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An influential view has it that the paradigm application of Kant’s categories is New-
ton’s dynamics. Though cogent, the claim makes the categories too narrow, because 
Newton’s laws had explanatory limits known well before the 1780s. I show here that 
the categories are broad enough to avoid that problem: I prove that Kant can 
ground basic laws for all classical mechanics, which is demonstrably more general 
than Newton’s theory.  

To make my case, I survey three brands of Enlightenment dynamics, based re-
spectively in the Principle of Least Action, the Principle of Virtual Work, and Euler’s 
Laws of Motion. I obtain two results. Kant’s Analogies of Experience support nei-
ther the Principle of Least Action nor the Principle of Virtual Work. But, they could 
well ground Euler’s two laws of motion. However, to do so Kant must tweak his 
theory of matter: from a physical continuum to discrete mass-points.   

And, I show that my reading makes Kant relevant to current foundations of me-
chanics. This makes his categories explanatorily sufficient and timely.  
 

 
0.  Introduction1 
Soon after the First Critique came out, Kant became alarmed that read-
ers may suspect his twelve categories are too abstract to apply to any ob-
jects of actual experience. To preempt that fear, in 1786 he wrote Meta-
physical Foundations of Natural Science.2 There, he assured them, was a set 
of “examples in concreto” for his pure transcendental concepts. Michael 
Friedman has long argued cogently that Kant meant his metaphysical 
foundations to ground primarily Newtonian science: the theory in New-
ton’s Principia is the “paradigmatic instantiation” of Kant’s constitutive 

                                                        
1 For invaluable comments and insightful criticism I am much indebted to Michael 
Friedman, Katherine Brading, David Hyder, Konstantin Pollok, and Bennett 
McNulty. For constructive observations and advice, I thank Angela Breitenbach, 
Michela Massimi, Desmond Hogan, Katherine Dunlop, Rae Langton, Eric Watkins, 
Daniel Warren, and Jeremy Butterfield. For helpful feedback, I thank audiences at 
Cambridge (UK), Ghent, and Minnesota. 
2 I refer to Kant’s Metaphysical Foundations of Natural Science (1786) simply as ‘Founda-
tions.’ Unless otherwise noted, all translations are mine. I follow convention and cite 
Kant’s works by volume and page number in the Academy Edition, as follows: ‘1’ is 
Kant 1992, ‘4’ is Kant 1911, and ‘14’ is Kant 1925. ‘A’ and ‘B’ are the two editions of 
the First Critique, translated as Kant 1998.     
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apparatus, and his categories apply primarily to the objects and process-
es that Newton treated (Friedman 1992: 137; 2013: 410). 

Friedman’s result and sophisticated case—the apex of the venerable 
‘Marburg’ approach to Kant—is so spectacular that it has obscured from 
us a worrisome fact we must no longer ignore. Let us grant, as Friedman 
implies, that Kant’s categories apply primarily to determinate experi-
ence—the exact science of nature, that is—rather than to everyday ac-
quaintance with common objects. Still, we must worry that his categories 
are too narrow even for that task. I do not mean that Riemann and Ein-
stein proved Newtonian physics to hold just in a limit case. I mean that, 
even in a classical world—of objects at subluminal speeds in Euclidean 
space—Kant’s categories are not broad enough to ground all rigorous 
experience as we had it until 1905 or so. That is because, not long after 
the Principia but well before the First Critique, it became apparent that 
Newton’s fundamental notions had serious limitations. To wit, mechan-
ics is explanatorily basic. Yet there were basic mechanical phenomena 
and causal processes that Newtonian theory could not explain in princi-
ple, not just provisionally. And so, if Newton’s key concepts are too nar-
row, and yet they prove the “real possibility” of Kant’s categories, we 
must infer that the categories are not general either. Newton’s limita-
tions, already visible in the 1740s, become Kant’s too, so his categories 
are DOA—dated on arrival, as it were.  

In this paper, I show a way to dispel that fear. Kant’s categories, I 
argue, are general in the sense above. I make my case from a particular 
but uniquely powerful vantage point. Namely, I show that Kant’s Anal-
ogies of Experience ground causal laws that explain the basic behavior 
of all ‘classical’ objects generally. My vantage point is privileged, in that 
it seeks to recover ultimate principles for causal reasoning within rigorous 
experience. To make my case, I marshal history and philosophy. I survey 
three Enlightenment theories—early versions of our mechanics—and ask 
if Kant’s categories can ground any of them. For brevity’s sake, I call 
these versions ‘variational,’ ‘analytic’ and ‘Eulerian.’ They are distinct in 
that they rest on different basic laws. My verdict is dual. Kant, it turns 
out, can ground neither variational nor analytic mechanics. And yet, he 
has a good chance of grounding Euler dynamics. But, he must adjust his 
mature theory of matter: namely, he must switch to a mass-point ontolo-
gy. In historical terms, he must adopt a variant of his old physical mon-
adology—though suitably modified in light of Transcendental Idealism.  
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First, a rationale: I show that Kant’s contemporaries found Newton’s 
laws too narrow to ground objecthood for mechanics (§ 1). Next, I ex-
plain three programs—variational, analytic and Eulerian—pursued in the 
Age of Reason to overcome Newton’s limitations (§ 2). Then I establish 
that Kant has no good way of grounding the first two programs. Varia-
tional mechanics is not grounded in efficient causes, which Kant’s Sec-
ond Analogy demands of all physical theory. And, analytic mechanics 
introduces a type of fictive forces that violate Kant’s three Analogies. In 
contrast, Kant has very good resources for grounding Euler dynamics (§ 
3). However, to complete that task, Kant must adopt a version of his old 
view that matter is made of mass points, a phenomenal species of ‘physi-
cal monads.’ Thereby, he can derive the two fundamental laws of Euleri-
an mechanics (§ 4). Lastly, I invoke some modern results to show that 
Kant’s discrete ‘phenomenal monads’ can support a theory of continuum 
phenomena as well (§ 5). So, his categories are more general and timely 
than we have thought.   

Cui prodest? One benefit is that my study extends non-trivially Fried-
man’s thesis that the Principia is the paradigmatic instantiation of Kant’s 
categories. A critic might ask if Newton’s theory is the paradigm—an ex-
emplary case—or just the sole application of Kant’s abstract categories to 
rigorous experience. That would lessen their value in proportion as the 
Principia turns out to have limits. I establish that Friedman has a point 
after all: Kant’s categorical inventory can ground exact science beyond 
Newton. Another benefit is that it brings Kant’s foundations into the 
present. For all its towering genius, the Principia is a work in early mod-
ern science. In contrast, classical mechanics is a live area of physics and 
philosophy (Sklar 2013; Batterman 2013). Thus, I show, Kant remains 
relevant.  

Now, I must confess to two limitations. My account is not conclu-
sive; I just uncover some initial barriers to fitting post-Newtonian dy-
namics into Kant’s framework. But, a final verdict requires a fuller in-
quiry, for which I lack the space here. It is enough for now if I produce 
some first results and outline a research program. Second, I do not in-
spect here the grounding relation between Kant’s foundations and basic 
dynamical laws. That relation is notoriously debated. It has been read 
variously as transcendental explanation of possibility, presuppositional 
analysis of dynamical theory, even confirmation (Friedman 1992; Wat-
kins 1998a; DiSalle 2006).     
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A key caveat is in order, before I begin. I will argue below for a theo-
ry of matter in which the unit body is the mass-point. At times, I call 
those units ‘phenomenal monads,’ to signal their vicinity to Kant’s 
thought. In the 1750s he held a doctrine, “physical monadology,” that 
was a mass-point ontology in all but name. That is, a mass point and a 
physical monad largely overlap in their respective geometric makeup, 
kinematic behavior, and dynamical powers.3 However, the metaphysics 
of those monads was transcendental realism. That standpoint becomes 
unacceptable to Kant after 1781, and I comply with his stricture.4 Fortu-
nately, physical monads can be made safe for transcendental idealism, as 
‘phenomenal monads.’ They have the kinematic properties and causal 
powers of mass points, viz. three degrees of freedom, inertial mass, and 
action-at-a-distance forces. But, they are cis-noumenal, or a species of 
appearances. Specifically, they are the phenomenal substratum of all me-
chanical appearances in a classical regime. As to their epistemology, 
phenomenal monads are inferable by a systematic use of Kant’s Postu-
lates of Empirical Thought, not by armchair conceptual analysis. So, we 
need not fear the specter of the Second Antinomy as we adopt them on 
Kant’s behalf.5  

 
1.  The limits of Newton’s Principia 
Mach in 1883 originated a myth that ensnared many in the Twentieth 
Century, namely, that the laws in the Principia are a complete basis for 
classical mechanics: “The principles of Newton suffice by themselves, 
without the introduction of any new laws, to explore thoroughly every 
mechanical phenomenon practically occurring” (1960: 342; my italics). 
His stature then helped turn it into conventional wisdom. Mach should 
have known better. Already in his time Hamel had proved that, to han-
dle rigid bodies and deformable continua, Newton’s three laws are not 
enough (1909). Rather, they need supplementation with other, equally 
fundamental laws. Vox clamantis in deserto—the myth reigned on for an-

                                                        
3 This is not true without qualification. In Physical Monadology, Kant really mixes two 
theories of matter, though the mass-point picture remains his dominant and official 
account. See the admirable Smith 2013.  
4 A thorough discussion of the Critical Kant’s opposition to (his old) physical mon-
adology is Pollok (2001: 251-73).  
5 I thank Rae Langton, Angela Breitenbach, and Konstantin Pollok for pressing me 
on this issue.  
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other half-century. Thankfully, historians began to look at 18th-century 
mechanics closely, and their findings awoke us from our dogmatic slum-
ber. The Enlightenment doubted Newton’s laws, altered them drastically 
or even replaced them outright (Caparrini & Fraser 2013).  

Still, recounting the demise of false history is no argument. Then let 
me explain precisely why Newton was not enough. The key fact is that 
Newton applied his four laws merely to free particles. That is, their target 
objects are kinematically unconstrained; discrete, not continuous; point-
sized, not extended; and single, not part of a system. But, that left New-
ton’s original laws with three blind spots. Specifically, there were three 
kinds of processes for which his law f = ma could not by itself yield equa-
tions of motion, the key task of dynamical principles.  

One blind spot was constrained motion, in which the particle cannot 
move freely in space but is subject to kinematic limitations. E.g. a bead 
falling under gravity down a thin rigid rod swinging freely around a 
fixed pivot.6 The Second Law predicts that the force will cause the parti-
cle to accelerate in the direction of the force. But, in constrained motion, 
the particle by definition cannot accelerate in that direction: the con-
straint prevents it.7 And so, it is a mystery how f = ma might be used to 
predict the particle’s behavior, given that, for some regions and direc-
tions, there can be no actual a, no matter how great the actual f. Thus, to 
handle constrained motion, we can see in retrospect, the Second Law 
must be paired with an additional dynamical principle, viz. that con-
straint forces do zero mechanical work. 

Another blind spot was the motion of rigid bodies and continuous 
media—the ‘hard bodies’ and ‘infinitely divisible matter’ of early modern 
science. Rigid bodies seemed intractable by Newton’s laws because every 
part in them is constrained.8 Moreover, they can turn or spin—unlike the 
Principia’s point-sized particles—thus forces might give them not just a 

                                                        
6 Other setups studied intensely at the time: a ball sliding outward in a rotating tube; 
a set of weights individually attached to a hanging rope that sways; a fluid in laminar 
flow as its outer layer stays in contact with the container wall; a rigid body moving 
around a fixed internal point; and a body sliding down an inclined plane free to 
move on a rigid track under the body’s weight; cf. Clairaut 1742 and d’Alembert 1743.  
7 Thus, in my example above, gravity pushes the bead vertically downward, but the 
oblique swinging rod on which it slides prevents it from going straight down—the 
bead must slide along the rod not through it.  
8 Namely, by the rigidity condition: every particle in a rigid body must move such 
that its distance to all other constituent particles stays constant. 
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linear impulse but also angular momentum. The Second Law cannot ac-
count for this, and so another basic principle was needed: the Torque 
Law, which I explain below. As to continuous media—fluids, elastic bod-
ies, and plastic solids—the Second Law seemed outright inapplicable to 
them, as they were not made of discrete particles. Euler rose to the chal-
lenge by applying the Second Law to the least part of a continuous body, 
viz. the infinitesimal mass element dM, and integrating over the body. 
However, Euler soon discovered that, in general, Newton’s principle was 
not enough. Mass elements in continua can twist under stresses, thus 
may acquire angular momentum, which the Second Law cannot handle. 
Again, a new principle is needed: the Torque Law.  

Finally, Newton’s laws had limits in respect to the very causal power 
they treated: gravity.9 The Principia mathematized gravity mostly acting 
on particles.10 To apply Newton’s account to actual planets and satel-
lites, these bodies had to be idealized away: for each planet, a single 
point—its mass center, a centroid—was chosen as representative. The 
Principia’s laws then let us track the motion of this special point when 
the external gravity is known. Now, this approach ignores the motion of 
the planet as an extended body: it leaves out of account how gravity might 
change its shape and volume, spin and orientation. But, actual planets 
do in fact experience such changes. And, most of these gravitational 
phenomena were found in the 1700s: equatorial bulging; terrestrial nuta-
tion; lunar libration; the precession of the equinoxes—all that the En-
lightenment called astronomia mechanica. Newton’s laws being insuffi-
cient in this wider realm, d’Alembert and Euler in the 1740s added novel 
fundamental principles to extend the reach of the Principia (Chapront-
Touzé 2006; Verdun 2015).  

Lest we think insight into the limits of Newton’s laws is late-modern, 
hence anachronistic for Kant interpretation, listen to post-Newtonians 
express misgivings about their situation. As luck would have it, the fa-
thers of Enlightenment dynamics were given to musings about their dis-

                                                        
9 The Principia is not a tract in general mechanics, just in gravitation theory. Newton 
did express the hope that a fully general mechanics may be developed from his no-
tions of impressed force, action, and the Second Law. The fact is, however, that his 
book tackles just one kind of force—gravity.  
10 Some rare exceptions: the gravitational potential of a thin shell and a homogene-
ous sphere; the shape of the Earth. 
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cipline. By the 1740s they came to realize with dismay that the dynamical 
laws they had inherited were not general. Euler was appalled:  

 
These principles are of no use in the study of motion, unless the bodies 
are infinitely small, hence the size of a point—or at least we can regard 
them as such without much error: which happens when the direction of 
the soliciting power passes through the center of gravity…. But if it does 
not pass through that center, we cannot determine the entire effect of 
these powers. That is all the more so if the body to be moved is not free, 
viz. is constrained by some obstacle, depending on its structure. (1745, 
§17; my italics) 
 

Daniel Bernoulli complained too: “the general laws of motion… are still 
hidden to us” (1746, 55; my italics). Their lament is precisely that the 
laws bequeathed by Newton, Huygens and Leibniz apply just to free 
particles or to a single point—a centroid, in our terms—in an extended 
free body. But clearly, bodies often behave in ways not even approxi-
mated by the motion of their centroid. A genuine mechanics ought to 
account for that. 

In conclusion, Newton’s laws had severe limitations: as the 18th cen-
tury turned to new objects and processes, it found with consternation 
that the explanatory basis Newton and others had left it was too weak.11  
 
2.   Paradigms of mechanics in the Age of Reason 
That started a long, arduous search for truly general principles. It was a 
collective effort that spanned the middle third of the century, and it 
slowly resulted in three different traditions of mechanics. I give below 
historical capsules of each, and explain their fundamental laws. Euler 
and Lagrange made the decisive contributions to all three.    

Variational mechanics.   Around 1740 in France Maupertuis saw a 
new way to look at mechanical processes. He found that, in bodies at rest 
on a balanced lever and in bodies in frontal collision, a certain quantity 
tends to a minimum value. He called that quantity ‘action,’ and claimed 
that it showed divine, economical wisdom at work. Euler, later his col-
league at the Royal Academy in Berlin, moved to expand Maupertuis’ 
insight. Euler showed that, if a unit-mass particle orbits in a plane under 
central forces, the time integral of its velocity multiplied by the differen-
tial arc element (= ∫vds) is a minimum (1744, 311f). Then in 1751 he wid-
                                                        
11 Variations on this theme are already in Truesdell 1968; Wilson 2013; Smith 2008.  
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ened the reach of Maupertuis’ principle.12 Euler let a particle M be at-
tracted by central forces V, V′, V′′ proportional to some function of its 
distances z, z′, z′′ to the centers of force. For the sum of the integrals ∫Vdz, 
∫V′dz′, ∫V′′dz′′ Euler coined the term “effort,” labeled Φ. (We recognize Φ 
in hindsight as the work function of the system.) Euler explained that, if 
the particle is in equilibrium, the “effort” will be an extremum, i.e. a 
maximum or minimum. 13 More importantly, he demonstrated that if the 
particle moves, the integral ∫Φdt is also an extremum: “if the quantity Φ 
must be a minimum in case of equilibrium, the same laws of Nature seem 
to demand that in the case of motion the formula ∫Φdt must be the 
smallest” (Euler 1753: 175).  

Though important and novel, Euler’s result had one serious limita-
tion: it was provably true just for the dynamics of one particle. It was the 
young Lagrange who showed that the Principle of Least Action comes 
close to being truly general. He began by creating a new formalism: an 
analytic theory of δ, a variational operator that he let commute with d 
and ∫, the respective basic operators in the differential and integral calcu-
lus (Lagrange 1762a). He then recast the Maupertuis-Euler law as fol-
lows: 

 
General principle: Let there be an arbitrary number of bodies M, M′, M′′ act-
ing on each other in any manner. Let them be driven by forces proportional to 
some function of distance. Let s, s′, s′′, etc. denote the spaces crossed by these 
bodies in time t, and let u, u′, u′′ be their speeds at the end of this time. Then the 
formula M∫uds + M′∫u′ds′ + M′′∫u′′ds′′, etc. will always be a minimum or a 
maximum. (Lagrange 1762b: 198) 

 
From this principle, Lagrange showed how to derive equations of motion 
for a vast range of mechanical systems: one particle, free or constrained, 
attracted by several forces; the three-body problem; three particles with 
constraints, rigid and deformable; the compound pendulum; the vibrat-
ing string; the rigid body, free and constrained; an incompressible invis-
cid fluid; and an elastic gas.14  

                                                        
12 Lucid analyses of these results are Goldstine 1980: 101-9 and Fraser 1983: 200-2.  
13 Here is an example of maximizing the action. (It comes from Euler.) Rest a cone of 
homogeneous mass on its vertex, on a flat rigid surface. It will stay in that equilibri-
um position, where its “effort” is a maximum. Any imbalance will make it move so as 
to come to rest on its base, where its “effort,” or potential energy, is a minimum.  
14 In a nutshell, Lagrange proceeded as follows. First, he wrote the Principle of Least 
Action as δ∫Mividsi = 0. Second, he interchanged δ and ∫, and expanded the variation 
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This brand of mechanics is variational because of its mathematics, 
the calculus of variations. Its basic law is the Principle of Least Action. 
In exact terms, it says that the variation of a certain integral—the “ac-
tion”—is always null:15  

 
[1]   δ ∫ Mvds = 0   

 
The physical insight behind this principle is: in every mechanical pro-
cess, a system of bodies behaves so as to minimize or maximize collec-
tively a certain quantity, namely the “action” defined above. At every 
point of its instantaneous location, the system has an infinite bundle of 
possible trajectories.16 The actual trajectory will be that curve in the bun-
dle for which the total action is an extremum, usually a minimum. To 
determine this curve more exactly—really, to infer equations of motion 
for the system—Lagrange had to rely on a subsidiary principle, the Con-
servation of Vis Viva.17 Thereby (speaking modernly) he restricted the 
class of comparison curves, i.e. admissible variations, to paths of equal 
energy. In this, restricted class of possible trajectories, the system’s actual 
path will be that which minimizes the total ‘action.’  

Analytic mechanics.   Another path to generality began with Johann 
Bernoulli, who based it on an insight that goes back to Aristotle and 
Heron of Alexandria. First, in a 1713 letter, Johann introduced two novel 
concepts. One was “virtual velocity,” explicated as “the mere disposition 
to move that forces have in a perfect equilibrium, i.e. when they do not 
move actually.” Another was “energy,” really his term for instantaneous 
virtual work in an infinitesimal displacement: “virtual velocity, multi-
plied by the absolute force, produces the momentum, or energy, of this 

                                                                                                                                       
of the action δMividsi. Thereby he got two terms, one in δdsi and another in δvi, re-
spectively. Third, he related the second term to forces Fi acting on the system, by 
means of Conservation of Vis Viva above. Thereby, he obtained a second expression, 
(E). Fourth, he formulated the first term in Cartesian coordinates, and called the 
resulting expression (V). Finally, he added E and V, and equated to zero their coeffi-
cients. This yielded for him the equations of motion for a general dynamical system, 
free or constrained. Cf. Lagrange 1762b: 205-9.         
15 M is mass, v is instantaneous velocity, and s is Cartesian distance.  
16 These curves are related to each other as the variations of the action functional. 
17 Consequently, he assumed that all these forces—even those responsible for the con-
straints—were induced by conservative potentials.   
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force.”18 Second, Bernoulli combined these notions into a new principle 
for statics. In another letter, he shared it with his disciple, Varignon, who 
made it public in his posthumous Nouvelle Mécanique, ou Statique: “In any 
equilibrium of forces whatsoever…. the sum of the positive Energies will 
equal the sum of the negative Energies with their signs reversed” (Vari-
gnon 1725: 176). In our terms, Bernoulli claims a sufficient condition for 
static equilibrium is that the virtual work of the applied forces vanishes. 
By 1740 his principle had gained wide acceptance (d’Alembert 1743: 
182f).  

The next, momentous step occurred in France, where the best minds 
were seeking a uniform method to tame constrained motion. D’Alembert 
had a brilliant though highly unintuitive idea. He posited that, in a con-
strained system, every part loses a velocity increment as it moves—
because the constraints prevent it from acquiring the ‘whole’ motion that 
impressed forces would give it, were it free. D’Alembert called these in-
crements “lost motions,” and proposed a general heuristic based on 
them. Resolve the ‘motion’ impressed on every part into two motions, 
one lost and one acquired actually. D’Alembert asserted that in the sys-
tem as a whole, the ‘lost motions’ are such as to induce equilibrium:19 “if 
just the [lost motions] were impressed, the system would stay at rest” 
(1743: 51). This statical rule was meant to yield a general method for 
identifying, in a system, the ‘motions’ lost to constraints. Once found, 
these must be subtracted from the ‘impressed’ motions. The remainder 
would be the actual motions, i.e. the accelerations the system undergoes 
in fact. These would show up in the differential equations of motion.20      

However, few could really follow d’Alembert’s idea or his cumber-
some implementation. Aware of this obstacle, he reformulated his in-
sight. This time he left out of account the “lost” motions, and focused on 
the two other kinds, viz. “impressed” and the “acquired” motions. (Call 
them I and A, respectively. They are vectors, so I use boldface.) 
D’Alembert now claimed (1749: 35f) that: 

                                                        
18 This letter (to Renau d’Elizagaray, a naval engineer) has not yet been printed. I 
translate here from an excerpt in Capecchi 2012: 434, which relies on an unpublished 
typescript by Patricia Radelet de Grave.  
19 That is to say: if the target system were in equilibrium, and a different set of forces 
acted on it, so as to impress solely the ‘lost motions’ as caused by the previous set, the 
system would remain in equilibrium.   
20 A lucid account of d’Alembert’s original principle is Fraser 1985; Firode 2001 ex-
plains the large-scale structure of d’Alembert’s mechanics.  
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[2]    ∑ I = − ∑ A         

 
In words: for each body or part of a system, if the impressed and the ac-
quired motions—the latter with their sign reversed—were applied, the system 
as a whole would be in equilibrium.  

D’Alembert’s reformulation is important because Lagrange took it 
over, combined it with Bernoulli’s law above, and made it the basis of his 
second general theory of mechanics. But, he made two key changes. First, 
he recast d’Alembert’s principle in terms of forces, not ‘motions.’ Sec-
ond, he rephrased Bernoulli’s principle in terms of virtual displacements, 
not velocities: each is an “arbitrary small motion,” whereby the particle 
“traverses an infinitely small space” (Lagrange 1878[1763]: 8-9).21 These 
two changes to the insights of his predecessors yielded for him a novel 
method for deriving equations of motion. He first showcased it in a prize 
essay on lunar libration.22 Lagrange lets the Moon—modeled as a set of 
mass elements m—be urged by two gravitational forces FE and FS, exert-
ed from the Earth and the Sun, respectively. Let a (= dr2/d2t) be the net 
actual acceleration of m. Lagrange chooses to regard the products ma as 
forces. He claims that these ‘forces,’ if reversed, would balance exactly the 
gravities FE and FS above. In other words, these ‘forces’ are in equilibri-
um:  

 
[3]    ∑ (FE + FS) = − ∑ ma 

 
As justification, Lagrange claims the law “given by Mr. d’Alembert,” 
which he calls the “general principle of Dynamics” (1878[1763]: 12, 8). 
Having turned the Moon into a system in equilibrium, Lagrange invokes 
a “principle universally true in Statics,” namely his version of Bernoulli’s 
law above. Specifically, the work done by all the (non-constraint) forces 
on a system in equilibrium is zero:23  

                                                        
21 Lagrange regrettably retained the term “virtual velocities.” It is a dysphemism in 
his theory: by vitesses virtuelles, he means displacements—properly speaking, timeless 
variations of the coordinates.  
22 Perforce, I must greatly simplify Lagrange’s complex reasoning in that paper, and 
also modernize his notation. An exquisite account is Fraser 1983; Capecchi 2003 is 
more explicit about the role of the two principles above in Lagrange’s paper. 
23 δe and δs are virtual displacements in the directions of the forces FE and FS, respec-
tively, whereas δr is in the opposite direction of the actual acceleration a.  
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[4]    ∑ (FE ⋅ δe + FS ⋅ δs) + ∑ ma ⋅ δr = 0 

 
This early, special application was the gist of his later, comprehensive 
theory in the 1788 masterpiece Méchanique analitique.24 There, from his 
basic dynamical law he derived equations of motion for a system of free 
particles; a particle under external holonomic constraints; a system of 
particles with internal constraints; a rigid body, free and constrained; an 
incompressible inviscid fluid in laminar flow; and an elastic gas (Barroso 
Filho 1994: 267-87). Lagrange’s approach is exactly the same as in his 
1763 Recherches sur la libration de la Lune. The sole conceptual innovation 
is a novel way of handling constraints.25        

Officially, this brand of mechanics rested on a single basic law, which 
Lagrange called the General Principle of Virtual Velocities.26 In physical 
terms, it says that in a mechanical system, the work of the non-constraint 
applied forces Fi in a virtual displacement vanishes: 

 
[5]    ∑ Fi · δri = 0 

 
And yet, this statement obscures the insight behind it. Lagrange’s gen-
eral principle above is really a conjunction of two principles. One is a 
basic law for statics: in a system in equilibrium, the net virtual work by 
the applied external forces Si is null: 

 
[6]    ∑ Si · δri = 0 

 
Another is a fundamental law for dynamics, the theory of systems in mo-
tion. Lagrange baptized it “d’Alembert’s Principle,” and it caught on. 
This law contains two ideas, deeply at odds with Newtonian intuitions 
                                                        
24 A handwritten note by Lagrange claims d’Alembert had told him, in a letter, “I 
read your piece on lunar libration…. and I said, as John the Baptist said [of Jesus], 
He must increase, but I must decrease.” (Lagrange 1882: 10)  
25 In the 1763 paper, Lagrange did not have to worry about constraint forces. A kine-
matic condition—his Moon is a rigid ellipsoid—supplied him with a purely geometric 
way to express the action of constraints. In the general theory of Méchanique anali-
tique, he inserted in the Principle of Virtual Work a set of undefined, force-like coef-
ficients λ, µ, ν, etc.—the ‘Lagrange multipliers,’ as we call them—and set them equal 
to zero, to express the insight that constraints are workless. Lagrange’s mature dy-
namics of constrained systems is sadly understudied. Duhem 1903 remains useful.   
26 Some modern authors call it ‘Lagrange’s Principle,’ e.g. Papastavridis 2002: 386. 
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about mechanics. First, regard the accelerations of masses as a species of 
force. Then change the sign of these ‘forces,’ and call the result ‘reverse 
effective forces,’ labeled Ji.27 Second, d’Alembert’s Principle now claims 
that the actual, impressed forces Ii balance exactly the reverse effective 
forces Ji:  

 
[7]    ∑ Ii = − ∑ Ji 

 
In effect, d’Alembert’s Principle reduces a dynamical system to a static 
system in equilibrium. So reduced, the system is acted on by a net ap-
plied force ∑Fi from two sources, viz. the impressed forces and the re-
verse effective forces: 

 
[8]    ∑ Fi  = ∑ Ii + ∑ Ji 

 
Thereby, the system comes under the authority of [5], the statical Princi-
ple of Virtual Work above. Lagrange then sought to express the ‘varia-
tions’ δr in terms of ‘generalized coordinates’ and their first derivatives. 
This led him in every case to the ‘Lagrangian’ equations of motion for 
that system.  

Euler mechanics.   The last program was largely due to Euler, but it 
too began with Johann Bernoulli. In the late 1730s he found a new way 
to quantify and predict the behavior of so-called Newtonian fluids. Ear-
lier, his son Daniel had used a Leibnizian strategy—an energy method, in 
our parlance—for the same task. Daniel posited Conservation of Vis Viva 
for the extended fluid mass. Next, he sought to find the motion of indi-
vidual fluid particles from this global condition. Dissatisfied with his son’s 
approach, Johann pursued a methodus directa.28 His genial idea was to 

                                                        
27 I follow Routh 1905 in this terminology. Modern authors call them ‘inertial forces,’ 
‘kinetic reactions,’ ‘constraint reactions,’ ‘reaction forces.’ All these terms mislead 
badly.   
28 18th-century mécaniciens had a duality of method, “direct” vs. “indirect.” The for-
mer amounted to applying some dynamical law directly to the least part or individual 
component of a mechanical system, so as to obtain the equation of motion. The latter 
would impose a global condition on the system—usually, one or more integrals of 
motion—then try to infer indirectly the (differential) equation of motion for single 
components. The global principle—e.g., energy conservation—functioned as a con-
straint on admissible motions for components. But, it did not explain them in causal 
terms. In contrast, the direct method had causal-explanatory import: it relied on dy-
namical laws about efficient causation. E.g., Newton’s approach to free fall is metho-
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treat the fluid as a physical continuum, and apply the Second Law not to 
particles—there are none there—but to every mass element dM, or infini-
tesimal bit of matter in that fluid.  Johann shared his insight with Euler, 
who was elated: “You have given me now the greatest light in this mat-
ter, whereas previously I would approach it in a great fog, and was una-
ble to determine it other than by the indirect method.29 It was the break-
through Euler needed so as to treat most of the problems and setups that 
Newton’s Principia and his own Mechanica of 1736 had left untouched.  

I said ‘successfully,’ but not ‘easily.’ It took Euler over three decades 
to fulfill his program. Through the 1740s, Euler showed how to apply the 
Second Law to mass-points constrained to move on mobile surfaces, and 
to systems of free particles. In 1750, he found a way to use the Law to 
obtain equations of motion for a rigid body under external forces. (At 
the time, the rigid sphere was becoming the key model for the celestial 
mechanics of extended bodies, which exhibit precession and nutation.) 
During that same decade, Euler systematized and generalized the dy-
namics of ‘Newtonian,’ or inviscid fluids, by grounding their behavior in 
the Second Law and his new-fangled notion of internal pressure. How-
ever, by the 1770s Euler came to see that, except for these fluids above, in 
general Newton’s law was not enough by itself to predict all the possible 
motions of all possible bodies. Another basic principle is needed, to 
handle the “moments of forces,” i.e. torques. In his later treatment of flex-
ible and rigid bodies, he would start with two fundamental principles, 
known as ‘Euler’s Laws of Motion’:30 

 
[9]     f = dp/dt 
 
and also  

 
[10]     h = dl/dt 

 

                                                                                                                                       
dus directa, whereas Leibniz’s treatment of 2-body collision is indirect. Terse accounts 
of this duality are in Euler’s correspondence with Daniel Bernoulli; and in Anony-
mous 1751: 71f.  
29 Euler to Johann Bernoulli, 5 May 1739; Eneström 1905: 25.  
30 Cf. Euler 1766, on celestial bodies in rotation; Euler 1771, on the elastica; Euler 
1776a, on the vibrating string; and Euler 1776b, on the rigid body; f is force, h is 
torque; p is linear momentum, l is angular momentum.   
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One is the Force Law, which asserts that the net impressed force equals 
the time-rate of change in linear momentum. The other is the Torque 
Law: the net torque equals the rate of change in angular momentum.  

I call this tradition Eulerian, as more than half of it comes from Eu-
ler. And yet, though handy, the label is glib. More properly called, it is 
Newton-Euler dynamics, because it took its cue from Newton’s Lex 
Secunda. Its explanatory core is two logically independent principles relat-
ing dynamical efficient causes and kinematic effects.31 The causes come 
in two kinds: forces and torques. So do their respective effects: linear and 
angular accelerations. All are vector magnitudes. And, the two principles 
are differential laws: they start with infinitesimal changes in the least part 
of a mechanical system (i.e., the particle or the mass element, respective-
ly). In other words, the reference of these laws is the part not the whole. 
To find out how the whole moves, one must integrate over it. This is 
wholly unlike the other two programs, whose basic laws—the Principle 
of Least Action and the Principle of Virtual Work—are about scalar 
quantities, not vectors, and make assertions about the whole (system), 
not the part—which does not necessarily obey the basic law.  

Against this backdrop, let us see now what chances Kant has to ex-
pand his foundations.  
 
3.   Kant, the Analogies, and the three paradigms 
For some time now, Michael Friedman has made a broad, sophisticated 
and robust case that Kant aimed to secure apodictic foundations for me-
chanics from constitutive resources.32 Namely, Kant’s categories, applied 
to the empirical concept <matter>, guarantee that mathematics can be 
used in mechanics, thus lending its certainty and exactness to the latter. 
Likewise, the Analogies of Experience, if applied to matter yield synthet-
ic a priori dynamical laws. Lastly, the Postulates of Empirical Thought 
constrain the future addition of new empirical laws to dynamics. Thus, 
the structures and activities of the understanding—listed in the First Cri-

                                                        
31 Some call them, respectively, Euler’s First Law and Second Law; e.g., Truesdell 
1991 and Wilson 2013. Handbooks of modern continuum mechanics also call them 
the Balance Law of Linear Momentum and of Angular Momentum, respectively.  
32 See Friedman 1992, 2012, 2013. His approach is in self-conscious opposition to an 
older construal, epitomized by Buchdahl 1992, on which it is primarily Kant’s regula-
tive principles that frame mechanical theory.  
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tique, applied to matter in Foundations—suffice to ground mechanical 
theory.  

Friedman relies explicitly and heavily on Newton as the test case for 
his reading of Kant. Sensibly, he limits his focus to the four laws in the 
Principia. Now, I have explained that these laws are not general. Then let 
us ask: can we use constitutive resources alone, as Friedman has done for 
Newton, to show that Kant could have truly general laws of mechanics? 
More broadly put, can we prove that Kant’s Analytic and Foundations 
support a truly general notion of determinate object of experience? I 
submit that, without some qualification, we cannot: there are serious 
conceptual obstacles in accommodating any of the three programs to 
Kant’s official foundations in the 1780s. Let us take them in turn.   

Variational mechanics. Kant thought highly of Maupertuis, and very 
favorably of his research (Ferrari 1999). His regard for Euler needs no 
proof. Sadly, Kant never learned of Lagrange’s first unification of me-
chanics from the Principle of Least Action, PLA, though it would not 
have surprised him.  

Still, Kant would be hard pressed to ground it in constitutive re-
sources. As Friedman and also Watkins (1997, 1998b) have shown amply, 
Kant always expects his Analogies of Experience to ground the basic dy-
namical laws, be they Newtonian, Leibnizian or otherwise.33 The Second 
Analogy, in particular, imposes a severe constraint on mechanical theory. 
It posits that all substantial change—ergo, all change of mechanical 
state—has an efficient cause that precedes it in time. The two are related 
as “cause and effect, the former of which determines the latter in time, as 
its consequence” (B 234). A fortiori, the basic mechanical principles 
must be laws of efficient causation. And, presumably, all explaining must 
terminate at last in explanations from efficient causes and their basic 
laws of operation. To be sure, these causes need not be just forces. They 
may be torques, stresses, body couples—any kind of ultimate efficient 
agency in mechanics.  

However, the PLA is deeply at odds with Kant’s constraint. For one, 
it is not at all a statement about forces, its cognates above or any efficient 
causes whatsoever. In Kant’s time, it was about non-causal features of 
                                                        
33 Watkins 1998a made a conclusive case that Kant’s grounding does not amount to 
substitution—replacing, as it were, category-terms with physical notions. Still, I do 
believe that Kant means to ground his basic laws by deductive argument [Beweis], in 
which at least one Analogy of Experience appears as an indispensable premise.   
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body, viz. mass, velocity, and infinitesimal displacement. Moreover, the 
PLA is an integral law, as I explained. It does not link instantaneous 
causes and their (directly successive) effects. Rather, it asserts a fact 
about a global feature of the system throughout a finite time.   

There is a second, grave difficulty. The PLA does not underwrite ex-
planations from efficient causes. In this mechanics, the system’s position 
and velocities at a particular instant are explained by a fact about a time 
integral—of its action functional—which extends into the future, and in-
cludes subsequent instants. In turn, that integral picks out the system’s 
actual path (in configuration space) from a set of infinitely close possible 
paths, viz. the variations of the action. And, to explain why this, rather 
than any of its variational siblings, is the actual path, we must appeal in 
part to the final configuration of the system. Thereby, we rely on facts 
about a future state to explain mechanical behavior at previous instants. 
This rests Kant’s Second Analogy squarely on its head: in PLA, the fu-
ture explains the past, instead of the past explaining the present. 

Nor is it clear that we can anchor the PLA in some other Kantian 
constitutive principle. Take the First Analogy: with it, Kant posits the 
permanence of phenomenal substance. In 1787, he modified it to assert a 
global conservation principle: the amount of (phenomenal) substance “is 
neither increased nor diminished in nature” (B 224). Friedman has 
shown ingeniously how Kant linked this rephrasing to his aim in Founda-
tions of using the First Analogy to derive Conservation of Mass in me-
chanics (2013: 315f). Can we not do some creative interpretation, and try 
to imitate Kant and Friedman by yoking the PLA to his updated First 
Analogy somehow? It does not seem possible. That principle supports 
conservation laws alone, and the PLA is not one. It asserts that, in every 
process, the ‘action’ takes an extremal value—a minimum or maximum—
not that it is conserved.  

Analytic mechanics.   Regrettably, Kant was unaware of Lagrange’s 
second mechanics, though it gestated just south from him, in Berlin. We 
must again resort to interpretive conjecture about how we might ground 
it in his principles. It seems that we must start with the official basic law 
in it, or the Principle of Virtual Work, PVW. However, there is a formi-
dable problem nearby. The PVW is useless without d’Alembert’s Princi-
ple, the linchpin between statics and dynamics in Lagrange’s theory. 
And, that law seems fundamentally unable to rest on Kant’s foundations, 
for two reasons.  
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One is that d’Alembert’s Principle requires us to add in thought a set 
of wholly fictive forces to the given system. These imaginary forces are 
meant to balance the actual, real ones, so as to convert the system to stat-
ic equilibrium, the necessary condition for the PVW to take over and 
yield equations of motion. In effect, d’Alembert’s Principle claims: if a 
different set of forces were acting on the moving system, it would be a sys-
tem at static rest. Many modern authors fail to declare the wholly fictive 
existence of their so-called ‘constraint reactions,’ ‘inertial forces,’ ‘reac-
tion forces’ and such synonyms. But Lagrange knew it:  

 
If we imagine impressing in each body, in the opposite direction, the mo-
tion it is to have, clearly the system will be reduced to rest…. Thereby we 
can reduce the entire Dynamics to a single general formula. For, to ap-
ply the formula of equilibrium to the motion of a system, it is enough to 
introduce forces that come from the [actual] change in the motion of each 
body, which motions must be destroyed.   (Lagrange 1811: 240; my em-
phasis) 
 

And so did Euler, who first explained clearly the virtual work approach 
to mechanical problems (1862: 46f). Some modern authors still remem-
bered it (Routh 1905: 46). Even more perceptive writers are overt about 
it. Hamel on d’Alembert’s Principle: “Add to the impressed forces the 
negative accelerations of masses, as fictive forces [Scheinkräfte]. Then 
treat the system as one in equilibrium” (1949: 218).  

These ‘forces’ are fictive or imaginary in two senses. They are not ac-
tual or present in the system—not even latently so, like the normal com-
ponent of gravity on an inclined plane. (Again, recall that the system is 
in motion, not at static rest.) And, they do not originate in actual bodies, 
whether present within the system or outside it. For that reason, 
d’Alembert’s Principle is irreconcilable with Kant’s Second Analogy. 
The latter requires that all mechanical agencies be species of the causal 
powers of actual substances (Watkins 2006: 256ff). The reverse effective 
‘forces’ in d’Alembert’s Principle are neither: they are sourceless, non-
actual forces.  

Nor is the Third Analogy of much help here. Kant’s Grundsatz entails 
that all mutual forces are balanced—which seems to put d’Alembert’s 
Principle within its purview. But that is a vain hope. The real conse-
quence of the Third Analogy for mechanics is that all actual impressed 
forces are interactions: they come in pairs, not singly; and act on differ-
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ent, actual bodies. D’Alembert’s Principle fails this demand too: it says 
that two kinds of force—one actual and one fictive—could be impressed 
on the same body.  

In conclusion, so far the outlook is gloomy. There is some sunshine 
coming, I will argue, but it is still in the distance.  

Euler dynamics.   This would seem the inevitable choice for Kant, 
given his strong commitments to the theory in the Principia, which Euler 
made fully general. So, I must show that he is in a position to derive its 
two basic causal principles, the Force Law and the Torque Law. Now, 
Newton’s Second Law is notably absent from Kant’s foundations. A for-
tiori, so is its Eulerian generalization, the Force Law. Still, this obstacle 
is just temporary. Kant does have enough resources for a theoretical 
equivalent of Lex Secunda, namely the Parallelogram of Forces.34 In his 
foundations of kinematics, Kant proves the Parallelogram of Velocities. 
For him, it is synthetic a priori, and holds for accelerations as well.35 
Kant also claims that forces generate (linear) accelerations along their 
line of action. And, he has an indirect proof that single forces are pro-
portional to the accelerations they induce. (I expand on this argument in 
§ 4.) So, accelerations add like vectors; forces are commensurate and co-
linear with their accelerations; thus forces add like vectors. Then Kant 
has a substitute for Newton’s Second Law, hence also for Euler’s Force 
Law.36   

What about the Torque Law? Do Kant’s foundations entail it? In 
modern accounts of mechanics, that law is sometimes derived as a theo-
rem, from mechanical axioms. There are really two ways to do so. (1)  
We may start with the Force Law and the so-called Strong Third Law, 
viz. the principle that inter-particle forces equal, opposite, and central, 
i.e. acting on the line between the particles.37 From these two premises 
we can prove that the impressed torque equals the rate of change in an-
gular momentum. (2)  Or, we may start with the Force Law and another, 

                                                        
34 The Parallelogram of Forces is Newton’s Corollary II, in the Principia. The law of 
inertia and the Lex Secunda entail it jointly. Thus, the Second Law and the Parallelo-
gram of Forces are equivalent: given (translational) inertia, each entails the other. 
35 Or so he thinks. But, it deserves scrutiny whether Kant’s official proof can be ex-
tended to accelerations. I thank David Hyder for pressing me on this point.   
36 Friedman agrees that Kant has the resources for it (2013: 373-5).  
37 The Strong Third Law differs from the Weak Third Law, viz. the principle that all 
forces are merely pairwise equilibrated—namely, equal and opposite—with no as-
sumption about the particular direction in which they act.  



 20 

quite different premise: the symmetry of the stress tensor. Both entail the 
Torque Law.38  

There is a subtle but deep difference between the two avenues I out-
lined above. Proof strategy (1) requires that matter be made of mass 
points or rigid atoms, whereas (2) assumes that it is a physical continu-
um.39 Kant in Foundations clearly asserts bodies to be continuous, and so 
he has no choice but to pursue strategy (2). Unfortunately, Kant weak-
ens his chances to implement it. The physical meaning of the premise 
that the stress tensor be symmetric is: in every contact interaction, certain 
shear forces on bodies—namely, the conjugate shear stresses—are equal. 
This fact is entirely out of Kant’s reach: not because ‘shear stress’ may be 
anachronistic for him, but because he denies that there can be any shear 
forces at all. Kant is adamant that all forces between “matters” are cen-
tral, i.e. they act along the straight line between them: “all motion that 
one matter can impress on another, since in this regard each of them is 
considered only as a point, must always be viewed as imparted in the 
straight line between the two points” (4:498). However, shear stresses act 
tangentially to any two matters in contact, and so Kant’s claim entail that 
shear force has no place in mechanics.   

That is unfortunate, for two reasons. Kant’s strong conceivability 
claim rules out a workable strategy to secure for his mechanical founda-
tions the generality they deserve. Moreover, his thesis puts him at odds 
with his age. Euler had just calculated the shear force on a one-
dimensional elastic continuum. In True Principles of the Equilibrium and 
Motion of Flexible and Elastic Bodies, he had determined, from the Force 
Law, the normal and tangential component [vis tangentialis] on an element 
ds in the elastica (Euler 1771). But, the ‘tangential’ force-component 
above is just the shear between two contiguous elements—precisely the 
sort of force Kant banishes from mechanics.40  

To sum up, Kant’s constitutive foundations can support neither ana-
lytic nor variational mechanics. And, prima facie the path to Newton-

                                                        
38 For details and discussion, see Truesdell 1968b.    
39 Briefly, it is because the Strong Third Law holds solely for discrete particles inter-
acting by forces at a distance—while the concept of stress, and the condition that its 
tensor be symmetric, is meaningful solely for continuous bodies not particles; Trues-
dell 1968b. 
40 There is a reason for Kant’s decision to make all forces central. He needed it so as 
to prove the Parallelogram of Forces, which plays the role of Newton’s Second Law 
in Kant’s system, as I explained above. For details, see Friedman 2013: 373-5.   
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Euler dynamics is closed to Kant. However, the case is far from hopeless. 
I revisit the latter issue below, to see if my conclusion is really inevitable. 
It turns out that it is not: Kant has a way out. What keeps him from 
grounding Eulerian mechanics is just one facet of his mature theory of 
matter. But, that facet is dispensable, and can be removed without much 
damage. Then Kant will have all he needs to solve the problem that mo-
tivates my paper.  
 
4.  Categories, phenomenal monads, determinate objects 
I move to make a positive argument now: I establish that Kant after all 
did have the conceptual resources to ground objecthood for a general 
mechanics, the explanatory basis of all determinate experience. My case 
has two parts. First I present a theory of matter, “physical monadology,” 
that Kant used to hold in the 1750s; and show that, adjusted to his stric-
tures, the theory entails the two laws of Euler dynamics. Second, I argue 
that Kant’s foundation—reworked into ‘phenomenal monads’ as I ex-
plain—is a constitution theory for a general object of exact knowledge, 
or determinate experience. Physical monads are discrete particles, which 
leads us to doubt they can ground continuous bodies and their behavior. 
And yet, I show, there are modern techniques for grounding continuum 
mechanics in discrete matter, as Kant should have had it.  

In Physical Monadology, Kant set out to reconcile two tenets in con-
flict: geometry entails that material substance is divisible because it is 
extended; however, metaphysics demands that basic substance be part-
less, thus indivisible. His solution was to dissociate extension from divis-
ibility. There is a type of substance, Kant showed astutely, that takes up 
space and yet is not divisible; he called it a “physical monad.” In his offi-
cial account, a monad has inert mass and exerts two forces, attraction 
and repulsion. Crucially, it has two key features: its mass is concentrated 
at a point, not distributed over a volume; and its forces are actions-at-a-
distance.41 In effect, his monad is a mass-point, and so, in modern terms, 
it has no true size, just an effective volume. In Kant’s words, a monad 
has a “determinate volume” that is however not the “diameter of the 

                                                        
41 Kant declared, without argument, that repulsion was an inverse-cube and attrac-
tion an inverse-square force. Still, for my argument it is irrelevant what particular 
force laws these monads might obey. It is enough that they be ruled by some (in-
verse)-power law.  
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monad itself” (1:484, 481). These premises entail an elegant solution to 
Kant’s initial problem. The monad is extended: it exerts repulsive force 
over a finite volume, so it “fills space” (1:480). It is impenetrable in that 
no two monads can be superimposed. And, it is indivisible: its mass takes 
up a point, which cannot be divided; and neither can its sphere of activi-
ty, which is just an acceleration field, not a volume filled with mass.   

Granted, Kant in Physical Monadology did not always adhere to the 
clean view of matter I attributed to him above, though all my ascriptions 
are explicit in his account of monads.42 And, Kant subsequently aban-
doned it; by 1786 he had come to assert that matter is a deformable con-
tinuum. Still, a (transcendental-idealist) variant of his monads is a better 
ontology than his later doctrine in Foundations, for it can ground the 
causal principles of Euler dynamics. Here is how.43  

First, physical monads obey the Force Law, viz. Euler’s generaliza-
tion of Newton’s Lex Secunda. This is shown indirectly.44 They obey it 
because they entail an equivalent principle, namely the Parallelogram of 
Forces. Admittedly, Kant did not carry out an overt derivation of the 
Parallelogram Rule for forces. But, he was confident that it could be de-
rived from his a priori resources. He was right: three premises estab-
lished independently in Foundations do entail the Rule jointly. The first is 
the Parallelogram of Velocities, PV, about which Kant is explicit. In 
Phoronomy, the kinematic part of Foundations, Kant gives a geometric 
proof of PV (4:487-95; cf. also Friedman 2013: § 4). Inter alia, PV asserts 
that if a material point acquires two velocity increments, it will move 
with the vector-resultant of the increments.45 The second premise is also 
explicit: all forces induce accelerations (i.e. velocity increments) in the 
direction of their action, namely the line between any two interacting 
particles: “all motion that one matter can impress on another…. must 
always be viewed as imparted in the straight line between the two points” 
(4:498-9; my italics). The third premise is an unstated corollary of Kant’s 

                                                        
42 Smith 2013 argues conclusively that Kant in his paper oscillates between two views 
of matter: mass points, as I claimed; and deformable continua, a distinct picture.  
43 I offer my derivations here as strong plausibility arguments, not as formal proofs as 
Hilbert and modern axiomatic mechanics requires. My sense was the prevalent no-
tion of ‘proof’ in Enlightenment mechanics. As illustration, a Hilbertian reconstruc-
tion of Newton-Euler dynamics for continua (sans constitutive relations) is Noll 1973.  
44 I reprise here an argument from § 3, where I confronted Kant with Euler.  
45 Namely, the point acquires an acceleration equal to, and in the direction of, the 
diagonal of the parallelogram formed by the two initial velocity increments.  
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indirect proof of the Weak Third Law (see below). Specifically, it is the 
thesis that single forces induce accelerations proportional to them. In 
sum, (i) accelerations add like vectors; forces are (ii) collinear with their 
accelerations, and (iii) directly proportional to them. Ergo, forces add 
like vectors, i.e. according to the Parallelogram Rule. In addition, mo-
nadic mass—whereby a monad resists accelerations—is officially located at 
a point, not distributed over a volume. So, intermonadic forces act on 
point masses, not on volumes or surfaces. All this entails that the Paral-
lelogram of Forces governs Kant’s monads. Eo ipso, the Force Law ap-
plies to them.46  

Second, physical monads obey the Strong Third Law. This may be 
shown in two parts.  (1) All intermonadic forces are equal and opposite. 
Kant in Foundations has a justification for it. It is an argument by reduc-
tio, as follows. Deny the Weak Third Law. That is, suppose interactions 
are not equal and opposite. Then the resultant force has a non-zero pro-
jection on an arbitrary straight line passing through the mass center of 
the “world-edifice,” or bulk of all matter [Weltganze]. In consequence, 
this mass center will be accelerated. But, this acceleration is not a possi-
ble object of experience; it is “absolute motion,” and that is “simply im-
possible.”47 Consequently, any physical principle that entails it must be 
false. For that reason, “any proof for a law of motion that argues the 
law’s opposite would entail the rectilinear motion of the whole world-
edifice is an apodictic proof of that law” (4:562). Hence, denying the 
Weak Third Law—the “law of antagonism,” as Kant calls it—entails an 
epistemic impossibility.  Ergo, the law must be true.  (2) All intermonad-
ic forces are central. Kant’s support for it is a conceivability claim: “Only 
[forces acting in a straight line between two material points] can be 
thought” (4:489). If this comes too close to an ipse dixit, I offer a better 
argument. Recall that Kant’s monads are essentially endowed with two 
forces [vires], attraction and repulsion. These ‘forces’ are really irrota-
tional potentials induced by a point-sized source. Then the ‘Newtonian’ 

                                                        
46 I thank Michael Friedman and David Hyder for very illuminating discussions on 
this difficult topic.  
47 Kant is a relationist about true motion: any true acceleration consists in a change 
of relation between “matters,” be they bodies or their constituents. By ‘absolute mo-
tion,’ he means a displacement that is no kinematic change relative to some matter. 
In Foundations, he makes a long case that absolute motion—in contrast to true mo-
tion—is not an object of scientific experience. Friedman seems to concur with my 
argument for point (1) above; cf. (2013: 497-99).   
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force, viz. the generic force-term f in f = ma, is just the negative gradient 
−∇ of each Kant-monadic ‘force’ at a point away from the monad itself.48 
And, the gradient always points toward the point source of the ‘force,’ in 
virtue of the mathematical features of these monadic agencies. So, when-
ever a phenomenal monad C sits at point B, the force exerted on it by 
another monad A is in the straight line between B and A. Hence, all in-
termonadic forces are central. But (1) and (2) together are just the 
Strong Third Law. These two laws, provably implied by Kant’s founda-
tions as I re-read them, imply the second basic principle of Euler dynam-
ics, i.e. the Torque Law.49 Its real content is that the external torque on a 
body equals the rate of change in angular momentum. To derive it from 
Kant’s premises, start with the idea that a body is a lattice of phenome-
nal monads, or mass-points. Write the Force Law for the j-th monad in 
the body:   

 
[11]    Efj + ∑k fjk = mj aj 

 
Here, Ef is the net impressed force external to the body, whatever its 
sources. In contrast, fjk are internal forces, exerted on j by every other 
monad k in the body. Now, take the cross product of each member in [11] 
above with rO, the distance vector to an arbitrary point O. The result 
says: the net torque about O, internal and external, equals the rate of 
change in angular momentum relative to O. Finally, invoke the Strong 
Third Law. Because all monadic forces are central, it follows that the net 
torque of all the internal forces is zero. So, the total external torque on a 
poly-monadic body equals the increment of angular momentum. Ergo, 
phenomenal monads, in conjunction with Kant’s conceptual inventory 
in Foundations—which in turn relies on his categories in the First Cri-
tique—entail the two basic laws of Euler dynamics.   

As I explained in the introduction, physical monads were young 
Kant’s account of matter as thing-in-itself, established by a priori reason-

                                                        
48 The reader need not worry that this is anachronistic. Already in Kant’s age, La-
grange had grasped this idea, though not with our full clarity. He introduced for 
gravitational systems a function Ω such that the impressed force on a body at point P 
is the negative gradient of Ω; cf. Lagrange 1777. (So, Ω is the potential energy func-
tion of that system.) Physically, Lagrange’s Ω is a species of Kant’s monadic force of 
attraction. Mathematically, they are alike, viz. zero-curl scalar potential functions.   
49 I give here just a verbal proof sketch. Some modern textbooks give more rigorous 
proofs; e.g. Joos 1934 and Spivak 2010: 199f.  
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ing, viz. reflection on the concept of material substance an sich. The Crit-
ical Kant forbids such moves resolutely, and I follow him in that respect. 
The mass points I sought to ascribe to him are better called ‘phenomenal 
monads.’ Because they have the same material constitution (or geomet-
ric, kinematic and dynamical attributes) as young Kant’s unitates physi-
cae—and so are partless and indivisible—they count as monads. Howev-
er, they are not matter als Noumenon, being in fact an ontology of matter 
as it appears to us, though mediated by mechanical theory. Thus, they 
are phenomenal. That gives me license to call them ‘mass points’ and 
‘phenomenal monads’ interchangeably.   
 
5.  Kant for our times     
Objection: I won a Pyrrhic victory for Kant. I showed he could have 
general basic laws—and so a general notion of objecthood for exact sci-
ence—but the price is to adopt discrete matter. Then ultimately he will 
be unable to account for vast areas of mechanics—like elasticity, fluid 
dynamics and plasticity theory—where matter must be modeled as a 
physical continuum, not discrete points. So, Kant’s laws are not truly 
general. Then it seems that my proposed Kantian foundation cannot 
ground all determinate experience.  

I have two ways to blunt the force of this criticism. First, my pro-
posal is historically sufficient. In Kant’s time, an initially successful pro-
gram began in France for grounding all of physics in discrete particles—
called ‘molecules’ by Cauchy, Poisson, Navier and Saint-Venant—
endowed with short-range, action-at-a-distance forces. In that respect, 
those particles were just like Kant’s phenomenal monads. Laplacian phys-
ics, as we named that program, dominated the first third of the 19th cen-
tury (Fox 1974; Arnold 1978). Cauchy endorsed it as equivalent to the 
physical-continuum approach:  

 
In investigating the equations that express the equilibrium conditions or 
the laws of interior motion for solid or fluid bodies, we may regard these 
bodies as continuous masses whose density varies from one point to an-
other by insensible degrees; or as a system of material points distinct yet 
separated by very small distances.  (Cauchy 1828: 160)  
 

And, in elasticity, discrete matter competed with continuum models well 
into the twilight of classical physics (Capecchi, Ruta & Trovalusci 2010). 
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So, Kant’s foundation as I read it above is sufficient for the 19th centu-
ry.50  

Second, it turns out that mass points can ground a mechanics of con-
tinua after all. Admittedly, this fact is late-modern, so at most we may 
retrofit it to Kant’s system. Still, it does fit seamlessly with Kant’s foun-
dations—his ‘monadological’ theory of matter as I read it above, and his 
basic dynamical laws above. Ever since the 1950s, a theoretical effort has 
been underway to give continuum-mechanical fields a physical interpre-
tation in terms of discrete particles. The key conceptual move is: a con-
tinuum field value (at a point) is physically interpreted as the localized, 
space-and-time average of a discrete set of analogous values. We use two 
tools to bridge the discrete and the continuous. The formal instrument is 
a family of weighting functions w that yield weighted averages of discrete 
quantities. These yields are scale-dependent: the averaging kernel can be 
so chosen as to give values for the desired length scale. The modeling 
tool is mass-points.51 Crucially for my argument, these mass-points are just 
like Kant’s monads: they have the same kinematic structure, and obey 
the same dynamical laws.  

As illustration, here is how we ground continuum kinematics in phe-
nomenal monads. Start with a discrete set of points having mass, posi-
tion and velocity. Next, use a weighting function w to pass from discreta 
to continua.52 Using w enables us to define a notion of density at a point: 
a localized space average, or weighted sum over a volume. In turn, this 
notion allows us to define continuum fields. The two primary fields so 
defined are mass density ρ and momentum density p. From them, all the 

                                                        
50  Granted, this is not quite enough. While in the heyday of Laplacian physics ‘mole-
cules’ often designated mass points—thus were equivalent to ‘phenomenal monads’—
Poisson in the 1830s, challenged by new experimental evidence in elasticity, made his 
molecules ellipsoidal (Duhem 1903: 84f). This breaks their similarity with Kant’s 
monads, whose true size is zero (hence, shapeless) and volume is spherical, not ellip-
soidal.  
51 In this modern project, mass-points seem to be an ontological extra layer—
introduced chiefly for the sake of computation, not explanation—between molecules 
and continuous matter. It aims to model molecular interactions, so for each mass 
point the three parameters stand for a molecule’s mass, and the position and velocity 
of its mass-center. 
52 w is a function of displacements, and it assigns a greater (relative) weight to mole-
cules closer to a point x than to those further away. Since it is scale dependent, one 
may always choose w such that it gives weight zero to molecules beyond a distance ε 
from point x. Lastly, w is constrained by the normalization condition ∫all displacements 
w(u)du = 1. See details in Murdoch 2011, § 2. 
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core kinematic concepts for continua are obtained: velocity, material 
point, placement, and motion.53  

Moreover, this program can derive not just kinematic foundations 
but also dynamical laws for continua. When we start with discrete mon-
ads, the greatest conceptual difficulty is grounding a notion of contact 
force. (Physical monads are point-sized, thus all their forces are actions 
at a distance.) And yet, the program I am presenting has found a way to 
overcome it. Namely, it has a way to define a Cauchy stress tensor, i.e. a 
notion of internal contact force within a continuous body. In physical 
terms, this tensor measures the (weighted) density of inter-particle forces 
at a point (see below). With these ideas in place, dynamical principles 
are then established: the Continuity Equation, or conservation of mass; 
and the balance laws of momentum (linear and angular) and energy. For 
instance, Cauchy’s First Law is derived thus. Start with the Force Law 
for systems of mass-points:54 

 
[12]   bi + ∑i≠j f ij = miai 

 
Weight each member by means of an appropriately chosen function w. 
Next, define an interaction tensor T*w based on the weighted internal 
forces acting at a point, thus: divT*w = fw. Algebraic manipulation of the 
right-hand side of [12] yields a weighted rate of change in linear momen-
tum ρaw and a thermal quantity Dw.55 Now we define the Cauchy stress 
tensor Tw as a derived concept, thus: Tw = T*w − Dw. At this point, we are 
in a position to write: 
 
[13]   ∇Tw + bw = ρaw  
 
This is the Force Law for continua (i.e. Cauchy’s First Law) in terms 
whose reference is discrete, viz. ‘phenomenal monads.’ The other basic 
principle, viz. the Torque Law, is likewise derivable from resources so far 

                                                        
53 E.g. velocity v at a point is defined as the ratio ρ over p. This way is the reverse of 
standard continuum mechanics, in which ‘body,’ ‘placement’ and ‘motion’ are primi-
tive notions, and ‘velocity,’ ‘mass density’ and ‘momentum’ are derived from them. 
54 In [12] below, bij is the force exerted by a monad j located within the body on the i-
th monad. In contrast, fi is a force that originates in some agency external to the 
body, e.g. gravity.  
55 Dw is a tensor value associated with heat. The trace of Dw is twice the heat energy 
density in the volume averaged by the function w; cf. Murdoch 2012: 125.  
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available (Murdoch 2012: 115-21). Mass points, therefore, suffice to 
ground a continuum theory. And so, modern mechanics implicitly vindi-
cates Kant’s constitution theory as I reformulated it here.    
 
6.   Conclusions 
I have examined if Kant’s Analogies of Experience support a sufficient 
notion of object of determinate (exact) experience. Specifically, I asked 
if the Analogies support basic causal laws that avoid the known limita-
tions of Newton’s science—Kant’s paradigmatic application of his cate-
gories to determinate objects. In response, I investigated three funda-
mental principles of physical action. It turns out that two candidates, the 
basic laws of variational and analytic mechanics, seem beyond the reach 
of Kant’s inventory of categories. And yet, Kant is in a position to 
ground Newton-Euler dynamics, a provably general theory. But, to do 
that Kant must abandon a tenet of his mature doctrine: the infinite divis-
ibility of matter. Fortunately, his ensuing picture is still ‘dynamistic,’ as 
he always desired: matter is endowed with essential forces. In effect, I 
have advocated restoring a purified, updated version of his early matter 
theory. I called that version ‘phenomenal monadology.’ In modern 
terms, I have argued that grounding determinate experience requires 
Kant to swap continuous matter for mass points.  

And so, Friedman’s program to read Kant’s categories as constitutive 
of scientific objecthood is vindicated and extended here. To be sure, 
much remains to be done. For instance, we need to inspect more closely 
the reach of Kant’s categories of quantity, to see how much kinematic 
structure they support; and his categories of modality, to determine the 
notion of objective mechanical behavior that they ground. Still, there are 
good reasons to stay on the path Friedman broke, instead of following 
Buchdahl. My paper has thus outlined a research program that contin-
ues—in respect to post-Newtonian classical theory—Friedman’s account 
of Kant’s constitution of determinate objects. Equally, I have shown a 
way to make Kant an interlocutor in current dialogue on the foundations 
of classical science.  
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