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A B S T R A C T

Despite an increasing role of machine learning in science, there is a lack of results on limits of empirical 
exploration aided by machine learning. In this paper, we construct one such limit by proving undecidability of 
learnability of state spaces of physical systems. We characterize state spaces as binary hypothesis classes of the 
computable Probably Approximately Correct learning framework. This leads to identifying the first limit for 
learnability of state spaces in the agnostic setting. Further, using the fact that finiteness of the combinatorial 
dimension of hypothesis classes is undecidable, we derive undecidability for learnability of state spaces as well. 
Throughout the paper, we try to connect our formal results with modern neural networks. This allows us to bring 
the limits close to the current practice and make a first step in connecting scientific exploration aided by machine 
learning with results from learning theory.

1. Introduction

Machine learning models have been integrated into methodological 
toolboxes of several scientific disciplines. In physical sciences, there are 
many applications with promising results [14,30]. Exploration in par-
ticle physics [12,13,17,32,45], materials science [18,21] or astrophysics 
[16,29,41] is supported by machine learning models that classify and 
generate observational evidence and even replace traditional simula-
tions. These models enable access to the space of possible states, i.e., 
state space, of the physical system characterized by theories about the 
modelled phenomenon. By performing inferences about possible states 
of the physical system, the models provide modal information about the 
phenomenon. That is, information delimiting the state space of the 
physical system by providing answers about what is (presumably) 
possible with respect to the system in question.

Philosophers (of science) call such efforts modal modelling [47,51, 
56] and ask what makes modal inferences reliable with respect to state 
spaces [34,46]. Modal modelling is treated as an inferential tool used to 
refine or even possibly replace theories characterizing physical systems 
that underlie the state spaces ([47], pp. 207–208). Machine learning 
models used in physical sciences, serving as classifiers or generators of 
observational evidence, play this modal modelling role. The philoso-
phers’ worry about reliability of inferences used to access the state 
spaces of physical systems seems, thus, valid.

Here we show that the reliability issue cannot be ignored because it 
cannot be resolved. A binary classifier implementable in an artificial 

neural network, predicting whether observations belong to some state 
space, can be used to prove that learnability of state spaces is formally 
undecidable. This creates a significant obstacle for justifying modal in-
ferences performed by machine learning models and, as a result, also a 
formal limit for uses of machine learning models in scientific 
exploration.

Scientific exploration can be considered a process of acquiring modal 
knowledge about state spaces of physical systems. If the exploration is 
not enhanced by machine learning models, modal knowledge is usually 
produced using counterfactual conditionals that describe different states 
of the system derived from some causal model [55]. In case artificial 
neural networks (ANNs) are involved, the access to modal knowledge is 
based also on their universal approximation property.

Universal approximation gives ANNs the ability to approximate 
measurable functions to arbitrary accuracies provided that the network 
has a sufficient representational capacity given as the number of hidden 
units ([27,43]; made precise by bounding ANNs’ representational ca-
pacities for approximating different function classes, e.g., [4]). From the 
perspective of causal learning, universal approximation lacks a world 
model which would allow it to learn causal relations between inputs and 
outputs and to infer counterfactuals from the relations [40]. ANNs 
represent a way to learn relations between input-output pairs without 
causal world models. The relations are then used to perform valid in-
ferences on new inputs.

We show that learnability of computable access to state space mo-
dalities based on universal approximation is formally undecidable (see 
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Theorem 1 in Section 4 for the main result). We proceed in two steps. 
First, we recap the fundamentals of how universal approximators 
generalize about their inputs and access state space modalities. Second, 
the formal undecidability result concerning computable learnability of 
state spaces is proved. Additionally, we briefly comment on alternative 
models of learnability and hint towards their limits as well and discuss 
implications of our undecidability result. We are motivated by finding a 
formal limit of scientific exploration supported by machine learning that 
will frame the growing number of empirical results. Before giving the 
main result, key differences between the two discussed accesses to state 
space modalities are recapped.

2. Fundamentals of counterfactual conditionals and universal 
approximation

Both counterfactual and universal approximation access to state 
space modalities share the generalization from observations as a way 
allowing them to account for possible states of the physical system. The 
possible states range from actual states with non-actual properties to 
predicted, yet so far unobserved, novel states. In order to produce new 
observations, counterfactual access to state space modalities requires 
interventions in antecedents of counterfactual conditionals. In-
terventions aim to discover invariances, constant properties of different 
observations, that determine which counterfactuals can be accounted 
for by a generalization from observations of a physical system (cf. [26, 
57], pp. 235–239). Universal approximation access to state space mo-
dalities based on ANNs does not require counterfactuals.

The difference between counterfactual and universal approximation 
access to state space modalities lies in how scientists and machine 
learning models learn invariances from observations. When relying on 
counterfactuals, scientists intervene on counterfactuals’ antecedents to 
cause changes in the state space and evaluate the results with respect to 
theories about the physical system. When relying on the universal 
approximation capability of ANNs, there are no interventions, just ob-
servations sampled from a probability distribution over the state space 
determining the likelihood of individual observations. The fixed distri-
bution makes it possible to guarantee a degree of reliability of inferences 
on unobserved samples and is among necessary requirements for 
generalization about the state space. Controlled by some risk minimi-
zation technique, universal approximators like ANNs learn from obser-
vations sampled from the distribution. The aim is to train an ANN that 
minimizes the risk estimated as the generalization error on a set of un-
seen observations from the state space (e.g., Empirical Risk Minimiza-
tion, [54]). Observations are sampled in an independent and identical 
way (i.i.d., ibid.) or could be exchangeable [3]. Otherwise, the ANN 
lacks one of the necessary requirements for generalizing from observa-
tions and with it also guarantees regarding its inductive risk on the state 
space. In practice, what is an in- and out-of-distribution sample might be 
blurred due to big training datasets. This often leads to a surprisingly 
good performance on presumably out-of-distribution samples. It is not 
uncommon that these samples were, in fact, at least partially present in 
the training data. In other words, to see a clear-cut realization of theo-
retical limits in practice is not easy. This does not mean that the theo-
retical limits no longer apply. They are necessary, otherwise, it would 
not be possible to prove anything about learnability.

Invariances learned from counterfactuals capture interventions 
conceived by scientists (cf. [26], p. 198). Invariances learned by uni-
versal approximators capture unobserved and possibly also unconceived 
(from the human point of view, see, e.g., [48]) states of the physical 
system provided that the distribution over observations is fixed and 
observations are sampled in an exchangeable or i.i.d. manner during 
training and use of the ANN. These two types of invariances can com-
plement each other when used to access state space modalities. The 
difference between them derives from the causal/non-causal inference 
split. Scientists using both types of inferences are able to answer causal 
as well as non-causal questions about state space modalities. The 

combination represents a form of epistemic enhancement in the sense of 
computational science [28] relying on machine learning models.

3. Universal approximation access to state space modalities

In order to generalize from observations, ANNs like any other ma-
chine learning method aim to turn invariant attributes of observations 
into features that are useful for performing correct inferences on yet 
unobserved samples. Modern deep, overparametrized ANNs [10,35]
with strong approximation capabilities [19] seem to avoid harmful (as 
opposed to benign) overfitting of observations [9]. Gradient-based 
optimization techniques often enable overparametrized ANNs to fit 
training data (observations) exactly. This situation corresponds to 
interpolating training data, which still allows overparametrized ANNs to 
accurately generalize (ibid.). In order to use the standard apparatus of 
the (computable) learning theory, we do not diverge from the standard 
framework of independent and identically distributed or exchangeable 
samples from a fixed distribution on the state space of the physical 
system.

Representations consisting of features learned by deep ANNs during 
training involve invariances that establish universal approximation ac-
cess to state space modalities. Improved approximation and, therefore, 
representational capabilities of deep ANNs compared to shallow ANNs 
are epistemically significant. The difference between shallow (a single 
hidden layer) and deep ANNs (several hidden layers) lies in the fact that 
the former is ineffective in representing observations that require 
approximating a hierarchy of non-linear functions, a shortcoming 
addressed by deep ANNs ([35], pp. 437–438). Errors in function 
approximation lead to inferential errors that are measured as the 
generalization error, i.e., the error rate of an ANN on new observations 
with respect to the ground-truth (e.g., failures to predict the correct label 
of an image). A large generalization error means that invariances rep-
resented by features learned by the ANN during training do not provide 
access to the target state space and that inferences supported by that 
ANN fail to provide access to state space modalities. For deep ANNs, 
large generalization errors result from overfitting training data (obser-
vations) in a harmful way that makes into features data attributes that 
do not exist outside the training dataset, failing to provide reliable access 
to the state space. Modern deep ANNs provide the best available uni-
versal approximation access to state space modalities. The ANN-based 
access to a state space of some physical system follows from the abil-
ity of universal approximators to learn a probably approximately correct 
hypothesis h that minimizes the generalization error on the state space.

The generalization error (or gap) of a predictor (hypothesis) h cor-
responding to a trained ANN is defined as ([42], Def. 8): 

Δgen− error(h) = R[h] − R̂S[h],

where R̂S[h] is the empirical risk of h defined as h’s average error on a set 
of i.i.d. observations S =

(
(x1, y1),…,

(
xm, ym

) )
sampled from a fixed 

distribution over the state space and R[h] is h’s risk defined as expecta-
tion of the h’s error over new observations sampled from the distribu-
tion. The predictor h belongs to a family of functions H that can be 
computed by an ANN, depending on its architecture and size ([5], p. 94). 
Learning theories such as Valiant’s [52] Probably Approximately Cor-
rect framework define conditions for learnability of H . Learnability of a 
system’s state space can be characterized by the fact that there is a set of 
the state space observations C = {x1,…, xm} such that for any function 
f : C→{0,1} we can find a predictor h ∈ H whose predictions on all 
observation from C correspond to f’s predictions, that is, ∀x ∈ C, h(x) =

f(x). The size of the largest set of state space observations for which this 
is true is the VC-dimension [53] of the family of functions H . If we 
require the predictors h ∈ H to be computable, which is natural 
considering that H corresponds to functions that can be computed by an 
ANN, finiteness of VCdim(H ) does not guarantee learnability of H in 
every situation. Even more profoundly, in certain circumstances 
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relevant for learnability of state spaces finiteness of VCdim(H ) is un-
decidable. In what follows, we provide details on how to derive these 
two results.

Formally, access to the state space is justified by PAC (Probably 
Approximately Correct) learnability of a hypothesis class H ([44,52], 
Def. 3.1). The universal approximator (an ANN) seeks to learn a function 
h ∈ H : X →Y , which maps i.i.d. observations {x1,…, xn} from a fixed 
distribution D over the state space X of a physical system to a set of 
labels 

{
y1,…, yn

}
from the label space Y . We define the label space as 

Y = {0,1}. The distribution D is defined over a σ-algebra consisting of 
subsets of the state space X . If the hypothesis class H is learnable, the 
hypothesis h implements a binary classifier able to correctly answer 
membership queries about observations with respect to the subsets of 
the state space X . It does so by learning invariances from training ob-
servations that capture the state space modalities.

Given the accuracy parameter ϵ ∈ (0, 1) and the confidence param-
eter δ ∈ (0,1), the hypothesis h is learned by a universal approximator 
with the probability 

Pr[L(h) ≤ ϵ ] ≥ 1 − δ (1) 

where L(h) = Prx∼D [h(x) ∕= f(x) ] and f : X →{0,1} is the ground-truth 
function for observations x of the state space X (ibid.). Inequality (1)
holds for an i.i.d. set of observations of at least the size of mH (ϵ, δ)→N, 
with m determining the sample complexity required to learn H and 
output a probably approximately correct h as close as possible to the 
optimal classifier h∗ such that Prx∼D [h∗(x) = f(x) ] = 1 ([44], Def. 2.1). 
In case h, h∗ ∈ H and L(D ,f)(h∗) = 0, the access to state space modalities 
is realizable and proper compared to nonrealizable and improper setting 
where h, h∗ ∕∈ H and learnability becomes agnostic ([44], Def. 3.3) and 
representation independent ([44], Remark 3.2). Agnostic PAC learn-
ability changes inequality (1) as follows ([44], Def. 3.4): 

Pr
[

LD (h) ≤ min
hʹ∈H

LD (hʹ) + ϵ
]

≥ 1 − δ (2) 

PAC learnability requires a characterization of sample complexity, 
allowing us to determine which hypothesis classes are learnable. For 
binary classifiers with the 0 − 1 loss function, this characterization is 
provided by VC-dimension [53]. The VC-dimension of a hypothesis class 
H , VCdim(H ), is determined using the ability of H to shatter a finite 
set C⊂X . Shattering is defined as follows: A hypothesis class H shatters 
C if H contains all functions C→{0, 1}, i.e., |H c| = 2|C| ([44], Def. 6.3). 
VCdim(H ) is the size of the largest set C⊂X shattered by H ([44], Def. 
6.5). Infinite VCdim(H ) allows H to shatter arbitrarily large C and 
causes H not to be PAC learnable ([44], Theorem 6.6). Using 
Shalev-Shwartz and Ben-David’s [44] proof of their Theorem 6.6 and 
following the logic of their Corollary 6.4 (ibid.), infinite VCdim(H )

prevents learning H using a set of m observations because H also 
shatters a set of 2m observations, where the smaller set m does not 
provide ground-truths for observations from the larger set 2m. As a 
result, the outputted classifier h is not a probably approximately correct 
hypothesis about the state space because it cannot correctly predict 
whether a sample from the larger set 2m belongs a finite set C⊂X and is, 
as a result, an observation of the state space X . This means that a uni-
versal approximator with infinite VC-dimension lacks the epistemic 
justification to access state space modalities. Only finite VC-dimension 
can epistemically justify universal approximation access to the state 
space of a physical system, as finiteness of VC-dimension of hypothesis 
classes guarantees their PAC learnability according to Inequality (1).

Formally, No Free Lunch Theorem (NFL, [44], Theorem 5.1 and its 
computable version by [1], Lemma 19) can be used to show that some 
hypothesis classes are not PAC learnable and, as a result, algorithms 
based on universal approximation cannot access state space modalities. 
Let X be the state space of a physical system and H state− space a hy-
pothesis class containing computable functions h : X →{0,1}. For any 
distribution D over a σ-algebra of subsets of the state space X , an i.i.d. 

sample S ∼ D m of m state space observations, and m = mH (ϵ, δ), where 
ϵ, δ ∈ (0,1), there is a computable algorithm A with 

PrS∼ D m

[
LD (A (S) ) ≤ minh∈H state− space (LD (h)+ϵ )

]
≥ 1 − δ. At the same 

time, there is also a subset of the state space X = {x1,…, x2m} ⊆ X 

containing 2m observations and a computable function g : {x1,…,

x2m}→{0,1} producing a uniform distribution D̂ over 
{(x1, g(x1) ),…, (x2m, g(x2m) ) }. Setting ϵ < 1/8 and δ < 1/7, if the 
learner A is given an i.i.d. sample S ∼ D̂

m 
of m state space observa-

tions, it fails with probability PrS∼ D̂
m [L

D̂
(A (S) ) > 1/8 ] > 1/7. This 

follows from the fact that |X | > 2m ([44], Corollary 5.2) and D̂ exists 
because it is possible to computably find g ([1], Lemma 19). As a result, 
the hypothesis class H state− space is not PAC learnable by the algorithm A . 
Above, we already introduced some computability requirements of PAC 
learnability. We will now proceed with their full explanation.

3.1. Computability of universal approximation access to state space 
modalities

We provided the first set of conditions that allow a universal 
approximator with limited access (defined by sample complexity) to 
observations of the state space of a physical system to correctly predict 
whether new observations belong to some subset X ⊆ X of the state 
space or not. This characterization is based on statistical learning. The 
second set of conditions determines computability of universal approx-
imation access to state space modalities. Traditionally, it is required that 
the runtime of the algorithm A is polynomial in 1ϵ and 1δ and in the size of 
representation of the hypotheses in H ([52], p. 1136; [33]). Recently, 
Agarwal et al. [1] initiated a study of computable PAC (CPAC) learn-
ability that does not require learners A with polynomial runtime but 
learners that are just computable functions.

Formally, CPAC requires a computable algorithm A to output hy-
potheses (predictors) h ∈ H such that they are computable functions 
that can be evaluated on each input from the state space X ([1], Def. 8). 
Both realizable and agnostic as well as proper and improper learning 
settings are considered ([1], p. 5). Predictors h ∈ H produced by the 
computable learner A infer whether an observation x ∼ D belongs to 
some subset X ⊆ X of the state space. Agarwal et al. [1] showed that 
PAC learnability of a hypothesis class H implies its CPAC learnability in 
both realizable proper and improper settings in case H has finite 
VC-dimension and is decidably representable (DR, ibid.). A hypothesis 
class H is DR if the set of all functions computed by an algorithm A , 
which is from a set of decidable programs P , equals H ([1], Def. 5). DR 
implies a weaker property of hypothesis classes, recursively enumerable 
representation (RER), which is implied by DR by P being a recursively 
enumerable set of programs ([1], Def. 6).

For a RER H with finite VC-dimension, P contains an algorithm A 

corresponding to the ERM (Empirical Risk Minimizer) that will evaluate 
each h ∈ H on an i.i.d. sample S ∼ D m of at least the size mH (ϵ, δ) until 
it finds h∗ satisfying Inequality (1) by L(D ,f)(h∗) = 0, as we are in the 
realizable setting ([1], Proof of Theorem 10). In this case, A 

CPAC-learned the hypothesis class H state− space by outputting h∗, a 
computable classifier that has access to state space modalities. If the 
hypothesis h∗ is approximated by a neural network, the network’s access 
to the state space modalities of a physical system follows from its uni-
versal approximation capability and the fact that (1) H state− space is RER 
(or DR), (2) the distribution D over the σ-algebra of subsets of the state 
space X is fixed, (3) the sample S ∼ D m is i.i.d., and (4) h∗ achieves 
L(D ,f)(h∗) = 0. This is not the case in the agnostic proper setting 
(Inequality (2) with h, h́ ∈ H and no hʹ s.t. L(D ,f)(hʹ) = 0) even though 
the hypothesis class H state− space has finite VC-dimension and is decidably 
representable ([1], Theorem 11). 

Definition 1. To show this, let us define a state space X b containing b 
possible observations of the physical system. Then, there is a DR 
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hypothesis class H X b with finite VC-dimension VCdim
(
H X b

)
≤ b that 

contains all hypotheses predicting at most b observations as belonging to 
some subset X ⊆ X of the state space.

Using the class H X b from Definition 1, a proper CPAC learner A that 
can only learn subclasses H b⊂H X b and, thus, can only output h ∈ H b 
cannot learn modalities of the state space X b in the agnostic setting. 
This is because no h ∈ H b achieves L(D ,f)(h) = 0. 

Corollary 1. Hypotheses from subclasses H b⊂H X b cannot have full 
access to the state space in agnostic settings because its learnability is 
improper with respect to the subclasses, i.e., a hypothesis h s.t. L(D ,f)(h)
= 0 does not belong to the subclass h ∕∈ H b but is contained in the state 
space hypothesis class h ∈ H X b . Even though the subclasses are DR and 
have finite VC-dimension, computable learnability of the state space X b 
is not possible in the agnostic setting ([1], Theorem 11 for the original 
impossibility result and [50], pp. 6–7 for additional context). If a neural 
network learns h ∈ H b in the agnostic setting, it does not provide uni-
versal approximation access to the state space modalities of X b. This is a 
result of the fact that proper PAC learnability of hypothesis classes does 
not imply computable proper learnability in the agnostic setting (ibid.).

This result strengthens the dependence of CPAC learnability of state 
space modalities on the realizability assumption about the hypothesis 
class H X b . That is, for both proper and improper setting, there is a 
hypothesis h ∈ H b or h ∈ H X b respectively such that L(D ,f)(h) = 0. In 
the realizable setting, any DR or RER hypothesis class with finite VC- 
dimension is CPAC learnable with a universal approximator A that 
implements an ERM and outputs the classifier based on h such that 
L(D ,f)(h) = 0. The classifier has access to state space modalities and can 
predict whether an observation x belongs to some subset X ⊆ X of the 
state space. There are several undecidability results regarding (C)PAC 
learnability that challenge this conclusion.

4. Undecidability of universal approximation access to state 
space modalities

Ben-David et al. [7,8] used the independence of the continuum hy-
pothesis from the ZFC axioms to show that learnability treated as 
monotone compression remains undecidable. In case the continuum 
hypothesis is true, the cardinality of [0, 1] is ℵ1 and, as a result, there are 
monotone compression schemes that can characterize learnability of 
F ∗, the family of all finite subsets of [0,1] ([8], p. 47). If the continuum 
hypothesis is false, no such monotone compression scheme exists (ibid.). 
Since the continuum hypothesis is independent of ZFC, it cannot be 
proved nor refuted, and this makes learnability based on monotone 
compression undecidable. The independence of monotone compression 
from the ZFC set theory motivated the introduction of CPAC by Agarwal 
et al. [1], as replacing arbitrary functions with computable ones was 
considered to circumvent the independence of learnability from ZFC 
(provided ZFC is consistent).

Caro [15] showed that the key ingredient in different theories of 
learnability, a complexity measure such as VC-dimension, is susceptible 
to two types of undecidability. The first prevents proving learnability of 
computable hypothesis classes and the second prevents an algorithm to 
decide whether computable hypothesis classes are learnable (ibid.). In 
the former case, a recursively enumerable formal system F is called 
consistent if VCdim(H F ) < ∞ ([15], Corollary 2.9), with each h ∈ H F 

representing a function that determines correspondence between the 
Gödel number of a theorem and the Gödel number of its negation ([15], 
Def. 2.4). Since in an inconsistent F the number of provable theorems is 
infinite, so is VCdim(H F ) = ∞. By entailing finite VC-dimension, a 
recursively enumerable formal system F with VCdim(H F ) < ∞ im-
plies its own consistency. As a result, the finiteness of VCdim(H F )

cannot be proved in F , as this would mean that F can prove its own 
consistency, violating Gödel’s second incompleteness theorem ([15], 
Corollary 2.11). Similarly, a Turing machine, deciding whether a 

computable hypothesis class has finite VC-dimension, does not exist, as 
this would mean that the halting problem is decidable ([15], Corollary 
2.20). Finally, Sterkenburg ([50], Proposition 11) showed that Rice’s 
Theorem can be used to derive undecidability of learnability of 
computable hypothesis classes as well by establishing correspondence 
between incomputable nontrivial index sets, i.e., I ∕= ∅ or I ∕= N, and 
maximal computable families of hypothesis classes, i.e., H = {H i}i∈N.

Apart from undecidability of VC-dimension finiteness, it was also 
shown that VC-dimension cannot be computed [22,39] nor approxi-
mately computed in polynomial time [37,38], assuming a version of the 
Exponential Time Hypothesis. 

Corollary 2. Although there is a computable algorithm A that in the 
realizable setting outputs a classifier h computable on all observations 
from X such that L(D ,f)(h) = 0, neither PAC nor CPAC characterizes 
universal approximation access to state space modalities because 
finiteness of VC-dimension of hypothesis classes is undecidable and VC- 
dimension cannot even be approximated in polynomial time. Undecid-
ability of VC-dimension finiteness can be expressed both as undecid-
ability of learnability and independence of learnability from an axiom 
system underlying the state space X .

We are now ready to give our main theorem about undecidability of 
universal approximation access to state space modalities. 

Theorem 1. Let X and Z be sets such that X = {x1,…, xn}, X ⊆ X , and 
Z = {z1,…, zn} and n ∈ N. Further, let h ∈ H X be a binary classifier 
implemented in an ANN such that L(D ,f)(h) = 0 that can correctly predict 
whether an observation zi belongs to a subset X of the state space X . By 
ZFC Axiom Schema of Separation, we have that ∀Ζ∃X(zi ∈ X ↔ (zi ∈ Z ∧

h(zi))) All observations z for which h returns 1 form a set of observations 
X which is a subset of the state space X ⊆ X . This relation is, however, 
undecidable.

Proof. Provided that ZFC is consistent and its axioms used for a basic 
characterization of the state space X of a physical system, the proof is 
constructed as follows. Universal approximation access to the state 
space X depends on a hypothesis h ∈ H X such that L(D ,f)(h) = 0. For a 
RER hypothesis class H X to be CPAC learnable by a universal approx-
imator A with PrS∼ D m [LD (A (S) ) ≤ LD (h)+ϵ ] ≥ 1 − δ, H X ’s VC- 
dimension has to be finite VCdim(H X ) < ∞ and A implement an 
ERM. Each observation z corresponds to a theorem pz with Gödel 
number φ

(
E2

1
(
pz
) )

derived in a formal system1
F , where E2 is a 

recursive enumeration of N2 given as a total bijective function E2
i : N→ 

N, i = 1, 2 ([15], pp. 7–8). If φ
(
E2

1
(
pz
) )

= ¬φ
(
E2

2
(
pz
) )

, the formal sys-
tem F underlying the state space X is inconsistent ([15], Def. 2.4) 
because Gödel number of the theorem pz and of its negation coincide. 
VC-dimension of the hypothesis class F X of the inconsistent formal 
system F (see [15] for the definition of a formal system’s hypothesis 
class) is infinite because from a contradiction, anything can be derived 
([15], Theorem 2.7). By requiring that VCdim(H X ) < ∞, we also 
require that the formal system F is consistent. Otherwise, there would 
be an explosion of derivable theorems about the state space X caused by 
contradictions in an inconsistent F . When we attempt to use the formal 
system F to derive that VCdim(F X ) < ∞⇒VCdim(H X ) < ∞, Gödel’s 
second incompleteness theorem is violated and F made inconsistent by 
proving its own consistency. Because we know that VC-dimension of an 
inconsistent F is infinite, we can derive that VCdim(F X ) = ∞⇒ 
VCdim(H X ) = ∞. As a result, H X is not CPAC learnable by the uni-
versal approximator A . This implies that universal approximation ac-
cess to modalities of the state space X of a physical system is 
undecidable because the proof of VCdim(F X ) < ∞⇒VCdim(H X ) < ∞ 
allowing CPAC learnability of H X cannot be obtained in F , that is, in 

1
F is recursively enumerable and supports arithmetic that allows it to 

derive infinitely many theorems.
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the formal system describing the state space X . ∎

Hanneke and Yang ([24], Section 1.7) recently provided a helpful 
perspective on this type of undecidability. When turning potential ob-
servations of the state space X into theorems of the formal system F , 
for each observation z and corresponding theorem pz, the hypothesis 
class F X returns a function fθ

(
pz
)
, where θ is a parametrization of the 

function. As noted by Hanneke and Yang [24], each couple of 
(
θ, pz

)

represents a query against the hypothesis class F X which is opaque. 
The opaqueness is caused by the fact that the query access cannot be 
used to determine whether the class collapses to a single function fθ

(
pz
)

= 0 whose indexes correspond to all possible parameter values or is 
infinite (ibid.) due to the contradiction φ

(
E2

1
(
pz
) )

= ¬φ
(
E2

2
(
pz
) )

. 

Corollary 3. Formally, a version of Agarwal et al.’s (2020, Definition 
21) distinguishability problem fails with respect to the hypothesis class 
H F X

. A hypothesis h ∈ H F X 
takes a query q =

(
θ, pz

)
∼ D from a 

distribution over the query domain Q and outputs a function fθ ∈ F X . 
There is no computable learner for H F X 

A :
⋃

n∈N(Q × fθ ∈ F X )
n→ 

{single, infinite} that is for any δ > 0 and S = (q1,…, qm) ∈ Q m, m ∈ N, 
capable of predicting with probability at least 1 − δ that H F X

collapses 
to a redundantly indexed single function, fθ

(
pz
)
= 0, or is infinite, i.e., 

each contradiction φ
(
E2

1
(
pz
) )

= ¬φ
(
E2

2
(
pz
) )

produces a new function 
based on θ = (θ(k) )k∈N ∈ cc({0,1} ). The equality φ

(
E2

1
(
pz
) )

=

¬φ
(
E2

2
(
pz
) )

can be satisfied infinitely many times. This makes 
VCdim(H F X

) = ∞ and the distinguishability problem not CPAC 
learnable.

4.1. Large VC-dimension and other learning models

Deep ANNs are overparametrized and have enough capacity to 
memorize all training samples [58]. VC-dimension of hypothesis classes 
learnable by ANNs capable of memorization grows absurdly large and 
the memorization should prevent ANNs from generalizing about state 
spaces. Is there a difference between a hypothesis class with absurdly 
large VC-dimension and a hypothesis class with infinite VC-dimension? 
In the absurdly large case, the received wisdom is that an ANN learning 
such a class will be unable to generalize. In the infinite case, the class is 
not learnable which means that it is a priori clear that the ANN will not 
generalize either.

The study of interpolation, a situation in which an overparametrized 
ANN fits even noisy data perfectly and is still able to generalize [9], 
shows that the received wisdom is not applicable to deep ANNs. The key 
for understanding overparameterization seems to be that instead of a 
single or no hypothesis h ∈ H achieving zero empirical risk defined as 
R emp(h) = 1

m
∑m

i=1l
(
h(xi), yi

)
, there is now a set S =

{
h ∈ H :

R emp(h) = 0
}

of hypotheses that minimize the empirical risk equally 
well ([9], Sect. 3.6). Not all hypotheses from S , however, generalize 
equally well. The learner A , a combination of a neural architecture and 
an optimizer, capable of CPAC learning H approximates a hypothesis 
h ∈ S based on some inductive bias such as functional smoothness that 
helps the ANN generalize (ibid.). Although absurdly large VC-dimension 
of a hypothesis class does not play the traditional capacity control role 
that presumably helps the ANN to generalize, it is still finite and, thus, 
learnable in the interpolation regime. As a results, the difference be-
tween absurdly large and infinite VC-dimension of hypothesis classes is 
important, as only the latter prevents CPAC learnability.

We showed that the undecidability of learnability of state spaces is 
caused by a formal undecidability of finiteness of VC-dimension of hy-
pothesis classes as well as by the fact that VC-dimension cannot be 
computed nor approximately computed in polynomial time, assuming a 
version of the Exponential Time Hypothesis. It is interesting to ask 
whether similar results hold for learnability in frameworks that do not 
use VC-dimension to measure the complexity of hypothesis classes. As 

far as learning frameworks go, (C)PAC, however, seems most natural 
because it describes batch learning that corresponds to many scientific 
machine learning workloads using ANNs.

An alternative is online learning, during which the learner predicts 
labels of sequentially arriving observations. In the realizable setting, 
there is a hypothesis h⋆ ∈ H : X →Y that generates the sequence of 
labels for the observations. Let X be the state space, Y = {0,1} the 
label space, and A an online learner. A sample S =

{(
xt , yt

) }T
t=1 rep-

resents a single run of the learner that at each time step t ∈ [T ∈ N]

predicted pt = A (St− 1, xt) and, as a result, made a number of mistakes 
given as MA (S) =

∑T
t=1l[A (St− 1 ,xt )∕=yt ] [25]. Let us also define Littlestone 

Dimension (L-dimension, [36]) of a non-empty hypothesis class H , 
Ldim(H ), as the maximal T ∈ N that corresponds to the depth of a bi-
nary tree shattered by H ([6], Definition 8). A tree is shattered by H if 
for any root-to-leaf path (x1, y1),…, (xT, yT) a hypothesis h ∈ H exists 
such that h(xi) = yi ∀i i ≤ T ([6], Definition 7). If Ldim(H ) < ∞, the 
hypothesis class H is online learnable. Further, if the learner A is 
Standard Optimal Algorithm (SOA, [6], Algorithm 1), MSOA(H ) =

Ldim(H ), and there is no learner that can make less mistakes than SOA, 
that is MA(H ) ≥ Ldim(H ) (ibid.). In the realizable setting, 
Ldim(H X ) < ∞ characterizes online learnability of modalities of the 
state space X of some physical system (cf. ibid.).

This last statement can be contested using the same procedure that 
we applied to derive undecidability of learnability of state spaces under 
the PAC framework. First, Caro ([15], Proposition 4.5 and Corollary 4.6) 
showed ‘Gödel’ undecidability of finiteness of L-dimension similarly as 
for VC-dimension. Therefore, undecidability that holds for PAC learn-
ability of state space modalities holds also for their online learnability. 
Second, as VC-dimension, L-dimension cannot be computed [22,39] nor 
approximately computed in polynomial time [37,38], assuming a 
version of the Exponential Time Hypothesis, which leads us to consid-
ering computable online learning. By constructing a hypothesis class 
with finite L-dimension for which no optimal online learner is comput-
able, Hasrati and Ben-David ([25], Theorem 29) showed that L-dimen-
sion does not characterize computable online learning. We leave a 
detailed analysis of this result open. As mentioned, we focused on the 
PAC framework for its natural closeness to scientific machine learning 
workloads using ANNs.

4.2. Implications of the undecidability

We may now ask about the implications of the derived formal 
impossibility results for the ANN’s use in everyday computational sci-
ence. If hypotheses about the state space of a system are required to be 
functions computable by some ANN, finiteness of VC-dimension of the 
class of hypotheses expressible by the ANN does not guarantee learn-
ability of the class in every situation (Corollary 1). An empirical 
consequence of this formal limit is that it is impossible to a priori prove 
that the trained ANN will correctly generalize about the state space in 
the agnostic CPAC setting, i.e., that it will reliably (within the bounds of 
the PAC definition of learnability) predict whether an observation be-
longs to the state space or not. This partial limit in the agnostic setting is, 
unfortunately, not the end of troubles because we showed that Caro’s 
[15] method of proving undecidability of finiteness of VC dimension of 
hypothesis classes can be adapted to state space hypothesis classes 
(Theorem 1). This in turn means that finiteness of VC dimension of 
hypothesis classes cannot be used for characterizing learnability in any 
situation if we allow the connection between observations and theorems 
necessary for the proof of Theorem 1 to work as intended.

In a nutshell, using the popular and foundational (C)PAC framework, 
we cannot prove that ANNs will provide reliable access to the state space 
of a physical system. This is in contrast with the successful, everyday use 
of ANNs in computational science. One takeaway is that despite the fact 
we are unable to a priori prove that ANNs will generalize about the state 
space, they often do in a way satisfying the required level of robustness 
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and accuracy. This shows that the proof that cannot be derived in the (C) 
PAC framework is not about ANNs’ functional properties as universal 
approximators but rather about justification of their generalization 
capability if we cannot rely on VC dimension.

Spelda and Stritecky [49] obtained an epistemic justification of the 
generalization capability of overparameterized ANNs by identifying 
conditions that allow a computable learner A to become locally stable. 
This kind of local stability is an empirical phenomenon, which depends 
on a set of conditions. The occurrence of local stability cannot be a priori 
proved and in the current setting is relevant only for large VC dimension 
caused by overparameterization, which prevents generalization error 
bounds independent of the data distribution from justifying the ANN’s 
generalization capability. PAC learnability of hypothesis classes is dis-
tribution independent, and this led Bousquet et al. [11] to propose an 
alternative theory for the realizable setting that allows the rate of 
generalization error convergence to depend on the distribution over 
observations. The PAC framework, on the other hand, features a single, 
worst-case rate that applies uniformly to all distributions consistent the 
with hypothesis class (ibid.). In Bousquet et al.’s (2021, Theorem 1.9) 
theory of universal learning, the rate of convergence is controlled by 
finiteness of Littlestone and VC-Littlestone trees (VC-Littlestone tree 
combines the structures behind VC and L-dimension, [11], Def. 1.8) for 
the hypothesis class H . A VC-Littlestone tree for H can be infinite, but 
then learnability of H requires arbitrarily slow rates of convergence of 
the generalization error, which means that H is learnable but the 
learner A cannot predict the rate of convergence ([11], p. 535).

It seems that if the state space of a physical system is characterized by 
a hypothesis class, theories defining learnability of hypothesis classes 
have problems predicting whether ANNs trained on observations of that 
state space will access it reliably. Judged by the success of machine 
learning in empirical science, this might be a manifestation of the gap 
that is currently separating learning theory from machine learning 
practice [20,23,31]. There is, however, an important distinction to be 
made. Our undecidability result challenges means that can be used to a 
priori justify reliable, universal approximation access to state spaces not 
the ability of universal approximators to learn from state space obser-
vations. Therefore, undecidability of learnability of state spaces makes it 
hard to predict whether ANNs will correctly generalize about state 
spaces of physical systems but does not prevent imperfect generalization 
if the empirical conditions are right. The problem is that the ‘right’ 
empirical conditions do not seem to be fully characterized by the re-
quirements of (C)PAC learnability and due to this we cannot know how 
imperfect the generalization capability will be until all task-relevant 
observations have been seen. This means that it is hard to provide an 
epistemic justification for machine learning tools in scientific contexts, 
which, however, continue to work well thanks to careful experimental 
practices. Our undecidability result has a constructive side that further 
motivates philosophy of science questions asking how we justify the role 
of machine learning in science.

5. Conclusion

We showed that computable PAC learnability of hypothesis classes 
does not characterize access to state space modalities. Our result about 
undecidability means that modal knowledge about state spaces obtained 
using ANNs does not have formal guarantees. Undecidability of learn-
ability of state spaces defines an epistemic limit of scientific inquiry 
aided by machine learning. The next step in fully understanding the role 
of machine learning in various scientific fields is to find out what are the 
ways in which formal limits can meaningfully engage with empirical 
exploration.
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