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Abstract

The material conditional and the suppositional analysis of the in-
dicative conditional are based on different philosophical foundations
and they leave important successes of their competitor unexplained.
This paper unifies both accounts within a truth-functional, trivalent
model of the suppositional analysis. In this model, we observe that
the material and the suppositional conditional exhibit the same logical
behavior while they have different truth conditions and different prob-
abilities. The result is a unified semantic analysis that closes an impor-
tant gap in the suppositional story and explains the persistent appeal
of the material conditional analysis for philosophers and psychologists
of reasoning.

1 Introduction

The material conditional analysis (MCA) is among the oldest and most
venerable analyses of indicative conditionals (henceforth simply “condition-
als”). According to MCA, the truth conditions of “if A, then B” are given by
the disjunction A ⊃ B := ¬A ∨ B. The analysis is simple, truth-functional
and therefore fully compositional. Philosophers such as David Lewis, Frank
Jackson, H.P. Grice and Timothy Williamson have endorsed MCA despite
some well-known problems such as the paradoxes of material implication.

By contrast, suppositional analyses are based on the Ramsey test (Ram-
sey 1929/1990): we evaluate a conditional by supposing the antecedent and
evaluating the consequent under this assumption. Typically, suppositional-
ists endorse Adams’s Thesis (Adams 1965, 1975), i.e., the probability of a
simple conditional is given by the corresponding conditional probability:

p(“if A, then B”) = p(B|A) (Adams’s Thesis)
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Adams’s Thesis squares well with intuitive judgments on the probability of
conditionals. Suppose we toss a fair die. Then the probability of “if an even
number occurs, it will be six” should be 1/3, and so on. MCA does not
capture this intuition because in general p(A ⊃ B) ≥ p(B|A), with equality
only in degenerate cases. Defenders of MCA react by appealing to pragmatic
norms governing the assertability of conditionals (Lewis 1976; Jackson 1979;
Grice 1989), or by asserting that suppositional reasoning is just a fallible
heuristic for evaluating conditionals and their probability (Williamson 2020).

In addition to the disagreement about the probability of conditionals,
MCA analyzes conditionals as standard propositions. Suppositionalists can-
not do this due to pressure from Lewis’s (1976) triviality results. Indeed,
the classical suppositionalist theory by Adams (1975) and Edgington (1986)
gives up on the idea that conditionals have truth conditions. Hence, the two
accounts do not only make different predictions: they disagree about the
very nature of conditionals.

This paper claims that both analyses can be unified within trivalent se-
mantics. The basic idea of the latter is that conditionals with false an-
tecedents are assigned a third semantic value (“void”). Moreover, logical
consequence is explicated as acceptance preservation (an idea originally pro-
posed by Stalnaker 1975). By giving up on bivalence and driving a wedge
between the truth conditions of a conditional (i.e., the assignment of seman-
tic value) and the notion of logical consequence, we can preserve the best of
both worlds: that is, we can explain the successes of MCA and the Adams-
style suppositional analysis without buying into their drawbacks.

Like MCA, the trivalent model analyzes conditionals as propositions,
in agreement with their surface structure, and gives them a fully composi-
tional, truth-functional semantics. Moreover, MCA captures the (trivalent)
logic of acceptance preservation, explaining why the indicative conditional
behaves so often like the material one. But like in the suppositional analysis,
we obtain Adams’s Thesis for the probability of conditionals as well as an
attractive theory of uncertain reasoning.

The paper is structured as follows. To motivate our project, Section
2 refers some key successes of MCA. Section 3 relates MCA to the sup-
positional analysis. Section 4 introduces the trivalent analysis as a truth-
functional semantic model of the suppositional account. Section 5 analyzes
how the material and the suppositional conditional interact in the trivalent
setting, and Section 6 studies their interaction in context-sensitive supposi-
tional accounts. Section 7 draws the balance.

Finally, some notational conventions: L denotes a simple propositional
language with Boolean connectives (¬, ∧, ∨). L→ denotes the same language
with an added conditional connective →, and L→1 the restriction of L→ to
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the fragment involving at most simple conditionals. Formulae of these lan-
guages are denoted in uppercase Roman letters (A, B, C, . . . ) and sets of
formulae in uppercase Greek letters (Γ, ∆).

2 The Material Conditional Analysis

The material conditional A ⊃ B is the simplest possible logical model of the
indicative conditional “if A, then B”. It evaluates the conditional as false
when A is true and B is false, and true in all other cases. See Table 1. Due to
its truth-functional, fully compositional nature, MCA is a very simple and
elegant theory. It also makes several notable and desirable predictions.

Truth value of A ⊃ B B true B false
A true true false
A false true true

Table 1: Truth table for a the material conditional A ⊃ B.

First, MCA validates the Import-Export scheme, i.e., A ⊃ (B ⊃ C) =

(A ∧ B) ⊃ C, in agreement with stable intuitions and natural language
data on nested conditionals (McGee 1989, p. 489; see also van Wijnbergen-
Huitink, Elqayam, and Over 2015). Moreover, no account of conditionals
with stronger truth conditions that MCA can validate Import-Export and
classical laws without collapsing into the material conditional (Gibbard 1981,
pp. 234-235; see also Égré, Rossi, and Sprenger 2023). The argument runs as
follows, with conditional-free A, B ∈ L:

1. Consider (A ⊃ B)→ (A→ B). By Import-Export, this is equivalent to
((A ⊃ B) ∧ A)→ B, which is the same as (A ∧ B)→ B.

2. The conditional connective → validates laws of classical logic. There-
fore (A ∧ B)→ B must be true.

3. Combining both observations, we infer that (A ⊃ B)→ (A→ B) must
be true, too.

4. Since → is stronger than ⊃, we can infer that (A ⊃ B) ⊃ (A → B) is
true, too. Therefore→ and ⊃ are logically equivalent.

In the light of this result, any truth-conditional analysis of conditionals that
deviates from MCA must explain why Import-Export is invalid, make radi-
cal semantic changes (e.g., evaluate conditionals as context-sensitive), or bite
the bullet and explain why the collapse is not harmful.

Second, MCA validates widely endorsed inference schemes, such as
Modus Ponens and Modus Tollens. Specifically, it explains why the Or-to-If
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inference rings correct: “Either the butler or the gardener did it. Therefore,
if the butler didn’t do it, the gardener did it.” For MCA, the conclusion is
just a linguistic restatement of the premise: both sentences express the same
proposition.

More generally, A ⊃ B is true in models of classical logic if and only if the
inference from A to B is valid. MCA therefore aligns well with the intuition
that true conditionals express valid inferences (see also Iacona 2023). It is
exactly this intuition that makes the above Or-to-If inference so plausible.

Third, MCA performs well on so-called “conditional standoffs”. For sim-
plicity, I will not deal with the famous Sly Pete case (Gibbard 1981), but with
Bennett’s (2003) more linear examples. A system regulating water flow con-
sists of Top Gate, East Gate and West Gate. Top Gate is on top of the other
two gates and distributes water to East Gate and West Gate. It is impossible
that all three gates are open at the same time. An observer sees that East
Gate is open and utters

(1) If Top Gate is open, all water will flow through East Gate.

while another observer sees that West Gate is open and utters

(2) If Top Gate is open, all water will flow through West Gate.

None of the observers seems to assert anything false, or to have false be-
liefs. Such cases are apparently grist on the mill of accounts that evaluate
conditionals as context-sensitive: in this case (1) and (2) could both be true.
But MCA accounts for the same intuition in a much simpler way: the logi-
cal form of (1) and (2) is (approximately) A ⊃ B and A ⊃ ¬B. Their truth
entails that A must be false. In other words, Top Gate must be closed. This
is indeed what we would infer from the observers’ reports.

Fourth—and this is fact is rarely observed—MCA squares well with
Bayesian learning. Bayesian conditionalization on proposition E, i.e., the rule
p′(X) := p(X|E), can be characterized equivalently as finding the posterior
distribution p′ that minimizes the (Kullback-Leibler) divergence to the prior
distribution conditional on the constraint p′(E) = 1 (Diaconis and Zabell
1982). MCA generalizes this rationale to a language with a conditional: con-
ditionalizing on the material conditional i.e, p′(X) := p(X|A ⊃ B) is the
only updating procedure which minimizes the prior-posterior divergence
conditional on the constraint p′(B|A) = 1.1 Hence, MCA delivers sensible
rules for dynamic reasoning with conditionals, and for updating our beliefs.

These are important prima facie successes of MCA, achieved within the
bounds of a very simple and linear theory. They are characteristic of deduc-

1The statement is formalized and proved in Sprenger and Hartmann 2019, Theorem 4.3.
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tive reasoning with conditionals; in fact the standing of MCA is much less
clear when probability enters the picture, due to the failure of Adams’s The-
sis.2 Moreover, one has to respond to the paradoxes of material implication
(¬A |= A ⊃ B and B |= A ⊃ B). But the successes of MCA are notable
enough that any rivaling theory of conditionals should explain them.

3 MCA and the Suppositional Analysis

The suppositional analysis of indicative conditionals goes back to Ramsey
(1929/1990) and contends that the evaluation of “if A, then B”, written as
A→ B, requires us to suppose that A, and to make a hypothetical judgement
about B under that supposition.

The most well-known and elaborate version of the suppositionalist anal-
ysis gives up on truth conditions for conditionals and focuses on their proba-
bility as given by Adams’s Thesis (Adams 1965, 1966, 1975; Edgington 1986,
1995). Valid reasoning with conditionals is analyzed in terms of the proba-
bilistic properties of premises and conclusions.

Two probability-based conditional logics surveyed by Adams (1975,
1996) deserve special mention. The first is probability-preserving inference or
p-valid inference. Without going into details, the idea is that valid inferences
do not increase uncertainty. For single-premise inference A |= B, this means
that for any probability distribution p, p(A) ≤ p(B). This conception of
valid inference is especially useful when we are reasoning under conditions
of genuine uncertainty.

The second logic of interest is certainty-preserving inference. On this view, a
valid inference requires that whenever we assign probability 1 to all premises
of an argument (i.e., we are certain of them), the conclusion must have prob-
ability 1, too. This conception of valid inference can be motivated by the
idea that probability 1 is a good proxy for full acceptance of a proposition,
and that acceptance of propositions should be preserved in valid reasoning.
Stalnaker (1975, p. 271) proposes a similar notion:

an inference from a sequence of assertions or suppositions (the
premises) to an assertion or hypothetical assertion (the conclusion) is
reasonable just in case, in every context in which the premises could
appropriately be asserted or supposed, it is impossible for anyone to
accept the premises without committing himself to the conclusion

Stalnalker’s idea of reasonable inference has been developed over the years.
For example, Bledin (2014, p. 277) rejects truth preservation as a default no-

2For a recent book-length defense of MCA, see Williamson (2020). A critical discus-
sion of how Williamson explains the failure of Adams’s Thesis within MCA is given by
Krzyżanowska and Douven (2022) and van Rooij, Krzyżanowska, and Douven (2023).
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tion for logical consequence: he considers logic “a descriptive science that
is fundamentally concerned not with the preservation of truth, but with
the preservation of structural features of information”. This view of logical
consequence is now rather popular among semanticists and philosophers of
language working on conditionals, especially in accounts that evaluate con-
ditionals relative to information states (for example Yalcin 2007; Gillies 2009;
Bledin 2015; Punčochár and Gauker 2020). Santorio (2022, p. 81) even claims
that defining logical consequence along these lines is “the obvious notion
of consequence for assessing consistency and validity for asserted claims in
natural language”. Certainty-preserving inferences also coincide with clas-
sically valid inferences in the Boolean fragment L (e.g., Leblanc 1979). This
justifies our focus on certainty-preserving inference in the remainder of the
paper.

The challenge of connecting MCA and the suppositional analysis con-
cerns both probability and logic. On the side of logic, we note, generalizing
some remarks by Edgington (1995, Section 6):

Observation 1: Adams’s logic of certainty-preserving inference and MCA
have the same theorems and valid inferences in the fragment L→1 .

The observation will be stated more precisely in Section 5: for the moment
the informal version suffices. Relatedly, we noted in Section 2 that

Observation 2: Conditionalizing on the material conditional A ⊃ B and
prior-posterior minimization relative to the constraint p′(B|A) = 1
generate the same posterior distribution.

To explain these agreements, note that p(A → B) = p(B|A) = 1 will be the
case (assuming p(A) > 0) if and only if p(A∧¬B) = 0. This is equivalent to
p(A ⊃ B) = 1. Thus, the suppositional conditional is a certainty whenever
the material one is, and this explains why they generate the same logic. On
the other hand, the agreement on logic co-exists with a blatant disagreement
on probability since in general, p(A ⊃ B) ≥ p(B|A).

This divergence may be surprising, but it has an interesting application
to the paradoxes of material implication. If we are certain that John is not
in the office, it seems reasonable to infer to “(hence, in particular) if the bar
is open, John won’t be in the office”. Similarly, there is nothing paradoxical
in inferring that conditional from the premise that the bar is closed: this is
just a variation of ex falso quodlibet. Indeed, both MCA and Adams’s logic of
certainty preservation validate the inferences ¬A |= A→ B and B |= A→ B.

The above rationalization strategy does not work in contexts where
we are uncertain about the premises. In those cases, we do not recog-
nize the above inferences as valid, unless we know more about John’s
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drinking habits. Indeed, for the suppositional analysis the inequalities
p(¬A) ≤ p(B|A) and p(B) ≤ p(B|A) will not hold in general. On the other
hand, the analogous equalities p(¬A) ≤ p(A ⊃ B) and p(B) ≤ p(A ⊃ B)
hold for MCA, casting doubt on its adequacy as a theory of conditionals for
uncertain inference.

The following section develops a semantic framework where we can ex-
plain these divergences from a semantic perspective and sketch a more pre-
cise picture of how the material and the suppositional conditional interact.
It also addressess two principal shortcomings of the suppositional analysis:
its limited scope, i.e., the missing coverage of nested conditionals and com-
pounds of conditionals (see also McGee 1989, p. 485), and the lack of a truth-
conditional model that explains how probability judgments are grounded in
the attribution of truth values.

4 The Trivalent Analysis

Trivalent semantics of conditionals, an idea going back to Reichenbach (1935)
and de Finetti (1936), is a peculiar semantic implementation of the supposi-
tional analysis. It deviates from the Adams-Edgington view that condition-
als do not express propositions and analyzes them as partial propositions:
they have classical truth value at some, but not at all worlds.

The idea is to treat “if A, then B” as a conditional assertion—i.e., as an
assertion about B upon the supposition that A is true (see Quine 1950).
Whereas, when the antecedent is false, the assertion is “void”: the speaker
is committed to neither truth nor falsity of the consequent. This view takes
into account Adams’s (1965, p. 169) observation that “true” has no clear
sense when applied to indicative conditionals, in particular to those with
false antecedents.3 Table 2 visualizes this basic idea. The third semantic
value, “void”, is represented by the symbol 1/2.

Truth value of A→ B B true B false
A true true false
A false void void

Table 2: Partial truth table for a conditional A → B analyzed as a conditional
assertion.

To deal with nested conditionals, this truth table has to be extended to a
full 3x3 table. Moreover, we have to define the meaning of the Boolean con-

3Another motivation for the trivalent view is that we tend to think that an assertion “if
A, then B” has been verified if we observe both A and B, and falsified if we observe A and
¬B. But if the antecedent turns out to be false, there is no factual basis for evaluating the
assertion (see also Cooper 1968; Belnap 1970, 1973).
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nectives. We follow Cooper (1968) in his analysis of the logical connectives
and truth tables and adopt the connectives as defined in Table 3.

¬
1 0

1/2 1/2

0 1

∧ 1 1/2 0
1 1 1 0

1/2 1 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 0
0 1 0 0

→ 1 1/2 0
1 1 1/2 0

1/2 1 1/2 0
0 1/2 1/2 1/2

Table 3: Cooper’s (1968) truth tables for the Boolean connectives and the indicative
conditional.

The non-standard treatment of conjunction and disjunction deserves a
brief justification. Cooper’s conjunction and disjunction reduce to their clas-
sical counterparts when the arguments take classical values. However, when
just one of the conjuncts/disjuncts takes a classical value, it determines the
value of the conjunction/disjunction—the non-classical value “void” is sim-
ply ignored. Unlike the Strong or Weak Kleene truth tables, this choice
allows us to evaluate sentences such as

(3) If the sun shines tomorrow, Mary will go to the beach; and if it rains
tomorrow, she will go to the museum.

as true (e.g., when the sun shines tomorrow and Mary goes indeed to the
beach), and it allows us to evaluate sentences such as

(4) If Alice is red-haired, then Bob is tall; or if Bob is tall, then Alice is
red-haired.

as false (e.g., when Bob is tall and Alice is black-haired: compare Bradley
2002).4 This motivates the following definition:

Definition 1 (Cooper valuations). A Cooper valuation is a valution function
v : L→ 7−→ {0, 1/2, 1} that respects the truth tables from Table 3 and assigns
classical truth values from the set {0, 1} to all atomic formulae of L (and thus, their
Boolean compounds).

We now define a (non-classical) probability function p : L→ 7−→ [0, 1],
taking into account that sentences of L→ can receive three values: true, false,
or void.5 For convenience, define

AT = {w ∈W | v(A, w) = 1}
AF = {w ∈W | v(A, w) = 0}

4For a more detailed defense of these features of trivalent conjunction and disjunction,
we refer to Égré, Rossi, and Sprenger (2021, 2024, forthcoming).

5For other occurrences of that definition, see de Finetti (1936), who pioneered it, Cantwell
(2006), Rothschild (2014), and Lassiter (2020).
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AV = {w ∈W | v(A, w) = 1/2}

as the sets of possible worlds where A is valued as true, false or void, relative
to a (Cooper) valuation function v : L→ ×W 7−→ {0, 1/2, 1}. In analogy to
bivalent probability, we derive the probability of a (conditional) sentence A
from the (conditional) betting odds on A: how much more likely is a bet on
A to be won than to be lost? For this comparison, two quantities are relevant:
(1) the cumulative weight of the worlds where A is true (i.e., c(AT)), and
(2) the cumulative weight of the worlds where A is false (i.e., c(AF)). The
decimal odds on A are O(A) = (c(AT) + c(AF))/c(AT), indicating the factor
by which the bettor’s stake is multiplied in case A occurs and she wins the
bet. Then we calculate the probability of A from the decimal odds on A by
the familiar formula p(A) = 1/O(A), yielding

p(A) :=
c(AT)

c(AT) + c(AF)
if max(c(AT), c(AF)) > 0. (Probability)

Hence, the probability of a sentence corresponds to its expected semantic
value, restricted to the worlds where the sentence takes classical truth value.6

On this definition of probability, we obtain Adams’s Thesis as a simple
corollary (for conditional-free A, B ∈ L):

p(A→ B) =
c(A→ B)T

c(A→ B)T + c(A→ B)F
=

c(AT ∩ BT)

c(AT)
=

p(A ∧ B)
p(A)

= p(B|A)

(Adams’s Thesis)

Regarding logical consequence, what should be preserved in the trivalent
setting? Truth, non-falsity or both? Rather than making an ad-hoc choice
about which values should count as designated, we follow the Stalnaker-
Bledin line and preserve acceptance of a proposition in valid reasoning (see
page 5 for motivation). Similar to Adams, we model acceptance preservation
as certainty-preserving inference, i.e., preservation of probability 1:7

Definition 2 (Certainty Preservation or C-validity). For Γ ⊂ L→ and B ∈ L→,
the inference from Γ to B is C-valid, in symbols Γ |=C B, if and only if for all
probability functions p : L→ 7−→ [0, 1]:

If p(A) = 1 for all A ∈ Γ, then also p(B) = 1.

6Additionally, we stipulate that p(A) = 1 whenever c(AT)+ c(AF) = 0, i.e., if it is certain
that A takes the value 1/2.

7It could be objected that acceptance of a proposition requires a lower probabilistic
threshold than 1, but our condition is analogous to the following common condition from
information state semantics: a state s accepts a proposition when it is true in every world w
in the state. Provided that p(w) > 0 for all w ∈ s, this is just the same as the probability 1
requirement. See Section 6 for further details.
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Since the trivalent analysis satisfies Adams’s Thesis, C agrees with
Adams’s logic of certainty-preserving inference in the fragment L→1 involv-
ing Boolean propositions and simple conditionals.

Crucially, C has an equivalent characterization in trivalent logic: an in-
ference is C-valid if and only if non-falsity is preserved in passing from Γ to
B (see Égré, Rossi, and Sprenger forthcoming):

Proposition 1 (Trivalent Characterization of C). For a set of formulae Γ ⊂ L→
and a formula B ∈ L→, the following are equivalent:

(1) Γ |=C B.

(2) For all Cooper valuations v : L→ 7−→ {0, 1/2, 1}: if v(A) ≥ 1/2 for all
A ∈ Γ, then also v(B) ≥ 1/2.

In other words, preserving non-falsity in the trivalent semantic model
assures that we will reason from fully accepted premises to fully accepted
conclusions, and vice versa.8 This means that 1 and 1/2 are both designated
values. In the next section, we apply this analysis of conditionals to the
semantic phenomena from the previous two sections and relate it to MCA.

5 Toward a Unified Analysis

The trivalent model of the suppositionalist analysis is particularly fruitful for
explaining the virtues and limitations of MCA. The material conditional A ⊃
B is interpreted as the disjunction ¬A ∨ B, and its trivalent truth conditions
are given by Table 4, in agreement with the truth conditions for disjunction
in Table 3.

Crucially, on the trivalent account, the suppositional conditional A → B is
logically weaker than the material conditional A ⊃ B:

Proposition 2. For A, B ∈ L→: A ⊃ B |=C A → B, and for A, B ∈ L (i.e.,
conditional-free A and B): A ⊃ B =||=C A→ B.

→ 1 1/2 0
1 1 1/2 0

1/2 1 1/2 0
0 1/2 1/2 1/2

⊃ 1 1/2 0
1 1 0 0

1/2 1 1/2 0
0 1 1 1

Table 4: Truth tables for the suppositional and the material conditional in trivalent
semantics.

8Instead, preserving semantic value 1 (“strict truth”) would preserve strictly positive
probability (Égré, Rossi, and Sprenger forthcoming).
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The proof is immediate from Table 4: A ⊃ B has more demanding non-
falsity conditions than A → B, even if it has more lenient truth conditions.
Therefore A ⊃ B |=C A → B, and for simple conditionals, the two expres-
sions are logically equivalent.

From this proposition, Observation 1 from Section 3 follows as an im-
mediate corollary. The material conditional describes the logic of deductive
reasoning in the fragment L→1 involving at most simple conditionals. But
can we we generalize this observation? That is, is logical equivalence pre-
served when we substitute the material conditional for the suppositional
conditional in more complex formulae?

To answer this question in a rigorous way, we first define the substitution
function τ : L→ 7→ L, which replaces every occurrence of→ in a L→-formula
with the material conditional ⊃. We then note that τ does not generally
preserve logical equivalence: for example, ¬(A → B) is not C-equivalent
to ¬(A ⊃ B) = A ∧ ¬B and (A → B) ∨ (C → D) is not C-equivalent to
(A ⊃ B) ∨ (C ⊃ D). Nonetheless τ preserves logical equivalence in a rather
large fragment of L→.

Definition 3. L→1+ denotes the fragment of L→ that is generated by combining
arbitrary Boolean formulae with the connectives ∧ and →. Specifically, negation
and disjunction are allowed for combining Boolean formulae, but not between con-
ditional expressions.

For example, (A → B) → (A ∨ C) and (¬A → B) ∧ (C → ¬D) are
formulae of L→1+, but (A → B) ∨ C or ¬(A → B) are not. We can now show
that substituting the suppositional with the material conditional in formulae
of L→1+ preserves logical equivalence (proof in the appendix):

Theorem 1 (Substitution of → by ⊃ in formulae of L→1+). As before, the func-
tion τ : L→1+ → L; A 7→ τ(A) substitutes all occurrences of → in a L→1+-formula
A by ⊃. Then, for any Γ ⊂ L→1+ and X ∈ L→1+:

• X =||=C τ(X);

• Γ |=C X if and only if τ(Γ) |=CL τ(X).

This means that key successes of MCA listed in Section 2—especially
Or-to-If and conditional standoffs—are predicted by the suppositional anal-
ysis: none of the target phenomena involves an element of uncertainty. The
suppositional conditional should behave exactly as predicted by the material condi-
tional in deductive reasoning: they stand and fall together. This observation
also accounts immediately for Gibbard’s (1981) otherwise puzzling result
that any conditional satisfying Import-Export, classical inference patterns
and A→ B |= A ⊃ B is equivalent to the material conditional.
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The failure of preserving logical equivalence for negations and disjunc-
tions of conditionals should not worry us too much.9 Plausibly, conjunc-
tions of conditionals like (3) (“if A, then B, and if C, then D”) occur more
frequently in natural language than disjunctions like (4) (“if A, then B, or if
C, then D”). Similarly, negations of conditionals such as “it is not the case
that if A then B” sound rather convoluted and unnatural compared to “if A,
then ¬B” or “if A, then possibly B”.

All in all, the logic of many natural language expressions with suppo-
sitional conditionals is correctly described by MCA. It is more than just a
good logical theory for deductive reasoning with simple conditionals: it ex-
tends to nested conditionals and conjunctive compounds of conditionals of
arbitary complexity.

Still, the result stated by Proposition 2 remains puzzling: if the suppo-
sitional conditional is not logically stronger than the material conditional,
how can it be the case that for all conditional-free A and B, p(A ⊃ B) ≥
p(B|A) = p(A → B)? Another look at Table 4 dissolves the tension. Simple
material conditionals A ⊃ B have a higher probability than p(B|A): since
they are true when A is false, c(A ⊃ B)T will exceed c(A → B)T in general,
while c(A→ B)F = c(A ⊃ B)F. Therefore

p(A→ B) =
c(A→ B)T

c(A→ B)T + c(A→ B)F
≤ c(A ⊃ B)T

c(A ⊃ B)T + c(A ⊃ B)F
= p(A ⊃ B).

We can summarize all these observations by saying that on the trivalent
analysis, (i) the material conditional and the suppositional conditional have
different truth conditions; (ii) therefore, they can have different probabili-
ties, with the material conditional always having a higher probability than
the suppositional conditional; (iii) nonetheless, simple material and suppo-
sitional conditionals are logically equivalent in deductive reasoning; and
(iv) in a large fragment of L→, we can substitute the suppositional for the
material conditional and preserve logical equivalence. Note that (iii) and
(iv) do not create any form of collapse or trivialization. Moreover, when
generalizing Bayesian conditionalization to the trivalent setting, learning the
suppositional and the material conditional produce the same posterior prob-
ability distribution (Égré, Rossi, and Sprenger 2024, Proposition 6; see also
Santorio 2022, on the “update equivalence” of → and ⊂). The material and
the suppositional conditional are therefore aligned in various dimensions of
inference and learning.

9Indeed, C does not satisfy the principle of Substitution of Logical Equivalents because
valuations of propositional atoms are assumed to be classical.
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The combination of (ii) and (iii) explains why we often accept Or-to-If
inferences when the premise looks certain, but not when it looks uncertain.
Consider the following inference:

(5) The butler or the gardener did it.

(6) Therefore, if the butler did not do it, the gardener did it.

Here, the premise is presented in a form that invites us to take it for granted
that all other suspects can be excluded. In fact, Edgington (1995, p. 242)
explicitly presents the Or-to-If argument as a certainty-preserving inference:

having eliminated all but two suspects, I’m sure that either the gardener
or the butler did it. So, if the gardener didn’t do it, the butler did. (my
emphasis)

In such a situation, the Or-to-If inference from the material conditional (5)
to its indicative counterpart (6) looks sound, in agreement with what is pre-
dicted by C. But in contexts of genuine uncertainty, Or-to-If fails. Consider
the following judgments of the police inspector:

(7) With 75% probability the butler or the gardener did it.

(8) ??Therefore, with 75% probability, if the butler did not do it, the gar-
dener did it.

This inference looks invalid: the speaker’s probabilities may support the
premises (say 50% butler, 25% gardener, 25% cook), but if the butler did not
do it, the cook is just as likely as the gardener to be the culprit.10 Without
additional information, we should not infer that the gardener did it with 75%
probability if the butler didn’t do it. This feature is correctly predicted by
our analysis: from p(A ⊃ B) ≥ 0.75 it does not follow that p(A→ B) ≥ 0.75.

We can draw a general lesson. The classical picture with only two se-
mantic values (true and false) and logical consequence as truth preserva-
tion forces truth conditions, logical consequence and probability to go to-
gether. When two propositions are logically equivalent, they must have the
same truth conditions, and therefore the same probability. But the logical
and probabilistic behavior of conditionals diverges. By giving up bivalence
and describing conditional logic in a more coarse-grained way than what
truth conditions tell us, we can understand this difference: the material and
the suppositional conditional have the same falsity conditions, but different
truth conditions. This allows for a split between logical and probabilistic be-
havior. In particular, since valid deductive inference preserves non-falsity

10This inference assumes that the elimination of the butler as a suspect does not provide
reasons to favor one of the two remaining ones.
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(by Proposition 1), MCA is a successful logic of conditionals while it is
bound to struggle with the probability of conditionals.

6 Suppositionalist Alternatives to Trivalence

The trivalent account is not the only analysis of indicative conditionals mo-
tivated by the Ramsey test. Can we obtain a similarly illuminating diagnosis
using one of its suppositionalist cousins?

As argued above, the original Adams-Edgington view, where condition-
als do not have truth conditions, does not cover nested conditionals and
compounds of conditionals. Thereby, it rules out a general comparison of
A → B and A ⊃ B, including cases where A and B themselves involve
conditionals.

Contextualist analyses of conditionals may be more promising. They are
suppositional in spirit, based on the Ramsey test, but add a semantic param-
eter for evaluating conditionals: a context or informational state. These states
are simply sets of possible worlds compatible with the speaker’s knowl-
edge, or the common ground of the conversation. Can such an analysis
say anything illuminating about the relation between the material and the
suppositional conditional?

The answer depends on the details of the specific account. I will survey
some recent proposals, without claiming that the analysis is exhaustive. For
the sake of presentation, I will simplify the details.

Yalcin (2007) and Gillies (2009), and essentially also Starr (2014), propose
a picture where the conditional A → B is treated similarly to a strict con-
ditional �(A ⊃ B). Roughly, a conditional A → B is true at a world w in
an informational state s if and only if updating the state with A, i.e., moving
from s to s[A], makes B true in s[A]. Put simply: w, s |= A → B if and only
if s[A] |= B (i.e., B is true at all worlds in s[A]). The details of the updating
procedure need not worry us, but with Gillies, we can simply take intersect
s with the A-worlds (i.e., s[A] := {w ∈ s | w, s |= A}).

On this picture, a simple conditional A → B has stronger truth condi-
tions than the corresponding material conditional A ⊃ B: for the material
conditional to be true at w, either ¬A or B must be true at w. But this is
compatible with w′ |= A,¬B for some w′ ∈ s. In this case, s[A] 6|= B and
A → B fails at w. Conversely, when the material conditional A ⊃ B is false
at w ∈ s, it follows that w |= A,¬B. Therefore s[A] 6|= B and w, s 6|= A → B.
The indicative conditional is logically stronger than the material conditional,
and the context-sensitivity of→ blocks Gibbard-style collapse results.

This reassuring fact comes at a price. Since the conditional → behaves
similarly to a strict conditional, it will not satisfy Adams’s Thesis. Such ac-
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counts therefore struggle to account for intuitive judgments about the prob-
ability of conditionals. Specifically, if a speaker at world w evaluates A→ B
with respect to information state s, then quite reasonably, she will assign
zero probability to worlds outside s. This means that the probability of
A → B must be zero or one (because the conditional is uniformly true or
false at s), trivializing a theory of the probability of conditionals.

Thus, strict conditional accounts obtain an intuitively correct account of
the logical relationship between the material and the indicative conditional,
but at the price of giving up on a promising theory of the probability of con-
ditionals. Moreover, since truth conditions and logic are context-dependent,
this analysis struggles to explain the attractive features of MCA.

Another contextualist research program substitutes “classical” possible
worlds by paths or sequences of possible worlds as semantic building blocks
(Goldstein and Santorio 2021; Khoo 2022; Santorio 2022; see also Kaufmann
2009; Bacon 2015). Any path corresponds to a sequence of classical possible
worlds (i.e., maximally consistent valuations of all formulae of L). The first
world in a path determines the truth values of all Boolean formulae. For
example, at the path p = (w2, w1, w3, . . .), the material conditional A ⊃ B
(for A, B ∈ L) is true if and only if ¬A or B are true at w2. For determining
the truth value of a conditional formula A → B, we look instead at the
first world in the path where A is true, similar to Stalnaker’s semantics for
conditionals. So if A is false at w2 but true at w1, the truth value of A→ B at
p corresponds to the truth value of B at w1. In general, we evaluate A→ B at
any path p by evaluating B at the updated path p + A where the ¬A-worlds
have been eliminated.

Based on this semantics, Santorio (2022) obtains that the truth of the
indicative conditional at a path p guarantees the truth of the material
conditional.11 Goldstein and Santorio (2021) also derive Adams’s Thesis
p(A→ B) = p(B|A) for conditional-free A and B.

For reasons discussed in Section 3, Santorio works with an analogue of
certainty preservation as definition of logical consequence: Γ |= A whenever
any information state s that accepts all elements of Γ also accepts A (i.e.,
A is true at all elements of s). As before, information states are sets of
classical possible worlds. The above semantics then implies that whenever
an information state s accepts A → B, it will accept A ⊃ B, too. This is
unsurprising since at any path, the truth conditions of A → B are more
demanding than the truth conditions of A ⊃ B. What is more surprising
also the contrary is valid: any information state s that accepts A ⊃ B will

11The only way the material conditional A ⊃ B can fail is that the first world in p is a
(A,¬B)-world. But in this case, B would be false at the updated path p + A (since the first
element of p will be the first element of p + A), and so also A → B must be false at p.
Moreover, A→ B can fail at some paths where A ⊃ B is true.

15



accept A → B, too. The material and the indicative conditional are thus
logically equivalent for informational consequence, like in our Observation
1. This allows Santorio to validate the Or-to-If inference without assigning
identical truth conditions to the material and the suppositional conditional.

Similarly, the material conditional A ⊃ B and the indicative conditional
A → B are update-equivalent, i.e., any information state where we learn
A ⊃ B (by updating the individual paths in that state) equals the same infor-
mation state after learning A → B. This is the analogue of our Observation
2. Santorio (2022, p. 85) concludes that

[l]earning a material conditional is equivalent to learning the corre-
sponding indicative, even though the two are not treated as equivalent
by the semantics

and this is a surprising and desirable feature, in line with our diagnosis.12

In a nutshell, Santorio’s path semantics assigns more demanding truth
conditions to the indicative conditional (at a path) than to the material con-
ditional, while reproducing their equivalence in logic and updating. At the
same time, probability can be defined rather straightforwardly and a lim-
ited version of Adams’s Thesis holds. Santorio’s semantics is thus a serious
alternative to the trivalent account when it comes to forging systematic con-
nections between the material and the suppositional conditional.

On the other hand, the use of sequences of possible worlds as basic seman-
tic building blocks is a substantial departure from the traditional semantic
picture that MCA proponents want to maintain. Of course, also the trivalent
account is non-classical because it gives up bivalence, but in its structure, it
is very similar to MCA: the semantic building blocks are standard possible
worlds. Even more importantly, valuations are truth-functional, reducing the
truth conditions of conditionals to the truth conditions of non-conditional,
factual sentences. Moreover, logical consequence can be defined in terms
of preservation of designated value at a world, without reference to con-
texts (see Proposition 1). Compared to contextualist accounts, the trivalent
account is closer to MCA in its conceptual repertoire and its take on logic
and reasoning. And for this reason, it is a more promising candidate for a
unified theory of the material and the suppositional analysis.

7 Conclusions

The material and the suppositional analysis of the indicative conditional
have different strengths and weaknesses. The classical suppositionalist anal-

12Khoo (2022, p. 75) rejects this update equivalence in favor of a slightly different principle.
Apart from the brevity of the presentation, this is another reason why I focus on Santorio’s
proposal.
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ysis delivers a powerful theory probabilistic reasoning, but it lacks a truth-
conditional model that explains the semantic grounds for probability judg-
ments. Moreover, it does not apply to nested conditionals and compounds of
conditionals and has therefore limited scope. MCA does not have this limi-
tation and adequately captures deductive reasoning with conditionals, but it
struggles to account for intuitive judgments on the probability of condition-
als, and in particular for Adams’s Thesis—the core of the suppositionalist
account. How can we integrate all this into a unified account?

This paper has argued that trivalent semantics explains the attractive
features of either account, without sharing their limitations. MCA emerges
as the correct analysis of deductive reasoning with conditionals in a large
fragment of the language, including nested conditionals and conjunctions of
conditionals. In this case, suppositional reasoning will be exactly mirrored
by classical truth-preserving inferences with the corresponding material con-
ditionals (Theorem 1). In other words, MCA is a reasonable approximation
of suppositional reasoning that allows us to preserve familiar assumptions:
truth-functional semantics, bivalence of semantic value, and logical conse-
quence as truth preservation. (The latter two are given up by trivalent se-
mantics.) This may also explain the appeal of MCA for psychologists of
reasoning (Johnson-Laird and Byrne 1991, 2002).

In other words, we invert Williamson’s claim that suppositional reason-
ing is a heuristic for MCA: we have defined a precise sense in which MCA is
a heuristic for suppositional reasoning with conditionals, namely when no
uncertainty is at stake. The performance of MCA is much less convincing
when probability and uncertain reasoning are involved.

Notably, the divergence of the material and suppositional conditional on
the level of probability remains a purely semantic feature, firmly grounded
in truth conditions. This agrees with the idea that probability should exclu-
sively depend on the relative weight of possible worlds, and on the truth
values of propositions at different worlds. No appeal to pragmatics is re-
quired to connect logic, truth conditions and probability. Similar results can
be obtained in Santorio’s (2022) update-based path semantics, but the triva-
lent construction is simpler and structurally more similar to MCA.

These findings also suggest that the Adams-Edgington claim that con-
ditionals do not express propositions may be unnecessary baggage for the
suppositional account. It is not required for obtaining Adams’s predictions
about probabilistic inference with conditionals (see also Égré, Rossi, and
Sprenger 2024). Accepting that conditionals are propositions, as their sur-
face form suggests, does not come with drawbacks, but only with benefits.

Finally, a note on wider implications. The present proposal seems
to introduce a certain amount of logical pluralism: there is no one true
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logic of conditionals, but there are two of them: certainty-preserving and
probability-preserving inference. This distinction goes back to Adams (1975,
1996) and Edgington (1995). While looking strange at first, it makes a lot of
sense. First, for the conditional-free fragment L, both C and its probability-
preserving counterpart collapse to classical logic. Second, the variation in
validity judgments for the Or-to-If inference in examples (5) to (8), depen-
dent on the degree of uncertainty, suggests that two different notions of
logical consequence may be at play (compare also the discussion about the
validity of Modus Ponens in McGee 1985). Distinguishing between certain
and uncertain inference simply widens our repertoire for analyzing the se-
mantic and pragmatic phenomena surrounding indicative conditionals.
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Proofs

Lemma 1. For A, B, C, D ∈ L→: If A =||=C C and B =||=C D, then also A ∧
B =||=C C ∧ D.

Proof. Assume that at a world w, v(A ∧ B, w) ≥ 1/2: this is the case if and
only if v(A, w) ≥ 1/2 and v(B, w) ≥ 1/2. Since C preserves designated values
≥ 1/2, A =||=C C and B =||=C D implies that these conditions are equivalent
to v(C, w) ≥ 1/2 and v(D, w) ≥ 1/2—which is the same as v(C ∧ D, w) ≥
1/2.
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Lemma 2. For A, B ∈ L→1+ and Boolean formulae C, D ∈ L: if A =||=C C and
B =||=C D, then A ⊃ B |=C C ⊃ D.

Proof. At any world w, v((A ⊃ B) → (C ⊃ D), w) ≥ 1/2. Constructing
a countermodel requires that at a world w′, v(C, w′) = 1 and v(D, w′) = 0
(remember that C and D are Boolean formulae). The C-equivalences A =||=C
C and B =||=C D imply v(A, w′) ≥ 1/2 and v(B, w′) = 0, and so v(A ⊃
B, w′) = 0. But then v((A ⊃ B) → (C ⊃ D), w) = 1/2. Hence no such
countermodel exists. It follows by the Deduction Theorem for C that A ⊃
B |=C τ(A) ⊃ τ(B).

Proof of Theorem 1. The proof of the first claim (X =||=C τ(X)) proceeds by
induction on the complexity of the L→1+-formula with the connectives→ and
∧. The base case is given by Proposition 2.

For the inductive step, suppose the main connective is ∧ and that X =

A ∧ B ∈ L→1+. By the inductive hypothesis, we know that A =||=C τ(A) and
B =||=C τ(B). Lemma 1 yields that A ∧ B =||=C τ(A) ∧ τ(B). Finally we
note that τ(A ∧ B) = τ(A) ∧ τ(B), and therefore A ∧ B =||=C τ(A ∧ B), as
desired.

The proof for the main connective → is slightly more complex. Assume
that X = A → B ∈ L→1+. We need to show that this is C-equivalent to
τ(A → B) = τ(A) ⊃ τ(B). By the inductive hypothesis, we know that
A =||=C τ(A) and B =||=C τ(B). For the direction τ(A) ⊃ τ(B) |=C A → B,
we make use of some properties of |=C, shown in Égré, Rossi, and Sprenger
(forthcoming):

(1) τ(A), τ(A) ⊃ τ(B) |=C τ(B) C generalizes classical logic
(2) τ(A), τ(A) ⊃ τ(B) |=C B (1), τ(B) |=C B and Transitivity
(3) A, τ(A) ⊃ τ(B) |=C B (2) and Left Logical Equivalence
(4) τ(A) ⊃ τ(B) |=C A→ B (3) and Conditional Proof

For the direction A → B |=C τ(A) ⊃ τ(B), we reason by cases, showing
that no valuation of A and B gives rise to a countermodel to the postulated
implication. Since C preserves designated value ≥ 1/2, such a model would
require that at some world w and for some valuation function v, v(A →
B, w) ≥ 1/2 and v(τ(A) ⊃ τ(B)) = 0.

• Consider v(A, w) ≥ 1/2 and v(B, w) = 0. Then also v(A → B, w) = 0
and no countermodel is possible.

• Consider v(A, w) = 1 and v(B, w) = 1/2. By the inductive hy-
pothesis, A =||=C τ(A) and B =||=C τ(B), and τ(A) and τ(B) are
Boolean formulae with classical truth values. Therefore v(τ(A), w) =

v(τ(B), w) = 1 and consequently, v(τ(A) ⊃ τ(B), w) = 1.

21



• For all other valuations of A and B, we have v(A ⊃ B, w) ≥ 1/2. But we
know from Lemma 2 that in this case, also v(τ(A) ⊃ τ(B), w) ≥ 1/2.

Thus, there is no world w and valuation v where v(A → B, w) ≥ 1/2 but
v(τ(A) ⊃ τ(B), w) = 0, concluding the proof.

For the second part of the theorem, note that C satisfies Left and Right
Logical Equivalence. Thus, Γ |=C X if and only if τ(Γ) |=C τ(X). Since
both τ(Γ) and τ(X) are conditional-free and since C generalizes classical
logic, we obtain τ(Γ) |=CL τ(X). The converse direction runs analogously:
from τ(Γ) |=CL τ(X) we infer τ(Γ) |=C τ(X) and by Left and Right Logical
Equivalence Γ |=C X. (τ has a unique inverse function τ−1, which substitutes
every occurrence of ⊃ with→.)
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