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Abstract

In Saving Truth from Paradox, Hartry Field presents and defends
a theory of truth with a new conditional. In this paper, I present two
criticisms of this theory, one concerning its assessments of validity and
one concerning its treatment of truth-preservation claims. One way of
adjusting the theory adequately responds to the truth-preservation
criticism, at the cost of making the validity criticism worse. I show
that in a restricted setting, Field has a way to respond to the valid-
ity criticism. I close with some general considerations on the use of
revision-theoretic methods in theories of truth.

In his recent Saving Truth from Paradox, Hartry Field presents and de-
fends a theory of truth that rejects the validity of the law of excluded middle.
A key aspect of the theory is the introduction of a new conditional. The truth
predicate of Field’s theory obeys the Intersubstitutivity Principle, which says
that the substitution of A with T (‘A ’), or the converse, in any extensional
context does not alter semantic value.1 Field argues that his theory has many
virtues, such as validating all of the T-sentences, sentences of the form

T (‘A ’)↔ A.

One particular virtue for which he argues is that his theory is more satis-
factory than any other approach with respect to so-called truth-preservation
claims, conditionals which say that if the premises of a rule are true, then
the conclusion is true. Other theories must deny, in the sense of assert the
negation of, a truth-preservation claim for some rule the theory endorses,
but, Field claims, his approach does not. Rather, Field’s approach fails to

1Here ‘A’ is a quotation name of the sentence A. I will explain quotation names in §1.
For more on quotation names in the study of truth, see Gupta (1982), Belnap (1982), and
Kremer (1988).
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endorse some instances of truth-preservation claims, and failure to endorse
is viewed as better than outright denial.

I will argue that Field’s theory of truth has two problems.2 The first
is that it systematically asserts connections between paradoxical sentences
(§2). The second is that Field’s claim about truth-preservation is, in fact,
false (§3). I will examine a modification of the theory that fixes the latter
problem and point to some of the difficulties that arise from the former
(§4). These difficulties lead to some specific considerations about the use of
revision-theoretic methods in Field’s theory of truth (§5) as well as more
general considerations on models and artifacts in theories of truth (§6). My
arguments employ some of the technical details of Field’s view, so I will begin
by presenting some background on Field’s theory (§1).

1 Background

Field’s theory of truth combines a fixed-point theory of truth with a new con-
ditional, so I will explain each in turn. Fixed-point theories of truth were first
put forward by Saul Kripke and, independently, by Robert Martin and Peter
Woodruff.3 Since Field’s theory builds on Kripke’s, I will describe Kripke’s
construction of the fixed-point. Kripke’s construction builds up an interpre-
tation of the truth predicate, a fixed-point, in a stage-by-stage manner. The
construction starts with a specification of the truth values of all the sen-
tences of the language without the truth predicate, and the sentences with
the truth predicate are initially left with no interpretation. At each successor
stage, sentences are added to the extension of the truth predicate if they were
true at the previous stage.4 At limit stages the extension of the truth predi-
cate is the union of all previous stages. The construction is bound eventually
to reach a stage after which no new sentences are added to the extension.

2Field (2014) presents a new theory that uses formal methods different from those of
Field (2008). My focus here is on the earlier theory, and due to the technical differences,
the criticisms in this paper will not translate directly, if at all, to the newer theory. The
points made here are still interesting, because they point to some new problems in the
earlier theory and they develop some possibilities and limitations of that approach.

3See Kripke (1975) and Martin and Woodruff (1975).
4The anti-extension of the truth predicate, the sentences of which it is not true, is built

up analogously at each stage, adding the sentences that were false at the previous stage.
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This is the fixed-point, which is used to interpret the truth predicate.5

Kripke’s fixed-point construction will work with any logical scheme whose
connectives have a certain monotonicity property.6 One such scheme, the one
Field prefers and the one on which I will focus in this paper, is the Strong
Kleene scheme. Strong Kleene has three semantic values, with t as the sole
designated value. The truth tables for the connectives are as follows.

∼
t f
n n
f t

& t n f
t t n f
n n n f
f f f f

⊃ t n f
t t n f
n t n n
f t t t

∨ t n f
t t t t
n t n n
f t n f

My discussion will not appeal to quantifiers, so I leave them aside.
Let us give some details of the fixed-point construction. We begin with

a language L interpreted by a classical ground model M(= 〈D, I〉). For
simplicity, assume that L has names and predicates, but no variables or
quantifiers. We extend the language to the language L + by adding a truth
predicate, T , and quotation names for all the sentences of L +. All the sen-
tences of L + are added to the domain of the model. Quotation names have
the following interpretation.

I(‘A’) = A

Hypotheses, which interpret the truth predicate, will be functions from sen-
tences to the set of Strong Kleene semantic values, {t, f,n}. There is a partial
order, ≤, on the values, sometimes called the information ordering: n ≤ t and
n ≤ f. For hypotheses f and g, let f ≤ g iff for all sentences A, f(A) ≤ g(A).
I will use the notation ‘M + f ’ for the model that is just like M except the
that truth predicate is interpreted by f . The value assigned to T (‘A’) by
M + f is f(A).

The construction of the fixed-point proceeds in stages from an initial
hypothesis f0, such as the hypothesis that assigns all sentences n.7

5This is a sketch of a set-theoretic construction, as found in Kripke (1975). There is an
algebraic construction, which builds up, in a similar manner, an interpretation that assigns
semantic values to sentences using the truth predicate. The set-theoretic construction is
easier to explain, but the algebraic approach, which I will use, will be more useful later.
My presentation will follow that of Gupta and Belnap (1993) and Visser (2004).

6An operator O is monotonic iff for all semantic values a0, . . . ,an,b0, . . . ,bn, if ai ≤ bi

for each i, then O(a0, . . . ,an) ≤ O(b0, . . . ,bn).
7Other initial hypotheses can be used, although there are some restrictions that prevent

the use of arbitrary initial hypotheses.
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• At stage 0, let f0(A) = n, for all sentences A.

• At successor stages α+ 1, fα+1 = κ(fα), where κ(fα)(A) is the value of
A in M + fα.

• At limit stages λ, let fλ =
∨
η<λ fη.

The construction is monotonic, in the sense that if α < β, then fα ≤ fβ, so
it eventually reaches a fixed-point, which is a stage α such that κ(fα) = fα.
Supposing that γ is the first stage that is a fixed-point of κ, let f = fγ. The
fixed-point f is the minimal fixed-point over the ground model M , and it is
the interpretation of the truth predicate for M .

We will define consequence over fixed-point models. A1, . . . , An have B
as a consequence, in symbols, A1, . . . , An |= B, iff in all ground models M ,
if A1, . . . , An are all assigned t by M + f , so is B, where f is the least fixed-
point over M . Similarly, B is valid, in symbols, |= B, iff for all models M , B
is assigned t by M + f , where f is the last fixed-point.8

Kripke’s theory of truth has many notable features. First, paradoxical
sentences such as the liar, which says of itself that it is not true, are evalu-
ated as n, so, on Kripke’s theory, a language can consistently contain both
a self-referential truth predicate and vicious self-reference.9 Second, its truth
predicate obeys the Intersubstitutivity Principle. Third, there can be many
fixed-points for a single starting language. The construction sketched above
focuses on the minimal fixed-point, which is reached when the initial hypoth-
esis assigns n to all sentences. Some classes of fixed-points yield notions of
consequence that have elegant, complete proof systems.10

The Strong Kleene fixed-point theory has some notable defects. First,
the Strong Kleene material conditional n ⊃ n is evaluated as n, so some
T-sentences, such as those for liar sentences, cannot be true.11 Second, the
material conditional does not obey substitution of equivalents, which is to
say

A ≡ B 6|= C(A) ≡ C(B).

8Consequence can be defined with respect to different classes of fixed-points, as inves-
tigated by Kremer (1988). In this paper, I will focus on minimal fixed-points.

9The value n is assigned to sentences in neither the extension nor the anti-extension of
the truth predicate.

10See Kremer (1988) for details.
11I will use ‘⊃’ for the material conditional and ‘→’ for Field’s conditional.
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A third defect was pointed out by Kripke (1975), namely that the liar sen-
tence is in neither the extension of the truth predicate nor its anti-extension,
but there is no way to say truly, in the object language, that the liar is not
true. Saying that the liar is not true, or that it is neither true nor false, using
only the resources of Strong Kleene logic with the truth predicate will result
in a sentence that is evaluated as n. The fixed-point construction will not
work if there is a predicate true of all and only the sentences that are in the
complement of the extension of the truth predicate.12 Kripke’s theory cannot
contain, in its object languages, the resources to truthfully say that the liar
is, in some way, defective.

Field augments Kripke’s Strong Kleene fixed-point theory of truth with
a new conditional, which solves the problems of the basic theory. Field’s
new conditional is defined via a revision-theoretic construction, the details
of which I will now sketch.13

We begin with a classical model M that interprets a ground language
L , which has neither a truth predicate nor Field’s conditional, →. For sim-
plicity, we assume L contains predicates and names, but neither quantifiers
nor variables. We expand L to language L + by adding a truth predicate,
quotation names, and the conditional, →, and, as before, we add the sen-
tences of L + to the domain of M . Conditional sentences will be interpreted
via a hypothesis h, which is a function from conditional sentences to the set
{t, f,n}. The models M + h and M + h + f will be just like M except that
h and f will be used to interpret, respectively, conditionals and the truth
predicate.

The revision proceeds in a two-step way. Given an interpretation of con-
ditional sentences h, the least fixed-point for truth is constructed, treating
all conditionals as atoms for the duration of the fixed-point construction.14

We will denote the least fixed-point above M + h by fM+h. The values of
sentences in the fixed-point are used to revise the interpretation of the arrow

12If the logic is weakened, then such a predicate can consistently be included in the
language, as shown by Gupta and Martin (1984).

13Revision theories of truth were discovered, independently, by Anil Gupta and Hans
Herzberger, with important contributions by Nuel Belnap. See Gupta (1982), Herzberger
(1982), and Belnap (1982), respectively. For a detailed overview and development revision
theories of truth and definitions, see Gupta and Belnap (1993).

14They are treated as atoms in the sense that their semantic values are determined by
the hypothesis alone. The usual recursive evaluation stops at the conditional, regardless
of the complexity of the antecedent and consequent.
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according to the following rules for successor and limit stages. We will write
vα(A) for the semantic value A receives in M + hα + fM+hα .

• h0(A→B) = n

• hα+1(A→B) =

{
t if vα(A) ≤ vα(B),
f if vα(A) > vα(B).

• hλ(A→B) =


t if ∃α < λ∀β(α ≤ β < λ⇒ vβ(A) ≤ vβ(B),
f if ∃α < λ∀β(α ≤ β < λ⇒ vβ(A) > vβ(B),
n otherwise.

The initial interpretation of all conditionals is n. At successor stages, a con-
ditional is revised to t if the value of its antecedent at the previous stage is no
greater than the value of its consequent at the previous stage, and otherwise
the conditional is revised to f. Limit stages use the rule that conditionals
that have stabilized go to their stable values while unstable ones are set to
n.

The revision process eventually enters a loop of repeating interpretations
for the conditional. There are stages in the loop that serve as particularly
nice interpretations for the conditional. These are Field’s acceptable stages,
which have two features. First, they are, in the terminology of Gupta and
Belnap (1993), reflection stages, which means that sentences that are stably
x or unstable in the revision process leading up to the reflection stage are, re-
spectively, stably x or unstable in the revision process continued throughout
all the ordinals. Second, the semantic value of a sentence at an acceptable
stage corresponds neatly to its stability in the revision sequence. I will return
to this latter point in §2 and §5. Acceptable stages are nice, in the sense that
they ensure that conditionals do not change the logical behavior of the other
connectives.15 The least fixed-points over acceptable stages are the models
for Field’s theory of truth. One can define consequence and validity with
respect to the minimal fixed-points over acceptable stages, or equivalently
in terms of stability, what Field calls ultimate value.16 For concreteness, say
A1, . . . , An |= B iff for all classical ground models M , if A1, . . . , An are as-
signed t in M + hγ + fM+hγ, so is B, for each acceptable stage γ. Similarly,
B is valid, in symbols |= B, iff for all classical ground models M , for all

15See Field (2008, 257-258) for details.
16See Field (2008, 251-253) for ultimate value, and Field (2003) or Field (2008, Ch. 17)

for more on validity.
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acceptable stages γ over M , if B is assigned t in M + hγ + fM+hγ, for each
acceptable stage γ. The notation for Field’s consequence relation is the same
as for Kripke’s, however, no confusion should arise.17

Earlier, I pointed out three defects of Strong Kleene logic, two centered
on the material conditional and one centered on the liar. Field’s conditional
remedies all three defects. Field’s models validate all of the T-sentences as
well as the rule form of substitution of equivalents. The problem with the
liar was that the Strong Kleene theory cannot say that the liar is, in a sense,
defective. Field’s conditional can be used to define an operator ‘D’, read as
“determinately,” that fixes this problem:

DA =Df A&∼(A→∼A).

Liars, such as Ta, where a = ‘∼Ta’, turn out to be not determinately true,
or ∼DTa. New liar-like sentences can be formed using the D operator, such
as Td, where d = ‘∼DTd’. Td turns out to be not determinately determi-
nately true. More pathological sentences can be formed and evaluated using
iterations of the D operator. This point is an important one to which I will
return, with examples, in the next section.

In addition to remedying the three defects of Kripke’s theory highlighted
earlier, Field’s theory of truth retains one of the noted features of Kripke’s
theory: The truth predicate of Field’s theory obeys the Intersubstitutivity
Principle.

This is sufficient background on the formal aspects of Field’s theory of
truth. I will now proceed to my main criticisms of Field’s theory.

2 Artifacts in the theory

An important role for a theory of truth is saying what arguments involving
the truth predicate are valid. It is reasonable to criticize or reject a theory for
providing incorrect verdicts on many arguments. A potential source of criti-
cism is the presence of artifacts in a theory, erroneous verdicts based solely
on features of formal constructions connected to the truth predicate and sup-
porting devices.18 The artifacts are intuitively incorrect verdicts provided by

17Field’s is the only one defined for sentences with conditionals, and the two agree when
there are no conditionals involved.

18My use of the term “artifact” for the phenomenon to be discussed is primarily based
on the usage in Yaqūb (1993, Ch. 3). The first example of a similar usage that I have been
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the theory.
Many theories have been criticized for the presence of artifacts. Michael

Kremer offered one such criticism of Kripke’s theory of truth based on the
class of all minimal fixed-points. In that theory, truth-tellers, such as b = ‘Tb’,
entail liars.19,20 This is an, arguably, incorrect verdict that the theory makes,
simply because it does not consider the non-minimal fixed-points that would
provide counterexamples. This is one issue that motivates the use of the class
of all fixed-points.

Although he did not put it in these terms, Stephen Yablo criticized Field’s
theory for some artifacts involving the exclusive use of minimal fixed-points.21

Yablo points to certain seemingly odd evaluations of conditionals involving
truth-tellers, liars, and related constructions. For example, Tb→∼Tb comes
out as valid. Yablo’s artifacts are all connected to Field’s use of minimal
fixed-points.

Another feature that gives rise to artifacts is the eventual periodic repe-
tition of interpretations in revision sequences that use the simple, constant
limit rule of Field’s construction. In a discussion of Gupta’s and Herzberger’s
work on revision theory, Belnap says, “[The Grand Loop] is an artifact of the
construction, due entirely to the fact that the same [limit rule] is used for
each and every limit stage.”22 Field’s construction enters into the periodic
cycle of interpretations, a Grand Loop, for the very reason Belnap points out.
Belnap continues, saying, “I think the Grand Loop is an artifact created by
an ad hoc decision to adopt always a [constant limit rule] where no such con-
stancy is called for.”23 The loop is an artifact of the construction that results
in artifacts in my sense, incorrect verdicts on the validity of arguments.

Belnap criticized the constant limit rules of Gupta and Herzberger by
pointing out strange results that one gets from constant limit rules. One
such is the stability of the material equivalence between two distinct liar
sentences. Yaqūb (1993) criticizes the revision theories proposed in Gupta
(1982) and Belnap (1982) on a similar basis. Yaqūb argues that those revi-
sion theories contain too many incorrect verdicts about the logical relations
between sentences involving the truth predicate.

able to find is Belnap (1982, 107).
19See Kremer (1986). This point was also made by Visser (2004).
20I will use ‘b’ as the name of a truth-teller and ‘a’ as the name of a liar.
21Yablo (2003)
22Belnap (1982, 107)
23Belnap (1982, 107)
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Field’s conditional, and his theory of truth, are defined with respect to a
single revision sequence, given an interpretation of the initial language. This
revision sequence uses a simple, constant limit rule: all unstable conditionals
are assigned n. The interplay between the revision rule and the limit rule
creates artifacts in the theory, and these artifacts constitute a problem for
Field’s theory, because, as in the other cases, they are incorrect verdicts on
the status of arguments.24 I take it that a similar theory without the artifacts
would be better than the theory with them. The artifacts on which I will focus
are all validity claims concerning conditionals.

To help make my case, I will need some definitions. First, define iterated
Curry sentences cn as follows. Define iterated arrow notation as follows.

• A→0 B =Df B

• A→n+1 B =Df A→ (A→n B)

Next, let ⊥ be any contradictory, ground language sentence.25

Definition 1 (Iterated Curry). For each n ≥ 2, cn names the following
sentence.

Tcn→n−1 ⊥

The revision patterns of iterated Curry sentences are simple: cn falls into the
following pattern over successor stages.26

t . . . t︸ ︷︷ ︸
n−1

f

24There is a question concerning what the sense of incorrectness is. These evaluations
are not incorrect according to the theory that makes them; indeed, from that point of
view they are simply consequences. They are incorrect in the sense of being intuitively
wrong and needing philosophical justification. The claim that truth-tellers entail liars is
an example. One might, following the suggestion of Yablo (2003, 319, fn. 10), defend
this claim by arguing that truth-tellers are, and must be, false because nothing makes
them true, and consequently there can be no counterexamples to the disputed validity
claim. The dividing line between fatal flaws, artifacts, (merely) surprising consequences,
and (desirable) features of a theory is to some degree fuzzy and can be a matter for
philosophical debate, as, for example, the exchange between Cook (2002, 2003) and Kremer
(2002) illustrates.

25Any falsehood of the syntactic theory, such as ‘A’ 6= ‘A’, will do as long as the syntactic
theory is interpreted the same way in all models.

26The subscript corresponds to the period of the pattern, rather than the number of
nested arrows. This makes the statement of later propositions more straightforward.
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At stage zero and at limit stages, the pattern for the iterated Curry sentences
substitute the first value of their patterns with n before falling into the
patterns above at subsequent successor stages.

We can, of course, define other sequences of iterated Curry sentences by
changing the false sentence in the inner-most consequent. This will not affect
the revision pattern, but it will generate new sequences of iterated Curry
sentences.

We can define an analogous sequence of iterated determinate liars. Let
D0A be A and let Dn+1A be D(DnA).

Definition 2 (Iterated determinate liar). For each n ≥ 1, dn names the
following sentence.

∼D n−1 Tdn

In particular, d1 is simply the liar, ∼Ta. The determinate liars also have a
simple pattern of revision. For each n ≥ 2, the pattern of revision for dn
repeats the following.

n t . . . t︸ ︷︷ ︸
n−1

Henceforth, we will assume that the language L contains cn and dn for each
n > 1, as well as a truth-teller and a liar.

The Curry sentences each comprise a name, the truth predicate, arrows,
and some false sentence. The false sentence can either be a falsity constant or
a contradiction made of sentences from the base language. The iterated Curry
sentences will be evaluated as n in all acceptable stages of the construction.
The iterated determinate liars each comprise a name, the truth predicate,
negation, conjunction, and the arrow, so they involve even less non-logical
material. They will also be evaluated as n in all acceptable stages. In fact, the
iterated Curry and determinate liar sentences do not change their interpre-
tation between models. In light of this, we have, for all k ≥ 2, the following
entailments, for arbitrary A.

• Tck |= A

• Tdk |= A

This is somewhat expected, given that the consequence relation is defined as
preservation of the semantic value t in certain fixed-points, and the patho-
logical sentences indicated are guaranteed not to take that value in those
fixed-points.
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The artifacts of Field’s theory can be seen by considering conditionals
involving the iterated Curry and determinate liar sentences, rather than en-
tailments in in which they feature as premises. A simple calculation shows
that Tc2→ Tc4 is valid. In fact, for any even k > 0, Tc2→ Tck is valid.

Proposition (1). For n,m > 1, if ∃k(m · k = n), then Tcm→ Tcn is valid.

A similar point holds for the iterated determinate liars.

Proposition (2). For n,m > 1, if ∃k(m · k = n), then Tdm→ Tdn is valid.

Let us say that conditionals are the arrow correlates of the consequence
statements that are formed by replacing the main arrow of the former with
a turnstile, ‘|=’.

There are then many valid conditionals that have distinct iterated Curry
sentences in their antecedents and consequents. Note, however, that not all
true consequence statements are reflected by valid arrow correlates, such as
the following.

(i) Tc4 |= Tc2

(ii) 6|= Tc4→ Tc2

(iii) 6|= ∼(Tc4→ Tc2)

While (i) is a true consequence statement, neither its arrow correlate nor the
negation of its arrow correlate is valid.

Field’s conditional obeys modus ponens, so if we have a valid conditional,
then corresponding consequence statement will be true. The converse is not
true. As is well known, the validity of

A& (A→B)→B27

together with a truth predicate obeying the Intersubstitutivity Principle and
a conditional obeying modus ponens leads to triviality.28 In Field’s theory,

27We will adopt the convention that conjunctions and disjunctions bind more tightly
than conditionals.

28There is an extensive literature on triviality results connected to the conditional form
of modus ponens, A& (A→B)→B, and its relatives. See, for example, Meyer et al. (1979),
Restall (1993), Rogerson and Restall (2004), Priest (2006), Rogerson (2007), Beall (2009),
Zardini (2011), or Beall and Murzi (2013).
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many true consequence statements with paradoxical premises do not have
valid arrow correlates.

In addition to many valid conditionals with distinct iterated Curry and
determinate liar sentences, there are also many valid conditionals containing
the negations of iterated Curry sentences in their antecedents and determi-
nate liars in their consequents.

Proposition (3). For n,m > 1, if ∃k(m ·k = n), then ∼Tcm→Tdn is valid.

The result of switching the antecedent and consequent of the conditionals in
the previous proposition as well as their subscripts, Tdm →∼Tcn, will not
be valid.

The validity of the conditionals in propositions (1)–(3) is fairly described
as an artifact of the revision process defining Field’s conditional. Let us call
these conditionals artifactual conditionals.

The validity judgments concerning the artifactual conditionals present a
problem for Field’s theory because they are seemingly incorrect verdicts, sim-
ilar to the other artifacts listed above. The artifactual conditionals appear
arbitrary, yet they affirm systematic connections between pathological sen-
tences, which are the sentences of interest for the logical behavior of Field’s
conditional.29 Without attention to the details of the models, it is mysteri-
ous why a given artifactual conditional should hold, but Field attaches little
philosophical significance to the models beyond demonstrating the theory’s
consistency.30

At this point, there is a response that I should address. This response says
that I am illicitly imposing a requirement of relevance on Field’s theory when
he adopts no such principle.31 The reason that the validity of the artifactual
conditionals seems to be a defect is that the parts of the artifactual condi-
tionals are irrelevant to each other. Since Field does not endorse a principle
of relevance, the response concludes that my criticisms have no bite.

While I agree that the parts of the artifactual conditionals are not relevant
to each other, I am not attributing an endorsement of relevance to Field.

29At least, they are once one notes that Field’s conditional reduces to the classical mate-
rial conditional under the assumption of excluded middle for antecedent and consequent.

30Field says, for example, “My ultimate interest is less in the semantics than in the logic
that the semantics validates.” Field (2008, 232)

31See, for example, Anderson and Belnap (1975), Read (1988), Dunn and Restall (2002),
or Mares (2004) for more on relevance.
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Field’s theory affirms principles that violate relevance strictures, such as

A |= B→ A.

No issue is being taken with that feature of the theory. The problem with
the artifacts is that their validity seems incorrect, much like the truth-teller
entailing the liar in a version of Kripke’s theory. The irrelevance is, perhaps,
a symptom of the issue, but not the issue itself.

In §4 I will consider another response to the issue of artifacts, but for
now, let us turn to truth-preservation.

3 Truth-preservation

Field (2006, 2008) stresses the importance of truth-preservation claims for
the rules under which a theory is closed.32 In the terminology of §2, the
truth-preservation claim for the rule

A1, . . . , An |= B

is the validity of its arrow correlate,

|= T (‘A1 ’) & . . . & T (‘An ’)→ T (‘B ’) .

Validity is standardly defined in terms of necessary truth-preservation. Field
thinks that the truth predicate is logical vocabulary, so that validity should
be broadened to encompass the use of truth and some syntactic theory. If a
theory of truth accepts a rule, in the sense of being closed under that rule,
then the rule is valid by lights of the theory, even if the theory does not have
a validity predicate. If a theory asserts the negation of truth-preservation for
one of its rules, then, even if no outright contradiction results, philosophical
tension arises between the endorsement of a rule and the negation of the claim
that the rule preserves truth. I will not take issue with Field’s arguments for
the importance of truth-preservation for theories of truth.

Field’s theory of truth validates the truth-preservation claims for the
truth rules, as these are T-sentences. His theory validates instances of other

32The earlier of the two sources places greater importance on this, although the later
source does use failure of the truth-preservation as an objection against many theories. See
Field (2008, Ch. 26) for the use of failure of truth-preservation as a criticism of a theory.
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rules under which his theory is closed, but there are some rules that have
instances that are invalid. For example, while the theory is closed under
modus ponens, its truth-preservation claim is invalid.

6|= T (‘A ’) & T (‘A→B ’)→T (‘B ’)

Field claims that his theory does not entail any counterexamples or disjunc-
tions of counterexamples to any particular instance of a rule.33

Field’s theory accepts the ex falso rule.

A,∼A |= B

Its arrow correlate, however, is not valid. In fact, there are contravalid in-
stances. For example, let Ta be a liar sentence and substitute that for A
and substitute a falsehood or contradiction of the syntactic theory for B. We
have the following.34

|= ∼(Ta&∼Ta→ a 6= a)

Since Field’s truth predicate obeys the Intersubstitutivity Principle, this is
equivalent to the negation of the truth-preservation claim for ex falso.35 The
problem is that Field’s theory entails the rejection of the ex falso rule that
Field wants for his logic. By Field’s own lights, this is a flaw for a theory of
truth.

Field’s theory cannot assert truth-preservation for ex falso. Using logical
principles accepted by the theory, truth-preservation for ex falso implies all
instances excluded middle. Asserting truth-preservation for ex falso would
trivialize Field’s theory, as its response to the paradoxes is to reject excluded
middle except when it is posited as an additional axiom for sentences con-
taining only safe vocabulary.

33Field (2006, 590-591)
34The antecedent is bound to take the value n and the consequent f, resulting in a

false conditional at each stage. This example leads to a similar problem with a version
of bivalence, when quantifiers are in the language. Assume that there is a unary pred-
icate, Sent(x), added to the language when it is expanded with quotation names and
that it is interpreted so as to be true of all and only sentences in the language. Then,
∼∀x(Sent(x)→ Tx ∨ ∼Tx), which is a plausible rendering of the claim that not all sen-
tences are either true or false, will be valid. Indeed, the liar provides the falsifying instance,
this time with the antecedent receiving the value t and the consequent n.

35Rather than the arrow correlate of ex falso, the definition of Field’s conditional ensures
that A&∼A→ B ∨ ∼B is valid. This is the arrow correlate of a weakened ex falso rule
under which Field’s theory is closed.
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Field’s theory of truth does not say that its rules are truth-preserving.
In fact, it says that one of its rules does not preserve truth. This is a failing
of Field’s theory that, if left unresolved, would narrow the philosophical gap
between it and other theories of truth. Additionally, it throws into relief the
differences between the consequence relation of Field’s logic and the logical
behavior of the conditional. The rule of ex falso is valid for Field’s theory,
while its arrow correlate has contravalid instances. Since the theory cannot
consistently affirm truth-preservation for ex falso, the best that theory can do
is to refrain from affirming either the truth-preservation claim or its negation.
Let us turn to an option for doing so.

4 Responses

One way to fix the truth-preservation problem is to change the truth table
for the revision rule of the arrow to the following.36

→ t n f
t t n f
n t t n
f t t t

This differs from the previous table in setting

n→ f = t→ n = n.37

This will assign n, rather than f, to the highlighted instance of ex falso,
rendering both the arrow correlate and its negation invalid.

This modification does not, however, fix the artifact problem. The truth-
table changes the revision pattern for some of the paradoxical sentences. For
example, the iterated Curry sentences will have the following pattern.

n t . . . t︸ ︷︷ ︸
n−2

n

The determinate liars will be unchanged. The upshot is that, while the ar-
tifactual conditionals in proposition (3) will be invalid, new artifactual con-
ditionals will be valid, in addition to those in proposition (1) and (2), which

36I am grateful to Hartry Field for suggesting, in conversation, that I investigate the use
of this truth table in the revision rule for the conditional.

37The limit rule must be amended to set stably n conditionals to n.
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remain valid. For example, for m,n > 1

|= Tcm→ Tdn,

when m evenly divides n. One additional new validity is worth noting: the
simple Curry becomes equivalent to the liar.38

|= Tc2↔ Ta

This equivalence is surprising for two reasons. First, some proponents of non-
classical logic take Curry’s paradox to be importantly different from the liar
paradox.39 Second, ‘∼’ is not logically equivalent to ‘→⊥’, as it is when the
arrow is replaced by the Strong Kleene material conditional.

While changing the truth table for the revision rule fixes the problem
with truth-preservation, it does not help with the artifactual conditionals.
Some artifactual conditionals will be invalidated, but others will become
valid. There is one more response that I will consider, what I will call the
axiomatization response.

This response follows on some comments Field makes concerning the com-
plexity of his official consequence relation.40 Field says the following.

[T]he set of “logically valid inferences” will have an extremely
high degree of non-computability. . . . It might be better to adopt
the view that what is validated by a given version of the formal
semantics outruns “real validity”: that the genuine logical validi-
ties are some effectively generable subset of those inferences that
preserve value [t] in the given semantics.41

The axiomatization response says that real validity is some axiomatizable
subset of the consequence relation, |=, and the artifacts to which I point are

38Many conditionals with the liar as antecedent are valid as well. For example, for all
n, Ta→ Tcn and Ta→ Tdn are valid.

39For example, the liar does, while the Curry sentence does not, fall under Priest’s
Inclosure Schema. They are, at least for Priest, two importantly different paradoxes. See
Priest (2003, 185-186) for discussion. Field (2008), at least initially, takes Curry’s paradox
to motivate rejection of contraction for the conditional, and takes the liar to motivate the
rejection of excluded middle. Neither direction of the equivalence is valid using the revision
rule of §1.

40Results concerning the complexity of the consequence relation can be found in Welch
(2008) and McGee (2010).

41Field (2008, 277)
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not consequences of that axiomatization. The artifactual conditionals are,
then, not really valid. Thus, my criticism has no force.

The problem for the axiomatization response is that it risks losing the
nice behavior of the determinateness operator. The models ensure that for
any paradoxical sentence, there is some α for which the sentence is not α-
determinately true.42 This is rightly touted as a positive feature and major
achievement of the theory.43 The challenge for an axiomatization is to catego-
rize the defective, or indeterminate, sentences as such.44 For some sentences,
such as liars and determinate liars, it is straightforward to identify axioms
to add to ensure that they are, in some sense, not determinately true. The
challenge for this response will arise in a richer setting, where there will be a
complex array of iterated Curry sentences as well as pathological sentences
that use quantifiers.

Although the axiomatization response would provide a way to fend off
the criticism based on the presence of artifacts, it threatens to undermine a
key feature of Field’s view.45 Further evaluation of this response will have to
wait upon the proposed axiomatization.

There is on more option to note. In a response to Yablo, Field proposes
modifying his conditional’s revision rule to take into account all fixed-points
at each stage.46 This modification will not affect the status of the artifactual
conditionals I highlight. Perhaps the most promising option for fixing the
problem with artifacts is to change the limit policy.47 Changing the limit
policy will eliminate some of the artifactual sentences, but potentially at a

42This is true in the restricted setting of this paper. When richer languages are under
consideration, it will need some caveats, in light of the counterexamples of Horsten et al.
(2012) and Welch (2014).

43See Field (2008, 276), for example.
44We will set aside the empirical case and restrict attention, as Field (2008) does, to the

syntactic theory, arithmetic, or set theory.
45The proponent of the axiomatization response may view the situation in a more pos-

itive light. The criticism based on artifacts provides further motivation for axiomatizing
Field’s theory, or some subtheory thereof. The proponent may take the models to provide
consistency results for possible axiomatizations and to help her see the sorts of axioms
that she may be missing, namely axioms asserting that certain sentences are not determi-
nately true, for some number of iterations of the determinately operator. I thank Graham
Leach-Krouse for this suggestion.

46See Field (2008, 17.5) for the details.
47One can also change the initial evaluation of conditional sentences, but that option is

less important for present purposes, since none of the artifacts are heavily dependent on
the initial evaluation.
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cost. To explain that cost, I must go into some of the details of reflection
stages.

5 Limits and artifacts

The models for Field’s theory are the minimal fixed-points over acceptable
stages, which are reflection stages. As mentioned, sentences that are unstable
leading up to a reflection stage are unstable in the revision sequence carried on
through all the ordinals. Field’s limit stage policy ensures that the semantic
values of sentences at reflection stages correspond to their revision patterns.48

Sentences with the semantic value t [f ] at such stages have stabilized to t [f ]
in the revision process, while those that have the value n are unstable in the
revision process.

Changing the limit policy can break the correspondence between semantic
value at a reflection stage and stability in the whole revision process. Here
is an example. Suppose one adopts the policy that all unstable conditionals
are set to n at limits, except Tc3 → (Tc3 → ⊥), which is set to t. This
will invalidate artifactual conditionals whose antecedent is Tc3. However, at
reflection stages, which are always limit stages, Tc3→ (Tc3→⊥) will have
the semantic value t, as will Tc3, while Tc3→⊥ will not. If validity is defined
as preservation of t over certain reflection stages, modus ponens will then be
invalid.

We may define validity in terms of stability in the revision sequence,
Field’s ultimate value. If we do so, then the previous counterexample to
modus ponens will no longer be a counterexample, as Tc3 is not stably t.
The danger, however, is that there is no longer a guarantee that the truth-
functional connectives will behave appropriately. This is because Field’s proof
showing that the truth-functional connectives behave appropriately uses his
limit rule in an important way.49

The foregoing suggests that the limit rule needs to do different things
to unstable sentences at different limit stages. I have focused on a relatively
simple language, one whose only pathological sentences, apart from a truth-
teller and liar, are iterated Curry and iterated determinate liar sentences.

48See the proof of Field’s Fundamental Theorem, Field (2008, 257-258).
49If the original truth table for the conditional’s revision rule is used, then the problem

will be compounded. In that situation, using the previous limit rule results in Tc3 ∨∼Tc3
stabilizing to t, even though neither disjunct stabilizes.
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In this context, we can improve upon Field’s limit rule. First, assign each
Curry, apart from c2, and the most complex conditional in each determinate
liar sentence a distinct natural number greater than 0, say, evens for Curry
sentences and odds for conditionals from determinate liar sentences. Next,
we require that, at successor limits, ordinals of the form λ+ ω · n for n ≥ 1,
assign f or t to sentence number n, depending on whether it is a Curry or
a liar, and n to all other unstable sentences. At all other limit stages, assign
unstable sentences n.

With the above limit rule, one can show that artifactual conditionals will
change from t to n and back once every ωω stages. Thus, they will be unstable,
and so be set to n every ωω·ω stages. Using these facts, one can show that
sufficiently long revision sequences have reflection stages that are acceptable
in Field’s sense. Thus, if a disjunction has ultimate value t, then so must one
of the disjuncts. This property is needed to ensure that the logical behavior
of disjunction in Field’s theory matches that of Strong Kleene disjunction.

We can, then, solve the problem with the artifactual conditionals that I
have highlighted, at least in this restricted setting. The language on which
we have focused lacks the resources of the languages in which Field is pri-
marily interested. In particular, it lacks quantifiers and the richness of the
syntactic theory of arithmetic. In languages with arithmetic, there will be
many more pathological sentences, including ones with transfinite periods
in the revision sequences and there will, consequently, be a broader class
of artifactual conditionals. There is, then, a question of how to define more
general limit policies that invalidate the artifactual conditionals that will
arise in richer settings while, at the same time, ensuring that the logic of
the truth-functional connectives is not disturbed. This leads to the general
conclusions.

6 Conclusion

Field uses a combination of revision sequences and fixed-point constructions
to define a class of models. One can view these constructions as using the
revision sequences to generate semantic values.50 Suppose that the period of
the revision process between acceptable stages is Σ. We can view each Σ-
long sequence from {t,n, f} as a possible semantic value, ordered point-wise.
These values are partially, not linearly, ordered. When the ordering relation

50For more on this idea, see Field (2008, 259-262) and Priest (2010), especially §4.
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holds between the values assigned to sentences A and B, then A→B receives
the top value, which corresponds to stably t, the sole designated value.

Despite the multitude of potential values, the revision process defining the
conditional constrains which values can be assigned to conditionals, so the
value assigned to a paradoxical conditional, such as an iterated Curry, stands
in the ordering relation to the values of many other paradoxical sentences.
Given a ground model, initial evaluation, and constant limit rule, there is
only one value that can be assigned to the conditionals. Indeed, since the
interpretations of the parts of the artifactual conditionals do not change
between models, these sentences can receive just one value, just one possible
sequence in the revision process, in all models. In the simplified setting of
this paper, the use of the limit rule of §2, in a sense, reduces the transfinite
revision period, Σ, to a finite period for each sentence. These factors, a single
interpretation and a reduction to finite periods, combine to ensure that there
are many artifactual conditionals.

At this point, a comparison with Kripke’s Strong Kleene theory will be
helpful. In Kripke’s theory, there is only one value that the liar can receive,
n. Truth-tellers, as Tb, can receive, by contrast, any of the three values, t, f,
or n. If one considers only minimal fixed-points, then

Tb |= Ta,

and for all truth-tellers Tb1 and Tb2,

Tb1 |= Tb2 and Tb2 |= Tb1.

If one considers all fixed-points, however, then all of the above entailments
fall away. The result is simpler, although correspondingly weaker, logic.

Similarly, when using a revision-theoretic construction to define a logic,
one needs to consider non-constant limit rules. Failure to do so ensures that
the resulting theory will make apparently wrong claims about valid argu-
ments and sentences. In the case of the S# revision theory of truth, consid-
eration of a broad class of limit rules eliminates many of the unappealing
validities found in some revision theories.51 The overall logic, including the
truth predicate, is arguably better for it.

I have presented two problems for the theory of truth of Field (2008).
The truth-preservation problem can be fixed by adjusting the definition of

51See Gupta and Belnap (1993, 218-229) for more on the S# theory of truth.
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the conditional, an adjustment which does not fix the artifact problem. In the
restricted setting I examine, the artifact problem can be fixed by adopting
a different limit rule, in particular a non-constant rule, although some care
must be exercised in choosing the rule. In a richer setting, further changes
to the limit rule will be needed, although that presents a potential hurdle:
some limit rules disrupt the disjunction property above, namely, that if a
disjunction receives ultimate value t, then so must one of its disjuncts. I will
leave open the question of what rules one might adopt in a richer setting.

Artifacts in a theory of truth point to ways in which models fail to provide
sufficient variation in the interpretation of sentences. Identifying ways to
eliminate artifacts, when possible, points to potential avenues for improving
the theory, as well as general limitations of the approach.
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