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Abstract

In the last several decades, a confluence of work in the social sciences, philosophy, statistics, and computer science has developed a theory of causal inference using directed graphs. This theory typically rests either explicitly or implicitly on two major assumptions:

Causal Markov Assumption: For a set of variables in which there are no hidden common causes, variables are independent of their non-effects conditional on their immediate causes.

Causal Faithfulness Assumption: There are no independencies other than those entailed by the Causal Markov Assumption. 

A number of algorithms have been introduced into the literature that are asymptotically correct given these assumptions, together with various assumptions about how the data has been gathered. These algorithms do not generally address the problem of variables selection however. For example, are commonly used psychological traits such as extraversion, agreeableness, conscientiousness, etc. actually mixtures of different personality traits? In fMRI research, there are typically measurements of thousands of different tiny regions of the brain, which are then clustered into larger regions, and the causal relations among the larger regions are explored. Have the smaller regions been clustered into larger regions in the “right” way, or have functionally different regions of the brain been mixed together? In this paper I will consider the reasonableness of the basic assumptions, and in what ways causal inferences becomes more difficult when the set of random variables used to describe a given causal system is replaced by a different, but equivalent, set of random variables that serves as a redescription of the same causal system. 
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1 Introduction

In the last several decades, a confluence of work in the social sciences, philosophy, statistics, and computer science has developed a theory of causal inference using directed graphs. This theory typically rests either explicitly or implicitly on two major assumptions:

Causal Markov Assumption: For a set of variables in which there are no hidden common causes, variables are independent of their non-effects conditional on their immediate causes.

Causal Faithfulness Assumption: There are no independencies other than those entailed by the Causal Markov Assumption. 

A number of algorithms have been introduced into the literature that are asymptotically correct given these assumptions, together with various assumptions about how the data has been gathered. These algorithms do not generally address the problem of variables selection however. For example, are commonly used psychological traits such as extraversion, agreeableness, conscientiousness, etc. actually mixtures of different personality traits? In fMRI research, there are typically measurements of thousands of different tiny regions of the brain, which are then clustered into larger regions, and the causal relations among the larger regions are explored. Have the smaller regions been clustered into larger regions in the “right” way, or have functionally different regions of the brain been mixed together? In this paper I will consider the reasonableness of the basic assumptions, and in what ways causal inferences becomes more difficult when the set of random variables used to describe a given causal system is replaced by a different, but equivalent, set of random variables that serves as a redescription of the same causal system. 

This section will explain the basic setup for causal inference that I will consider. Although causal relations are often thought of as holding between events in space-time (e.g. turning a light switch, launching a ship), the causal laws I will consider here are laws that relate states to each other, rather than changes in states to each other. The usual laws of physics and many laws of biology are differential equations, and it is not entirely clear how well they fit into this framework, but they can be approximated by having the state of a property A at time t depend upon the state of A at time t-1. I am also not going to be concerned with actual causation here, although I will refer to specific individual at a specific time. So I am not interested in whether the aspirin was actually taken at time t, and if it was, whether it actually prevented a headache at t+1; I am merely interested in whether there is a causal law that make the probability of headache at t +1 different when aspirin is taken at t. The basic setup is similar to ones described in Spirtes et al. (2000) and Woodward (2005) and assumed in structural equation modeling.

1.1 Random Variables

Assume first that the relata of the type causal relation are the properties of an individual (or unit) at given times: e.g. taking aspirin at time t is a type cause of some (presumably diminished) strength of headache at t+1, for a given individual Joe. Also assume that for each unit, there is a set of properties at each time. To simplify matters, I will assume that time is discrete. Extending the basic setup to continuous time is non-trivial. 

Each property will be represented by a real-valued random variable, and A[t,u] will stand for the value of random variable A at time t for unit u. As an example, I will consider a population in which each unit in the population consists of a pair of particles, each of which has a position along a z-axis. I will call them Position_1 and Position_2. 

1.2 Structural Equations

Assume that for each property A of a unit U at a given time t, there is a causal law that relates the property to other properties at previous times. Further assume that these laws are a structural equation, that specifies the value of A as a function of other properties at previous times: A[t,u]:= f(V[t-1,u],…,V[t-n,u]), for some finite n.
 The equations are “structural” and an assignment operator (“:=”) is used in the equation to indicate that the equation is not to be interpreted as merely stating the relationship between the actual values of A[t,u] and V[t-1,u],…,V[t-n,u]. The equation also has counterfactual implications: regardless of how V[t-1,u],…,V[t-n,u] were to receive their values (e.g. naturally occurring, experimental manipulation) and regardless of which values they received, the equation would be satisfied. I will restrict attention to structural equations that relate different variables for the same unit. If it is natural to consider equations that relate variables for different units, it is possible to aggregate units into larger units - e.g. individual people can be aggregated into families.
 In the example, the equations are:

Position_1[u,t] := Position_1[u,t-1], t > 0

Position​_2[u,t] := Position​_2[u,t-1], t > 0

The assignment operator (“:=”) in the structural equations indicates that the equation holds regardless of how Position_1[u,t-1] and Position_2[u,t-1] obtain their values - either through the normal evolution of the system, or through being set by some intervention from outside the causal system. 
1.3 Initial Conditions

In order to prevent an infinite regress, there is also an initial value for each variable.

Suppose that there is a population of these units, and a probability distribution of the values of each random variable in the population. (Another possibility would be to start with a probability (propensity) for each unit, but I will not pursue that possibility here.) It is not necessary for what follows that each unit obey exactly the same set structural equations with the same parameters. Under certain assumptions, it is possible to allow units to have different parameter values, or even different equations. Thus the initial conditions that specify a value for each random variable at time 0 entails a joint distribution for the random variables at time 0. For example,

Position_1[t=0] ~ N(0,1)

Position​_2[t=0] ~ N(0,1)

I(Position_1,Position_2) (where I(A,B|C) means A is independent of B conditional on C, and I(A,B) means A is independent of B. If the set of variables contains a single member, such as Position_1, I will write Position_1 rather than {Position_1}). 

The structural equations across the population determine how the initial probability distribution evolves across time. Thus the value of the random variable for unit u at t is denoted A[u,t], and the random variable itself is denoted as A[t]. 
1.4 Actions and Manipulations

Also assume that it is possible to take an action that sets the values of each random variable to a value that is not necessarily the one that it would have in the course of the normal evolution of the system. After any such action, the system then evolves according to the structural equations, until another action is taken from outside to intervene on the causal system.

There are a variety of different kinds of such actions. Actions may either be specified at the level of a unit, or at the level of populations. In the former case, the most general kind of action I will consider is to set the value of each variable at time t as a function of the actual values of the variables at t and some finite set of times earlier than t.
 (A more general alternative would be to allow setting propensities as a function of earlier values of the variables, but I will not pursue this alternative here.) This is denoted by Set(V[u,t] := f(V[u,t],…V[u,t-n])) for some positive integer n. A special case of an action sets the value of A[u,t] to a constant: Set(A[u,t] := x), where x is either a real number, or the special value null. If x is a real number, this corresponds to replacing the structural equation for A[u,t] with A[u,t] := x. “null” corresponds to letting the variable value keep the value that it would take on in the normal course of the evolution of the system according to the structural equations; this corresponds to not replacing the structural equation for A[u,t]. Set(A[t] := x) sets the value of A[u,t] to x for all members u of the population.
The effect of an action on a causal system will generally depend upon how each variable in the system is set. I will adopt the convention that value of an action at any time is null unless it is specifically stated otherwise. Any action that sets the values of some subset of variables B, and has a null effect on V\B, is a manipulation of B. If the value that B is set to is not a function of V, then the manipulation is unconditional. Note that every action is a manipulation of some subset of variables, but whether or not an action is a manipulation of B depends upon what other variables are in V. This is an important point I will return to later. 

For example, the most general form of action that I will consider in the Position_1 - Position​_2 system at the level of a unit is the following: Set(f(Position_1[u,t],Position​_2[u,t]) := h(Position_1[u,t],…Position_1[u,t-n],Position_2[u,t], …, Position​_2[u,t-n])) where f(Position_1[u,t],Position​_2[u,t]) is a (propensity) density for Position_1[u,t] and Position​_2[u,t]), h is a measurable function and n is some finite integer. There are a variety of interesting special cases of these general actions. For example, Set(P(Position_1[u,t] := a,Position​_2[u,t] = null) is a deterministic unconditional individual manipulation of Position_1 and a null manipulation of Position​_2 because Position_1 is set to value a with probability 1 (deterministic) regardless of the values of Position_1[u,t] and Position[u,t] (unconditional), and no action is take on Position​_2 (individual). A null manipulation of Position​_2[u,t] does not change the current value of Position​_2[u,t]. There can be several different ways of achieving non-null manipulations in a given causal system. Set(Position​_2[u,t] = null) could be achieved by simply not touching a given Position and leaving it as it is. It could also be achieved by any method that does not affect the evolution of the system with respect to the variables in the system..

At the level of populations, the most general kind of action that I will consider is to set the joint distribution of the variables at time t as a function of the values of V at t and earlier times; this is denoted by Set(P(V[t]) := f(P(V[t],…,P(V[t-n])). An action that sets the joint distribution of a set of variables B and is null for the variables in V\B is a manipulation of B. If the distribution that B is set to is not a function of any variables in V, then the manipulation is unconditional. If P’(V[t]) has support at a single point, it is a deterministic manipulation, and is abbreviated by Set(V[t] := v). Again, note that whether or not an action counts as a manipulation of A[t] depends upon what other variable have been included in the causal system.
1.5 Causal Graphs

The causal graph corresponding to a set of variables can either be drawn for an individual unit, or for a population. For an individual unit, the causal graph G has a directed edge from A[u,t-n] to B[u,t] if and only if for some finite m there exists a pair of unconditional  manipulations of V[u,t-m],…V[u,t-1] that differ only in the values assigned to A[u,t-n] such that the resulting values of B[u,t] are different. For a population, the causal G has a directed edge from A[t-n] to B[t] if and only if for some finite m there exists a pair of unconditional manipulations of V[u,t-m],…V[u,t-1] that differ only in the distributions assigned to A[u,t-n] such that the resulting distributions of B[u,t] are different. (Note that the existence of an edge in the population causal graph entails the existence of an edge in some individual causal graph, but not vice-versa. It is possible that a manipulation changes the value of every individual unit but leaves the distribution of properties in the population the same.) If there is a directed edge from A[t-n] to B[t] then A[t-n] is said to be a direct cause of B[t].  Because of the assumptions about the structural equations, each graph is acyclic, and there are no edges between variables at the same time. If there is an edge from A[t-n] to B[t] in the causal graph, then A[t-n] is a parent of B[t] and B[t] is a child of A[t-n]. If there is a directed path from A[t-n] to B[t] in the causal graph, A[t-n] is an ancestor of B[t-n] and B[t-n] is a descendant of A[t-n]. It also turns out to be convenient to consider each variable to be its own ancestor and descendant (but not its own parent or child.) For example, the causal graph for the Position_1 - Position_2 causal system is:

Position_1[t=0] ( Position_1[t=1] ( … ( Position_1[t=n] …

Position​_2[t=0] ( Position​_2[t=1] ( … ( Position​_2[t=n] …

Figure 1
Note that Position_1[t] is independent of Position​_2[t’] for all t, t’, and that according to the causal graph and the structural equations, manipulating Position_1[t] affects Position_1[t’] for all t’ > t, and manipulating Position​_2[t] affects Position​_2[t’] for all t’ > t, but manipulating Position_1[t] has no effect on Position​_2[t’] for all t, t’, and manipulating Position​_2[u,t] has no effect on Position_1[u,t’] for all t, t’. 

The causal graph might seem redundant because the information it contains is a subset of the information in the structural equations. However, it plays an important role for several reasons. First, it is used by several algorithms for predicting the effects of manipulations (e.g. the Manipulation Theorem of Spirtes et al. 2000, and the Causal Calculus of Pearl 2000). It is also a useful step in the inference of causal systems from data. First, the data, background knowledge, and partial experimental knowledge can be used to infer a causal graph, or more typically, a set of causal graphs. Then the causal graph, together with the data, background knowledge, and partial experimental knowledge can be used to estimate the parameter values in the structural equations. Some more details about this process will be presented below. 

1.6 Weak Causal Markov Assumption

One of the (often implicit) fundamental assumptions used both in calculating the effects of manipulations, and in drawing inferences about causal graphs from sample data is the Causal Markov Assumption. I will not attempt to justify this assumption here, but several justifications are given in Spirtes et al. (2000). 

The version of the assumption I will use here can be stated in terms of the causal graph at the population level. If a probability distribution P and a DAG G have the relationship that each variable in P is independent of its non-descendants in G conditional on its parents in G, then P is said to be Markov to G. A set of variables V is said to be causally sufficient when every direct cause of two variables in V is also in V (i.e. there are no confounders of variables in V that have been left out of V.) The Causal Markov Assumption states that for a causally sufficient set of variables whose causal graph G is a directed acyclic graph (DAG), the population distribution is Markov to G. (Note that I am assuming that all causal graphs are acyclic because either they are indexed by time, or they are stripped of their time indices only when they can be represented by an acyclic graph. There are reversible causal systems or equilibrium causal systems that I am not considering in this section that it would be natural to represent with cyclic causal graphs.) Although the Causal Markov Assumption applies only to causally sufficient sets of variables, it is not the case that causal inference is impossible if the measured variables are not causally sufficient. See Spirtes et al. (2000) for details. 

For the case of DAGs, there is an equivalent formulation of the Causal Markov Assumption. D-separation is a graphical relation between three disjoint sets of variables in a DAG that is defined in the Appendix - the basic idea is that A is d-separated from B conditional on C when certain kinds of paths between members of A and members of B (that bear a relationship to C) do not exist in the graph. All of the conditional independence consequences of a distribution P being Markov to a DAG G are captured by d-separation: A is entailed to be independent of B conditional on C in a distribution P that is Markov to a DAG G if and only if A is d-separated from B conditional on C in G. Hence there is a formulation of the Causal Markov Assumption that is superficially a stronger assumption, but is actually an equivalent formulation. The Global Causal Markov Assumption states that for a causally sufficient set of variables, if the causal graph G for a population is a DAG, and A is d-separated from B conditional on C in G, then  A is independent of B conditional on C in the population.

In the deterministic structural equation framework that I am using in this paper, the Causal Markov Assumption is entailed by a weaker assumption, the Weak Causal Markov Assumption: For a causally sufficient set of variables whose causal graph is a DAG, if no member of A is a descendant of any member of B, and no member of B is a descendant of any member of A, and there is no third variable that is a direct cause of a member of A and B, then A and B are independent (i.e. causally unconnected variables are independent.) 

For example, if the causal graph is the DAG depicted in Figure 1,  then according to the Weak Causal Markov Assumption, Position_1[t=i] and Position_2[t=j] are independent conditional on Position_1[t=i-1]. The Global Causal Markov Assumption also entails that Position_1[t=i] and Position_2[t=j] are independent.

One problem with applying the Causal Markov Assumption to a causal graph that starts at an arbitrary point in time is that there seems to be no reason to assume that the initial condition that specifies the joint distribution at t = 0 should make the variables at t = 0 independent, particularly if they were generated by the same structural equations as the variables for t > 0. For example, if P(A[t=0],B[t=0]) is generated by applying the structural equations to earlier variables that are not represented in the causal system, and both are effects of some C[t=-1] that is unrepresented in the causal system, then typically A[t=0] will be associated with B[t=0]. This is not a violation of the Weak Causal Markov Assumption, because this is a case where the set of variables in the system is not causally sufficient (because it does not contain C[t=-1].

There are typically two ways of dealing with this problem:

1. Assume the causal system is one in which the initial conditions have no effect (or approximately no effect) on the values of the system after a long enough waiting period. In that case, the Causal Markov Assumption can be applied to variables for large n. This is typically the case, for example, in linear systems in which noise affects each measured variable at every point in time.

2. Introduce a double-headed arrow between variables at t = 0 to represent any associations between pairs of variables at t = 0 due to a common cause in the past prior to t = 0. It is then easy to extend the definition of d-separation to graphs with double-headed arrows, and apply the Global Causal Markov Assumption to the set of variables even though they are not causally sufficient. (The way this is handled in Spirtes et al. 2000 is slightly more complicated, but the complications make no difference to the issues discussed in this paper.)
1.6.1 A Special Case - Time-Index Free Graphs

In this paper, I will consider as a starting point a particularly simple kind of causal graph that is used quite commonly in structural equation models. The assumptions under which this particularly simple kind of causal graph is accurate are very strong and often unrealistic. Fortunately, they are not essential to causal inference, but they do make causal inference simple. Moreover, they will illustrate how even when very strong assumptions are made about causal systems, translating that causal system into the “wrong” variables can introduce many complications that make causal inference much more difficult. 

The first major assumption is that there are no “hidden confounders” - that is the set of measured variables V in the causal system is causally sufficient. 

The second major assumption is that there is a total ordering O of the variables in the causal DAG such that for each variable A and all t, there is no edge from a variable later than A in the ordering O to A. Suppose, for example, there is a causal system in which:

A[0] ~ N(0,1)
B[0] ~ N(0,1)
C[0] ~ N(0,1), A[0], B[0], C[0] jointly independent

A[t] := A[t-1], t > 0

B[t] := A[t-1], t > 0

C[t] := B[t-1], t > 0

The causal graph is shown in Figure 2.






Figure 2
In this case, the variables can be ordered as <A,B,C>, each temporally indexed A variable is directly caused only by other A variables (which are not later in the ordering <A,B,C>), each temporally indexed B variable is directly caused only by A variables (which are not later in the ordering <A,B,C>), and each temporally indexed C variable is directly caused only by B variables (which are not later in the ordering <A,B,C>). 

However, for the following causal graph no ordering has the property that each variable is directly caused only by variables that precede it in the ordering: Position_1[t] is directly caused by Position_2[t-1], and Position_2[t] is directly caused by Position_1[t-1]. 

Figure 3
The third major assumption is that that if A[u,t-i] directly causes B[u,t], then A[u,t-j] does not directly cause B[u,t] unless i = j.

Finally, I will assume that if the causal edge with the largest temporal gap (from a variable at t-n to t) is n, the unit values have been stationary (i.e. had the same value) longer than n. The effect of these three assumptions (and the Causal Markov and Faithfulness Assumptions, described below) is that it is possible to make inferences about the structure of the causal graph from evidence that is all gathered at some time t, rather than having to observe the evolution of the system. This is plausible for systems in which the causes change very slowly, e.g. for an adults height. If someone’s height at 25 causes an effect, for most purposes it does not hurt to use their measured height at 45 as a surrogate for their height at 25. 

For example, under the four assumptions listed, the causal graph in Figure 2 can be represented as A ( B ( C, and the causal Markov Assumption will still apply to this DAG and the joint population distribution as measured at a particular time. In the DAG in  Figure 2, the Causal Markov Assumption entails that C[3] is independent of A[1] conditional on B[2]. However, under the assumptions, A[3] = A[1], and B[3] = B[2]. Hence C[3] is independent of A[3] conditional on B[3]. If instead of representing the variables at different times and observing the evolution of the system, we instead simply represent the resulting stationary distribution, the Causal Markov Assumption will apply to the abbreviated DAG without the temporal indices. In effect, we are assuming that we have a feed forward causal system in which any shocks that have been given to the system have had time to propagate their consequences to the joint distribution at the time that the measurements are being made. 
1.7 Causal Faithfulness Assumption

The Causal Faithfulness Assumption is the converse of the Causal Markov Assumption. It states that for a causally sufficient set of variables, if the causal graph G for a population is a DAG, A is d-separated from B conditional on C in G only if A is independent of B conditional on C in the population. This is the assumption made in Spirtes et al. 2000, and as described below, it plays a key role in causal inference.
It has subsequently been shown that a weaker condition suffices for the existence of asymptotically correct causal inference algorithms for DAGs in the Gaussian and discrete cases. (In the case of linear non-Gaussian variables it has been shown that under the assumption of no hidden common causes even this weaker assumption is not needed (Shimuzu 2006)  The Weak Causal Faithfulness Assumption states that for a causally sufficient set of variables, if the causal graph G for a population is a DAG, and there is a directed edge from A to B in the population causal graph G, then A and B are not independent conditional on any subset of the other variables. For example, consider the following DAG:


Figure 4
Suppose that A := eA, B := x ( A + eB, and C := y ( B + z ( A + eC. Assume all of the variables are Gaussian, and the e’s are independent. Then if the two paths from A to C cancel, i.e. if x ( y = -z, then A and C will be independent, although they are not d-connected conditional on the empty set. The Weak Causal Markov Assumption entails that A and C are not independent, because they are adjacent in the causal graph; in this case, the assumption entails x ( y ≠ -z. I will not rehearse the arguments for this assumption here - see Spirtes et al. 2000. However, it has been shown that for several parametric families (linear Gaussian, discrete) violations of the Causal Faithfulness Assumption have Lebesgue measure 0 in the space of parameters.

This assumption plays a key role in causal inference for the following reason. Suppose that the true causal DAG is A ( B ( C. Any distribution that fits A ( B ( C also fits the DAG in Figure 4, but only if the Weak Causal Faithfulness Assumption is violated. Without the Weak Causal Faithfulness Assumption, one would never be able to conclude that the DAG A ( B ( C is the correct causal DAG, as opposed to the more complicated DAG in Figure 4.
1.8 Consistency

Using the Causal Markov and Causal Faithfulness Assumptions, as well as distributional and sampling assumptions, it is possible to make inferences about what set of causal DAGs the true causal DAG belongs to. For example, if one makes the assumptions that allow for a DAG to be represented as a time-free DAG, then in the large sample limit, both the GES (Chickering 2002) and PC algorithms (Spirtes et al. 2000) identify a class of DAGs containing the true causal DAG. 

The following algorithms are also relevant to the possibility of causal discovery of simple causal systems, after the variables have been translated, as explained in the section on translation. If one drops the assumptions that all confounders are measured, and allows for the possibility that sampling is affected by the measured variables, then in the large sample limit, the FCI algorithm identifies a class of DAGs containing the true causal DAG - the price that one pays for the dropped assumptions is increasing the computational complexity of the algorithm, and increasing the size of the set of DAGs containing the true DAG. Similarly if one makes the assumption that there are no hidden common causes, but there may be cycles, the Cyclic Causal Discovery Algorithm is provably reliable in the large sample limit (Richardson 1996). Again, the price that one pays for allowing the possibility of cycles is that the algorithm is computationally more complex, and less informative. Demiralp and Hoover (2003) describes an asymptotically correct algorithm for causal inference of vector autoregression models. At this time, there is no known algorithm for causal discovery given the possibility of both cycles and hidden common causes that is provably reliable in the large sample limit. 
2 Translations

How does translating the description of a causal system into an alternative, but equivalent descriptions of the same causal system affect causal inference? It is standard to use random variables (i.e. functions from units to the reals) to represent the value that a property takes on in a unit in the population. However, there is not a 1-1 function mapping properties to random variables. On the one hand, the same property (e.g. height) can be represented by multiple random variables (e.g. height can be measured in inches, feet, meters, etc. which assign different numbers to each unit, and hence are different functions). On the other hand, multiple properties can be represented by the same function, if they happen to be coextensive in a population (e.g. “having a heart” and “having a kidney”.) 

The fact that height can be measured in inches or in feet obviously does not affect causal inference. The two different random variables height in inches and height in feet are related by an invertible function, i.e. height in inches = height in feet. Of course, there are transformations of height in inches, such as height in inches squared, which could lead to problems in causal inference, but there are not invertible functions. 

Transformations of random variables that “mix” random variables together are more problematic. The pair of variables <height, weight> can be transformed into another pair of  variables <height + weight,height - weight> such that there is a 1-1 function <height + weight, height - weight> =  f(<height, weight>), and similarly <height, weight> =               f--1(height + weight, height - weight). Does the pair of variables height + weight and height - weight represent simply an odd way of talking about the properties height and weight, or are they somewhat odd properties in their own right? Nothing in this article depends on the answer to that question; I will refer to height + weight and height - weight as translations of height and weight.
Intuitively, there is an important difference between height and weight on the one hand, and height + weight and height - weight on the other hand. One might believe that each of height and weight represent “real” properties, while height + weight and height - weight do not individually represent “real” properties. I will consider various senses in which this might be the case later. However, it is clear that whatever can be said about the pair of properties height and weight can be said in the language of the pair of random variables < height + weight, height - weight>, and that whatever is said in the language of the random variables < height + weight, height - weight> can be translated into the language of <height, weight>. In that sense the pair of random variables <height + weight, height - weight> describe the same pair of properties that are described by <height, weight>. 

There seems to be relatively little reason why someone would choose to frame the description of a causal system in terms of <height + weight,height - weight>. This is true particularly of many physical systems where we have well worked out and powerful theories. However, in many cases, particularly in the social sciences, it is often the case that it is not clear what the random variables ought to be, and which ones represent properties that are in some sense “real” or alternatively represent mixtures of  “real” properties. For example, are commonly used psychological traits such as extraversion, agreeableness, conscientiousness, etc. actually mixtures of other “real” properties? In fMRI research, there are typically measurements of thousands of different tiny regions of the brain that are then clustered into larger regions, and the causal relations among the larger regions are explored. Have the smaller regions been clustered into larger regions in the “right” way, or have functionally different regions of the brain been mixed together?

A slightly different kind of example is related to the history of the relationship between cholesterol and heart disease. At was thought that high levels of cholesterol caused heart attacks. Later, it discovered that there are two kinds of cholesterol, LDL cholesterol that causes heart attacks, and HDL cholesterol that prevents heart attacks. The original way of measuring cholesterol measured both LDL and HDL cholesterol - in other words it was the sum of the two. The measured variable was a kind of mixture of the underlying “real” properties. This is slightly different that what I have been discussing so far, because it is not possible to reconstruct the LDL and HDL cholesterol levels from the total cholesterol levels. So this is a case where both mixing of “real” properties occurred, but in addition information was thrown out. I will return to the question of this combination of problems later. 

What is the difference between transformations of random variables versus the structural equations relating random variables? Transformations of random variables are always deterministic, instantaneous, and invertible; also it is not possible to independently set both the original random variable and the transformed variables. These properties are not always true of causal relations between random variables in the world, nor is it clear whether they are ever true. In the causal models that I consider here, they are never true, because the relationship of direct causation only exists between variables at different times - it is never instantaneous. 

When the various pieces of a causal system - the structural equations, the causal graph, actions, the Causal Markov Assumption, etc. - are translated into the alternative representation, what does the resulting system look like, and how does it affect causal inference? I will consider each piece in turn, and illustrate it with the example depicted in  Figure 1.

2.1 Translating Random Variables

First, the translation of the random variables is quite simple. By assumption there is an invertible function such that V’ =g(V). For example:

C[u,t] = 2 ( Position_1[u,t] + Position_2[u,t]

D[u,t] = Position_1[u,t] + 2 ( Position_2[u,t]
2.2 Translating Initial Conditions

The translation of the initial conditions is also quite simple. For example, C[0] ~ N(0,5) and D[0] ~ N(0,5). Although Position_1[t=0] and Position_2[t=0] are independent, C[t=0] and D[t=0] are not, because cov(C[t=0], D[t=0]) = cov(2 ( Position_1[t=0] + Position_2[t=0], Position_1[t=0] + 2 ( Position_2[t=0]) = 2 ( var(Position_1[t=0]) + 2 ( var(Position_2[t=0]) + 5 ( cov(Position_1[t=0], Position_2[t=0]) = 4. More generally, if the density function of V is f(V), then the density function of V’ = g(V) is f(g-1(V’)) ( |J|, where |J| is the absolute value of the determinant of the Jacobean of the transformation.
2.3 Translating Structural Equations

The structural equations for C[u,t] and D[u,t] can be found by a 3-step process:

1. Translate C and D into Position_1[u,t] and Position_2[u,t]

2. Write the structural equations for Position_1[u,t] and Position_2[u,t] in terms of Position_1[u,t-1] and Position_2[u,t-1]

3. Translate Position_1[u,t-1] and Position_2[u,t-1] back into C[u,t-1] and D[u,t-1].

For example, 
C[u,t] = 2 ( Position_1[u,t] + Position_2[u,t] := 2 ( Position_1[u,t-1] + Position_2[u,t-1] = C[u,t-1]

D[u,t] = Position_1[u,t] + 2 ( Position_2[u,t] := Position_1[u,t-1] + 2 ( Position_2[u,t-1] = D[u,t-1]

It is important to understand how the translated structural equations should be interpreted. The coefficient 1 of C[u,t-1] in the equation for C[u,t] is understood as giving the results when C[u,t-1] is manipulated, but D[u,t-1] is left the same, i.e. Set(C[u,t-1],D[u,t-1] = null). There are different actions than the actions assumed by the structural equations expressed in terms of Position_1 and Position_2. 

2.4 Translating Actions and Manipulations

The actions that can be performed upon the system can be translated by translating the distribution imposed upon Position_1 and Position​_2 in the case the distribution is set at the population level, or by translating the values imposed upon Position_1 and Position_2 in the case that values are set at the level of units. So Set(f(Position_1[t],Position​_2[t]) := h(Position_1[t],Position​_2[t])) translates into Set(f(C[t],D[t]) := h(g-1(<Position_1[t],Position​_2[t]>) ( |J|). In this case, g-1 is Position_1[t] = -1/3 (D[t] - 2 ( C[t]) and Position_2[t] = -1/3 (C[t] - 2 ( D[t]). 

In the case where actions set the values of individual units, then again one can translate Position_1 and Position_2 into C and D, and then solve the equations for values of C and D. Suppose for example that Position_1[u,t] = 2, and Position_2[u,t] = 3. Then Set(Position_1[u,t] = 0,Position​_2[u,t] = null). Because Position_2[u,t] = 3, this is equal to Set(Position_1[u,t] = 0,Position​_2[u,t] = 3). Now substitute -1/3 (D[t] - 2 ( C[t]) for Position_1[t] and -1/3 (C[t] - 2 ( D[t]) for Position_2[t]. This leads to Set(-1/3 (D[u,t] - 2 ( C[u,t]) = 0, -1/3 (C[u,t] - 2 ( D[u,t]) =  3). These equations can be solved, leading to Set(C[u,t] = 3, D[u,t] = 6). If Position_2[u,t] had some value other than 3, then there would be a different translation of Set(Position_1[u,t] = 0,Position​_2[u,t] = null).
The translation of actions does not preserve whether or not an action is an unconditional manipulation of a single variable, or even whether it is a manipulation of that single variable at all. For example, the action Set(Position_1[u,t] = 0, Position​_2[u,t] = null) changes the values of both C[u,t] and D[u,t] it is a manipulation of the pair <C[u,t],D[u,t]>, but not of <C[u,t]> nor of  <D[u,t]> individually. This captures the sense in which something that is a “local” action for Position_1 - Position​_2 is a non-local action for C - D.

There is however, symmetry to this translation that implies that an unconditional manipulation of C and a null manipulation of D is not a manipulation of either Position_1 or Position_2 alone. For example, if C[u,t] = 1, D[u,t] = 3, then Position_1[u,t] = -5/3 and Position_2[u,t] = 13/3. But Set(C[u,t] = 0,D[u,t] = null) translates into Set(Position_1[u,t] = -1, Position_2[u,t] = 2), which changes the values of both Position_1[u,t] and Position_2[u,t]. Thus, a manipulation of C[u,t] is a manipulation of <Position_1[u,t], Position_2[u,t]>, but not of <Position_1[u,t]> or <Position_2[u,t]> alone. This captures the sense in which something that is a “local” action for C - D is a non-local action for Position_1 - Position​_2.

Although there is symmetry in the translation between Position_1 and Position_2, there can be important asymmetries as well. In this example, there is clearly an intuition that a manipulation of Position_1 alone (i.e. the setting of Position​_2 is null) is “really” local, while a manipulation of C alone (i.e. the setting of Position​_2 is null) is not “really” local (because it is a manipulation of Position_1 based on the value of Position​_2.) This is because Position_1 and Position​_2 are properties of spatio-temporally non-overlapping regions of space-time, while C and D are not. Furthermore, a manipulation of C[u,t] that is supposed to have no effect on D[u,t] implies that they occur simultaneously, and hence have a spacelike separation. Barring some bizarre quantum mechanical distant coupling of the Positions, there is no reliable mechanism for producing a manipulation of C[u,t] alone (because this would involve sending a faster than light signal between the regions of spacelike separated regions of space-time). 

These arguments might establish that in this example, Position_1 and Position_2 are the “right” variables, and C and D are the “wrong” variables. Policy predictions about policies that it is impossible to reliably implement are not very interesting. Nevertheless, I will argue that this metaphysical sense of “local” manipulation is not the one relevant for the range of phenomena that causal inference is performed on. 

First, nothing in the standard account of predicting the effects of a manipulation depends upon a manipulation being produced intentionally, or knowingly, or reliably. There is nothing magical about actions taken by people. If an unconditional manipulation occurs without our knowledge or by coincidence, the prediction about the effects of the manipulation still applies. Moreover, typically the actions that are actually taken in the real world are complex, and are not known to be manipulations. Passing a law, administering a drug, giving someone a therapy, etc., are often assumed to be manipulations of some variable. However, it is typically not known whether they are actually manipulations prior to their administration. So while in the case of Position_1 and Position_2 it is intuitively the case that the actions that we can take are “really” manipulations of Position_1 or Position_2, and not of C or D individually, there are many other cases where the actions that are quite naturally taken correspond to manipulations of different variables. It is perfectly possible that drug A administered to control cholesterol does indeed change LDL cholesterol levels; but it would not be surprising if some drug B manipulated total cholesterol, and even left the difference between the levels of cholesterol the same. Because these problems are related to the concept of manipulation, they raise problems for randomized experiments as well as causal inference from observational studies. 
Second, in many cases the kind of spatio-temporal non-overlap of the relevant properties such as Position_1 and Position​_2, simply will not occur. Especially in the case of psychological, biological, or social causation, the relevant properties will occur in the same spatio-temporal regions. IQ and Authoritarian-Conservative Personality, or GDP and Inflation are not properties of non-overlapping spatio-temporal regions. 

2.5 Translating Causal Graphs

Given the translation of the structural equations, the causal graph can be constructed from the structural equations and the manipulations in the same way. For example, in the causal system depicted in Figure 1 the causal graph

C[t=0] ( C[t=1] ( … ( C[t=n] …

D[t=0] ( D[t=1] ( … ( D[t=n] …

Figure 5
Does the translated causal system also satisfy the conditions for constructing a time-index free DAG? The first condition, that there is an ordering of the variables such that each variable is not affected by a variable later in the ordering, is satisfied. 

The second condition is that there not be any hidden common causes of C and D. Is that the case here? The question is what would this hidden common cause be? There is no hidden common cause in the Position_1 - Position​_2 description of the causal system. The obvious candidate for a latent common cause of C and D is Position_1 and Position​_2 (because D[u,t] = 2 ( Position​_1[u,t] + Position_2[u,t] and C[u,t] = Position_1[u,t] + 2 ( Position​_2[u,t]). However, on closer examination Position_1 and Position 2 cannot be considered hidden common causes of C and D, because they are not causes of C and D at all. In the causal models I have built, all causal influences go from earlier times to later times, and there are no causal influences between variables at the same time. Since C[u,t] and D[u,t] are functions of Position_1[u,t] and Position_2[u,t], all at the same time t, the relationship is not a causal one. Rather, C and D are just re-descriptions of Position​_1 and Position_2. But there is nothing else in the Position 1 - Position 2 system that could plausibly be re-described as playing the role of a common latent cause in C - D description of the system. Hence, there is no hidden common cause of C and D.

The third condition is also satisfied. If Position_1 and Position_2 are not changing, neither are C and D, so they will remain stationary.

Hence the conditions for C and D to be represented by a time-index free DAG are satisfied. The time-index free DAG in this case is the DAG C    D (with no edges.) Note, however, that this is now a DAG in which C and D are correlated but not because C causes D, D causes C, or there is a hidden common cause of C and D. The fact that the variables can be correlated without any hidden common causes does not expand the possible set of distribution - manipulation pairs that are typically considered; it does however, expand the set of ways in which such manipulation distribution pairs can be generated, and expands the set of distribution - manipulation pairs when there are no hidden common causes. 

However, in general, the translation of a causal system representable by a time-index free DAG will not in general be representable by a time-index free DAG. Consider the following example. 

Initial Condition: eA[0],  eB[0], A[0], B[0], jointly independent, all N(0,1)

Structural Equations: eA[u,t] := eA[u,t-1]
eB[u,t] := eB[u,t-1]
A[u,t] := eA[t-1]
B[u,t] := 3 ( A[t-1] + eB[t-1]

Causal DAG:

Figure 6
Time-Index Free Causal DAG:    A ( B
Transformation: 
C[u,t] = 2 ( A[u,t] + B[u,t]

D[u,t] = A[u,t] + 2 ( B[u,t]

Transformed Initial Condition:


eC[0] ~ N(0,5) 
eD[0] ~ N(0,5)    C[0] ~ N(0,5) D[0] ~ N(0,5) 

            cov(eC[0],eD[0]) = 4 cov(C[0], D[0]) = 4
Transformed Structural Equations:

eC[u,t] := eC[u,t-1]
eD[u,t] := eD[u,t-1]
C[u,t] = 2 ( A[u,t] + B[u,t] := 2 ( eA[t-1] + 3 ( A[t-1] + eB[t-1] = 2 ( eA[t-1] + eB[t-1] + 2 ( C[u,t] - D[u,t] = eC[t-1] + 2 ( C[u,t] - D[u,t]
D[u,t] = A[u,t] +  2 ( B[u,t] := eA[t-1] + 2 ( (3 ( A[t-1] + eB[t-1]) = eA[t-1] + 2 ( eB[t-1] + 2 ( (2 ( C[u,t] - D[u,t]) = 4 ( C[u,t] - 2 ( D[u,t]) + eD[t-1]


Figure 7
Note that the A- B causal system reaches equilibrium after the first time step because it is a feed-forward network and the longest directed path is of length 1. It follows that the C - D variables, which are functions of the A - B variables reach equilibrium after 1 step as well. This means that after the first time step C[u,t] = C[u,t-1], and D[u,t] = D[u,t-1]. Hence, in the equilibrium state, the transformed structural equations can be rewritten in such a way that C[u,t] depends only on eC[t] and D[u,t], while D[u,t] depends only on eD[t] and C[u,t].

Rewritten Transformed Structural Equations - in Equilibrium

eC[u,t] := eC[u,t-1]

eD[u,t] := eD[u,t-1]

C[u,t] := D[u,t] - eC[u,t]
D[u,t] := 4/3( C[u,t]  + 1/3 ( eD[u,t]

This does have a time-index free graphical representation, but it is representation of the equilibrium state, and it cannot be represented as an acyclic graph.


Figure 8
Again, equations of this form are commonly used in linear Gaussian structural equation modeling. Franklin Fisher gave the standard interpretation of them. He showed how a time series of the kind we are considering in this paper, with constant exogenous shocks, can generate such equations in the limit, if the system reaches equilibrium. What is different here is that the system reaches equilibrium after a finite number of steps. Moreover, linear coefficients in the equations which would lead to the process that Fisher described blowing up, rather than reaching equilibrium, could lead to the process described here reaching equilibrium. In that sense, there are manipulation - distribution pairs that make sense in this framework, which cannot be given the Fisher interpretation. 
2.6 Translating the Causal Markov Assumption

However, this system of translation produces a problem for the Weak Causal Markov Assumption. In the Position_1 - Position​_2 description of the causal system, there was no problem. However in the C - D description of the same causal system, there is an apparent violation of the Weak Causal Markov Assumption. C and D are associated, and yet C does not cause D, D does not cause C, and there is no hidden common cause of C and D, even one from the more remote past. If that is correct, the correct causal DAG for C and D is simply the empty DAG - but C and D are nonetheless associated.

One could try to amend the Causal Markov Assumption by limiting it to sets of variables that are not “logically related”. This would not help in this example. It is clear that intuitively {C, D} is “logically related” to {Position_1, Position_2} in the sense that {C, D} is just a re-description of {Position_1, Position_2}, and it is not possible to manipulate {Position_1, Position_2} without simultaneously manipulating {C, D}. However, this does not suffice to make C and D “logically related” to each other. C and D are independently manipulable in the sense that C can be manipulated to any value while manipulating D to any value, or performing a null manipulation of D, and vice-versa. If the “logical relationship” between {C, D} and {Position_1, Position​_2} is enough to establish a “logical relationship” between C and D, then Position 1 and Position 2 are also “logically related”, because {Position_1, Position_2} is logically related to {C, D} as well. But Position_1 and Position_2 are intuitively not logically related at all.

On this view, the causal system has a “natural” evolution given by the structural equations. For the equations of evolution to pick out a unique state of the system, this requires either some initial boundary conditions, or the equations of evolution to be independent of the initial boundary conditions after a sufficiently long time. The equations of the natural evolution of the system correspond to the structural equations, and the setting (or re-setting) of the initial boundary conditions correspond to the manipulations. The distinction between the natural evolution of the system and the manipulations are not features of the causal system alone, but is an idealization that depends upon the description of the system. The manipulations are themselves causal processes, but are causal processes outside of the description of the causal system. If the causal system is embedded in a large causal system, then the manipulations become part of the “natural” evolution of the system. However, because manipulations can be the result of actions by human beings, embedding the manipulations in a large causal system and including them in the structural equations is impractical in many cases. 

For the C - D description of the causal system, unlike the Position_1 - Position_2 description of the causal system, the population dependence structure does not reflect the structural equations. This is because the boundary conditions for C[t=0] and D[t=0] are based on a manipulation that makes C[t=0] and D[t=0] dependent, and the structural equations preserve that dependence. The population dependence structure does not reflect the structural equation structure - rather it is due to the initial conditional manipulation. If the initial conditions are such that the causally exogenous variables are independent, and the causal graph is acyclic, that is enough to guarantee that the Causal Markov Assumption is satisfied. The problem is that in the C - D system the exogenous variables are not independent. Thus the C - D system is a violation of the Weak Causal Markov Assumption in its usual formulation. 

However, a modification of the Causal Markov Assumption can be applied to an extension of the directed acyclic graphical framework. In structural equation modeling, a double-headed arrow is drawn between exogenous variables whenever they are associated.
 One reason that two exogenous variables are associated is that there is a hidden common cause of the two variables. What I have argued here is that another reason that two exogenous variables might be correlated is that they are a transformation of two unassociated variables. When double-headed arrows are used in this way, it is easy to extend the definition of d-separation to extended DAGs, and even to cyclic graphs. (See for example, Spirtes 1995 and Koster 1999).
 Then, given the usual structural equation interpretation of the extended graph, the assumptions that the variables are Gaussian and the equations are linear, together with the assumption that exogenous variables are independent if there is no double-headed arrow between them, the extended graph entails I(A,B|C) if and only if A is d-separated from B conditional on C. 

Theorem 1: If there exists a system of variables V satisfying the Weak Causal Markov Assumption, then under a transformation of the variables g(V), the Global Causal Markov Assumption is satisfied. 

I conjecture that this theorem is also true for non-linear equations, when the concept of d-separation is modified as described in Spirtes (1994).

Under some parametric assumptions, the Weak Causal Markov Assumption is not trivially true. For example, suppose there are two binary variables A and B with values 0 and 1, for which the Weak Causal Markov Assumption is true. Because there are only a finite number of invertible transformations of A and B into other binary variables C and D that “mix” A and B together, there are only a finite number of different associations between C and D that can be produced by a transformation of independent A and B, as opposed to causal relations existing between C and D. Hence in this case, the Weak Causal Markov Assumption does limit the possible associations between variables that don’t cause each other and have no hidden common cause. 

Unfortunately, under certain parametric assumptions, the Weak Causal Markov Assumption does not have any empirical import. For example, for linear Gaussian systems, it is always possible to find infinity of different sets of transformations satisfying the Weak Causal Markov Assumption. So if we are willing to introduce a double-headed arrow between two associated variables A and B, even when there is no hidden common cause of the two variables, the existence of the association does not tell us anything at all about whether or not the two variables are causally related in any way - A might cause B, B might cause A, there might be a hidden common cause of A and B, and any combination or none of the above might be true. 

For linear non-Gaussian systems, it is always possible to find one set of variables satisfying the Weak Causal Markov Assumption. Under these parametric assumptions, the population distribution and the causal graph satisfy the Global Causal Markov Assumption simply because the causal graph can always be constructed in such a way that the Global Causal Markov Assumption is satisfied. So the calculation of the effects of a manipulation in such a causal system, which seemed to depend upon assuming the Weak Causal Markov Assumption, are simply true because of the way the causal graph was constructed. This is not to say that there are no empirical assumptions in the application of the causal graph - the empirical assumption is that the actual action taken is a manipulation of the right kind. 

2.7 Translating the Causal Faithfulness Assumption

The Weak Causal Faithfulness Assumption still plays a very important role in causal inference. In the previous section it was noted that one couldn’t draw any causal conclusion from an association between A and B (which was true even before the possibility of variable transformation was taken into account.) On the other hand, the Weak Causal Faithfulness Assumption does allow one to draw causal conclusions from the absence of an association between A and B. Suppose that A and B are unassociated. One possible explanation is that A does not cause B, B does not cause A, and there is no correlated error for A and B. Note that this is not the only explanation of the lack of association between A and B. It could be that A causes B, B causes A, and A and B have correlated errors, and that all of these effects cancel. The Weak Causal Markov Assumption says to pick the simpler explanation, that A and B are causally unconnected and do not have correlated errors. (In general, however, it is the combination of Theorem 1 and the Weak Causal Faithfulness Assumption, which allows one to draw causal conclusions.) 

It is easy to show that there are natural violations of the Causal Faithfulness Assumption introduced when variables transformations are performed. For example, consider the following causal DAG shown in (i) of Figure 9:



Figure 9
Assume the distribution is faithful to (i). A and B are d-separated conditional on C and D, so A and B are independent conditional on C and D. Now suppose that E and F are translations of C and D. The translated DAG is shown in (ii) of Figure 9. A and B are d-connected conditional on E and F in (ii). However, because C and D are functions of E and F, it follows from the fact that A and B are independent conditional on C and D, that A and B are independent conditional on E and F. However A and B are d-connected  conditional on E and F. This is a violation of the Causal Faithfulness Assumption, but not of the Weak Causal Faithfulness Assumption. I have pointed out that satisfying the Weak Causal Faithfulness Assumption is sufficient for the existence of algorithms that reliably infer (classes of) causal DAGs in the large sample limit. However, the translation of variables naturally introduces cyclic causal graphs, and it is not known whether the Weak Causal Faithfulness Assumption is sufficient for the existence of algorithms that reliably infer cyclic causal graphs in the large sample limit. So at this time, it is not known how important examples of violations of the Causal Faithfulness Assumption (but not of the Weak Causal Faithfulness Assumption) are for causal inference. 

I also do not know whether there are examples in which the translation of a system of variables in which there is no violation of the Weak Causal Faithfulness naturally introduces a violation of the Weak Causal Faithfulness Assumption in the transformed system. However, I suspect that such cases do exist. 
2.8 Consistency for the Translated Causal System

Given the system of translation just proposed, even very simple causal systems can be translated into much more complex causal systems. The net effect of this is that even if the PC algorithm is reliable given the “right” choice of variables, it is not reliable given the “wrong” choice of variables. The introduction of correlated errors by themselves can be handled by the FCI algorithm (even though they are introduced for a reason other than hidden common causes), at the cost of increased computational complexity and decreased informativeness. Also, the introduction of cycles by themselves can be handled by the Cyclic Causal Discovery algorithm, at the cost of increased computational complexity and decreased informativeness. Unfortunately, there is no known provably reliable (in the large sample limit) causal discovery algorithm for graphs with both correlated errors and cycles. And as I have shown, such graphs are the natural result of translations of causal systems that are quite simple given the “right” choice of variables. 

2.9 Ambiguity
There is one other major problem that describing a causal system in the “wrong” set of variables can lead to. See also Spirtes and Scheines (2004). (Interestingly enough, the problem I will describe here does not seem to arise for linear Gaussian models.) Consider two independent, causally unconnected binary variables A and B. Now let C be 0 when A and B are the same, and 1 when A and B are different, and let D = A. It is clear that there is a translation back and forth between A and B on the one hand and C and D on the other hand. First use C to find out whether A and B are the same, and then use D to determine the value of A. Then if C = 0, A and B are the same, so the value of B is determined from knowing the value of A. And if C = 1, A and B have different values, and hence the value of B is again determined from knowing the value of A. A manipulation of C alone in the C - D system keeps D constant, and this can be translated into an action on A and B. 

Now consider a third system of variables, C and E, where E is equal to B. There is also a translation of A and B into C and E and vice versa, using the same reasoning as above. A manipulation of C alone in the C - E system keeps E constant, and this can be translated into an action on A and B, which is different than the manipulation of C alone in the C - D system. 

So far, no new problem has been introduced. But now suppose that the only variable in our causal system is C. There are two ways of augmenting C into a description of the A - B causal system, one of which consists of adding D to the system, and the other of which consists of adding E to the system. It is clear from the symmetry of the example that there is no sense in which either of these augmentations is more natural than the other. So given just the C variable, there is no natural way of choosing what action amounts to a manipulation of C is. This is analogous to the cholesterol example. In that case, a manipulation of total cholesterol could be done in many different ways (in terms of low density cholesterol and high density cholesterol), which would have different effects on heart disease. There is no natural way to choose which of these manipulations is meant. Note that this is not just a problem for causal inference from passive observation. There is nothing in a randomized experiment that indicates that a combination of translation and marginalization has led to a system of causal variables in which the concept of manipulation is ambiguous.

3 Conclusion

What I have argued in this paper is that the basic effect of using the “wrong” variables instead of the “right” variables to describe a causal system is that causal inference becomes much more difficult in a number of different ways. The Causal Markov Assumption for the “wrong” variables becomes a much weaker assumption, and for some parametric families is vacuous. Certain kinds of violations of the Weak Causal Markov Assumption become natural.

In addition, causal graphs that are very simple can be quite naturally turned into much more complicated graphs. These more complicated graphs will typically have more edges, more double-headed arrows, and introduce cycles. These graphs can only be reliably inferred by causal inference algorithms that are slower and less informative than the algorithms that are reliable for the more simple graphs among the “right” variables. (In addition, not all of these graphs can even be reliably estimated, and those that can introduce extra estimation problems.) For the most general kind of graph that can naturally be generated there is no known reliable causal inference algorithm.

Finally, under marginalization, the “wrong” variables lead to cases where the meaning of a manipulation becomes ambiguous.
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5 Appendix

In order to define the d-separation relation, the following graph terminology is needed. A graph consists of two parts, a set of vertices V and a set of edges E. Each edge in E is between two distinct vertices in V. There are two kinds of edges in E, directed edges A ( B or A ( B, and double-headed edges A ( B; in either case A and B are endpoints of the edge; further, A and B are said to be adjacent. There may be multiple edges between vertices. For a directed edge A ( B, A is the tail of the edge and B is the head of the edge, A is a parent of B, and B is a child of A.

An undirected path U between Xa and Xb is a sequence of edges <E1,...,Em> such that one endpoint of E1 is Xa, one endpoint of Em is Xb, and for each pair of consecutive edges Ei, Ei+1 in the sequence, Ei  Ei+1, and one endpoint of Ei equals one endpoint of Ei+1. A directed path P between Xa and Xb is a sequence of directed edges <E1,...,Em> such that the tail of Ea is X1, the head of Em is Xb, and for each pair of edges Ei, Ei+1 adjacent in the sequence, Ei  Ei+1, and the head of Ei is the tail of Ei+1. For example, B ( C ( D is a directed path. A vertex occurs on a path if it is an endpoint of one of the edges in the path. The set of vertices on A ( B ( C ( D is {A, B, C, D}. A path is acyclic if no vertex occurs more than once on the path. C ( D ( C is a cyclic directed path. 

A vertex A is an ancestor of B (and B is a descendant of A) if and only if either there is a directed path from A to B or A = B. Thus the ancestor relation is the transitive, reflexive closure of the parent relation. A vertex X is a collider on undirected path U if and only if U contains a subpath Y ( X ( Z, or Y ( X ( Z, or Y ( X ( Z, or Y ( X ( Z; otherwise if X is on U it is a non-collider on U. For example, C is a collider on B ( C ( D but a non-collider on B ( C ( D. X is an ancestor of a set of vertices Z if X is an ancestor of some member of Z.

For disjoint sets of vertices, X, Y, and Z, X is d-connected to Y given Z if and only if there is an acyclic undirected path U between some member X of X, and some member Y of Y, such that every collider on U is an ancestor of Z, and every non-collider on U is not in Z. For disjoint sets of vertices, X, Y, and Z, X is d-separated from Y given Z if and only if X is not d-connected to Y given Z. 

Position_1[t=0]       Position_1[t=1]   …  Position_1[t=n-1]    Position_1[t=n] …





Position�_2[t=0]      Position�_2[t=1]    … Position_2[t=n-1]    Position�_2[t=n] …











A[t=0] (  A[t=1] ( A[t=2]   …  A[t=n-1]  (  A[t=n] ( A[t=n+1]…





B[t=0]      B[t=1]      B[t=2]    …   B[t=n-1]        B[t=n]     B[t=n+1]…





C[t=0]      C[t=1]     C[t=2]     …  C[t=n-1]        C[t=n]     C[t=n+1]…
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eD[0] 	 eD[1] 	 eD[2]	         
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� I wish to thank Clark Glymour and Richard Scheines for extensive discussions of the proper way to perform and interpret the translations of the causal assumptions and causal operations to new systems of random variables. 


� Individual variables are in upper case italic, sets of variables are in upper case bold face, values of individual variables are in lower-case italic, and the values of sets of variables are in lower-case boldface. In some social sciences such as econometrics, time series equations allow a property A at time t to causally depend upon other properties at time t. This is called “contemporaneous causation” but its interpretation is controversial. I will take it as an approximation to the case where if the time index t is divided more finely, A at time t causally depends upon properties at earlier times than t, but times much closer to t than the original t-1 is.


� There is also a second form of equation in common usage. Pr(A[t,u]) := f(V[t-1,u],…,V[t-n,u]), where Pr is a countably additive propensity. This second form of equation in effect includes the structural equations as the special case where all of the propensities are zero or one.  I will not use this formulation further in this paper. It would be an interesting project to translate the results of this paper formulated for structural equation models into the probabilistic equations. 








� More realistically, the value of the variable is set at time t + e, where e is a small compared to the time interval between t and t+1.


� There is a technical complication here that I will not go into detail about. If the distribution over the variables does not satisfy the property of composition, i.e. that I(A,B) and I(A,C) does not entail I(A,{B,C}) then the rule for adding double-headed arrows must be slightly more complicated. However, for linear Gaussian systems, the property of composition is satisfied. 


� As shown in Spirtes (1994), for cyclic graphs, in contrast to acyclic graphs, d-separation for linear systems and d-separation for non-linear systems have to be defined somewhat differently.





