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Abstract
It is common to distinguish between “holist” and “reductionist” views of brain function, where the former envisions the brain as 
functioning as an indivisible unit and the latter as a collection of distinct units that serve different functions. Opposing reduction-
ism, a number of researchers have pointed out that cortical network architecture does not respect functional boundaries, and the 
neuroanatomist V. Braitenberg proposed to understand the cerebral cortex as a “great mixing machine” of neuronal activity from 
sensory inputs, motor commands, and intrinsically generated processes. In this paper, we offer a contextualization of Braitenberg’s 
point, and we review evidence for the interactions of neuronal activity from multiple sensory inputs and intrinsic neuronal processes 
in the cerebral cortex. We focus on new insights from studies on audiovisual interactions and on the influence of respiration on 
brain functions, which do not seem to align well with “reductionist” views of areal functional boundaries. Instead, they indicate that 
functional boundaries are fuzzy and context dependent. In addition, we discuss the relevance of the influence of sensory, propriocep-
tive, and interoceptive signals on cortical activity for understanding brain-body interactions, highlight some of the consequences 
of these new insights for debates on embodied cognition, and offer some suggestions for future studies.
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“Transcortical connections have been shown to exist 
even in the primary sensory regions of the cortex, indi-
cating that sensory input is immediately mixed upon 
its arrival in the cortex with information about the state 
of the rest of the cortex.” (V. Braitenberg 1974, [10])

Introduction

When electrophysiological approaches in brain research 
came of age in the 1950s and 1960s and allowed for stable 
recordings of action potentials in mammalian brains in vivo, 

it became immediately clear that the spike activity of neu-
rons is quite variable and that the brain continually generates 
“ongoing background activity” [13]. A prevailing view was 
that the variability in neuronal activity or “neuronal noise” 
was an undesirable but inherent feature of biological nerv-
ous systems and that the brain had developed mechanisms 
to make precise neuronal computations possible, despite the 
presence of noise (e.g., [17]).

Early on, synaptic noise, i.e., random processes at synaptic 
junctions, was proposed as one possible source for the vari-
ability in neuronal activity [15]. The discovery of popula-
tion coding provided a possible mechanism through which 
neuronal computations could reach precise outcomes in the 
presence of noise in individual neurons, by averaging the 
task-related activity of thousands of neurons (e.g., [23]). Con-
sistent with the idea that neuronal noise was not task related, 
data analysis techniques were largely focused on averag-
ing neuronal activity over multiple repetitions of stimuli or 
behavioral trials, in order to eliminate trial-by-trial variability 
and unmask the neuronal response specific to a stimulus or 
the neuronal activity controlling a cognitive or behavioral 
event (e.g., [4]). Current views on neuronal noise suggest that 
variability in neuronal activity can result from two sources: 
inputs from deterministic sources, such as sensory inputs or 
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intrinsically generated activity, and from random processes 
at the cellular level, such as noisy biochemical processes or 
noise from voltage-gated ion channels (for a review see [19]).

In this review, we will focus on variability in cortical neu-
ronal activity related to deterministic sources, which should 
not be considered noise but rather an element of cortical 
activity that interacts with experimentally targeted neuronal 
activity in a functionally meaningful way. We maintain that 
the new insights into how sensory inputs shape ongoing and 
event-related neuronal activity in the neocortex not only defy 
traditional views of areal functional boundaries in the neo-
cortex but also help highlight a key neuronal mechanism 
for brain-body interaction. We take this to expand upon the 
proposed link between brain-breath coupling and embodied 
cognition, which we have described previously [51].

Functional boundaries and “mixing”

When it comes to the question of dividing the cerebral cortex 
into functionally distinct regions, a brief look at the history of 
the brain sciences reveals two opposing views. Finger [21] dis-
tinguishes between “holism”| and “reductionism” and maintains 
that while holism envisions the brain as functioning as an indi-
visible unit, reductionism holds that it is best understood as a 
collection of distinct functional units such that different cerebral 
cortical regions serve different functions. While reductionism 
found prominent supporters in the eighteenth century, it first 
rose to prominence in the nineteenth century [21].

Often noted as one of the first proponents of reduction-
ism, eighteenth century Swedish scientist Emmanuel Swe-
denborg offered a detailed account of cortical localization 
of function. While highlighting the cortex as responsible for 
controlling the sensory organs, muscles and movement, cog-
nition, imagination, judgment, and will, he rejected a uni-
tary outlook on the structure of the cerebral cortex. Instead, 
he argued that different functions are realized in different 
areas in the cerebral cortex, which he took to explain why 
lesions to particular areas could selectively damage certain 
functions while leaving others intact [49]. In the nineteenth 
century, Paul Broca’s groundbreaking reductionist attempts 
to localize the seat of function continued to draw evidence 
from clinical observations of lesions, and the study of 
lesions still plays an important role in attempts to delin-
eate the functional boundaries of the cerebral cortex and 
their sub-specialization (e.g., [32]). In addition to studies 
of lesions, attempts to associate functions with particular 
areas draw on studies exploring brain responses to electrical 
stimulation (e.g., [38]), anatomical connectivity (e.g., [1]), 
and electrophysiological or—more recently—optophysi-
ological characterizations (e.g., [55]).

Opposing at least strict versions of reductionism, a num-
ber of researchers have pointed out that cortical network 

architecture does not respect functional boundaries between 
cerebral cortical areas [10, 12]. Based solely on statistical 
considerations of the cerebral cortical network architecture, 
the neuroanatomist V. Braitenberg has suggested that an 
input to the neocortex is “[…] immediately mixed upon its 
arrival in the cortex with information about the state of the 
rest of the cortex,” concluding that “the cortex is, to large 
extent, a thinking machine working on its own output” [10]. 
Further elaborating on this line of reasoning, in the second 
edition of Anatomy of the Cortex. Statistics and Geometry, 
Braitenberg and Schüz suggest that the neocortex serves as 
a “great mixing machine” of neuronal activity from sensory 
inputs, motor commands, and intrinsic processes [12]. The 
mixing of neuronal activity occurs in the form of electrical 
integration of thousands of synaptic inputs in postsynaptic 
neurons, resulting in membrane potential fluctuations at the 
soma. These fluctuations thus reflect the activity of each 
neuron’s surrounding neuronal network, which, as we now 
understand it, extends beyond the traditionally assigned 
functional boundaries of cortical areas, supporting interac-
tions between local and long-range inputs.

Braitenberg’s notion of “mixing “ is consistent with an 
anti-reductionist approach, stressing that neuronal activity 
involved in the processing of sensory input or the control of 
behavior is shaped by and contributes to ongoing activity 
in the cerebral cortex to such an extent that it casts doubt 
on the idea of neat functional boundaries between cerebral 
cortical areas. It is natural to comprehend such notion of 
“mixing” in a way that has implications for what counts as 
a suitable explanation. More precisely,”mixing” of two (or 
more) components X and Y refers to a close association of X 
and Y such that a full account of X requires taking into con-
sideration the influence of Y on X (and/or vice versa) (for a 
discussion of the relevant epistemological and metaphysical 
issues, see [50]). We may note that this specific meaning of 
mixing can involve, but does not require that, the association 
of X and Y result in a novel product (entity or process) Z.

Figure 1 illustrates the anatomical substrates underlying 
the “mixing” of neuronal activity at the level of an individual 
neuron’s axon collaterals (Fig. 1a) that form dense axonal 
networks with up to 4.1 km of axon per mm3 of cortical grey 
matter [11, 12] (Fig. 1b) to long-range fiber tracks connect-
ing distant cortical lobes (Fig. 1c). Together, these connec-
tions form brain-wide networks that are key to multisensory 
integration and the interaction between sensorimotor, asso-
ciation, and limbic brain areas (Fig. 1d).

Multisensory integration

Understanding the neurophysiological mechanisms of 
propagation and “mixing” of neuronal activity in the neo-
cortex is key to understanding cerebral cortical function. 
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The investigation of multisensory integration in the cerebral 
cortex and its relevance for an organism’s survival in an 
evolutionary sense is a rapidly growing and promising field. 
Important new insights have been gained from the investiga-
tions of audiovisual interactions and from the influence of 
breathing on brain functions. We review some of these find-
ings in the following two sections. In addition, we discuss 
how the influence of sensory, proprioceptive, and interocep-
tive signals on cortical activity is highly relevant to under-
standing brain-body interactions.

Propagation of sensory activity and ongoing 
cortical activity

The view of the cerebral cortex as a great mixing machine 
predicts an incessant, dynamic interaction between intrin-
sically generated and sensory activity. Intrinsically gener-
ated activity here refers to neuronal activity resulting from 
cognitive processes, such as creativity or memory that do 
not require and are not directly driven by sensory inputs. 
Some early experiments using voltage-sensitive dyes [43] 
to monitor neuronal activity in the visual cortex of primates 

revealed how surprisingly similar the magnitude of fluctua-
tions in the “ongoing” cortical activity is to the magnitude of 
stimulus-induced neuronal responses [2]. Findings by Arieli 
and colleagues demonstrated how fluctuations in ongoing 
cortical activity contribute significantly to the trial-by-trial 
variability of sensory-evoked responses [2]. It is currently 
not possible to design an experiment to monitor all sources 
of activity in the cerebral cortex and to evaluate and ulti-
mately predict their interactions. Correspondingly, it is not 
possible to predict the influence of this interaction on the 
neuronal representation of any specific sensory input. Given 
the plethora of sensory and intrinsic sources driving neu-
ronal activity in the cerebral cortex, it is unlikely that we will 
be able to address this question even partially any time soon. 
However, it is possible to study the propagation of neuronal 
activity elicited by an isolated sensory input. Using volt-
age-sensitive dyes in awake mice, Ferezou and colleagues 
investigated the neuronal processing of sensory inputs from 
a single mystacial vibrissae while monitoring neuronal activ-
ity in the entire contralateral cerebral cortex of awake, head-
fixed mice [20]. Their results show that tactile sensory input 
from a single isolated whisker initially elicited an expected 

Fig. 1   Anatomical substrates for the mixing of information in the 
cerebral cortex. a Drawing of cortical pyramidal neurons by Ramon 
y Cajal showing horizontal axon collaterals forming connections to 
neighboring neurons and long-range projections of the same axons 
leaving the local network to connect to other cortical areas or sub-
cortical structures [40]. b Silver stain of axons in the cerebral cor-
tex forming a dense network with projections running equally in all 

directions [11, 12]. c Schematic illustration of some of the long-range 
axonal pathways forming connections between distant brain areas 
(yellow: uncinate fasciculus; green: arcuate fasciculus: blue: superior 
longitudinal fasciculus). d Schematic illustration of how neuronal 
activity propagates between cortical areas, resulting in the conver-
gence, divergence, and integration of information via brain-wide net-
works
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increase of neuronal activity in a small patch of the sensory 
whisker barrel cortex. Next, the neuronal activity rapidly 
expanded from the barrel cortex, igniting the entire cortical 
hemisphere within only 40 ms [20]. For an illustration of 
the rapid and seemingly unhindered propagation of sensory 
activity across the cerebral cortex see Fig. 7 in the publica-
tion by Ferezou et al. [20]. This finding gives some indica-
tion of how fast and far even small sensory inputs spread 
through the cortical, and likely thalamocortical, networks, 
resulting in a constant and complex interaction that drives 
“ongoing” activity across large areas of the cerebral cortex 
and likely modulates cortical function.

Audiovisual interaction

Efficient perception of the environment in real-life situa-
tions requires the integration of information from different 
sensory channels. The most closely studied integration of 
multisensory neuronal activity in the cerebral cortex is the 
interaction between visual and auditory information. Kay-
ser and colleagues used high-resolution fMRI imaging to 
investigate the influence of visual stimuli on neuronal pro-
cessing of auditory information in the auditory cortex in 
non-human primates. Their results showed that the auditory 
cortex could be activated by the presentation of visual stim-
uli alone, and that the representation of auditory stimuli was 
enhanced by concurrent presentation of visual stimuli [34, 
35]. The analysis of trial-to-trial variability and information 
carried by the spike activity of auditory cortical neurons 
responding to repeated presentation of audiovisual stimuli 
showed that response variability was reduced and informa-
tion encoding was enhanced over time [33]. Importantly, 
these changes were considerably reduced when the visual 
stimuli did not match the auditory stimuli [33], suggest-
ing that this mechanism is fine-tuned to detect physically 
plausible events. Audiovisual interaction goes both ways, 
with the presentation of auditory stimuli also enhancing the 
detection of visual stimuli [44, 45]. Importantly, Stein and 
colleagues showed that neurons responding to multisensory 
audiovisual inputs showed proportionally greater response 
enhancements when the unimodal stimuli were less effective 
[44]. Together, these findings suggest that multisensory inte-
gration enhances information processing and increases the 
reliability of perception, improving an organism’s chances 
of survival.

The influence of breathing on brain activity 
and function

The modulation of rhythmic brain activity by respiration 
outside the olfactory system was first described in the pri-
mary sensory barrel cortex of mice [30], and is not fun-
damentally different from the cross-modal audiovisual 

interactions between primary sensory areas discussed above. 
However, compared to audiovisual interactions, which seems 
to be limited to the mutual modulation of neuronal process-
ing in visual and auditory cortical areas, respiratory rhythm 
modulates neuronal activity across a broad range of cerebral 
cortical areas, including sensory, motor, limbic, and associa-
tion areas [9, 29, 30, 36, 56]. The influence of respiration on 
neuronal rhythms in brain areas involved in cognitive and 
affective functions suggest that the act of breathing could 
influence cognition and emotion at a behavioral level. This 
has now been confirmed in several studies showing that cog-
nitive and affective functions are significantly modulated by 
respiration [3, 26, 31, 37, 39, 56] (for recent reviews see: 
[27, 28, 48]). How respiration drives this seemingly brain-
wide rhythm is not fully understood. A plausible assumption 
is that it propagates unhindered through the highly inter-
connected corticocortical and cortico-thalamic networks 
because of its slow frequency. Slow oscillations such as the 
alpha rhythm (~ 10 Hz) tend to propagate over large dis-
tances in the brain, whereas fast rhythms, such as gamma, 
remain more locally confined [14, 52].

The great mixing machine supports 
widening the scope of embodied cognition

The idea of “a great mixing machine” has interesting links 
with current debates on theoretical frameworks in cogni-
tive science and sits well with recent efforts to widen the 
scope of various research endeavors often subsumed under 
the umbrella Embodied Cognition (EC) (also 4E Cognition 
or Grounded Cognition). EC is not a homogenous and uni-
fied area of research and some of its most important findings 
come from a variety of disciplines, including psychology, 
robotics, and neuroscience [6, 53]. However, while cognitive 
science has undergone major changes in its theoretical com-
mitments, such as the shift from abstract formal descriptions 
to connectionist approaches [8, 47], it has remained commit-
ted to the ideas that (a) cognition is realized in the brain and 
(b) it can be explained in abstraction from the body [16, 22]. 
Opposing both (a) and (b), some of the various EC research 
endeavors maintain that at least some cognitive processes 
are best comprehended in terms of a dynamic interaction 
of bodily (non-neural) and neural processes. Opposing only 
(b), some EC endeavors are committed to a less radical idea 
according to which the body exerts a significant and often 
unexpected influence on cognitive processing, to the extent 
that failing to include bodily aspects leads to accounts of 
cognition that are at best incomplete.

While this is not the place for a comprehensive exploration 
of this issue, we may briefly note that the idea of the cerebral 
cortex as “a great mixing machine” is well suited to support 
recent efforts to widen the scope of EC research. Traditionally, 
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much research under the EC umbrella has focused on action 
(e.g., gestures, facial expressions, eye movements), highlight-
ing for instance the role of sensorimotor variables [54, 57] and 
gesturing [24, 25] in cognition. But while action is undoubt-
edly an important aspect, more recent research endeavors have 
widened the perspective of EC and include other bodily sys-
tems that seem important for cognition, such as the autonomic 
system, the endocrine system, the immune system, the cardio-
vascular system, the digestive system, and the integumentary 
system (for a recent reviews, see [7, 46]). Consistent with this 
widened the perspective, we have in an earlier publication 
provided some evidence supporting the less radical EC view, 
showing that a comprehensive account of cognitive activity 
requires taking into consideration the various ways in which 
respiratory activity influences cognition [51]. The great mixing 
machine concept supports this movement towards widening 
the scope of EC while it simultaneously offers a framework 
that helps make sense of seemingly disparate findings. The 
emphasis on the mixing of activity and the modulation of cere-
bral cortical ongoing and event-related activity by signals from 
the body helps make sense of how not merely action, but also 
sensory inputs from bodily systems can be vital for cognition.

Summary and conclusions

As neurophysiological findings document the cross-bound-
ary interaction of different sensory inputs and the large-scale 
spread of sensory activity linked to breathing across the cer-
ebral cortex, the view of the cerebral cortex as a collection 
of functionally distinct computational units is being revised. 
New findings indicate that functional boundaries are rather 
fuzzy and context dependent. Information arriving in one 
cerebral cortical area can propagate through intra-cortical, 
cortico-thalamic, or other subcortical networks and influ-
ence neuronal computation in distant areas that were previ-
ously considered functionally unrelated. In this brief review, 
we highlighted experimental findings linked to audiovisual 
interaction and brain-breath coupling, two areas that have 
received much attention in the recent years.

It is worthwhile to briefly mention two other lines of 
research that are relevant in this context. First, studies of vis-
ceral sensory signals have produced a rich set of evidence 
showing that visceral sensory signals affect rhythmic neuronal 
activity in the cerebral cortex and cognitive function (see the 
recent review by Azzalini and colleagues [5], underlining the 
importance of even the unconscious sensory representation 
of the body for brain function and embodied cognition). Sec-
ond, studies of creativity suggest that a reduction of sensory 
inputs can be functionally meaningful. For example, creativ-
ity appears to be linked to visual sensory inputs in the sense 
that directing the gaze at an empty portion of the visual field 

(“looking at nothing”) seems to benefit creativity [42]. The 
hypothesis is that the reduction of the cognitive load associated 
with processing visual sensory input frees up cognitive capac-
ity that can be directed towards creative pursuits.

Many questions remain about how the cerebral cortex mixes 
intrinsic and external sources of neuronal activity, how this pro-
cess affects normal brain function, and the consequences of patho-
logical changes to the mixing process. To address these questions, 
it will be crucial to understand the mechanisms that determine 
the strength of influence that a specific source of activity exerts 
on other sensory, motor, or association cortical areas and how 
much this influence is shaped by context. Synesthesia might be 
an illustrative example of a case in which the functioning of the 
mechanisms controlling the strengths of sensory influences on 
other brain areas are altered, leading to patterns of perception that 
are not directly linked to physical reality (e.g., the very common 
association of days of the week or letters with colors) [41]. It is 
possible that the magnitude of cross-modal influence reflects the 
environmental relevance of a particular combination of sensory 
modalities in a particular behavioral or environmental/sensory 
context and may thus differ greatly between individuals living in 
different social and environmental contexts.

Future evaluations of brain function should consider that pri-
mary and proprioceptive sensory information shape the context 
in which the neocortex processes information. The long-over-
looked influence of breathing on brain activity and function is a 
good example of an easy-to-track sensory input that introduces 
variability into neuronal and behavioral responses. Experimen-
tal designs should aim at capturing as many sources of sen-
sory input as possible. Multisensory shaping of brain activity 
is likely to be especially relevant in contexts where sensory 
information changes rapidly, for example, due to active body 
movements during flight, fight, or exploration. Such conditions 
are notoriously difficult to tackle experimentally as current tech-
niques for monitoring brain activity are sensitive to artifacts 
created by body movements. But technological progress may 
bring monitoring of multisensory inputs during movement 
within reach. For example, EEG recordings, which are notori-
ously sensitive to even small movements, are improving and 
can provide some usable recordings during body movements 
[18]. While there are still considerable challenges to tackle, 
the awareness of the complex dynamic interactions of neuronal 
activity from intrinsic and external sources within the cerebral 
cortex is a crucial first step towards improving evaluation and 
understanding of brain activity and function.
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