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This survey tries to investigate the truths and deficiencies of prevalent philosophy about
Uncertainty Relations (UR) and Quantum Measurements (QMS). The respective philos-
ophy, known as being eclipsed by unfinished controversies, is revealed to be grounded
on six basic precepts. But one finds that all the respective precepts are discredited by
insurmountable deficiencies. So, in regard to UR, the alluded philosophy discloses one-
self to be an unjustified mythology. Then UR appear either as short-lived historical
conventions or as simple and limited mathematical formulas, without any essential sig-
nificance for physics. Such a finding reinforces the Dirac’s prediction that UR “in their
present form will not survive in the physics of future”. The noted facets of UR motivate
reconsiderations of associated debates on QMS. Mainly one reveals that, properly, UR
have not any essential connection with genuine descriptions of QMS. For such descrip-
tions, it is necessary that, mathematically, the quantum observables to be considered
as random variables. The measuring scenarios with a single sampling, such are wave
function collapse or Schrödinger’s cat thought experiment, are revealed as being useless
inventions. We propose to describe QMS as transmission processes for stochastic data.
Note that, for existing quantum debates, the above UR–QMS revaluations, offer a few
arguments for lucrative parsimony in approaches of matters. The unlucrative aspects of
those debates have to be reconsidered too, probably in more or less speculative visions.

Motto 1: “I think one can make a safe guess that uncertainty
relations in their present form will not survive in the physics
of future.”

P. A. M. Dirac, 1963

Motto 2: “The word ‘measurement’ has had such a damaging
effect on the discussions that . . . it should be banned alto-
gether in quantum mechanics.”

J. S. Bell, 1990

Foreword

A. The present review-study germinates from some of our
preceding more modest investigations some of them already
published in this journal, Progress in Physics. Also, it was
influenced by a number of opinions published by other sci-
entists (opinions which, usually, are ignored in mainstream
literature).

In the main, the study was stimulated by the known ex-
istence of numerous debates (unfinished controversies on un-
elucidated questions) regarding the foundations and interpre-
tation of Quantum Mechanics (QM). The considered debates
refer mainly to the significance of Uncertainty Relations (UR)
and to the associated descriptions of Quantum Measurements
(QMS). By their obstinate persistence, the mentioned debates
delay and obstruct the desired (and expected) clarifications
about some basic aspects of QM.

Within the here emerged text, we try to gather, system-
atize, improve, consolidate and mainly to present more

argued our non-conventional viewpoints about the existing
prevalent debates on UR, QMS and QM.
B. The here proposed article approaches step-by-step the fol-
lowing main items:

i.1 A consistent Introduction which points out:
(a) The nowadays existence of unfinished debates (dis-
putes and controversies) about the meaning of UR and
description of QMS;
(b) The today necessity for search the truth about own
philosophy of UR and description of QMS, regarded as
relevant pieces for foundations/interpretation of QM;

i.2 An inventory section which identifies the Basic Pre-
cepts of the prevalent philosophy regarding UR and
QMS;

i.3 A large section about most important deficiencies of
the mentioned precepts. Within the respective section
we concern on:
(a) Detailed examinations of deficiencies specific to the
respective precepts;
(b) Elucidation, piece by piece, of the real value/mean-
ing for each of the pointed out deficiencies;

i.4 A first concluding section about the true significance of
UR. In that section the current prevalent interpretation
of UR is proved to be nothing but a veritable myth with-
out any special or extraordinary value for physics. But
such a proof reinforces the Dirac’s prediction that UR

38 Spiridon Dumitru. A Survey on Uncertainty Relations and Quantum Measurements



Issue 1 (April) PROGRESS IN PHYSICS Volume 17 (2021)

“in their present form will not survive in the physics of
future”;

i.5 A section containing considerations on description of
QMS. The respective considerations are done in the
light of the debates about deficiencies of dominant phi-
losophy about UR. Also the measuring scenarios with
a single sampling, such are wave function collapse or
Schrödinger’s cat thought experiment, are revealed as
being superfluous fictions. We argue that the QMS de-
scriptions should be approached additionally compar-
atively with the description and interpretation of UR.
They must be discussed in new insights by regarding
the measurements as transmission processes for sto-
chastic data. (see our examples from Subsections 5.2
and 5.4 or from Appendices F and G);

i.6 A final section with some concluding remarks;
i.7 A supplementary section of Appendices containing:

(a) Technical/computational details — in seven cases,
respectively;
(b) A copy of “A private letter from the late scientist
J. S. Bell to the author”.

C. Notes:

I. Through the elucidations referred to in item i.3 we of-
fer genuine solutions for some controversial theoretical
problems such are:
(a) The adequate form of UR for the supposed rebel-
lious pairs of observables: Lz–ϕ (angular momentum
— azimuthal angle), N– φ (number-phase) and E–t
(energy-time);
(b) The case of macroscopic operators;
(c) The uniqueness (individuality) of Planck’s constant;

II. In its essence, the suggested revaluation of UR and
QMS philosophy does not disturb in any way the ba-
sic lucrative framework of usual QM (which keeps its
known specific concepts, principles, theoretical mod-
els, computing rules and studied systems);
Moreover, I try to give arguments for lucrative parsi-
mony in approaches of QM matters;
I believe that, to some extent, such a revaluation of
UR-QMS prevalent philosophy can be beneficent for
interpretation and understanding of QM. Potentially
that revaluation can bring at least a modest contribu-
tion to non-conventional investigations of some open
questions regarding views about UR, QMS, and QM.

III. My article tries to clarify certain past misunderstand-
ings, of historical, philosophical, and cultural
essence, which still persists in activities (of publishing
and mainly of teaching nature), connected with QM;

IV. As a significant aspect, in my paper, the discussions are
presented and detailed in forms accessible to readers
with knowledge of QM at a not-advanced level. That is
why in the version proposed here the article was con-

ceived (especially through a number of detailed Ap-
pendices) as an accessible teaching material for those
interested in QM education at undergraduate/graduate
levels.

D. I think that, by its theme, style and writing level, my paper
ensures the following desiderata:

• It approaches representative methodological and philo-
sophical topics concerning the structure and the growth
(interpretation and foundations) of QM investigated as
a significant constituent of natural sciences;

• It can give a starting forum for the exchange of views
and ideas among readers interested, in foundations of
QM regarded as an important constituent of modern
sciences;

• It identifies and highlights foundational issues, suggest-
ing constructive and genuine solutions for approached
problems;

• It offers a number of original opinions concerning some
controversial theoretical/philosophical scientific prob-
lems;

• It initiates and develops discussions on the philosophy
and epistemology of physics, at a level accessible to
a wide class of readers (scientists, teachers and even
students in physics, mathematics, chemistry or philos-
ophy);

• It provides an argued appeal toward an increasing re-
search field, namely to the one regarding the non-con-
ventional approach of QM interpretation and founda-
tions.

Given the above-mentioned aspects, I think that my article
can offer a modest contribution to newly rising investigations
on non-conventional views in quantum physics.

Braşov, November 26, 2020 Spiridon Dumitru

1 Introduction

Nearly a century until nowadays, in the publications regard-
ing Quantum Mechanics (QM) and even other areas, have
persisted discussions (debates and controversies) about the
meaning of Uncertainty Relations (UR). Moreover UR in
their entirety were ranked to a status of fundamental con-
cept named Uncertainty Principle (UP) (for a bibliography
of the better known specific publications see [1–12]). Mostly
the respective discussions have credited UR/UP with consid-
erable popularity and crucial importance, both in physics and
in other domains. The mentioned importance was highlighted
by compliments such as:

• UR are “expression of the most important principle of
the twentieth century Physics” [13],

• UP is “one of the cornerstones of quantum theory” [9];
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• UP “epitomizes quantum physics, even in the eyes of
the scientifically informed public” [7].

But, as a fact, in spite of such compliments, in scientific
literature of our days the essential aspects regarding UR/UP
remain as unsolved and misleading questions. Today keeps
their topicality many critiques reported during last decades,
like the next ones:

• UR “are probably the most controverted formula in the
whole of the theoretical physics” [14];

• “Still now, 80 years after its inception, there is no gen-
eral consensus over the scope and validity of this prin-
ciple (‘UP’)” [7];

• “Overcoming the early misunderstanding and confu-
sion, the concept (notion of uncertainty — i.e. of
UR/UP) “grew continuously and still remains an active
and fertile research field” [8].

Note that the above reminded appreciations (compliments
and critiques) regard mainly the own essence (intrinsic mean-
ing) of UR/UP. But, within many texts about QM fundamen-
tals, one finds also an adjacent topic which, historically, is a
direct sub-sequence of the debates about the mentioned
essence. The respective topic refers to the significance and
description of Quantum Measurements (QMS).

Marked by the previously noted points, during the deca-
des, the discussions about UR and QMS meaning and impli-
cations have generated a true prevalent philosophy (i.e. “a
group of theories and ideas related to the understanding of
a particular subject” [15]). For almost a century, the re-
spective philosophy dominates in mainstream physics pub-
lications and thinking. It obstructs (delays) the expected pro-
gresses in clarifying some of main aspects regarding the fun-
damentals/interpretation of QM respectively the essentials of
QMS problem. Add here the more alarming observation [16]
that: “there is still no consensus on . . . interpretation and
limitations of QM”. Then it becomes of immediate interest to
continue searches for finding the truth about own essence and
consecutive topics of the UR/UP and QMS matters.

A search of the alluded type can be done (or facilitated at
least) by a pertinent survey on deficiencies of the mentioned
philosophy. Such a survey (of modest extent) we intend to
present in this article. Our survey tries firstly to identify the
basic elements of nowadays prevalent views within UR and
QMS philosophy. Afterward we will investigate truth and
value of the respective elements. Within the investigation we
promote a number of re-considerations regarding the conven-
tional (and now dominant) views about UR and QMS mat-
ters. Mainly we reveal the fact that the alluded views are
discredited (and denied) by a whole class of insurmountable
deficiencies, overlooked in the mainstream literature. So our
survey aims to represent an unconventional analysis of the
actual dominant philosophy about UR and QMS.The above-
announced analysis germinated from some of our preceding

investigations (see [17–21] and references). Also, it was sti-
mulated by a number of opinions due to other scientists
(usually the respective opinions are ignored in dominant
literature, but here they are highlighted by specifying the
proper bibliographic sources). Through the present survey,
we try to gather, extend, systematize, improve and consoli-
date the results of our mentioned investigations in order to
present a more argued viewpoints about the approached top-
ics.

In our survey, when it is usefully, we will appeal to the so
called ’parsimony principle’(or ’law ’). The respective prin-
ciple (known also as Ockham’s razor) will be applied as a
heuristic method of simplicity which can be summarized [22]
by the next two desiderata:

• “Of two competing theories, the simpler explanation of
an entity is to be preferred”.

• “Entities are not to be multiplied beyond necessity”.

The mentioned principle will be accounted for in order
that the text to be easy understood for readers (including stu-
dents) not highly specialized.

By the present article-survey, through adequate arguments
and details, we try to elucidate what is in fact the true meaning
of UR, respectively to evaluate the genuine scientific aspects
regarding QMS.

From the conclusions resulting from this survey the most
important one is that, in its entirety, the actual prevalent phi-
losophy about UR must be regarded as a veritable myth with-
out any special or extraordinary status/significance for phys-
ics. This because, in reality, the UR reveal themselves to be
nothing but short-lived historical conventions (in empirical,
thought-experimental version) or simple and restricted for-
mulas (in theoretical approach). But such a conclusion come
in consonance, from another perspective, with the Dirac’s
guess [23] that: “uncertainty relations in their present form
will not survive in the physics of future”.

Add here the fact that, essentially, the above mentioned
re-evaluation of UR and QMS philosophy does not disturb
in any way the basic framework (principles, concepts, mod-
els and working rules) of usual QM. Furthermore, the QMS
description remains as a distinct and additional subject com-
paratively with the elements of QM in itself. Add here the ob-
servation that, for existing quantum debates, the above UR–
QMS revaluations give a few arguments for lucrative parsi-
mony in approaches of matters. The unlucrative aspects of
those debates have to be reconsidered, probably in more or
less speculative visions.

The mentioned description of QMS requires to regard
quantum observables* as true random variables. Also it must

*Drafting specifications: (i) In the next parts of this article, for nam-
ing a physical quantity, we shall use the term “observable” (promoted by the
UR and QMS philosophy literature), (ii) Also, according to the mainstream
publications, we adopt the titles “commuting” or “non-commuting” observ-
ables for the QM quantities described by operators which “commute” respec-
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be dissociated of some fictive QMS scenarios with a unique
sampling (such scenarios are schema with wave function col-
lapse and Schrödinger’s cat thought experiment). We recom-
mend to describe QMS as transmission processes of stochas-
tic data.

2 Basic precepts of UR–QMS prevalent philosophy

Firstly it must be pointed out the fact that, in spite of its
prevalence inside of nowadays scientific debates, the actually
dominant philosophy about UR and QMS germinates mainly
from an old doctrine which can be called Conventional Inter-
pretation of UR (CIUR). The mentioned doctrine (or dogma)
was initiated by the Copenhagen School founders and, sub-
sequently, during nine decades, it was promoted (or even ex-
trapolated) by the direct as well indirect partisans (conform-
ists) of the respective school. Currently CIUR enjoys of a
considerable acceptance, primarily in QM studies but also in
other thinking areas. Moreover, today, within the normative
(mainstream/authoritarian) physics publications, CIUR domi-
nates the leading debates about foundations and interpretation
of QM.

But as a notable fact, in publications, CIUR doctrine, as
well as most aspects of UR and QMS philosophy, are pre-
sented rather through independent or disparate assertions but
not through a complete and systematized set of clearly de-
fined “precepts” (considered as “beliefs . . . accepted as au-
thoritative by some group or school” [24]). That is why, for
a fruitful survey of the UR–QMS philosophy, it is of direct
interest to identify such an set of Basic Precepts (BP) from
which the mentioned assertions turn out to be derived or ex-
trapolated. Note that the aforesaid set of precepts (i.e. the
true core of CIUR doctrine along with prevalent philosophy
of UR and QMS) can be collected by means of a careful ex-
amination of the today known publications. In its essence the
respective collection can be presented as follows.

The history regarding Conventional Interpretation of UR
(CIUR) began with two main generative elements which were
the following ones:

(i) Heisenberg’s “Thought-Experimental” (TE) relation:

∆T E A · ∆T E B � ~ or ∆T E A · ∆T E B > ~ ; (1)

(ii) Robertson-Schrödinger relation of theoretical origin:

∆ΨA · ∆ΨB >
1
2

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣ . (2)

For introducing relation (1) in [25, 26] were imagined
some “Thought Experiments” (TE) (or “gedanken” experi-
ments). The respective TE referred on simultaneous measure-
ments of two (canonically) conjugate observables A and B re-
garding a same quantum micro-particle. As such pairs of two

tively “do not commute”, (iii) For improving fluency of our text some of the
corresponding mathematical notations, formulas and proofs are summarized
briefly and unitary in few Appendices located in the final of the article.

observables were considered coordinate q and momentum p
respectively time t and energy E. Then the quantities ∆T E A
and ∆T E B were indicated as corresponding “uncertainties”
of the imagined measurements, while ~ denotes the Planck’s
constant.

Relation (2) was introduced in [27, 28] and it is depicted
as above in terms of traditional QM notations [29, 30]. The
main features of the respective notations are reminded briefly
below in Appendices A and B while some aspects regarding
the Dirac’s braket QM notations [29–32] are discussed in Ap-
pendix B.

Note here the fact that the right-hand side term from (2) is
dependent on Planck’s constant ~, e.g.

∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣ = ~ when
A and B are (canonically) conjugate.

Starting from the generative elements (1) and (2), CIUR
doctrine jointly with UR and QMS philosophy have been
evolved around the following Basic Precepts (BP):
• BP1: Quantities ∆T E A and ∆ΨA from relations (1) and

(2), have similar significances of measuring uncertain-
ties for the observable A. Consequently, the respective
relations should be regarded as having a same meaning
of Uncertainty Relations (UR) concerning the simulta-
neous measurements of observables A and B. Such a
regard is fortified much more by the fact that∣∣∣∣〈[Â, B̂]〉

Ψ

∣∣∣∣ = ~

when A and B are (canonically) conjugate.
• BP2: In case of a solitary observable A, for a micro-

particle, the quantities ∆T E A or ∆ΨA can have always
an unbounded small value. Therefore such an observ-
able should be considered as measurable without any
uncertainty in all cases of micro-particles (systems) and
states.
• BP3: For two commuting observables A and B (whose

operators Â and B̂ commute, i.e.
[
Â, B̂

]
= 0) relation

(2) allows for the product ∆ΨA · ∆ΨB to be no mat-
ter how small. Consequently the quantities ∆ΨA and
∆ΨB can be unlimited small at the same time. Such ob-
servables have to be regarded as being compatible, i.e.
measurable simultaneously and without interconnected
uncertainties, for any micro-particle (system) or state.
• BP4: In case of two non-commuting observables A and

B (described by operators Â and B̂ which do not com-
mute, i.e.

[
Â, B̂

]
, 0) the relation (2) shows that the

product ∆ΨA · ∆ΨB has as lower bound a non-null and
~-dependent quantity. Then the quantities ∆ΨA and
∆ΨB can be never reduced concomitantly to null values.
For that reason the respective observables must be ac-
counted as measurable simultaneously only with non-
null and interconnected uncertainties, for any situation
(particle/state). Viewed in a pair such observables are
proclaimed as being incompatible, respectively com-
plementary when they are (canonically) conjugate.
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• BP5: The main elements of CIUR doctrine and UR
philosophy show quantum particularities of uniqueness
comparatively with other non-quantum areas of phys-
ics. Such elements are the very existence of relations(1)
and (2), the above asserted measuring features and the
discriminating presence of the Planck’s constant ~.

• BP6: For glorifying the precepts BP1–BP5 and adopt-
ing the usages of dominant literature, UR philosophy in
its entirety should be ranked to a status of fundamental
concept named Uncertainty Principle (UP).

Add here the observation that, in their wholeness, CIUR
doctrine conjointly with UR and QMS prevalent philosophy
emerge completely from the assertions embedded in basic
precepts “BP1–“BP6.

3 Deficiencies (D) of the mentioned precepts

The above mentioned emergence conceals a less popularized
fact namely that each of the precepts BP1–BP6 is discredited
(and denied) by insurmountable deficiencies. Such a fact can
be revealed through a deep analysis of the respective precepts,
an analysis which is of major importance for an authentic and
fruitful survey of UR and QMS prevalent philosophy. That is
why here below we aim to reveal the most significant ones of
the mentioned deficiencies. They will be presented in a mean-
ingful ensemble, able to give an edifying global appreciation
regarding the mentioned philosophy. The referred ensemble
includes as distinct pieces the following Deficiencies (D):

3.1 D1: Provisional character of relation (1)

Now it must be noted firstly the aspect that, through an anal-
ysis of its origins, relation (1) shows only a provisional (tran-
sient) character. This because it was founded [25, 26] on
old resolution criterion from optics (introduced by Abe and
Rayleigh — see [33]). But the respective criterion was sur-
passed through the so-called super-resolution techniques
worked out in modern experimental physics (see [34–38] and
references). Then by means of of the mentioned techniques
can be imagined some interesting “Super-Resolution-
Thought-Experiments” (SRTE). Through such SRTE for two
(canonically) conjugate observables A and B, instead of TE-
uncertainties ∆T E A and ∆T E B from (1), it becomes possible to
discuss situations with some SRTE-uncertainties denoted as
∆S RT E A and ∆S RT E B. For the respective SRTE-uncertainties,
instead of Heisenberg’s restrictive formula (1) (first version),
can be suggested some CIUR-discordant relations like as

∆S RT E A · ∆S RT E B < ~. (3)

Note that an experimental example of discordant relation of
(3)-type was mentioned in [39] (where the UR (1) “would be
violated by close to two orders of magnitude”).

Now one observes that, from the our days scientific per-
spective, SRTE relations like (3) are suitable to replace the

old Heisenberg’s formula (1) (second version). But such suit-
ability invalidates a good part of the precept BP1 and, ad-
ditionally, it incriminates the CIUR doctrine and UR–QMS
philosophy in connection with one of their main (generative)
element.

It is surprising that, after invention of the super-resolution
techniques, the mainstream (normative /authoritarian) publi-
cations connected with UR–QMS philosophy avoided a just
and detailed evaluation of the respective techniques. Partic-
ularly, even after eight year after the result reported in [39],
almost all of the dominant publications omit to discuss the
respective result. The surprise is evidenced to a great extent
by the fact that parsimony desiderata noted in Section 1 of-
fer a viable argumentation for completing the evaluations and
discussions oft the mentioned kind.

Another infringement (violation) of Heisenberg’s relation
(1) was reported in [40] as an experimental result. That re-
port is criticized vehemently by CIUR partisans [12]. The
respective criticism is done in terms of a few un-argued (and
un-explained) accusatory-sentences. But it is expected that, if
they are justifiable, such kind of critiques should be grounded
on precise technical details and arguments. This in order that
they to be credible.

Curiously is also the fact that, over the past decades within
the UR philosophy, the debates have neglected the older crit-
icisms of the relation (1) due to K. Popper [41].

Taking into account the above revealed aspects one can
say that the precept BP1 proves oneself to be a misleading
(even harmful) basic element for CIUR doctrine and UR–
QMS philosophy. But such a proof is a first argument for
reporting that the respective doctrine and philosophy cannot
be accepted as solid (and credible) scientific constructions.

3.2 D2: Significance of quantities from relation (2)

The term “uncertainty” used within CIUR doctrine for quan-
tities ∆ΨA and ∆ΨB from (2) is groundlessly because of the
following considerations. According the theoretical frame-
work of QM, by their definitions, the respective quantities
signify genuinely the standard deviations of the observables
A and B regarded as random variables (see below Appendix
A). With such significances the alluded quantities refer to in-
trinsic (own) properties (known as fluctuations) of the con-
sidered particle but not to characteristics of the measurements
performed on respective particle. In fact, on a one hand, for a
measured particle in a given state (described by certain wave
function Ψ) the quantities ∆ΨA and ∆ΨB have unique and well
definite values. On the other hand for the same particle/state
the measuring uncertainties regarding the observables A and
B can be changed through the improvements or deterioration
of experimental devices/techniques.

The above revealed QM significances for quantities ∆ΨA
and ∆ΨB are genuinely preferable comparatively with the as-
sertions from the precepts BP1–BP4 promoted by CIUR doc-
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trine and UR–QMS philosophy. But such a preference is
completely congruent with the previously mentioned desider-
ata of parsimony principle.

3.3 D3: Limitations of relation (2)

Relation (2) has only limited validity within the complete the-
oretical framework of QM. This because, as it is detailed be-
low in Appendix A, for observables A and B, relation (2) is
only a restricted consequence of the generally valid Cauchy-
Schwarz formula, given in (A.2). From such a general for-
mula the relation (2) results iff (if and only if) in circum-
stances when the conditions (A.3) are satisfied. In the respec-
tive circumstances in addition to relation (2)/ (A.7) from (A.2)
arises also the formula (A.6). It is worthy to note that the
mentioned particularities regarding the validity of the rela-
tion (2) discredit indirectly the precept BP1 of CIUR doctrine
and UR–QMS philosophy. In their essence the specifications
recorded here are nothing but concretizations of parsimony
desiderata regarding the respective doctrine and philosophy.

3.4 D4: On solitary observables

It is surprising to find that, within UR–QMS philosophy de-
bates, the problem of solitary observables is not discussed
carefully. Particularly, were neglected discussions regarding
the measurements of such observables. This although the re-
spective discussions can be sub-summed to the question of
simultaneous measurements of two observables. Such a sub-
summation can be imagined by means of the Thought Exper-
iments (TE) which motivated the conventional relation (1).
Namely, for example, if in the respective TE it is of interest
only the quantity ∆T E A, by ignoring completely the quantity
∆T E B, one can say that ∆T E A can be unlimited small. There-
fore the observable A, regarded as a solitary variable, appears
as measurable without any uncertainty in all cases. But, on
the other hand, if the same solitary observable A is analyzed
in terms of relation (2), it cannot be associated with an un-
limited small value for the quantity ∆ΨA. This because, form
a QM perspective, ∆ΨA has a unique and well definite value,
evaluated through the corresponding wave function Ψ. Con-
sequently, even in the cases of solitary observables, the CIUR
doctrine and the UR–QMS philosophy cannot provide a clear
and unequivocal approach as it is suggested by precept BP2.

3.5 D5: About commutable observables

According to the precept BP3 for two observables A and B,
whose associated operators Â and B̂ are commutable, relation
(2), allows for the product ∆ΨA · ∆ΨB to be however small.
Then the quantities ∆ΨA and ∆ΨB can be unlimited small at
the same time. Such observables are supposed compatible,
they being measurable simultaneously and without intercon-
nected uncertainties for any micro-particle (system) or state.

But, as it was shown above in deficiency D2, the men-
tioned assertions from BP3, conflict with the genuine signifi-

cance of the quantities ∆ΨA and ∆ΨB. This because both ∆ΨA
and ∆ΨB have unique values, determined theoretically by the
wave function Ψ which describe the considered state of par-
ticle. Or it is possible to have some “rebellious situations”
in which the respective values of ∆ΨA and ∆ΨB to be simul-
taneously non-zero but finite entities, even the corresponding
observables are commutable.

Such a “rebellious situation” can be found [20] for the ob-
servables Px and Py (Cartesian moments) regarding a micro-
particle situated in a potential well of a rectangular 2D con-
figuration. If the well walls are inclined towards the X and
Y axes, the both the quantities ∆ΨPx and ∆ΨPy have non-
zero but finite values. In that situation for Px and Py, besides
the relation (2), it is satisfied however the formula (A.2) with∣∣∣(δΨP̂xΨ, δΨP̂xΨ

)∣∣∣ as a non-null quantity.
The above remarks show that, in fact, the cases of com-

mutable observables require to repudiate firmly the precept
BP3. Additionally we think that the same cases should be re-
garded in the spirit of parsimony principle desiderata, by their
consideration in QM terms reminded briefly in Appendices A
and B.

3.6 D6: Cases of angular observables Lz and ϕ

The precept BP4 stipulates that, as a principle, two non-
commutable observables A and B cannot be measured simul-
taneously because the product ∆ΨA·∆ΨB has a non-null lower
bound. But the respective stipulation is contradicted by some
rebellious pairs of observables. Such a pair, widely discussed,
is Lz–ϕ (angular momentum — azimuthal angle), regarded
in certain particular situations. The respective contradiction
was probably the most inciting subject of debates during the
history of CIUR doctrine and UR–QMS philosophy (see [5,
17–20, 42–55]). The mentioned debates regarded mainly the
quantum rotations which can be called “Lz-non-degenerate
— circular — rotations” (Lz-ndcr). But, besides of that sit-
uations, in QM framework can be discussed also other kinds
of rotations, of direct significance for Lz–ϕ pair. Such kinds
are the ones regarding the rotational eigenstates of a Quantum
Torsion Pendulum (QTP) and respectively the “Lz-degenerate
— spatial — rotations” (Lz-dsr). The true situations of the Lz–
ϕ pair in relation with all kinds of the mentioned rotations will
be discussed below in more details.

3.6.1 D6a: About non-degenerate circular rotations

Let us discuss now the cases of Lz-non-degenerate — circu-
lar — rotations (Lz-ndcr). As systems of with Lz-ndcr can be
quoted the following ones: (i) a particle (bead) on a circle,
(ii) an 1D rotator and (iii) non-degenerate spatial rotations of
a particle on a sphere or of an electron in a hydrogen atom re-
spectively. The mentioned spatial rotations are considered as
Lz-non-degenerate if the magnetic quantum number m (asso-
ciated with Lz) has a unique value (while, of course, all other
specific (orbital) quantum numbers have well-defined values).
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The rotations of respective systems are described through the
wave functions given by

Ψ (ϕ) = Ψm (ϕ) = (2π)−
1
2 · exp (imϕ) . (4)

Here ϕ is an ordinary polar coordinate (angle) with the cor-
responding mathematical characteristics [56] i.e. ϕ ∈ [0, 2π)
and number m gets only one value from the set m = 0,±1,
±2, . . . . Also in (4) the wave function Ψ(ϕ) = Ψm(ϕ) has the
property Ψ (0) = Ψm (2π − 0) := lim

ϕ→2π− 0
Ψm (ϕ).

In the same context, according to the known QM frame-
work [29], Lz and ϕ should be regarded as polar observables,
described by the conjugated operators and commutator repre-
sented as follows

L̂z = −i~
∂

∂ϕ
, ϕ̂ = ϕ·,

[
L̂z, ϕ̂

]
= −i~. (5)

Therefore the conventional relation (2) motivates as a direct
consequence the next formula

∆ΨLz · ∆Ψϕ >
~

2
. (6)

Now it is easy to observe that this last formula is explicitly
inapplicable in cases described by wave functions (4). This
because in such cases, for the quantities ∆ΨLz and ∆Ψϕ asso-
ciated with the pair Lz–ϕ, one obtains the following values

∆ΨLz = 0, ∆Ψϕ = π · (3)−
1
2 . (7)

But such values for ∆ΨLz and ∆Ψϕ are evidently incompatible
with the conventional relation (2)/(6).

In order to avoid the above revealed incompatibility in
many mainstream publications the CIUR partisans promoted
some unusual ideas such are:

• For Lz and ϕ operators and commutator, instead of cur-
rent expressions (5), it is conveniently to adopt other
new denotations (definitions).

• The formula (6) must be abandoned/proscribed and re-
placed by one (or more)“modified Lz–ϕ UR” able to
mime the conventional relation (2) for the Lz–ϕ pair.

The alluded ideas were promoted through the conception
of “impossibility of distinguishing . . . between two states of
angle differing by 2π”. But such a conception has not any
realistic sense in cases of circular rotations. This because
in such cases the angle ϕ has as physical range the inter-
val [0, 2π). Moreover in the respective cases the wave func-
tions (4) are normalized on the same interval but not on other
strange domains.

As regards the “modified Lz–ϕ UR”, along the years, by
means of some circumstantial (and more or less fictitious)
considerations, were proposed a lot of such relations. In terms
of usual QM notations (summarized below in Appendix A),

the alluded “modified Lz–ϕ UR” can be written generically as
follows

f (∆ΨL,∆Ψg (ϕ)) > ~ · 〈s (ϕ)〉Ψ . (8)

Here f (∆ΨL,∆Ψg (ϕ)), g (ϕ) and s (ϕ) denote some specially
invented functions depending on the corresponding argum-
ents. Note that some of the mostly known concrete examples
of relations (8) can be found collected in [55].

Now it should be noted the fact that the “modified Lz–ϕ
UR” such are (8) show some troubling features like the fol-
lowing ones:

• Regarded comparatively, the mentioned “modified Lz–
ϕ UR” are not mutually equivalent. This despite of the
fact that they were invented in order to substitute the
same proscribed formula (6). Consequently, none of
that modified relations, is agreed unanimously as a suit-
able model able to give such a substitution.

• Relations (8) are in fact ad hoc artifices without any
source in mathematical framework of QM. Then, if one
wants to preserve QM as a unitary theory, like it is ac-
credited in our days, the relations (8) must be regarded
as unconvincing and inconvenient (or even prejudicial)
inventions.

• In fact in relations (8) the relevant angular quantities
∆ΨLz and ∆Ψϕ are substituted more or less factitious
with the adjusting functions f (∆ΨLz,∆Ψg (ϕ)), g (ϕ)
and s (ϕ). But, from a genuine perspective, such substi-
tutions, and consequently the corresponding relations,
are only mathematical constructs but not elements with
useful physical significance. Of course that such con-
structs overload (or even impede) the scientific discus-
sions by additions of extraneous entities which are not
associated with true information about the real world.

Then, for a correct evaluation of the facts, all the aspects
regarding relations (8) versus (6) ought to be judged by tak-
ing into consideration the parsimony principle desideratum:
“Entities are not to be multiplied beyond necessity”. Such an
evaluation can be started by clarifying firstly the origin and
validity conditions of the formula (6) regarded as descendant
of conventional relation (2). For the respective clarification it
is usefully to see some QM elements briefly summarized in
Appendix A.

So it can be observed easy that, in its essence, the rela-
tions (2) follow from the generally valid formulas (A.2) per-
taining to the mathematical framework of QM. But, attention,
(2) results correctly from (A.2) iff (if and only if) when it is
satisfied the condition (A.3). In other cases (2) are not valid at
all. Such an invalidity is completely specific for the cases of
Lz–ϕ pair in relations with situations described by the wave
functions (4). This because in respective cases instead of con-
ditions (A.3) it is true the relation(

L̂zΨ, ϕ̂ Ψ
)

=
(
Ψ, L̂z ϕ̂ Ψ

)
+ i~. (9)

44 Spiridon Dumitru. A Survey on Uncertainty Relations and Quantum Measurements



Issue 1 (April) PROGRESS IN PHYSICS Volume 17 (2021)

Therefore, for systems described by the wave functions (4),
the formula (6) is invalid by its essence.

Now note that, even when the condition (A.3) is not sat-
isfied, according to the QM general formula (A.2), for the
discussed situations it is true the relation

∆ΨLz · ∆Ψϕ >
∣∣∣∣(δΨL̂zΨ, δΨ ϕ̂Ψ

)∣∣∣∣ (10)

written in compliance with definitions (4) and (5). But, atten-
tion, in respective situations the last relation (10) degenerates
into trivial equality “0=0”. Add here the fact that relation (10)
is completely equivalent with the formula (C.13) deductible
within Fourier analysis.

The above presented details argue undoubtedly the view
that in cases with Lz -ndcr the Lz–ϕ pair must to satisfy not
the troublesome formula (6) but the QM justified relation (10)
(which in fact reduces itself to banal equality “0=0”). Such
an argued view clarifies all disputes regarding the mentioned
cases. Moreover the same view disproves the idea of some
“entities . . . multiplied beyond necessity” (such are the mod-
ified UR (8)) intended to replace the inoperative relation (6).

3.6.2 D6b: Case of Quantum Torsion Pendulum (QTP)

The case of Quantum Torsion Pendulum (QTP) regards a
quantum harmonic oscillator with torsional rotations [19, 20,
55]. Such an oscillator can be considered as the simplest the-
oretical model for molecular twisting motion (“change in the
angle between the planes of two groups of atoms” [57]). For
a QTP oscillating around the z-axis the Hamiltonian operator
has the form

Ĥ =
1
2I

L̂2
z +

1
2

Iω2
0ϕ̂

2. (11)

Here ϕ denotes the twisting angle with domain ϕ ∈ (−∞,+∞)
while the operators L̂z and ϕ̂ obey the rules (5). The other
symbols from (11) are: I and ω0 represent the momentum of
inertia respectively the (undamped) resonant frequency (ω0 =
√
κ/I while κ = torsion elastic modulus).

By means of Schrödinger equation EΨ = ĤΨ one finds
that the QTP eigenstates are described by the wave functions

Ψn (ϕ) = Ψn (ξ) ∝ exp
(
−
ξ2

2

)
· Hn (ξ) , ξ = ϕ

√
Iω0

~
. (12)

These wave functions correspond to the oscillation quan-
tum numbers n = 0, 1, 2, 3, . . . and energy eigenvalues En =

~ω0

(
n + 1

2

)
. In (12) Hn (ξ) represent the Hermite polynomi-

als of ξ.
For each of the states (12) for observables Lz and ϕ asso-

ciated with the operators (5) one obtains the expressions

∆ϕ =

√
~

Iω0

(
n + 1

2

)
, ∆ Lz =

√
~Iω0

(
n + 1

2

)
,∣∣∣∣(Ψ, [L̂ z, ϕ̂

])∣∣∣∣ = ~,

∆ϕ · ∆ Lz = ~ ·
(
n + 1

2

)
.

(13)

These expressions show the fact that, for each QTP eigen-
state, the Lz–ϕ pair satisfies the relation (6)/(2). But note that
the respective fact is due to the circumstance that in the men-
tioned case, in relation with the wave functions (12), the oper-
ators L̂z and ϕ̂ satisfy a condition of (A.3) type, i.e.(
L̂zΨ, ϕ̂ Ψ

)
=

(
Ψ, L̂z ϕ̂ Ψ

)
.

3.6.3 D6c: On degenerate spatial rotations

Let us now regard the cases of Lz –degenerate-spatial-rota-
tions (Lz-dsr). Such kinds of rotations refer [20, 21, 55] to
states of: (i) a particle on a sphere, (ii) a 2D rotator and (iii)
an electron in a hydrogen atom. The respective rotations are
Lz-degenerate in sense that the magnetic quantum number m
(associated with Lz) has multiple values while the other quan-
tum numbers have unique values. A particle on a sphere or a
2D rotator are in a Lz -dsr when the orbital number l has a
unique value greater than zero while m can take all the values
m ∈ [−l,+l]. Then the corresponding rotations are described
through the global wave function

Ψ (ϕ) = Ψl (ϑ, ϕ) =

m= + l∑
m= − l

cm · Ylm (ϑ, ϕ) . (14)

Here ϑ and ϕ denote polar respectively azimuthal angles
with ϑ ∈ [0, π] and ϕ ∈ [0, 2π). In (14) Ylm (ϑ, ϕ) denote
spherical functions while cm are coefficients normalized
through the condition

∑m= + l
m= − l |cm|

2 = 1. Also the wave func-
tions Ψl(ϑ, ϕ) from (14) have the property Ψl (ϑ, 0) =

Ψl (ϑ, 2π − 0) := lim
ϕ→2π−0

Ψl (ϑ, ϕ). In a direct connection with

such a property the operators L̂z and ϕ̂ obey the rules (5).
Now let us regard what are the peculiarities of the Lz- dsr

cases in respect with the controversial relation (6). Principled,
such a regard demands that, by using the formulas (5) and
(14), to evaluate the corresponding expressions for the quan-
tities ∆ΨLz, ∆Ψϕ and

∣∣∣(Ψ, [L̂z, ϕ̂
]
Ψ
)∣∣∣. With the respective ex-

pressions one finds possibilities that the relation (6) to be or
not to be satisfied. Of course that such possibilities are condi-
tioned by the concrete values of the coefficients cm. But note
that, if the relation (6) is not satisfied, the fact appears because
essentially in such a situation the condition (A.3) is not ful-
filled. Add here the important observation that, independently
of validity for relation (6), in all cases of Lz -dsr the Lz–ϕ pair
obeys the prime QM relation (A.2) through adequate values
for the quantities ∆ΨLz, ∆Ψϕ and

∣∣∣(δΨL̂zΨ, δΨϕ̂ Ψ
)∣∣∣. The pre-

vious considerations offer a clear evaluation of the situation
for Lz- dsr cases relatively to the conventional relation (2) and
precept BP4.

Summing up of deficiencies D6 (including D6a, D6b and
D6c): The above discussion about the three kinds of rota-
tions reveals the deficiencies of the conventional relation (2)
and of the associated precept BP4 in regard with the non-
commutable observables Lz and ϕ. But such revealing is noth-
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ing but a direct and irrefutable incrimination of CIUR doc-
trine and UR–QMS philosophy.

3.7 D7: On number and phase observables

The pair N and φ (number and phase) is another couple of
rebellious non-commutable observables which contradict the
corresponding stipulation from the precept BP4 of UR–QMS
philosophy. That contradiction emerged in connection with
the associated operators N̂ and φ̂. The respective operators
were introduced by means of the ladder (lowering and rais-
ing) operators â and â+, destined to convert some QM calcu-
lations procedures from an analytical version to an algebraic
one. Through the respective connection, by taking as base the
relation

[
â, â+

]
= 1, it was inferred the commutation formula[

N̂, φ̂
]

= i.
The last noted formula motivated the idea that operators

N̂ and φ̂ must satisfy the conventional relation (2) with both
∆ΨN and ∆Ψφ as non-null quantities. But afterward it was
found the fact that, in the case of a harmonic oscillator eigen-
states, one obtains ∆ΨN = 0 and ∆Ψφ = π · (3)−

1
2 i.e. a

violation of the relation (2). Of course that such a fact leads
to a deadlock for harmonization of N–φ observables with the
CIUR doctrine and UR–QMS philosophy. Note that this
deadlock is completely analogous with the one regarding to
Lz–ϕ observables in the above discussed case of Lz-ndcr (Lz-
non-degenerate — circular — rotations).

For avoiding the mentioned N–φ deadlock in many pub-
lications were promoted various adjustments (see [6, 43, 48,
58–61] and references therein). But it is easy to observe that
the respective adjustments regarded the conventional relation
(2) as an absolute mark and tried to adapt accordingly the
pair N–φ for a description of a harmonic oscillator. So it was
suggested to replace the original operators N̂–φ̂ by some ad
hoc “adjusted” (adj) operators N̂ad j and φ̂ad j, able to generate
formulas resembling (more or less) with the conventional re-
lation (2) (examples of such adjusted operators can be found
in the literature of recent decades). However it is very doubt-
fully that the corresponding “adjusted observables” Nad j and
φad j can have natural (or even useful) physical significances.
Moreover, until now, it not exist a unanimously agreed con-
ception able to guarantee a true elucidation regarding the sta-
tus of number-phase observables relatively to terms of CIUR
doctrine and UR philosophy.

Our opinion is that a genuine clarification of the N–φ
problem can be done similarly with the above discussed sit-
uation of Lz–ϕ observables in the cases of Lz-ndcr. More
exactly we have to note that the disagreement of N–φ pair
with the conventional relation (2) results from fact that in
such a case the respective relation is mathematically incor-
rect. The aforesaid incorrectness is due mainly to the cir-
cumstance that, in cases of a linear oscillator eigenstates, the
N–φ pair does not satisfy the essential condition (A.3). This
because in that cases for the operators N̂–φ̂ is true the for-

mula
(
N̂ Ψ, φ̂ Ψ

)
=

(
Ψ, N̂ φ̂ Ψ

)
+ i which evidently infringes

the condition (A.3). But it should be pointed out that, even
in the mentioned cases, the N̂–φ̂ operators satisfy the primary
relation (A.2) which degenerates into trivial equality “0 = 0”.

We think that the above noted opinion gives a natural and
incontestable solution for the problem regarding the N–φ pair
versus the conventional relation (2). Accordingly the fictional
operators N̂ad j and φ̂ad j, of an ad hoc adjusted essence, proves
themselves to be nothing but “entities . . . multiplied beyond
necessity”.

So it can be said that the situation of observables N and
φ contradict directly the precept BP4 in connection with non-
commutable observables. Consequently, the respective situ-
ation invalidates completely one of basic elements of CIUR
doctrine and UR–QMS philosophy.

3.8 D8: Concerning the energy — time pair

Closely to the conventional views of CIUR doctrine and UR–
QMS philosophy the pair of observables E–t (energy-time)
was subject for a large number of controversial discussions
(e.g. in works [5, 6, 62–64], in their references and, certainly,
in many other publications). The alluded discussions were
generated within following circumstances. On one hand, ac-
cordingly to the mentioned views, E and t are regarded as
conjugated observables, having to be described by the next
operators and commutator

Ê = i~
∂

∂t
, t̂ = t·,

[
Ê, t̂

]
= i~. (15)

Then the operators Ê and t̂ should satisfy the conventional re-
lation (2) in a nontrivial version. On the other hand, because
of the fact that, in terms of usual QM, the time t is a deter-
ministic but not random variable, for any quantum situation
one finds the following expressions ∆ΨE = “a finite quantity”
respectively ∆Ψt ≡ 0. But these expressions invalidate the re-
lation (2) and consequently the E–t pair shows an anomaly in
respect with the alluded conventional ideas, especially with
the precept BP4. For avoiding the noted anomaly, within the
literature about E–t pair, it was substituted the unsuitable re-
lation (2) by some adjusted formulas written generically as
follows

Ξ E · Ξ t >
~

2
. (16)

The so introduced quantities ΞE and Ξt have various signif-
icances such are: (i) line-breadth and half-life of a decaying
excited state, (ii) frequency domain and temporal widths of a
wave packet, (iii) ΞE = ∆ΨE and Ξ t = ∆ΨA · (d〈A〉/dt)− 1, with
A = an arbitrary observable.

As regards the adjusted formulas (16) note firstly the fact
that various of their versions are not congruent with the orig-
inal conception of relation (2). Also the respective versions
are not mutually equivalent from a mathematical (theoreti-
cal) viewpoint. So they have no reasonable justification in
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the true QM framework. Moreover in specific literature none
of the formulas (16) is accepted unanimously as a correct (or
natural) substitute for conventional relation (2).

Now it is the place to present the following clarifying re-
marks. Even if the E–t pair is considered to be described by
the operators (15), according to the true QM terms, one finds
the relation (

ÊΨ, t̂Ψ
)

=
(
Ψ, Ê t̂Ψ

)
− i~. (17)

By comparing this relation with condition (A.3) one sees di-
rectly that the E-t pair cannot ever satisfy the respective con-
dition. This is the essential reason because of which for the
E–t pair the conventional relation (2) is not applicable at all.
Nevertheless, for the same pair described by the operators
(15), the QM relation (A.2) is always true. But because in
QM the time t is a deterministic (i.e. non-stochastic) variable
in all cases the respective true relation degenerates into the
trivial equality “0 = 0”.

The above noted comments lead to the next findings:

• In case of the E–t pair the conventional views (of CIUR
doctrine and UR–QMS philosophy) are completely
nonfunctional.
• Genuinely, within a true QM framework, the time t is

in fact a pure deterministic (non-stochastic) quantity
without any standard deviation (or fluctuation).

But, taken together, such findings about time-energy pair
must be reported as a serious and insurmountable deficiency
of CIUR doctrine and UR–QMS philosophy.

3.9 D9: Atypical analogues of UR (1) and (2)

By basic precept BP5 the UR philosophy claims idea that re-
lations (1) and (2) possess an essential typicality represented
by their QM uniqueness related with the systems of atomic
size. Consequently, the respective relations should not have
analogues in other areas of physics or for systems of radically
different sizes. But the respective idea is definitely denied by
some example that we will present below.

3.9.1 D9a: Classical Rayleigh formula

As a first example of an atypical analogue of the UR (1) can
be quoted the formula

sinα �
λ

d
(18)

which expresses [35, 39, 40, 65] the Rayleigh resolution cri-
terion from classical optics. In (18) α denotes the “angular
resolution”, λ is the wavelength of light, and d represents the
diameter of lens aperture. Note that criterion (18) was intro-
duced in classical optics in 1879, i.e. by long time before the
QM appeared. Later one relation (1) was introduced by tak-
ing in (18)d ∼ ∆T E · q for coordinate uncertainty, respectively
λ = (~/p) for momentum p (through wave-particle duality
formula) and p · sinα ∼ ∆T E · p for momentum uncertainty.

3.9.2 D9b: Classical “Gabor’s uncertainty relation”

An example of an atypical analog of (2) can be found within
the mathematical harmonic analysis in connection with a pair
of random quantities regarded as Fourier conjugated variables
(see [66, 67] and the Appendix C below). In non-quantum
physics such an analogue is known [67] as “Gabor’s uncer-
tainty relation” which can be represented through the relation

∆t · ∆ν >
1

4π
. (19)

This last relation (19) shows the fact that for a classical signal,
regarded as a wave packet (of acoustic or electromagnetic na-
ture), the product of the “uncertainties” (“irresolutions”) ∆t
and ∆ν in the time and frequency domains cannot be smaller
than a specific constant.

3.9.3 D9c: A relation regarding thermodynamic observ-
ables

Another example of an atypical similar of UR (2) is given by
the following classical formula

∆WA · ∆WB > |〈δWA · δWB〉W | (20)

showed as relation (D.3) in Appendix D of the present arti-
cle. The elements (notations and physical significances) im-
plied in (20) are those detailed in Appendix D. The respective
elements are specific to the phenomenological theory, initi-
ated by Einstein, about fluctuations of macroscopic thermo-
dynamic observables (see [20, 68–72] and Appendix D be-
low).

Note that, from the perspective of mathematics (more ex-
actly of probability theory), the macroscopic formula (20) and
UR (2) are analogue relations, both of them regard the fluc-
tuations of the corresponding observables judged as random
variables. Moreover they describe the intrinsic properties of
considered systems (of macroscopic-thermodynamic respec-
tively quantum nature) but not aspects of measurements per-
formed on the respective systems. The corresponding mea-
surements can be described through a distinct approaches
modeled/depicted as transmission processes for stochastic
data (see below Appendix E and Section 5 in present article).

As regards the formula (20), the following notifications
should be done too. To a some extent the respective formula
can be considered as being member to a family of so called
“thermodynamic UR”, discussed in a number of publications
from the last century (see [78, 79] and references). Note that
the alluded membership is true only in respect with the “regu-
lar” subset of respective family, derivable from the Einstein’s
phenomenological theory. But the mentioned family includes
moreover a class of “irregular” relations. The most known
such an “irregular” relation regards the conjugate variables
energy U and temperature T of a thermodynamic system. It
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has [78] the form

∆U · ∆
(

1
T

)
> kB (21)

where kB denote the Boltzmann’s constant.
It must be noted now the reality that fluctuation formula

(20) and “irregular” relations like is (21) are completely dis-
similar, first of all, due to the important distinction between
reference frames of their definitions. The respective dissim-
ilarity is pointed out by the following aspects. On the one
hand, the quantities ∆WA and ∆WB from (20) are defined by
referring to the same state of the considered system. On the
other hand the quantities U and T which appear in (21) refer
to different states of a system, namely states characterized by
an energetic isolation respectively by a thermal contact. Due
mainly to the above mentioned dissimilarity: “a derivation of
the uncertainty relation (21) analogous to that of the usual
Heisenberg relations (i.e. UR (2)) is impossible” [78].

Add here the fact that, within associate literature, it was
reported a number of controversies about the aspects regard-
ing the possible similarities between the “thermodyna-
mic UR” (mainly from the same subset as (21)) and quantum
UR (2) (see [78] and references). Among respective aspects
can be quoted:

• compatibility of macroscopic observables,

• commutativity of thermodynamic variables and

• reconstruction of QM from hidden variables theories
similarly with the rebuilding of thermodynamics
through subjacent molecular considerations.

Note that the just mentioned aspects are not taken into
account (as relevant elements) for our present survey on defi-
ciencies of prevalent philosophy regarding UR and QMS.

3.9.4 D9d: On the so called macroscopic operators

In the spirit of conventional precept BP5 the uniqueness of
UR (2) consists in its strict specificity for micro-particles (of
atomic size), without analogues in cases of macroscopic sys-
tems. But, as it is pointed out through relation (D.12) from
Appendix D, in case of macroscopic thermodynamic system
studied in quantum statistical physics one finds the formula

∆ρA · ∆ρB >
1
2

∣∣∣∣〈[Â, B̂]〉
ρ

∣∣∣∣ . (22)

This last formula is similar with the conventional UR (2)
(more exactly, mathematically, with its primary versions
(A.7) and (B.4)). Due to such a similarity, probably, some
publications (e.g. [74] and references) have tried to regard
(22) as a macroscopic UR. But the respective regard was
found to be incompatible with the known UR–QMS philoso-
phy, mainly with the precept BP4.

The alluded incompatibility is pointed out by the follow-
ing facts. On the one hand, in spirit of UR philosophy (pre-
cepts BP1–BP4), the quantities ∆ρA and ∆ρB from
(22) should be considered as measuring uncertainties of mac-
roscopic observables A and B. Additionally when the oper-
ators Â and B̂ and do not commute (i.e. [Â, B̂] , 0), ac-
cording to (22), the quantities ∆ρA and ∆ρB can be never re-
duced concomitantly to null values. Consequently, in terms of
UR–QMS philosophy, for any situation, the non-commutable
macroscopic observables A and B are allowed to be measur-
able simultaneously only with non-null and interconnected
uncertainties. But, on the other hand, according to the clas-
sical physics any two macroscopic observables can be mea-
sured concurrently with unlimited accuracies and without any
interrelated uncertainties.

For avoiding the above noted incompatibility some par-
tisans of UR philosophy have suggested the following expe-
dient. Abrogation of (22) by replacement of genuine macro-
scopic operators Â and B̂ with another quasi-diagonal opera-
tors Â and B̂ (i.e. with operators whose representations in any
base are quasi-diagonal matrices). Such substituting opera-
tors should to commute and so the right hand term in (22) to
be (quasi) null (i.e.

∣∣∣〈[Â, B̂]〉
ρ

∣∣∣ ≈ 0). Through the mentioned
substitution the inconvenient relation (22) could be changed
with the more convenient formula

∆ρA · ∆ρB >
1
2

∣∣∣∣〈[Â, B̂]〉
ρ

∣∣∣∣ ≈ 0. (23)

Then it seems to be possible that the substituted macroscopic
uncertainties ∆ρA and ∆ρB to be reduced simultaneously to
arbitrarily small (even zero) values. Apparently, such a pos-
sibility should to harmonize the interpretation of the relation
(23) with the concepts of classical physics.

However, in fact, the above mentioned harmonization is
not possible and the suggested expedient is useless. This, at
least, due to the following reasons:

• Firstly, the relations (22) cannot be abrogated/substi-
tuted if the entire mathematical framework of quantum
statistical physics is not abrogated/substituted too.
• Secondly, in common practice of studies of quantum

statistical systems (e.g.such are the ones investigated
in [80, 81]) are used the genuine operators Â and B̂ but
not the quasi-diagonal ones Â and B̂.
• As a third reason, the following fact can be also noted.

Even in certain situations when the original operators
Â and B̂ are quasi-diagonal in the sense of the men-
tioned expedient, the relation (23) does not turn into a
form having a null term in the right hand side. Such a
situation can be found [20] in case regarding a macro-
scopic paramagnetic system made of a huge number
of independent 1/2-spins. In such a case as macro-
scopic operators appear the Cartesian components M̂α

(α = x, y, z) of the system magnetization. Note that the
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operators M̂α are quasi-diagonal in the sense required
by the aforesaid expedient/substitution. But, for all
that, the respective operators do not commute because
[M̂α, M̂β] = i~γ · εαβµ · M̂µ (γ = magneto-mechanical
factor and εαβµ denotes the Levi-Civita tensor).

By taking into account the above pointed out deficiencies
D9 (including D9a, D9b, D9c and D9d) one may record the
following conclusion. The relations (D.12)/(22) are relations
regarding macroscopic areas of physics but not pieces which
should be adapted to the requirements of prevalent philoso-
phy about UR and QMS.

3.10 D10: On the uniqueness of quantum measurements

Let us refer now to the uniqueness character of conventional
relations (1) and (2) with regard to the measurements pecu-
liarities at quantum level. The aforesaid character was largely
debated in literature and it has generated the still open ques-
tions about the main characteristics (conceptual relevance and
description procedures) of Quantum Measurements (QMS).
By promoting all the assertions from percepts BP1–BP4 the
UR–QMS philosophy tried to enforce the opinion that rela-
tions (1) and (2) are closely linked with the measuring partic-
ularities that are unique in quantum context, without any cor-
respondence (analogy) in non-quantum domains of physics.
The mentioned opinion, often promoted as a true dogma,
dominates the mainstream of existing publications.

On the other hand, as we have argued above through the
deficiencies D1–D9, the alluded opinion is completely un-
founded because, genuinely, the respective relations are:

• either an old-fashioned (and removable) empirical con-
vention (in case of (1)),

• or simple (non-magistral) theoretical formula (in case
of (2)).

Within UR–QMS prevalent philosophy, as a widespread
belief, the uniqueness peculiarities of QMS are motivated
through the so called “observer effect”. The respective effect
is presented as a perturbing influence of observer (by experi-
mental devices) on investigated systems and on measuring re-
sults. It is presumed to differentiate radically the QMS from
classical measurements (of macroscopic physics). Such ef-
fects are absolutely unavoidable and affected by notable un-
certainties in quantum contexts but entirely preventable and
with negligible inaccuracies in classical situations.

The above mentioned belief is categorically disproved by
the following observations. The “observer effect” appear not
only in QMS but also in some classical measurements (e.g.
[82] in electronics or in thermodynamics). Of course that in
classical cases the measuring inaccuracies can be made neg-
ligible (by adequate improvements of experimental devices
and/or procedures). It should be noted, that, in principle,
quantum uncertainties can be also diminished (for example,
with the super-resolution techniques discussed above in D1).

Then the idea of uniqueness quantum measuring charac-
ter for conventional relations (1) and (2), promoted by UR
philosophy through BP5, proves oneself as being a ground-
less fiction which should be disregarded. But such a disre-
gard come to fortify the J. Bell’s thinking [83, 84] that: “the
word ‘measurement’ should be avoided (or even . . . banned)
altogether in quantum mechanics”. Some annotations about
the respective thinking are given below in Section 5 where
we will present briefly a non-conventional approach of QMS
problems.

3.11 D11: On the uniqueness of Planck’s constant

Another aspect of quantum uniqueness invoked in precept
BP5 regards the presence of Planck’s constant ~ as a spe-
cific symbol in conventional quantum relations (1) and (2),
comparatively with a total absence of some similar symbols
in all classical (non-quantum) formulas. We shall examine
the alluded aspect in regard with the relation (2). Then of
prime importance is to notify the fact that, mathematically,
quantum observables from the relation (2) have a stochastic
(non-deterministic) character. But a completely similar char-
acter one finds in cases of macroscopic observables implied
in formula (20) regarding fluctuations specific to macroscopic
thermodynamic systems.

Both kinds of mentioned stochastic observables describe
fluctuations (at quantum respectively macroscopic scale).
The mentioned fluctuations are characterized quantitatively
by the corresponding standard deviations such are ∆ΨA or
∆WA. But, mathematically, the standard deviation indicates
quantitatively the stochasticity (randomness) degree of an ob-
servable. This in the sense that the alluded deviation has a
positive or null value as the corresponding observable is a
random or, alternatively, a deterministic (non-stochastic) vari-
able. Consequently the quantities ∆ΨA and ∆WA can be re-
garded as similar indicators of stochasticity for quantum re-
spectively macroscopic observables.

In principle for macroscopic thermal fluctuations the stan-
dard deviations like is ∆WA can have various expressions (de-
pending on system, state and observable). Apparently, it
would seem that the respective expressions do not contain any
common element. Nevertheless such an element can be found
as being materialized by the Boltzmann’s constant kB (see re-
lation (D.4) in Appendix D below and articles [71, 73]). So,
for any macroscopic fluctuating observable A, the quantity
(∆WA)2 (i.e. dispersion = square of the standard deviation)
appears as a product of Boltzmann’s constant kB with factors
which are independent of kB.

This means that the quantity (∆WA)2, in its quality of
quantitative indicator of thermal fluctuations, is directly pro-
portional with kB. Consequently (∆WA)2 has a non-null re-
spectively null value as kB , 0 or kB → 0 (Note that because
kB is a physical constant the limit kB → 0 means that the
quantities directly proportional with kB are negligible com-
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paratively with other quantities of same dimensionality but
independent of kB). On the other hand, the standard deviation
∆WA is a particular indicator for macroscopic stochasticity
revealed through thermal fluctuations.

Bringing together the above noted aspects it can be said
that kB has the qualities of an authentic generic indicator for
thermal stochasticity which is specific for classical macro-
scopic fluctuating systems.

Now let us discuss about the quantum stochasticity whose
particular indicators are the standard deviations ∆ΨA. Based
on the relations (13) one can say that in many situations the
expressions for dispersions (∆ΨA)2 consist in products of
Planck constant ~ with factors which are independent of ~.
Then, by analogy with the above discussed macroscopic sit-
uations, ~ places itself in the posture of generic indicator for
quantum stochasticity.

The mentioned roles as generic indicators for kB and ~ (in
direct connections with the quantities ∆WA and ∆ΨA) regard
the one-fold (simple) stochasticity, of thermal and quantum
nature respectively. But in physics is also known a twofold
(double) stochasticity, of a combined thermal and quantum
nature. Such a kind of stochasticity one finds in cases of
macroscopic thermodynamic systems composed of statistical
assemblies of quantum micro-particles. The alluded twofold
stochasticity can be evaluated in a way through the disper-
sions (∆ρA j)2 which estimate the level of fluctuations in the
mentioned systems (see [20, 73, 76] and Appendix D below).
As it is noted in relation (D.13) the dispersions (∆ρA j)2 can be
given through of products containing the function f(kB, ~) =

~ · coth
( ~ω

2kBT
)

and factors which are independent of both kB

and ~.
Then it results that kB and ~ considered together turn out

to be a couple of generic indicators for the twofold (dou-
ble) stochaticity of thermal and quantum nature. Such a kind
of stochaticity is significant or negligible in situations when
kB , 0 and ~ , 0 respectively if kB → 0 and ~→ 0.

Now we can note the indubitable remark that Planck’s
constant ~ has an authentic classical analog represented by the
Boltzmann’s constant kB, both ~ and kB having relevant sig-
nificances as generic indicators of stochaticity. But such an
analogy contradicts directly the basic precept BP5 of CIUR
doctrine and UR–QMS philosophy.

3.12 D12: On the excessive ranking of UR

The ranking of UR to a position of principle, is widespread in
the dominant literature, mainly through the authoritative and
normative writings of many leading scientists. Surprisingly
the respective ranking is argued merely in few occasions (e.g.
in [10]) but only partially and not convincingly.

However, in [10], it was signaled the fact that “over the
years, some authors and foremost K. Popper, have contested
this view, of such a . . . ‘ranking’ ”. The mentioned contes-
tation seems to have been motivated by the assertion: “un-

certainty relations cannot be granted the status of a princi-
ple on the grounds that they are derivable from the theory
(‘QM’), whereas one cannot obtain the theory from the un-
certainty relations”. The aforesaid motivation was minimized
and repudiated [10] through of the conventional (and preva-
lent) opinion that: “there are many statements in physical the-
ories which are called principles even though they are in fact
derivable from other statements in the theory in question”.
Note that in spite of the mentioned repudiation, it was added
in [10] the noteworthy observation that “Serious attempts to
build up quantum theory as a full-fledged Theory of Princi-
ple on the basis of the uncertainty principle have never been
carried out”.

As regards the above presented controversy our belief can
be expressed as follows. The Popper’s contestation of UR
ranking (i.e., in fact, of the precept BP6) has a genuine char-
acter while the opposing conventional opinion is nothing but a
questionable (and unfounded) attempt to preserve a predomi-
nant traditionalist doctrine (dogma).

Now, from another perspective, we wish to point out a
new important aspect. On the one hand a true scientific con-
ception attests indubitably the idea that: “A principle is state-
ment which is taken to be true at all times and all places
where it is applicable” [85]. On the other hand all previ-
ously proved deficiencies D1–D11 show that usual philosophy
of UR is not valid in a wide class of situations where they
should to be applied. Therefore such a philosophy cannot
provide (generate) a principle (fundamental concept) applica-
ble in an unquestionable manner for a large area of situations.
That is why it turns out to be totally unacceptable (and use-
less) the idea to raise the entire UR philosophy to a rank of
fundamental principle for QM.

Consequently, the precept BP6 shows oneself as being
nothing but an unjustified thesis. At the same time, from a
true scientific perspective, it is outside of acceptable usages
to put in practice an idea such is [10]: “we use the name “un-
certainty principle” simply because it is the most common
one in the literature”.

4 Which is really the true significance of UR?

Summing all the discussions incorporated within deficiencies
D1–D12 one can notify the following evident remarks:
• There are profound deficiencies regarding all the basic

elements and precepts of the conventional conceptions
(CIUR doctrine and UR–QMS philosophy).
• In their essence the respective deficiencies are unavoid-

able and insurmountable within own framework of re-
spective conceptions.
• Consequently the mentioned conceptions prove them-

selves as being undoubtedly in a failure situation which
impose their abandonment.

The above argued abandonment of conventional concep-
tions points out very clearly the indubitable ending of the ex-
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isting prevalent philosophy about UR. But a fair evaluation of
such an ending requires an adequate epilogue regarding the
future scientific status of the respective philosophy and of its
constitutive and associate concepts.

The alluded epilogue demands firstly, detailed re-evalua-
tions of the generative relations (1) and (2) from which have
been expanded themselves the mentioned philosophy and
concepts. The respective re-evaluations have to be done and
argued by taking into account all the aspects noted previously
within the texts of deficiencies D1–D12. Doing so one arrives
to the following observations:

• Relation (1) is nothing but an old-fashioned (and re-
movable) empirical convention. It persists as a piece
of historical reminiscence, destitute of any wonderful
status/significance for actual and future physics.
• Relation (2) proves to be only an ordinary QM formula,

of well-defined (but not universal) validity. In such a
posture it describes in a simple manner the connections
between fluctuation characteristics of two quantum ob-
servables.
• In fact the relations (1) and (2) have not any crucial

significance, for QM concretely and less so for physics
in general.
• Relations (1) and (2) or their “adjustments” have not

any connection with genuine descriptions of QMS.
• Particularly the respective relations do not depict in any

way the so called “observer effect” (i.e. perturbing in-
fluence of “experimenter” on the investigated system).

5 Considerations on quantum measurements

Besides the main discussions about the meaning of early re-
lations (1) and (2), the conventional UR philosophy gener-
ated also many collateral debates on Quantum Measurements
(QMS) (see [1–12, 86–88] and references). The respective
debates, still active in writings of many scientists, promoted
an appreciable diversity of viewpoints about conceptual sig-
nificance and practical importance of QMS. But in the same
context, were recorded observations like is the following one

• “Despite long efforts, no progress has been made . . .
for . . . the understanding of quantum mechanics, in
particular its measurement process and interpreta-
tion” [89].

Nevertheless, beyond the mentioned debates, the respective
subject of QMS involves also a matter of real interest for
physics. That matter regards the natural interest in developing
adequate theoretical description(s) for QMS, which should to
be proved through viable arguments and which have to be-
come of suitable utility for scientific and technical activities.

The above signaled situation have motivated interest for
both conventional and non-conventional approaches of QMS
problem. A modest non-conventional approach was put in
work progressively in our investigations over many years (see

[17–20, 47, 55, 90–94]). Here, as well as in all sections of
present article, we try to gather, extend, systematize and im-
prove the results of mentioned investigations in order to pre-
sent argued viewpoints about the main aspects of QMS mat-
ter.

5.1 D13: The incorrect association of QMS with UR

As a first main aspect of the so much debated QMS problem
is fact that it has a theoretical essence. Namely, it is focused
around the idea of developing a general theoretical model for
describing measurements on quantum systems. The respec-
tive model should have some similarity (a bit of reference)
with the one centered on Schrödinger equation within QM.

From the perspective of the such supposed similarity most
of publications promoted or accepted the opinion that QMS
have a basic essentiality for QM in itself. During the years
were recorded even assertions like the following one:

• ’the description of QMS is “probably the most impor-
tant part of the theory (QM)” ’ [5].

But note that both the mentioned opinion and assertion are
grounded on the belief that, mainly, the claimed essential-
ity/importance of QMS for QM is given by relations (1) and
(2) in terms of precepts BP1–BP6.

On the other hand, it is easy to see that the respective be-
lief is invalidated by the arguments from the entire collection
of deficiencies D1–D12 notified by us above in Section 3.

Now, besides the aforesaid notifications, for starting our
non-conventional approach of QMS subject, we take into ac-
count the following remarks of J. S. Bell:

• “I agree with what you say about the uncertainty prin-
ciple: it has to do with the uncertainty in predictions
rather the accuracy of ‘measurement’. I think in fact
that the word ‘measurement’ has been so abused in
quantum mechanics that it would good to avoid it al-
together” (see [83] and Appendix I below).

• “. . . The word (‘measurement’) has had such a dam-
aging effect on the discussions that . . . it should be
banned altogether in quantum mechanics” [84].

A similar account we give also to the next remark:

• “the procedures of measurement (comparison with
standards) has a part which cannot be described inside
the branch of physics where it is used”. [95]

The just noted remarks consolidate for us the following key
view:

• The significance of UR is an intrinsic question of QM
while the description of QMS constitutes an adjacent
but distinct subject comparatively with QM in itself.

As another reference element for starting our approach we
agree the following observation:
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• “it seems essential to the notion of measurement that
it answers a question about the given situation exist-
ing before the measurement. Whether the measurement
leaves the measured system unchanged or brings about
a new and different state of that system is a second and
independent question” [96].

In sense of above observation for a measured physical sys-
tem the “situation existing before the measurement” regards
the intrinsic properties of that system. The characteristics of
the respective properties play a role of input data (informa-
tion) for measuring actions. On the other hand for the same
system, the “answer (i.e. result) of measurement” is accu-
mulated in “output data (information)” that are provided by
measuring process. Correspondingly the whole measurement
can be considered as a transmission process for information
(stochastic data), while the measuring device appears as a
communication channel (viewed as in [97]).

So the whole image of a measurement can be depicted
through the scheme∣∣∣∣∣∣ input

data

〉
⇒

[
communication

channel

]
⇒

[
output
data

]
. (24)

For giving concrete descriptions of the above scheme in
cases of QMS (measurements on quantum systems) it should
also to take into view the next remark

• “To our best current knowledge the measurement pro-
cess in quantum mechanics is non-deterministic” [89].

In such a view the mentioned input and output data as well
the description of a QMS have to be presented by means of
some non-deterministic (stochastic or random) entities. For
a measured quantum system the totality of input data can be
considered as being comprised in its specific (intrinsic) wave
function Ψin, with known stochastic/probabilistic own signif-
icance. As regards the same system the output data should
be represented by some quantities having also stochastic fea-
tures. Formally, such quantities can be considered as being
incorporated in an output wave function Ψout. Then the mea-
suring process appear as communication channel which trans-
poses the wave function from a Ψin reading into a Ψout image.
So it can be suggested that, in case of a QMS, the scheme (24)
can be represented through the following generic pattern:∣∣∣∣∣∣ probabilistic

content of Ψin

〉
⇒

[
ŜCC

]
⇒

[
probabilistic

content of Ψout

]
(25)

where ŜCC, depicts the “Stochastic Communication Chan-
nel” regarded as an “operator” which describe the measuring
process.

The above suggested pattern regarding QMS can be par-
ticularized for various concrete situations by using QM ter-
minology. Two such particularization will be detailed below
in the Subsections 5.2 and 5.4.

5.2 On an observable with discrete spectrum

Let us refer to the case of a QMS for a single quantum ob-
servable A endowed with a non-degenerate discrete spectrum
of eigenvalues

{
a j

}n
j=1. The respective observable is described

by the operator Â which satisfy the equations Âϕ j = a j · ϕ j,
where

{
ϕ j

}n
j=1 signify the corresponding eigenfunctions.

If the set of eigenfunctions
{
ϕ j

}n
j=1 is regarded as an or-

thonormal basis the wave functions Ψin and Ψout can be rep-
resented as follows

Ψin =
n∑

j=1
α jϕ j,

n∑
j=1

∣∣∣α j

∣∣∣2 = 1,

Ψout =
n∑

k=1
βkϕk,

n∑
k=1
|βk |

2 = 1.

(26)

Then the the pattern (25) appears as a transformation of the
corresponding probabilities from in-readings

{
|α j|

2}n
j=1 into

out-images
{
|βk |

2}n
k=1. According to mathematics (probabil-

ity and information theories) the mentioned transformation
(i.e.the operator ŜCC) can be depicted by means of a dou-
bly stochastic matrix Mk j (k, j = 1, 2, . . . , n), interpreted as
in [98]. Such a depiction has the form

|βk |
2 =

n∑
j=1

Mk j ·
∣∣∣α j

∣∣∣2 (27)

where the matrix M jk satisfies the conditions

n∑
k=1

Mk j =

n∑
j=1

Mk j = 1.

As above described a QMS appear as being ideal respec-
tively non-ideal, accordingly as Mk j = δk j or Mk j , δk j,
where δk j denotes a Kronecker delta.

By using (26) and (27) for the η-expected values
〈
A
〉
η =(

Ψη, ÂΨη
)
, (η = in, out), of observable A one obtains

〈A〉in =
n∑

j=1
a j ·

∣∣∣α j

∣∣∣2,
〈A〉out =

n∑
k=1

ak · |βk |
2 =

n∑
k=1

n∑
j=1

ak · Mk j ·
∣∣∣α j

∣∣∣2 . (28)

In terms of above notations the error for the expected value of
A is:

E {〈A〉} = 〈A〉out −〈A〉in =

n∑
k=1

n∑
j=1

ak ·
(
Mk j − δk j

)
·
∣∣∣α j

∣∣∣2 (29)

where δ jk signifies a Kronecker delta.
Because, mathematically, the observable A is a random

variable it is characterized also by the standard deviations

52 Spiridon Dumitru. A Survey on Uncertainty Relations and Quantum Measurements



Issue 1 (April) PROGRESS IN PHYSICS Volume 17 (2021)

∆ηA (η = in, out), defined as follows

(∆inA)2 =
〈
(A − 〈A〉in)2

〉
in

=
n∑

j=1
a2

j ·
∣∣∣α j

∣∣∣2 − (
n∑

j=1
a j ·

∣∣∣α j

∣∣∣2)2

(∆outA)2 =
〈
(A − 〈A〉out)

2
〉

out

=
n∑

k=1

n∑
j=1

a2
k · Mk j ·

∣∣∣α j

∣∣∣2
−

(
n∑

k=1

n∑
j=1

ak · Mk j

∣∣∣α j

∣∣∣2)2

(30)

So for error E {∆A} of standard deviation regarding the
observable A one finds

E {∆ A} = ∆outA − ∆inA

=

√
n∑

k=1

n∑
j=1

a2
k · Mk j ·

∣∣∣α j

∣∣∣2 − (
n∑

k=1

n∑
j=1

ak · Mk j

∣∣∣α j

∣∣∣2)2

−

√
n∑

j=1
a2

j ·
∣∣∣α j

∣∣∣2 − (
n∑

j=1
a j ·

∣∣∣α j

∣∣∣2)2

.

(31)

Now note the fact that, to some extent, the above pre-
sented model of a QMS description has general features. This
because, excepting the conditions of being doubly stochas-
tic, the measuring matrix Mk j can consists of arbitrary com-
ponents. The mentioned generality/arbitrariness should be
reduced when one refers to the relatively accurate measure-
ments. Such a reduction can be modeled if the measuring
matrix elements Mk j are taken of the forms

Mk j = δk j + τk j,∣∣∣τk j

∣∣∣ << 1,
n∑

k=1
τk j =

n∑
j=1
τk j =0,

(32)

where δk j signifies the a Kronecker delta and τk j are real and
dimensionless quantities of (very) small values.

When the matrix elements M jk are approximated as in
(32) the errors E {〈A〉} and E {∆ A} from (29) and (31) can be
estimated through a direct calculation, respectively by means
of the first order term in Taylor series. Then one finds

E {〈A〉} =
n∑

k=1

n∑
j=1

ak · τk j ·
∣∣∣α j

∣∣∣2 ,
E {∆A} ≈

n∑
k=1

n∑
j=1

[
∂E(τk j)
∂τk j

]
τk j=0

· τk j,

(33)

where E
(
τk j

)
signifies the standard-deviation error E {∆ A}

from (31) in which one uses the approximations (32).
Relations (33) show that within mentioned approxima-

tions the parameters τ jk appear as significant indexes regard-
ing the measuring accuracies. So the discussed measurement

can be regarded as ideal when τk j = 0 for all k and j, respec-
tively as non-ideal when τk j , 0 at least for some values of k
or j.

5.3 D14: On the measuring scenarios with a unique sam-
pling

As it was pointed out in Subsection 5.1, a QMS is essentially a
non-deterministic process. Due to the mentioned essentiality,
the “result” of such a process must be represented in terms of
some stochastic (probabilistic) output data. But, surprisingly,
in conventional publications [99–106] a QMS is regarded as a
scenario (i.e. an imagined sequence of possible events) con-
ceived as a single sampling (i.e. as a unique-deterministic
selection from a set of random data). So regarded, a QMS
gives as its result (outcome) a single value in which falls
(collapses) the whole physical content of the measured ob-
servable. The referred falling scenarios are illustrated by two
widely debated themes regarding the Wave Function Collapse
(WFC) [99–103] respectively the Schrödinger’s Cat Thought
Experiment (SCTE) [104–106]. Historically, both the respec-
tive themes have occurred in a direct connection with the es-
tablishing of basic precepts BP1–BP6 of CIUR doctrine and
UR–QMS philosophy. Therefore, by taking into account the
deficiencies of precepts BP1–BP6, revealed above in Section
3, it is here the place to investigate also the possible deficien-
cies of the aforesaid scenarios.

Let us begin the announced investigation by referring to
the WFC-measuring-scenario. The respective scenarios ger-
minated from the hypothesis that, due to unavoidable mea-
suring perturbations, all QMS cause specific collapses (falls,
jumps) in states of the measured quantum systems. It can be
presented succinctly in usual terms of QM as follows.

Consider a measuring investigation focused on the sys-
tem and observable A discussed in the previous Subsection
5.2. For the respective system in WFC-scenario the “situa-
tion existing before measurement” is inscribed in its intrinsic
wave function Ψin. The probabilistic content of Ψin play the
role of input data (information) for investigation actions. But,
attention, within the WFC-scenario, the measuring actions
are imagined as providing as result an unique detertministic
outcome (udo) namely ak.

Note that ak is one of the eigenvalues
{
a j

}n
j=1 from the

spectrum of A. The eigenvalues
{
a j

}n
j=1 are defined through

the relations Âϕ j = a j · ϕ j ( j = 1, 2, . . . , n), where
{
ϕ j

}n
j=1

denote the eigenfunctions of operator Â associated to the ob-
servable A. Then, in terms detailed previously in Subsection
5.2, the whole WFC-scenario can be illustrated through the
following two schemes

∣∣∣∣∣{a j

}n

j=1
∪

{∣∣∣α j

∣∣∣2}n

j=1

〉
⇒

[
ûdo

]
⇒ ak, (34)

Spiridon Dumitru. A Survey on Uncertainty Relations and Quantum Measurements 53



Volume 17 (2021) PROGRESS IN PHYSICS Issue 1 (April)

∣∣∣∣∣∣∣∣Ψin =

n∑
j=1

α j · ϕ j

〉
⇒

[
ûdo

]
⇒ ϕk, (35)

where ûdo symbolize an operator which describe the mesur-
ing actions in WFC-scenario.

On the one hand, firstly, the schema (34) regards the mea-
surement of observable A. It show a falling of the respective
observable from a whole spectrum of values

{
a j

}n
j=1, having

probabilities
{∣∣∣α j

∣∣∣2}n
j=1 in measured state, to a unique value

ak as result of the scenario. Secondly, on the other hand, the
schema (35) refers to the evolution of the considered system
from a state “existing before the measurement” (at the begin-
ning of scenario) in an “after measurement” state (in the end
of scenario).

Specify here the fact that conventional publications (see
[99–103] and references) regard relation (35) as being the es-
sential symbol of WFC. That is why the mentioned publica-
tions tried to done analytical representations of the respective
relation considered as image of a dynamical physical process.
For such representations were promoted various inventions,
e.g. nonlinear extensions of Schrödinger equation or even ap-
peals to new kinds of fundamental physical constants.

The above mentioned WFC-scenario regarding QMS can
be admonished through the following remarks.

Firstly note that quantum observables are stochastic vari-
ables. Consequently a true measurement of such an observ-
able should be regarded as being provided not by an udo
(unique deterministic outcome) but by an adequate proba-
bilistic set of such outcomes. The data given by the respective
set are expected to provide relevant (and as complete as pos-
sible) information about the considered observables.

Secondly, the idea of describing QMS through an analyt-
ical representation of the WFC schema (35) proves oneself
as being an extravagance without solid arguments or credi-
ble hypotheses. Some main aspects of the respective extrav-
agance can be revealed by taking into account the stochastic
similitude between quantum and thermal (macroscopic) ran-
dom observables. Such a reveal we point out here as follows.

Let us refer to a macroscopic thermodynamic system de-
scribed in terms of phenomenological theory of fluctuations
(see below the Appendix D). For simplicity the system will
be considered to be characterized by a single macroscopic
thermodynamic observable A. Mathematically the macro-
scopic fluctuations of A are accounted by a real random vari-
able A and described by the probability density W = W(A).
Through the before specified terms can be pointed out the
analogy between measuring acts regarding the stochastic ob-
servables of quantum and macroscopic nature. An udo, spe-
cific to WFC-scenario, for a quantum observable was dis-
cussed succinctly above in connection with the relations (34)
and(35). A completely similar udo regarding a macroscopic
observable A can be depicted as follows. By means of an
udo for the variable A one obtains a unique value say A0.

Then for A the respective udo can be illustrated through the
following relations

|A ∈ (−∞,+∞)〉 ⇒
[
ûdo

]
⇒ A0, (36)

|W (A)〉 ⇒
[
ûdo

]
⇒ δ (A−A0) , (37)

where δ(X) denotes the Dirac’s δ-function of X.
In principle, the aspects of quantum and macroscopic ob-

servables, depicted by (34) and (35) respectively (36) and
(37) are completely similar. Therefore the discussions regard-
ing the two kinds of udo should be similarly too. But in the
macroscopic case the relation (37) is not considered at all as
illustrating a dynamic process. Moreover within the corre-
sponding macroscopic studies there is no interest for giving
an analytical representation (through some evolution equa-
tions) regarding a scenario of type (37). This even if for the
investigation of macroscopic observables one can use in prin-
ciple a subjacent description given by classical statistical me-
chanics. Then, by virtue of above noted similarity, it can be
said that the quantum scenario (35) should be not considered
as a dynamic process. Consequently the QM studies have to
be not concerned about the analytical representation (by some
evolution equations) of an udo as the one illustrated by (35).
Such regards about the scenario (35) are required, with all
the more, as QM is not complemented (until today) by any
subjacent theory of sub-quantum essence. Furthermore, for a
true physical approach, the result of the respective udo must
be gathered together with the answers of a significant statis-
tical group of many other akin udo. The respective answers
should allow to find adequate probabilistic estimators of the
investigated quantum observable.

Regarding the problem of QMS description, in the cate-
gory of falling scenarios, along with the WFC idea one finds
also the famous problem of SCTE (Schrödinger’s Cat
Thought Experiment). The respective problem, known also as
Schrödinger’s cat paradox, has retained the attention of many
debates over the decades (see [104–106] and references). The
essential element in SCTE is represented by a single decay of
an individual radioactive atom (which, through some macro-
scopic machinery, kills an initially living cat). But the indi-
vidual lifetime of a single decaying atom is a stochastic (ran-
dom) variable. That is why the mentioned killing decay is
in fact a twin analogue of the above mentioned udo taken
into account by the WFC-scenario. So, the above consid-
erations reveal the notifiable fact that, for a true evaluation
of a stochastic observable (such is the mentioned decay life-
time), is worthlessly to operate with an udo which gives an
unique result of measurement. Accordingly, the SCTE prob-
lem appears as a twin analogue of the IWFC-scenario, i.e. as
a fiction (figment) without any real scientific value.

The aforesaid fictional character of the SCTE can be
pointed out once more by observation [93,94] that it is possi-
ble to imagine a macroscopic thought-experiment completely
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analogous with the SCTE. Within the respective macroscopic
analogue, a cousin of Schrödinger’s cat can be killed through
launching a single macroscopic ballistic projectile. More spe-
cifically, the killing machinery is activated by an uncontrol-
lable (unobservable) sensor located within the “circular error
probable” (CEP) [109] of a ballistic projectile trajectory. The
hitting point of the projectile is expected to arrive within CEP
with the probability 50%. That is why the murderous action
of a single launched projectile is just as much unpredictable
as that of the unique radioactive atom within original SCTE.
Therefore, the mentioned macroscopic analogy makes clear
once more the fictional character of the SCTE.

According to the above-noted remarks, it should be re-
garded as worthless statements some assertions such as: “The
Schrödinger’s cat thought experiment remains a defining
touchstone for modern interpretations of quantum mechan-
ics” [106]. Note that such or similar assertions can be found
in many popular publications or in the texts disseminated via
the Internet (e.g. [110]).

Therefore SCTE problem as well as its similar WFC idea,
discussed previously, prove themselves to be not real scien-
tific topics but rather useless exercises (fictive scenarios),
without any conceptual or practical significance.

5.4 About observables with continuous spectra

As it was noted in the beginning of this Section 5, for physics,
development of suitable models for QMS description present
a natural necessity. Above, in Subsection 5.2 of this article,
it is detailed such a model regarding the measurement of an
observable endowed with a discrete non-degenerate spectra.
Here below we try to propose a measuring model with similar
purpose (QMS description) but regarding observables having
continuous spectra of values.

As in case with discrete spectrum for here regarded mea-
suring situation we adopt the same generic pattern depicted
in (25). The probabilistic content of wave functions Ψin and
Ψout incorporate information (data) about the intrinsic state of
the measured system respectively concerning the results pro-
vided by measurement. We will restrict our considerations
to the measurements of orbital characteristics for a quantum
spin-less micro-particle, supposed in a unidirectional motion
along the x-axis. Note that the announced considerations
can be easily extended for measurements regarding systems
with spatial orbital motions. Then the wave functions Ψη

(η = in, out) will be taken of the form Ψη = Ψη(x) (note
that here we omit to specify the time t as visible variable be-
cause the considered state of system refers to a given ante-
measurement instant).

Note now the fact that according QM rules the wave func-
tions Ψη have only significance of probability amplitudes but
not a direct probability meaning. Therefore, in the case of
interest here, the picture (25) of QMS should be detailed not
in terms of wave functions Ψη, but by means of some entities

with direct probabilistic meanings. This especially because
the real measuring devices report the occurrence of some ran-
dom values for investigated observables. In usual terms of
QM entities with direct probabilistic significance are carriers
of stochasticity: probability densities ρη and probability cur-
rents jη (η = in, out). Let us write the wave functions Ψη as
Ψη

(
x
)

=
∣∣∣Ψη

(
x
)∣∣∣ ·exp

{
i Φη

(
x
)}

. Then, for a micro-particle with
mass m considered as measured system, the alluded ρη and jη
are given by relations:

ρη = ρη (x) =
∣∣∣Ψη (x)

∣∣∣2 ,
jη = jη (x) =

~

m

∣∣∣Ψη (x)
∣∣∣2 · ∇xΦη (x) ,

(38)

where ∇x = ∂
∂x .

Now it must to specify that ρη and jη refer to the positional
and the motional kinds of probabilities respectively. Exper-
imentally the two kinds can be regarded as measurable by
distinct devices and procedures. The situation is similar with
that of electricity studies where the aspects regarding position
and mobility of electrical charges are evaluated through com-
pletely different devices and procedures. Due to the afore-
said specifications it results that in fact the generic pattern
depicted in (25) has to be amended as follows

|ρin (x) ∪ jin (x)〉 ⇒
[
ŜCC

]
⇒

[
ρout (x) ∪ jout (x)

]
. (39)

Mathematical considerations about the relations (25) and
(E.1), (early referred also in [107]) can be applied by simi-
larity for the pattern (39). So the respective pattern (i.e. the
operator ŜCC)can be represented through the next two trans-
formations:

ρout (x) =
+∞∫
−∞

Γ (x, x′) · ρin (x′) · dx′,

jout (x) =
+∞∫
−∞

Λ (x, x′) · jin (x′) · dx′.

(40)

Here Γ (x, x′) and Λ (x, x′) represent the corresponding dou-
bly stochastic kernels (in sense defined in [108]). This means
that the kernels < = {Γ , Λ} satisfy the following relations
+∞∫
−∞

< (x, x′) dx =
+∞∫
−∞

< (x, x′) dx′ = 1. The mentioned ker-

nels incorporate some extra-QM elements regarding the char-
acteristics of measuring devices and procedures. Such ele-
ments do not belong to the usual QM framework which refers
to the intrinsic (own) characteristics of the measured micro-
particle (system).

Through the above considerations can be evaluated the
effects induced by QMS. The respective effects regards the
probabilistic estimators for orbital observables A j of consid-
ered quantum system. Such observables are described by the
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operators Â j ( j = 1, 2, . . . , n). As in case of classical measur-
ing model (see the Appendix E), without any loss of general-
ity, here one can suppose that the quantum observables have
identical spectra of values in both in-and out-situations. In
terms of QM the mentioned supposition means that the oper-
ators Â j have the same mathematical expressions in both in-
and out-readings, i.e. that the respective expressions remain
invariant under the transformations which describe QMS. In
the here discussed case of a system with rectilinear orbital
motion the mentioned expressions depend on x and ∇x.

So one can say that in the situations associated with the
wave functions Ψη = Ψη (x) (η = in, out) the mentioned
quantum observables A j, can characterized by the follow-
ing lower order estimators (or numerical parameters): mean
values

〈
A j

〉
η, correlations Cη

(
A j, Ak

)
and standard deviations

∆ηA j. We use the common notation ( f , g) for scalar product

of functions f and g, i.e. ( f , g) =
+∞∫
−∞

f ∗ (x) · g (x) · dx. Then

the mentioned estimators are defined by the relations〈
A j

〉
η

=
(
Ψη, Â jΨη

)
, δηÂ j = Â j −

〈
A j

〉
η
,

Cη

(
A j, Ak

)
=

(
δηÂ jΨη, δηÂkΨη

)
,

∆ηA j =

√
Cη

(
A j, A j

)
.

(41)

Note here the fact that, on the one hand, the in-version
of discussions the estimators (41) are calculated by means of
the wave function Ψin. The respective function is supposed
as being known from the considerations about the intrinsic
properties of the investigated system (e.g. by solving the cor-
responding Schrödinger equation).

On the other hand, apparently, the evaluation of estima-
tors (41) in η= out-version requires to operate with the wave
function Ψout. But the respective appearance can be surpassed
[20] through operations which use the probability density ρout

and current jout. So if an operator Â j does not depend on
∇x = ∂

∂x , i.e. Â j = Â j (x), in evaluating the scalar prod-
ucts from (41) can be used the evident equality Ψ∗outÂ jΨout =

Â j · ρout. Additionally, when Â j depends on ∇x = ∂
∂x , i.e.

Â j = Â j(∇x), in the same products the expressions of the type
Â j(∇x)Ψout(x) can be converted in terms of ρout(x) and jout(x).
Namely from (38) one finds directly:

∇x |Ψout (x)| = ∇x
√
ρout (x),

∇xΦout (x) =
m
~

jout (x)
ρout (x)

.
(42)

By a single or repeated application of these formulas, any
expression of type Â j(∇x)Ψout(x) can be transcribed in terms
of ρout and jout.

The aforesaid discussion should be supplemented by spe-
cifying some indicators able to characterize the errors (uncer-
tainties) of considered QMS. For the above quoted observ-

ables A j such indicators are the following ones:

E
{〈

A j

〉}
=

〈
A j

〉
out
−

〈
A j

〉
in

E
{
C

(
A j, Ak

)}
= Cout

(
A j, Ak

)
−Cin

(
A j, Ak

)
E

{
∆ A j

}
= ∆outA j − ∆inA j


(43)

The above presented model regarding the description of QMS
for observables with continuous spectra is illustrated on a
simple example in the Appendix G below.

6 Some concluding remarks

The present paper was motivated by the existence of many un-
clearnesses (unfinished controversies and unelucidated ques-
tions) about the prevalent UR–QMS philosophy. It was built
as a survey on deficiencies of respective philosophy. So were
re-evaluated the main ideas claimed within the mentioned
philosophy. The basic results of the respective re-evaluations
can be summarized through the following Concluding Re-
marks (CR):
• CR1: Firstly, through multiple arguments, we have

proved the observation that the UR (1) and (2) have not any
essential significance for physics. Namely the respective UR
are revealed as being either old-fashioned, short-lived (and
removable) conventions (in empirical, thought-experimental
justification) or simple (and limited) mathematical formulas
(in theoretical vision). But such an observation comes to ad-
vocate and consolidate the Dirac’s intuitive prediction [23]:
“I think one can make a safe guess that uncertainty relations
in their present form will not survive in the physics of fu-
ture”. Note that the respective prediction was founded not
on some considerations about the UR essence but on an in-
tuition about the future role in physics of Planck’s constant
~. Dirac predicted that ~ will become a derived (secondary)
quantity while c and e will remain as fundamental constants
(c = speed of light and e = elementary electric charge). �
• CR2: A significant idea that emerges from previous dis-

cussions is the one that neither UR (1) and (2) nor various
“generalizations” of them, have not any connection with gen-
uine descriptions of Quantum measurements (QMS). All the
respective descriptions should be considered as a distinct (and
additional) subject which must be investigated separately but
somewhat in association with QM. Examples of such descrip-
tion are presented briefly, in Subsection, 5.2 and 5.4, for ob-
servables having discrete respectively continuous spectra. �
• CR3: Note that, in all of their aspects, the discussions

from Subsection 5.2 and 5.4 have a theoretical essence. This
means that, the entities like wave function Ψin as well as the
measuring indicators M jk, Γ (x, x′) and Λ (x, x′), are nothing
but abstract concepts which enable elaboration of theoretical
models regarding the descriptions of QMS. On the one hand
Ψin refers to the intrinsic data about the studied system. It is
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evaluated by means of some known theoretic procedures (e.g.
by means of the corresponding Schrödinger equation). On the
other hand the indicators M jk, Γ (x, x′) and Λ (x, x′) are intro-
duced as theoretical entities for modeling the characteristics
of the considered measuring devices/processes. �
• CR4: Correlated with the previous CR2 and CR3 it must

be specified that, in relation with QMS, the inventions of
Wave Function Collapse (WFC) and Schrödinger’s Cat
Thought Experiment (SCTE) are nothing but unnatural falling
scenarios. Consequently, as we have argued above in Subsec-
tions 5.3, both idea of WFC and SCTE problem prove them-
selves as being not real scientific subjects but rather unneces-
sary figments.�
•CR5: It is interesting to note here the fact that the history

of quantum mechanics was abounded by an impressive num-
ber of publications related to UR–QMS philosophy. So, for
the years between 1935 and 1978, as regards EPR (Einstein-
Podolsky-Rosen) paradox, associated [112] with the situation
of non-commuting observables, some authors [113] noted
that “> 106 papers have been written” — i.e. > 63 papers
per day (!?). Also the same publishing abundance about QM
matters (including UR–QMS philosophy) motivates remarks
such are the following ones: “A theory whose formalism can
be written down on a napkin whilst attempts to interpret it fill
entire libraries. A theory that has seen astonishing experi-
mental conformation yet leaves us increasingly perplexed the
more we think about it. How can we know so well how to
apply this theory but disagree so vehemently about what it is
telling us?” [114]. Probably that, in some future, the alluded
abundance will be investigated from historic and sociological
perspectives.
• CR6: Over the years original UR (1) and (2) were sup-

plemented with many kinds of “generalizations” (see [115–
120] and references). Until today, the respective “generaliza-
tions” appear as being de facto only extrapolation mathemat-
ical “constructs” (often of impressive inventiveness). As a
rule, they are not pointed out as having significance for some
concrete physical questions (of conceptual or experimental
relevance). But the existence of such significance is abso-
lutely necessary in order to associate the mentioned “gener-
alizations” with matters of certain importance for physics. In
the light of the discussions from the present paper one can
say that the sole physical significance of some from the re-
ferred “generalizations” seems to be their meaning as quan-
titative indicators of fluctuations (i.e. of stochasticity). But
from a practical perspective among the respective indicators
of practical usage are only the ones of relative lower order.
Therefore, for tangible interests of physics, all the discussed
“generalizations” seem to be rather excessive pieces. They
remain only as interesting mathematical “constructs”, which
ignore the desideratum: “Entities are not to be multiplied be-
yond necessity”. �
• CR7: In discussions and revaluations proposed in this

article, we have referred only to the prevalent philosophy of

UR and QMS regarding primarily the foundations and inter-
pretation of QM. But, as it is known, the mentioned philos-
ophy has been extrapolated in other “extra muros” domains,
outside of QM. As aforesaid domains can be quoted the fol-
lowing ones: mathematical computations, biology and med-
ical sciences, economy and finance, human behavior, social
sciences and even politics. A relevant bibliography regarding
the mentioned extramural extrapolations can be accessed easy
via internet from Google sites. Note that our above reevalua-
tions of UR–QMS philosophy do not contain analyzes refer-
ring to the mentioned extrapolations. Such analyzes remain
as task for scientists working in the respective domains. Here
we want to point out only one noticeable aspect that differ-
entiates the extramural UR from the primary ones. On the
one hand, according to their origin, the primary UR from QM
are strongly associated with a cardinal marker represented by
the Planck constant ~. On the other hand, as far as we know,
for extramural extrapolations of UR, the existence of simi-
lar markers, represented by cardinal indicators of the corre-
sponding scientific domains, were not reported. �
• CR8: In their essence, the above argued revaluations of

UR and QMS, do not disturb in any way the basic framework
of usual QM. This means that QM keeps its known specific
elements: concepts (wave functions, operators) with their sig-
nificances (of stochastic essence), principles and theoretical
models (Schrödinger equation), computing rules (exact or ap-
proximate) and investigate systems (atoms, molecules, meso-
scopic structures). Note here the observation that, for nowa-
days existing quantum debates, the above revaluations of UR–
QMS, offer a few arguments for lucrative parsimony in ap-
proaches of matters. The unlucrative aspects of those debates
have to be reconsidered too, probably in more or less spec-
ulative visions. We recall here that the basic framework of
QM can be deduced [121] from direct physical considera-
tions, without appeals to ambiguous discussions about UR
or QMS. The alluded considerations start from real physical
facts (particle-wave duality of atomic size systems). Subse-
quently they use the continuity equations for genuine prob-
ability density and current. After that one obtains the whole
framework of QM (i.e. the Schrödinger equation, expressions
of operators as descriptors of quantum observables and all the
practical rules of QM regarded as a theoretical model for the
corresponding investigated systems).

In the mentioned perspective, we dare to believe that, to
some extent, the revaluations of UR and QMS promoted by
us can give modest support for genuine reconsiderations re-
garding the interpretation and foundations of QM.�

Appendices

A: A brief compendium of some QM elements

Here we remind briefly some significant elements, selected
from the usual theoretical framework [5, 29, 30] of Quantum
Mechanics (QM). In this appendix we use Traditional Nota-
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tions (TN), taken over from mathematical algebra developed
long before QM appeared. Few specifications about the more
recent Dirac’s braket formalism are given in Appendix B.

So, in terms of TN, we consider a QM micro-particle
whose state (of orbital nature) is described by the wave func-
tion Ψ. Two observables A j ( j = 1, 2) of the respective parti-
cle will be described by the operators Â j. The notation ( f , g)
will be used for the scalar (inner) product of the functions
f and g. Correspondingly, the quantities

〈
Â j

〉
Ψ =

(
Ψ, Â jΨ

)
and δΨÂ j = Â −

〈
Â j

〉
Ψ will depict the mean (expected) value

respectively the deviation-operator of the observable A j re-
garded as a random variable. Then, by denoting two observ-
ables with A1 = A and A2 = B, one can be written the follow-
ing formula:(

δΨÂΨ, δΨÂΨ
)
·
(
δΨB̂Ψ, δΨB̂Ψ

)
>

>
∣∣∣∣(δΨÂΨ, δΨB̂Ψ

)∣∣∣∣2 (A.1)

which is nothing but a relation of Cauchy-Schwarz type from
mathematics.

For an observable A j considered as a random variable, in a
mathematical sense, the quantity ∆ΨA j =

(
δΨÂ jΨ, δΨÂ jΨ

)1/2

signifies its standard deviation. From (A.1) it results directly
that the standard deviations ∆ΨA and ∆ΨB of the mentioned
observables satisfy the formula

∆ΨA · ∆ΨB >
∣∣∣∣(δΨÂΨ, δΨB̂Ψ

)∣∣∣∣ . (A.2)

This last formula, with quantities ∆ΨA and ∆ΨB regarded to-
gether, play an influential role in QM debates within UR and
QMS philosophy. That is why the relation (A.2) can be called
Cauchy-Schwarz Quantum Formula (CSQF). Note that for-
mulas (A.1) and (A.2) are always valid, i.e. for all observ-
ables, particles and states. Therefore they must be considered
as primary QM formulas.

For the discussions regarding the UR–QMS philosophy it
is helpful to present the particular versions of formula (A.1)
in the cases when the operators Â = Â1 and B̂ = Â2 satisfy
the conditions

iff :
(
Â jΨ, ÂkΨ

)
=

(
Ψ, Â jÂkΨ

)
, ( j, k = 1, 2) (A.3)

(where iff ≡ if and only if). In the alluded cases it is true the
next formula(

δΨÂ Ψ, δΨB̂ Ψ
)

= 1
2

(
Ψ,

{
δΨÂ , δΨB̂

}
Ψ
)

− i
2

(
Ψ, i

[
Â, B̂

]
Ψ
)
.

(A.4)

Here
{
Â, B̂

}
= ÂB̂+ B̂Â and

[
Â, B̂

]
= ÂB̂− B̂Â signify the anti-

commutator respectively commutator of the operators Â and
B̂. Now note the fact that the two terms from the right hand
side of (A.4) are purely real and strictly imaginary quantities
respectively. Therefore in the mentioned cases from (A.2)

follows directly the enlarged inequality

(∆ΨA)2 · (∆ΨB)2 > 1
4

∣∣∣∣〈{δΨÂ, δΨB̂
}〉

Ψ

∣∣∣∣2
+ 1

4

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣2 . (A.5)

Sometimes this relation is referred to as the Schrödinger in-
equality. It imply subsequently the next two truncated in-
equalities

∆ΨA · ∆ΨB >
1
2

∣∣∣∣〈{δΨÂ, δΨB̂
}〉

Ψ

∣∣∣∣ , (A.6)

∆ΨA · ∆ΨB >
1
2

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣ . (A.7)

One observes that (A.7) is nothing more than the conventional
Robertson-Schrödinger relation (2), commonly quoted in the
literature of CIUR doctrine and UR–QMS philosophy. Note
that in the respective literature besides the relation (2)/(A.7)
sometimes the formula (A.5) is also mentioned. But, as a fact,
the respective mention is not accompanied with the important
specification that formula (A.5) is valid iff (if and only if) the
condition (A.3) is fulfilled.

In the end of this appendix we note the cases of more
than two observables, i.e. for a set A j ( j = 1, 2, . . . , n; n >
3), when the quantities α jk =

(
δΨÂ jΨ, δΨÂkΨ

)
constitute the

components of a positive semi definite matrix. In such cases,
similarly with (A.1), are true the formulas

det
[(
δΨÂ jΨ, δΨÂkΨ

)]
> 0; ( j, k = 1, 2, . . . , n) (A.8)

where det
[
α jk

]
is the determinant whose components are the

quantities α jk.
Note that within dominant publications promoted by the

UR–QMS philosophy the interpretation of many-observable
relations (A.8) is frequently omitted. The omission is due
most probably to the fact that the idea of referring to simul-
taneous measurements for more than two observables is not
supported convincingly by the current practice of experimen-
tal physics.

Addendum

Sometimes, in QM practice, a wave function Ψ is represented
as a superposition of the form

Ψ =
∑

n

αn · ϕn,
∑

n

|αn|
2 = 1, (A.9)

were {ϕn} denote a complete set of orthonormal basic func-
tions for which (ϕn, ϕm) = δnm = a Kronecker delta.

Then, in a state described by Ψ, the mean value of an
observable A is written as

〈A〉Ψ =
∑
n,m

α∗n · Anm· αm, Anm =
(
ϕn, Âϕm

)
, (A.10)
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with Anm indicating the matrix elements of operator Â in rep-
resentation given by {ϕn}.

When {ϕn} are eigenfunctions of Â the following formulas
can be written

Â ϕn = an · ϕn, 〈A〉Ψ =
∑

n

|αn|
2 · an, (A.11)

where an signify the eigenvalue of Â in respect with the eigen-
function ϕn.

Note that the notations and formulas reminded in this Ad-
dendum can be used in connection with all quantities dis-
cussed above in present Appendix.

B: On the omission of conditions (A.3) within current lit-
erature

The mentioned omission is encountered in many generally
agreed publications on QM (especially in textbooks, e.g. in
[29]). It appears when the conventional Robertson-Schrödin-
ger relation (A.7) is established by starting from the correct
formula ∥∥∥∥((δΨÂ + iλδΨB̂

)
Ψ
)∥∥∥∥ > 0 (B.1)

for the norm || f || of function f =
(
δΨÂ + iλδΨB̂

)
Ψ. In (B.1)

are used the notations presented in the previous Appendix A
and λ denote a real and arbitrary parameter. In order to go on
from this last formula to the relation (A.5), it is presumed the
equality((

δΨÂ + iλδΨB̂
)
Ψ,

(
δΨÂ + iλδΨB̂

)
Ψ
)

=(
Ψ,

(
δΨÂ

)2
Ψ

)
+ λ2

(
Ψ,

(
δΨB̂

)2
Ψ

)
−iλ

(
Ψ,

[
Â, B̂

]
Ψ
)
.

(B.2)

Then, due to the fact that λ is a real and arbitrary quantity,
from (B.1) it results the relation〈(

δΨÂ
)2
〉

Ψ
·

〈(
δΨB̂

)2
〉

Ψ
>

1
4

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣2 . (B.3)

In terms of notations from Appendix A this last relation gives
directly the formula

∆ΨA · ∆ΨB >
1
2

∣∣∣∣〈[Â, B̂]〉
Ψ

∣∣∣∣ (B.4)

which is nothing but the relation (A.7) from the previous Ap-
pendix.

Observation: Note here the next two aspects: (i) Intro-
duction of (B.4) demands with necessity the existence of eq-
uality (B.2), (ii) The respective equality is true only when the
operators Â and B̂ satisfy the conditions (A.3). The noted as-
pects must be signalized as omissions of the current literature.

Another context in which appears the omission of condi-
tions (A.3) is connected with the “braket notation” frequently
used in QM literature. Within the respective notation, known

also as Dirac’s Notation (DN), the scalar (inner) product of
two functions f and g is depicted as 〈 f | g〉 (see [29–31]).
Of course DN was used in many texts regarding UR–QMS
philosophy. But it must be pointed out the fact that in those
texts the condition (A.3), justified in the previous Appendix,
is totally omitted and its implications are not analyzed at all.
It is easy to notice that such an omission is due to the fact
that, within the DN, both terms (from left-hand and right-
hand sides) of the condition (A.3) have the same transcrip-
tion, namely: (

Â jΨ, ÂkΨ
)

=
〈
Ψ

∣∣∣Â jÂk

∣∣∣ Ψ〉
and(
Ψ, Â jÂkΨ

)
=

〈
Ψ

∣∣∣Â jÂk

∣∣∣ Ψ〉
.

(B.5)

Obviously, such transcriptions create confusion and obstruct
the just consideration of the condition (A.3) for cases where
it is absolutely necessary in debates about UR–QMS philoso-
phy. In order to avoid the above mentioned confusion in [32]
we suggested that DN to be replaced by an Improved Dirac
Notation (IDN). For such an IDN we proposed, that within
scalar product of two functions f andg, to insert additionally
the symbol “•” so that the respective product to be depicted
as < f | • |g >. In such a way it becomes directly visible the
separation of the entities implied in that product. Then, inside
of IDN, the two terms from (A.3) are transcribed as(

Â jΨ, ÂkΨ
)

=
〈
Ψ

∣∣∣Â j • Âk

∣∣∣ Ψ〉
and(
Ψ, Â jÂkΨ

)
=

〈
Ψ

∣∣∣•Â jÂk

∣∣∣ Ψ〉 (B.6)

Now one observes that in terms of IDN the condition (A.3)
appears in the form

iff 〈Ψ| Â j • Âk |Ψ〉 = 〈Ψ| • Â jÂk |Ψ〉 (B.7)

which no longer generates confusions in discussions about
UR–QMS philosophy.

C: Classical “uncertainty relations” in Fourier analysis

In classical mathematical harmonic analysis it is known a re-
lation (often named theorem) which, in terms of here used
notations, is similar with the quantum UR depicted by rela-
tion (2). Through current mathematical representations the
respective relation can be introduced as follows.

Let be a pair of variables x and ξ, with domains x ∈
(−∞,+∞) and ξ ∈ (−∞,+∞), regarded as arguments of a
function f (x) respectively of its Fourier transform

f̃ (ξ) =

+∞∫
−∞

exp (−2iπξ · x) · f (x) · dx. (C.1)

If the norm
∥∥∥ f

∥∥∥ of f
(
x
)

has the property
∥∥∥ f

∥∥∥ = 1, both
∣∣∣ f (x)∣∣∣2

and
∣∣∣ f̃ (ξ)∣∣∣2 are probability density functions for x and ξ re-

garded as real random (stochastic) variables. The variances

Spiridon Dumitru. A Survey on Uncertainty Relations and Quantum Measurements 59



Volume 17 (2021) PROGRESS IN PHYSICS Issue 1 (April)

of such variables, evaluated through the corresponding prob-
abilities, can be noted as

〈(
x −

〈
x
〉2)〉 and

〈(
ξ −

〈
ξ
〉2)〉. The

respective variances express the effective widths of functions
f (x) and f̃ (ξ). Then [66] the aforesaid relation/theorem is
given by the formula〈(

x − 〈x〉2
)〉
·
〈(
ξ − 〈ξ〉2

)〉
>

1
16π2 . (C.2)

In mathematics this formula express the fact that: “A nonzero
function and its Fourier transform cannot both be sharply lo-
calized” [66].

Often formula (C.2) is transcribed in a equivalent variant
as follows

∆x · ∆ξ >
1

4π
(C.3)

where ∆x and ∆ξ denote the corresponding standard devi-
ations of x and ξ, defined through conventions like ∆x =√〈(

x −
〈
x
〉2)〉. In non-quantum physics a version of rela-

tion (C.3) appears in studies of classical signals (waves of
acoustic or electromagnetic nature) where x = t = time and
ξ = ν = f requency. The respective version is written as

∆t · ∆ν >
1

4π
(C.4)

and it is known [67] as “Gabor’s uncertainty relation”. This
last relation (C.4) means the fact that, for a classical signal
(regarded as a wave packet), the product of the “uncertainties”
(“irresolutions”) ∆t and ∆ν in time and frequency domains
cannot be smaller than a specific constant.

Formally the classical relation (C.3) can be transposed to
the case of “quantum wave packets” often discussed in in-
troductory/intuitive texts about QM. Such a transposition fo-
cuses on the pairs of conjugated observables q–p (coordinate-
momentum) respectively t–E (time-energy). The correspond-
ing transpositions can be obtained by setting in (C.4) the sub-
stitutions x = q and ξ = p

(
2π~

)−1 respectively x = t and
ξ = E

(
2π~

)−1. The substitutions of variable ξ are nothing
but the so called duality relations (regarding the wave-particle
connections). By means of the mentioned substitutions from
(C.4) one finds the following two relations

∆q · ∆p >
~

2
respectively ∆t · ∆E >

~

2
. (C.5)

These last formulas are similar with the conventional UR (2)
for the pairs of observables q–p respectively t–E. Note that
the mentioned similarity is admissible iff (if and only if) one
accepts the conventions

∣∣∣〈[q̂, p̂
]〉

Ψ

∣∣∣ = ~ and
∣∣∣〈[t̂, Ê]〉

Ψ

∣∣∣ = ~.
But attention, the last convention has no more than a “meta-
phoric” value. This because in usual QM framework the time
t is a deterministic but not random (stochastic) variable and,
genuinely, for the respective framework a time operator t̂ is
nothing but a senseless and fictitious concept (see also the
discussions from the deficiency D8).

Note that the classical relation (C.3) can be transposed
also in another quantum formula regarding the ground state of
a Quantum Torsion Pendulum (QTP) (see Subsection 3.6.2).
For respective transposition in (C.3) it should to take f (x) =

Ψ(ϕ), x = ϕ and ξ = Lz · (2π~)−1. So one obtains the formula

∆ϕ · ∆Lz >
~

2
(C.6)

which is nothing but the lowest level version of the last of
formulas (13)

Addendum

It is worth to mention here the fact that, in the Fourier analy-
sis, the x-unlimited relations (C.3) and (C.4) have correspon-
dent formulas in x-limited cases (when the variable x has a
finite domain of existence). The respective fact can be evi-
denced as follows.

Let be x ∈ [0, b), with b a finite quantity and function f (x)
having the property f (0) = f (b − 0) := lim

x→b− 0
f (x). Then

the quantities

cn =
1
√

b

b∫
0

exp (−iknx) · f (x) · dx (C.7)

represent the Fourier coefficients of f (x), with kn = n · 2π
b and

n denoting integers i.e. n ∈ Z.
Moreover if the measure | f (x)|2 dx denotes the infinitesi-

mal probability for x ∈ (x, x+dx) the quantity |cn|
2 signify the

discrete probability associated to the value kn. Then for func-
tions A = A(x) and B = B(kn), depending on x respectively
on kn, the mean (expected) values 〈A〉 and 〈B〉 are writen as
follows

〈A〉 =
b∫

0
A (x) · | f (x)|2 dx,

〈B〉 =
∑
n

B (kn) · |cn|
2 .

(C.8)

As the most used such mean (expected) values can be quoted
the following ones: first order moments

〈
x
〉

and
〈
kn

〉
=

〈
k
〉
,

variances
〈(

x −
〈
x
〉)2〉 and

〈(
kn −

〈
k
〉)2〉 respectively standard

deviations ∆x =

√〈(
x −

〈
x
〉)2〉 and ∆k =

√〈(
kn −

〈
k
〉)2〉.

In order to find the announced x-limited correspondents
of x-unlimited relations (C.3) and (C.4) we take into account
the following obvious formula

b∫
0

∣∣∣∣∣∣λ (x − 〈x〉) · f (x) +

(
d
dx
− i 〈k〉

)
· f (x)

∣∣∣∣∣∣2 · dx > 0 (C.9)

where λ is a real, finite and arbitrary parameter. By using
the above noted probabilistic properties of function f (x) and
coefficients cn from (C.9) one obtains the relation

λ2
〈
(x − 〈x〉)2

〉
+ λ

(
b | f (0)|2 − 1

)
+

〈
(k − 〈k〉)2

〉
> 0. (C.10)
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Due to the mentioned characteristics of λ, from this last rela-
tion one finds the next formulas for variances of x and kn〈

(x − 〈x〉)2
〉
·
〈
(kn − 〈k〉)2

〉
>

1
4

(
b | f (0)|2 − 1

)2
(C.11)

respectively for standard deviations of x and kn

∆x · ∆k >
1
2

∣∣∣∣(b | f (0)|2 − 1
)∣∣∣∣ . (C.12)

The formulas (C.11) and (C.12) are x-limited analogues
of the x-unlimited relations (C.2) and (C.3).

In the end we note that formula (C.12) is applicable in
cases of wave functions (4) regarding non-degenerate circular
rotations. For such cases the application of (C.12) is obtained
through the following substitutions: x→ ϕ, b→ 2π, f (x)→
Ψ (ϕ) and kn →

Lz
~

. So from (C.12) it results

∆ϕ · ∆Lz >
~

2

∣∣∣∣(2π |Ψ (0)|2 − 1
)∣∣∣∣ . (C.13)

This last formula in case of wave functions (4) degenerates
into trivial equality 0 = 0

D: On the fluctuations of thermodynamic observables

Thermodynamic systems are macroscopic bodies composed
by huge numbers of microscopic constituents (molecules and
atoms). As whole bodies or through by their macroscopic
parts such systems are described by so-called thermodynamic
observables. The alluded observables are viewed as deter-
ministic variables (in usual thermodynamics) respectively as
stochastic quantities (in statistical physics). In the last view
they are characterized by fluctuations (deviations from their
deterministic values studied within usual thermodynamics).
The mentioned fluctuations are investigated within the next
conceptual frameworks: (a) phenomenological approach, (b)
classical statistical mechanics, respectively (c) quantum sta-
tistical physics.

In phenomenological approach [68–72], proposed for the
first time by Einstein, the respective fluctuations can be de-
picted briefly as follows. Let be a system of the mentioned
kind, whose properties are described by a set of thermody-
namic observables A j ( j = 1, 2, 3, . . . , n). Each such observ-
able A j is characterized by a global fixed value A j, evalu-
able through the methods of deterministic usual thermody-
namics. Then the fluctuations of observables A j should be
discussed in terms of random variables A j = A j − A j ( j =

1, 2, . . . , n), endowed with continuous spectra of values such
are A j ∈ (−∞,+∞). The random characteristics of variables
A j, i.e. the fluctuations of observables A j, are depicted in
phenomenological approach through the probability density
W = W

( ~A)
, where the vector ~A signifies the set of all vari-

ables A j. Commonly for W = W
( ~A)

one uses distributions
of Gaussian type. The mean value (expected) value

〈
A j

〉
W

and the random deviation δWA j of the observable A j are〈
A j

〉
W

=
+∞∫
−∞

A j ·W
(
~A
)
· d ~A,

δWA j = A j −
〈
A j

〉
W

= A j.

(D.1)

Usually, the fluctuations of observables A j ( j = 1, 2, 3, . . . , n)
are characterized by a small number of numerical parameters
evaluable through the random deviations δWA j. Examples
of such parameters are: dispersions

〈(
δWA j

)2〉
W =

〈(
A j

)2〉
W

and their equivalents the standard deviations ∆WA j =√〈(
δWA j

)2〉
W , second order moments (correlations)

〈
δWA j ·

δWAk
〉

W ( j , k) or even [72] higher order moments (correla-
tions)

〈(
δWA j

)r
·
(
δWAk

)s〉
W , (r + s > 3).

The correlations
〈
δWA j · δWAk

〉
W ( j, k = 1, 2, . . . , n) con-

stitute the components of a positive semi definite matrix. The
respective components satisfy [70, 71] the following correla-
tion formulas

det
[〈
δWA j · δWAk

〉
W

]
> 0 , (D.2)

where det
[
α jk

]
denote the determinant whose components are

the quantities α jk. Particularly for two thermodynamic ob-
servables A1 = A and A2 = B from (D.2) one obtains

∆WA · ∆WB > |〈δWA · δWB〉W | (D.3)

where ∆W A =

√〈(
δW A

)2〉
W denotes the standard deviation of

observableA. Mathematically (in sense of probability theory)
this last classical formula is completely analogous with the
quantum UR (2).

Regarded in their detailed expressions the standard de-
viations like is ∆WA (introduced above) have an interesting
generic property. Namely they appear as being in a direct and
factorized dependence of Boltzmann’s constant kB. The re-
spective dependence has the following physical significance.
It is known the fact that, mathematically, for a given quan-
tity the standard deviation indicates its randomness. This in
the sense that the respective quantity is a random or, alter-
natively, a deterministic (non-random) variable according as
the alluded deviation has a positive or null value. Therefore
∆WA can be regarded as an indicator of randomness for the
thermodynamic observable A. But, for diverse cases (of ob-
servables, systems and states), the deviation ∆WA has various
expressions in which, apparently, no common element seems
to be implied. Nevertheless such an element can be found
out [20,73] as being materialized by the Boltzmann’s constant
kB. So, in Gaussian approximation within the framework of
phenomenological theory of fluctuations one finds [20, 73]

(∆WA)2 = kB ·
∑
α

∑
β

∂Ā

∂X̄α
·
∂Ā

∂X̄β
·

(
∂2S̄

∂X̄α∂X̄β

)− 1

. (D.4)

Now note that, a kind of non-quantum formulas com-
pletely similar with (D.2) and (D.3), can be reported also
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for the fluctuations of thermodynamic observables described
in terms of classical statistical mechanics. In the respective
terms the above phenomenological notations and relations
can be transcribed formally as follows. Instead of random
variablesA j should to operate with the phase space ensemble
denoted as µ of all coordinates and momenta of molecules/
atoms which compose the thermodynamic system. Also in-
stead of observablesA j = A j +A j needs to be use the random
functions of the form A j = A j(µ). Therewith the probability
density W = W( ~A) should to be replaced with the statisti-
cal distribution function w = w(µ). Then, in terms of afore-
said description of considered fluctuations, as example, can
be written the relation

∆wA · ∆wB > |〈δwA · δwB〉w| (D.5)

which is completely similar with (D.3). Add here the obser-
vation that the standard deviations ∆wA and ∆wB from (D.5)
have a factorization dependence on kB of type (D.4), similarly
with the case of quantities ∆WA and ∆WB from (D.3).

For describing the fluctuations of thermodynamic observ-
ables A j in framework of quantum statistical physics as prob-
abilities carrier instead of phenomenological density W =

W
(~A)

should to use [73–76] the quantum density operator ρ̂:

ρ̂ =
∑

k

pk |ψk〉 〈ψk | . (D.6)

Here
∣∣∣ψk

〉
(k = 1, 2, . . . ) denote the wave functions of pure

states of system and pk are the corresponding probabilities of
the respective states. In the same framework the above men-
tioned random variables A j are substituted with the thermo-
quantum operators Â j ( j = 1, 2, . . . , n). In framework of
quantum statistical physics the mean value

〈
A j

〉
ρ and random

deviation δρÂ j of observable A j are〈
A j

〉
ρ

=
∑
k
pk 〈ψk | Â j |ψk〉

= tr
(∑

k
pk |ψk〉 〈ψk | Â j

)
= tr

(
ρ̂ · Â j

)
,

δρÂ j = Â j −
〈
A j

〉
ρ
.

(D.7)

The deviations δρÂ j can be used in description of numeri-
cal parameters of fluctuations for observables A j in the men-
tioned framework. As such parameters can be quoted: dis-
persions

〈(
δρÂ j

)2〉
ρ and their equivalents standard deviations

∆ρA j =

√〈(
δρÂ j

)2〉
ρ, second order moments (correlations)〈

δρÂ j · δρÂk
〉
ρ (where j , k) or even higher order moments〈(

δρÂ j
)r
·
(
δρÂk

)s〉
ρ (where r + s > 3).

In case of two thermodynamic observables A and B, re-
garded in framework of quantum statistical physics, can be
introduced also a correlation relation similar with (D.3) and
(D.5). Such a relation can be introduced as follows. For the

corresponding thermo-quantum operators Â and B̂ it is evi-
dently true the relation∑

k

pk

〈(
δρÂ + iλ δρB̂

)
ψk

∣∣∣∣ (δρÂ + iλ δρB̂
)
ψk

〉
> 0 (D.8)

where λ is an arbitrary real parameter. If in respect with the
functions ψk the operators Â and B̂ satisfy the conditions of
type (A.3) one can write∑

k
pk

〈(
δρÂ + iλ δρB̂

)
ψk

∣∣∣∣ (δρÂ + iλ δρB̂
)
ψk

〉
=

∑
k
pk

〈
ψk

∣∣∣∣(δρÂ)2 ∣∣∣∣ ψk

〉
+ λ2 ∑

k
pk

〈
ψk

∣∣∣∣(δρB̂)2 ∣∣∣∣ ψk

〉
+ iλ

∑
k
pk

〈
ψk

∣∣∣∣(δρÂ · δρB̂ − δρB̂ · δρÂ) ∣∣∣∣ ψk

〉
.

(D.9)

Then from (D.8) it results the relation〈(
δρÂ

)2
〉
ρ

+ λ2
〈(
δρB̂

)2
〉
ρ

+ λ
〈
i
[
Â, B̂

]〉
ρ
> 0 (D.10)

where
[
Â, B̂

]
denotes the commutator of operators Â and B̂.

Because λ is an arbitrary real parameter from (D.10) one
obtains the relation〈(

δρÂ
)2
〉
ρ
·

〈(
δρB̂

)2
〉
ρ
>

1
4

〈
i
[
Â, B̂

]〉2

ρ
(D.11)

or the equivalent formula

∆ρA · ∆ρB >
1
2

∣∣∣∣〈[Â, B̂]〉
ρ

∣∣∣∣ . (D.12)

Now let us remind the fact that in quantum statistics the
above discussed thermo-quantum quantities

〈(
δρÂ j

)2〉
ρ and

∆ρA are proved to be connected directly with a quantity from
deterministic (simple thermodynamic) description of thermo-
dynamic observables. The respective connection is due by
the known fluctuation-dissipation theorem [76] which is ex-
pressed by the relation〈(

δρÂ
)2
〉
ρ

=
(
∆ρA

)2

=
~

2π

+∞∫
−∞

coth
(
~ω

2kBT

)
· X′′ (ω) · dω.

(D.13)

Here kB = the Boltzmann’s constant, ~ = Planck’s constant
and T = temperature of the considered system. Also in (D.13)
the quantity X′′(ω) denote the imaginary part of the suscep-
tibility associated with the observable A. Note that X′′(ω)
is a deterministic quantity which is defined primarily in non-
stochastic framework of macroscopic physics [77]. Due to
the respective definition it is completely independent of both
kB and ~.

In the end of this Appendix the following conclusion may
be recorded. All the relations (D.2), (D.3), (D.4), (D.10) and
(D.11) are formulas regarding macroscopic fluctuations but
not pieces which should be adapted to the UR–QMS philoso-
phy requirements.
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E: On the measurements of macroscopic fluctuations

The fluctuations parameters, defined above Appendix D, re-
fer to the characteristics of intrinsic nature for the consid-
ered macroscopic systems. But in practical actions, for the
same systems, one operates with global parameters, of double
source (origin). A first source is given by the intrinsic prop-
erties of systems. A second source is provided by the actions
of measuring devices. In such a vision a measurement can be
regarded as an transmission process of information (refering
to stochastic data). Consequently the data about the intrinsic
properties of measured system appear as input (in) informa-
tion while the global results of the corresponding measure-
ment represent the output (out) information.

Here below we will appeal to the aforesaid vision for giv-
ing (as in [91, 107]) a theoretical model regarding the mea-
surement of thermal fluctuations. The respective fluctuations
will be considered in a phenomenological approach (see Ap-
pendix D). For simplicity let us consider a system character-
ized by a single macroscopic observable A = A − A, whose
thermal fluctuations are impacted within the random variable
A having the spectrum A ∈ (−∞,+∞). The intrinsic fluc-
tuations of A is supposed to be described by the probabil-
ity distribution Win = Win(A) regarded as carrier of input-
information. The results of measurements are depicted by
the distribution Wout = Wout(A) regarded as bearer of out-
information. Then the measuring process may be symbol-
ized as a transformation of the form Win(A) → Wout(A). If
the measuring device is supposed to have stationary and lin-
ear characteristics, the mentioned transformation can be de-
scribed as follows:

Wout (A) =

+∞∫
−∞

K
(
A,A′

)
·Win

(
A′

)
· dA′ (E.1)

where K(A,A′) appears as a doubly stochastic kernel (in
sense defined in [108]). This means that K(A,A′) satisfy

the relations
+∞∫
−∞

K (A,A′) dA =
+∞∫
−∞

K (A,A′) dA′ = 1.

Add here the fact that, from a physical perspective, the
kernel K(A,A′) incorporates the theoretical description of
all the characteristics of the measuring device. Particularly,
for an ideal device which ensure Wout(A) = Win(A), it must
to have the expression K(A,A′) = δ(A − A′), where δ(X)
denote the Dirac’s δ-function of argument X.

By means of distributions Wη = Wη(A) (η = in; out) can
be introduced the corresponding η-numerical-characteristics
of thermal fluctuations of observable A = A + A. Such are
the η-mean (expected) value 〈A〉η and η - standard deviation
∆ηA defined through the relations

〈A〉η =
+∞∫
−∞

A ·Wη (A) · dA,(
∆ηA

)2
=

〈(
A− 〈A〉η

)2
〉
η
.

(E.2)

The above considerations allow to note some observations
about the measuring uncertainties (errors) regarding the fluc-
tuating macroscopic observableA. Firstly the η = in-versions
of the parameters (E.2) describe only the “intrinsic” proper-
ties of the measured system. Secondly the η = out-variants
of the same parameters incorporate composite information
about the respective system and considered measuring device.
That is why one can say that, in terms of the above discus-
sions, the measuring uncertainties of observable A should be
described by the following error indicators (characteristics)

E {〈A〉} = 〈A〉out − 〈A〉in ,

E {∆ A} = ∆out A − ∆in A.
(E.3)

Observe here that because A has stochastic characteris-
tics for a relevant description of its measuring uncertainties
it is completely insufficient the single indicator E {〈A〉}. An
adequate minimal such description requires at least the cou-
ple E {〈A〉} and E {∆ A}. For further approximations of errors
caused by measurements can be taken into account [111] the
higher order moments like the next ones

E {〈(δA)n〉} = 〈(δoutA)n〉out − 〈(δinA)n〉in (E.4)

where δηA = A − 〈A〉, η = in, out and n > 3.

F: An exemplification for subsection 5.2

For presenting the announced exemplification we will refer
to QMS of the energy for a particle of mass m, located in
an infinite square well potential of width L [29]. The intrin-
sic state of the microparticle will be considered as being de-

scribed by the in-wave function Ψin (x) =
n∑

j=1
α j · ϕ j (x). Here

ϕ j (x) denote the eigenfunctions associated to the energetic
eigenvalues a j = E j = = · j2 where = =

(
~2π2/ 2mL2

)
and

j = 1, 2, 3, . . . . In the considered in-wave function the quanti-
ties α j are probability amplitudes corresponding to the eigen-
values E j.

We will restrict our exemplification by taking into ac-
count only the following circumstances. So we take n = 3
as the upper value of the inner energy of the particle while
for the amplitudes α j we will consider the values which give(
|α j|

2) = (0.5 0.4 0.1).
Then the intrinsic characteristics of the particle energy are

described by the next mean value and the standard deviation

〈E〉in = 3 · =, ∆inE = 2.45 · =. (F.1)

Accordingly with discussions from Subsection 5.2, for
a particle in the mentioned intrinsic state, the measurement
of energy can be described as follows. We need to define a
model-expression for the matrix (Mk j) from (29). As a first
example, we will consider a measurement done with a device
endowed with flawed (FL) characteristics. Such devices, for
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instance, can be associated with a matrix (Mk j) having the
form (

Mk j

)
FL

=

 0.5 0.3 0.2
0.4 0.4 0.2
0.1 0.3 0.6

 . (F.2)

Thus the outcomes of measurement will be characterized by
probabilities

(
|βk |

2
)

FL
= (0.34 0.38 0.23). With such proba-

bilities, the measurement outcomes for energy will be charac-
terized by the next FL-expected-value and FL-standard-
deviation

〈E〉FL = 3.98 · =, ∆FL E = 3.04 · =. (F.3)

Consequently, for the measurement described by (F.2), the
error indicators (29) and (31) acquire the following FL-values

EFL {〈E〉} = 0.9 · =, EFL {∆ E} = 0.59 · =. (F.4)

If, for the above mentioned energy/particle, we want to de-
scribe a measurement done with a device having larger char-
acteristics of accuracy (ACC) one can proceed as follows. In
the spirit of the relations (31), for the matrix (Mk j) instead
of the formula (F.2) we appeal, for example, to the following
expression

(
Mk j

)
ACC

=

 0.95 0.03 0.02
−0.03 1.04 −0.01
0.08 −0.07 0.99

 . (F.5)

So, for the probabilities associated to the outcomes of ACC-
measurement, one obtains

(
|βk |

2)
ACC = (0.489 0.4 0.11).

Associated to the respective probabilities, the considered
ACC-measurement of energy is characterized by the next
ACC-expected value and ACC-standard-deviation

〈E〉ACC = 3.088 · =, ∆ACC E = 2.52 · =. (F.6)

By comparing values from (F.6) with those from (F.1) one
sees that the referred ACC-measurement is characterized by
the following error indicators

EACC {〈E〉} = 0.08·=, EACC {∆ E} = 0.07·=. (F.7)

Finally, by comparing the results reported in relations
(F.4) and (F.7), we can note the following remark. Within
the above theoretical description of measurement, the error
indicators (for both expected value and standard deviation)
are much smaller in the case dealing with higher accuracy
characteristics comparatively with the one regarding flawed
features.

G: Illustrations for subsection 5.4

In order to illustrate the model discussed in Subsection 5.4, in
connection with the description of QMS, let us present here
an exercise taken by abbreviation from our article [20] (more
computational details can be found in the respective article).

We will refer to a micro-particle of mass m having an one-
dimensional motion along the x-axis. Its in-wave-function
Ψin is taken of the form Ψin(x) = |Ψin(x)| · exp {iΦin(x)} where

|Ψin (x)| ∝ exp
{
−

(x − x0)2

4σ2

}
, Φin (x) = kx. (G.1)

Here as well as below in other relations from this Appendix
the explicit notations of normalization constants are omitted
(they can be added easy by the interested readers). According
to the wave function (G.1) the intrinsic features of the con-
sidered microparticle are described by the parameters x0, σ
and k.

Through expressions (G.1), by means of formulas (38),
it is simple to find the analytical expresions for probability
density ρin and current jin. As doubly stochastic kernels sug-
gested in (40) we propose here the next two formulas

Γ
(
x, x′

)
∝ exp

{
−

(x − x′)2

2γ2

}
, (G.2)

Λ
(
x, x′

)
∝ exp

{
−

(x − x′)2

2λ2

}
. (G.3)

Here parameters γ and λ depict the characteristics of measur-
ing devices/procedures. The values of the respective param-
eters are associated with an ideal measurement (when both γ
and λ tend toward zero), respectively with a nonideal mea-
surement (in cases when at least one of the two parameters is
not-null).

Then, by using the procedures presented within Subsec-
tion 5.4, it is easy to find the out-entities ρout, jout and Ψout.
By using the respective entities together with the functions
from (G.1) one can evaluate the out and in versions of mean
(expected) values and standard deviations for observables of
interest. The respective evaluations ensure estimations of the
corresponding error indicators. So, for x̂ = x· = coordinate
and p̂ = −i~∇x = momentum as operators (observables) of
interest, one obtains [20] the following error indicators

E {〈x〉} = 0, E {∆ x} =

√
σ2 + γ2 − σ, (G.4)

E {〈p〉} = 0,

E {∆ p} = ~

∣∣∣∣∣∣
[

k2(σ2+γ2)
√

(σ2+λ2)(σ2+2γ2−λ2)
−

−k2 + 1
4(σ2+γ2)

] 1
2
− k

∣∣∣∣∣∣ .
(G.5)

Let us now restrict in the wave function (G.1) to the situation

when x0 = 0 k = 0 and σ =

√
~

2mω . Then (G.1) describe the
ground state of a harmonic oscillator with m = mass and ω =

angular frequency. As observable of interest of such an os-
cillator we consider the energy described by the Hamiltonian
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Ĥ = − ~
2

2m
d2

dx2 + mω2

2 x2. For the respective observable one finds

〈H〉in =
~ω

2
, ∆inH = 0, (G.6)

〈H〉out =

ω
[
~2 +

(
~ + 2mωγ2

)2
]

4
(
~ + 2mωγ2) , (G.7)

∆outH =

√
2 mω2 γ2

(
~ + mωγ2

)
(
~ + 2mωγ2) , (G.8)

E {〈H〉} =
m2ω3γ4

~ + 2mωγ2 , (G.9)

E {∆H} = ∆outH =

√
2 mω2 γ2

(
~ + mωγ2

)
(
~ + 2 mωγ2) . (G.10)

H: A more comprehensive description of measuring er-
rors for random observables

In Subsections 5.2 and 5.4 or Appendices E, F and G, we
have discussed the measuring errors for random observables
of quantum respectively macroscopic nature. For descrip-
tion of that errors, were used as indicators only the lower or-
der probabilistic parameters (moments and correlations). But
those indicators give only first sequences, of limited value,
for a global picture of the considered errors. A more compre-
hensive such a picture can be done in terms of informational
entropies. Shortly, for the above discussed observables and
errors, the suggested depiction can be illustrated as follows.

Firstly let us refer to the case of a macroscopic random
observableA whose measurements are outlined in Appendix
E. The intrinsic characteristics (fluctuations) ofA are consid-
ered as being described by the probability distribution Win =

Win(A) regarded as carrier of input-information for measure-
ments. The results of measurements are depicted by the distri-
bution Wout = Wout(A) associated with the out-information of
measurements. The informational entropies Hη (η = in, out)
connected with the above noted distributions are defined
through the formulas

Hη (A) = −

+∞∫
−∞

Wη (A) · ln [W (A)] · dA. (H.1)

By taking into account the transformation (E.1), the main
properties of the doubly stochastic kernel K(A,A′), as well

the formula ln (X) 6 X − 1 one can write

Hout (A) −Hin (A)

= −
+∞∫
−∞

+∞∫
−∞

dA · dA′ · K (A,A′) ·Win (A′)

· ln
[
Wout (A)
Win (A′)

]
> −

+∞∫
−∞

+∞∫
−∞

dA · dA′ · K (A,A′) ·Win (A′)

·

[
Wout (A)
Win (A′)

− 1
]

= 0.

(H.2)

Therefore the errors specific of measurements for A in its
wholeness can be described through the comprehensive error
indicator

E {H (A)} = Hout (A) − Hin (A) > 0. (H.3)

This relationship shows that the measuring process can
be described by a non-negative change in the informational
entropy associated with the investigated observable. The sit-
uation when the respective change is null corresponds to the
case of an ideal measurement (free of errors), mentioned oth-
erwise in connection with the relationship (E.1).

Mostly, the macroscopic fluctuations described by the
here used observable A are investigated in the so-called
Gaussian approximations. Then the entities Win(A) and
K(A,A′) which appear in (E.1) are given by the following
formulas

Win (A) ∝ exp
{
−
A2

2a2

}
,

K (A, A′) ∝ exp
{
−

(A−A′)2

2b2

}
,

(H.4)

where the explicit indication of normalization constants are
omitted (the omission can be filled easily by interested read-
ers). In the first formula from (H.4) a denotes the standard
deviation of intrinsic fluctuations within the measured sys-
tem. The symbol b in the second expression from (H.4) de-
picts the precision parameter of measuring device. Of course,
for a scientifically acceptable measuring process, it must be
considered that b � a.

In the alluded cases with Gaussian approximations the
output distribution Wout(A) has the form

Wout (A) ∝ exp
{
−

A2

2
(
a2 + b2)} .

Then the comprehensive error indicator (H.3) becomes

E {H (A)} =
1
2

ln
(
1 +

b2

a2

)
≈

1
2
·

b2

a2 . (H.5)
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Now let us refer to the comprehensive informational depic-
tion for measuring errors in cases of random quantum ob-
servables. We start the announced reference by discussing the
case presented in Subsection 5.2, regarding the measurement
of a quantum observable endowed with a discrete spectrum of
eigenvalues. In the respective case the input and output data
characterizing the measurement are depicted by the following
corresponding probabilities

P
j
in =

∣∣∣α j

∣∣∣2 , P
j
out =

∣∣∣β j

∣∣∣2 , ( j = 1, 2, . . . , n) . (H.6)

These probabilities can be associated with the next informa-
tion entropies

H
(
Pη

)
= −

n∑
j=1

P j
η · ln

(
P

j
η

)
, (η = in, out) . (H.7)

Consequently, for an extensive description of measuring er-
rors for the specified quantum observable, can be used the
below comprehensive indicator

E {H (P)} = H (Pout) −H (Pin) . (H.8)

By taking into account the transformation (27), the basic
properties of doubly stochastic matrix M jk, plus the evident
formula ln (X) 6 X − 1, through some simple calculations
(similar to those appealed in (H.2) and (H.3), one finds:

E {H (P)} > 0. (H.9)

This formula corresponds to ideal or non-ideal measurements,
in cases of equality respectively of inequality.

Note that, in cases of examples presented in Appendix F
related with Subsection 5.2, the relation (H.8) takes the ex-
presions

E {H (P)FL} = H
((
|βk |

2
)

FL

)
−H

((
|α j|

2
))

= 0.131,

E {H (P)ACC} = H
((
|βk |

2
)

ACC

)
−H

((
|α j|

2
))

= 0.018.

(H.10)

The above expressions correspond to measurements with
characteristics of flawed respectively accurate types. The
same expressions show that, even in informational-entropic
approach, the measuring errors are higher in cases with
flawed characteristics comparatively with the ones having ac-
curate features.

Now let us note some things about the comprehensive de-
scription of measuring errors in cases approached in Subsec-
tion 5.4 and in Appendix G, regarding of quantum observ-
ables with continuous spectra. The corresponding measure-
ments, depicted through the transformations (40), can be as-
sociated with the following informational entopies

Hη (ρ) = −
+∞∫
−∞

ρη (x) · ln
(
ρη (x)

)
· dx,

Hη (| j|) = −
+∞∫
−∞

∣∣∣ jη (x)
∣∣∣ · ln (∣∣∣ jη (x)

∣∣∣) · dx,

(H.11)

where η = in, out. Related with the above entropies can be
introduced the next comprehensive error indicators

E {H (ρ)} = Hout (ρ) −Hin (ρ) ,

E {H (| j|)} = Hout (| j|) −Hin (| j|) .
(H.12)

Through some simple calculations (completely similar to the
ones used in (H.2) and (H.3)) one finds that the error indica-
tors (H.11) satisfy the relations

E {H (ρ)} > 0, E {H (| j|)} . > 0 (H.13)

These relations with equalities or inequalities refer to the
cases of ideal respectively non-ideal measurements.

In particular case of measurement illustrated in Appendix
G, associated with the doubly stochastic kernels (G.2) and
(G.3), the error indicators (H.12) become

E {H (ρ)} = ln

√
σ2 + γ2

σ2 ≈
1
2

(
γ

σ

)2
,

E {H (| j|)} = ln

√
σ2 + λ2

σ2 ≈
1
2

(
λ

σ

)2

.

(H.14)

The last expressions of these indicators imply the approxi-
mations γ � σ and λ � σ, specific to the supposition that
measuring devices have high accuracies. Of course that the
cases with γ = 0 and λ = 0 depict the ideal measurements.

In the case of a harmonic oscillator, mentioned in the end
of Appendix G, the first error indicator from (H.12) get the
expression

E {H (ρ)} = ln

√
~ + 2mωγ2

~
≈

mω
~

γ2. (H.15)

Submitted on November 26, 2020
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I: A private letter from the late scientist J. S. Bell to the present author
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