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Abstract 

Consider a set of shuffled observations drawn from a fixed probability distribution over 

some instance domain. What enables learning of inductive generalizations which proceed 

from such a set of observations? The scenario is worthwhile because it epistemically 

characterizes most of machine learning. This kind of learning from observations is also 

inverse and ill-posed. What reduces the non-uniqueness of its result and, thus, its 

problematic epistemic justification, which stems from a one-to-many relation between the 

observations and many learnable generalizations? The paper argues that this role belongs to 

any complexity regularization which satisfies Norton’s Material Theory of Induction (MTI) by 

localizing the inductive risk to facts in the given domain. A prime example of the localization 

is the Lottery Ticket Hypothesis (LTH) about overparameterized neural networks. The 

explanation of MTI’s role in complexity regularization of neural networks is provided by 

analyzing the stability of Empirical Risk Minimization (ERM), an inductive rule that controls 

the learning process and leads to an inductive generalization on the given set of 

observations. In cases where ERM might become asymptotically unstable, making the 

justification of the generalization by uniform convergence unavailable, LTH and MTI can be 

used to define a local stability. A priori, overparameterized neural networks are such cases 

and the combination of LTH and MTI can block ERM’s trivialization caused by equalizing the 

strengths of its inductive support for risk minimization. We bring closer the investigation of 

generalization in artificial neural networks and the study of inductive inference and show the 
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division of labor between MTI and the optimality justifications (developed by Gerhard 

Schurz) in machine learning. 

Keywords: lottery ticket hypothesis; complexity regularization; material theory of induction; 

empirical risk minimization. 

1. Introduction 

An epistemic justification of the inductive generalization in artificial neural networks can be 

achieved by connecting the state-of-the-art approaches (LeCun et al. 2015; Schmidhuber 

2015; Bengio et al. 2021) to recent theories of inductive inference (Norton 2003; 2021; 

Schurz 2019). If machine learning is considered as a kind of induction, then the epistemic 

justification is missing in machine learning as well as in epistemology debates. 

In Sections 2 and 3, the paper connects complexity regularization of (deep) artificial 

neural networks, the Lottery Ticket Hypothesis (Frankle and Carbin 2019), and the Material 

Theory of Induction (Norton 2003; 2014; 2021) to show that successful machine learning of 

inductive generalizations is epistemically justifiable by the localization of inductive risk. 

Sections 4 and 5 provide important qualifications to this epistemic justification, using 

Norton’s work on the incompleteness of calculi of inductive inference (2019) to distinguish 

between asymptotic and local stability of inductive rules that facilitate the generalization 

learning in neural networks. 

The Material Theory of Induction argues that retrodictive/predictive successes of 

induction stem from adapting general inductive schemas to material facts found in local 

domains, thus achieving the schemas’ localization. The paper shows that neural network 

pruning described by the Lottery Ticket Hypothesis adapts a general architecture to a given 

local domain. By this, it transports the inductive risk from a schema (architecture) to local 

facts populating the evidence (training data), thus accomplishing the localization. If the 
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requirements of statistical learning theory are met (i.i.d. [independent and identically 

distributed] samples from a fixed distribution over some instance domain, see Sect. 4), then 

any regularization method, satisfying the Material Theory of Induction by moving the 

inductive risk to local facts, can provide the inductive generalization in (deep) artificial neural 

networks with an epistemic justification. In case the requirements are not met, then local 

facts become unstable. The Material Theory of Induction can no longer provide the 

epistemic justification, which should be replaced with an optimality-based justification from 

the framework developed by Gerhard Schurz (see the conclusion of Sect. 5; also, Schurz 

2019; 2024; Spelda and Stritecky 2021). This distinction shows a division of labor between 

John Norton’s and Gerhard Schurz’s theories of inductive inference (cf. Schurz and Thorn 

2020) and the limitation of the former theory in the machine learning context. 

1.1 The Motivation for an Epistemic Justification of Inductive Generalizations 

Statistical learning theory treats training of a machine learning model as function estimation 

from a limited sample of training data (Vapnik 1995). This means that instead of identifying 

the true model by estimating the function entirely, the true model is being ‘imitated’ (cf. 

Cherkassky and Dhar 2015) by estimating the function at a given finite set of points of 

interest (Vapnik 1995, pp. 167-170). Therefore, an epistemic justification for the ability of 

machine learning models to generalize is required. 

To generalize is to perform correct inferences on new (yet unobserved) samples 

outside of training data by establishing a certain kind of connections among the observed 

samples (training data). Formally (Definition 1), ‘𝑟% of all so far observed 𝐹𝑠 has been 𝐺𝑠, 

hence, with high (subjective) probability, approximately 𝑟% of all 𝐹𝑠 are (will be) 𝐺𝑠’ (Schurz 

2019, p. 2). Using this definition of inductive generalization, 𝐺𝑠 are successful inferences by a 
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machine learning model on new samples, provided all 𝐹𝑠 are (will be) i.i.d. from a fixed 

distribution 𝒟 on some domain 𝒵. Any function 𝑓 from the class ℱ expressible by a machine 

learning model is not estimated in full during training but rather it is estimated only at a 

given finite set of points of interest. A deductive inference from the entire function 

estimation to the points of interest thus cannot be performed (cf. Vapnik 1995, p. 169, 

Figure 6.1), motivating the desirability of an epistemic justification for the generalization 

capability of the trained model. 

Determined by the class ℱ, different function estimations are possible on any finite 

training dataset, which leads to different generalization capabilities of the model. The 

problem of selecting the correct level of complexity of the model, determining its 

generalization performance via the fit to data (i.e., selecting 𝑓 ∈ ℱ), is central. This is our 

core concern regarded as the one-to-many relation between the evidence (training data) 

and many learnable generalizations. The expressivity of artificial neural networks is not 

foundationally limited, since the universal approximation theorem established that 

multilayer feedforward neural networks using sigmoidal hidden layer activation functions 

are universal approximators (Cybenko 1989; Hornik et al. 1989). Borel measurable functions 

from one finite dimensional space to another can be approximated to an arbitrary degree of 

accuracy if the network is large enough (see Barron [1993] for bounds on the sizes of single 

hidden layer networks for the approximation of various function classes, relatedly also 

Kůrková [1992]; Schmidt-Hieber [2021] for more than single hidden layer ReLU networks). 

For various classes of functions, deep networks can improve the approximation efficiency, 

decreasing the number of hidden units while increasing the generalization performance 

(Goodfellow et al. 2016, pp. 192-95; Yarotsky 2017; DeVore et al. 2021, pp. 398-423). 

Treating simplicity as a uniform guiding principle for selecting a function 𝑓 from the class ℱ is 
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epistemically problematic, because simplicity depends on the local context, i.e., on the facts 

found in the training data (cf. Norton 2021, Chapter 6; Roche 2018). 

The generalization capability measured as the error rate on new samples does not 

depend on a uniquely ordered sequence of the training data. For neural networks, learning 

starts from random initial conditions followed by a succession of epochs, each iteratively 

introducing the model to batches of randomly drawn samples from the training data 

(Goodfellow et al. 2016, pp. 270-73). This procedure is known as the minibatch method, 

during which the network’s parameters (weights) are updated after evaluating its 

predictions on samples from a minibatch instead of on all samples to avoid costly updates 

based on processing the whole dataset (ibid.; an epoch is concluded once the network ran 

through the entire training dataset). Samples in minibatches and individual minibatches 

should be independent from each other to avoid updating the network’s weights based on 

biased gradient estimates caused by potential dependencies between samples (ibid.). In 

practice, the training dataset is usually shuffled to simulate the effects of independence, and 

if several epochs are executed over the shuffled dataset, starting with the second epoch 

(assuming there no copies among the samples), estimates of the generalization error on 

minibatches will be biased (Goodfellow et al. 2016, pp. 273-75). The minibatch method is 

different from the cross-validation or holdout method (Arlot and Celisse 2010) because the 

latter require sample independence to estimate the generalization error in an unbiased way 

in order to serve as an epistemically justifiable model selection procedure. The minibatch 

methods have different objectives, e.g., balancing efficient training and overfitting. 

This kind of learning does not distinguish among epistemic-temporal locations 

(indices) of the samples. It can be thus described as an ill-posed inverse problem of learning 

inductive generalizations from samples produced by not necessarily known empirical 
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processes. De Vito et al. (2005) and Kůrková (2005) established an early connection between 

statistical learning theory and ill-posed inverse problems, building a formal link between 

learning from observations of some empirical process and complexity regularization. For 

perspectives on this kind of generalization learning from the causal inference point of view, 

one may refer to Kilbertus et al. (2018), Pearl (2019) or Schölkopf et al. (2021). 

For ill-posed inverse problems, regularization methods seek to stabilize the learning 

algorithm by controlling the complexity of the machine learning model in terms of the 

expressible hypotheses/functions (cf. Shalev-Shwartz and Ben-David 2014, Chap. 13). The 

stability is achieved if small variations in the inputs do not cause significant changes in the 

outputs the machine learning model (ibid.). Sections 4 and 5 analyze the difference between 

asymptotic and local stability to establish a connection between the latter and the Material 

Theory of Induction and thus unpack its impact on neural networks. Therefore, the epistemic 

problem lies in the one-to-many relation between a training dataset and many learnable 

generalizations, making the justification of selecting one of them by regularizing the network 

challenging. Next, we show that an epistemic justification of common regularization 

principles is not easy, which means that the same applies to the generalizations learned by 

overparameterized neural networks. 

2. The Epistemic Justification of Complexity Regularization and its Challenges 

Most attempts to choose the representational capacity of a machine learning model in the 

hit-or-miss manner produce two outcomes. First, the selected version of the model underfits 

the evidence (training data) because its capacity (complexity) is too low, leaving the 

generalization underdetermined (cf. Goodfellow et al. 2016, pp. 107-113). Second, the 

model might overfit the evidence because its capacity is sufficient to capture insignificant 
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patterns in data, leaving the generalization overdetermined (cf. ibid.). The least favorable 

outcome prevents the generalization capability because the model can capture negligible 

patterns, possibly culminating in the evidence memorization. In the case of 

overparameterization, which allows training ‘modern’ interpolating networks (Belkin 2021), 

only overfitting is relevant, since the bias-variance trade-off transforms into a double 

descent generalization curve (ibid.). Overparameterization raises a contradiction in 

explaining the generalization capability (of networks perfectly fitting [noisy] training data) by 

uniform convergence. Sections 4 and 5 resolve the contradiction in a different way than the 

emerging theory of interpolation (cf. ibid.). 

Regularization principles impose a priori constraints which limit the number of 

learnable generalizations by prohibiting certain kinds of generalization-establishing 

connections that can be formed among the pieces of evidence (cf. Wahba 1995, p. 426). By 

impeding some connections to stimulate alternative ones, epitomized by the constraints, 

regularization seeks to prevent overdetermined generalizations. Such a priori constraints 

target the cases of overfitting emerging from the eliminated kinds of generalization-

establishing connections (cf. ibid.). The constraints help to address the one-to-many relation, 

which makes an epistemic justification of the generalizations challenging. The epistemic 

justification of the constraints behind complexity regularization is, thus, important. 

Regularization terms appended to loss functions used to train the models can also 

represent expert (domain) knowledge (Borghesi et al. 2020a; Silvestri et al. 2020; Borghesi et 

al. 2020b; Lombardi et al. 2020). A regularized loss function then balances the accuracy of 

performed inferences and the level of satisfaction of the constraints, converted into a 

regularization term, that represent prior knowledge to ensure the resulting generalization 

possesses the desired properties (Borghesi et al. 2020a, pp. 5-6). Obtaining such a result 
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directly from data might be difficult and the constraints help to achieve sample efficiency 

while ensuring that the generalization does not support improper inferences, considering 

the solutions allowed in the given domain (ibid.)1. 

The most common assumption about complexity regularization suggests that its 

effects come from smoothness and simplicity of function approximation (Chen and Haykin 

2002, p. 2792). Smoothness is accomplished by the generalization-establishing connections 

that create local stability (Goodfellow et al. 2016, pp. 152-153). The constraint seeks to 

encourage a stable decision boundary among individual pieces of the evidence to facilitate 

correct inferences on yet unobserved similar samples (ibid.). A good model for an evidence-

task pair learns a function approximation that does not change rapidly in a small region 

(ibid.) to avoid increasing the estimation error by overfitting. The regularization effects of 

smoothness depend on the complexity of the selected model (i.e., a function 𝑓 from the 

class ℱ), since any generalization is the result of a trade-off between the estimation error, 

𝔼𝐿(𝑓𝑛) − inf
𝑓∈ℱ
𝐿(𝑓), and approximation error, inf

𝑓∈ℱ
𝐿(𝑓) − 𝐿∗, controlled by complexity 

regularization of the class ℱ (Bartlett et al. 2002)2. 

Norton (2003, pp. 655-657) and others (e.g., Roche 2018) showed the difficulties of 

maintaining a uniform (global) definition of simplicity. Thus, we need to ask how to 

epistemically justify complexity penalties when simplicity derives from local facts. Simplicity 

treated globally connected parsimony to the likelihood of achieving non-overdetermined 

generalizations for evidence-task pairs (cf. Sober 2015, pp. 148-152, where the discussed 

 
1 It is important to note that in this case the regularization term does not score how simple is the hypothesis 
expressed by the network at the current step but rather whether the generated solution meets the application 
requirements expressed by the constraints; see, data-driven approaches for solving constrained problems with 
neural networks, for example, the Partial Latin Square completion problem (Silvestri et al. 2020).  

2 𝐿, 𝐿∗– loss and loss of the optimal prediction rule respectively; 𝑓𝑛 ∈ ℱ – a predictor with 𝐿 as close as possible 
to 𝐿∗ (Bartlett et al. 2002). The predictor is learned using an i.i.d. set {𝓏1, … , 𝓏𝑛} from an unknown distribution 
𝒟 over some domain 𝒵 (ibid.). 
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fundamental epistemic goal is to learn a good generalization for the given evidence-task 

pair). Since the epistemic goal is to learn generalizations that support correct inferences on 

yet unobserved samples, a goal which is distinct from training models as simple as possible, 

parsimony as a global principle should not be invoked to justify complexity regularization. 

This casts doubt on the epistemic indispensability of tools like Ockham’s Razor and its 

variations, which are usually counted among the fundamental principles of regularization 

theory (cf. Chen and Haykin 2002, p. 2832) and treat simplicity as a global rather than local 

matter. 

Simplicity is often replaced with compression, which is understood in the identically 

global manner. Compression was used to connect regularization to complexity developed in 

information theory and its algorithmic variant (Chen and Haykin 2002, pp. 2821-2823; pp. 

2817-2818). By relying on the Kolmogorov complexity-based minimum description length, 

the latter theory expresses complexity as the length of the shortest program able to 

reconstruct the input object, with the intuition that increasing fidelity of the reconstruction 

accompanied by the decreasing program length creates regularization effects, i.e., reduces 

overfitting and thus the generalizations’ overdetermination (Chen and Haykin 2002, pp. 

2817-2818). The former theory utilizes Shannon entropy and rate-distortion to show that 

entropy minimization has regularization effects which control the models’ complexity (Chen 

and Haykin 2002, pp. 2821-2823). It is expected that minimizing the conditional entropy 

between the evidence and the generalization creates sparse connections among the pieces 

of evidence (ibid.). Learning should spread out the generalization-establishing connections 

among a limited number of the network’s hidden units, reducing its complexity (cf. ibid.). 

Both theories imply that successful generalization learning minimizes the amount of 

information needed to produce a good model for the given evidence-task pair. This 
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relationship between generalization and compression is described by the information 

bottleneck theory, positing a positive relation between maximizing the information about 

the task at hand and keeping the information about the evidence sparse (Tishby et al. 1999). 

Given an evidence-task pair, mutual information between the evidence and the 

generalization emerges from compression in an information bottleneck, representing a good 

model for the evidence-task pair. Considering the regularization’s role in the model 

selection, compression can act as a drop-in replacement for simplicity treated globally, 

insomuch as it, too, offers a global remedy for overfitting and, thus, the generalizations’ 

overdetermination. 

Models which are best at compression, i.e., keep complexity at bay by minimizing the 

amount of information which needs to be retained to perform well on the given evidence-

task pair, should be selected. Such a refocus from simplicity creates merely another general 

inductive inference schema (cf. Schurz 2010, p. 269 [2]). Rather than seeking to perform 

correct inferences on yet unobserved samples, under this schema, uniformly, the best model 

outperforms all other models at compressing the evidence. 

Empirically, simplicity and compression treated globally as uniform principles depend 

on non-local facts. To produce an epistemic justification for the complexity regularization 

based on simplicity or compression treated globally, every local and non-local evidence-task 

pair would have to confirm that simplicity or compression is the reliable guide for obtaining 

good models able to generalize in any environment. While promising a general inductive 

inference schema, the presupposition which underpins it (simplicity or compression treated 

globally being the reliable guide) remains formal/abstract (cf. ibid.) by depending on 

unavailable non-local facts populating remote or unreachable epistemic locations. Hence, 

the epistemic justification for complexity regularization of neural networks cannot be 
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obtained in this way because it remains incomplete or circular, i.e., completion by an 

epistemically unjustifiable inductive inference. It is also helpful to notice that if simplicity 

does not equal compression (both treated globally as uniform principles), then the epistemic 

justification of complexity regularization would face an additional puzzle of meta-selecting 

among these two and possibly other global principles. Since the selection process would be 

guided by predictive success of models developed according to the available global 

principles, it could be implemented as multiple-favorite meta-induction (Schurz 2008; 2019) 

over the generalization success of candidate models. The selection based on past predictive 

successes provides optimality justification for the applied complexity regularization 

according to the foundation-theoretic epistemology by Gerhard Schurz (2022; 2024). 

 Here, we focus on situations in which the requirements of statistical learning theory 

are satisfied (i.i.d. samples from a fixed distribution over some instance domain), which 

justifies object-level induction but leaves open the epistemic justification of complexity 

regularization allowing overparameterized models to generalize. Norton’s (2003) Material 

Theory of Induction is used to accomplish this. We also explain the distinction between local 

and optimal justifications in machine learning, depending on the satisfiability of the 

requirements of statistical learning theory. 

3. The Lottery Ticket Hypothesis 

Deep artificial neural networks possess representational capacities which often suffice for 

memorization of the training data (Zhang et al. 2017). Yet when performing inferences on so 

far unobserved samples drawn from the same distribution on the instance domain that 

produced the training data, they generalize well. Hence, due to implicit and/or explicit 

regularization, the networks avoid overfitting even though their initial complexity invites it. 
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Despite the lack of robust complexity measures (Dziugaite et al. 2020) that would provide 

reliable and accurate bounds on the generalization error3, experimentation uncovered the 

likely reason for why overparameterization does not hurt generalization and is, in fact, 

rather beneficial (Frankle and Carbin 2019). During training, an overparameterized network 

can undergo principled or unstructured prune-expand cycles, producing a version of the 

network that generalizes well (Gordon et al. 2018; Frankle and Carbin 2019 respectively, also 

Hoefler et al. 2021). The Lotter Ticket Hypothesis posits that a large network can morph into 

or contains a winning ticket whose structure fits the local facts found in the evidence and the 

altered network reinforces the inductive biases vital for the task at hand. The cycles that 

prune and (re)create parts of the network establish a local inference schema as close as 

possible to the optimal model. The regularized schema resulting from the ‘prune-expand 

lottery’ is the basis of the networks’ generalization capability. 

Prune-expand cycles, morphing the initial networks into winning tickets, reflect 

Norton’s notion of inductive risk localization (cf. Norton 2003, pp. 664-665). First, a human 

expert forms a conjecture based on their experience and selects a neural network whose 

architecture represents a reasonable starting point for the given evidence-task pair. This 

architecture has been perhaps successfully applied to similar problems and it is regarded as 

generic enough to cover a broad range of learning scenarios. At this point, the inductive risk 

depends on the generic architecture and is not yet localized. Only guarantee regarding its 

generalization capability stems from non-local domains and from the intuition that networks 

with the right level of complexity generalize. Following Norton, in such a situation the 

inductive risk remains separated from the local domain (evidence) and ‘resides within the 

schema’ (Norton 2003, p. 665). 

 
3 The generalisation error equals the error rate of the inductive inference that underlies Definition 1 of 
inductive generalisation, i.e., 1 − 𝑟. 
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Further, since it is difficult to come up with just the right complexity at the schema-

level, reduction of the risk becomes difficult as well. Vacuous bounds on the generalization 

error of overparameterized neural networks support Norton’s insight that it is hard to assess 

the involved inductive risk at the schema level (ibid.). Selecting a network from some family 

and predicting the correct level of the network’s complexity that leads to a low 

generalization error before performing any localization of the inductive risk is hard. One way 

of achieving this is via scaling laws that can predict the generalization error from parameter 

counts, resulting from the density, depths, and width of neural networks from some family 

and for a dataset (Rosenfeld et al 2021). Scaling laws and their parameters were derived 

using iterative magnitude pruning (ibid.), a kind of complexity regularization (see Sect. 5), 

which localizes the inductive risk. A scaling law fitted to a family and dataset can be used to 

find a network that minimizes the parameter count given a generalization error constraint 

without experimentation (ibid.). This predictive capability is epistemically justified by prior 

experiments that identified invariance, i.e., a local fact, among different networks in terms of 

their density, depth, and width, sharing the same generalization error on a dataset (ibid.). If 

this local fact holds, then re-localization of the inductive risk is unnecessary and inferences 

by the scaling law on the generalization capability of the candidate networks are 

epistemically justified. If the local domain changes, e.g., a different architecture-dataset pair, 

then re-localization of the inductive risk is necessary to find a new version of the invariance, 

a different local fact as per Norton, justifying the inductive inferences on the generalization 

error. It is important to note that not all the samples from the dataset impact the 

generalization error equally. The localization of inductive risk can be influenced not only by 

pruning the network but also by pruning the dataset (Paul et al. 2021). 
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The possible expand phase following the regularization (pruning) of the neural 

network challenges the role of sparsity as a uniform principle. The goal is not to produce the 

sparsest network but one which is regularized to satisfy additional requirements on the 

generalization. Often, an optimal model is required to generalize within a certain 

computational budget. Apart from measuring how well the network performs the task, there 

might be a limit on the number of computational operations per inference (Gordon et al. 

2018). In case real-time reactions are required, every inference needs to fit a narrow time 

window. If, by using more operations, the inference misses the window, then the underlying 

generalization no longer serves its purpose. Relatedly, for embedded systems, lower energy 

consumption might be preferred to the network’s accuracy (Banbury et al. 2021). In this 

case, the process of localization of inductive risk can be cut off after reaching a certain 

number of operations per inference. This threshold then translates into a reduced 

generalization capability. However, given the task at hand, the generalization capability 

might be still sufficient. Since a rapid growth in the number of machine learning applications 

is anticipated, gratuitous generalization capabilities at the expense of increased energy 

consumption would make the localization of inductive risk dissipative. Principled prune-

expand cycles that support multi-objective risk localization can lead to favorable trade-offs 

between the inductive risk and the energy consumption and/or latency of the inferences. 

For example, pruning can be used to identify and eliminate parts of the neural 

network consuming the optimized resource unproductively (Gordon et al. 2018). If we aim at 

the number of operations per inference, then such an ablation induces rewiring of the 

network that reduces the computational demands while most likely hurting its 

generalization capability. The network might become too sparse and localize the inductive 

risk only imperfectly. In turn, during expand phases the network receives a targeted boost of 
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representational capacity by re-growing some of the ablated parts (ibid.). The expansion 

aims at the effective parts of the network (ibid.) to ensure that the increase in its 

generalization capability does not come from a growth of the resource consumption that is 

being minimized. By repeating the prune-expand cycle several times, the network undergoes 

localization of inductive risk, and the resulting inference schema supports a balanced 

generalization at a reasonable cost. 

The MorphNet algorithm (Gordon et al. 2018) is a good example of the cycle. The 

prune phase can, for instance, target inference costs (floating point operations per second) 

by using a regularizer that removes neurons (the neural network’s nodes) or even whole 

layers according to their computational costs (ibid.). This will decrease the network’s 

performance. To compensate for it, a width multiplier adds neurons uniformly to all layers 

(ibid., e.g., expands each layer by 40 %). Heavily pruned layers will, thus, grow less than the 

important ones which were not severely impacted by pruning. This leads to a better 

distribution of resources in the network because its efficient parts will receive a boost at the 

expense of the rest of the network.  

Localization of inductive risk can be also obtained by unstructured pruning of the 

neural network’s weights. We focus on this type of pruning, please refer to Section 5, pages 

24-25, and to Alg. 1 & 2 for a detailed explanation. According to the Lottery Ticket 

Hypothesis (Frankle and Carbin 2019), overparameterized networks contain ‘winning tickets’ 

(sparse subnetworks) responsible for the generalization capability, which should not be 

possible given the network’s initial complexity. A winning ticket is produced by pruning 

negligible parts of an overparameterized network during complexity regularization that 

localizes the inductive risk and creates a local schema. To recover the generalization error of 

the overparameterized network, the winning ticket depends on the initialization lottery 
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(ibid.). When trained in isolation, the weights of connections in the winning ticket 

subnetwork cannot be reinitialized but have to be reset to the values at or close to the 

initialization of the overparameterized network (ibid., more on the Reset and Rewind 

algorithms in Sect. 5). As a result, sparsity alone is insufficient to localize inductive risk and 

cannot epistemically justify complexity regularization. 

Section 5 shows when iterative magnitude pruning of neural network connections 

satisfies the Material Theory of Induction and becomes an epistemically justified complexity 

regularization that does not depend on unjustifiable inductive inferences about the 

regularizing effects of simplicity. Since according to common complexity measures Empirical 

Risk Minimization is a priori asymptotically unstable for overparameterized networks, the 

epistemic justification for regularization is vital because uniform convergence is no longer 

certain. The uncertainty comes from uninformative bounds on the generalization error of 

overparameterized networks. In this situation, as will be explained, Empirical Risk 

Minimization (ERM) suffers from trivialization identical to one prescribed by Norton’s No-Go 

theorem for inductive logic (2019), although in each case the cause for trivialization is 

different. For this reason, we speak about a No-Go-ERM result to distinguish it from the 

general No-Go result by Norton (2019). The two following sections show that as the general 

No-Go result can be blocked by the Material Theory of Induction, the same applies to No-Go-

ERM, which opens a way for the desired epistemic justification of complexity regularization. 

Limits of the justification are discussed as well. 

4. No-Go Results for Empirical Risk Minimization 

The Material Theory of Induction (MTI) blocks No-Go results that follow from possible 

asymptotic instabilities of Empirical Risk Minimization (ERM; Vapnik 1995, pp. 33-45 for the 
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consistency conditions of learning processes) applied to overparameterized neural networks 

under increasing the size of the training dataset (increasing in the number of observations). 

Due to the possible asymptotic instabilities, two-sided uniform convergence of empirical 

risks to risks might fail to hold. In such a case, ERM, considered as an inductive rule, can 

become trivialized in the same way as inductive rules facing disjunctive refinements under 

Norton’s No-Go theorem (2019). The trivialization of ERM, following from the absence of 

uniform convergence, can be blocked by MTI even though the trivialization is caused by 

evidence strengthening instead of disjunctive refinements discussed by Norton (2019). 

Instead of solving the asymptotic instability by ‘flattening’ (equalizing) all strengths of 

inductive support to allow trivial convergence (cf. Norton 2019, pp. 1131-32), the No-Go-

ERM result can be blocked by an external inductive supplement (Norton 2019, pp. 1133-34). 

In the present case, it is the preference for the local context consisting of an 

overparameterized neural network which contains a winning ticket for the data distribution 

at hand. For such tickets, ERM establishes the strength of inductive support only locally, 

without requiring the asymptotic stability for learnability under the general setting (Vapnik 

1995, p. 18), which invites the No-Go-ERM result and trivialization of inductive rules. 

To this end, we proceed as follows. First, Vladimir Vapnik’s and Alexey Chervonenkis’s 

work on the necessary and sufficient conditions for two-sided uniform convergence (1971) is 

linked with Norton’s No-Go theorem for inductive logic (2019). It is shown that when two-

sided uniform convergence fails because asymptotic instabilities cannot be ruled out, ERM 

becomes an instance of Norton’s incomplete inductive rule that is unable to escape 

trivialization. Second, empirical consequences of the Lottery Ticket Hypothesis (LTH, and of 

other principles discussed in the previous section) are identified as the external inductive 

supplement delivered by MTI to block the No-Go-ERM result caused by evidence 
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strengthening. Therefore, global uniformities like simplicity or compression cannot block the 

No-Go-ERM result because they require a possibly trivial asymptotic stability (by equalizing 

the strengths of ERM’s inductive support across different training dataset sizes) to secure 

two-sided uniform convergence on any data distribution 𝒟. Any such requirement, trivial or 

otherwise, was shown to be violated for non-trivial learning problems that are learnable 

without uniform convergence (Shalev-Shwartz et al. 2010). 

MTI overcomes the possible trivialization of ERM by replacing the asymptotic stability 

with a locally derived strength of inductive support for the strictly local convergence of the 

empirical risk to the risk given a fixed data distribution 𝒟 and a sample 𝑆 ∼ 𝒟𝑚 of the size 

𝑚. Therefore, the locally winning lottery tickets block the No-Go-ERM (trivialization) result 

for ERM. Further, it is assumed that 𝑆 ∼ 𝒟𝑚 consists of i.i.d. (independent and identically 

distributed) instances 𝑧1, … , 𝑧𝑚 drawn from 𝒟. The i.i.d. requirement can be replaced with a 

less restrictive notion, i.e., exchangeability defined as invariance of the underlying ground-

truths under changing conditions, allowing permutations of the instance indices (cf. Arjovsky 

et al. 2019), where the instances are drawn from a mixture of multiple data distributions and 

are no longer required to be i.i.d. MTI blocks the No-Go result in both situations. The 

following focuses on the i.i.d. presupposition due to its prevalence in the literature 

concerned with uniform convergence and two-sided uniform convergence bounds. The 

exposition assumes that 𝒟 is fixed and unknown in line with the classical presuppositions of 

Statistical Learning Theory (Vapnik 1999, p. 988). For an optimality-based justification of 

inductive rules under distribution shifts, one may refer to Spelda and Stritecky (2021), 

utilizing the work of Gerhard Schurz (2008; 2019) on the optimality of meta-induction which 

delivered the well-known result concerning Hume’s Problem of Induction (1739/1978). 
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4.1 The Absence of Uniform Convergence and the No-Go-ERM Result 

We begin with Definition 2 of two-sided uniform convergence by Shalev-Shwartz et al. (2010, 

pp. 2639-40), providing a common notation for the original result (cf. Vapnik 1995, Chap. 2): 

sup
𝒟
𝔼𝑆∼𝒟𝑚 [sup

h∈ℋ
|𝑅(h) − �̂�𝑆(h)|]

𝑚⟶∞
→    0 

where ℋ represents a hypothesis class, h a particular hypothesis, 𝑅(h) = 𝔼z~𝒟[ℒ(h; z)] 

the risk of the hypothesis h (i.e., the risk of the trained network estimated on a test set), and 

�̂�𝑆(h) =
1

𝑚
∑ ℒ(h; z)z~𝑆  the empirical risk of the hypothesis h (i.e., the empirical risk of the 

network on the training set). Additionally, 𝒟 refers to a probability distribution over the 

input domain 𝒵 comprised of instances z. Further, 𝑆 is a set of samples 𝑆 = {z1, … , z𝑚} 

resulting from 𝑚 draws from the distribution 𝒟, that is 𝑆~𝒟𝑚.  

For a binary classification problem, involving a fixed unknown distribution 𝒟 on an 

instance domain 𝒵 = 𝒳 × {0,1} and the 0 − 1 loss function 𝟙{h(x)≠𝑦}, where h ∈ ℋ and h ∶

𝒳 ↦ {0,1}, uniform convergence and, thus, learnability follows from ℋ’s finite VC 

dimension (Vapnik and Chervonenkis 1971; Shalev-Shwartz et al. 2010, p. 2640). VC 

dimension of the hypothesis class ℋ is a combinatorial measure of ℋ’s capacity, which 

captures the number of possible separations of 𝑆 ∼ 𝒟𝑚 between {0,1} realizable by 

hypotheses from the class ℋ (Vapnik and Chervonenkis 1971). VC dimension can be used in 

𝒟-independent uniform convergence bounds which depend only on the hypothesis class ℋ 

expressible by a given ML model (ibid.; Chervonenkis 2015). However, the values of VC 

dimension for overparameterized (state-of-the-art) deep artificial neural networks are large 

while 𝑅(h) remains stable or decreases (cf. Valle-Pérez and Louis 2020, pp. 13-15; Zhang et 

al. 2017; 2021). As a result, the core component of 𝒟-independent uniform convergence 



20 
 

bounds, i.e., a ratio of the value of a 𝒟-independent complexity measure to the sample size 

𝑚, becomes vacuous and disconnected from the trend of 𝑅(h). Therefore, ERM undergoes a 

special case of trivialization where the two-sided uniform convergence from Definition 2 

becomes bounded by a trivial (large) limit which does not guarantee the conditions for 

convergence of �̂�𝑆(h) to 𝑅(h). By modifying Definition 2 accordingly, we obtain Definition 3 

of a two-sided uniform convergence bound (cf. Nagarajan and Kolter 2019, p. 5): 

∀𝒟 Pr𝑆~𝒟𝑚[supℎ∈ℋ|𝑅(h) − �̂�𝑆(h)| ≤ 𝜖unif(𝑚, 𝛿)] ≥ 1 − 𝛿 

where 𝜖unif(𝑚, 𝛿) becomes trivial (large) considering the loss ℒ, with 𝛿 expressing the 

probability of drawing an abnormal 𝑆 ∼ 𝒟𝑚 (ibid.). As an inductive rule, ERM is trivialized by 

a weak strength of inductive support for two-sided uniform convergence which might fail 

due to possible asymptotic instabilities of ERM within the loose upper bound  𝜖unif(𝑚, 𝛿) 

from Definition 3. This 𝒟-independent No-Go result for ERM can be blocked by replacing the 

asymptotic stability with a local stability of winning tickets drawn from overparameterized 

networks to fit the data at hand (as prescribed by LTH). MTI blocks the No-Go result 

(trivialization) by justifying a strictly local convergence of �̂�𝑆(h) to 𝑅(h) in a winning ticket, 

which does not require the 𝒟-independent asymptotic stability of ERM. 

 Considering 𝒟-dependent uniform convergence bounds, the situation is equally 

problematic. Nagarajan and Kolter (2019) showed that uniform convergence bounds based 

on weight norms (e.g., the distance of the network’s weights from their initialization) of fixed 

deep networks trained with stochastic gradient descent (SGD, batch size 1 or generally small) 

grow with the sample size 𝑚. Schematically, considering a particular 𝒟, the harmful growth 

occurs on the right side of the following inequality – Definition 4 (cf. Nagarajan and Kolter 
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2019, p. 4; for the full definition of the left- and right-side terms, cf. Nagarajan’s and Kolter’s 

Equation 1 [2019]): 

𝑅(h) − �̂�𝑆(h) ≤ 𝒪 (
𝑠𝑜𝑚𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑛𝑜𝑟𝑚𝑠

√𝑚
) 

To serve as a non-trivial uniform convergence bound on generalization error 𝑅(h) − �̂�𝑆(h), 

the numerator of the right-hand side ratio must show an inverse trend to the value of the 

denominator (Nagarajan and Kolter 2019, pp. 3-4). However, it has been observed that the 

opposite is the case, i.e., norm-based uniform convergence bounds increase with the sample 

size 𝑚 because weight norms of a trained network (the numerator of the ratio on the right-

hand side of Definition 4) increase with the sample size 𝑚 (Nagarajan and Kolter 2019). As a 

result, the uniform convergence bound on generalization error evolves in the opposite 

direction to the observed generalization error – the former increases as the latter decreases 

with the growing sample size 𝑚 (ibid.). 

This divergence causes the second type of No-Go results for ERM. Since the bound 

grows with the sample size 𝑚, the necessary and sufficient condition for ERM’s consistency, 

guaranteeing the uniform convergence of �̂�𝑆(h) to 𝑅(h), is violated. If we repeatedly grow 

𝑚 to increase the size of the training dataset 𝑆 ∼ 𝒟𝑚, the asymptotic stability does not hold 

because the strengths of ERM’s inductive support do not converge to a single value4, 

guaranteeing two-sided uniform convergence of �̂�𝑆(h) to 𝑅(h). To reinstate the asymptotic 

stability in this situation requires to set a (trivial) limit equalizing all strengths of inductive 

support reflected by different values of the right-hand side of Definition 4 for each 𝑆 ∼ 𝒟𝑚. 

 
4 In this case, strengthening of the evidence (iteratively growing 𝑚) has the same effect on ERM as disjunctive 
refinements on non-trivial inductive rules – trivialization of convergence. While the effect is identical, the No-
Go-ERM result is caused by conjunctively increasing the sample size while Norton’s No-Go theorem (2019) is 
caused by disjunctive refinements of a partition of the evidence. We are grateful to a referee for the journal for 
helping us to fully set these situations apart.  
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Imposing such a limit would bring the asymptotic stability back, however, at the cost of 

trivializing ERM as an inductive rule, thus bringing about the second type of the No-Go-ERM 

result. For overparameterized networks under global uniformities such as simplicity or 

compression, the necessary and sufficient condition for two-sided uniform convergence can 

be brought back only if all strengths of inductive support become flattened to an arbitrary 

limit. This, however, defeats the purpose of speaking about ERM’s consistency in the first 

place. Assigning to each value of the bound an equal prior probability of bringing about 

uniform convergence (the indifference principle) leads to equiprobability issues that will 

make ERM trivial or asymptotically unstable (for a foundational exposition as to why the 

indifference principle cannot be used to provide a non-circular justification for inductive 

rules see Gerhard Schurz [2019, Section 4.5]). 

MTI can be once again used to block the No-Go result by turning ERM into a local 

inductive rule (cf. Schurz 2010, pp. 268-69), where the strengths of its inductive support 

derive from a local stability. In terms of LTH, the local stability results from drawing a 

winning ticket from an overparameterized network such that the winning ticket fits a 

training dataset 𝑆 ∼ 𝒟𝑚 at hand and generalizes well. Therefore, the epistemic justification 

of ERM is recovered by abandoning the two-sided uniform convergence of �̂�𝑆(h) to 𝑅(h) via 

the ERM’s asymptotic stability which invites trivialization and the No-Go results.  

 To bring together both No-Go results for ERM identified in the literature, we can 

express the two discussed two-sided uniform convergence bounds on generalization error as 

a function of the sample size 𝑚. For the first failure mode, concerning the 𝒟-independent 

two-sided uniform convergence bound (VC dimension-based), the bound decreases with 

increasing 𝑚 at the 𝒪 (
1

𝑚
) rate (cf. Bousquet 2021). For the second failure mode, concerning 

the 𝒟-dependent two-sided uniform convergence bound (weights norm-based), the bound 
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increases with increasing 𝑚 at the Ω(𝑚0.68) rate (Nagarajan and Kolter 2019, p. 4-5). In the 

former case (𝒟-independent), where in practice we observe a decreasing generalization 

error 𝑅(h) − �̂�𝑆(h) with an increasing 𝑚, the two-sided uniform convergence bound does 

not follow the trend due to the unfavorable upper bound on the rate of the learning curve 

convergence. In the latter case (𝒟-dependent), where in practice we observe a decreasing 

generalization error 𝑅(h) − �̂�𝑆(h) with an increasing 𝑚, the two-sided uniform convergence 

bound increases due to the non-decaying lower bound on the rate of the learning curve 

convergence. In both cases, the consistency condition for ERM is not satisfied because the 

bounds on the learning curves convergence do not guarantee the asymptotic stability of 

ERM. Therefore, ERM can be de-trivialized by LTH and other principles with regularizing 

effects that satisfy MTI. Well-performing models are then produced by local empirical risk 

minimization, which does not require the asymptotic but merely a local stability. Such a 

stability becomes free of any dependence on global uniformities such as simplicity or 

compression. 

5. The Local Stability Under LTH and MTI 

We now take a closer look at the explanations of LTH that guarantee a local stability of ERM 

for overparameterized networks and de-trivialize ERM under MTI. We rely on the fact that 

LTH and its core component, i.e., iterative magnitude pruning (IMP) of neural networks’ 

weights (Frankle and Carbin 2019) playing the regularization role, satisfies the MTI’s 

requirements for inductive risk localization as explained in Section 3. The aim of this section 

is to provide a characterization of the strengths of ERM’s inductive support in the local 

stability regime and its ability to deliver good models fitting training datasets at hand while 

generalizing well. The section is divided into two parts. First, the works connected to the 
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instability analysis of lottery tickets (Frankle et al. 2020a), a major development following 

LTH (Frankle and Carbin 2019), are reviewed to provide a measurable concept of local 

stability. Second, examples of LTH in various empirical contexts are given, including natural 

language processing (Chen et al. 2020, Yu et al. 2020), computer vision (Morcos et al. 2019, 

Chen et al. 2021), and reinforcement learning (Yu et al. 2020), to show that the local stability 

leads to successful local inductive schemas in different empirical contexts. Table 1 lists the 

results from both parts. 

The original explanation behind the LTH’s success builds on the assumption that with 

the increasing size of a neural network increases the likelihood that the network contains a 

winning ticket (cf. Frankle and Carbin 2019). That is, as outlined in Section 3, a subnetwork 

trainable to the test accuracy of the original network if the parameters (weights of the 

connections between nodes) of the former are reset to their values at initialization of the 

latter (ibid.). 

Before we characterize the process of finding subnetworks in overparameterized 

networks, for which we are seeking ERM’s local instead of asymptotic stability, we provide 

basics on the pruning method (IMP). IMP falls into the unstructured pruning category 

(Blalock et al. 2020). Compared to structured pruning strategies, which remove entire 

neurons (the network’s nodes), unstructured pruning targets individual parameters, that is, 

the neural network’s weights (ibid.). Considering Alg. 1 and 2 below, each pruning iteration 

removes a fraction of the smallest magnitude, non-zero weights, which results in removing 

some connections between individual neurons located in different layers (ibid.). This creates 

the so-called pruning mask. At each iteration, the pruning mask delimits a sparse 

subnetwork by masking some connections between neurons by removing the fraction of the 

smallest magnitude, non-zero weights. 
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The aim is to find a subnetwork that will have a similar test accuracy as the original 

dense network. To achieve this, Alg. 1 (Frankle and Carbin 2019) resets the unpruned 

weights to their values at initialization of the dense network and trains the subnetwork to 

convergence. Pruning, resetting, and training is repeated several times to reach the final 

level of the subnetwork sparsity. Because Alg. 1 was found to not work in every situation 

(see below), Alg. 2 (Frankle et al. 2020a) was introduced. It replaces weights reset with the 

‘rewind’ operation, which sets the value of unpruned weights in the mask to their value at 

the rewind point (ibid.). The rewind point is a state of the network after 𝑘 training steps. 

Sparse subnetworks produced by Alg. 1 are considered winning tickets because they 

can be trained to the similar test accuracy as the dense network thanks to ‘lucky’ 

initialization of the weights that identify the subnetwork according to the final pruning mask 

(Frankle and Carbin 2019). Sparse subnetworks produced by Alg. 2 are considered ‘matching’ 

instead of winning because the weights in the pruning mask are not reset but changed back 

(‘rewound’) to their values at the training step 𝑘 > 0 (Frankle et al. 2020a).    

Following Frankle and Carbin (2019), and Blalock et al. (2020) for generics on neural 

network pruning, the algorithm searching for winning tickets using IMP is given as follows, 

starting with definitions: 

𝑓(𝑋;𝑊0) is the original neural network, where 𝑊0 ∼ 𝒟𝑊 are its initial parameters; 

𝑚 = 1|𝑊| is an initialized pruning mask; 𝑓(𝑋;𝑚 ⨀ 𝑊0) is a sparse subnetwork created by 

applying a pruning mask 𝑚 ∈ {0,1}|𝑊0| to the initial parameters 𝑊0; 𝑓(𝑋;𝑚 ⨀ 𝑊𝑘) is a 

sparse subnetwork created by applying a pruning mask 𝑚 ∈ {0,1}|𝑊𝑘| after training for 𝑘 

iterations until obtaining the parameters 𝑊𝑘. Finally, 𝑋 is the training dataset and ⨀ 

element-wise product operator. 
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Algorithm 1 – Reset (Frankle and Carbin 2019) 

1: create 𝑓(𝑋;𝑊0) 

2: create 𝑚 = 1|𝑊| 

3: train 𝑓(𝑋;𝑊0) to convergence; or for 𝑘 iterations for Algorithm 2 – Rewind (below) 

4: for 𝑛 ∈ {1,… , 𝑁} do 

5: prune the 𝑝
1

𝑛 % smallest magnitude parameters, i.e., if 𝑊0[𝑖] is pruned, then 𝑚[𝑖] =

0 to get a revised 𝑚, and reset the rest of the weights to 𝑊0 

6: train 𝑓(𝑋;𝑚 ⨀ 𝑊0) to convergence 

7: end for 

8: return 𝑚 ∈ {0,1}|𝑊0|, 𝑊0 

 

Lines 4-6 represent IMP searching for a winning ticket. That is, a non-trivially sparse 

subnetwork 𝑓(𝑋;𝑚 ⨀ 𝑊0) capable of recovering the test accuracy of the original dense 

network. Such a winning ticket results from the local stability of ERM delivered by IMP which 

helps to localize the inductive risk on the dataset at hand as prescribed by MTI. However, 

with the increasing complexity of datasets and network architectures, the IMP search for 

winning tickets becomes challenging – the subnetworks can recover the test accuracy of the 

original dense network only at trivial levels5 of sparsity (Frankle et al. 2020a), threatening to 

bring back the No-Go results for ERM. This led to the introduction of the rewind operation 

(Algorithm 2) together with the instability analysis of lottery tickets, which identified the 

cause behind LTH failures in complex settings (ibid.). 

  

 
5 The measure of triviality is established by drawing from the original dense network a random subnetwork 
matching the IMP subnetwork’s accuracy (Frankle et al. 2020a). 
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Algorithm 2 – Rewind (Frankle et al. 2020a) 

Lines 1, 2, 4 are identical to Alg. 1; Line 3 – train for 𝑘 iterations to get 𝑊𝑘, see Alg. 1. 

5: train 𝑓(𝑋;𝑚 ⨀ 𝑊𝑘) to convergence (or for 𝑇 steps) 

6: prune the 𝑝
1

𝑛 % smallest magnitude parameters6, i.e., if 𝑊𝑘[𝑖] is pruned, then 

 𝑚[𝑖] = 0 to get a revised 𝑚, and rewind the rest of the weights to 𝑊𝑘 

7: end for 

8: return 𝑚 ∈ {0,1}|𝑊𝑘|, 𝑊𝑘 

 

The rewind on Line 6, which replaced the reset from Alg. 1, allows the algorithm to find 

sparse subnetworks matching the test accuracies of the original dense networks in complex 

settings where Alg. 1 fails. However, the sparsity level of the subnetworks will become non-

trivial only if they remain robust to SGD noise (caused by augmentations and shuffling of the 

dataset between training runs, random seeds, ibid.). Frankle et al.’s (2020a) instability 

analysis is based on training two copies of a network with parameters 𝑊𝑘
1, 𝑊𝑘

2 and two 

different samples of SGD noise to 𝑊𝑇
1, 𝑊𝑇

2 and determining if their training errors remain 

non-increasing (ibid.). The robustness to SGD noise is indicated by linear mode connectivity 

which occurs if there is a non-increasing path which connects the two minima resulting from 

training the pair of networks (ibid.). The aim is to find an iteration 𝑘 ≪ 𝑇 at which the 

network becomes robust to SGD noise because then, if its parameters are rewound to 𝑘 and 

an appropriate pruning mask 𝑚 is applied, the resulting IMP network 𝑓(𝑋;𝑚 ⨀ 𝑊𝑘) can 

match the test accuracy of the dense network at a non-trivial level of sparsity in large scale 

settings (ibid.). 

 
6 Alternatively, a fixed pruning ratio can be used, e.g., during each iteration, prune a 1 − 𝛼 fraction of the 
smallest magnitude, non-zero weights (Paul et al. 2023). In general, pruning can be based on scoring 
parameters (weights) – the absolute value approach is common, but there are alternatives, see Blalock et al. 
(2020). 
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The possibility to distinguish between matching and non-matching IMP subnetworks 

via instability analysis provides the necessary condition for the local stability. That is, the No-

Go results for ERM discussed in the previous section become blocked if the matching 

subnetworks, identified using MTI-satisfying IMP, are robust to SGD noise. The robustness 

guarantees a local risk minimization (i.e., the inductive risk localization in MTI terms) at non-

trivial levels of networks’ sparsity, which removes the requirement for ERM to be 

asymptotically stable for overparameterized networks. Hence, ERM is de-trivialized by 

removing its dependence on global uniformities that can no longer be used to guarantee 

convergence of �̂�𝑆(h) to 𝑅(h). 

We now formally link ERM’s local stability (and de-trivialization that blocks the No-

Go-ERM result) with the condition for the IMP’s success in finding matching subnetworks. 

Definition 5 of the IMP success in finding matching subnetworks. Let an 𝜖-linearly 

connected sublevel set (LCSS) of a network 𝑓(𝑋;𝑊) be the set of all weights 𝑊′ whose test 

error is 𝜖-close to 𝑊, ℰ(𝑊′) ≤ ℰ(𝑊) + 𝜖, and where 𝑊 and 𝑊′ are connected in the 

weight space by a line without error barriers, that is, are linearly mode connected (Paul et 

al. 2023, Def. 2.4). Further, let 𝑓(𝑋;𝑚 ⨀ 𝑊) be a matching sparse subnetwork if 

ℰ(𝑚 ⨀ 𝑊) ≤ ℰ(𝑊) + 𝜖 (Paul et al. 2023, Def. 2.2). At a round 𝑛, IMP finds a matching 

sparse subnetwork if the axial subspace defined by the pruning mask 𝑚𝑛+1 intersects the 

LCSS of 𝑊𝑛 because, then, rewinding the remaining weights to the step 𝑘 and training 

𝑓(𝑋;𝑚𝑛+1 ⨀ 𝑊𝑘) produces 𝑊𝑛+1 linearly connected to 𝑊𝑛 (Paul et al. 2023, Sect. 3.1). 

 

IMP does not find a matching subnetwork at a round 𝑛 if the sparsity level of the pruning 

mask prevents the axial subspace from intersecting the LCSS (see, for example, Paul et al. 

2023, Figure 3). The robustness of SGD to perturbations is still required, as in Frankle et al. 
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(2020a), but instead of testing linear mode connectivity between a pair of networks at single 

level of sparsity, Paul et al. (2023) is testing linear mode connectivity between subnetworks 

at successive levels of sparsity. ERM’s local stability is a feature of the geometry of the IMP 

error landscape which enables local convergence of �̂�𝑆(h) to 𝑅(h) on i.i.d. samples in sparse 

matching subnetworks identified by IMP inside overparameterized networks. 

There is one additional point regarding justification of the local convergence. Let ℋ 

be the hypothesis class expressible by an overparameterized neural network 𝑓. ERM can 

choose several ℎ ∈ ℋ hypotheses with the same test error, recall that each matching 

subnetwork achieves an 𝜖-close test error at a different level of sparsity. Since axial 

subspaces corresponding to pruning masks of increasing sparsity are nested (Paul et al. 

2023, Fig. 1), a pruning mask 𝑚𝑛 produced by IMP already contains a sparser mask 𝑚𝑛+1 

which can be used to train a matching subnetwork if the mask’s axial subspace intersects the 

LCSS. If we consider each matching subnetwork a hypothesis ℎ𝑖 ∈ ℋ with the same 

empirical predictions (the subnetworks’ test error is 𝜖-close to each other), the epistemic 

justification of local convergence can be improved by Schurz’s (2024, p. 262) ‘Strengthened 

Optimality Principle’ (SOP). Thanks to the i.i.d. assumption, ERM can find the optimal, that is, 

matching subnetworks, and since the axial subspaces defined by the pruning masks are 

nested, it is possible to use IMP to discard all but the last pruning mask whose axial subspace 

still intersects the LCSS and could be, thus, used to train the sparsest matching subnetwork. 

This characterization seems to fit SOP, which could give us a reason to believe that ERM de-

trivialized by IMP produces strongly optimal models7. 

Further results connected to the local stability include an exploration of the early 

phase training dynamics with IMP and the rewind algorithm (Frankle et al. 2020b), finding 

 
7 We are grateful to a referee for the journal for guiding us to focus on SOP. 
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details about networks’ non-robustness to weights manipulation, that reveals the early 

phase as crucial for winning/matching tickets performance (ibid.). Renda et al. (2020), by 

extending the rewind procedure to learning rates during training, established that not only 

weights rewinding outperforms network fine-tuning but also that rewinding of learning rate 

schedules combined with IMP can match or outperform Algorithm 2. This adds a new 

perspective on the factors contributing to the local stability. Frankle et al. (2021) assess 

methods attempting to prune networks at initialization, all of which currently underperform 

the lottery ticket rewinding, and investigate why the methods pruning at initialization fall 

short of IMP applied after training and what makes their purported justification suspect. 

 

Paper Result 

Frankle and Carbin 2019 LTH & Reset Algorithm (Alg. 1) 

Frankle, Dziugaite, Roy, and Carbin 2020 
Instability Analysis & Rewind Algorithm 

(Alg. 2) 

Frankle, Schwab, and Morcos 2020 
Early Phase Training Dynamics and its 

relation to LTH, considering Alg. 1 & 2 

Renda, Frankle, and Carbin 2020 

Comparison of Rewind Alg., including 

Learning Rate Schedules Rewinding, and 

Network Fine-Tuning 

Frankle, Dziugaite, Roy, and Carbin 2021 
Critical Investigation of Pruning at 

Initialization  

Paul, Chen, Larsen, Frankle, Ganguli and 

Dziugaite 2023 

What is Encoded in Pruning Masks? 
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Morcos, Yu, Paganini, and Tian 2019 Transferability of Winning Tickets 

Yu, Edunov, Tian, and Morcos 2020 
Winning Tickets for Reinforcement Learning 

and Natural Language Processing 

Chen, Frankle, Chang, Liu, Zhang, Carbin, 

and Wang 2021 

Matching Subnetworks in Pre-Trained 

Computer Vision Models, using Supervised 

and Self-Supervised Pre-Training 

Chen, Frankle, Chang, Liu, Zhang, Wang, 

and Carbin 2020 

Matching Subnetworks in Pre-Trained 

Language Models 

Table 1: An overview of recent LTH results 

Under MTI, the strengths of ERM’s inductive support derive from instability analysis within 

the LTH framework. It is natural to ask about empirical characteristics of winning/matching 

tickets in different contexts. Morcos et al. (2019) investigated the transferability of tickets 

found using a particular training setup, i.e., a dataset and an optimizer, to other settings. It 

was established that if the network topology, the empirical domain (natural images 

[standard benchmark datasets]), and the task to be performed on this domain (object 

classification) remain fixed, then the tickets identified using one setup can achieve similar 

performance in different training setups, i.e., datasets and optimizers, hence achieving 

transferability which improves with the dataset size (ibid.). A locally stable empirical risk 

minimization helps to learn transferable inductive biases that, as per MTI, remain conducive 

to good generalization performance as long as the facts in local domains remain stable and 

allow transferability. 

Apart from supervised learning on the domain of natural images, Yu et al. (2020) 

established that it is possible to find winning tickets, performing similarly as their dense 
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antecedents, also for neural network architectures used in natural language processing and 

reinforcement learning, providing evidence that LTH applies beyond the original empirical 

setting of Frankle and Carbin (2019) or Frankle et al. (2020a). Importantly, Chen et al. (2021) 

discovered that large computer vision networks, pretrained via supervised or self-supervised 

learning, contain subnetworks transferable to downstream tasks, such as classification or 

segmentation, that can match the accuracy of the networks using unpruned pre-trained 

weights. This second kind of transferability again shows that if the facts in local domains 

remain stable enough, MTI can be used to explain and justify the local stability of ERM. 

Finally, Chen et al. (2020) made a similar observation concerning matching subnetworks and 

pre-trained language models, also discerning the factors that limit the downstream 

transferability of the former. 

In sum, instead of relying on global uniformities, such as simplicity or compression, 

the combination of MTI and LTH suggests that ERM can become locally stable if the following 

conditions are met. An overparameterized network, a training/testing dataset, and an 

algorithm, such as Alg. 1 or 2, able to identify winning or matching subnetworks 

(respectively) that localize the inductive risk (refer to comments on Alg. 1 and 2 and to 

Definition 5 of matching subnetworks provided above for precise information on the 

identification process). Additionally, for �̂�𝑆(h) to converge to 𝑅(h), it is required that 𝑆 ∼

𝒟𝑚  consists of i.i.d. instances 𝑧1, … , 𝑧𝑚 ∈ 𝒵 drawn from a fixed distribution 𝒟 as prescribed 

by Statistical Learning Theory (Vapnik 1999, p. 988). The same requirement applies to any 

subsequent (testing or deployment-time) samples. Otherwise, it can no longer be 

epistemically justified that the inductive risk is localized. This represents a strong inductive 

inference on data uniformity past existing observations, which can be also identified at the 

core of MTI as the required stability of local facts. Local facts underpin instance domains as 
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well as the probability distributions over them. What is to be done if the inference on 

uniformity cannot be reasonably justified and both the asymptotic and local stability of ERM 

as an inductive rule will become violated? The management of inductive risk has to be taken 

over by multiple-favorite meta-induction over candidate models inspired by online learning 

with expert advice (Schurz 2008; 2019). Here, instead of expecting minimization of inductive 

risk based on predictions about data uniformity, candidate models are assigned weights 

according to their past predictive success and the optimality of multiple-favorite meta-

induction maintains the justification for model selection at each time step without 

presupposing anything about the data distribution. The relation of Norton’s MTI to higher-

order accounts of induction, which should be applied if the inference on the uniformity 

failed (for the sake of sustaining optimal epistemic justifications [Schurz 2022; 2024]), was 

established by Schurz and Thorn (2020) and its machine learning implications developed by 

Spelda and Stritecky (2021). 

In sum, the inductive support for ERM inferred from uniform convergence, originally 

depending on the asymptotic stability of ERM, can be secured by a localization. The 

winning/matching subnetworks localize inductive risk, and even contain transferable 

inductive biases based on local facts, thus validating MTI under the LTH framework. 

6. Conclusion 

Any bound on the generalization error of a neural network indicates the strength of 

inductive support for ERM. The bound needs to stable and non-trivial to guarantee the 

ERM’s asymptotic stability and uniform convergence that epistemically justifies the resulting 

generalization. If the inductive support becomes insufficient because the bound does not 

allow an inductive inference to uniform convergence, ERM cannot avoid the No-Go results. 
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In that case, the asymptotic stability needs to be replaced with a local stability. It was shown 

that ERM will not become a stable local inductive rule by relying on the networks’ simplicity 

alone. The networks’ weights at or relatively close to initialization play a significant role in 

supporting the ERM’s local stability as well. This reveals two things. First, iterative magnitude 

pruning is epistemically justified because it localizes the inductive risk in line with MTI. That 

is, without global uniformities for which it is impossible to find a complete inductive support 

free of circularity. Second, according to LTH experiments, the localization and the ERM’s 

stability depends on ‘lucky’ weights of winning/matching subnetworks at or relatively close 

to initialization. The connection between sparsity and luck, together with a growing interest 

in robust complexity measures for modern neural networks, suggests that the investigation 

of generalization in artificial neural networks evolves in a direction which can benefit from 

the ongoing epistemological study of inductive inference. 
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