileging of one of the two segments over the other, and such an unmotivated
asymmetry can surely be rejected as a contravention of the principle of sufficient reason. 
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Perhaps, then, the line on which we move is colorless at the point where it crosses from
one segment into the other. The two segments would then be analogous to open intervals in
the set-theoretic sense. One might seek support for this idea by reflecting that points and lines
are not in any case the sorts of things which can be colored, since color properly applies only
to extended regions and not to the unextended boundaries thereof. Imagine, however, a
perfectly homogeneous red surface. Is a point or a line within the interior of this surface not
then also red? In the end, however, it does not much matter how we answer this question,
since an argument exactly analogous to the one here presented can be formulated also in
relation to a range of other sorts of cases (indeed to qualities in general), including cases of
qualities for which it is not attractive to suppose that extendedness in space is a precondition
of existence. 

Thus the argument can be applied to purely temporal phenomena, such as the
beginnings and endings of mental processes. In the work of Zeno and of Bolzano it has been
applied to the phenomena of motion and bodily contact. Imagine a body which is for a certain
period at rest and then begins to move. Is there a last point in time p1 when the body is at rest
and a first point p2 when it is in motion? Clearly not, given the density of every continuum;
for then we should have to admit an indefinite number of further points between p1 and p2 at
which the body would somehow be neither at rest nor in motion. To acknowledge one of p1

and p2 but not the other would again be to countenance a peculiar privileging of one of the two
temporal segments over the other. Perhaps, then, the body is neither in motion nor at rest at
the point in time where it crosses the segmentary divide, so that the two temporal intervals
would be analogous, once again, to open regions. But is it even coherent to suppose that a
body might be neither in motion nor at rest at a certain point in time? 

Imagine, to pursue an example from Bolzano, two perfect spheres at rest and in contact
with each other. What happens at the point where they touch? Is there a last point p1 that
belongs to the first sphere and a first point p2 that belongs to the second? Again: clearly not,
for then we should have to admit an indefinite number of further points between p1 and p2 and
this would imply that the two spheres were not in contact after all. To acknowledge one of p1

and p2 but not the other would be to countenance an asymmetry of a quite peculiarly
unmotivated sort. And our third alternative seems here to be ruled out also. For to admit that
the point where the two spheres touch belongs to neither of the two spheres seems to amount
to the thesis that the two spheres do not touch at all. 

The Brentano-Chisholm Theory of the Continuum



2 For further discussion of temporal analogues of the issues here discussed see Pianesi and Varzi 1996. See also,
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What, then, is to be done? As Chisholm has insisted, there is in fact an alternative account of
the actual reality, as far as color is concerned, at the point on the line where the red and green
segments meet, an account which can be smoothly and uniformly extended to the other cases
mentioned. This affirms that there is but one (albeit complex) point of the line which lies
precisely on the border between the two segments. This point is colored, but not in simple
fashion, for it is in a certain sense both red and green. To put the matter in another way: it is
at one and the same time a ceasing to be red and a beginning to be green. And in yet another
way still: it is a point where a red point and a green point coincide. Similarly in the case of the
particle that begins to move: here too there is a single point at which the body is both at rest
and moving (or more precisely: it is at one and the same time ceasing to be at rest and
beginning to move). The terminal boundary of the initial interval coincides with the initial
boundary of the subsequent interval. And the same account can be given also of what occurs
when two perfect spheres touch: a point on the boundary of the one sphere coincides with a
point on the boundary of the adjacent sphere. All bodies and all temporal intervals are on this
account analogous to closed regions – or perhaps we should more properly say that there is
no analogue in the world of spatial and temporal continua of the standard opposition between
open and closed. 

It is the theory of coincidence, and the account of boundaries and the continuum which
this dictates, which will occupy us in what follows. We shall concentrate especially on four
papers in which Chisholm treats the theory of coincidence of boundaries in space (1983, 1989,
1992/93 and 1994). As will already be clear, analogous reasoning can be applied also to the
coincidence of boundaries in time (to beginnings and endings, for example: see Chisholm
1982, 1992), though we shall here leave these, temporal, matters out of account.2

Chisholm’s theory of coincidence is drawn from the work on space, time and the
continuum of Franz Brentano and above all from Brentano’s idea that what is above all
characteristic of a continuum is ‘the possibility of a coincidence of boundaries’. (Brentano
1988, pp. 4f.) Brentano’s thesis runs: if something continuous is a mere boundary then it can
never exist except in connection with other boundaries and except as belonging to a
continuum of higher dimension. This must be said of all boundaries, including those which
possess no dimension at all such as spatial points and moments of time and movement: a
cutting free from everything that is continuous and extended is for them, too, absolutely



3 The popularity of set theory among contemporary philosophers has been further sustained by remnants of older
corpuscularistic ideas to the effect that atomistic physics (or some similar deep-level theory) enjoys a privileged
status over other, competing assays of reality.
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impossible. Brentano’s ideas are based in turn on the conception of boundaries and continua
sketched by Aristotle in the Physics. As Brentano developed and elaborated Aristotle’s
sketchy remarks, so Chisholm sought to render Brentano’s ideas in a formal manner, and to
incorporate them into a general theory of kinds or categories of being. I shall attempt here to
extend and to complete Chisholm’s formalizations and to show how much further works need
to be done. But I shall seek also to demonstrate that he has in a sense domesticated Brentano’s
ideas by dissociating them from a number of difficult and puzzling consequences which a
more detailed analysis will show to be bound up inextricably with the notion of coincidence.

 

Set Theory

It is above all the predominance of set theory as an instrument of (or more precisely as a
substitute for) ontological investigation that has dictated the neglect of the category of
boundary on the part of those working in the field of analytic metaphysics.3 Indeed already
in the early years of this century Brentano had seen the need to criticize standard set-theoretic
writings on the continuum where, as he points out, the idea of coincidence �will be sought
after entirely in vain’. (Brentano 1988, p. 5)

From the point of view of set theory, boundaries are logical constructions, or in other
words talk of boundaries is seen as a mere façon de parler about other things (effectively
limits of sequences, or other like abstracta). Such treatments are of unquestioned value for
mathematical purposes, and we must stress that we are not here attempting an alternative
foundation of the mathematics of the continuum of the sort which Lesniewski projected.
Rather, we are concerned with boundary-continuum structures as these make themselves
manifest concretely, in bodies, or in what Chisholm calls ‘spatial individuals’. The
set-theoretic account of the continuum proves to be inadequate as an account of such concrete
continua for at least the following reasons.

1. The latter are qualitative structures. This is so not merely in the sense that they are
(standardly) filled by qualities (of color, temperature, hardness, etc.), but also in the sense that
standard mathematical oppositions, for example between countable and uncountable
magnitudes or between dense and continuous series, seem here to gain no purchase. Nothing



4 See Simons 1987.
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like Cantor’s continuum problem arises for the concrete continuum, and indeed the very
existence of this problem testifies to a certain weakness in the set-theoretic approach to the
problems at issue.

2. The set-theoretical construction of the continuum is predicated on the highly
questionable thesis that out of unextended building blocks an extended whole can somehow
be constructed. Yet however many entities of zero dimension are assembled together, it seems
difficult to comprehend that a whole of higher dimension will somehow be formed.

3. The application of set theory to a subject-matter presupposes quite generally the
isolation of some basic level of Urelemente in such a way as to make possible a simulation
of the structures appearing on higher levels by means of sets of successively higher types. In
the world of concrete continua, in contrast, there need be no relevant Urelemente which could
serve as such a starting point of ontological construction. It is however unproblematic that
concrete continua are organized in such a way that parts, including boundary-parts, are
capable of being discriminated within them. 

4. Set theory sees the continuum as homogeneous, as made up of only one sort of
ultimate part (according to preference: the empty set, points, atoms, or real numbers).
Concrete continua are in contrast made up of different sorts of parts; above all, they are made
up of boundaries of different numbers of dimensions, on the one hand, and of extended bodies
or regions which these boundaries are the boundaries of, on the other.

Mereology

As an alternative to set theory, Chisholm adopts as his framework for dealing with the kinds
or categories of individual beings the theory of part and whole or mereology:4 boundaries are
parts of the things they bound. Mereology has the advantage that we can use it to study the
ontological structures in a given domain even in the absence of any ultimate knowledge as to
the atoms, if any, out of which the domain is constructed. For the axioms of mereology apply
whether the world is an infinitely divisible fluid or an edifice constructed out of atoms – or
indeed some combination of the two of the sort that is exemplified, for example, by Descartes’
bicategorial ontology of res extensa and res cogitans.

Boundaries of bodies are actual parts of the bodies which they bound. But they are not



5 Cf. Brentano 1988, p. 22.

6 On holes and their hosts see Casati and Varzi 1994.

7 Brentano even went so far as to identify boundaries as special sorts of universals:
Because a boundary, even when itself continuous, can never exist except as belonging to something
continuous of more dimensions (indeed receives its fully determinate and exactly specific character only
through the manner of this belongingness), it is, considered for itself, nothing other than a universal, to
which as to other universals more than one thing can correspond. (Brentano 1988, p. 12)

8 See for example his 1989a, pp. 115, 157.

9 An alternative view along these lines is defended by Brentano in the following passage:
What is continuous can be sub-divided … into what is continuously many and what is continuously
manifold. … As an example of the continuously many we can give a body, of the continuously manifold
someone who sees something spatial precisely in so far as he sees it. The body is a unity which can be
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just any sort of part; rather they are parts which, as a matter of necessity, can exist only as
proper parts of things of higher dimension which they are the boundaries of (where from the
set-theoretic point of view, isolated extensionless points are presented as existing in complete
independence of any larger wholes). 

Boundaries cannot exist in isolation: there are, in reality, no isolated points, lines or
surfaces. As Brentano himself would express it, our healthy common sense, which is here
evidence itself, would raise its head in violent protest at the postulation of such entities.5

Boundaries are in this respect comparable to universal forms or structures (for example the
structure of a molecule as this is realized in a given concrete instance), as also to shadows and
holes.6 Entities in all of these categories are such that, while they require of necessity hosts
which instantiate them, they can be instantiated by an indefinite variety of different hosts.7

Consider, for example, the surface of an apple. The whole apple can here serve as
instantiating host, but so also can the apple minus core, which might have been eaten away
to varying degrees from within.

In light of some of Chisholm’s remarks on the nature of souls or minds,8 we might point
out that souls or minds, too, may have similar features. If there are souls, and if souls are
hosted by bodies, then the same soul can be hosted by many bodies in the sense that a body
may lose molecules, cells and even limbs and yet preserve its relation to the same identical
soul. The soul might even be a boundary. (This would be the case, for example – though it
seems that an option along these lines is not what Chisholm has in mind – if the soul’s (or
mind’s) activity were essentially a matter of what happens where nerve-endings are in
multivariously patterned contact with each other inside the brain.)9



decomposed into a plurality in such a way that if one of its parts is destroyed the remainder can continue
to exist just as it was before. … Things are quite different in the case of someone who intuits something
spatially extended. This someone is as such not something simple but something manifold, since he sees
not merely one but many parts of a continuum and could go on to see one such part while he ceases to
see the others. But in so far as he sees the one part he does not amount to something totally other than
what he is in so far as he sees the other part. We have before us not a duality, as we would have in the
case where it was one who sees this part and another who sees that. … I cannot speak of a plurality of
unities here but only of the manifold character of something that is itself one. … This distinction
between the continuously many and the continuously manifold was borne insufficiently in mind by
Aristotle when he inferred a spatial extension of the sensing subject from the spatial extension of the
objects of sense. The consideration of what is given when someone who momentarily presents to
himself a temporal continuum could have kept him from this false conclusion. (Brentano 1988, pp. 32f.)

10 Brentano 1981, p. 56: translation corrected. The continuum is specifically dependent on its boundary, but the
boundary is not in this same sense dependent on its continuum; it is only generically so. See § 10 of Smith 1992
for further discussion of this generic dependence of boundaries upon their hosts.

11 See Brentano 1988, pp. 10f. A line stretching from the surface of the sphere to its midpoint is partly internal,
partly external. Note that a boundary on the surface of a cavity inside a sphere is an external boundary, in our
present terminology.
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All the mentioned types of entities share further the fact that they license certain sorts
of ontological inference (if there is a boundary/structure/hole/soul having these and those
properties, then there is a host having these and those properties). We cannot infer to any
specific host, however. Thus it cannot be said of any definite continuum that a boundary is
dependent on it: that which a boundary is dependent on can be designated rather only via a
general term: what is required by a boundary is, Brentano says, ‘not this or that particular
continuum, but any continuum of the appropriate kind.’10 For while no boundary can exist
without being connected with a continuum, ‘there is no specifiable part, however small, of the
continuum, and no point, however near it may be to the boundary, which is such that we may
say that it is the existence of that part or of that point which conditions the boundary.’
(Brentano 1981, p. 56) 

Plerosis

As will by now be clear, boundaries can be classified as external, for example a point on the
surface of a sphere, and internal, for example a point or line or surface entirely within the
interior of a sphere.11 In contrast to standard set-theoretic treatments, the Brentano-Chisholm
theory is now able to do justice to the fact that the boundaries given in experience are in many
cases asymmetrical (so that we might in certain circumstances talk of ‘oriented boundaries’).



12 Since boundaries in general exist always in consort with, and are determined in their nature by the things they
bound, we might think of boundaries as being ‘unsaturated’ in something like Frege’s sense, which is to say: they
need to be completed in certain predetermined ways and in certain predetermined directions.
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This applies, for example, to the external boundaries of bodies and to the beginnings and
endings of processes extended in time. Intuitively it seems not to be the case that the external
boundary of a substance is in the same sense a boundary of the complement entity (i.e. of the
entity which results when we imagine this substance as having been subtracted from the
universe as a whole). (Even the thesis that there is such an entity is something which, from our
present perspective, has to be taken with a pinch of salt.) 

Boundaries, accordingly, may be boundaries only in certain directions and not in others.
Imagine a line that is tangent to a circle, and meets the circle at a certain point. Strictly
speaking we need here to recognize two points, a point on the line and a point on the circle,
which coincide, the one with the other. The two points are not identical since they serve as
boundaries in different directions. The point on the line is a boundary in two rectilinear
directions, the point on the circle is a boundary in two directions of a certain determinate
curvature.12

 Every point, every line, every surface, must serve as a boundary in at least one
direction. A point within the interior of a solid sphere is a boundary in all possible directions.
The analogous point on the plane surface of a solid hemisphere is, in contrast, a boundary in
exactly half this maximal number of directions. Brentano introduces at this point the notion
of the plerosis or ‘fullness’ of a boundary. The mentioned interior boundary has full plerosis,
the external hemispherical boundary has only half plerosis. Imagine that we have two cubes

designed to fit exactly inside a container
in such a way that the upper surface U of
the lower cube coincides (in our
technical sense) with the lower surface L
of the upper cube. Consider two points p
and q on opposite interior walls of the
container and each located on the plane
where the two cubes meet:



13 Note that, if a boundary is determined essentially by the direction in which it bounds, then the following
question presents itself: if a point is the interior boundary of a straight line and the line becomes bent into a semi-
circle, does the point retain its identity?
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There are then two shortest lines connecting the given points: the line lU in or on U and the
coincident line lL in or on L. This implies that ‘the geometer’s proposition that only one
straight line is conceivable between two points, is strictly speaking false’. (Brentano 1988, p.
12)

The degree of plerosis of a boundary, together with the direction or directions in which
it serves as boundary, yield further criteria in terms of which boundaries can be classified. As
Brentano puts it in his Theory of Categories:

a point differs spatially in its species [spezifisch] according to whether it serves as a
boundary in all or only in some directions. Thus a point located inside a physical thing
serves as a boundary in all directions, but a point on a surface or an edge or a vertex
serves as a boundary only in some directions. And the point on a vertex will differ in
its species in accordance with the shape and direction of the vertex. (Brentano 1981,
p. 60)

In this geometrical sense, then, the boundary is determined in its nature by the continuum
which it bounds.13 Boundaries are determined by their hosts also qualitatively or materially:

Imagine the mid-point of a blue circular surface. This appears as the boundary of
numberless straight and crooked blue lines and of arbitrarily many blue sectors in
which the circular area can be thought of as having been divided. If, however, the
surface is made up of four quadrants, of which the first is white, the second blue, the
third red, the fourth yellow, then we see the mid-point of the circle split apart in a
certain way into a fourness of points. (Brentano 1988, p. 11)

Points, therefore, may have parts (called ‘plerotic parts’ in what follows). The parts of a point
coincide with each other and with the point as a whole.

Euclid’s supposition that a point is that which has no parts was seen already by Galileo
to be in error when he drew attention to the fact that the mid-point of a circle allows the
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distinction of just as many parts as there are points on the circumference, since it differs
in a certain sense as starting point of the different individual radii. (Brentano 1988, p.
41) 

Each point within the interior of a two- or three-dimensional continuum is in fact an infinite
(and as it were maximally compressed) collection of distinct but coincident points: punctiform
boundaries of straight and crooked lines, of two-dimensional segments of surfaces and of
interior regular and irregular cone-shaped portions within three-dimensional continua, etc.
(Not for nothing were the scholastic philosophers exercised by the question as to how many
zero-dimensional beings might be fitted onto the head of a pin.) This ontological profligacy
has its limits, however: the left punctiform boundary of a one-inch line is identical (and not
merely coincident) with the left punctiform boundary of the corresponding initial half-inch
segment. This is because it is only the immediate neighborhood of a boundary that is relevant
to determining the nature of the boundary itself. 

Why are plerotic parts important? One reason might be this: that everything (including
you and me) is one. This is the case insofar as everything exists only in the present moment
of time, which is itself a boundary of the past and future. Everything exists, as Brentano puts
it, only einer Grenze nach, or in other words only according to the manner of existing of a
boundary.

The Formalization of the Brentano-Chisholm Theory

We shall orient ourselves in what follows around Chisholm’s formalization of Brentano’s
ideas in his rich and compressed paper “Spatial Continuity and the Theory of Part and
Whole”. Chisholm takes as primitives the concepts of individual thing, coincidence, and de
re possibility. These notions, which will be introduced in succession in what follows, are
employed within a mereological framework constructed around the primitive is a proper part
of, which we symbolize here by means of: <. We use ≤ to represent the relation part of, which
is defined in the usual way. Three further primitives will be introduced along the way: the
notions of body, existence, and of sameness of dimension.

If we define overlaps:

DO. xOy := ∃z(z ≤ x ∧ z ≤ y) (overlaps)



14 This is in fact a slightly weakened version of Chisholm’s remainder principle:

y < x → ›z(z < x–y).

The latter would imply that atoms do not exist, an implication which, for the sake of neutrality and generality, we here wish to avoid.

15 Varzi 1994 provides an extended treatment of the problems here at issue.
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then Chisholm’s axioms for part can be formulated as follows (where initial universal
quantifiers, here and in the sequel, are to be taken as understood):

 

A<1. (x < y ∧ y < z) → x < z (transitivity)

A<2. x < y → ¬ y < x (asymmetry)

A<3. x < y → ∃z(z ≤ y ∧ ¬zOx) (remainder)14

Here variables are to be conceived intuitively as ranging over individual spatial things, a
primitive notion, which comprehends bodies and their boundaries, as well as continuous and
non-continuous collectives comprised of bodies and boundaries. We are not, in this
preliminary formal foray through the territory of coincidence, too concerned with the question
whether this set of axioms for mereology is the most adequate set, though we note that we
shall have need of a mereological summation or fusion principle (or more precisely, a
principle-schema), which we hereby add to the set of axioms supplied by Chisholm himself:

A<4. ›y(y = σxφx) (sum)

 

for each unary predicate φ which is satisfied (i.e. yields the value true for at least one
argument).15

σ xφx is then defined contextually as follows:

D σ. σx(φx) := ιy (œw(wOy → ›v(φv ∧ wOv))) 

(the sum of φ−ers is the entity y which is such that w overlaps with y if and only if w overlaps



16 To aid his intuitions, the reader might provisionally view coincidence as a relation which obtains between two
boundaries whenever they occupy exactly the same spatial location.

12

with something which φ�s).

In these terms we can define the mereological difference of two objects by:

D–. x–y := σz(z ≤ x ∧ ¬zOy) (difference)

and similarly for the other standard mereological constants, above all union and intersection:

D∪. x ∪ y := σz(z ≤ x ∨ z ≤ y) (union)

D∩. x ∩ y := σz(z ≤ x ∧ z ≤ y) (intersection)

A strengthened version of the remainder principle A<3 might now be formulated as a
step towards ensuring the density of wholes along the lines presupposed by Chisholm in his
comment on A<3 (1992/93, p. 14), for example a principle of the form:

T<1. x < y → ›z(z = y–x) (exact remainder)

T<1 can be proved in the presence of A<4 by setting φz := z < y–x, a predicate we know is
satisfied in virtue of A<3.

Note that T<1 is still rather weak. Thus it does not for example exclude a world
containing only one single point that would be mereologically complex but only in the sense
of containing Brentanian plerotic parts. (If a soul is zero-dimensional, and if solipsism is true,
then the world would be precisely as thus described.)

Coincidence

Coincidence, as we shall here understand the notion, is exclusively the sort of thing that
pertains to boundaries.16 Bodies do not coincide (not even with themselves); nor do they
coincide with the spatial regions they occupy. Other sorts of coincidence may be
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contemplated, thus for example of the road from Athens to Thebes with the road from Thebes
to Athens, of Bill Clinton with the President of the United States, of the mind and its brain,
of this clumsily carved statue and this lump of bronze. Here, however, potential
generalizations of the theory of coincidence along these lines are left out of account.

Chisholm’s axioms for coincides are (amended slightly):

A~1. x ~ y → y ~ x (symmetry)

A~2. (x ~ y ∧ y ~ z) → x ~ z (transitivity)

From which we can easily derive

T~1. x ~ y → x ~ x (all coincident entities are self-coincident)

and plerotic parts can be defined as those parts which self-coincide.

Chisholm adds a further axiom (1992/93, p. 15):

(*) ◊x›y(x ~ y) → ◊x›y(x ~ y ∧ x ≠ y)

(possibly coincident entities are possibly such that they coincide with something other than
themselves).

Here ‘◊x’ is an operator of de re possibility (read: ‘x is possibly such that’). (Later we
shall introduce the operator ‘�x’ for: ‘x is necessarily such that’). Note that if, as it seems
reasonable to suppose, all boundaries are self-coincident and all coincident entities are
boundaries, then the first modal operator is redundant, since being possibly coincident is
tantamount to being (self–)coincident. 

We can now postulate as our equivalent of Chisholm’s third axiom for coincidence an
axiom asserting the possible non-self-coincidence of self-coincidents:

A~3. x ~ x → ◊x ›y(x ~ y ∧ x ≠ y)



14

(an entity which coincides with itself is of its nature an entity which can possibly coincide
with something other than itself).

What Chisholm has in mind in inserting the second modal operator in (*) is the thesis
that every external boundary is possibly such that, through touching, it can come to coincide
with the external boundary of some other thing, and A~3, even in its revised form, is much
too general as a rendering of this thesis. Indeed it seems on reflection that, in almost every
type of case, the second modal operator is redundant also. This follows from the
considerations on plerosis above. Suppose x is a point or line or internal surface, then in every
case there is some larger continuum which it is a boundary in or of. x is then either complex,
in which case it is actually (and not merely possibly) coincident with certain of its plerotic
proper parts, or it is simple. In the latter case, however, it is difficult to conceive of examples
which might fit the bill. Even setting x as identical with the point at the very tip of a cone, for
example, would mean that x has parts, according to our present conception, corresponding to
the indefinite number of points coincident at this tip which serve, respectively, as the
punctiform boundaries of the indefinite number of straight and crooked lines which there
converge. 

An improvement on A~3 might accordingly assert simply, and non-modally:

A~3*. x ~ x → ›y(x ~ y ∧ x ≠ y).

In order to capture more closely what Chisholm has in mind in the case of touching bodies we
might then countenance a further axiom to the effect that self-coincident entities are possibly
such as to be coincident with entities with which they do not overlap:

A~3**. x ~ x → ◊x ›y(x ~ y ∧ ¬xOy).

We shall not seek to draw out the implications of these axioms here.We note only that it is
primarily in the case of external surfaces where we would have need for Chisholm’s second
modal operator: for external surfaces, unlike boundaries of other sorts, can at any given time
coincide at most with one other entity discrete from themselves, and they do not need to
coincide with any other entity at all. 

To do justice to the phenomena in hand we need to add to Chisholm’s axioms a further



17 See for example chapter 1 of Steen and Seebach 1978.
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summing principle to the effect that, if two entities coincide with two further entities, then the
mereological sum of the first two coincides with the mereological sum of the second two:

 

A~4. (x ~ y ∧ v ~ w) → x ∪ v ~ y ∪ w (finite sum)

We will also need to add the following principle:

A~5. [›yφy ∧ œy(φy → x ~ y)] → x ~ σyφy (restricted sum)

(if something φ�s and if everything which φ�s coincides with x, then x coincides with the sum
of φ-ers).

Thus in particular if x coincides with both y and z, then it coincides also with the sum
of y and z. From A~5 we can prove also that, for satisfied predicates φ and R: 

œxy[(φx ∧ Ry) → x ~ y] → σxφx ~ σyRy.

A~4 and A~5 are modelled on standard axioms of general topology.17 They will help us to
move towards a position where we are able to define non-set-theoretic analogs of such
topological notions as ‘connectedness’ and ‘dimension’ which are central to Chisholm’s
ontological scheme but which cannot be defined on the basis of the axioms he supplies.

We shall also adopt an axiom to the effect that a boundary coincides with its plerotic
parts (for example where the mereological sum of a coincident red and blue line coincides
with the red line taken singly):

A~6. x ~ x → œy(y < x → y ~ y) (parts of self-coincidents self-coincide)

Bodies

In the spirit of the definition of ‘spatial individual’ given by Chisholm on p. 15 of his



18  This definition is formulated by Chisholm in terms of the notions: individual thing, part, coincidence and
possibility. We note in passing that there is a question whether the concept of what is spatial can truly be defined
exclusively by means of such purely formal, abstract notions.

19 See Chisholm 1989a, pp. 90–99, Cartwright 1975.
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1992/93:18 

x is a spatial individual := (1) x is an individual thing; (2) x has a constituent that
coincides with something; and (3) x is not possibly such that it coincides with anything,

we might seek to define what it is for an individual thing to be a body (Körper) as follows:

 

Kx := ¬›y(x ~ y) ∧ ›y(y < x ∧ y ~ y) 

(a body is an individual thing which does not coincide with anything and which has as proper
part something which is self-coincident). 

This definition, taken in conjunction with our schema A<4, does not impose very strong
constraints on ‘body’. Thus it allows as bodies not only scattered bodily collectives,19 but also,
and more worrisomely, randomly assorted collective wholes containing boundaries and
non-boundaries as mutually unconnected parts. It would allow as bodies wholes consisting of
bodies with isolated boundary-like outgrowths, thus for example an apple from which there
protrudes an infinitely thin line. No formal means can be found to exclude these and other
eldritch creatures from the realm of body in terms of the primitive notions thus far introduced.
We shall accordingly embrace the concept of body as a further primitive, and seek to exclude
these different sorts of counterexample by imposing constraints by means of axioms. 

Our notion of body is to be conceived widely enough to allow as bodies both (scattered
and non-scattered) collectives of bodies and (scattered and non-scattered) bodily parts of
bodies (for example a sphere of 1-inch diameter that is abstractly discriminable within a
concentric sphere of 2-inch diameter). Later we shall define the narrower concept of substance
which will exclude these sorts of cases.

First we impose on bodies a principle to the effect that every body contains a
self-coincident entity as proper part:

AK1. Kx → ›y (y < x ∧ y ~ y) (bodies have plerotic parts)
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Second we impose on bodies a constraint of density:

AK2. Kx → ›yz (Ky ∧ Kz ∧ y ∪ z = x ∧ ¬yOz) (density)

(each body can be divided without remainder into two further bodies which are discrete).

AK2 rules out the idea that there is a simplest body and it implies that all bodies are in
the relevant sense bulky (are possessed of a certain material thickness).

Thirdly we assert:

AK3. (Kx ∧ Ky ∧ xOy) → K(y ∩ x) (bodily intersection)

from which we can infer:

TK1. (Kx ∧ Ky ∧ x < y) → K(y–x) (subtraction)

(the mereological difference between two bodies is in every case a body). 

AK3 rules out that bodies may manifest what we might refer to in standard topological
terms as total or partial openness. Thus the interior of a body (the body minus its exterior
boundary) is not a body, by AK3 and TK1, since the boundary itself is not a body. AK3
guarantees, too, that a hole or slit in a body always has a certain finite thickness. 

Boundaries

We now have two (in the end equivalent) alternatives in regard to the definition of boundary:
on the one hand we might exploit in Chisholmian fashion the use of de re modalities and
define boundaries as entities that are necessarily such as to exist as parts of bodies; on the
other hand we might exploit the notion of coincidence and define boundaries as coincident
entities. Here we follow Chisholm in taking the former course. We shall then lay down the
interrelation between boundaries and coincidence by means of an axiom.
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Chisholm’s D2 (1992/93, p. 16) would seem to amount, in our present context (where
we are dealing exclusively with the spatial case) to the following definition of boundary:

Bx := ◊x ›y (Ky ∧ x < y)

(x is a boundary iff x is necessarily such that there is some body of which it is a proper part).

Boundaries are necessary proper parts of bodies. This will not do as it stands, however,
first of all because there are other sorts of things which are necessary parts of this sort. Thus
the definition is satisfied also by the interior of a body (i.e. by the result of deleting from a
body its external boundary). It may be satisfied, too, by minds or souls (though then the
proponent of the Brentano-Chisholm view of boundaries might argue in turn that minds or
souls are themselves a species of zero-dimensional boundary). It may be that there are
boundaries which are not parts of that which they bound: holes, for example, have boundaries
of this sort on the view defended by Casati and Varzi (1994).

We can easily construct further counterexamples to the definition of boundary that is
here formulated: take x to be the mereological sum of a banana together with a point on the
surface of an apple. Then the point on the apple is a necessary proper part (it cannot exist
without relevant larger apple-parts), and thus so also is the sum in question (it cannot exist
without analogous larger parts of a banana-including sum); yet x is not itself a boundary. A
more adequate definition of boundary along Brentanian-Chisholmian lines would therefore
be (in keeping with Chisholm’s own approach at p. 85 of his 1989):

DB. Bx := �x œz(z ≤ x → ›y(Ky ∧ z < y))

(a boundary is an entity which is as a matter of necessity such that it and all its parts are
necessary proper parts of bodies).

In this way, too, we rule out interiors of bodies (though we seem not to rule out minds
or souls, and other like examples).

Recall our principle to the effect that that which is above all else characteristic of a
continuum is the possibility of a coincidence of boundaries. Chisholm gives as axiom
(1992/93, p. 17):

Bx ↔ ◊x›y (x ~ y ∧ ¬ y < x) 
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A simpler axiom is:

AB1. Bx ↔ x ~ x (boundaries are self-coincident)

Boundaries fall into two classes: punctiform boundaries, which have no extension, and
boundaries of other sorts which share with bodies some of the extension which the latter in
every case enjoy. Defining point as follows:

DPT. PTx := Bx ∧ œy(y ≤ x → y ~ x) (point)

we can then assert by analogy with AK2:

AB2. Bx → PTx ∨ ›yz(By ∧ Bz ∧ y ∪ z = x ∧ ¬yOz) (weak density)

(every non-punctiform boundary can be divided into two discrete boundary parts).

If There Be Monsters

Consider the following superficially attractive density principle:

(**) œx›y(y ≤ x ∧ y ~ y).

This asserts that boundaries are thick on the ground (that everything has or includes one: that
boundaries and non-boundaries mutually penetrate). Unfortunately we can easily prove from
this principle that the world is built up out of boundaries alone (or in other words that the sum
total of everything is equal to the sum total of self-coinciders: σx(x = x) = σx(x ~ x)). 

Let us suppose, for the sake of argument, that we are able to protect our theory from
a conclusion of this sort. (Recall that one of our reasons for rejecting the set-theoretical
conception of the continuum above was our rejection of the view that what is extended can
somehow be built up by combining together a sufficiently large number of extensionless



20 Compare Zimmerman 1996.

21 These definitions may capture part of what is involved in the insight that bodies, in contrast to boundaries, are
bulky: ‘matter’, on our present conception, is another term for bulk.
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parts.) We are then able to countenance a thought-experiment along the following lines.20 We
define the form of a body as the sum total of all the boundaries within it; a body’s matter (its
unformed materia prima) can then be defined as what results when this form is taken away
(the latter is of course merely the abstract result of a purely abstract subtraction, for form and
matter are each as a matter of necessity such that they cannot exist without the other):

DF. form(x) := σy(y < x ∧ y ~ y)

DM. matter(x) := x – form(x).21

Note that both the form and the matter of a body are dense; but neither constitutes a
continuum, since a continuum is essentially such as to contain both boundaries and the things
they bound.

But now other such artefacts can be constructed (or defined within our theory). Given
any point within the interior of a body, we can define its left- and right-directed point-
counterparts, two different sorts of punctiform plerotic parts within the given point, as follows:
take a spherical neighborhood around the given point as center, and imagine a vertical plane
bisecting the neighborhood. Then the left-directed points (LDP’s) are all those points
coincident with the given point which serve as boundaries in directions properly included
within the left hemisphere, the right-directed points (RDP’s) are all those points coincident
with the given point which serve as boundaries in directions properly included within the left
hemisphere. We can now define two new sorts of bodily parts: the left- and right-
point-surrogates of a body, respectively:

DLPS.LPS(x) := σy(y < x ∧ LDPy)

DLPR. RPS(x):= σy(y < x ∧ RDPy). 

The principle that from extensionless points extended wholes can never be constructed



22 See, again, Steen and Steebach 1978.

23 For a discussion of such non-additive summation principles see Smith 1991.
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implies that these peculiar bodily surrogates are strictly distinct from the body itself with
which we begin. They are analogues, within our mereotopological framework, of the
space-filling curves, the Menger-Sierpinski sponges and the deleted Tychonoff planks of
standard set theory.22 Such monsters force us to be on our guard when formulating axioms and
definitions, since our definitions may be satisfied by the monsters in question even though the
latter correspond in no wise to the intuitive understanding which these definitions were
designed to express. If, on the other hand, we accept the density principle (**) above, and
swallow the consequences which we have otherwise seen reason to reject, then we thereby
exclude these eldritch creatures by having them collapse onto each other and onto their
respective bodies. This in turn, however, will carry a further price to the effect that our initial
mereological axioms will have to be adjusted. Specifically, the standard (‘additive’)
mereological summing principle will need to be replaced by a principle which allows that the
sum of two objects may contain as parts objects which do not overlap with either of the two
objects with which we begin.23 

Varieties of Connectedness

A pair of spatial entities are in contact each other directly when their respective boundaries,
in whole or in part, coincide. Chisholm defines direct contact as follows (1992/93, p. 16):

x is in direct spatial contact with y := a constituent of x spatially coincides with a
constituent of y. (1992/93, p. 16)

Unfortunately, however, this definition does not work in the general case. Thus for example
it cannot capture the case in which a point-boundary x inside the interior of a body y is in
direct contact with the punctured neighborhood y–σz(z~x). We can, however, define a relation
of direct contact for bodies: 

DDCOK. xDCOKy := Kx ∧ Ky ∧ ›vw(v < x ∧ w < y ∧ v ~ w ∧ v ≠ w)

(bodily direct contact)
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Note, however, that this definition imposes no constraint of connectedness on either x or y or
their sum. Consider the case where x is the mereological sum of a banana and a point on an
apple, y the mereological sum of some coincident point on the same apple together with a
second banana some miles distant from the first. We then have xDCOKy even though the
whole x ∪ y is not connected.

At this point Chisholm writes:

A thing that turns back on itself (e.g. a tire, a hoop, or a doughnut) is in contact with
itself. Lines and surfaces can turn back on themselves. (1992/93, p. 17)

A pliable rod, it seems clear, can be turned back upon itself in some special sense (the two
ends can be brought into contact with each other). But surely the sense in which a doughnut
is in contact with itself applies to all connected bodies (consider v in DDCOK as the right
boundary of the left hemisphere of a sphere, w as the left boundary of the right hemisphere
of the same sphere). Indeed it follows from our considerations on internal boundaries above
that xDCOKx holds for every body x, since every body is large or thick enough to contain at
least two coincident entities as parts.

Touching

In fact, to do justice to what Chisholm has in mind, we must therefore distinguish touching
as a special case of direct contact which applies only to coincident parts of external boundaries
of mutually discrete bodies: an entity x touches an entity y if each is such that it can exist
without detriment even should the other be destroyed. We might, accordingly, introduce a new
primitive ‘exists’ (symbolized by ‘E!’) and formulate a definition along the lines of:

DTO. x TO y := x DCOK y ∧ ¬ xOy ∧ œz(z ≤ y → ◊x¬E!z) ∧ œz(z ≤ x → ◊¬E!z)

(touching)

(x touches y iff x and y are discrete bodies in direct contact and, given any part z of y, x is
possibly such that z does not exist and, given any part z of x, y is possibly such that z does not
exist).

Thus imagine a pair of exactly similar hemispheres h1 and h2 which touch each other in
such a way that the flat portions of each coincide in a horizontal plane. Imagine, on the other
hand, a single sphere s, of identical proportions. s has running through its central horizontal
plane a boundary in full plerosis that is in many respects similar to the sum of coincident



24 We might seek to define connectedness for boundaries analogously by means of:

CNBx := Bx ∧ œyz[(By ∧ Bz ∧ x = y ∪ z) → ›vw(v ≤ y ∧ w ≤ z ∧ v ≠ w ∧ v ~ w)]

This will not work, however, as can be seen if we take a connected line x, and define y as the result of subtracting
from x the sum z of all points in x coincident with a given interior point. We must return to this issue later, when
we have a notion of sameness of dimension (and when we are in a position to eliminate punctured entities and
other similar monsters from the class of boundaries).
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boundaries, each in half plerosis, existing where h1 and h2 touch. The former differs from the
latter, now, in that we can separate this sum of coincident boundaries without detriment to
either half of the pair. The two correspondingly coincident boundaries in the solid sphere
cannot, correspondingly, be cut apart: they belong together intrinsically (as a matter of
necessity).

Contact

Bodies are in contact in the broader sense when they and all their parts are connected to one
another, possibly via others, in such a way as to establish a seamless chain of direct contact.
Chisholm seeks to define contact in this wider sense as the successor-relation of direct contact
as follows:

x is in spatial contact with y := x belongs to every class C which contains y and
anything that is in direct spatial contact with any member of C (1992/93, p. 17)

Here we take a different tack, one surely more in keeping with the remainder of the present
theory, and define first of all what it is for a body to be connected:

 

DCNK. CNKx := Kx ∧ œyz[(Ky ∧ Kz ∧ x = y ∪ z) → yDCOKz]

(connectedness for bodies)24

(x is a connected body iff all partitions of x into a pair of bodies y and z are such that y is in
direct contact with z).

We go on to set as a definition of bodily contact:

DCOK. xCOKy := Kx ∧ Ky ∧ ›z (CNKz ∧ x ∪ y ≤ z) (bodily contact)
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(bodies x and y are in bodily contact iff their sum is part of some connected body).

My left hand and my right hand are in contact with each other in this sense as long as
they remain attached to my body; they are in direct contact only if they touch each other.

A further sort of contact, illustrated by the case of two coincident surfaces, s1 and s2,
where every part of s1 is in contact with some part of s2 and vice versa, is called by Chisholm
total contact:

xTCOy := œz(z ≤ y → ›w[w ≤ x ∧ z ~ w]) ∧ œz(z ≤ x → ›w[w ≤ y ∧ z ~ w])

(x is in total contact with y iff x and y are in contact and all parts of x and y are in contact with
corresponding parts of y and x). 

Total contact is clearly impossible between entities that have any sort of thickness.
(Such thickness would, as it were, shield certain interior parts from contact with the other
entity.) Accordingly, Chisholm asserts as axiom:

xTCOy → x ~ y.

Boundary Of

Rushing in where Chisholm fears to tread, we may now define a series of further
mereotopological concepts on the basis of the notions defined thus far. Thus we may define
the relational concept x is a boundary of the body y, where x is to be conceived as an exterior
boundary – and thus as a boundary in the surface of y (which may mean: in the surface of an
internal cavity of y):

DBK. x BK y := Bx ∧ x < y ∧ Ky ∧ ◊y›z[y TO z ∧ ›w(w < z ∧ x ~ w)]

(boundary of body)

(x is a boundary of a body y iff x is a boundary and a part of y and y is possibly such as to
touch some z with part of which x is coincident).

We may then define the notion of a maximal (exterior) boundary (complete boundary



25 With the help of this concept of connectedness for boundaries, the definition of x BK y would enable us to
formulate the equivalent of the “second Brentanian thesis” of Smith 1993, which affirms, for connected
boundaries, the existence of connected bodies which they are the boundaries of:

(Bx ∧ CNBx) → ›y (x BK y ∧ CNKy).
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or ‘envelope’) of a body as follows:

DCBK. x CBK y := x BK y ∧ œz(z BK y → z ≤ x) (envelope)

Connectedness for Boundaries

We may define connectedness for boundaries as follows:

DCNB. CNBx := Bx ∧ œyz(y ∪ z = x ∧ œuv[(Ku ∧ Kv ∧ y BK u ∧ z BK v) → u
DCOK v]) (connectedness for boundaries)25

(a boundary is connected iff any partition into y and z is such that if y is a boundary of body
u and z is a boundary of body v then u and v are in direct contact)

We may then define connectedness in general as follows:

DCN. CNx := CNKx ∨ CNBx (connectedness)

In addition, and at the risk of some redundancy, we can assert the following principles for
boundaries:

AB3. (x B y ∧ y B z) → x B z (transitivity)

AB4. (x B z ∧ y B z ∧ x ~ y) → x = y(coincident boundaries of identicals are identical)

AB5. (x B z ∧ y B z) → x ∪ y B z (finite union)

We can prove:



26 Every substance contains substantials which are in this sense too small. Thus my arm is a substantial in relation
to me as substance. See Smith 1997.

27 Chisholm gives the definition (1992/93, p. 17):
Sx := Kx ∧ œy[y < x ∧ Ky → ›z(z < x ∧ z ≠ y ∧ yCOz)]

(a substance is a body all of whose proper bodily parts are in contact with some other proper parts).
This is too weak however. Even collectives made up of several separate bodies are such that all parts y are in contact either with their own respective

proper parts or, in case y is a point which has no proper parts, with the surrounding portion of the relevant body.
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TB1. x B y → ¬ y B x (antisymmetry)

from which it follows trivially that it is never the case that xBx.

Substance

Our gloss on the primitive concept of body told us that bodies can fall short of being
substances in two different ways: (1) in being too big, they contain two or more bodies as
non-connected parts; (2) in being too small: they are parts of larger connected bodies (as one
solid metal sphere may be discriminable inside a second, larger sphere).26 

To exclude the first sort of counterexample we shall need to insist, following
Chisholm,27 that substances are connected bodies. To exclude counterexamples of the second
sort we shall need to require in addition that substances are maximally connected bodies. This
yields as candidate definition:

Sx := CNKx ∧ œy(x < y → ¬ CNKy)

We still, however, need to take account of the possibility that one substance might touch (be
more or less momentarily in contact with) another. (The mereological sum of two such
substances is connected, by our definition of CNK above.) Accordingly we set:

DS. Sx := CNKx ∧ œy[(x < y ∧ CNKy) → ›t(x ∪ t = y ∧ x TO t)] (substance)

(a substance is a connected body which is such that if it serves as part of a larger connected
body then this only because it touches some second body).
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Note that DS is consistent with the fact that substances may have holes of various
shapes and sizes.

Dimensions

Boundaries can be classified according to the number of their dimensions. Thus we can
distinguish one-, two- and three-dimensional continua and we can even contemplate continua
of higher numbers of dimensions. From Brentano’s point of view, a continuum 

is to be designated as one-dimensional if it has no other boundaries than such as are not
themselves continuous. … The spatial line, too, has no boundaries other than
non-extended ones, namely the spatial points, and it is for this reason that Euclid
defined the point as that which has no parts. The surface, in contrast, belongs with the
two-dimensional continua since its boundaries comprehend not only points but also
lines. And a body is to be designated as a three-dimensional continuum since not only
is the whole body bounded by a surface but so also each one of its parts is separated
from the remainder by a surface that is a two-dimensional boundary. (1988, p. 10)

Chisholm’s approach to the problem of dimension is to begin by defining surface as
follows:

SFx := Bx ∧ ◊x¬›y (x < y ∧ By)

(a surface is a boundary – an envelope – which is possibly such that it is not a proper part of
a boundary). 

One problem with this definition, conceived as a definition of what we normally think
of as two-dimensional boundaries, turns on the fact that there might be what Brentano calls
‘topoids’ of four or more dimensions, whose boundaries would satisfy the definition yet would
not be surfaces in the intended (two-dimensional) sense. This we might solve by means of an
axiom ruling out such cases, for example by setting as axiom:

œx›y(Ky ∧ x ≤ y) 

This will serve our purposes, however, only if we know in advance that bodies have always
exactly three dimensions. This in its turn cannot be stipulated as an axiom unless we already
have a concept of dimension at our disposal. No simple way out of this impasse presents itself,
though for the moment we can follow Chisholm and impose (in effect) the requirement that
the range of variables of our theory be restricted to spatial objects of three or less than three
dimensions. 
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Another problem with Chisholm’s proposed definition of surface is that it does not do
justice to what we might call open surfaces, surfaces which are arbitrarily delineated
sub-regions of other, larger surfaces. 

A better definition can be achieved if we use an earlier proposal (advanced by
Chisholm in his 1989, p. 88) and define surfaces by appealing to the fact that a surface, unlike
other boundaries, can coincide at most with one other surface (where points and lines can
coincide with an infinity of other points and lines). We then have (provisionally and
tentatively):

DSF. SFx := Bx ∧ � xœyz[(x ~ y ∧ y ~ z) → (z = x ∨ z = y)]

Points, Lines and Surfaces

We have already given the following definition of point:

DPT. PTx := Bx ∧ œy(y ≤ x → y ~ x)

Chisholm defines point as follows (1992/93, p. 19):

PTx := Bx ∧ ¬◊x ›y(y < x)

The problem with a definition of this sort is that, as we have seen, the mereological sum of
coincident points (the red, green, blue points at the center of a disk divided into three
differently colored segments) is itself a point, and thus such as to have proper parts.

Chisholm seeks to define line as follows (1992/93, p. 19):

LNx := Bx ∧ ›y(y < x) ∧ ¬ SFx.

A line would then be a boundary which has parts but is not a surface. To rule out complex
points from counting as lines, the middle conjunct needs to be adjusted to: 

›y(y < x ∧ ¬x ~ y). 

Sums of separate boundaries (pairs of separate points, sums of points and lines, etc.) would
still provide counterexamples to the definition. To solve these difficult problems in the space
available to us here we therefore introduce the notion of sameness of dimension (=dim) as an



28 This notion can, incidentally, enable us to formulate an alternative definition of connectedness for boundaries
along the following lines:

DCNB*.CNBx := Bx ∧ œyz[(By ∧ Bz ∧ x =dim y =dim z ∧ x = y ∪ z)
→ ›vw(v ≤ y ∧ w ≤ z ∧ v ≠ w ∧ v ~ w)]
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additional primitive notion of our theory.28

We can now affirm a generalization of the subtraction theorem for bodies (TK1) above:

ADim1. (x < y ∧ x =dim y) → x =dim (x–y)

We can also define, by analogy with the case for bodies, what it is for two boundaries to be
in direct contact:

DDCOB. xDCOBy := Bx ∧ By ∧ x =dim y ∧ ›vw(v < x ∧ w < y ∧ v ~ w ∧ v ≠ w)

and we can affirm an axiom of density for non-punctiform boundaries:

ADim2. Bx → PTx ∨ ›yz (By ∧ Bz ∧ y ∪ z = x ∧ ¬yOz ∧ x =dim y =dim z)

Can we now define a line as a suitably complex dense boundary that is not a surface
and that is connected? To see why not, consider complexes of lines like these, which meet all
of these conditions are yet are not lines:
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Let us therefore define first of all the notion of a line-complex via:

DLC. LCx := Bx ∧ CNBx ∧ ¬ PTx ∧ ¬›y(SFy ∧ y ≤ x) (line-complex)

We can eliminate those and other troublesome line-complexes by defining a relation of contact for line-complexes and
restricting lines to those line complexes where at most two constituents are in contact at any given point:

DLCC. xLCCy := LCx ∧ LCy ∧ CNBx ∪ y ∧ ¬xOy (connectedness for line-complexes)

We then set:

DLN. LNx := LCx ∧ œyz[(y < x ∧ z < x ∧ yLCCz) → œw((w < x ∧ wLCCy) →
wOz)]

(line)

(lines are line-complexes which, for every point of their extension, can be split into at most
two mutually disjoint constituent line-complexes) 

 A similar operation will now have to be mounted in order to distinguish genuine
surfaces from surface-complexes which arise where surfaces cross or split. (We shall then
need to reexamine our definition of line-complex, which employs our earlier, provisional
definition of surface.)

Even when this is done, much will have been left unsaid. Thus we have not specified
that points are parts of lines, that lines are parts of surfaces. Thus a fortiori we have not said
either that lines are not mere sums of points and that surfaces are not mere sums of lines. Nor
have we said that lines and surfaces have boundaries. We have not defined the single
dimensions, nor ruled out fractional dimensions, and nor have we said that points, lines and
surfaces are entities of zero, one and two dimensions, respectively. All of these things need
to be proved, or stipulated axiomatically on the basis of intuitively reasonable, sound and
satisfactory mereotopological considerations. Only then will we have more than the
beginnings of a theory of boundaries and coincidence.
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