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1. Introduction

Rdevance logic has become ontologicdly fertile. No longer is the idea of relevance redtricted in
its gpplication to purely logicd rdaions among propostions, for as Dunn has shown in his
(1987), it is possible to extend the idea in such a way that we can distinguish aso between
rdevant and irrdlevant predications, as for example between “Reagan is tdl” and “Reagan is
such that Socrates is wisg’. Dunn shows that we can exploit certain specia properties of identity
within the context of standard relevance logic in a way which dlows us to discriminate further
between rdevant and irrdevant properties, as aso between relevant and irrelevant relations. The
idea yidds a family of ontologicdly interesting results concerning the different ways in which
attributes and objects may hang together. Because of certain notorious peculiarities of relevance
logic, however,! Dunn’'s idea breaks down where the attempt is made to have it bear fruit in
gpplication to relations among entities which are of homogeneous type.

Let us suppose that is red and is prime are rdlevant properties in the sense of Dunn. Then the
forma machinery underlying his approach dictates that so aso are: is either red or prime, is both
red and prime, is if red then prime, and so on.? This consequence is surely both counterintuitive
and in conflict with Dunn's stated ams. Still worse, however, are the implications in relaion to
what Dunn cdls “relevant properties of pairs’. A pair <a, b> has such a rdevant property, Dunn
tdls us? iff there are rdevant monadic properties F and G—rdlevant monadic properties of any
old sort—such that Fa U Gb. But this seems to be a good firgt candidate definition of what one
might better cal an irrelevant property of apair.

Can we, then, provide a more adequate account—a means of dfting out the relevant pairs
(Gilbert and Sullivan, Anderson and Bdnap, Xanthippe and Socrates) from the irrelevant pairs
(Napoleon and the moon, the number 2 and the Eiffd Tower, Quin€'s let foot and Chisholm’s
right ear)? Can we, more generdly, find a means of dfting out the relevant sets from those
irdevant sets which, while condituting a formd unity, lack dl materid connectedness among
ther members. Examples of reevant sets would be: The Berlin Philharmonic Orchestra, the set
of molecules in this nut, the natio hungarica. Examples of irrdevant sets would be: {Quine,

'Above dl because of the continued acceptance of the validity of p® p U q.
Op. cit., MSp. 362.
0Op. cit.,, MSp. 359.



Gandhi, the number three}; {Napoleon, the moon, redness}, and so on. Intuitively, manifolds or
plurdities in the fird group (“organic’ or “integra” wholes) seem to be admissble as entities in
their own right, i.e. in addition to the objects which are their members. This is first of all because
there are specidly intimate rdations among these members which serve to unify them into a
whole. But it is dso, and no less importantly, because each of the given wholes would seem to
enjoy a cetan completeness or separaeness in relaion to the surrounding environment (it
would enjoy a specid place within the family of those sets in which it is included). The
reflections which follow conditute one fird step towards making this somewhat metaphorical
idea more precise. They have been inspired on the one hand by Dunn's Relevant Predication
(though any possible forma connection to relevant logic as such, or indeed to relevant set theory
as standardly understood, will raise its head only at the very end). On the other hand they owe
much to unpublished work of Kit Fine on the formd ontology of dependence.* There is
moreover an interesing relaionship to the work of Orlowska and Weingartner (1986), where
relevance relations between predicates are introduced.

2. Relevance Relations

We gl write ‘xRy’ for ‘x is related to y'. This may mean: there is a rdevant relation (in
something like Dunn's sense) connecting X to y. Or it may mean any or dl of: x is in spatid
contact with y, x is consanguineous with y, x is dmilar to y, X has business dealings with y, x
lives in the same place as y, x looks a hit like y from a distance, x is causally bound up with vy,
and so on.” (In genera it seems that what rdevant sets there are will be determined by a number
of heterogeneous relaions of this sort, perhgps acting in consort. The investigation of the
consequences of such collaboration amongst different relevance relations will not, however, be
attempted here)) All that matters here is that R be some symmetric and reflexive reation defined
across a gpace of objects upon which a set-theoretical structure is then built up in the usud way.®

Consider, now, the function B defined on this space of objects in such away that:

B°(x) = {x}
Ba*(x) := BA(x) E {y:$z1 Ba(x) UyR2)} for a asuccessor ordinal
B2(x) := Eb<a Bb(x) for a alimit ordind

B is an expanding function; thusit has afixed point a ,, for which

B2, (x) = B&,"(x). (In fact we can prove that a, = w.)

“The ldter is summarized in Simons (1987), pp. 311ff.

*We may wish to alow dso, for each (relevant?) property F, the rdlevant rdation: x and y
are both such asto have F. Inthisway the set of F’s, too, may turn out to be ardevant set.

®Even the requirement of reflexivity isinessentia, snce we can of course for any
symmetric R define areflexive rdation R by xRy:= x=y U xRy.
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If we now define
xRy:=yl Ba,(x),

then R* is an equivaence rdation which patitions the space of Urelemente into maximd classes
of what we might call (direct and indirect) relatives. B defines a basis for a topology on this
space whose non-empty open sets are al the unions of the B2(x).

The B23(X) are, intuitively, families around x generated by relatednesses of degree £ a. If we
define d(x, y) as the least a such that y T B2(x), then d provides a measure of the degree of the
rdatedness of x and y. The function thus defined will be seen to sisfy the usud requirements
for adistance function, namely

d(x, y) =0iff x =y,
d(x, y) = d(y, X)
d(x, 2) £ d(x, y) +d(y, 2.

However d is not, in generd, defined. If x and y beong to different R*-equivalence classes,
then there is no relation at dl between them, however indirect. Hence, aso, there is no sense to
the idea tha we might measure thar relatedness. A fully melric space is, however, obtained if
we add the (independently not unattractive) assumption:

"X, Y (XRy)

to the effect that the space of objects is unified (connected) in the sense that it does not collapse
into separate regions mutudly inaccessible viaR

3. Branches, Families, Cores
What, now, are we to alow as the rdevant sets? One solution would be to admit precisely the B2,
perhaps limiting oursalves (according to scruples) to finite a. In light of the non-trangtivity of R, the very
scrupulous will inggt on a restriction to those cases where a < 1. It turns out, however, that there are
certain subsets of the B*(x) which enjoy just that specia sort of rounded-offness from the outside
world, and whose members enjoy just that specidly intimate sort of relatedness, which we said ought to
be characteritic of the relevant sets.

Let usfirg of dl define a branch to be any set X dl of whose members are directly related by
R Thatis

Br(X):="x,yl X(xRy).”

"This definition enables us to generdize the notion of relevance to apply not merdly
within but also between sets, for example by setting:
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Trividly, by reflexivity of R dl sngletons are branches. Moreover, and no less trividly, we
have

(X1 Y UBr(Y) ® Br(X).

A family may be defined as a union of branches whose intersection is non-empty.® Every
non-singleton branch is a subset of some B'-set, and every B'-set (and every branch) is a family,
but there seem to be no entallments in the opposite direction.

Br embraces a tighter redtriction than B*(x). The latter requires only that there be some one
(mother) object (x) to which dl members of the given B*(x) are directly related. Br, in contrast,
requires that dl objects be directly related to each other. It will not do, however, to take
branches as the rdevant sets, for a branch x may be formed by sdecting some objects at random
from some other branch Y. Branches may accordingly lack that rounded-offness which is to be
part of what judtifies our trestment of relevant sets as entitiesin their own right.

Let us, therefore, introduce the notion of amaximal branch or Net, defined by:

Net (X) =" YBr(XE V)« YI X).

It will gill not do to redrict oursaves to maxima branches, however, for it seems clear that
some rdevant sets will be included in others (as for example the wind ensemble is induded in
the entire orchestra), and thisis dearly ruled out if relevant sets are dways maximd.

Yet Hill, we are not too far from the notion we require. A non-maxima branch X is typicdly
contained within the intersection of a larger family of maxima branches which emanate from X
is typicdly contaned within the intersection of a larger family of maxima branches which
emanate from X in different directions. In each such case there will be what one might call the
core of this family, conssing of the largest st of family-members included in al the maxima
branches in which X is included. Let us therefore define the core generated by X as the set
condging of dl those members of this larger family circumcluding X who are members of dl
the maxima branches extending X.

We shdl say that Y isamaximal extension of X, or

XRY =Br(XEY).

And then, if the definition of branch isitsdf smilarly generdized, it will follow that the property
of branchhood is preserved under the operation of taking power sets. Here, however, we shall
concentrate exclusively on set of Urelemente— which will also mean that the ideas here offered
will be cgpable of being transferred relaively easly to the field of mereology.

8This definition starts out from the idea of afamily as a set of objects existing
amultaneoudy. We might, however, define alineage (or family-in-the-Wittgensteinian-sense) as
aunion of branches X, ... , X, for which it isrequired only thet each of the X; C X, be non-

empty.
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X<<Y:= XI YU Net(V).
We now need to adopt the following non-trivid satute of limitations:
"XBr(X)® $Y(X<<Y)).

to the effect that every branch is incduded in some maxima branch, a condition which can be
verified only by appeal to some form of the Axiom of Choice. Suppose X is a non-empty set of
sets which satisfies the condition that if C isachanin< X, I >, then E I . XI X. Zorn's Lemma
tdls us that X has a maxima member. If, now, we let X be the set of dl branches induding the
branch X, and if we suppose Y, | ... Y, ...isachain in X, then the union of the Y, is adso a branch;
thus it, too, is a member of X. Hence we can infer that X has a maxima branch. If we now
define, for each branch X, its core

CX) :=Cyeey Y

then because every branch has at least one maxima extenson we know that C(X) is defined for
al branches X.

4. The Structure of Restricted Set Theory
The core generated by X has the nice property that it both preserves the inter-relatedness enjoyed
by the members of X and is a the same time a natura completion or rounding-off of X.
Moreover, it is possible for one core to be included within another.

The operation of taking cores is smilar to, though not identica with, a topological closure
operation. For while we have, for dl branches X and Y,

. XI C(X) (Expansiveness)
1. C(C(X)) =C(X) (Idempotence)
1. Xi Y® cX)i c(v) (Isotonicity)®
IV. C(XEY)® C(X)E C(Y) (Additivity)

which is what would be required if C were to yidd a ful dosure algebra. Hence also—despite
the presence of

V. C(E) = £

°. fallowstrividly from the definitions. To prove 1. It suffices to show that C(C(X))
C(X),i.etha X<< Y® C(X) << Y, whichfdlowstrividly from the definition of Net. To prove
1., suppose x I C(X),then" Z((X1 Z U Net(2)) ® x1 Z). Whence aso x belongsto any Z
suchthat Yi Z U Net(2).
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—the underlying structure is not that of a ful topologicad space. To see that C is not additive,
congder the family defined by Figure 1:

* N

X' *y

Figure 1l

where the links connecting nodes signify that these nodes are related by R Now set X={x},
Y={y}, then C(X)= {x}, C(Y)={y}, but C(XE Y)= {x, y, Z}.

The falure of additivity tdls us that cores cannot in generd be split apart, as it were, into
condituent cores. Or, from the opposite perspective, it tells us that the forming of unions among
relevant sets is no inconsequential matter. Hammer has described the additivity axiom as the
axiom of derility: it requires that two sets cannot produce anything by union that one of them
cannot produce alone (Hammer 1962, p. 65). Relevant sets are not dterile in this sense, since if
they are unifidble at dl, then their relevant union may incorporate something new. The notion of
relevant set may in this sense capture part of what is involved in the idea of an emergent whole.
In any case it seems to give a formdly precise rendering of the idea that there may exist unities
a higher levds which are not merdy the result of a summing together of unities exising lower
down.*

If, now, the space of rdevant sets does not have the Structure of a full closure algebra, then
the question arises as to what is dructure is. Axioms |.-lll. In fact determine a pre-closure
algebra, a dructure fird studied extendgvely by Ore in 1943. Hammer, in particular, has shown
in a series of papers that even within this very modest dructure it is possble to develop

19The notion of relevant set may thereby aso throw some philosophicdly interesting light
on the idea that, through an appropriate act of collection or “colligation”, any definite objects of
thought may be brought together into awhole. Suppose that the relevance of x andy is
established soldy by such an act of collection z Then it seems reasonable to suppose that the
amdlest rdlevant set containing x and y will contain z also.
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andogues of a number of fundamenta topologica notions* And according to Fre it is a
preclosure agebra that “is the mathemaicd Structure underlying the theory of dependence
relations put forward by Husserl in his 3rd Logical Investigation ‘On the Theory of Wholes and

pats” .2

5. Principlesof Restricted Set Theory

If we are right in supposing that the rdevant sets are (for some appropriate R) just the core sets
as defined above, then the question arises as to how redtricted set theory would differ from set
theories of the more usual sort. If R is the set of rdlevant sets, thenwe have XT R ® X = C(X).

From this we can eadly prove that <R ; C>, is a complete non-digributive meet-semilattice. This
follows from:

X,YI R® XCY=C(XCY),

which in turn follows eadily from the definitions.
Vaiaddles X, Y, Z, ... ddl henceforth range over rdlevant sets. Since relevant intersection as

defined on R differs not at dl from norma intersection, we shdl represent it by means of ‘C’ as
usud. Membership and set induson, too, like the null-sat, will turn out to coincide with the
membership, induson and null-sst of norma set theory. Only with the operation of rdevant
union, defined by

XERY:=C(X EY)
do problems arise, snce C(X E Y) is not, in generd, defined. Where it is defined, however (for
which a necessary and sufficient condition is that X and Y together form a branch), then it is
unigue. Moreover, E® is commutative. It is associaive, in the sense that, if (X ERY) ER 2) is
defined, then so dso is X ER (Y ER Z), and the two are equal. And it stisfies the usud

XERX=X

XER(XCY) =X

XC (XERY) =X

Further, the equivalence of X I Yand X ERY = Yis preserved, and we have aso the reassuring

"X(XERY=X)® Y=£

1See Hammer 1960, etc. and compare Netzer 1978.

12Cf. Fine (unpublished). Husserl’ s discussion of separation and of connectedness via

chainsin 88 8 and 20 of thiswork may aso be of relevance to the issues under discussion here.
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That redrictive set theory is non-digributive can be seen if we condder again the family
defined in Fig. 1 above. (To see the falureof X C (YERZ)=(X CY)ER(X C 2), st X ={7,
Y= {y}, Z ={Z.) However, we do have the didributive inequdities (where dl the rdevant unions
are assumed to be defined):

(XCY)ER(XCZ)I X C(YE"2),
(XE®(YCZ)I (XE*Y)C (XE"2),
(XCY)ER(YCZ)ER@ZCX)I (XEFY)C(YERZ) C (ZEFX),

and we a0 have the modular inequdity:
(XCYER(XCZ)I X C(YER(XCZ),

Perhaps one of the mogt interesting features of restricted set theory is that the operation of
taking dngletons is not in general defined, something which nicdy captures our intuition that
there are objects—for example smiles—which in and of themsalves do not form sdf-existent
wholes but rather stand in need of other objects in order to exist. X is dependent or non-sdf-
exigent in this sens iff there is some y such that dl objects to which x is related are related aso
to y. The smdlest rdevant set induding x in such circumstances will include aso y. The idea of
dependence is gmilar, in some respects, to Frege's idea of unsaturatedness. Unlike Frege,
however, we can didinguish in our present framework not only unilaerd but aso mutud
unsaturatedness, for is x depends for its existence on y in the sense indicated, then it may or may
not be the case that y also depends for its exisence on x. In a system like Wittgenstein's
Tractatus, where the Sachverhalte mightt be sad to serve as the relevant sets (integral wholes) in
our present sensg, it seemsthat al smple objects are mutudly unsaturated in this sense.

We may now define the notion of arelevant atom, asfollows.

Atom(X) =" Y(&EI YI X® Y=A£UY=X).

Clearly atoms are mutudly exdusve, and every atom X is join-irreducible, in the sense that if X
= YER Z then X = Yor X = Z. As Figure 1 makes clear, however, not al join-irreducible
elements are atoms.

FHndly, it goes without saying that the operation of taking complements, too, is not in
genera  defined within the theory of rdevant sets. It seems, indeed, that (for naturd
interpretations of the theory) it is never defined.® Unity, as Arisotle might have said, is not to be
arrived at through privation.

3Even the complement, Y\ X, of X relativeto Y, characterisedby XI YUXC Y \X =
AU XERY\ X=Y), isnot dways defined, asis dear for example from the family:

N 8
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6. Modelsof Restricted Set Theory

(i) Let x, y, ... range over points in three-dimensional Euclidean space and set xRy iff [x-y| £
1. Then the rlevant sets are dl intersections of closed balls of unit diameter.

(i) Let x, y, ... range over people, and set xRy iff x is directly related to (is a sibling, parent,
child or spouse of) y. Then the rdevant sets are dl maximd family groups of sblings-plus-
parents, together with al singletons of non-dependent individuads (where a dependent individua
is for example a child with no children of its own).

() Let x, y, ... range over ultimae, microphysca particles and set xRy iff there is some
(physicd, chemicd, biologicdl,...) object to which both x and y belong. The relevant sets are then
the sets of particles condituting objects at different levels, and induson rdaions between
relevant sets will mimic the congtituency relations between the corresponding objects.

(iv) Let x, y, ... range over Urelemente and set xRy iff x and y exist smultaneoudy. The
relevant sets are then those sets of objects which a some time actualy exist. There are two
different ways of understanding this idea. On the one hand we might regard the relevant sets as
condtituting a sub-set of the sets classicdly conceived and as existing no less abgtractly and
timelesdy than these. On the other hand however we could see the set of relevant sets a changing
from moment to moment; Rwould then, as it were, bring tempordity into the redim of sats.

(iv) Let x, vy, ... range over topics in some universe of discourse, and suppose xRy is a
relevance-relation defined on X, y, ... in some intuitivdly acceptable way. The rdevant sets will
then be organized hierarchicdly, in ligt of the fact that topics will stand in relations of greater
or lesser gengdity. Define the content T(p) of a proposition p as the set of its topics. We now let
p, g, ... range over those propodtions which are themsdves rdevant, in the sense that ther
respective contents are each such as to be included in a relevant set. We then define relevance
between propositions by:

pRy iff T(q) isincluded in some relevant s&t.

We can now exploit this idea to cope with our conflicting intuitions as to the validity of
entailments like p ® p U q. There is on the one hand a long-standing intuition to the effect that a
sentence of the form A ® B can express an andytic truth only if it is the case that T(B) | T(A),**
Anderson and Belnap, on the other hand, point out that we are predisposed to accept as analytic
also a case like all brothers are siblings which (give or take the quantifiers) they would have us
regard as an instance of p ® p U g (Anderson and Belnap, p. 155). Hence, they argue (and
without pausing for air), that p ® p U qis vdid in genera. Surely, however, we can find some
way to dlow the sbling-brother case without opening the floodgatesto p ® p U q in general.
This is in fact precisdy what is achieved by imposing on vaid entailments of the form A® B the
restriction that they be relevance-preserving in the sense that T(A) E T(B) should be incdluded in
ardevant st.

Previous atempts a using topic- or content-related notions as a means of carving out the
rdevant entalments have faled, we might argue, because they have employed set-theoretic

1“See, eg., Parry 1933.



means which are themsdlves a bottom dill irrdevant in orientation. This is particularly clear for
example in the case of Carnap and Bar-Hilld (1952), who would have it that the content of the
negation of a proposition is the usud set-theoretic complement of the content of the proposition
itdf. Even the more sophisticated framework described by Dunn (1976, 86) dill admits the
formation of contents via unrestricted union, and so he, too, is forced to dlow p ® p U q to dip
through the net. By exploiting the resources of a restricted set theory of the sort described above,
however, it may be possble to do judtice to the idea of a rdevance logic by dlowing relevance
among propositions to be determined, in part a least, by those ontologica relevance rdations
which obtain anongst the objects in the world.

7. Relevant Logic

Let A, B, ... range over those propostions which are themsdaves relevant, in the sense that their
respective contents are each such as to be included in a relevant set. We can now define
relevance between propositions by:

ARB = T(A) E T(B) isincluded in some relevant set.

Define S; to be that subset of the set of formulae of the propositiona caculus which satisfies the
following conditions:

() dlaomicformuleeaein S,
(i) DBisin S;iff Bisin S,
(i) (B® C), (BUC), (BUC),arein Siff Band C arein S, and BRC.

What, now, can be sad about the set S; C PC, defined as the intersection of the set S; with the
set of PC-vdid formulae? If R is defined so weskly that ARB for dl A and b, then S; C PC is just
the set of propogtiond tautologies. If, on the other hand, R is defined in such a way that, for
aomic formulae p and g, pRq iff p = q, then S§; € PC congsts exclusively of tautologies in a
dnge sententid varisble. Between these two extremes there is a range of posshbilities, al of
which exclude formulae like p ® p U q but a the same time dlow in prindple certain cases of
A® B where the content of B goes beyond the content of A. Such implications would express
what we might cdl synthetic truths, the andytic implications being implications identified as
sidying.

(A) T® I TA).

Our approach, therefore, represents a generadisation of those varieties of relevance logic which
rest on taking principle (A) as a condraint on vdidity. The family of such logics embraces,

familialy, not only the origind system of Parry (1933) and its modification by Dunn (1972), but
also, and not least, the A,-system of Weingartner and Schurz (1986).
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