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From metaphysical principles to dynamical laws 
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Modern physics depends on dynamical laws; they are the chief  components of  
their respective theories, whose power to explain or predict ultimately comes 
from them. Generally speaking, dynamical laws are functional dependencies be-
tween kinematic and kinetic variables; they are differential equations, relating 
operators and functions common to a broad variety of  motion patterns; and they 
entail equations of  motion—local variants of  the laws, adapted to the specifics 
of  some family of  systems; e.g., oscillators or elastic gases. These features are 
strikingly apparent not just in quantum theory, but also in the modern mechanics 
of  classical processes. Dynamical laws are known as the ‘cardinal equations’ in 
mechanics that takes force as primitive; and as the ‘central equation’ in analytic 
mechanics.1 These laws are then customized so as to yield system-specific, par-
ticular equations of  motion: e.g., the dynamical equations of  a rigid body mov-
ing around a fixed point; the Navier-Stokes equation for a viscous fluid; and the 
Euler-Lagrange equation for a damped oscillator. 

This fact—namely, that dynamical laws are differential equations whose 
main role is to entail equations of  motion—was not always the case. From its 
Cartesian birth in the 1640s, classical mechanics was built up from “laws of  
nature,” “laws of  motion,” or eponymous principles. These early modern laws 
differed from ours. First, their function was to supply mechanics with a basic 
ontology, or class of  unit bodies. The ontology was articulated prior to the 
laws—usually, as an extension of  substance metaphysics—and then the laws 
were predicated of  this ontology of  body. Second, these laws served to channel 
truth into mechanics—from metaphysics, via the doctrine of  body; and from 
select phenomena of  motion, construed as evidence for the laws. However, 

																																								 																					
1 Cf. Gallavotti 1983 and Papastavridis 2002.  
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around 1750 the laws of  motion begin to lose both functions. They turned into 
mere assertions of  equality between magnitudes, and served just to entail (dif-
ferential) equations of  motion for specific mechanical situations. Consequently, 
in the Enlightenment, the laws no longer made claims about natures, and they 
became epistemically opaque, in that it was no longer clear what counted as 
strong evidence for the basic laws of  mechanics.  

This change is among the critical inflection points where early modern me-
chanics turned into classical mechanics as we know it. This chapter describes 
and explains the shift, beginning with an account of  how the laws of  nature 
linked mechanics to philosophy in the 1600s. Next, I point out an incurable 
shortcoming in those laws with regard to their role in quantitative theory. Then 
I explain how the 1700s fixed that shortcoming, and how the solutions thereby 
changed the logical structure of  mechanics. I complete my explanation with 
some key mathematical notions—born in the 1700s, as well—that enabled the 
changed conception of  laws of  motion. Briefly put, my thesis is that: 

1. the modern concept of  laws of  motion—qua dynamical laws—emerged 
in 18th-century mechanics;  

2. the driving factor of  this reconceptualization was the need to extend me-
chanics beyond the centroid theories of  the late-1600s; and 

3. the development of  differential equations enabled the shift. 

In addition, I will note how the historical change raised two philosophical diffi-
culties, which ipso facto are extant in the modern concept of  dynamical laws: It 
is unclear what counted as evidence for the laws of  motion in the Enlightenment; 
and it is a mystery whether these laws retain any notion of  causality. The latter 
threatens to subvert the early modern dictum that physics is a science of  causes.  

Throughout the chapter, I am motivated by two aims. One is to strengthen 
the case that a “quiet” revolution unfolded through the 1700s in then-funda-
mental science. The other is to stimulate research on the foundations of  Enlight-
enment mechanics. We have excellent studies of  natural philosophy in the 
1600s, but little has been done to determine which central themes and research 
agendas survived into the following century. Conversely, we have some good 
studies of  18th-century mechanics, but not much work on how Enlightenment 
science related to the philosophy that came before it. I expect my paper to serve 
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as a specimen of  work we could do to bridge the gap between these early-mod-
ern areas.2  
   
 

1.   Basic laws in the 1600s 

My case rests on the premise that key 17th-century figures believed that ontology 
and mechanics must be yoked to each other, via the basic laws of  motion. The 
evidence for this is in plain sight; it just needs coherent assembling.  

In Principles of  Philosophy, Descartes asserts three “laws of  nature” after a 
summary of  his metaphysics and epistemology.3  Of  these laws, two jointly 
amount to a conservation principle (of  size, shape, and motion-state) for a single 
body absent an interaction. The third codifies the result of  any two-body inter-
actions by contact: it is always the outcome uniquely compatible with the “least 
modal change” among the involved bodies.4  Famously, from these laws he 
sought (unsuccessfully) to derive the kinematic rules of  2-body impact. But the 
“modes” in question—really, the three effective parameters privileged by Des-
cartes’s first two laws—are just the co-essential properties of  all extended sub-
stances, or bodies. Therefore, his “laws of  nature” straddle the ontology of  sub-
stance and the basic physics of  micro-scale processes. They have epistemologi-
cal import, too. His evidence for his laws was not empirical. Rather, he rested 
their truth on alleged facts about the action of  God qua creator, its simplicity, 
and that simplicity’s conceptual connection to the modes of  extended substance. 

The failure of  “Descartes and others” to derive sound collision rules drove 
Leibniz to complain that the error was in their defective laws of  nature—and 

																																								 																					
2 The suggestion that a “quiet” revolution affected mechanics in the 1700s comes from Hepburn 
2013, and Caparrini & Fraser 2013. Important studies of Enlightenment dynamics are Fraser 
1983, 1985; the technical surveys in Truesdell 1960, and his older polemic in Truesdell 1968. 
Calinger 2016 and Verdun 2014 have set the new standard for work on Euler’s science.  
3 The account is in Book I of Principles. There were many criteria for substancehood in the 
1600s—unity, activity, per se conceivability, persistence through change, etc. Descartes’ chosen 
criterion is ontological independence (of anything else). So he infers, correctly, that only God 
counts as a genuine substance in this sense, and so his metaphysics includes indispensably a 
philosophical theology. Then he introduces an honorific sense, as it were, of substance qua that 
which needs no other help but God’s to exist. Res extensae thus count as honorific substances; 
cf. Meditation Two.  
4 The phrase comes from Garber 1992, who explains lucidly the true tenor and content of Des-
cartes’s third law. Recent discussions of Descartes’ laws, and the foundational debates they 
caused after him, especially in Britain, are Jalobeanu 2011 and Brading 2011.   
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ultimately in their metaphysics. So he sought to reform the latter by endowing 
bodies with forces, or powers “inherent in all corporeal substance as such.” His 
new ontology yielded “systematic laws of  motion,” which he placed at the basis 
of  a science of  motion that he called ‘dynamics.’ Among these laws was that to 
every action there is a reaction; and that vis viva (his name for a species of  active 
force) is conserved in all motion exchanges.      

Leibniz’s epistemology of  laws does not yet seem to have been elucidated 
fully. Still, it is safe to say, the proof-structure of  his famous conservation prin-
ciple is by reductio: unless vis viva is conserved, perpetual motion would ensue, 
which is impossible. As evidence for his law of  action-reaction, he used an in-
formal proof  by Jakob Hermann, based on the Principle of  Sufficient Reason.5 
At any rate, Leibniz did not think the fundamental laws are learned from em-
pirical sources; his German successors followed him in this commitment. Their 
disagreements aside, Leibniz thus concurred with Descartes and Malebranche 
that the basic laws of  motion fall out of  a priori metaphysical knowledge.  

Few might expect Newton to have endorsed this heavily philosophical, foun-
dationalist picture of  laws. And yet, endorse he did—at least in metaphysics, 
inverting the rationalists’ reasoning above. The young Newton had an inchoate 
metaphysics of  body, sketched as a conjectural scenario. In it, God singles out 
finite volumes of  absolute space, and endows them with impenetrability, causal 
agency on senses like ours, and mobility compatible with the laws of  motion. That 
is, to be a body requires inter alia the power to move as the laws dictate. In effect, 
Newton at times endorsed a “law-constitutive” account of  body.6 The laws of  
motion constrain metaphysical theorizing about corporeal substance—and so 
they are an explanatory bridge from dynamics to ontology, not the other way 
around, as his rationalist peers had it. Still, that Newton expects a bridge between 
them at all shows him quietly subscribing to the 17th-century picture of  the two 
disciplines yoked together by the fundamental laws of  motion.  

																																								 																					
5 See Leibniz, Specimen dynamicum, WF 163, and also his unpublished piece “On Body and 
Force, against the Cartesians,” in GP IV, 395. His impossibility argument for conservation of 
vis viva is in the posthumous Dynamica (GM VI, 281-514). For Hermann’s law of action and 
reaction, and Leibniz’s endorsement, see Stan 2017.  
6 Brading 2011 makes a solid case for this reading, and argues that Newton remained committed 
to a law-constitutive account of body through his late career, well past De gravitatione (where he 
advanced his conjectural scenario), which is now thought to be a youthful piece; cf. Biener 2017.  
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In sum, as governing principles of  corporeal nature, in the 1600s the laws 
bridged mechanics and metaphysics; and as statements presumed to be univer-
sally true, they had help from a theory of  a priori knowledge. An insidious prob-
lem will bring it all to an end.  

 
 

2.   Limitations of early modern laws 

The current sense of  ‘mechanics’ comes from Euler, who introduced it to re-
name what until then had gone by the ‘science of  motion’. Naturally and tacitly, 
they all took it to describe the motion of  bodies in general—the ones that pop-
ulate the world at all scales, from planets to microscopic particles. However, in 
advertising their theory of  motion, early modern authors casually would leave 
out a crucial fact: bodies are extended, and yet the new science could not handle 
their motions qua extended objects. Specifically, none of  the approaches born in 
the 1600s could describe quantitatively how every point of  an extended body 
moves from one instant to the next, in response to agencies applied to the body.  

Now why they could not handle it—what they lacked in that respect—is an 
important, difficult question; I give below a partial answer. Still, it is a fact that 
they were unable to handle the task. As illustration, consider two examples from 
the zenith of  17th-century mechanics. Huygens in Horologium oscillatorium de-
rived a key result that locates the “center of  oscillation” in a compound pendu-
lum.7 Then Newton in Principia (originally modeled after Huygens’ approach) 
derived inter alia Kepler’s Area Law that a body under a centripetal force around 
a fixed point sweeps out equal areas in equal times. But note how they both 
excise corporeal extension out of  the account entirely. In Figure 1a, the circle 
ABC represents an extended pendulum bob, attached to the rigid rod FA. E is the 
gravity center, and G is the bob’s center of  oscillation, whose distance from A 

																																								 																					
7 A compound, or ‘physical,’ pendulum is one in which the bob is extended, and attached to a 
rigid massless rod swinging vertically from a suspension point. In contrast, a simple, or “math-
ematical,” pendulum models the bob as an unextended mass point, attached to an inflexible 
massless string. The center-of-oscillation problem was to locate in a “physical” bob the point H 
that swings isochronously with an equivalent mathematical pendulum. Specifically, let P and M 
be two equal-mass pendulums, compound and simple, respectively; and let M oscillate with 
frequency w. The problem is to locate in P the point H that oscillates with frequency w. 
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Huygens derives in his tract. Figure 1b presents Newton’s derivation of  the ge-
ometric quantity of  the centripetal force on a planet in a Kepler orbit. P stands 
for the mass center of  an extended planet, and S for the sun’s center. 

 
 

 
 

 

 

 

 

 

 

Figure 1. Centroid mechanics.8 

 
Though their respective topics (and targets of  theory application) are bodies with 
shape and size, both Huygens and Newton quietly take the “representative 
point” approach. The pendulum bob above is an extended body, with matter 
distributed (perhaps unevenly) throughout its volume. Then each material point 
in the bob will move at a different linear speed from its neighbors, but Huygens 
does not know how to quantify the speed of  every point in the bob. So he singles 
out just one point (the “center of  oscillation”), whose motion he can derive from 
his theory. Likewise, the Area Law above was meant for planets and satellites, 
which—as extended, deformable bodies—engage also in complicated motions, 
like libration, precession, and tidal locking. But Newton does not know how to 
quantify the speed of  every point in a planet as it performs those motions. So he 
singles out just one point (the center of  gravity), whose motion he can derive 
from his theory.    

Eventually the best theorists did grasp the laws’ limitation. Euler gave it pub-
lic expression in a paper (on the transmission of  force in rigid bodies): 

These principles are of  no use in the study of  motion, unless the bodies are infinitesi-
mally small, hence the size of  a point—or at least we can regard them as such without 
much error: which happens when the direction of  the soliciting power passes through 

																																								 																					
8 Left: from Huygens 1673. Right: from Newton 1687. 
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the center of  gravity…. But if  it does not pass through that center, we cannot determine 
the entire effect of  these powers. That is all the more so if  the moving body is not free, 
viz. it is constrained by some obstacle that depends on its structure. (Euler 1745, §17; 
my emphasis) 

His friend, Daniel Bernoulli, then made the same point in 1745, while empha-
sizing the insufficiency of  Newton’s original laws. Put in our terms, Euler’s di-
agnosis was that, in extended bodies and constrained systems, the body’s other 
parts and the constraints alter the motion of  any point in the body, but there was 
no known general principle for quantifying all these kinematic effects.   
  
 

3.   Mechanics:  the great inflection 

The need for a general treatment—for any possible motion of  any possible 
body—drove theorizing after 1740. Five decades later, it had caused a complete 
reformulation of  mechanics. The locus of  this transformation was continental 
Europe, with Paris and Berlin taking turns leading the way. The Europeans’ 
quest for generality yielded three distinct dynamical laws; each law counted as 
basic, or fundamental, in the version of  mechanics built on it. In this section, I 
survey them in turn.   
 

Laws of virtual work 

The most influential strand of  new dynamical foundations began modestly in 
1703 with Jakob Bernoulli’s Démonstration générale du centre de balancement, a 
piece on the compound pendulum, aiming to infer from a safer foundation Huy-
gens’ formula giving the center of  oscillation.9 Deep in that five-page paper, he 
buried the two seminal insights of  modern analytic mechanics. The first re-
garded the statics of  rigid weights; Bernoulli stated a generalized Lever Principle. 
Let C, C, D, and D (in Figure 2) be masses attached to a bent lever free to oscillate 
about the fulcrum A. Resolve the impressed accelerations into radial and tan-
gential components, respectively. Bernoulli’s Lever Principle says the lever is in 

																																								 																					
9 Huygens derived his formula from an energy principle; i.e., if the constraint (holding the parts 
of the pendulum bob together) were counterfactually dissolved, the free parts would re-ascend 
to the same height from which they fell (prior to the constraint being dissolved). In the 1680s, 
Father Catelan, once Malebranche’s private secretary, denied the truth of Huygens’ premise. 
That led some (among them Jakob Bernoulli) to derive Huygens’ formula from an incontestable 
dynamical principle. Cf. also Vilain 2000.  
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equilibrium if  the sum of  each mass times its lever arm times the tangential 
component (CB or ED, respectively) add up to zero.10 In our terms, the insight 
was that a system of  constrained bodies is in equilibrium if  the virtual work 
(compatible with the constraints) of  the impressed forces is zero. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Bernoulli’s Lever Principle.11 

 
The second insight extends the virtual-work approach to a system in motion, 
not at mutual rest (which static equilibrium amounts to). Let some constrained 
masses m1… i move under the action of  real forces F1… k. The forces and the con-
straints jointly cause each mass to undergo a net change in speed ai; that is, an 
effective acceleration. The general problem (and main difficulty of  analytic me-
chanics) is to infer these accelerations.12 Bernoulli’s breakthrough was heuristic; 
he found a way to turn a moving, dynamical system into a static one, which he 
knew how to treat (from his Lever Principle). He imagined that, in addition to 
the real forces, a set of  fictive forces also act on the masses, equal and opposite 

																																								 																					
10 Note that the tangential components are signed magnitudes; e.g., (+) if they tend clockwise, 
and (−) if counterclockwise. 
11 Appended to Bernoulli 1703.  
12 Here is why it is a problem. If the masses were kinematically free, Newton’s Second Law 
would be sufficient: the resulting acceleration is in the direction of, and proportional to, the net 
force on every mass: areal = fnet/mi. But the constraints prevent the actual-effective accelerations 
from being as above. Now constraint forces are generally unknown, so we cannot use the Second 
Law to compute their individual effects. That is why a different law is needed.  
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to the products mi ∙ ai. (For these fictive forces, we use the terms ‘inertial’ or 
‘kinetic reactions.’) Bernoulli’s second insight was that, in a moving system, the 
kinetic reactions balance the impressed forces—if  they were real, they would 
cause equilibrium in the system of  masses. 

The two insights above became the two basic laws of  Lagrange’s mature 
theory. After a quiet, misattributed conversion to virtual-work methods in his 
youth, Lagrange re-derived all the equations of  mechanics then known, from 
two principles that he stated as equalities.13 One is for statics, and it says that a 
system of  bodies remains in equilibrium if  the virtual work done by the system 
is zero. The other is for dynamics, and it asserts that, in a system of bodies, the 
net virtual work of  the real-impressed forces and of  the fictive, added-in-thought 
“kinetic reactions” vanishes. Lagrange does not spend much time stating his 
fundamental principle in words. Rather, he moves quickly to express it as a se-
cond-order, ordinary differential equation (Lagrange 1788: 195). This formula 
allows Lagrange to derive the equations of  motion for every point in a system of  
interacting bodies, whether free or subject to holonomic constraints.  

For historiography, this version of  mechanics holds a special interest. With 
d’Alembert’s 1743 treatise, the virtual-work approach became the canonical 
presentation of  mechanics for the century or so in which France was the world’s 
powerhouse in that discipline.14 In contrast, the Newtonian approach (outlined 
next) was and remained the preferred version for a minority of  one: Euler. 
 

Balance laws 

The same generic blind spot of  17th-century theories (the motion of  extended 
bodies under constraints) drove the rise of  another formulation. It began with 
Euler’s quest, throughout the 1740s, to obtain equations of  motion for a volume 
element (dV) of  an inviscid, incompressible fluid; for a point-mass bound to a 
rigid surface; and for a rigid body moving around a fixed point. By 1758, Euler 
had come to think that one expression was enough to entail equations of  motion 
for most mechanical systems regarded then as paradigmatic. Euler called his 
formula a “new principle of  mechanics,” and wrote it as: 

																																								 																					
13 Fraser 1983 is an excellent overview of his first theory of mechanics, with an outline of 
d’Alembert’s place in Lagrange’s decision to move beyond it.  
14 Lagrange’s principles of virtual work above remained the dynamical law for his greatly ex-
panded second edition of Analytic Mechanics (1811-13), for Laplace’s five-volume treatise on 
celestial mechanics (1796-1825), and for Poisson’s bestseller, Physical Mechanics (1833).  
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f = md2x/dt2     [1] 

 
That is, for every point in an extended body, the net force f equals the mass (at 
that point) times its resultant acceleration. Euler’s principle functions as dynam-
ical law in our sense: it entails equations of  motion for several classes of  ex-
tended bodies or systems.15 

Subsequently, Euler discovered that his law (1) was not quite general. By 
itself, it was insufficient for deriving all the equations of  motion needed. Specif-
ically, for some systems (e.g., thin elastic rods, plates, and shells) the above law 
is not enough. Another principle must be added to it:  

 
t = d2l/dt2     [2] 

 
In words, the net torque on every point in a system of  bodies equals the change 
in angular momentum by the system at every instant. Together, as he came to 
see, the equality formulas (1) and (2) are jointly sufficient for the generic task of  
deriving all the equations of  motion.  

After Euler, these two laws went dormant until the 1830s, when Cauchy and 
Navier resurrected them for their mechanics of  elastic bodies and viscous flu-
ids.16 Nowadays we know them as the Balance Laws of  Linear and Angular 
Momentum, respectively, because they relate the force and torque to the net 
change in those two kinematic quantities.  
 

Extremal laws   

One version of  mechanics grew into maturity mostly unnoticed; its birth sparked 
much enmity and extravagant theologizing, which distracted many from grasp-
ing how this version rapidly grew into a serious contender for the title of  general 
dynamics.  

																																								 																					
15 To see some of the equations he obtained, cf. Stan (forthcoming) (for the rigid body); Darrigol 
and Frisch 2008 (for fluids without drag); and Verdun 2014 (for applications to celestial bodies).  
16 For that reason, some authors (e.g., Truesdell 1991; and his disciples) call them “Cauchy’s 
Laws of Motion,” to honor the French mathematician who showed them to be properly general.  
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This approach arose in the mid-1740s, when Maupertuis found a way to 
derive two known results—the equilibrium condition for a straight lever and the 
kinematic equations for two-body impact—from a new law, which he called the 
Principle of  Least Action. Around the same time, Euler used this principle for 
the harder task of  deriving the equation of  motion for a particle in Kepler motion 
around a fixed center of  inverse-square attraction. Euler also devised a geometric 
version of  the new calculus of  variations needed to extend Maupertuis’s new 
law. By 1753, he also had discovered that in certain systems, the action is a max-
imum, not a minimum.17   

Still, this was far from general, and it was anyone’s guess just how much 
heuristic potential the least-action approach had. Though he was just a youth 
then toiling in obscurity at Turin, in 1760 Lagrange answered the question mag-
isterially, in two steps. One step was a pithy version of  the calculus of  variations, 
restated in “analytic” (i.e., non-geometric) form. The other was to apply his 
calculus “to solving different problems in dynamics” (Lagrange 1762: 197). Spe-
cifically, he used it to state a “general principle,” by reformulating the older 
Principle of  Least Action as follows:  

 
ª ∫ (mivi) ds = 0     [3] 

 
From this variational principle, Lagrange then derived equations of  motion for 
some eight different dynamical systems.  

The upshot of  these rapid developments is that, by 1790, mechanics had 
witnessed a proliferation of  basic laws, competing for supremacy over the prin-
cipal task of  theory; and that these new laws were all stated as differential equa-
tions, wholly unlike the 1600s laws of  motion.  

 
 

4.   Enabling factors:  new mathematical structures 

Change in the aims of  theory-building after 1740 cannot by itself  explain the 
deep transformation that laws of  nature undergo in the Enlightenment. There 
was another development, and I include it here as a co-explanans. It was the 
birth of  four new notions in mathematics, specifically in the “new analysis,” as 

																																								 																					
17 For details on Maupertuis, Euler, and their context, see Pulte 1989.  
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they called it then. These notions jointly amounted to a result that helped change 
the logical structure of  mechanics beyond anything its early fathers would have 
recognized. Here I survey these four concepts, and explain their relevance.  

The first was the notion of  a variable, then defined by appeal to an associated 
concept, that of  a fixed quantity or constant value: “A variable quantity is a 
quantity that is indeterminate, or universal, and comprises every determinate 
value.… Thus a variable comprises in itself  every number, be it positive or neg-
ative, integer or fraction, rational, irrational, or transcendent” (Euler 1748: 4). 
In practice, this notion behaved very much like our modern concept of  a variable 
ranging over real numbers.18  

The second discovery (an immense breakthrough in early modern theory 
generally) was the idea of  a function. Several function-concepts emerged in the 
early Enlightenment, but the most important for my case was this one: “a func-
tion of  a variable quantity is an analytic expression composed in any way what-
soever from that variable and numbers, or constant quantities” (Euler 1748: 4). 
To explicate for the modern reader, an “analytic expression” is a combination 
of  variables and constants, related by the operation-symbols of  classical algebra 
(+, −, ×, ÷, and √). For instance, a function f  of  x (i.e., fx) might be expressed 
as √(9−x2).  

The third advance was a re-conceptualization of  the essential notions of  cal-
culus, the derivative and the integral. Leibniz and his early disciples had con-
ceived of  both as magnitudes: dx as an infinitely small increment in some vari-
able quantity x; and the (definite) integral as a summatrix, or infinite-addition ∫ 
of  such increments. At mid-century, Euler reformulated these notions as two 
operators relating functions. In particular, for him the derivative was a function, 
g, that stands to a given function f  in the relation 

 

g = df. 
 

Conversely, Euler re-defined the integral as the anti-derivative; i.e., as the func-
tion v that stands to a given function, w, in the relation 
 

																																								 																					
18 Of course, scholars of this period did not have the notion of real numbers, or that it is a well-
ordered set. What they had were practical equivalents: the notions of integer, rational fraction 
of integers, magnitudes representable by Euclidean construction (i.e., irrationals), and also 
“transcendent” quantities, understood then as numbers that cannot be so constructed.  
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v = ∫w. 
 

A further and equally decisive innovation was Lagrange’s extension of  the cal-
culus. He took an existing set of  techniques (for solving so-called “isoperimet-
ric” problems by geometric approaches) and turned it into the core of  a general 
theory formulated algebraically (not geometrically, as variational problems and 
techniques had been stated, before him). Specifically, he created a new differen-
tial operator (the so-called variational δ) that he defined purely algebraically, in 
terms of  its commutation rules with d and ∫, which he likewise reconceived as 
operators on functions.19 For mechanics, Lagrange’s innovation was an enor-
mous step forward, since it allowed him to formulate the two laws [1] and [4] 
above, nowadays called the “variational principles” of  classical mechanics. Both 
men were overt about the ways in which they had set the Leibnizian calculus on 
new foundations and extended it (cf. Euler 1824: 4, Lagrange 1788: 196).  

The fourth innovation required the three above. Conceived as an “analytic 
expression” in the sense above, a function denotes a quantity, “so a function of  
a variable is itself  a variable quantity” (Euler 1748: 5). That is, a function just is 
a quantity—with the analytic expression making explicit the exact nature of  its 
dependency on the underlying variable.20 This view of  functions then enabled 
mathematicians to radically expand the concept of  an equation. By 1750, they 
had come to allow that, in an equation, the unknown variable can be a func-
tion—since a function always denotes a variable quantity. This new object is a 
“functional equation.” Even more importantly, mathematicians allowed—by 
analogous reasoning—that differential operators on functions can appear in 
equations so reconceived: 

To explain this matter, let y be some function of  x, and let it be defined by the quadratic 
equation y2+Py+Q=0.… where P and Q are functions of  x …. In the same way as the 
finite equation y2+Py+Q=0 displays a relation between y and x, likewise a differential 
equation expresses a relation, or ratio, that dy and dx have to each other.  (Euler 1755: 
241f.) 

																																								 																					
19 Lagrange thought of d and ∫ as operators on functions. This was in line with his broader pro-
gram of  “analytic mathematics,” i.e. of  taking algebra (qua theory of  operations on magnitudes) 
to be the general framework of  all mathematics, with (analytic) geometry, arithmetic, and the 
calculus as species of  this algebraic formalism. For lucid explanations, see Fraser 1990.  
20 That is the thought we convey by writing ‘f(x)=y’. We regard y as the dependent variable, with 
x counting as independent relative to y. Then we specify their functional dependence by writing, 
e.g., that f(x)=x

2−5√x. 



14	

	

That was the birth of  differential equations as we think of  them.  
A qualification is needed: there were avatars of  differential equations before 

1740. For instance, Newton’s “fluxional” equations, which required a “fluent,” 
or variable, to be inferred from its “fluxion,” or derivative, qua a solution to the 
equation. But Newton’s idea had a critical shortcoming: it was inextricably 
bound to a geometric configuration. (His fluent was the possible orbit of  a point-
particle, and the fluxion was its instantaneous velocity.) In contrast, the Leibni-
zians’ mathematical innovations above made it possible to study a differential 
equation as a self-standing object—unbound and independent from any geo-
metric-kinematic representations it may have, such as orbits, worldlines, or fam-
ilies of  curves traversable by matter points.  

Here is how these innovations matter. Regarded from the vantage point of  
its mathematical structure, mechanics stops being a science of  geometric repre-
sentations (of  motion patterns at specific scales); and it turns into a taxonomic 
system of  differential equations, connected by genus-species relations. All ver-
sions of  late-Enlightenment mechanics feature a generic differential expression, 
holding true of  any mechanical system, irrespective of  its geometry or 
mass/force distributions; and many specific expressions, one for each particular 
type of  system. A paradigm example of  the former is the Euler-Lagrange equa-
tion; and of  the latter, the equation of  motion for a binary star, a vibrating mem-
brane, or a precessing gyroscope, and the equilibrium condition for a load-bear-
ing truss, a capillary surface, or a buckling column.   

It is easy for us moderns to miss the explanatory value of  this particular 
development. It appears as a merely formal stage in the evolution of  pure math-
ematics, with no obvious relevance to the science of  nature. But that is a dis-
torting effect of  hindsight. The makers of  mechanics did not see a clean-cut 
division of  labor between pure and applied mathematics, as we do. Quite the 
opposite—many of  their key results in now-pure mathematics were driven by 
problems and urgencies in mechanics.  

 
 

5.   Academic foundations 

This far-reaching change in the status of  the laws of  motion occurred below the 
surface, as a deep undercurrent within cutting-edge theory construction carried 
out by leading mathematicians. My picture would not be complete, however, 
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without a brief  account of  how some philosophers attentive to science saw mat-
ters then. 

In general, philosophers missed the radical change happening at the time. 
The rapid increase in the formal complexity of  mechanics, coupled with the 
philosophers’ physical separation from the sites of  theory construction, may well 
have contributed to the alienation of  the two communities, philosophers and 
working mathematicians.21 Perhaps as a result of  this estrangement, the philos-
ophers adhered to, and reinforced with novel doctrines, the 17th-century notion 
of  laws as metaphysical principles. Specifically, they restated the rationalists’ two 
tenets above—i.e., that the basic laws of  mechanics are corollaries of  substance 
metaphysics, and that their truth rests on evidence from philosophy, not from 
empirical research.  

Consider Christian Wolff, who was explicit that, in the science of  motion, 
basic laws are the proper business of  the philosopher:  

The general principles of  the rules of  motion are called the laws of  motion …. These 
days only a stranger to Mathematics is unaware that in the rules of  motion there are 
general principles, from which these rules can be derived. These principles once estab-
lished, the rules of  motion, i.e. of  impact, were proved from them in several ways. 
Mathematicians assume these laws without proof; but it behooves the Metaphysician 
to demonstrate them. (Wolff  1731: §§ 302-3; my emphasis) 

Then he goes about his task. In Ontologia, he articulates—from mere concepts, 
with no empirical input—a vast theory of  “simple” and “composite being.” 
Then he applies it to bodies, in Cosmologia generalis, as follows. Bodies are com-
posite, he argues, and eo ipso an ontological species of  composite beings. Se-
cond, all bodies have—or at least mechanics takes them to have—three essential 
properties: extension, active force, and a passive force of  inertia. Wolff  theorizes 
from a strong commitment to the Principle of  Sufficient Reason, and so here he 
sets out to uncover the sufficient reason for the three essential properties, which 

																																								 																					
21 Wolff and Kant worked in academia (at Halle and Königsberg, respectively) far from the 
Royal Academy of Berlin, the research institute where Maupertuis, Euler, and Lagrange 
worked. So they could not attend the presentation of mathematical work in progress, nor the 
ensuing discussions. And they lacked the skills to profit from the theorists’ work; before the 
birth of the École Polytechnique in 1792, training in advanced mathematics was available only 
through membership in informal networks of coaching and personal apprenticeship. (E.g., 
Jakob Bernoulli in Basel taught Jakob Hermann; then his brother, Johann, trained Euler and 
Maupertuis. D’Alembert and the young Lagrange were self-taught.) Émilie du Châtelet could 
well have come to learn and think about the foundations of Enlightenment mechanics, but she 
died young, unfortunately.   
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he finds in the attributes of  certain ontological ultimates that he calls synony-
mously “simple beings,” “elements of  bodies,” or “physical monads.” Bodies 
are aggregates of  them. In turn, bodies qua aggregates are the subject-matter of  
two “laws of  motion,” namely a law of  inertia and a law of  action-reaction. 
Both are about two essential properties of  body, active and passive force (of  in-
ertia). That is how ontology links up with mechanics in his doctrine: via his laws. 

Kant is the last heir to this foundationalist picture of  laws, his idiosyncratic 
jargon notwithstanding. This emerges in his 1786 tract, Metaphysical Foundations 
of  Natural Science. The genus-concept of  his ontology is “object of  possible 
experience,” which he divides into two species, according to the two perceptual 
channels (“inner” and “outer sense”) whereby we access these objects. Any ob-
ject of  outer sense counts as matter, for Kant, and so it inherits all the topologi-
cal, metric, and affine properties of  space, insofar as it is the form of  outer sense 
(which he thinks he has established in the Transcendental Aesthetic). Further 
non-empirical inferences—including an argument that motion is an attribute of  
all matter—result in a set of  theses that he calls the “general doctrine of  body,” 
“metaphysics of  material nature,” and also “metaphysical foundation of  natural 
science.” Among these theses are three “mechanical laws”: the conservation of  
mass, a law of  inertia, and a principle of  action-reaction.   

First mechanical law: In all changes of  corporeal nature, the total quantity of  matter 
remains the same, without increasing or decreasing.… Second mechanical law: All 
change in matter has an external cause (every body continues in its state of  rest or 
motion in a straight line at the same speed, unless it relinquishes this state, compelled 
by an external cause).… Third mechanical law: in all communication of  motion, ac-
tion and counter-action are always equal.  (Kant 1911: 541-5) 

But Kant’s confident talk above runs into the same problem as his two prede-
cessors, Wolff  and du Châtelet. Specifically, all three use the vocabulary of  leg-
islation—leges motus, lois du mouvement, and mechanische Gesetze—but they 
leave unclear what these laws are for; i.e., what they do within mechanical the-
ory. More regrettably, Kant, the only philosopher to live through the great trans-
formation in the laws’ form and function described above, missed the chance to 
notice and reflect on it, an unfortunate victim of  his deficient schooling.   

And so a keen observer around 1790 would have witnessed a paradoxical 
outcome: as mechanics became ever more able to handle real, extended bodies, 
it ceased to be a theory overtly about bodies. Kant had put forward his book at 
a “general doctrine of  body,” yet paid no attention to how it might connect with 
the most general, cutting-edge science of  moving bodies—Lagrange’s mechan-
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ics. The latter, in turn, had just published Mechanique analitique, a tract conspic-
uous through its absence of  any explicit notion of  body, even though it is a book 
about their motion, and their nature had long been a focus of  philosophical in-
quiry in the two decades he had spent in Germany.  

 
 

6.   Residual problems 

Beyond the unresolved paradox just mentioned, there are two more foundational 
worries induced by the silent metamorphosis of  basic laws in the 1700s. I outline 
them here, in the hope that future research will address them. 

Causation.   By relying on the same mathematical formalism, the basic laws 
of  Enlightenment mechanics came to share an important trait. Specifically, the 
laws [1] through [3] above merely assert equalities between magnitudes, or that 
some quantity equals an algebraic combination of  other quantities. That is all 
the more so as the laws emerged in response to the same need for equations of  
motion, despite their outward dissimilarity.  

However, assertions of  equality are neither material implications, nor if-then 
statements, nor any of  the logical-syntactic vehicles used to predicate cause-
and-effect links or dependencies. And so the basic laws no longer count as causal 
principles after 1790; nor do their local corollaries, the equations of  motion. In 
effect, the laws no longer state facts about the basic causal powers of  bodies, 
material substances, or their ontological analogues. If  Enlightenment mechanics 
is still home to causal knowledge, it is not contained in the laws of  that discipline.  

This astonishing consequence—it really heralds the disappearance of  cau-
sality from fundamental science—remained unnoticed until Russell came across 
it. Disappointingly for a modern reader, it eluded the 18th century’s great minds. 
Oblivious to the tectonic shift beneath their feet, philosophers and reflective men 
of  science alike continued to refer to physics, whose rock bottom was then me-
chanics, as the “science of  causes.” But a hard-headed interlocutor might won-
der where causes were hidden, seeing as they no longer reside in the laws.  

Confirmation.   The deep shift in the nature of  laws had long-term episte-
mological consequences, too. Specifically, it is not clear what counts as evidence 
for basic laws any more. This grave problem—that laws lacked even prima facie 
warrant—had two causes.  

First, the standard 17th-century sources of  evidence for laws are no longer 
available to 18th-century mechanics. Top-down approaches to justification are 
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now beside the point. As the laws no longer mention bodies or their causal ac-
tions, potential rationalist evidence (from substance metaphysics and philosoph-
ical theology) is irrelevant to the truth of  the dynamical laws in the Enlighten-
ment.22  Yet the bottom-up approach, which Newton’s work epitomized, be-
comes out of  reach. Here is why: Principia treated just a class of  phenomena—
motions at celestial scales—for which Newton’s epistemic situation was twice 
privileged. First, he had vast amounts of  data (going back to Babylonian astron-
omy) that informed him reliably on effective parameters and their key values;23 
and second, the solar system (the main object of  his theory) is remarkably well-
behaved compared to most species of  mechanical system at terrestrial scales.24  

Second, Enlightenment theorists were severely disadvantaged in both the re-
spects that had favored Newton’s search for evidence. For one, they had no re-
liable data with which to confront their equations of  motion (so as to thereby 
extract evidence for the laws that entail the equations).25 For another, they were 
evidentially thwarted by the inexorable presence of  large secondary effects, often 
due to agencies beyond the descriptive reach of  the very theory in which the 
equation of  motion belonged.26 

In retrospect, we see that a key question—about the truth of  the post-New-
tonians’ dynamical laws—soon became an enigma, avoided until late modernity.  

																																								 																					
22 Caution: my points in this section pertain only to the law-statements [1] through [3] above. As 
I explained, the philosophers worked with a different set of statements (which they kept calling 
laws). Their laws were amenable to top-down justification, and so of course much of their work 
in philosophy of physics aimed to obtain just this sort of a priori warrant.  
23 An effective parameter is some kinematic aspect that must show up in the equation of motion, 
and about which predictions in mechanics are made.  
24 For Newton’s investigation, gravity is the only dominant source of motion; and when its sec-
ondary effects become relevant (e.g., in Saturn’s attraction on Jupiter, in addition to the primary 
attraction on it by the Sun) Newton found a way to handle it by relying on perturbed-orbit 
methods, as in Book I, Section XI. Moreover, in gravitational setups, deformation rates are very 
slow, and so deformed configurations (e.g., the Earth’s polar flattening) can be treated as quasi-
static—hence Newton did not need an equation of motion for every part of the Earth (as an 
extended body) moving relative to the others under gravity and centrifugal force.     
25 The equations of 18th-century mechanics describe infinitesimal deformations and instantane-
ous velocities at a point (inside an extended mechanical system). But measuring values for such 
local parameters requires very advanced technology—like high-resolution microscopy, fluores-
cent molecular doping, wind tunnels, and high frame-rate cameras—not available until late-
Victorian physics and beyond. For instance, the earliest empirical data in elasticity theory (by 
Chladny, on the vibration of membranes) gets taken up by theorists after 1800.  
26 E.g., elastic media available for experimentation deform irreversibly above a certain level of 
applied stress (i.e., they are really elastoplastic, not ideally elastic as the relevant theory—of 
elasticity—supposes them). Likewise, some liquid crystals respond to stresses differently when 
magnetic fields (which count as trans-mechanical agencies) are present.  
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7.   Conclusions 

I have argued that our concept of  laws of  motion—namely, as dynamical laws—
emerges in 18th-century mechanics. The chief  driving factor for this shift was 
the need to extend mechanics beyond late-1600s centroid theories. For this shift, 
the key enabling result was a development in mathematics, the rise of  differential 
equations. 

Thus an inflection point occurred circa 1750 as the science of  motion exited 
its adolescence. Specifically, we see a deep shift in the form and status of  laws 
of  motion. The shift is where early modern mechanics turns into mechanics as 
we know it. Philosophically speaking, the inflection was genuinely deep: it 
changed the epistemic basis of  mechanics; it altered its ontology in ways that we 
still struggle to grasp; and it had ripple effects on current ideas of  what a law of  
nature is. In an important sense, the Long Scientific Revolution is still with us.   
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