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ABSTRACT 

The paper proposes a synthesis between human scientists and artificial representation 

learning models as a way of augmenting epistemic warrants of realist theories against 

various anti-realist attempts. Towards this end, the paper fleshes out unconceived 

alternatives not as a critique of scientific realism but rather a reinforcement, as it rejects the 

retrospective interpretations of scientific progress, which brought about the problem of 

alternatives in the first place. By utilising adversarial machine learning, the synthesis 

explores possibility spaces of available evidence for unconceived alternatives providing 

modal knowledge of what is possible therein. As a result, the epistemic warrant of 

synthesised realist theories should emerge bolstered as the underdetermination by 

available evidence gets reduced. While shifting the realist commitment away from 

theoretical artefacts towards modalities of the possibility spaces, the synthesis comes out as 

a kind of perspectival modelling. 
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1. Introduction 

Perhaps an equally relevant question could run as follows. What can artificial intelligence do 

to scientific realism? Admittedly, this latter one carries a certain adversarial sentiment, or 

even maybe an intent, to mount yet another attack showing what is wrong with scientific 

realism in either the epistemological, semantic, or metaphysical dimension (cf. Chakravartty, 

2017a). On the contrary, this paper intends to offer an answer to a very tangible argument 

against scientific realism and turn it, with an assistance of artificial intelligence, into an 

argument supporting the epistemic warrant of scientific realism. The defence against the 

counterargument comprising the case of the present paper will not entail vague prospects 

considering artificial intelligence a universal solution to every conceivable problem. 

Therefore, the paper proposes an engagement at a level allowing for applications of specific 

artificial representation learning models towards building a more resilient foundation for 

the epistemic warrants of realist scientific theories. In this regard, the paper aims at the 

issue of underdetermination of scientific theories and the related matter of unconceived 

alternatives together constituting the analysed argument against scientific realism. 

In a broader sense, the paper intends to contribute to the debate on computational 

methods acting as epistemic enhancers that extend the natural inferential abilities of human 

scientists (cf. Humphreys 2004; 2011; 2020). In his pioneering analysis, Humphreys (2004) 

showed a way in which we can reason about computational science, emphasising that the 

hybrid epistemic regime, combining human and machine elements, signals the rise of a new 

kind of epistemology. A major concern associated with computational methods lies in their 

epistemic opacity, manifested as representational opacity in the case of machine learning 

models, challenging their low-level understanding by humans (Humphreys 2020). With 
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growing generalisation capabilities of the state-of-the-art models, this is in no way surprising 

and does not prevent the hybridisation of science from going forward, as suggested by 

recent developments in several fields (cf. Radovic et al., 2018; Carleo et al., 2019). Yet the 

hybrid epistemic regime, synthesising the results of human and machine learning, affords 

new perspectives on long standing disputes in general philosophy of science, such as the 

debate between scientific realism and its challengers (e.g. Wray 2018). The paper uses this 

opportunity to put forward a different view on Stanford’s unconceived alternatives, which 

shows a way of reversing their effects on realist theories by extending human inferential 

abilities with adversarial machine learning. 

Towards this goal, the argument proceeds in the following manner. First, the paper specifies 

which kinds of underdetermination, and thus of unconceived alternatives, are amenable to 

the proposed synthesis between human scientists and artificial representation learning 

models. Second, instead of conceiving unconceived alternatives through retrospective 

interpretations of the scientific progress, the paper proposes a counterintuitive move, 

conceiving unconceived alternatives as the results of exploring possibility spaces of available 

evidence by utilising artificial representation learning. Third, the paper argues that 

adversarial machine learning produces samples from the left out regions of the possibility 

spaces thus yielding modal knowledge regarding what is possible therein. Finally, by 

consulting nascent applications in astrophysics, cosmology, and high energy physics, the 

paper relates the argument to a recently proposed program of perspectival modelling 

(Massimi, 2018). 
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2. Underdetermination of Scientific Theories and the Problem of 

Unconceived Alternatives 

Then, in consequence of the offered introduction, the following narrowing of the subject 

matter is due. In regard to the phenomenon of underdetermination, we will mostly refrain 

from any comments concerning its holist version as developed by Quine and later subsumed 

under the umbrella of the Duhem-Quine thesis (Quine, 1951, pp. 39-43). Since our proposal 

consists of a practical amendment to the process of theory building, so as to bolster the 

resulting epistemic warrants, it would still be susceptible to holist underdetermination. The 

reason for this lies in the nature of the amendment. It is designed to face the 

underdetermination by evidence bringing about a set of contending theories equally 

supported by the available observations inputting a process of theory building. Then, in the 

case of holist underdetermination occurring within the context of the totality of our 

knowledge, this amendment remains indeed toothless. In selecting among possible revisions 

of an existing theory facing recalcitrant experience, it won't be able to help because holist 

underdetermination invites chain re-evaluations of the respective total system of beliefs 

(Quine, 1951, pp. 39-40). It thus goes beyond of what Quine later (1970; 1975) considered 

to be the case of empirical underdetermination by all possible evidence yielding infinitely 

many observation conditionals because his argument for the holist case, however naturally 

related, implies also a prospect of revising the rules comprising the scientific method itself. 

As Stanford (2017) defends this position against attempts to constrain its pertinence (cf. 

Laudan, 1990), he argues that the possibility of revision applies not only to ampliative rules 

of the scientific method but to deductive principles as well. Although this radical version of 
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holist underdetermination remains contentious and outside of the amendment’s scope, we 

will use its properties to further delineate the make-up of our proposal. 

The core of the proposal consists in revising the ampliative rules of the scientific method in 

order to address the case of underdetermination by available evidence. The amendment is 

not intended to resolve the case of empirical equivalents; that is distinct theories with 

identical empirical consequences (either arising by the natural progress of the scientific 

endeavour, as in van Fraassen, 1980, or constructed artificially with the intention to show 

invariability in finding the equivalents as in Kukla, 1996). Our proposal aims at an arguably 

more severe case. It comprises the theories which, while integrating all the available 

evidence, predict different yet to be observed phenomena. We consider this latter case 

more serious because it affects not only scientific realism but also the supposed solution of 

the equivalents stalemate in terms of empirical adequacy proposed by constructive 

empiricism (van Fraassen, 1980, pp. 11-12). From this perspective, a theory remains safe as 

long as we know the alternative accounts beforehand or know the future theories would be 

exclusively empirical equivalents. Only then one can, based on some voluntary epistemic 

attitude, attribute empirical adequacy accordingly. This clarity begins to deteriorate if we 

concede that there is a pool of yet to be conceived theories whose nature as well as volume 

is presently unknown, however, congruent with the available evidence (cf. Stanford, 2006). 

As Stanford suggests, the progression of science should be thus considered a history of 

displacement of the status quo theories by unconceived alternatives equally well confirmed 

by the then available evidence (ibid.). By offering a historical account of the displacement, 

the argument is construed as recurrent, supposedly affecting the present as well the future 

of the scientific endeavour (Stanford, 2006, pp. 17-18). The epistemic warrant of a theory, 



   
 

 6  
 

regardless of whether aiming at truth or empirical adequacy, then shifts to a mere 

instrumentality of achieving some practical predictive goals (cf. Stanford, 2006, pp. 24-25). 

Not unlike the previous attempts, this anti-realist position gains its viability by interpreting 

the past of the scientific endeavour, which permits it to make assertions about the future. It 

thus lends itself to direct counterarguments building on the deficiencies of the selected 

interpretation (for Stanford’s New Induction f.e. Saatsi, 2015; Mizrahi, 2016; Mizrahi, 2017). 

Various claims about selectivity and/or overreaching of the interpretation then lead to a 

conclusion that the unconceived alternatives do not affect the scientific endeavour 

indiscriminately (f.e. Magnus, 2010 for an argument about the limited impact of 

unconceived alternatives due to the equally limited use of the affected eliminative 

inferences in theory building). Realists responded by reconsidering the epistemic attitude 

towards unobservables that would enable a more discerning selectivity or minimalism in 

their commitments (Chakravartty, 2017b; Saatsi, 2015 respectively). Such a shift in the 

program’s core should better delineate the epistemic warrant of realist theories making the 

program less of a catch-all strawman for the rivals to wield freely. Stratifying the 

commitment to unobservables according to some rule (f.e. principled continuity in terms of 

causally efficacious properties as in Chakravartty, 2008 or Egg, 2014) should then safeguard 

realism against the unconceived alternatives. As some minimal core of a theory, to which 

realists ascribe the highest degree of belief, latches onto the reality firmly enough, even the 

unconceived alternatives falsifying most of the landscape would leave the core and scientific 

realism itself unshaken (cf. Chakravartty, 2008; Saatsi, 2015). 
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3. Reversing the Dynamics: Probing the Unconceived 

In sum, with respect to unconceived alternatives a realist can assume that "What you don’t 

know can’t hurt you; what matters is how we assess what we think we know now" 

(Chakravartty, 2008, pp. 157-158). The suggested solution towards the content of even our 

best theories consists in a selective commitment superseding the indefensible global 

position (Chakravartty, 2017b, p. 3391). Facing the challenge of unconceived alternatives, 

the adoption of this strategy, however prudent, represents a retreat. By this we don’t mean 

one clearing out the field for anti-realist claiming because the selectivity in commitment 

opens a way for peaceful cohabitations. The retreat lies in the assessment of what realists 

assume they don't know, or more precisely of what they are unsure of to the point of 

withdrawing the commitment to it. Swapping the global position for many selective ones, 

while dismissing unconceived alternatives, narrows the resulting theories’ epistemic 

warrants. As the present and future theories should share an approximately true core, 

scientific realism prescribes parsimony in theoretical commitments, which translates into 

narrowing of the epistemic warrants. Such a discerning establishes the continuous 

predictive success of science and the ‘No Miracles Argument’ as its explanation in terms of 

scientific realism itself (cf. Putnam, 1975, p. 73). However, if a theory should latch onto the 

reality firmly enough, maintaining a steady predictive success, it has to be unique in the 

sense that the appearance of unconceived alternatives remains improbable, or even better 

impossible. Leaving the global position for selective commitments represents one way of 

delivering such uniqueness. Adopting this strategy introduces a subtle tension to the theory 

building process. Discerning a genuine parsimony in commitment is necessary for securing 

the theory’s steady predictive success. Following this strategy further, an additional 
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selectivity in commitment in order to avoid unconceived alternatives could place the theory 

uncomfortably close to the edge of artificial parsimony. As long as uniqueness and the 

steady predictive success remain tied together without assessing the underdetermination 

by unconceived alternatives, the tension could push the theories towards artificial 

parsimony skewing the resulting epistemic warrants. Without a way to assess theories’ 

exposure to the underdetermination by unconceived alternatives, the narrowing of the 

commitments becomes a rational strategy of theory building. The risk of artificial parsimony 

could then enter the picture permanently. One way such an outcome might actualise is if 

the ‘No Miracles Argument’ in terms of scientific realism remains the supposed cause of the 

predictive success of science without considering a framework assessing its exposure to 

unconceived alternatives (cf. Dawid, 2013, pp. 172-173). 

Pointing out the risk of artificial parsimony is only a part of the picture, as a strong 

counterargument will always entail the fall-back to a sort of causal realism (cf. Psillos, 1999, 

Chapter 12; Egg, 2014), justifying the selectivity possibly approaching artificial parsimony. 

There is, however, also the second part because, as Stanford observes, the failure to 

conceive alternatives concerns the theory building processes as enacted by human scientists 

(2006). Admitting this observation suggests that any case of underdetermination by 

unconceived alternatives emerges within some framework of ampliative rules comprising a 

particular model of the scientific method (cf. Dawid, 2013, p. 60). It might be further argued 

that any set of ampliative rules represents a systemic elaboration of human cognitive 

defaults. Considering this situation from the anthropocentric perspective, there are at any 

given time alternatives which cannot be conceived due to the underdetermination of 

scientific method by human cognitive defaults. If it was the case that we had no way of 

weakening the influence of our cognitive defaults on the ‘ladder’ of underdetermination 
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(from ampliative rules to unconceived alternatives), then selectivity in theoretical 

commitments would prevail as the only meaningful strategy. However, assuming the 

feasibility of a generative process which, while learning the available evidence, could 

produce phenomena unconceived within anthropocentric frameworks, an opportunity would 

emerge permitting to probe the possibility spaces. Stemming from other than human 

cognitive defaults, such a process would have a potential to reverse the impact of 

unconceived alternatives on the realist theory building enterprise. Instead of being pushed 

into selectivity by the past flaws of exploring the possibility spaces, an expansion or a 

further selectivity in commitment would become a deliberate choice informed by the ability 

to search for the unconceived phenomena at the theory forming stage. Unconceived 

alternatives, in the anthropocentric sense inaccessible due to human cognitive defaults, 

would be made scrutable depending on the type of applied alternatives generating 

processes. By consulting the produced alternative phenomena with a human conception of 

the corresponding possibility space, epistemic warrants would emerge consolidated, 

achieving a lesser degree of underdetermination by the available evidence. The resulting 

theoretical commitments, as well as the epistemic warrants, would reflect a synthesis of the 

generated alternative phenomena with human representations that emerges from an 

enhanced understanding of the possibility space from which originates the available 

evidence. Augmenting the set of ampliative rules in this way would then remake a portion of 

the total of unconceived alternatives into an opportunity, one reversing the retreat 

following selectivity into a possibility of theoretical commitments’ expansion. They would 

latch onto the reality more firmly, since by accounting for an additional part of the 

possibility space, the decreases in underdetermination of the resulting theories would 

acquire a more distance from the edge of artificial parsimony. 
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4. Synthesising Between Human Scientists and Artificial Representation 

Learning Models 

In a nutshell, this is what can artificial intelligence do for scientific realism. By introducing 

other than human cognitive defaults, and with them also different modalities of probing the 

possibility spaces, synthesising between human scientists and artificial representation 

learning models could decrease the level of underdetermination by available evidence. 

Producing by other means phenomena which we are unable to conceive when confronted 

with the available evidence affords a transformation of the alternatives beyond their anti-

realist interpretation. If we were able to achieve the synthesis, it would overturn the 

reductive perception of unconceived and instead accomplish solidifying of the epistemic 

warrants of realist theories against the very threat of unconceived alternatives. The 

feasibility of enhancing ampliative rules by such a synthesis co-founding generative process 

depends on whether there are artificial representation learning models with the desired 

properties. 

The key desired property is a control over empirical underdetermination of the model 

contributing to the synthesis. As a result of aiming at unconceived alternatives, the synthesis 

will remain underdetermined by the following choices. First, it will be susceptible to what 

Quine considered indeterminacy of translation (1970), as only one part of the dyad, in the 

present case a human scientist, weaves both veins of the conceived phenomena into a 

single theory. Having a precise control over empirical underdetermination of the artificial 

model, in Quine’s terms having the ability to fix its (foreigner’s) observational sentences (cf. 

1970, pp. 179-180), doesn’t rule out that there are several ways of combining both veins of 

knowledge into a coherent theory. The second choice causing underdetermination of the 
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synthesis consists in the architecture and settings of the applied artificial representation 

learning model. A proper choice from the joint parameter space of models’ architectures 

and their settings determines the key desired property, the control over models’ empirical 

underdetermination. 

As to the indeterminacy of translation, unless we abandon the notion of synthesis for 

autonomous computational discovery of knowledge producing full-fledged scientific 

theories, it will persist to cause underdetermination of the theory building. (Semi-) 

autonomous computational discovery of scientific knowledge was historically considered 

the avenue which would lead to artificial intelligence revolutionising the scientific 

endeavour and its philosophy alike (f.e. Gillies, 1996; Thagard, 1988). At first, the then 

computational state of the art merely sufficed to experimental rediscoveries of historical 

results, later leading to what can be considered novel, i.e. publishable, discoveries (Langley, 

2000). However, as far as concerning the probing of possibility spaces for unconceived 

phenomena by artificial means, it is contentious whether the field of (semi-) autonomous 

computational discovery might contribute in any substantial way. Although professing a 

human-computer cooperation as well, which might be assumed for another kind of 

synthesis, its cornerstone consists of casting knowledge in terms of anthropocentric 

formalisms typical in individual disciplines (Džeroski et al., 2007). Combined with the initial 

emphasis on rediscovering the theories conceived by human scientists in the past, the 

methodological frameworks tend chiefly toward human cognitive defaults. Augmenting the 

theory building by computational processes necessitating the communication of knowledge 

in pre-established theoretical terms renders it impractical towards the issue of 

underdetermination by unconceived alternatives. 
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This deficiency was already identified by Alai (2004) while discussing the issues which 

disqualify earlier attempts, including the approach of Simon’s group and work done in 

‘Turing’ tradition, from making genuine discoveries. Concerned with the kind of scientific 

discoveries that encourage realism, Alai considers the (computational) processes of 

induction, as proposed by Holland et al. (1986), the only viable option due to their natural 

alignment with the model-based representation of reality benefiting realism (Alai, 2004). 

Although the present-day machine learning models still do not satisfy Alai’s requirements 

for autonomous discovery, i.e. unaided goal discovery and model building in the human 

sense (cf. Alai, 2004, pp. 34-37), thanks to advances in Deep Learning we made significant 

progress in the end-to-end generalisation learning (cf. LeCun et al., 2015). The proposed 

synthesis between human and machine learning shows that extending human conceivability 

by samples from the left out regions of possibility spaces of available evidence essentially 

enriches realist theories. Finding new ways to generalise about evidence, while decreasing 

human involvement in the process (end-to-end machine learning), offers a reinforcement to 

realism even if we cannot rely on full-blown autonomous discovery machines. The hybrid 

epistemic regime of human-machine learning also agrees with the recently proposed 

functional novelty of predictions (Alai 2014), showing that despite the discovery machines 

as conceived by Holland et al. (1986) and Alai (2004) have not arrived yet, scientific realism 

can make use of the existing adversarial machine learning to pre-empt unconceived 

alternatives. 

Returning back to the issue of pre-established anthropocentric formalisms, it is the 

supposed black-box character of artificial representational learning, i.e. of machine learning 

and Deep Learning currently in particular, which makes it less appealing to scientists 

preferring clear- or grey-box modelling of the traditional automated discovery systems (cf. 
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Stolle and Bradley, 2007). Although such a reservation has its merits in general settings, in 

the context of exploring possibility spaces represents a missed opportunity to reconsider the 

unconceived alternatives’ reductive interpretation3. Admittedly, there are endemic 

concerns over the interpretation of the state-of-the-art Deep Learning models, as their 

complexity interferes with building a precise theoretical picture of their inner workings (cf. 

Zhang et al., 2017). Acknowledging this nature of contemporary artificial representation 

learning, however, doesn’t impede its application towards probing the possibility spaces for 

unconceived phenomena. As the difficulties of interpretation make its integration into the 

anthropocentric frameworks of automated discovery harder, the viability of the proposed 

synthesis depends merely on an efficacious control over empirical underdetermination of 

the contributing model. 

In sum, regarding theory building processes, the synthesis between human scientists and 

artificial representation learning models should deliver the following. Given a possibility 

space from which originates the available evidence, a generative process, while learning the 

probability distribution underlying this space, samples phenomena unconceived by human 

scientists dealing with the evidence. Accounting for these phenomena in the constructed 

theory should lessen underdetermination of the result by so far unconceived theories. As 

the possibility space of available evidence becomes better mapped, the synthesis raises 

confidence in the resulting theory, making it less prone to underdetermination by 

unconceived alternatives. In other words, the subsequent emergence of a different theory 

 
3 It’s also perhaps a bit unfortunate that contemporary reviews of automated discovery adhere to somewhat 

dated typologies of artificial intelligence applications within science (f.e. Giza, 2017). Reflecting for the most 

part earlier results entirely omits recent successes delivered by Deep Learning, while underappreciating the 

influence of artificial representation learning on science in general (cf. ibid.). 
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fitting the available evidence while predicting novel phenomena becomes less probable. A 

part of the synthesised theory’s predictive success would then derive from the epistemic 

warrant whose realist nature gets bolstered by incorporating the phenomena sampled from 

regions of the possibility space left out by human scientists. 

4.1 Acquiring Material for the Synthesis: Sampling from the Possibility Space 

of Available Evidence 

Crucial for the success of the synthesis is that the generative process sampling from a 

possibility space can be tuned to explore its truly left out regions. It is not an entirely 

straightforward task, as the model (generative process) learning to generate phenomena 

from the possibility space easily slides to sampling from an incorrect probability distribution 

mistaking it for the one truly generating the observational evidence. Although the available 

evidence represents merely a finite sample from the true distribution, its approximation 

learnt by the model needs to evade empirical underdetermination as much as possible. 

Otherwise, generating from an inadequately fitted model, failing to approximate the 

evidence producing distribution, ceases to explore the possibility space in a useful way. 

Achieving a good approximation is difficult, since apart from synthetic evidential data, we 

don’t know the true distribution, and it is the point of the theory to hypothesise about it so 

as to reliably account for yet to be observed phenomena. Maintaining an efficacious control 

over the model’s empirical underdetermination is necessary to avoid sampling phenomena 

vindicating underdetermination of the synthesised theory. Essential to such an end is the 

ability to recognise an underdetermined generative model. As the artificial part of the 

synthesis aims at the left out regions, it is vital to identify which kind of the produced 
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phenomena doesn’t originate from them, since their presence implies an underdetermined 

generative model. 

A generative model fails at sampling from the left out regions of a possibility space if it 

merely recreates the phenomena comprising the available evidence. In such a case, this 

behaviour can be considered an extremum producing biased low variance samples 

converging in faithfulness on the original observational evidence. In some settings, such as 

learning the most salient features of the available evidence, it constitutes a sound strategy, 

as it reliably produces faithful recreations while lowering the complexity of the learnt 

representations (f.e. Kingma and Welling, 2014). However, as a method of acquiring 

material for the synthesis, which accounts for the phenomena from the left out regions, it 

comprises a self-defeating option. Without a way of assessing to what degree the samples’ 

fidelity approaches a recreation of the evidence, the synthesis would most likely yield 

further instances of empirically equivalent theories. In this sense, the generative model 

needs to correctly step beyond the available evidence to capture modalities underlying the 

possibility space thus acquiring the ability to sample unconceived phenomena from its left 

out regions. Put differently, the model must attempt to learn an approximation of the true 

distribution generating both the observational evidence as well as any phenomena 

congruent with the modalities determining the respective possibility space. A vital 

component establishing fruitful syntheses, and also the most formidable puzzle, consists in 

pushing the generative model beyond the fidelity of recreations towards high diversity 

samples while learning from a merely finite set of observational evidence. 

A possible path leading beyond synthesising empirical equivalents entails arranging the 

artificial representation learning model in an adversarial manner. Traditionally, an artificial 
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representation learning model consists of a parameter set obtained by minimising a cost 

function capturing some learning objective (cf. Goodfellow et al., 2016, pp. 149-150). Such a 

set-up doesn’t offer a straightforward solution to the puzzle of how to push the generative 

model to sample phenomena from the left out regions of a possibility space. To this end, it 

has been recently suggested that a viable strategy of acquiring samples from an 

approximation of the true distribution incorporating the left out regions involves the notion 

of adversarial learning. In its simplest form, the process of generating unconceived 

phenomena, i.e. samples from the left out regions, stems from an adversarial interaction 

between two players in terms of a minimax game (Goodfellow et al., 2014). Considering 

such a setting, each player conceived as a representation learning model attempts to 

minimise its cost function entailing both parameter sets while having a direct control only 

over its own parameters (ibid.). Theoretically, finding a Nash equilibrium of this zero-sum 

game during training of the model induces minimisation of the divergence between a learnt 

distribution and the true data generating distribution underlying the possibility space (cf. 

Goodfellow et al., 2014; Fedus et al., 2018). 

In practice, implementing such a design are two Deep Learning models, i.e. artificial neural 

networks, forming a generative adversarial model comprised of a generator and 

discriminator network assuming the role of competing adversaries (Goodfellow et al., 2014). 

The adversarial learning of the distribution approximating parameters proceeds by 

introducing the generator network to a vector of random noise which it transforms into a 

sample supposedly coming from the same distribution as the observational evidence 

(Goodfellow et al., 2014). The sample gets in turn scrutinised by the discriminator network 

estimating the probability that it originates from the generator rather than from the 

observational evidence (Goodfellow et al., 2014). As the game develops, the discriminator 
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improves its ability to distinguish between the artificially created and observed samples, 

while the generator produces increasingly convincing novel phenomena as its 

approximation of the distribution improves by further interacting with its foe, the 

discriminator. The game continues until the discriminator can no longer correctly decide the 

origin of incoming samples. Reaching this state, the generator thus fools the discriminator 

into believing that its samples come from the observational evidence rather than from its 

approximation of the true distribution underlying the corresponding possibility space. In 

such an adversarial scenario conceived as a minimax game, the generator therefore 

iteratively minimises the probability of the discriminator correctly classifying the incoming 

samples, thus supposedly converging towards the theoretical equilibrium4. 

4.2 Underfitting of Adversarial Learning Models: Yet Another Case of 

Underdetermination 

If carried out correctly, adversarial learning might assist in accessing the left out regions of 

possibility spaces so far accessible merely through narrow vistas of the presently available 

evidence. Furthermore, if such a generative model develops at least an approximately 

correct account of the underlying distribution, it would open a way for synthesising theories 

better withstanding the anti-realist charges referring to unconceived alternatives. In this 

 
4 As Goodfellow notes, since the players are neural networks, and their parameters acquired by back-

propagation of error, heuristically, to secure a non-vanishing gradient it is better to consider the generator as 

maximising the probability of the discriminator being mistaken (Goodfellow et al., 2014). This slightly changes 

the nature of the game, since it can no longer be described in terms of a single value function (ibid.). Although 

this represents a shift from describing the scenario in terms of a minimax game, it doesn’t lessen the game’s 

relevance towards the theoretical analysis of adversarial artificial representation learning. 
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respect, the yield is twofold. First, as the generator produces samples comprising the left 

out regions, it compensates for human cognitive defaults by introducing different modalities 

of probing the corresponding possibility space. Second, building on this newly gained 

exploratory capability, the synthesis also achieves a new level of understanding of the 

modalities determining what is possible within that particular space. As a result, acquiring at 

least an approximate awareness of the left out regions and the phenomena therein provides 

an opportunity to conceive theories less prone to the underdetermination caused by 

unconceived phenomena supported by the available evidence, however, disagreeing with 

the state-of-the-art theories. A part of the realist commitment could be thus invested into 

the way of getting a more comprehensive picture of the possibility spaces by sampling from 

artificially learnt approximations of the underlying probability distributions. In other words, 

in a bid to compensate for human cognitive defaults, a fragment of the commitment could 

be taken and deposited not within theoretical artefacts or acquired modalities of the 

possibility spaces but in a different approach of exploring what lies in the neighbourhood of 

available observations as delivered, for instance, by adversarial representation learning. 

In theory, then, replacing a single cost function with a collection leads to novel insights 

regarding the learning objective, as such a generative model constitutes a system of 

adversaries bound to compete while being exposed to observational evidence. Despite a 

seemingly straightforward exchange between game theory and representation learning, the 

benefits pushing the acquired samples beyond recreations should be considered the game’s 

side effects. Since the properties of the counterparts’ interaction resemble almost an 

Escherian strange loop, the discriminator shaping the generator which, feeding its results 

back, attempts to change the discriminator’s conception of observed and generated, it is 

necessary to watch out for signs of the model’s empirical underdetermination. 
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In the machine learning context, the most pertinent kind of empirical underdetermination 

corresponds to the notion of underfitting. It occurs if a learning model, arranged according 

to a certain architecture possessing a fixed representational capacity, fails to correctly 

account for the entirety of the structural pattern entailed in the data which serve as the 

model’s training input. In other words, the underfitted model fails to recover the true data 

generating distribution and instead obtains a bogus approximation that can account for only 

an arbitrary portion of the data (cf. Goodfellow et al., 2014, pp. 108-110). Such a model then 

cannot reliably generalise beyond the training input, as it failed to learn a close enough 

approximation of the underlying distribution. A generative model, which is not specifically 

designed to produce recreations, underfits the modalities of a possibility space when the 

majority of its samples manifest a low diversity gravitating towards recreations of the 

observational evidence and/or self-repetition. With respect to the adversarial learning of 

the underlying distribution, such a model suffers from mode collapses/drops stemming from 

a failure to reach the equilibrium at which the generator learns and sustains all the 

distribution’s modes implied within the available evidence (cf. Arora et al., 2017; 2018). 

Such an underfitted generative model thus cannot reliably generalise beyond the evidence, 

which hampers its sustained production of highly diverse samples coming from all the left 

out regions of the respective possibility space (cf. ibid.). 

Besides theoretical analyses, in empirical settings, as the process of reaching the equilibrium 

remains a side effect of an adversarial exchange, a certain degree of mode collapse, and 

thus of the model’s underfitting, is always present. Considering the landscape of artificial 

representation learning in general, there aren’t yet any practical methods offering universal 

guarantees of the optimal generalisation performance regarding arbitrarily large and 

complex empirical datasets. Facing real world observational evidence, the model is thus 
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expected to learn an approximation of the distribution which, however subject to a degree 

of underdetermination, proves instrumental for solving the task at hand5. Since mode 

collapses and/or drops are never total, permitting the model to consistently reach a degree 

of generalisation, it is always possible to obtain samples from some of the left out regions. 

Further experimentation with different initialisations, architectural patterns or 

representational capacity of the model’s components, in the present case of the two 

competing neural networks, then yields samples from other left out regions. In other words, 

it is nearly impossible to acquire a complete map of the possibility space at one go if it 

pertains to non-trivial observational evidence. Instead, the process is considered 

exploratory, gradually informing the theoretical synthesis through incoming samples, itself 

driven by an adversarial exchange pushing the model towards novel insights. If by then, as a 

group, the instances of the model successfully achieve generalisation regarding the existing 

evidence, theories resulting from the synthesis gain resistance against unconceived 

alternatives. Crucially, this occurs even without a retreat of theoretical commitments to 

what is possibly artificial parsimony, since at worst the samples from the left out regions 

corroborate the state-of-the-art theories. Conversely, at best, the commitment might be 

advanced, as the samples contribute to ruling out yet to be conceived theories predicting 

phenomena which would become incongruous with the state-of-the-art theories. Both gains 

 
5 The model can get also stranded in an overfitted state, arising from what is usually described as 

memorisation of the training data (observational evidence), likewise hampering its capability to generalise 

beyond the evidence. However, as it is underfitting which mostly imperils the current generative adversarial 

models, and the subject at hand comprises mainly underdetermination, a discussion of overfitting would 

diverge from the goal of the paper. 
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would derive from epistemic warrants building on the increased confidence in what is 

possible considering the recovered modalities of the respective possibility space. 

4.3 Limits of Software Intensive Science 

Even though adversarial machine learning can offer a window into the left out regions of 

possibility spaces, apart from suffering mode collapses and/or mode drops, which cause it 

to underfit the evidence, it is also subject to constraints associated with software intensive 

science (cf. Symons and Horner, 2014; Symons and Horner, 2017; Symons and Horner, 

2019). Arguably, finite knowers will exploit every opportunity to extend their cognitive 

reach. The proposed synthesis between human and machine learning expands available 

evidence by samples from the left out regions of possibility spaces. Evidence expanding 

inductive inferences provided by machine learning change the nature of human cognitive 

finitude. Machine learning-based ampliative inferences produce unconceived facts which we 

have not been able to consider due to their contingent, non law-like nature (thus pushing 

the limits of knowledge in the empirical sense, cf. Rescher, 2006, pp. 95-104). 

However, epistemic justifiability of such ampliative inferences depends not only on how well 

the generative model learns to generalise beyond the evidence, but crucially on reliability of 

the underlying software platform. Symons and Horner (2014; 2019) showed that if the 

underlying software exhibits high conditionality, its error distribution cannot be 

characterised, which leaves no room for principled reasoning about the program’s 

(software’s) reliability. Their claim relies on practical impossibility of testing a sufficient 

number of the program’s execution paths (ibid.). As a result, it is a priori out of question to 

reach a confidence level that would justify any assumption about reliability of the software 
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at hand (ibid.). The impossibility of realising a satisfactory test coverage distinguishes 

software intensive from non-software intensive science (ibid.). 

The synthesis between human and machine learning falls in the former category. It is thus 

an open question by how much we can improve epistemic warrant of realist theories while 

considering samples from generative adversarial models. Following this line of reasoning 

might even lead to a disappointing conclusion that software intensive science, utilising 

machine learning models, cannot support a convergence to the truth account associated 

with scientific inquiry, and its realist philosophy in particular6. This would diminish the thrust 

of the proposal, making it effective only as a remedy for underdetermination by available 

evidence. Crucially, the proposal could be then used by realists as well as empiricists to ward 

off the instrumentalists’ attack with unconceived alternatives (even if for empiricists this 

kind of underdetermination does not play a significant role). By being equally relevant to the 

realist and empiricist philosophy of science, the proposal would lose its exclusive support for 

the realist side of the debate. 

The paper argues that such a reading would not be entirely correct, because it omits an 

(important) qualification to the impossibility of characterising the error distribution of 

software exhibiting high conditionality. To achieve generality and objectivity, and thus to 

constitute an upper-bound on testability, the error distribution of a piece of software 

(program) depends on all inputs that can invoke its full path complexity, i.e. observing all, or 

almost all, depending on a sought for confidence interval, of the program’s execution paths. 

In their breakthrough result, and its later elaboration, Symons and Horner demonstrated 

 
6 We are indebted to John Symons for pointing out this limit of the human-machine learning synthetisation of 

(realist) scientific theories. 
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that any procedure that would reach a sufficient test coverage is provably intractable, given 

any computer program of a non-trivial conditionality. This outcome, however, has an 

interesting corollary: Beyond a trivial level of conditionality there are no a priori distinctions 

between reliability of computer programs. In theory, software intensive science, including 

the subset utilising machine learning, then succumbs to Hume’s Problem (1739/1978), 

because, a priori, we cannot justify any inductive inference about the reliability of a 

computer program exhibiting high conditionality. If there are no a priori distinctions 

regarding reliability, humans do not have any a priori guidance on whether to follow or 

avoid unconceived phenomena sampled from generative machine learning models. Our 

prior knowledge notwithstanding, we cannot a priori rule out the possibility that an 

otherwise well-behaved model will for a certain input produce a phenomenon which does 

not belong the possibility space of available evidence. It is simply because the machine 

learning model, i.e. a computer program, cannot distinguish among the consequences of all 

possible inputs, and so cannot the human developer/user due to the impossibility to achieve 

a sufficient test coverage. Even though for the model there is no difference between the a 

priori and a posteriori assumption of reliability, there is one for the humans. 

To reach generality and objectivity constitutive of an upper bound on software error 

distribution, the ‘no distinctions’ argument dismisses fortuitous conditions where inputs and 

the machine learning model generate legitimate results. Fortuitous conditions can be 

ascertained only a posteriori and never without justification provided by human scientists. 

Fortuitous conditions occur when a model, i.e. a piece of high conditionality software, fits 

the training data (i.e. evidence, in the present case fitting the learning signal provided by the 

discriminator) well enough so that it reliably interpolates beyond the evidence to sample 

unconceived phenomena from the left out regions of the possibility space. Generalisation, 
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i.e. in-distribution interpolation, depends on reliable software and can thus serve as a proxy 

to determine whether we reached fortuitous conditions or not. Therefore, if we seek to a 

posteriori dispel the ‘no distinctions’ argument, the human scientists, synthesising a (realist) 

theory based on their insights and machine samples, need to reflect on the training data 

(evidence), model, and their mutual fit with the assumptions about the target domain 

(possibility space). Without this step, the machine learning model becomes subject not only 

to difficulties identified by Symons and Horner but also to ‘No Free Lunch’ theorem 

(Wolpert, 1996). The latter applies because the weighting over targets (possibility spaces) is 

based on the distribution of erroneous inferences which cannot be a priori specified unless 

we can prove that a supposed shape of the possibility space is well-matched by a particular 

model. Due to Symons and Horner any such inferences will be contested and, moreover, 

also suffering from wrong assumptions about the uniformity between a model and the 

possibility space of available evidence. Hence there are no a priori distinctions among the 

range of applicable machine learning models, only a posteriori insights which lead to the 

following conclusion. 

In less technical terms, without human scientists, experimenting on possible variants of the 

training data (evidence), model, and their mutual fit with the assumptions about the target 

possibility space (see Section 4.2), the synthesis will be most likely unsuccessful (i.e. 

depending on epistemic luck). In this sense, Symons and Horner showed that machine 

learning models, i.e. high conditionality software, cannot a priori guarantee a fully 

autonomous convergence to the truth account associated with scientific inquiry, and its 

realist philosophy in particular. However, their argument does not preclude a version of 

software intensive science where humans intensively experiment on evidence and machine 

learning models to find uniformity with the possibility space at hand and its underlying 
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probability distribution. In other words, despite a priori objectivity and generality of the ‘no 

distinctions’ argument, it is still very much possible to find a posteriori fortuitous conditions. 

They can provide a window into possibility spaces of available evidence and extend our 

understanding by so far unconceived phenomena. 

5. Beyond Hypothetical Musings: Practical Prospects of the Synthesis 

Regarding practical realisations of the synthesis, in several fields, there are recently 

emerged applications of generative adversarial models (f.e. cf. Mustafa et al., 2017; Paganini 

et al., 2018; Albert et al., 2018), implying that its hypothesised epistemological benefits find 

their real counterparts when scientists integrate artificial representation learning into their 

methodological toolboxes. However, the synthesis’ full potential is yet to be appreciated, as 

the initial impetus for introducing generative models didn’t come from a concern for the left 

out regions but rather from an interest seeking to acquire a cheap way of simulating the 

studied phenomena. The cheapness delivered by machine learning comes in two forms of 

which the second paves the way for exploring the possibility spaces of observational 

evidence. In its first form the cheapness relates to often prohibitive computational costs of 

numerical simulations impeding experimental and theoretical developments alike (ibid.). As 

a generative model produces, at a relatively low computational cost, samples of phenomena 

difficult to observe and/or expensive to faithfully simulate, it lays the groundwork for the 

second kind of cheapness. This latter form disposes of the necessity to conceive an 

antecedent mathematical model underlying any numerical simulation. Since the multilayer 

feed-forward neural network, which constitutes adversarial models, proves to be a universal 

approximator regarding arbitrary continuous functions (Hornik et al., 1989), such prior 

model is no longer necessary. This property of neural networks increases the degree of 
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freedom from imposing an artificially parsimonious theoretical commitment at the very 

beginning of the enterprise, which would stem from choosing an ill-fitting antecedent 

model. Learning approximations of evidence generating distributions without imprinting the 

biases of preconceived models onto the resulting theory contributes to exposing the left out 

regions of possibility spaces. Avoiding antecedent models, while using adversarial learning 

to push generative models in the direction of the left out regions, might thus aid to deliver 

realist theories from the threat of unconceived alternatives. Consequently, the synthesis’ 

exploratory stage remains mostly unbiased, as the human cognitive inputs enter the picture 

only later on. Leaving one’s options open by relying on agnostic, i.e. model-free, universal 

approximators would postpone the commitment until scientists inspect the phenomena 

sampled from the left out regions in an effort to pre-empt unconceived alternatives. 

Arguably, quite close to a full-fledged synthesis is a recent methodological prototype 

concerned with generating weak lensing convergence maps for an instance of the ΛCDM 

cosmological model (Mustafa et al., 2017). As the model’s testing and inferring its correct 

parameters vis-à-vis our universe involves consulting generated maps pertaining to variously 

initialised instances of the standard model, the original concern was with computational 

economy allowing for agile simulations (ibid.). However, as it turned out generative 

adversarial models can in fact produce new maps congruent with an instance of the 

standard model without being ever introduced to its summary statistics apart from an 

observational exposure in the form of a limited sample of maps coming from the numerical 

simulation (ibid.). Considering the study of dark matter, energy and related phenomena, the 

generative model provides an avenue for unbiased exploration of the possibility space 

comprising observations of a universe described by the corresponding instance of the 

standard model. As the samples from such a model convey perspectives on the virtual 
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universe, the generative model delivers foremost modal knowledge about what kinds of 

cosmological structures are possible given the ΛCDM model and its instance parameters. 

Motivated by the same goal to select the best fitting physics model of the Universe, 

Zamudio-Fernandez et al., 2019 proposed to use a generative adversarial network to 

produce 3D distributions of cosmic neutral hydrogen (HI). Compared to hydrodynamic 

simulations, adversarial models can generate distributions of HI five orders of magnitude 

faster (ibid.). The increased efficiency, provided by the generalisation capability of a model 

trained on samples from the simulations, allows to survey a much larger portion of the 

possibility space of available evidence, including its left out regions. With more samples of 

HI distributions generated, the actual 21cm emissions from HI captured by radio telescopes 

can be compared to a wider range of theoretical predictions, i.e. ‘synthetic’ observables 

generated by the adversarial model (ibid.). This manoeuvre allows better utilisation of data 

coming from cosmological surveys (ibid.). However, by working with phenomena from the 

left out regions, it also adjusts the theory/model under construction to modalities of the 

possibility space of available evidence, thus lowering its exposure to unconceived 

alternatives. 

Pursuing a similar goal, Rodríguez et al., 2018 used a generative adversarial network to 

approximate distributions of matter that can be used to sample synthetic cosmic webs, 

complex networks of cosmic structures and interactions which can provide insights into dark 

matter, dark energy or laws of gravity (ibid.). Building on the work of Mustafa et al., 2017 

mentioned above, Rodríguez et al., 2018 trained the adversarial model on examples of 

cosmic webs produced by classical N-body simulations. The motivation was once again to 

remove the computational bottleneck of simulations which might prevent the full 
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realisation of cosmological surveys (ibid.). The generalisation capability of adversarial 

models can alleviate the bottleneck by making it possible to produce rich sets of theoretical 

predictions, i.e. synthetic cosmic webs, that can be compared to empirical data from the 

surveys. As in the previous experiments, cosmic webs generated by the adversarial models 

do not exhibit correlations with training data (ibid.), which indicates that they come from 

the left out regions and can be used to align the theory/model under construction with 

modalities of the possibility space of available evidence. 

Apart from astrophysics and cosmology, identically motivated attempts to reduce the costs 

of simulations are emerging in high-energy particle experiments at the Large Hadron 

Collider (LHC, de Oliveira et al., 2017; Paganini et al., 2018; Hashemi et al., 2019; Di Sipio et 

al., 2019). Paganini et al., 2018 showed that it is possible to use adversarial models to 

generate, or in the traditional sense simulate, synthetic particle showers in electromagnetic 

calorimeters. In the context of LHC’s ATLAS or CMS experiments, alleviating the 

computational bottleneck allows to encompass a wider range of theoretical assumptions 

reflected as different subatomic particle collisions and interactions (ibid.). The 

generalisation capability of adversarial models enables to sample synthetic energy 

depositions of particle showers whose diversity suggests an expanded reach into the 

possibility space of available evidence (cf. ibid.). Similarly to the cosmological experiments, 

adversarial models can be used to extend our reach to regions of the possibility space of 

available evidence that have been left out so far, ask about its modalities, and thus at least 

partially diminish the likelihood of unconceived alternatives emerging in the future. 

Finally, attempts are made to use adversarial models to produce new effective field theories 

(Erbin and Krippendorf, 2018). Erbin and Krippendorf constructed a proof-of-concept 
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adversarial model able generate new samples from a class of supersymmetry models. The 

experiment has an epistemological significance because it implies that adversarial models 

can be applied to survey the solution space of string theory and generate new predictions 

(ibid., p. 5). Similarly to the previous empirical cases, the epistemic concern is with 

modalities of the possibility space and methods that can help to tease them out in a bid to 

pre-empt unconceived alternatives. 

Even though generative adversarial models are successfully used in other areas of science, 

with examples including generation of materials (e.g. Kim et al., 2020) or drug discovery 

(e.g. Méndez-Lucio et al., 2020), these applications do not seek modal surveys of possibility 

spaces for theoretical purposes. Their goal lies in generating new samples from a priori 

delimited regions supposedly holding new viable materials or molecules. The surveys are 

thus conditioned to stay only in the known regions of possibility spaces and serve to 

practical rather than theoretical purposes. Therefore, the parts of astrophysics, cosmology, 

and high energy physics, which start to experiment with adversarial models, are worth 

observing, for they hold a promise to begin synthesising the new breed of realist theories 

based on an extended epistemic reach of the human-machine learning nexus. Practically, 

the above outlined cases approach full syntheses, since they are only a step from applying 

the acquired knowledge to asses and possibly revise the theories’ commitments so as to 

reflect the modalities determining the possibility spaces of available evidence. In so doing, 

the theories’ exposure to unconceived alternatives would remain limited, as the modal 

knowledge of the possibility spaces helps to pre-empt yet to be observed phenomena 

possibly in conflict with the synthesised theories. 
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Considering ramifications of such a synthesis at the meta-theoretical level, the exploration 

of possibility spaces by adversarial representation learning comes out as a kind of 

perspectival modelling (Massimi, 2018). This kinship derives from the emphasis attached to 

modal knowledge, delimiting the range of possibilities, rather than to individual phenomena 

acquired by the exploration, however important they might be for a theory at hand. Going 

for the modal dimension derived from the obtained representational content permits pre-

emptive discerning between the kinds of phenomena which might be observed in the future 

and those ruled out by a recovered modality (cf. Massimi, 2018, pp. 338-339). As a result, 

metaphysically delicate realist commitments (apart from unconceived alternatives also 

bearing in mind the issue of conceived inconsistent rivals) might be now secured even 

without the recourse to undue selectivity, as the acquired pictures of possibility spaces 

provide a framework for assessing theories’ exposure to unconceived alternatives as well 

their standing with conceived rivals. By consulting this modal dimension, while being 

engaged in realist theory building, the anti-realist’s job of hunting for the unconceived 

becomes a more demanding affair (cf. ibid.) than referring to the past flaws of exploring the 

possibility spaces. The realist could act accordingly, and instead of the backwards 

orientation embark on a forward looking quest which would, carving out the modal 

dimensions of possibility spaces, provide a new more resilient kind of the selective realist 

commitment (cf. Massimi, 2018, pp. 348-349). Finally, the question of "What can artificial 

intelligence do for scientific realism?" finds its answer in helping to facilitate the shift of 

realist commitments towards modal knowledge of possibility spaces, which would balance 

the retreats of past selectivity caused by anti-realist pressures of both kinds, those blaming 

prior missteps as well as the ones prophesying inevitability of future breakdowns. As to the 

subject of underdetermination, synthesising between human scientists and artificial 
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representation learning models would then yield theories whose epistemic warrants enjoy a 

lesser degree of underdetermination by available evidence. 
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