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Beyond Newton, Leibniz and Kant: 

insufficient foundations, 1687 to 1786 

Marius Stan 

 
 
My aim below is to examine critically whether Newton’s, Leibniz’s, and 
Kant’s respective doctrines of body and motion are sufficient foundations 
for classical mechanics. I argue that they are not. Each comes up short 
in various respects and to various extents. In consequence, I urge that, 
to discover the true foundations of mechanics, we must look beyond 
these three figures. And also that, because their respective foundations 
are insufficient, we ought to debate exactly what we historians and phi-
losophers may hope to get from looking at them.  

To make my case, I begin with an analytic preamble that elucidates 
the various senses of sufficiency and mechanical foundations I assume 
in this chapter (section 1). Next, I dispel some old prejudices and mis-
understandings about mechanics after Newton (section 2). And, I give a 
synopsis of its structure and scope, based on newer research (section 3). 
Then I check whether the foundations above are sufficient for that me-
chanics. In particular, I show that Newton’s, Leibniz’s, and Kant’s laws 
of  motion are too narrow for it (section 4). And, that their respective 
pictures of  matter are likewise insufficient foundations (section 5). I end 
with some morals and suggestions for future research.1 

                                                
1  For Newton, I use his Principia. For Leibniz, I use his Specimen dynamicum and 
related texts (see nos. 14, 16, 22-3, 31, A3-4 and E3-4 in Leibniz, Essays). For Kant, I 
rely on his 1786 tract, Metaphysical Foundations of  Natural Science (henceforth MAN).  
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This paper is summative: it relies on, and connects, work I have done 
elsewhere. Thus, it really ought to be read in conjunction with that work, 
for my point to sink in.  

 

1.   BACKGROUND DISTINCTIONS  

 

To preempt confusion, and to help the reader see the force of my con-
cerns, I must explain my charge of insufficiency above. A mechanical 
foundation F can be sufficient in two senses.2  

 
Weak  F entails a theory of mechanics M, and all of physics can 
be reduced to M.3 
Strong  F is enough to represent all mechanical phenomena. 
Namely, it entails equilibrium conditions and equations of motion 
for all possible bodies.  

 
I will explain these matters further as the need arises. Next, I must elu-
cidate the particular foundations I have in mind for my case in this paper. 
Labeled for efficient use, they are as follows:  

 
N    Newton’s Definitions I through VII, his three laws of motion 
(including f = ma), and their six corollaries in Principia. The law of 

                                                
2  Broadly speaking, F is a set that contains concepts, laws, mathematical theorems, and 
perhaps heuristics for problem-solving and theory buildup. 
3  This sense might seem idle, but it was long influential. Descartes’ 1644 Principles of  
Philosophy advocated for reducing physics (optics, magnetism, heat flow, even physi-
ology and earth science) to a mechanics of matter in motion (specifically, of action by 
contact via collision and ether pressure). And so did Hobbes, in De Corpore of 1655. 
Centuries later, Hertz urged: “All physicists agree that the problem of physics consists 
in tracing the phenomena of nature back to the simple laws of mechanics” (Hertz, Me-
chanics, xxi). Halfway between these termini was Fischer’s program of a mechanische 
Physik, whose influence extended to France (see his Physique mécanique). 
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universal gravitation. Optional: the matter theory in Query 31 of his 
Opticks. 
L    Leibniz’s taxonomy of forces in Specimen dynamicum. Conser-
vation of Vis Viva. Matter regarded as a deformable continuum.  
K    Kant’s primitive concepts, their explications, his derived theo-
rems, and the three laws of mechanics in his MAN.  

 
These preliminaries now enable me to state my thesis more precisely:  

 
Neither N, nor L, nor K are strongly sufficient foundations. None has 
the resources to represent the mechanical behavior of  all bodies.  

 
Most of my case below marshals evidence for the thesis above. Before I 
do so, however, I need to cast more light on two aspects above, viz. ‘rep-
resenting’ and ‘mechanical behavior.’  

 

2.  THE SHAPE OF MECHANICS AFTER 1730  

 
It is seductive, and has long been entrenched, to use Newton as the best 
vantage point for grasping the structure and foundations of mechanics 
after him (up to 1905-18, when Einstein supposedly displaced Newto-
nian theory). Here I will explain briefly why that is wrong.  

The Principia contains a rational mechanics of ‘centripetal’ forces— 
the mathematics of particle orbits in fields of central acceleration—and 
then an application of this apparatus to one particular species of centrip-
etal force in nature, viz. gravity. Knowing that he had discovered just 
one species of impressed force, Newton in a famous exordium to his 
Principia urged future generations to continue his program of discovery:  

 

If only we could derive the other phenomena of nature from mechanical 
principles by the same kind of reasoning! For many things lead me to 
have a suspicion that all phenomena may depend on certain forces by 
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which the particles of bodies, by causes not yet known, either are im-
pelled towards one another and cohere in regular figures, or are repelled 
from one another and recede. As these forces are unknown, philosophers 
have hitherto made trial of nature in vain. But I hope that the principles 
set down here will shed some light on either this mode of philosophizing 
or some truer one. (Newton, Philosophical Writings, 60f.; my italics)  

 
Now combine his exhortation with two pieces of received wisdom. One 
is Mach’s old chestnut that Newton’s laws of motion are a sufficient basis 
for all classical mechanics. The other is Kuhn’s old image of mechanics 
after Newton being ‘normal science.’4 

Together, these elements can strongly seduce the reader into thinking 
that, from 1687 to Einstein, mechanics was in the business of discovering 
more forces and their specific laws by following Newton’s recipe and by 
building on his foundation N above.5  

However, the Mach-Kuhn framing is wrong, on conceptual and em-
pirical grounds; hence so is the historical picture that falls out of it. It is 
not true that mechanics after Newton was in the business of discovering 
more forces and their laws, by emulating his success with gravity. And, 
it is not true that mechanics post Principia built on his foundation N. In 
fact, mechanics then had a different agenda, pursued with very different 
tools, and evaluated from very different criteria of success. 

                                                
4  “Newton’s principles suffice for solving every mechanical problem we encounter in 
practice, whether in statics or dynamics. We need not appeal to any new principle for 
that. If we run into obstacles, they are always just mathematical. Not difficulties with 
the principles” (Mach, Mechanik, 239; my emphasis). Kuhn counted Newton’s Principia 
as a paradigm—the exemplary achievement of classical mechanics—and claimed that 
it “served for a time implicitly to define the legitimate problems and methods of a re-
search field for succeeding generations of practitioners” (Kuhn, Structure, 10; my em-
phasis). 
5  Note that, if these framing assumptions were true, they would make short work of 
Leibniz, Kant, and anyone who diverged from the Newtonian program above. If me-
chanics post 1700 was in fact as the Mach-Kuhn has it, then attempts to supplant it (as 
Leibniz tried, with vis viva) or to correct it (as Kant tried, with foundation K) must 
appear as doomed to fail, or at least seriously misguided. I thank Katherine Brading for 
enlightening discussion of these broader points. 
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Here is why and how. To treat behaviors from theory—to incorporate 
them into mechanics—requires an indispensable thing, viz. obtaining 
the equation of motion for that particular type of behavior. For instance, 
the wave equation: the differential formula that quantifies how every 
point in a flexible string (more generally, in any harmonic oscillator) 
moves in an instant once the string is made to vibrate. By the way, that 
formula was discovered in 1747, by d’Alembert.  

This requirement is crucial for understanding my claim that post-
Newtonian mechanics is drastically different from Newton’s approach 
and results in Principia. First, there are no equations of motion in his 
book.6 Pursuing them became the chief priority after 1730, at first with 
the Bernoullis and their associates, then collectively in continental Eu-
rope. Second, equations of motion must be derived from dynamical laws: 
from principles that relate mechanical agency (be it force, power, work, 
energy, or action) to kinematic change in space and time. Third, post-
Newtonian theorists seek dynamical laws shown to be general. That is, 
some one or two principles that entail equations of motion for all species 
of extended body.  

In sum: the old prejudice was that post-Newtonian mechanics aimed 
to discover more forces and their laws, by emulating Newton’s heuristics, 
and by starting from his principles. In contrast, recent research entails 
the key objective of mechanics was different—namely, to derive equa-
tions of motion for a very broad spectrum of bodies, from dynamical 
laws thereby shown to be general.  

This radically novel and extremely demanding objective is sine qua 
non for understanding the true shape and growth of mechanics after 
1700. It has no precedent in the theories and research programs of the 
1600s; and it is easy to miss if one looks at mechanics with Newton’s 
achievement as our lens for history.  

 

                                                
6  Decades ago Truesdell had pointed out that differential equations—the key represen-
tational device of modern mechanics—are absent from Newton’s tract (Truesdell, Es-
says, 90). We may wonder if Newton would have even recognized the need for them in 
mechanics. I thank George E. Smith for stimulating discussion on this topic. 
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3.   SUFFICIENT FOUNDATIONS, 1760 TO 1830  

 
For a century after 1730, mechanics sought to mathematize two very 
broad classes of kinematic behavior: the motion of extended bodies; and 
motion with external constraints, viz. obstacles to free translation. It was 
all slow work—a testimony to how difficult these classes were.7 

Mechanics came close enough to conquering these two areas in the 
1820s. By the end of the Old Regime, it had already made enormous 
advances at the hands of Euler and Lagrange; later progress was due to 
Navier and Cauchy. Thanks to them and a few others, toward the mid-
19th century it became clear that only two candidates had any realistic 
chance to be foundations in the strong sense. I present them here.  

Euler-Cauchy laws.  The motion of extended bodies was conquered 
stepwise, one species at a time. First they mathematized low-dimen-
sional elastics, then rigid bodies, then ideal fluids, then elastic solids, and 
then at last viscous fluids.8 After a century of effort, theorists learned 
that one dynamical law is indispensable for all these species. Namely, it 
is a required premise for deriving the equations of motion for every spe-
cies. That law is:9  

 
b + ( − 𝛻T) = 𝜌ẍ    (1a) 

 
Expressed in words, it says: at every point of an extended object in mo-
tion, the net body force plus the gradient of the local contact forces (i.e. 
stresses) equals the point’s change of linear momentum in an instant.  

                                                
7   Claims in this section depend on research carried out in Brading & Stan, Philosoph-
ical Mechanics, chapters 8-12. For elaboration, the reader is invited to consult it. 
8   Other types of extended-body motion (e.g. plasticity, fracture, hysteresis, creep, and 
brittleness) had to wait until the 20th century for their mathematization. 
9   b is the net body force, T the stress, or internal force, 𝜌 the mass density, and the 
acceleration (the second derivative of the position vector X). An early version of this 
law is in Cauchy, “Sur les equations.”  
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Bur for some motions (namely, for rigid bodies and elastic solids) the 
expression is not quite enough to represent their every quantitative as-
pect. Rather, it must be combined with another law; only together do 
they completely represent the change at a point. That second law is:10  

 
H = dL/dt      (1b) 

 
Again in words: the net torque on a body forces equals the change of 
angular momentum (at a point, in an instant).  

The figures who did most to showcase the descriptive power of these 
laws—their vast descriptive reach—were Euler and Cauchy. Thus, fol-
lowing recent tradition, I named the laws after them.11 

Lagrange’s law.  Another area of intense research after Newton was 
constrained motion.12 It was an arduous domain in which the 1600s had 
bequeathed no useful principle or heuristic for problem solving. In par-
ticular, Newton’s second law was of no help.13 And so, theorists in effect 
had to create this area of mechanics from the ground up. Clairaut and 
d’Alembert made very important advances, but only Lagrange in 1788 
would obtain a general solution. Namely, a dynamical law that governs 
all species of motion, free or constrained; plus a method for quantifying 

                                                
10   H is the net impressed torque, and L the angular momentum. The earliest expression 
of this law is Euler, “De motu in superficiebus,” § 48.  
11  See especially Truesdell, Rational Continuum Mechanics, 64ff. 
12  Generally, a constraint is a limit on how a particle or a body is allowed to move. 
Some constraints are external to the body. E.g. an inclined plane, which prevents the 
body from moving straight down (under the force of gravity). Other constraints are 
internal to the body. E.g. rigidity, which prevents the body’s component points from 
changing their relative distances.  
13  The reason is, the physical basis that secures the constraints—e.g., forces (if they 
are forces), their specific laws, and mechanisms of action—is not known in advance. 
It is not given at the outset of building the theory of mechanics. But, to apply Newton’s 
second law, that required knowledge must be available at the outset. The law really says 
that ∑f = ma, viz. the actual acceleration is the result of all the forces acting at that 
point. Absent knowledge of some forces, the law becomes inapplicable. The “most 
widespread mistake about Newton’s three laws of motion is that they alone sufficed for 
all problems in classical mechanics.”—Smith, “Newton’s Principia,” § 5.  
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the action—the motion changes it induces—of any constraint, no matter 
its particular makeup.  

I call his principle ‘Lagrange’s law,’ in line with some latter-day au-
thors who have explained the merits of his demarche.14 The law is a 
statement about the virtual work done in a mechanical system. It reads:15 

 
∑ F ıf   +  ∑ (–mẍ) ıx  +  ∑ 𝝀i ıL = 0   (2) 

 
It says that when a set of bodies move, we may regard it as the target of 
three mechanical agencies: actual forces applied to it; certain fictitious 
forces; and the action of constraints on its motion. Each agency does 
virtual work, viz. it could displace its target mass by an amount 𝛿r. The 
law says that the net virtual work of all these agencies (forces and con-
straints) vanishes across the system as a whole.16 

Incidentally, the law includes Lagrange’s great breakthrough—his 
general treatment of constraints, which Newton’s laws cannot handle. 
Lagrange reasoned as follows. Let the action of any constraint in the 
system—the amount whereby it changes the motion of the mass it pre-
vents from moving—be some amount 𝝀.17 And, let 𝛿L be a virtual dis-
placement (of the target mass) compatible with that constraint. La-
grange’s insight was that, across the system as a whole,  

 
∑ 𝝀i ıL = 0 

 

                                                
14  For the origin of the idea that this is really Lagrange’s law, together with a lucid 
explanation of its role in solving constraints, see Papastavridis, Analytic Mechanics.  
15  See, for instance, Lagrange, Mechanique, 53ff. F is any actual, impressed force on a 
mass i in the system; 𝛿f is a virtual displacement that F would cause in i. And, −miẍi 
are so-called ‘reverse effective forces’ (or also ‘kinetic reactions’), viz. fictitious forces 
supposed equal and opposite to the particle’s effective acceleration ẍi; and 𝛿x a virtual 
displacement in their direction. Finally, 𝝀i is a Lagrange multiplier, and 𝛿L a virtual 
displacement compatible with the constraint given by 𝝀i. 
16  By a mechanical system I mean one or more masses, point sized or extended. 
17  The modern name for this quantity is a ‘Lagrange multiplier.’ 
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namely, the virtual work of all the constraints, together, cancels out.18 
I end with an important note. Of the two laws above, Lagrange’s is 

the most powerful. Namely, it can be used to quantify as well the kinds 
of motion that Euler-Cauchy principles can represent. The converse does 
not hold: Euler-Cauchy laws are not strong enough to describe the mo-
tion of masses with external constraints (which Lagrange’s law was de-
signed to treat). Recall, that was a blind spot of Newton’s second law as 
well. In effect, Lagrange’s is really the only principle sufficient in the 
strong sense.19 
 

4.   INSUFFICIENT FOUNDATIONS: LAWS  

 
Central to the respective foundations of Newton, Leibniz, and Kant are 
their laws of motion. Below, I explain why those laws are insufficient. 
There are two ways to do that, long and short.  

Here is the short one. Neither N nor L nor K are the same (in terms 
of physical content and mathematical structure) as the Euler-Cauchy 
laws or Lagrange’s law. But, only these laws have been shown—they 
alone have the track record—to be sufficient foundations, or very nearly 
sufficient. Hence, Newton, Leibniz and Kant did not give us enough basis 
for mechanics. So, we must move beyond them.  

This explanation is brief and hard to impeach, but is not as illuminat-
ing as it gets. Accordingly, next I review the three candidates, and point 
out precisely what they lack.  

Newton.  The foundation N is deficient in three respects: it lacks 
enough concepts of force, enough laws, and enough expressive power. 
From the Bernoullis to Cauchy, it took a century of struggles to gain the 

                                                
18  This capsule of Lagrange’s result is perforce terse, hence hard to follow, understand-
ably. For a longer, more lucid explanation, see Brading & Stan, Philosophical Mechan-
ics, chapter 11 
19  The evidence for my claim is Hamel’s extensive treatise Theoretische Mechanik, 
which, from Lagrange’s law above, derives equilibrium conditions and equations of 
motion for all the species of body treated by then (viz. rigid, flexible, fluid, and elastic). 
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hard-won insight that, in order to mathematize the motion of extended 
bodies—fluids, elastics, plastic solids, and the like—we must distinguish 
between internal and external forces.20 To describe exactly how matter 
moves at any point in an extended body, we must add up the actions of 
both kinds of force. However, these two kinds are mathematically unlike: 
external forces are vectors, internal forces are tensors.21 To find out how 
the net internal force at a point (in an extended body) contributes to 
moving that point over an instant, we must use the gradient of that force. 
Not the quantity of the force itself.22 That gradient then combines with 
the net external force to cause in that point a momentum increment 𝜌ẍ, 
just as the Euler-Cauchy law has it.  

Against this background, here is how N is insufficient. First, Newton 
did not have the distinction internal vs external force. It is neither explicit 
in his definitions, nor implicit in his practice of building the rational 
mechanics of Principia. Second, because he lacked that distinction, his 
most important principle—the second law above—is too weak to apply 
to most bodies. It is really quite narrow: the law can describe just two 
species of object, namely, a free mass point and one special point in a 
rigid body, in very special situations.23 This fact was known at the time:  

 
In a vacuum, a material point in projectile motion describes a parabola. 
From that, we can understand why a body too will cross a parabola, if 

                                                
20  External forces originate—they are exerted by sources—outside the bounding sur-
face S of an extended body. Examples: gravity and magnetic forces. Internal forces are 
exerted below S (inside the extended body), due to the body’s parts acting on one an-
other. Examples: pressure in a fluid, and stress in an elastic solid. 
21  Interpreted geometrically, a vector is an arrow-like object with a length (size) and a 
direction. It was used to represent the action of an impressed force on a mass point; 
e.g. the velocity increment (acceleration) in f = ma. A tensor is analogous to a bundle 
of 9 arrows, or vectors; see next footnote. 
22  A tensor-like force acts on a small volume of matter to compress, stretch, or twist 
it. Cauchy called it ‘pressure or tension,’ to indicate that it does more than just translate 
a point over a small distance (which vectorial forces do). We call is ‘stress.’ 
23  Namely, only when the net resultant (of all the external forces) pass through the 
body’s mass center. If it does not, the resultant induces motion effects (e.g. precession) 
that Newton’s second law cannot predict. 
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we throw it. But, that point motion alone will not teach us the laws gov-
erning the motion of individual parts in a finite body. ... What Newton 
has proved about motion under centripetal forces applies just to a single 
point. (Euler, Mechanica, v-vi; added emphasis)  

 

They just did not know how to overcome that major limitation of New-
ton’s second law. It took a century to overcome it.24 Third, the foundation 
N lacks the mathematical resources to even represent the action of inter-
nal forces. That task requires the calculus of partial derivatives. Newton 
did not have it, and the concepts he did have are too weak to make up 
for that lacuna.25 

Leibniz.  The chief law of L is not sufficient for the strong task either. 
My evidence for this comes from the growth of mechanics after 1700. 
Historically, Conservation of Vis Viva played two roles, and neither role 
counts as a fundamental law for all mechanics.  

Some used it as a premise for deriving a narrow range of results, but 
none of these results was an equation of motion. Rather, each counts as 
an effective parameter, namely, a quantity specific to the whole motion 
(the path crossed in a finite time) of a special point in an extended body; 
or by a small part of a mechanical system. For instance, the maximum 
height to which a body’s center of mass can rise under gravity. For in-
stance, the characteristic frequency for the oscillating motion of the mid-
point in a string made to vibrate. For instance, the sum of speed and 
pressure for a thin slice of fluid moving in a tube of variable width.26 

And, some proved that, in certain cases, Conservation of Vis Viva 
was a consequence of the equations of motion. In particular, that when 
certain mechanical systems are left alone—if no exogenous force acts 
on them—they will move such that their total vis viva remains constant 

                                                
24  Again, for details and history, cf. Brading & Stan, Philosophical Mechanics, ch. 10. 
25  Newton did not have the term ‘derivative.’ He just had a proto-version that he called 
a ‘fluxion.’ That Newtonian concept overlaps with our modern notion of rate of change 
(of a variable quantity in respect to another, e.g. dx/dt or even dr/dx). But, it cannot 
capture the idea of a partial rate of change, which, say, 𝜕f/𝜕x expresses.  
26  For the first example, cf. Propositions 39-41 of Newton’s Principia. For the second, 
see the final section of Daniel Bernoulli’s Hydrodynamica (1738). 
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over time. That is the class of systems made of masses interacting by 
‘conservative’ forces, viz. derivable from a function V that depends only 
on the relative distances between these masses. Clairaut in the1740s and 
Lagrange in 1788 were the chief figures for this line of thought.27 

In sum, Conservation of Vis Viva sometimes entailed some special 
quantitative aspect of a whole motion, or path integral; and sometimes it 
was a corollary of the equations of motion. Not a premise for them, 
which a fundamental law of mechanics must be. 

Kant.  The set K is even less sufficient as a descriptive basis for a 
broad theory of mechanics. Two laws in it (conservation of mass, and 
the equality of action and reaction) do useful work, but for a limited 
range of motions, and only as auxiliary premises. By themselves, neither 
suffices to determine any motion.  

Specifically, Conservation of Mass is a co-premise in fluid dynamics. 
Euler derived a version of it—he called it the ‘continuity equation,’ as do 
we. From a species of the Euler-Cauchy law (1a) above, in 1755 the Swiss 
mathematician derived the equation of motion for the instantaneous 
change at any point in a frictionless fluid.28 With his formula in place, 
Euler then explained that, to determine the fluid’s motion completely, his 
formula is not quite enough. Rather, it must be supplemented with Con-
servation of Mass (which Kant has), but stated in the exact form that is 
the Continuity Equation above.29 Then Navier in 1821 extended Euler’s 
success, but for the more complicated case of viscous fluids. Navier first 
inferred the strength of the friction-like effect (the viscosity tensor) that 

                                                
27  In our terms, they showed that, if interaction forces in a system are given by (mon-
ogenic) potentials, then Conservation of Vis Viva is a ‘first integral of motion,’ i.e. a 
quantity conserved over a finite stretch of time. For additional discussion and historical 
details, see Brading & Stan, Philosophical Mechanics, chs 8 and 11. 
28  That formula is known as the Euler Equation for an ideal fluid. For its history, see 
Darrigol, Worlds of  Flow, ch. 1; Brading & Stan, Philosophical Mechanics, ch. 10. 
29  Why it is not enough: Euler’s Equation determines just the change of velocity at a 
point; but when a fluid moves, there is mass flow as well—the density at that point 
changes over time. This latter change is what the Continuity Equation (or Conservation 
of Mass) describes exactly: 𝜕𝜌/𝜕t + 𝜕𝜌v/𝜕xi = 0. In words, in a volume element, the 
mass density at an instant equals the mass in it at the previous instant, plus the rate of 
mass flow across the volume’s bounding surface. 
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two adjacent volume elements in a fluid exert on each other. Which he 
then added to the dynamical part—the left-side half that sums the local 
actions at a point—in Euler’s Equation for a perfect fluid. Thereby, he 
obtained the famous Navier-Stokes equation, a more realistic description 
of how fluids in our world move. Navier too knows that his equation 
alone is not enough to describe the fluid’s behavior (at a point) com-
pletely. It needs supplementation: “we must add the equation of continu-
ity.”30 

In sum, Kant’s law (conservation of mass) works as an auxiliary 
premise, for the case of fluid motion alone, provided we state it carefully 
and exactly, viz. as the Continuity Equation.  

What about Kant’s law of action and reaction, the other non-trivial 
principle in K ? It is even weaker than his first law above, I submit. It 
too does work merely as a co-premise for a narrow class of motions, viz. 
the exit speed of a special point (the mass center) in extended bodies 
undergoing impact, or collision. That is the only quantitative use to 
which Kant ever put it, even though that law spans three decades in his 
career as a natural philosopher.31 Even so, that law by itself is unable to 
entail any determinate content about motion changes (in impact). It too 
needs supplementation with other premises, or laws, depending on the 
type of collision at issue. Only in conjunction with them does it yield a 
description of motion changes for that process.32 

Even beyond Kant’s narrow focus on impact—for instance, in the 
course of the gravitation theory articulated in Principia—the law of ac-
tion and reaction remains insufficient. Newton there used it in two con-
texts. In one, the law allows Newton to redescribe a particle’s motion 

                                                
30  Navier, “Lois des fluides,” 252. 
31  In Kant, the Equality of Action and Reaction first shows up in a 1758 paper on 
collision theory. In MAN, he again applies it to impact, and extends its range (without 
explanation) to action-at-a-distance forces too; cf. Stan, “Kant’s third law” and Fried-
man, Kant’s Construction. 
32  Outcomes of collision range between two limit cases. One is inelastic impact, the 
other is elastic collision. To infer the outcome of each case, another premise (beside 
the law of action-reaction) is needed. For inelastic collision, that premise is Zero Rel-
ative Speed (viz. that the two bodies move together after impact). For elastic collision, 
it is the conservation of kinetic energy, or vis viva. 
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(e.g. the Kepler orbit it crosses under a centripetal force) from one ref-
erence point to another.33 But that presupposes the motion has been de-
termined already, before he gets to appeal to the third law. In the other 
context, Newton uses the law of action-reaction so as to infer—from the 
existence of force (gravity) on a body—to the existence of another force, 
on a different body. No equation of motion is at issue there.  

To sum up, the other law in K is likewise not enough. It does some 
regional work—it shows up in the inference to the mathematical descrip-
tion of two particular types of motion—but just as an auxiliary premise. 
By itself it is insufficient, even for that narrow domain.  

I end with the most serious issue. There is a lacuna in Kant’s founda-
tion that makes it quite weak—really, the least sufficient among the three 
candidates N, L, and K. It is this: Kant lacks any principle that allows us 
to infer how the motion changes if a material point is disturbed: if an 
exogenous mechanical agency causes that point to change its state. There 
is nothing in K to let us infer any determinate answer to that generic 
question. But that is exactly what dynamical laws are for. It is the chief 
virtue of the laws of Euler-Cauchy and Lagrange. That is what makes 
them necessary foundations for all mechanics, not just sufficient. Kant 
lacks even the weakest species of this sort of indispensable foundation.34 

 

5.   INSUFFICIENT FOUNDATIONS: MATTER  

 
Early modern doctrines contained another thing (beside laws and prin-
ciples) designed to work as a foundation for mechanics. That thing was 
a picture of matter—an account of bodies qua material objects. Rational 

                                                
33  Newton models first the orbit that results if the force on a particle P is directed to a 
point fixed in space. Then he supposes that force to emanate from another particle that 
is itself in motion. He proves that, relative to the mass center of these two particles, 
then the orbit of P is likewise elliptical.    
34  Separately, Watkins, Kant on Laws, and Stan, “Evidence and explanation,” have 
noted that not even Newton’s second law—the basis for the equation of motion of all 
free mass points, though not extended bodies—is to be found in Kant’s foundation. 
Here I am just explaining the force of that alarming conclusion. 
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mechanics was the study of that generic object: the motion of bodies. N, 
L, and K contain each a picture of material objects. In this section, I 
argue that these pictures are also insufficient for a general mechanics. 
Just like the laws I examined above. That completes my overall case that 
N, L, and K are not complete mechanical foundations.  

Here too, some analytic clarification at the outset is in order. ‘Matter 
theory,’ or ‘picture of body,’ can mean one of two things:  

 
Content   A list of attributes (viz. properties and causal 
powers) that all bodies have universally.  
Architecture  An account of the geometry of  mass distribution at 
basic scales. Examples: the mass point; the rigid body; the deforma-
ble continuum.  

 

With this distinction in hand, my claim in this section is that—whether 
we read them as Content or as Architecture—the matter theories in N, 
L, and K are each insufficient in the strong sense.  

For three reasons, in this section I discuss Kant at length, with little 
attention to the other two figures. For one, the picture of matter in N is 
easy to dispatch as insufficient; and it was not really part of Newton’s 
considered view.35 For another, the picture L is a rudimentary version of 
K, and so my verdict about Kant will carry over to Leibniz, mutatis mu-
tandis. Last but most important, the matter theory in K is the most ex-
plicit and detailed—it takes up a good deal of Kant’s MAN—and so it 
repays sustained discussion. Accordingly, I move on to examine K from 
the point of view of content.  

Content.  To decide if a matter theory is sufficient, let us begin by 
asking: given a proposed matter theory, what is it for—what does Con-
tent do for rational mechanics? At least among Kant scholars, a frequent 
answer is that Content is explanatory: it explains why bodies obey the 

                                                
35  In natural philosophy, Newton’s standard of evidence was ‘deduction from phenom-
ena.’ The above theory of matter did not clear his standard, and so he offered it (in 
Query 31 of his Opticks) not as considered doctrine, but as an (initially plausible) pro-
posal for further research.  
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fundamental laws of that science.36 Then let us assess how well K dis-
charges this task. Assembled from his MAN, the Content view of a Kant 
body is:  

 
Matter is mobile, impenetrable, and carries momentum. A body is a 
finite volume of  matter. 
 

For it to be a sufficient explanatory basis, two things are needed. First, 
Kant’s matter theory must help us understand how or why bodies (as he 
defines them) move as dictated by the truly general laws: the Euler-Cau-
chy or Lagrange laws. Not by the laws he gave in MAN, because those 
are not sufficiently general. Second, his Content must explain every fea-
ture of the general laws—every quantitative aspect of the motion behav-
ior it represents—or else it is explanatorily insufficient.  

But here is a reason for concern: K does not even explain the common 
minimum of the general laws, i.e. the mechanical behavior that the two 
laws above, otherwise distinct as they are, have in common. (Each law—
because it is more determinate and specific than the common mini-
mum—then places further explanatory demands on Content.) Now that 
common minimum is: matter exerts, and responds to, impressed forces. 
Both laws above explicitly contain the notion of impressed force; and 
neither can be stated without it.37 If K has no matter-based explanation 
for it, then K is insufficient in that respect.  

Architecture.  The packages N, L, and K include as well a view about 
the distribution of mass at basic scales. Is that a sufficient foundation? I 
doubt it. To see why, here too I begin by asking what Architecture is 
for—what work does it do, within rational mechanics?  

It plays two related roles. One is metaphysical: it is a sharper picture 
(a more precise, determinate description) of the fundamental object that 

                                                
36  Often, they couch this answer in terms of grounding as explanation. For examples 
and critical discussion, see Stan, “Evidence and explanation.” 
37  Stresses are a more general species of impressed force, and their gradients (as in the 
first Euler-Cauchy law) are impressed forces, like gravity. In Lagrange’s law, both the 
applied and also the reverse effective forces are kinds of impressed force. 
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mechanics is a theory of: rational mechanics quantifies the motions of 
those objects.38 The other role is semantic: an architecture models the 
reference of the fundamental laws. It pictures the objects to which the 
laws (qua the most general equations of mechanics) refer.  

At this point, it becomes easier to see why the material foundations 
of N, L, and K are insufficient. I begin with Newton. His architecture of 
matter was the rigid body—tiny but finite, inflexible volumes of mass:  

 
All these things being considered, it seems probable to me, that God in 
the beginning formed matter in solid, massy, hard, impenetrable, move-
able particles, of such sizes and figures, and with such other properties, 
and in such proportion to space, as most conduced to the end for which 
he formed them; and that these primitive particles being solids, are in-
comparably harder than any porous bodies compounded of them; even 
so very hard, as never to wear or break in pieces: no ordinary power 
being able to divide what God himself made one in the first creation. 
(Newton, Philosophical Writings, 184; my italics)  

 
Here is why this picture falls short. Newton’s rigid atoms are discrete: 
there are small yet finite distances between them. But there are vast clas-
ses of extended-body motion that presuppose matter to be continuous. 
Paradigmatically, that is the motion of fluids, elastic solids, and plastic 
bodies. The equations of motion for these body types suppose that matter 
is continuous, not discrete.39 

Now let us examine K. For the domains above where N fails, K is just 
right. It is precisely the architecture of matter that those parts of me-
chanics presuppose. Kant’s picture fails elsewhere, however. That picture 
models matter as deformable, but some areas of mechanics require us to 
model it as rigid. For instance, the statics and dynamics of bodies with 

                                                
38  Kant in fact called his treatise a “metaphysics of corporeal nature” (MAN, 13). A 
study of early-modern matter theories from this vantage point is Holden, Architecture. 
39  Look again at the Euler-Cauchy (1a) law above. On the kinematic side, it relies on 
the quantity 𝜌, viz. mass density. That property obtains only in continuous matter. Dis-
crete particles do not have mass density; they have just mass, m. But m does not show 
up in the for fluids and elastics (e.g., it is not in the Navier-Stokes equation). 
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constraints. Or the domain then called ‘the mechanics of machines,’ now-
adays known as engineering dynamics and the statics of rigid struc-
tures.40 To insist, as Kant and Leibniz did, that all matter is deformable, 
at all scales, is to deprive the subfields above of an object domain. It 
turns their equations of motion into illicit fictions devoid of reference. 
Alternatively, we may conclude (as I am inclined to do) that L and K are 
insufficient foundations for a truly general mechanics.  

Objection: mechanics does not have a single ontology, or architec-
ture—after all, that is an upshot of my discussion above, and of recent 
work as well.41 So, it is unfair to ask that Kant should provide what me-
chanics lacks to this day, viz. a preferred ontology.  

I respond: this objection really boomerangs back to hit Kant’s doc-
trine, for two reasons. First, he insisted that his picture of matter in MAN 
amounts to a “general doctrine of body.”42 A natural reading of that 
phrase is that his matter theory there supports a general mechanics: the 
mathematical description of any body’s motion. Either that, or a key as-
pect of his doctrine becomes mysterious: what does he mean by a ‘gen-
eral doctrine of body,’ and what makes it a foundation? Second, if Kant’s 
architecture of matter was not meant as an ontology for all mechanics, 
we ought to ask, what is it for? What partial role was it designed to play, 
and why did he think that a partial role was so philosophically im-
portant? Thus, I do not think Kant can escape the charge of insufficiency 
unscathed—and neither do Leibniz and Newton, for that matter.  

 

SOME MORALS  

 

                                                
40  Already ancient statics—the science of the five ‘simple machines,’ later with the 
inclined plane as a sixth—was a theory of rigid bodies: those ‘machines’ were all sup-
posed undeformable. On the ‘science of machines’ in the 18th century, especially in 
France, see Chatzis, “Mécanique rationnelle.”  
41  See, for instance, Wilson, Physics Avoidance.  
42  Kant, MAN, 13 (4: 478). 
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With Mach and the Marburg neo-Kantians, we have long been tempted 
to think that, between Newton, Leibniz, and Kant, enough foundations 
for all mechanics were given in the century after 1687. That thought is 
wrong, I have argued above. It seems plausible, but only because of some 
tacit beliefs that, as I explain next, are themselves wrong.  

First, the temptation ignores that classical mechanics is old and on-
going. Along the way, its logical structure, descriptive scope, and repre-
sentational frameworks have changed dramatically. But so have its foun-
dations. Then it is ill-advised to expect that complete foundations for 
science that is 400 years old were discovered and expressed in the first 
century of its long life.  

Second, it ignores that, between its Galilean birth and the death of 
Leibniz, mechanics was able to handle just the simplest kind of body— 
free particles, viz. unconstrained masses the size of a point—for that was 
all it had the resources to treat. Qua objects of rational mechanics, ex-
tended bodies that plausibly behave like things in our common experi-
ence (water flowing, trees swaying in the wind, fabric stretching, soil 
shifting under foot, etc.) were too hard for the 17th century. So, theorists 
avoided them until much later. But then it is unrealistic to expect that 
nomic and material foundations designed for the easiest, most rudimen-
tary parts of mechanics will survive unscathed—with no need to mas-
sively change them—when mechanics has matured enough to handle 
real bodies in our world.  

Lessons.  Then what benefit may we expect from engaging philo-
sophically with Newton’s, Leibniz’s, or Kant’s foundations? I suggest that 
uncovering how they miss the mark can teach us three lessons.  

First, we often underestimate just how elusive and difficult classical 
mechanics is, for the philosopher of science. Seeing Newton, Leibniz, 
and Kant come up short (in regard to its true basis) is a sobering expe-
rience. At the very least, it ought to cure us of the stubborn prejudice 
that classical mechanics is easy to figure out philosophically, and that it 
ended when Einstein allegedly supplanted Newton.43 

                                                
43  My message here dovetails with lessons that Mark Wilson has long tried to teach 
us, e.g. in the perceptive and rewarding studies assembled in his Physics Avoidance. 
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Second, their problems remain our problems. We should not presume 
that our age has solved their two questions above, i.e. what laws of mo-
tion and picture of body suffice to ground a general theory. The several 
axiomatic presentations of mechanics that we have are partial (none have 
been shown to entail all of mechanics). And, it is not yet clear that clas-
sical mechanics can sufficiently rest on a single theory of matter.44 In 
fact, because the problem of a complete foundation has proven so hard—
Newton, Leibniz, and Kant, three of the greatest early modern minds, 
could not solve it—perhaps we ought to be prepared for the prospect that 
the problem may be intractable.  

Third, a lesson for historians. For a century now, much scholarship 
on Newton, Leibniz and Kant has focused on their inertial-kinematic 
foundations. Namely, on which quantities of motion they counted as ‘ab-
solute,’ or objective; and whether the true carriers of those quantities 
were material, mental, divine, or otherwise.45 Above I made an incipient 
case that proper foundations for mechanics require more than just space- 
and time structures. In particular, they require nomic foundations, and 
also matter-theoretic ones. It is high time that we look at these three 
major thinkers from this vantage point as well. Only then, I suggest, can 
we really hope to judge correctly the relative weight of their philosoph-
ical insight into early modern science.  
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