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Parsimony and Models of Animal Minds 

  

Elliott Sober 

 

 

1.Introduction  

 

 Dennett’s (1971, 1987) ideas about the intentional stance have elicited different 

reactions from philosophers and scientists.  Philosophers have focused on Dennett’s 

alleged anti-realism about the mental while scientists have focused on his three-way 

distinction among zero-order, first-order, and second-order intentionality.  For most 

philosophers, anti-realism (at least concerning the mental states of human beings) is a no-

no; for most cognitive scientists, the three-way distinction is useful.  This contrasting 

reaction is typical of a larger pattern:  philosophers are more inclined to cite work with 

which they disagree while scientists are more inclined to cite work on which they wish to 

build.   

 

Dennett (1987, 1991) has denied that he is an anti-realist, but that has not stopped 

philosophers from continuing to affix a scarlet letter ―A‖ to his work.  Nor has the specter 

of anti-realism stopped cognitive ethologists from using the three-way distinction to 

articulate a central methodological principle, which they call ―the principle of 

conservatism.‖  According to this principle, hypotheses that explain an organism’s 

behavior by attributing lower-order intentionality are preferable to hypotheses that 

explain the behavior by attributing higher-order intentionality (see, for example, Cheney 

and Seyfarth 1990, 2007).   

 

My subject here is the principle of conservatism.  What, exactly, does it say and 

what is its justification?  Cognitive scientists often regard the principle as an instance of a 

more general methodological maxim, namely the principle of parsimony, a.k.a. 

Ockham’s razor.  They reason as follows:  since Ockham’s razor is a sound principle of 

scientific inference, there is no special question about why the principle of conservatism 

should be used in cognitive science.  My main goal in this paper is to trace how the 

general principle is related to the specific one.  This tracing suggests that the principle of 

conservatism needs to be refined.  Connecting the principle in cognitive science to more 

general questions about scientific inference also will allow us to revisit the question of 

realism versus instrumentalism.  Realist philosophers of science often have no problem 

with the principle of parsimony.  Maybe they should not be so sanguine.  Finally, 

connecting the principle of conservatism to more general inferential issues suggests that 

the principle can be more than a qualitative tie-breaker.  If two explanations fit the 

observations equally well, one is told to prefer the explanation that is more parsimonious.  

The view of parsimony that I’ll describe also allows theories to be compared that fit the 

data unequally well.  If a complex theory fits the data better than a simpler theory does, 

which theory is better overall?  Many philosophers think there can be no principled 

answer to this question; they think it is a matter of taste how much weight you put on 

simplicity compared with goodness-of-fit.  The view of parsimony provided by the part 
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of statistics called ―model selection theory‖ suggests that there is room for skepticism 

about this conventionalist view. 

 

I have argued in earlier publications that invocations of parsimony in science 

often should be viewed as expressions of subject-matter specific background theories 

(Sober 1988, 2005); it follows that different invocations in different scientific problems 

may rest on very different foundations (Sober 1990, 2001).  Thus conceived, the way to 

understand the use of parsimony in a given scientific domain is to uncover the 

background theory in play.  Fitzpatrick (this volume) adopts this strategy to assess the 

principle of conservatism.  This is not the strategy I will pursue here.  The framework 

deployed in model selection theory is very general; it is not specific to the subject matter 

of any one science (which is not to say that there are no assumptions that must be 

satisfied for the apparatus to apply).  How does that general framework help clarify the 

principle of conservatism?   

 

 

2. Preliminaries     

 

The usual definition of orders of intentionality is this:  a 1
st
 order mental state is a 

mental state that is not about (the presence or absence of) any mental state, a 2
nd

 order 

mental state is a mental state that is about (the presence or absence of) a 1
st
 order mental 

state, a 3
rd

 order mental state is a mental state about (the presence or absence of) a 2
nd

 

order mental state, and so on.  Aboutness is judged by the state’s propositional content (if 

it has one).  Consider a dog, Fido, and his master, Louise.   If Fido believes that a bone is 

buried in the backyard, this is a first-order mental state, since the content of Fido’s belief 

(that there is a bone buried in the backyard) does not describe anyone’s mental state.  If 

Fido believes that Louise sees that he is digging in the backyard, this is a second-order 

state, since the content of Fido’s belief adverts to Louise’s mental state.  And if Louise 

believes that Fido realizes that she is watching him, Louise’s state is third-order.  By 

convention, a 0
th

 order mental state is a limiting case; it denotes a state in which there is 

no mentation at all. 

 

 It is customary in the literature to say that adult human beings have 2
nd

 order (and 

higher) intentionality, that apes and monkeys have at least 1
st
 order intentionality though 

it is controversial whether they have 2
nd

 order intentionality, and that thermostats have 

only 0
th

 order intentionality.  This suggests that we should define how orders of 

intentionality are assigned to organisms (or to ―systems‖) as follow: 

 

 Organism O has n
th

 order intentionality =def   O has at least one n
th

 order  

mental state.         

 

Notice that this definition is consistent with a single individual’s having multiple orders 

of intentionality.  It usually is assumed that if an organism has 2
nd

 order mental states, 

then it also has 1
st
 and 0

th
 order states.  I will adopt this assumption here.    
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 The definitions and the assumption just mentioned suggest the following simple 

probability argument.  The statement that a system has 2
nd

 order intentionality is logically 

stronger than the statement that it has 1
st
 order intentionality, since the former entails the 

latter, but not conversely.   It is a consequence of the axioms of probability that logically 

stronger statements can’t be more probable than logically weaker statements.  This means 

that: 

 

 Pr(O has 2
nd

 order intentionality) ≤ Pr(O has 1
st
 order intentionality)  

≤ Pr(O has 0
th

 order intentionality.
1
 

 

The axioms of probability also entail that this ordering of probabilities must remain in 

place regardless of what new observational evidence is obtained: 

 

(1a) Pr(O has 2
nd

 order intentionality│E) ≤ Pr(O has 1
st
 order intentionality│E)  

≤ Pr(O has 0
th

 order intentionality│E), for any evidence E. 

 

Is this enough to justify C. Lloyd Morgan’s famous ―canon?‖   Morgan (1894, p. 53) 

describes his principle as follows: 

 

In no case may we interpret an action as the outcome of the exercise of a 

higher psychical faculty, if it can be interpreted as the outcome of the 

exercise of one which stands lower in the psychological scale. 

 

Even if Morgan’s ―higher‖ and ―lower‖ are taken to correspond to the orders of 

intentionality just defined, the answer is no.  As (1a) makes clear, no evidence can 

ever make it more probable that an organism has (at least) 2
nd

 order intentionality 

than that it has (at least) 1
st
 order intentionality.   In just the same way, the axioms 

of probability entail that  

 

            Pr(there are at least two apples in the basket) ≤ Pr(there is at least one apple in the   

basket). 

 

and  

 

(1b) Pr(there are at least two apples in the basket│E) ≤ Pr(there is at least one apple in 

the basket│E), for any evidence E. 

 

Proposition (1a) is true, but it doesn’t capture what Morgan is after since Morgan thinks 

that evidence can sometimes justify the attribution of ―higher psychical faculties.‖
2
  The 

                                                 
1
 These inequalities will be strict if Pr[O has (n+1)

st
 order intentionality│O has n

th  
order intentionality] < 1. 

2
 In the book’s second edition, Morgan (1903, p. 59) restates the canon and adds:  ―To this, however, it 

should be added, lest the range of the principle be misunderstood, that the canon by no means excludes the 

interpretation of a particular activity in terms of the higher processes, if we already have independent 

evidence of the occurrence of these higher processes in the animal under observation.‖ 
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same goes for modern cognitive scientists and how they understand their principle of 

conservatism. 

 

 The thought behind these principles is that we should adopt hypotheses 

that attribute higher-level intentionality to an organism only if the data force us to 

do so; in the absence of such data, we should assume that the organism has only 

lower-level intentionality.  This proposal is independent of the axioms of 

probability theory because the hypotheses of interest are incompatible with each 

other.  A natural Bayesian representation of the principle of conservatism is to 

formulate it as a claim about the prior probabilities of three incompatible 

hypotheses: 

 

(2a) Pr(O has 0
th

, 1
st
, and 2

nd
 order intentionality) < Pr(O has 0

th
 and 1

st
 order 

intentionality only) < Pr(O has 0
th

 order intentionality only). 

 

This inequality is no more a consequence of the axioms of probability than is the 

following claim about apples: 

 

(2b) Pr(there are exactly two apples in the basket) < Pr(there is exactly one apple in the   

basket) < Pr(there are no apples in the basket). 

 

The ordering of prior probabilities described in proposition (2a) may be revised as new 

evidence is acquired.  The priors embody a ―default assumption‖ that subsequent 

evidence may displace.   In just the same way, proposition (2b) might be a default 

assumption about a basket – an assumption we make before we have observed it; 

adopting this assumption does not preclude our obtaining evidence that makes it very 

probable that the basket contains exactly two apples. 

 

 Although (2a) is more in tune with what Morgan and modern cognitive scientists 

have in mind, there is a catch.  What justification does (2a) have?  When it comes to 

apples, we want empirical evidence for a claim like (2b).  This evidence might come 

from frequency data or from a well-confirmed empirical theory.  I submit that the same is 

true for (2a).  Morgan attempted to furnish an empirical argument for his canon based on 

Darwin’s theory of evolution, an argument that I think fails (Sober 1998b).  What about 

frequency data?  If we knew that few organisms have 2
nd

 order intentionality, that more 

have only 1
st
 order, and that still more have only 0

th
 order intentionality, that would do 

the trick.  But the intent of Morgan’s canon and of the principle of conservatism is to 

provide inferential advice before we know any such thing.  Nor do we have an empirical 

theory that provides the needed justification.  Perhaps, then, we should regard (2a) as a 

―primitive postulate.‖  The problem with this approach is the one that Russell (1919, p. 

71) described in another context:  it has all the advantages of theft over honest toil. 
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3. Model Selection 
 

Rather than pursue the question of whether Bayesianism is able to explain why 

the principle of conservatism makes sense, I want to outline some nonBayesian ideas that 

have been developed in model selection theory.  These, I think, provide an attractive 

format for characterizing, and for improving upon, what the principle of conservatism 

says.  These ideas are nonBayesian, in that they do not appeal to the prior or posterior 

probabilities of the hypotheses considered. 

 

 

Table 1:  Number of individuals with lung cancer out of 1000 

in each of four treatment cells. 

                    Asbestos exposure 

               +                                            -        

               

Smoking                 

+                50                30 

-                20                       3             

 

 

 I’ll begin with a nonpsychological example.  Suppose you want to model how 

smoking and asbestos exposure influence lung cancer.  Your information is to come, not 

from some antecedently well-established theory, but from data on how often people in 

different ―treatments‖ contract the disease.  To simplify, let’s suppose that smoking and 

asbestos are dichotomous variables, and that the same is true of lung cancer.  Suppose 

that there are 1000 people in each ―treatment cell‖ and that the number of individuals in 

each cell who get the disease is as shown in Table 1.  

 

 

Table 2:  Probabilities of lung cancer in four treatment cells. 

                    Asbestos exposure 

               +                                            -        

               

Smoking                                   

+         b+a+s+i             b+s 

-              b+a                     b             

 

 

 The task is to model how smoking and asbestos affect the probability of lung 

cancer.  The probability in each treatment cell of contracting the disease is represented in 

Table 2; ―b‖ represents the ―baseline‖ probability of lung cancer when an individual does 

not smoke and is not exposed to asbestos, ―b+s‖ is the probability of cancer among 

smokers who are not exposed to asbestos, and so on.  Here are some causal models to 

consider: 

 

(Null)      s=a=i =0.  The value of b is left open. 

(Only smoking)   a=i=0.    The values of b and s are left open. 

(Only asbestos)   s=i=0.  The values of b and a are left open. 

(Two additive causes)  i=0.  The values of b, a, and s are left open. 
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(Two interacting causes)  The values of b, a, s, and i are left open.
3
 

 

The Null model is the simplest one listed; it has a single adjustable parameter (b) and 

says that smoking and asbestos make no difference to one’s risk of lung cancer.  The 

models of Only Smoking and Only Asbestos each have two adjustable parameters, the 

model of Two Additive Causes has three adjustable parameters, and the model of Two 

Interactive Causes has four.   

 

How might these models be tested against each other?  The fact that all contain 

adjustable parameters makes it difficult to see what they predict about the data.  Model 

selection theory solves this problem by shifting attention from a model M to the 

instantiation of the model, L(M), that assigns the free parameters in M the values that 

maximize the probability of the data.  For example, consider the model of Two 

Interacting Causes and the data in Table 1.  This model maximizes the probability it 

assigns to the data if its adjustable parameters are set at b=3/1000, s= 27/1000, 

a=17/1000, and i=3/1000.  These are the maximum likelihood estimates of the 

parameters.  This model is able to fit the data perfectly; the maximum likelihood 

estimates exactly match the frequencies in the data.  The other models cannot do this; 

however, they are simpler. 

 

H. Akaike, the father of model selection theory, introduced two innovations into 

statistics (Forster and Sober 1994).  The first was the description of a goal that models 

might be asked to attain; the second was a theorem that threw light on how one might 

estimate a model’s ability to attain that goal.  The new goal was predictive accuracy.  

Rather than asking whether a model is true or probably true, one asks whether it will 

accurately predict new data when its parameters are fitted to old data.  We have seen that 

the model of Two Interacting Causes can fit the old data perfectly.  If four new groups of 

people are sampled from the same population from which the people in the old data set 

were drawn, how well will the fitted model predict their frequencies of lung cancer?  

Akaike’s second contribution was a theorem.  Akaike (1974) proved, from some 

surprisingly general assumptions, that 

 

 An unbiased estimate of the predictive accuracy of  

model M  = log{Pr[data │L(M)]} – k. 

 

Here k is the number of adjustable parameters in M; it measures the model’s complexity.  

This theorem is the basis for a proposed criterion for estimating the predictive accuracy 

of models.  The Akaike Information Criterion (AIC) scores a model by calculating its 

value for the quantity log{Pr[data │L(M)]} – k.  More complex models will have higher 

values for log{Pr[data │L(M)]}, but they will incur a larger penalty by virtue of having a 

larger value for k.  The point of AIC is to compare models with each other.  What matters 

is not a model’s absolute AIC score, but how its score compares with those of other, 

competing, models.  Whether a simpler model has a better score than a complex model 

depends on the data. 

                                                 
3
 It wouldn’t matter to the framework of model selection theory if the parameters in a model that are not set 

equal to zero were constrained to be nonzero (rather than having their values left entirely open, as above). 
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 Akaike’s theorem shows why the complexity of a model (as measured by the 

number of adjustable parameters it contains) is not an aesthetic frill; it is relevant to 

estimating predictive accuracy.  The framework that Akaike proposed is interesting for 

the additional reason that it explains why it makes sense in science to test models that 

everyone knows are false.  Null models frequently have this feature.  If the goal were 

simply to discover which models are probably true, idealized models could be dismissed 

summarily.  However, if the goal is predictive accuracy, it makes sense to test idealized 

models against each other.  Surprisingly, the Akaike framework shows that a model 

known to be false can sometimes be expected to be more predictively accurate than a 

model known to be true.  AIC embodies an instrumentalist epistemology.        

 

 Although philosophers often describe the principle of parsimony as a tie-breaker,  

AIC and the other model selection criteria discussed in statistics are more than that.  They 

not only entail that the more parsimonious of two models is better when they fit the data 

equally well; they also indicate how models should be compared when they differ in both 

simplicity and in goodness-of-fit.  This resource may come in handy for cognitive 

scientists who want parsimony to be more than a qualitative and informal criterion.  

 

 

4. Altruism and Spite in Chimpanzees 

 

Silk et al. (2005) and Jensen et al. (2006) conducted experiments that were 

designed to discover whether chimps have other-directed preferences or are indifferent to 

the welfare of others.  There are differences between the two studies, but the conclusions 

are on the same page; the former concludes (p. 1357) that ―chimpanzees do not take 

advantage of opportunities to deliver benefits to familiar individuals at no material cost to 

themselves,‖ the latter (p. 1013) that ―chimps made their choices based solely on personal 

gain.‖  

  

All the experiments place a chimp in a situation in which it must choose among 

actions.  Silk et al. (2005) studied whether chimps choose to send food to both their own 

cage and to another cage more often when there is another chimp in the other cage or 

when the other cage is empty.  They found that the frequencies of provisioning both 

cages in these two setting are not significantly different.   Evidently, the chimps care only 

about getting food for themselves; the presence or absence of another chimp -- a potential 

recipient of their donation -- does not matter.  Jensen et al. (2006) tested how often actors 

choose to provide food to both self and other as opposed to providing food only for self.  

The amount of food that actors obtain for themselves is the same in both cases and there 

is no more effort involved in choosing ―both‖ rather than ―just me.‖  Jensen et al. also 

studied what chimps do when they cannot benefit themselves.  Will they provision 

another chimp?  Here again, it appears to be a matter of indifference to the actor what 

happens to the would-be recipient.   

 

 

Table 3:  Frequencies of four types of behavior.  
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                    benefit to other 

                 +                                              -        

 Benefit 

 to self 

+              49%                46% 

-               3%                       2%            

 

 

In order to mimic the structure of the lung cancer modeling problem described 

before, I want to consider the following experiment, which is inspired by Silk et al. 

(2005) and by Jensen et al. (2006).  The point is not that this is a good experimental 

design; rather, I want to start exploring how model selection ideas apply in intentional 

psychology.   When it is time for a meal, an actor and a second chimp (―the other‖) are in 

facing cages.  The actor has the option of producing the four outcomes shown in Table 3.   

Actors can cause food to be provided to both self and other, just to self, just to other, or to 

neither.  The four outcomes are equally easy for actors to achieve and donating to the 

other chimp does not affect the amount of food that actors obtain for themselves.  

Suppose the frequencies of these four types of behavior are those given in Table 3.  

 

Table 4:  Probabilities of four types of behavior.  

                    benefit to other 

               +                                              -        

benefit  

to self                     

+          b+s+a+i                  b+s 

-              b+a                         b         

 

Now let’s consider some models of the chimps’ behaviors that are expressed in 

terms of the probabilistic parameters shown in Table 4; b is the probability of performing 

an action that provides food to neither self nor other, ―b+s‖ is the probability of 

benefitting self alone, and so on.   

 

(Null)        s=a=i =0.  The value of b is left open. 

(Pure Selfishness)     a=i=0.    The values of b and s are left open. 

(Pure Altruism)     s=i=0.  The values of b and a are left open. 

(Additive Motivational Pluralism)  i=0.  The values of b, s, and a are left open. 

(Interactive Motivational Pluralism)    The values of b, s, a, and i are left open. 

 

The Null model says that chimps are ―nihilists‖; they care neither about self nor other. 

The next two models, Pure Selfishness and Pure Altruism, are both monistic models; they 

say that chimps care only about self or only about others.  The last two models are 

pluralistic; they say that chimps care about both self and other (Sober and Wilson 1998).  

As before, the most complex model can achieve perfect fit-to-data.  Nonetheless, 

depending on the frequency data and the sample size, it may turn out that Pure 

Selfishness is the model that receives the best AIC score. 
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5. Model Evaluation versus Hypothesis Testing 

 

 Jensen et al. (2006) touch on a possibility that can arise in any study, one that I 

think shows that the comparative and instrumentalist framework of model selection 

theory is superior to the accept/reject framework of conventional Neyman-Pearson 

hypothesis testing.  Their experiments led them to conclude that chimps do not have 

other-directed preferences (at least when it comes to food sharing in the kind of 

circumstance they investigated).  This conclusion was based on pooling data from all the 

chimps in the study.  This leaves it open that when chimps are considered one by one 

(each participated in multiple experiments that each involved a number of trials), the 

evidence may indicate that some of them have other-directed preferences.  Indeed, Jensen 

et al. (2006, p. 1019) say that ―two of the six actors showed some possible signs of 

altruism.‖
4
   

 

 This illustrates a paradoxical possibility that can arise in Neyman-Pearson 

hypothesis testing.  You are testing Pure Selfishness against Motivational Pluralism. 

If you pool your data, you conclude that the chimps are egoists rather than pluralists.  But 

if you consider the chimps one by one, constructing a different pair of models for each, 

you conclude that some are egoists while others are motivational pluralists.  Neyman-

Pearson theory sanctions both conclusions.  This is odd:  how can it make sense to accept 

egoism and reject pluralism for all the chimps but to do the reverse for some of them?  

Shifting to a model selection framework provides a solution to this puzzle.  There are two 

prediction problems you might contemplate.  One is predicting a new set of pooled data 

from the six chimps (or from six new chimps drawn from the same population); the other 

is predicting the separate outcomes on new experiments on each of six chimps.  It is not 

paradoxical that different models might be better in different prediction tasks. 

 

 

6. Higher and Lower  

 

The principle of conservatism, like Morgan’s canon, describes a preference 

concerning kinds of parameters, not numbers of parameters.  It says that a model that 

postulates only lower-level intentionality is preferable to one that postulates higher-level 

intentionality if both fit the data equally well.  This principle does not care if the lower-

level model has a very large number of adjustable parameters while the higher-level 

model has only a few.  It is hard to see how this principle can make sense from the point 

of view of model selection theory.  Consider the lung cancer example.  Smoking is one 

possible cause and asbestos exposure is another; the model that says that only smoking 

makes a difference is more parsimonious than a model that says that both do; and the two 

                                                 
4
 Jensen et al. (2006) note that ―… these individuals were also the only two individuals who begged from, 

or harassed, the recipients‖ and speculate that the two chimps who provisioned others may have expected 

the recipients of their largesse to have given them food.  The point the authors are making here pertains to 

whether these two chimps have ultimate or merely instrumental other-directed preferences (Sober and 

Wilson 1998).  It does not undercut the conclusion that these chimps have other-directed preferences.  The 

experiments addressed the latter issue and did not address the question of ultimate versus instrumental. 
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monistic models (Only Smoking and Only Asbestos) are equally parsimonious.  Higher 

and lower kinds of causes don’t matter. 

 

Not only does AIC not care about the number of kinds of causes; it also doesn’t 

care about numbers of causes (unless this count is mirrored in the number of adjustable 

parameters).  I suppose that the additive and the interactive models of the causes of lung 

cancer both postulate two causes, smoking and asbestos exposure.  The point is that they 

differ in their number of adjustable parameters, and that is what matters.   

 

Increasing the number of causes in a model need not increase the number of 

adjustable parameters; everything depends on how those new causes are modeled.  

Consider the following example from genetics.  Suppose you suspect that the three 

genotypes (AA, Aa, aa) found at a locus may influence an organism’s probability of 

surviving to adulthood.   One of the models you consider has two parameters (b and d); it 

says that Pr(surviving│ aa) = b, Pr(surviving│ Aa) = b+d, and Pr(surviving│ AA) = 

b+2d.  You then wish to consider the possibility that n loci, each with two alleles, affect 

survivorship.  It isn’t true that every n-locus model must have more than two parameters.  

Consider a model that says that at each locus, the organism has zero, one, or two ―plus‖ 

alleles and that the probability of surviving is an additive function of the number of plus 

alleles: Pr(surviving│i plus alleles) = b+id.  There may be n causes of survivorship (the n 

loci), but there are just two parameters.   

 

If we drop the fixation on ―higher‖ and ―lower,‖ a better formulation of the 

principle of conservatism becomes available:  a model that postulates only lower-order 

intentionality (using n parameters to do so) is better than a model that postulates both 

lower-order intentionality (using n parameters) and higher-order intentionality (using m 

additional parameters) if the two models fit the data equally well.  However, if 

introducing higher-level intentionality permits one to have fewer parameters overall while 

still fitting the data equally well, parsimony will speak in favor of introducing higher-

level intentionality.  This possibility will be discussed soon. 

 

 

7. Identifiability 
 

To apply AIC to a model M, there must be a unique maximum likelihood estimate 

for each of the parameters in M.  When this fails to be true, the model is said to be 

unidentifiable.  Here’s a simple example.  Suppose you heat a kettle on your stove to 

different temperatures and measure how much pressure there is in the kettle at each 

temperature.  You do this n times and display your n observations as n data points in 

Cartesian coordinates, the x-axis representing temperature, the y-axis representing 

pressure.  You now face a curve-fitting problem.  What is the general relationship 

between temperature and pressure in your kettle?  You want to draw a line in the x-y 

plane.  Which line should you draw? 

 

 You should consider various models.  One of them might be the linear model 

LIN, which says that y= mx + b +e.  This model has three adjustable parameters, the last 
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one being an error term that allows you to represent the possibility that your thermometer 

and pressure gauge may be subject to error.  If you have a large number of data points, 

there is a single straight line that fits the data best; this is L(LIN).  But suppose you have 

just one data point.  There are infinitely many straight lines that pass exactly through this 

point.  They make different predictions about new data.  Since there is no such thing as 

the best-fitting straight line, the problem of estimating how accurately LIN will predict 

new data when fitted to old cannot be addressed.  LIN is not identifiable.  In general, for 

a model with n adjustable parameters to be identifiable, you need more than n data points.  

In practice, scientists recommend that you restrict your evaluation to models that have far 

fewer parameters than the number of observations you have (see, for example, Burnham 

and Anderson 2002). 

 

In the lung cancer example and also in the present example about pressure and 

temperature, you observe the values of candidate causal variables and also the values of 

the effect term.  However, in cognitive science, you can’t observe the beliefs and desires 

and other mental states that individuals have, though you can observe their behavior.  

How, then, is model selection theory applicable in this science?   

 

 In the experiment I invented on food sharing, you observe the frequencies of four 

types of meal-time behavior.  You don’t observe the chimp’s preferences.  However, this 

isn’t necessary.  Rather, for each model M, you need to find a quantitative representation 

of the preferences allowed by M that renders the observations maximally probable, 

thereby finding L(M).  For example, the model of Pure Selfishness makes the 

observations maximally probable when it sets b=0.02 and s=0.45.  The second of these 

parameters represents how much chimps prefer receiving food themselves rather than 

going without.  To find L(Pure Selfishness), what is required is not that  

 

Pr(Pure Selfishness & s = 0.45│ data) is high 

 

or that  

 

 Pr(s = 0.45│ Pure Selfishness & data) is high, 

 

but only the more modest thesis that    

 

Pr(data │Pure Selfishness & s = 0.45) > 

Pr(data │Pure Selfishness & s = x), for any x ≠ 0.45. 

 

Seeing that this inequality is true does not require that you find the model of Pure 

Selfishness plausible.   

 

 

8. Parsimony, Unification, and Orders of Intentionality 
 

 The model selection approach to parsimony helps explain why unification is a 

theoretical virtue.  Consider a unified model that applies the same n parameters to 
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multiple data sets and a disunified model that applies a different set of n parameters to 

each data set.  The unified model is more parsimonious, so if the two models fit the data 

about equally well, a model selection criterion such as AIC will estimate that the unified 

model can be expected to have greater predictive accuracy (Forster and Sober 1994). 

 

Figure 1.  The disunified model DIS fits the two data sets D1 and D2 better 
than the unified model UNI does.  L(DIS) is depicted by two solid lines, 
L(UNI) by a single dashed line, and data points by dots. 

.
D2. . . . . . ..  .. . .   . . . . . .. . . .  .  .  .  . . . . . . ..  .. . .   . . . .      . .. . . . .  .  .  

Pressure

D1. . . . . .. . . .. . . .  .. . . .. . . . . .. . . .. . . . .  .. . . .

Temperature

 
 

 Figure 1 represents a simple example.  Suppose the experiment you run on the 

kettle in your kitchen produces the two data sets D1 and D2.  Consider the following two 

models 

 

(UNI)  y = mx + b + e. 

 

(DIS)  y = m1x + b1 + e1 for the first data set. 

             y = m2x + b2 + e2 for the second data set. 

 

The unified model has three adjustable parameters; the disunified model has six.  

Depending on the models’ fit to data, UNI may receive the better AIC score.     
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Figure 2.   The subordinate chimp S can see both food items (represented 
by dots); the dominant chimp D can see just one.  From Hare et al. 
(2000).

•

D                                 •  S

 
 

 This difference between unified and disunified models is the key, I believe, to 

understanding how the model selection framework applies to issues about orders of 

intentionality.   Consider, for example, the experiments conducted by Hare et al. (2000, 

2001) in which a subordinate chimp chooses which food items it will attempt to grab 

while a dominant chimp is present.  In the first experiment (depicted in Figure 2), one 

food item is out in the open where both individuals can see it while the other food item is 

visible only to the subordinate (because there is an opaque barrier between the dominant 

and that food item).  The result is that subordinates tend to go for the food item that the 

dominant individual cannot see.  Hare et al. ran other experiments, accumulating the kind 

of frequency data represented in Table 5.  For example, they used a transparent barrier 

instead of one that is opaque, and found that subordinates do not preferentially go for the 

object in front of that barrier.  They also dispensed with barriers entirely and compared 

what subordinates do when they alone have watched where food is hidden and what 

subordinates do when they and a dominant both watch.  Hare et al. defend the hypothesis 

that subordinates decide what to do by forming beliefs about what the dominant chimp 

has and has not seen.  See Fitzpatrick (this volume) for further discussion. 
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Table 5:  Frequencies of events in four experiments (Hare et al. 2000, 2001).  S 

is a subordinate chimp, D is a dominant chimp, and x is a food item.  In all the 

experiments, S and D both have the opportunity to try to grab food. 

 

1 

f(S takes x│an opaque barrier is between D and x) = f1a 

       f (S takes x│x is out in the open) = f1b 

f1a > f1b 

 

2 

f (S takes x│a transparent barrier is between D and x) = f2a 

      f (S takes x│x is out in the open) = f2b 

f2a ≤ f2b 

 

3 

f (S takes x│only S was present during food placement) = f3a 

      f(S takes x│S and D both present during food placement) = f3b  

f3a > f3b 

 

 

4 

f (S takes x│S present during food placement, D not present  

      though another dominant individual was) =  f4a 

     f (S takes x│S and D both present during food placement) = f4b 

f4a > f4b 

 

 

 

If you look at these experiments one-by-one, it isn’t hard to invent a first-order 

explanation for each; what is more difficult is inventing a single first-order explanation 

that works for all (Tomasello and Call 2006, p. 371).  In contrast, a unified explanation is 

easy to achieve if you resort to a second-order hypothesis.  But so what?  The two 

interpretations seem to fit the data equally well and they seem not to disagree with each 

other about any possible observation.  And why is the fact that one explanation is unified 

while the other is disunified epistemologically significant (Heyes 1998)?  Things look 

decidedly different when we view this problem through the lens of model selection 

theory.  In fact, the two models fit the data unequally well, they assign different 

probabilities to what will happen in new experiments, and the difference in parsimony is 

relevant to estimating which will be more predictively accurate. 

 

 The simple point with which to begin is that the investigators pooled the 

behaviors of the different chimps that participated in each experiment, yielding a pair of 

frequencies for each experiment, as shown in Table 5.  We must use these frequencies to 

estimate the values of the parameters used in two models.  Here is a second-order model 

that has two adjustable parameters:   

 

(Second)  Pr(S takes x │S believes that D did not see x) = p          

                      Pr(S takes x │S believes that D saw x) = q 

 

The frequencies f1a, f2a, and f4a help one estimate the first probability while f1b, f3b, f4b as 

well as f2a and f2b bear on the second.   

 

How should a first-order model be formulated?  Here’s an example to consider: 

 

(First)    Pr(S takes x│S believes that an opaque barrier is between D and x) = p1 

                   Pr(S takes x│S believes that no opaque barrier is between D and x) = q1 

 

              Pr(S takes x│S believes that a transparent barrier is between D and x) = p2 
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                    Pr(S takes x│S believes that no transparent barrier is between D and x) = q2 

 

              Pr(S takes x│S believes that D was not present during food placement) = p3 

                   Pr(S takes x│S believes that D was present during food placement) = q3 

 

Data from the first experiment is relevant to estimating the first pair of parameters, data 

from the second experiment to estimating the second pair, and data from the third and 

fourth experiments to estimating the third.  Since First has more adjustable parameters, it 

will fit the data better than Second will.  However, it may turn out that the simpler model 

receives the better AIC score.
5
    

 

 In applying the model selection framework to First and Second, you need to find  

maximum likelihood estimates of parameters that represent Pr(A│B) by attending to 

frequency data concerning f(A│P), where A is an action, B is a belief state, and P is a 

physical property of the experiment (e.g., where food items are located).  How can these 

data be used to estimate these probabilities?  The axioms of probability entail that 

 

 Pr(A│P) = Pr(A│B&P)Pr(B│P) + Pr(A│-B&P)Pr(-B│P). 

 

If P, B, and A form a causal chain, with B screening-off P from A, this equality simplifies 

to 

 

Pr(A│P) = Pr(A│B)Pr(B│P) + Pr(A│-B)Pr(-B│P). 

 

If we adopt the assumption that Pr(B│P)=1, we obtain         

 

Pr(A│P) = Pr(A│B), 

 

which allows Pr(A│B) to be estimated from f(A│P).  The assumption that Pr(B│P)=1 

means that the physical circumstances of the experiment, along with the chimp’s other 

mental states,
6
 determine what its belief state will be.  Perhaps there is a way to secure 

identifiability without making this assumption, but I don’t see what it would be. 

Notice that the assumption that Pr(B│P)=1 reduces the number of adjustable parameters 

in both models.  The data are no longer asked to supply estimates for parameters that 

describe Pr(B│P) but need only do so for parameters of the form Pr(A│B).   

 

I have no stake in claiming that First is the best first-order model nor that Second 

is the best model of second-order.  First and Second are just the examples I have used to 

illustrate how model selection applies to the problem at hand.  These models differ by 

four parameters.  If there were more qualitatively different data sets from additional 

experiments, the difference in parsimony between the first- and second-order models 

might increase.  In model selection, the difference in parsimony defines a threshold; it 

indicates how much better the more complex model must fit the data for it to have the 

better AIC score.  The larger the difference in parsimony, the higher the bar is set. 

                                                 
5
 This kind of argument also applies to the comparison of 0

th
 and 1

st
 order models of intentionality. 

6
 It is assumed that subordinates want food and don’t want to be punished by dominants.  
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Figure 3.  The second-order model says that the diverse physical circumstances 
P1, P2, …, Pn all cause the same second-order belief state B, which in turn causes 
action A.  The first order-model says that different physical circumstances cause 
different  first-order belief states B1, B2, … Bn, which each cause A.

A                                                        A

B1 B2 …     Bn B 

P1 P2 …     Pn P1 P2 …    Pn

(First)                                             (Second)

 
 

How does this comparison of First and Second connect with the assumption, 

mentioned earlier, that an organism that has second-order beliefs also must have first-

order beliefs?  This assumption does not mean that a second-order model must have 

parameters that represent the impact of first-order beliefs.  By the same token, even if an 

organism with a psychology must extract energy from its environment, it does not follow 

that a psychological model must contain parameters that represent those energetic 

processes.  The Second model does not contain parameters that represent any first-order 

beliefs, though the model is perfectly consistent with the thought that second-order 

beliefs occur only when they are caused by first-order beliefs.  The two models I have 

considered are shown in Figure 3.
7
 

 

 Does it make sense to insist that we should not compare First and Second  but 

should instead compare First with a new model that has parameters that represent both 

first- and second-order beliefs?   This new model, which I’ll call First+Second, is 

represented in Figure 4.  To consider the competition between First and First+Second in a 

model selection framework, we need to figure out how each can be rendered identifiable.  

If we pursue a strategy similar to the one I described in connection with the competition 

between First and Second, the result will be that there is no real difference between 

First+Second and Second; if we assume Pr(Bi│P) = 1 and that Pr(B│Bi) = 1, the only 

adjustable parameters that remain in First+Second are of the form Pr(A│B).   Understood 

in this way, First+Second is in fact more parsimonious than First.  That may seem 

strange, but the question remains of how the two models can be identified without our 

being driven to that conclusion.  There is another problem with rejecting the comparison 

                                                 
7
 See the discussion of thirst in Whiten (1995, p. 284); see also Sober (1998a). 
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of First and Second and insisting that the only relevant comparison is of First with 

First+Second, where First+Second is required to have adjustable parameters for all the 

beliefs it mentions.  To do so is to refuse to consider the possibility that a model that 

introduces second-order intentionality might in fact be more parsimonious than one that 

restricts itself to first-order intentionality.  Think how unmotivated it would be to take 

that stance in connection with the competition between a zero- and a first-order model.  

Do we really want to say that introducing intentionality cannot simplify the resulting 

model?  If it can, some of the parameters representing zero-order states must be  

dropped.
 8

 

 

   

Figure 4:  The Model First+Second says that different physical 
circumstances P1, P2, …, Pn cause different first-order beliefs B1, B2, … Bn, 
which each cause the second-order belief B, which in turn causes the 
action A. 

A

B

B1 B2 …     Bn

P1 P2 …      Pn

(First+Second)

 
 

9. Anti-Realism 

 

Responding to philosophers who interpret him as an instrumentalist, Dennett 

(1991, p. 29) says that he advocates ―a mild and intermediate form of realism‖ about 

intentional psychology and that he thinks it isn’t useful to try to locate his position in the 

dichotomous choice between realism and instrumentalism (p. 51).  Even so, there are   

instrumentalist themes in this essay that connect it with ideas from model selection 

theory.  Dennett (p. 36) emphasizes the role of simplified idealizations in science and 

sees this as the right context in which to understand folk and scientific psychology.  Even 

though idealized models are false, they can be useful in making predictions.  Another 

point of contact occurs in Dennett’s discussion of ―real patterns.‖  What is the difference 

between a finite data set that has a pattern and one that is random?  Dennett (p. 32) 

                                                 
8
 This bears on the criticisms that Povinelli and Vonk (2006) make of Hare et al.’s experiments.  See 

Fitzpatrick (this volume) for discussion. 
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employs an idea from computer science according to which an n member sequence is 

random if it cannot be compressed – if it cannot be generated by a rule that requires fewer 

than n symbols to state.  If the sequence is random, the most succinct way to generate it is 

by brute enumeration.  Minimum description length has developed into a criterion for 

model selection; it has been given an instrumentalist interpretation and it has been related 

to model selection criteria like AIC (Grünwald 2007). 

 

 In spite of these links, there are some differences between the way I’ve 

understood instrumentalism in connection with model selection and Dennett’s (1991) 

discussion of realism and instrumentalism in intentional psychology.  Dennett frames the 

philosophical question as follows.  It is agreed that folk psychology is predictively 

successful.  The question is how one should explain why this is so.  Is the best 

explanation that beliefs and desires exist, or that they are useful fictions, or is there a 

coherent third alternative to consider?  Whatever the best answer is to this question, it is 

not one that model selection theory addresses.  This is because the Akaike’s framework 

allows one to be an instrumentalist about models; it doesn’t support instrumentalism 

about other propositions.  A ―model‖ (in the sense of that term used in statistics) is a 

special kind of beast.  It contains adjustable parameters that can be fitted to data.  Not 

every statement is a model in this sense.  The statement that physical objects exist is not a 

model, nor is the statement that beliefs and desires exist.   Not every consequence of a 

model is a model.  Consider the models of lung cancer discussed earlier.  One may want 

to be an instrumentalist about these models while at the same time being a realist about 

smoking, asbestos exposure, and lung cancer.  Surely there is no reason to regard 

smoking, asbestos, and cancer as useful fictions.  By parity of reasoning, instrumentalism 

about models that postulate beliefs and desires does not entail instrumentalism about 

beliefs and desires. 

 

 The thought that instrumentalism is appropriate for some propositions but not for 

others finds another application in the distinction between models and fitted models.  I 

have described AIC as a device for estimating the predictive accuracy of a model M, but 

it is equally true that it estimates the closeness to the truth of L(M), when closeness is  

measured by Kulback-Leibler distance.  This is why I have defended the mixed 

philosophy of instrumentalism for models, realism for fitted models (Sober 2008). 

 

 If AIC is a device for estimating a model’s predictive accuracy, where does that 

leave the issue of explanation?  Philosophers often object to Dennett’s intentional stance 

(instrumentalistically understood) because they think it robs intentional psychology of the 

power to explain behavior.  But surely an idealized model can be explanatory even 

though it is false.  This doesn’t just mean that it would be explanatory if it were true.  

That faint praise applies to models that are wildly wrong.  Good idealizations can help us 

understand even when we know they are false.  Those who think that explanations must 

be true may insist that what does the explaining is not the false idealization I but the true 

statement that I is a good idealization.  Even so, instrumentalism about models does not 

mean that models cannot help explain.       
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 The connection between the Akaike framework and Dennett’s ―mild and 

intermediate realism‖ is worth exploring further, but I will not attempt to do so here.  The  

observation I would make in conclusion is that the framework offers something to both 

instrumentalists and realists.  Instrumentalists can see the point of false models as 

predictive and explanatory devices and realists can see the point of comparing fitted 

models in order to judge which are closest to the truth.  And both can see why parsimony 

matters.  This last dividend may be the one most relevant to cognitive scientists who 

puzzle over what the principle of conservatism means and why it should be taken 

seriously.   
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