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Rationalist Foundations and the Science of Motion 

Marius Stan 

This chapter is a new account of natural philosophy in post-Leibnizian Prus-
sia. Because mechanics was then natural science par excellence and my space 
here is limited, I restrict my view to foundations for mechanics from 1716 to 
1786. Three conclusions emerge. First, mechanics in Enlightenment Prussia 
is far from Newtonian. Rather, its structure and basis are greatly fluid, and 
take decades to crystallize into three distinct paradigms; just one of them is 
meaningfully Newtonian. Second, Leibniz turns out to have influenced nat-
ural philosophy to a degree so far unappreciated. Third, in this age theoreti-
cal mechanics and its philosophy begin to drift apart, perhaps irretrievably. 

I begin by presenting three views then dominant on the basic unit of mat-
ter (section 1). Next, I explain the basic dynamical laws aiming then to unify 
mechanical phenomena (section 2). Lastly, I examine some opposing views 
on inertial structure for Enlightenment dynamics in Prussia (section 3). 

The modern category ‘German’ is inapplicable to my area and cast of 
characters. They were not German citizens, nor did they publish just in 
German; some did not even speak it much. Thus in selecting them I had to 
make a judgment call. I will examine here two philosophers, Wolff and Kant. 
The former deserves inclusion for his vast, original synthesis and his influ-
ence over a sizeable group of followers; the latter needs no justification. Both 
were fairly conversant with the exact science of their time, though as me-
chanics progresses Kant’s grasp of it begins to lag behind.  Also, I present 1

here some crucial contributions by Euler and Lagrange. Consecutively, each 
was for some two decades the supreme geometer at the Royal Academy of 
Sciences in Berlin. The Swiss developed much of what we know as Newton-

 I cite Kant by volume and page number in Kant’s Gesammelte Schriften. I refer to his 1

Metaphysische Anfangsgründe der Naturwissenschaft simply as “Anfangsgründe.” Unless oth-
erwise noted, all translations are mine.



Euler dynamics. Lagrange, who succeeded Euler after he moved to St. Pe-
tersburg in 1764, used his long research sojourn in Berlin to prepare his 1788 
masterpiece Méchanique analitique, the first non-Newtonian comprehensive 
theory of mechanics.  

I limit my exposition to Prussia and its environs. Covering the western 
German states would take up space that I do not have here. And, I ignore 
here entirely the vis viva controversy. It has been over-studied, to the lam-
entable neglect of other, more important topics and results. Instead, and in 
the spirit of this collection, I will suggest and defend new lines of inquiry, by 
way of an opinionated introduction to my topic. 

The upshot of my study is threefold. It should make us wary of assimi-
lating 18th-century German natural philosophy with “Newtonian science.” It 
justifies a call to arms: let us give more, careful attention to Leibniz’s legacy 
for dynamics in the Age of Reason. Lastly, it makes a case for a new reading 
of Kant’s natural philosophy: we ought to contextualize it to the science of 
his time rather than—as tradition has long had it—to Newton’s Principia, a 
work that precedes it by about a century. 

1.  Ontologies for Mechanics 

In the 17th century an ambitious program, the mechanical philosophy, had 
set out to ground all science in basic facts about matter and motion, by ex-
planatory reduction. Though Leibniz soon claimed that “force” is more basic 
than extension and impenetrability—the mechanists’ universal features of 
body—even he conceded that, once a mechanics has been articulated, all 
else must be reduced to it, as matter in motion.  Wolff and Kant, who fol2 -
lowed him broadly in his “dynamistic” account of matter, also took this pro-
gram for granted: 

all corporeal action is from motion […] I acknowledge that all other phenomena 
of matter can be explained in terms of local motion.  3

 Hertz too affirmed that ideal (Heinrich Hertz, The Principles of  Mechanics Presented in a 2

New Form, trans. D. E. Jones and J. T. Walley [London: Macmillan, 1899], xxi): “All physi-
cists agree that the problem of physics consists in tracing the phenomena of nature back to 
the simple laws of mechanics.” 
 [Gottfried Wilhelm Leibniz,] “Specimen Dynamicum,” Acta Eruditorum 4 (1695): 145ff.3



The entire visible world is a machine […] a compound in which changes to its 
composition or structure always follow the rules of motion.   4

The basic determination of something that is to be object of the outer senses 
had to be motion […] and so natural science, therefore, is either a pure or ap-
plied doctrine of motion.  5

Implicit in the program was a shared assumption, which Enlightenment me-
chanics ultimately subverts. It was the thought that, when spelled out care-
fully, both “matter” and “motion” will be univocal. Namely, the unit of mat-
ter, whatever its final profile, will have a single kinematic structure and basic 
behavior, not multiple. However, as mechanics grew and philosophy strove 
to give it an ontology, “matter” and “motion” came to denote not one but 
three, wholly distinct species. I will put the point in modern terms, to see it 
clearly, and then illustrate it with examples from the time and place of my 
topic.  

From Descartes onward, mesoscopic bodies were supposedly made up 
from components at sub-visible scales, viz. the unit of matter (many called it 
a “corpuscle” then). Speaking anachronistically, these units come in three 
kinds: the mass point, the rigid body, and the deformable continuum. Now, 
these kinds are irreducibly distinct. In the first, mass is located at a point; in 
the other two, it is distributed over a volume, finite or infinitesimal, respec-
tively. “Motion” too has essentially different senses for these three kinds. A 
mass point can only translate, along the three directions of Cartesian space. 
In contrast, a rigid body can translate and rotate, around internal axes. And, 
a volume element (in a deformable continuum) can translate, rotate, and de-
form.  Impenetrability is radically unlike for these ultimate objects. Mass 6

points: no two points can overlap, or become superimposed. Deformable 
continua: they can overlap at a point, line or area (viz. their contact surface) 
but not over a finite volume. Rigid bodies: no overlap by a finite volume; and 
no volume previously taken up by one can become occupied by another. 
(Sed contra, a deformable continuous body can be compressed, or made to 
yield some of its “space” to another body.)  

 Christian Wolff, Cosmologia generalis, editio nova (Frankfurt: Libraria Rengeriana, 1737), 4

66f; §§ 72, 73.
 Immanuel Kant, Metaphysical Foundations of  Natural Science, trans. M. Friedman 5

(Cambridge: Cambridge University Press, 2004), 477.
 In our terms, a mass point has three degrees of freedom, a rigid body has six, and a de6 -

formable continuum has an infinity. 



Moreover, these units interact with their own kind and make up bodies in 
distinct, specific ways. Mass points exert only action at a distance—repulsion 
and attraction. In this ontology, a body is a lattice of them in equilibrium 
configurations, i.e. at relative positions where their mutual forces balance 
each other. In turn, microscopic rigids exert body forces, like gravity; and 
also contact forces and torques.  They connect to form visible bodies either 7

by internal pins and joints; or by external force closure, such as the pressure 
of an ambient fluid (traditionally, some imponderable, e.g. the ether). Lastly, 
deformable continuous bodies come pre-constituted. Volume elements dV, 
the unit of matter in continuum mechanics, are just potential parts. Each is 
the limit to which an “Euler cut,” or arbitrary finite volume ΔV in the body, 
shrinks. Unlike rigid bodies, deformables bear stresses, i.e. internal contact 
forces (between parts).  

These basic objects differ radically in all relevant respects. (i) Matter: 
mass points are discrete and zero-sized, rigid bodies and deformables are 
finite continua. (ii) Motion: deformation is meaningless for a rigid or a mass 
point. Spin is meaningless for mass points, but well-defined for the other two 
basic objects. (iii) Force too: internal stresses are meaningless for rigid bod-
ies; and contact forces and torques are meaningless for mass points.  And 8

so, there is no prospect of reducing two of them to the third. 
The better thinkers in our group are very much sensitive to these differ-

ences. For instance, Kant knows to distinguish “physical contact,” or exer-
cise of repulsive force, from “mathematical contact,” i.e. kinematic overlap; 
“penetrating” from “surface” actions, i.e. body forces from contact forces; 
and “relative” from “absolute” impenetrability, viz. resistance to compres-

 In continuum mechanics, a body force is one that acts directly on any point inside an ex7 -
tended body. (For instance, gravity or electromagnetism.) A contact force acts on the 
boundary of that body, thus indirectly—through the transmission of stress—on any point 
within it. 
 In their case, “contact action” is really a misnomer: just convenient shorthand for short-8

range repulsive acceleration.



sion from rigidity. Euler seems even more acutely aware of the mathematical 
and physical differences between these basic entities.  9

Foundations.  All three ontological units are the explicit object of En-
lightenment natural philosophy. Prussia was well at the forefront, where 
philosophers called these units respectively “physical monad,” “hard body,” 
and “infinitely divisible matter.” Let us survey the academics first. Some 
have Boscovich be the author of modern mass points, but this entity really 
has two fathers. Kant in the 1750s espoused it too, though not without some 
ambivalence. In Monadologia physica, he mixed uneasily two pictures of 
matter. When properly purified, one of them—the official view, advocated 
early in the essay—is a doctrine of mass points:  10

Elements fill their determinate space by a certain activity that prevents other 
bodies from penetrating it […] The force of impenetrability is a repulsive force. 
In addition to the force of impenetrability, every element needs another force, 
that of attraction […] 
There must be some point on the diameter where attraction and repulsion are 
equal. This point will determine the limit of impenetrability and the orbit of ex-
ternal contact; that is to say, it will determine the volume. 
The force of inertia of a body (which is called its mass) is the sum of the forces 
of inertia of all the elements of which it is composed.  11

 E.g., he writes M, a finite number, for the mass element when he treats a body as a set of 9

mass points; and dM when he regards the body as continuous; cf. Leonhard Euler, 
“Recherches sur la connoisance mécanique des corps” (1758), Mémoires de l’académie des 
sciences de Berlin 14 (1765): 131–153, versus Leonhard Euler, “Découverte d’un nouveau 
principe de mécanique” (1750), Mémoires de l’académie des sciences de Berlin 6 (1752): 185–
217. Likewise, he knows that the basic laws of rigid bodies or of elastic solids cannot be de-
rived from the laws governing mass points; cf. Leonhard Euler, “Genuina principia doctri-
nae de statu aequilibrii et motu corporum tam perfecte flexibilium quam elasticorum,” Novi 
commentarii academiae scientiarum Petropolitanae 15 (1771): 381–413, and Leonhard Euler, 
“De gemina methodo tam aequilibrium quam motum corporum flexibilium determinandi,” 
Novi commentarii academiae scientiarum Petropolitanae 20 (1776): 286–303.

 Many have long credited Kant’s essay with a single, mass-point view; Thomas Holden 10

(The Architecture of  Matter: Galileo to Kant [New York: Oxford University Press, 2004]) is 
paradigmatic. Sheldon Smith (“Kant’s Picture of Monads in the Physical Monadology,” 
Studies in History and Philosophy of  Science Part A 44, no. 1 [March 2013]: 102–111) argues 
conclusively that the Physical Monadology oscillates between two theories of matter, not 
one. For the context of Kant’s paper, see Christian Leduc, “La Monadologia physica de 
Kant et le concours sur les monades de l’Académie de Berlin,” in Natur und Freiheit. Akten 
des 12. Internationalen Kant-Kongresses, ed. V. Waibel and M. Ruffing (Berlin: de Gruyter, 
2018), 893–900.

 Immanuel Kant, Theoretical Philosophy, 1755–1770, trans. D. Walford and R. Meerbote 11

(Cambridge: Cambridge University Press, 1992), 59, 61f., 63; AA I: 482, 484, 485.



Thus, a physical monad, or Kantian “element,” is inert, and acts only by cen-
tral forces (of repulsion and attraction). Its mass is concentrated at a point, 
and its volume is really just an acceleration field.  

As to the deformable continuum, it had long been Leibniz’s official theo-
ry of matter (at least in public, in his later years). Wolff too takes bodies to 
be continuous, which he supports by a variety of considerations. One is a 
direct argument. A body is an “aggregate of elements,” and material aggre-
gates “are extended,” and extension is continuous.  Unfortunately, little is 12

clear about the structure of “elements,” the constituents of Wolffian bodies.  13

Each is endowed with two forces, “active” and “passive” whereby elements 
interact, but that mechanism is mysterious. Wolff infers that they must be 
partless and indivisible, for they are the simples that ground material com-
posites.  As they cannot be mass points, we might be tempted to assimilate 14

them with volume elements dV, the element of integration in continuum me-
chanics. However, this is all conjectural; Wolff writes well before Cauchy 
clarified the physical continuum, so his account perforce is fuzzy. Eventually, 
he claims that elements stand in the relation “outside each other [extra se in-
vicem],” and thereby can make up continuous bodies by “aggregation,” an 
operation left unexplained. This vexed problem soon spawned a family of 
post-Leibnizian monadologies, which then created its own opposition.   15

Wolff hoped to draw more support for his ontology of matter from objec-
tions to competing views. The paradigmatic early-modern rigid body was the 
“hard” atom, and he rejects it out of hand. Though tiny, atoms are extended, 

 Wolff, Cosmologia Generalis, 169ff., § 211. 12

 He also called them, before Kant, “physical monads,” to signal discreetly his departure 13

from Leibniz. Cf. Wolff, Cosmologia Generalis, 148, § 187. Eric Watkins, “On the Necessity 
and Nature of Simples: Leibniz, Wolff, Baumgarten, and the Pre-Critical Kant,” in Oxford 
Studies in Early Modern Philosophy, vol. 3, ed. Daniel Garber and Steven Nadler (New 
York: Oxford University Press, 2006), 261–314, is an acute discussion of how Wolff differs 
from Leibniz in regard to metaphysical “simples.”

 Wolff, Cosmologia Generalis, 146, § 182.14

 E.g., G. Ploucquet, who started out with monads, strove to understand how they make up 15

a continuum, and gave up on them as “chimaeras, whose nothingness is sufficiently 
proven” (Gottfried Ploucquet, Principia de substantiis et phaenomenis [Frankfurt: Berger, 
1753], 355). Another, merciless opponent was Euler (Gedancken von den Elementen der Cör-
per [Berlin: Haude & Spener, 1746]). In private, these debates could get rather acrimonious; 
see Heinrich Ostertag, Naturphilosophisches aus Wolffs Briefwechsel mit Manteuffel (Leipzig: 
Quelle & Meyer, 1910), 50–150. Keen accounts of the warring positions are found in Vin-
cenzo De Risi, Geometry and Monadology: Leibniz’s Analysis Situs and Philosophy of  Space 
(Basel: Birkhäuser, 2007), 301–314, and Christian Leduc, “La métaphysique de la nature à 
l'Académie de Berlin,” Philosophiques 42, no. 1 (2015): 11–30. 



and so they have shapes. But, atomic shape “lacks a sufficient reason why it 
inheres in its subject,” and thus it is an “occult quality,” hence natural philos-
ophy must banish rigid atoms.  As for mass points, Wolff never bothered to 16

dismiss them in writing. Coached by Leibniz, he always reviled actio in dis-
tans, and that is the only type of causal power they have. Had he lived to 
hear about young Kant’s physical monads, he would have denounced them 
as an absurd monstrosity.   17

An unadulterated view of matter as continuous at all scales is on display 
in Kant’s Anfangsgründe of 1786: “Matter is divisible to infinity, and, in fact, 
into parts such that each is matter in turn” (4:503). The view is sophisticated 
too, not just pure. Like modern continuum mechanics, Kant lets matter be 
governed by Conservation of Mass, which he derives from his First Analo-
gy. He has a good grasp of mass density in a continuum. And, he endows 
matter with “penetrating” and “surface” actions, i.e. body forces and contact 
forces.  In one respect, he stands alone in his age: his “penetrating” force 18

(of attraction) is direct action at a distance, which he always defended 
valiantly from common objections. Then, like his predecessors, Kant too 
moves to delegitimize rigid bodies, though by a new argument. And, he bids 
good-bye to the mass points he used to advocate (4: 502, 504f ).  Or so he 19

says. Unwittingly, he had already taken it back, in his foundations of kine-
matics: 

Since in phoronomy nothing is to be at issue except motion, no other property 
is here ascribed to the subject of motion, namely, matter, aside from movability. 
It can itself so far, therefore, also be considered as a point, and one abstracts in 
phoronomy from all inner constitution […] If the expression “body” should 
nevertheless sometimes be used here, this is only to anticipate to some extent 
the application of  the principles of phoronomy to the more determinate concepts 
of matter that are still to follow (AA 4:480; italics mine). 

 Wolff, Cosmologia Generalis, 149, § 190.16

 I examine Wolff’s arguments against action-at-a-distance, and Leibniz’s influence on him, 17

in M. Stan, “Newton’s Concepts of Force among the Leibnizians,” in Reading Newton in 
Early Modern Europe, ed. E. Boran and M. Feingold (Leiden: Brill, 2017), 244–289. 

 See AA 4:541f and 516. For thorough discussion, see Michael Friedman, Kant’s Con18 -
struction of  Nature (Cambridge: Cambridge University Press, 2013). Still, Kant’s actuality 
has limits. He could never bring himself to recognize the existence of shear forces in his 
continuum. Cf. Mark Wilson, “What is ‘Classical Mechanics’ Anyway?,” in The Oxford 
Handbook of  Philosophy of  Physics, ed. R. Batterman (Oxford: Oxford University Press, 
2013), 89, and Marius Stan, “Unity for Kant’s Natural Philosophy,” Philosophy of  Science 
81, no. 3 ( July 2014): 435ff.

 For a lucid explanation of both, see Friedman, Kant’s Construction of  Nature, 143-53.19



In effect, Kant here quietly has mechanics adopt a mass-point view, despite 
his own official doctrine that matter is continuous. He has just argued for 
treating an extended body as a point-sized entity, which he then endows with 
mass. Ultimately, this reverberates through his entire grounding of mechan-
ics, with adverse effects.   20

Though everyone—Leibniz, Johann Bernoulli, Wolff, and Kant—reject-
ed rigid bodies emphatically, it is doubtful that any professional philosopher 
in Prussia endorsed this ontology. Lambert might fit the bill, but he was no 
mainstream figure in academia. Kant in Anfangsgründe suggests, darkly, that 
it was the default matter theory of the “mathematical investigators of 
nature,” and yet he leaves them unnamed. Were they all reproving a domes-
tic straw man? Or were their attacks directed abroad?  

Before we move on, note how little Newtonian this all is. Newton’s pre-
ferred ontology of matter was rigid atoms and empty space; his many fol-
lowers in 18th-century Britain favored it too.  And yet, if there is one thing 21

that unites Leibniz, Wolff, and Kant, it is their stark rejection of rigid matter 
and the void.  

Superstructure.  As an edifying sequel, let us now turn to some local 
mécaniciens. They articulated exactly the respective mechanical theory of 
each of the three basic entities above. It is thanks to their researches that the 
fundamental differences between these objects become clear. Still, I do not 
mean to imply that they posited any of these objects as ontologically basic. If 
they had any such commitment, it is quite hard to discern.  

Euler is their standard bearer, but also the most confounding figure. He 
contributed equally to the mechanics of all three objects above. The mass 
point—single and free, or kinematically unconstrained—is the main topic of 
his youthful Mechanica of 1736. However, much in it was just a unification of 
earlier results in one-particle dynamics by Newton and Jakob Hermann. In 
the 1740s, he started breaking new ground, by deriving equations of motion 

 Stan, “Unity for Kant’s Natural Philosophy.”20

 Peter M. Heimann and James E. McGuire, “Newtonian Forces and Lockean Powers: 21

Concepts of Matter in Eighteenth-Century Thought,” Historical Studies in the Physical 
Sciences 3 (1971): 233–306.



for systems of mass points; and for a constrained mass point.  That was his 22

masterful De motu corporum in superficiebus mobilibus, where he determined 
the trajectory of a mass point forced to move on rigid surfaces, whether fixed 
or freely movable.  23

As to rigid-body dynamics, Euler created it more or less single-handed-
ly. His decisive breakthrough came in 1750, with Découverte d’un nouveau 
principe de Mécanique, whose significance is comparable to Newton’s book. 
There, Euler obtained equations of motion for a rigid body moving around a 
fixed point under external forces. A few years later, he had another insight.  24

In Recherches sur la connoissance mécanique des corps, he explained that, in 
addition to mass, or resistance to translation, matter has another basic prop-
erty. It is the moment of inertia, i.e. resistance to rotation around some in-
stantaneous axis. He unified all his results on this fundamental object in 
Theoria motus corporum solidorum.  Like d’Alembert before him, Euler 25

studied rigid motion so as to extend Newton’s program in celestial mechan-
ics. The Briton in 1687 had modelled the planets as particles. But, that made 
it impossible to treat the gravitational phenomena they exhibit as extended 
bodies: precession, nutation, libration, and tidal locking.  To explain these, 26

d’Alembert and Euler had to model a planet as a rigid body. 
In regard to the mechanics of continuous bodies, here too Euler created 

large swathes of it, as did d’Alembert, in France. He found the equilibrium 
conditions for a thin rod (the elastica), in an appendix to a pioneering tract 
on variational methods. In the 1750s, he unified and generalized the statics 
and dynamics of “Newtonian” inviscid fluids in laminar and vortex flows. As 

 Brian S. Hepburn, Equilibrium and Explanation in 18th century Mechanics, Ph.D. thesis 22

(University of Pittsburgh, 2007), and Brian S. Hepburn, “The Quiet Scientific Revolution: 
problem solving and the eighteenth century origins of ‘Newtonian’ Mechanics,” in The Ox-
ford Handbook of  Newton, ed. C. Smeenk and E. Schliesser (New York: Oxford University 
Press, forthcoming) study Euler’s early dynamics in the context of early 18th-century natur-
al philosophy. Marius Stan, “Euler, Newtonianism, and Foundations of Mechanics,” in The 
Oxford Handbook of  Newton, ed. C. Smeenk and E. Schliesser (New York: Oxford Univer-
sity Press, forthcoming) explains Euler’s complicated relation to Newton. Euler’s creation of 
rigid-body dynamics is carefully documented, in minute detail, in Andreas Verdun, Leon-
hard Euler’s Principle of  Angular Momentum (Berlin: Springer, forthcoming).

 Leonhard Euler, “De motu corporum in superficiebus mobilibus,” in Opuscula varii 23

argumenti (Berlin: Haude & Spener, 1746), 1–136.
 Leonhard Euler, Theoria motus corporum solidorum seu rigidorum, 2 vols (Rostock: Röse, 24

1765). 
 Euler, “Recherches sur la connoisance mécanique des corps.”25

 These are all phenomena associated with a planet’s axis of rotation and its angular veloci26 -
ty about it. But, a mass point has no such axis.



part of that, he articulated the concept of internal pressure in a continuous 
fluid.  Another key result was his memoir Principes généraux du mouvement 27

des fluides, the birth of “Euler’s equations” for compressible flow.  In a letter 28

to Lagrange, he devised what we call the “Lagrangian” description of motion 
for a continuum.  The deep dynamical insight he obtained in Découverte 29

above slowly led him down the path to equations of motion for manageable, 
lower-dimensional continua: the elastica and the thin plate, or lamina.  The 30

former paper is important because Euler shows there for the first time how 
to compute the shear stress in a continuum—a type of force that has no 
meaning or reality in rigid bodies or mass points.   31

Fracture.  As the 1780s draw to an end, the growth of mechanics re-
veals, somewhat ex post facto, a facet that should have unsettled our philoso-
phers, had they kept up with it. Throughout the century, mechanical theory 
strove to become general: to explain the full range of mechanical phenomena 
known then, by deriving equations of motion for them. But, it turned out, 
that task eventually required it to resort to three kinds of building blocks for 
modelling bodies: the mass point, the rigid body, and the deformable contin-
uum. As I have explained, these objects are deeply unlike and mutually ir-
reducible. Thus mechanics had to give up on the philosophers’ dream to an-
chor it in a single, monolithic base ontology. 

Euler and Lagrange, it appears, did not miss that. They saw, more clearly 
than the philosophers, that in mechanics the need for generality can trump 
ontological unity. So, the theorists turned understandably quietist about the 

Olivier Darrigol and Uriel Frisch, “From Newton’s Mechanics to Euler’s Equations,” 27

Physica D: Non-linear Phenomena 237, no. 14–17 (August 2008): 1855–1869. 
 Leonhard Euler, “Principes généraux du mouvement des fluides” (1755) in Mémoires de 28

l'académie des sciences de Berlin 11 (1757): 274–315.
 Leonhard Euler, “Lettre de M. Euler à M. de la Grange contenant des recherches sur la 29

propagation des ébranlemens dans un milieu élastique,” in Mélanges de philosophie et de 
mathématique de la Société Royale de Turin pour les années 1760–1761 (Turin: Typographia 
Regia, 1762), 1–10.

 Euler, “Genuina principia,” Euler, “De gemina methodo.” Due to a lack of adequate 30

kinematics, three-dimensional elastic solids remained in good part out of his reach. They 
first get treated in post-Napoleonic French mechanics, chiefly by Navier, Cauchy, Poisson, 
and Saint-Venant. For technical details, see Amy Dahan-Dalmédico, Mathématisations: 
Augustin-Louis Cauchy et l’École Française (Paris: Editions du Choix, 1992). 

 Euler, “Genuina principia,” 384.31



ultimate constitution of body.  Philosophers, in contrast, rushed in to fill 32

that silence. As we have seen, they sought to avoid ontological fracture by a 
dual tactic. First, they gave a priori arguments for a preferred unit of matter; 
witness Wolff’s and Kant’s proofs that body is a physical continuum. Sec-
ond, they tried to rule out, again on a priori grounds, competitor ontolo-
gies—rigid bodies and mass points. However, they seem to have missed that, 
by keeping ontology unified, they fail to give a sufficient foundation for me-
chanics. Clinging to one picture of matter at all costs will fail to yield a me-
chanics demonstrably general. 

Thus, by the last third of the century, mechanics had fractured ontology. 
The early modern hope for a single, univocal material basis yields to a pro-
tracted struggle for foundational supremacy that extends well into the Spätk-
lassik, enmeshing Kelvin and Helmholtz, Duhem and Mach, Hertz and 
Hilbert. In deep, subtle exchanges, these figures debated whether mechanics 
ultimately rests on discrete or continuous matter, contact forces or distance 
actions, bodies with finite or infinite degrees of freedom. In retrospect, we 
see that they continued a dialogue that began with Wolff and Kant, d’Alem-
bert and Euler, Boscovich and Lagrange. 

2.  Dynamical Laws 

Primed by Kuhnian intuitions about paradigms, we might expect that, after 
Newton’s Principia came out, its three mechanical principles became the 
laws of motion for everyone, our protagonists included. Not long ago, Eric 
Watkins discovered this to be a mistake. The canonical laws of motion in 
academic Prussia differed significantly—in content and intent—from New-
ton’s principles. Subsequently, others proved that these schools also refused 
to embrace the Briton’s understanding of inertia, force, and interaction. To-
gether, these findings point to an unexpected conclusion: in Prussian univer-
sities before the late 1750s, Newton’s own conceptual basis for mechanics is 
mostly invisible. Instead, local figures were in thrall to a foundational pro-

 Despite his teachings in Lettres à une princesse d'Allemagne sur divers sujets de physique et 32

de philosophie, it is unclear what Euler’s considered ontology of matter was. The ontology 
behind Lagrange’s mechanics is mysterious. Katherine Brading and Marius Stan, Philosoph-
ical Mechanics in the Age of  Reason (New York: Oxford University Press, 2023), chs. 10–
11, analyse these matters in detail.



gram bequeathed by Leibniz.  Wolff and his followers carried it out, and it 33

left deep marks on Kant’s thinking too. I will make that clear as I explain 
another way in which natural philosophy falls apart at that time. Like the 
breakup I examined in section 1, it too ends in fracture: between philosophi-
cal reflection and scientific theory.  

The distant source of that is Descartes. Recall his program in Principia 
philosophiae of using “laws of motion” to ground “rules” of motion.  Wolff 34

keeps this Cartesian duality and the program it underwrote:  

The general principles of the rules of motion are called laws of  motion […] Im-
plicit in the rules of motion there are general principles, from which we can 
derive these rules […] Mathematicians assume these laws without proof; but it 
behooves the Metaphysician to demonstrate them. Hence we deem it our 
business to establish them here.  35

Now, there was a deep source of tension in Descartes’ project. To secure ab-
solute certainty for mechanics, he let it flow—by deductive argument—from 
indubitable facts about God and the essence of matter, through the laws of 
motion, to the rules. But, he did not foresee that the final list of “rules of mo-
tion” might in the end be longer than the seven rules he had on record. Thus, 
conflict can ensue: the full list of rules, or equations of motion, might need 
for their derivation a wholly different set of dynamical laws than Descartes’ 
three principles. Critically, these laws might be impossible to anchor by any 
a priori argument in metaphysical resources.  

Founders.  Nearly a century after him, Wolff too was oblivious to this 
danger. To make good on his promise above, he gave two laws of motion, 
grounded in metaphysics: a Law of Inertia, and a Law of Action and Reac-
tion.  Wolff insisted that these principles are necessary, and so he tried to 36

produce a priori evidence for their truth. To that end, he invented a confir-

 This is the result of Eric Watkins, “The Laws of Motion from Newton to Kant,” Perspec33 -
tives on Science 5, no. 3 (1997): 311–348; Eric Watkins, “The Argumentative Structure of 
Kant’s Metaphysical Foundations of  Natural Science,” Journal of  the History of  Philosophy 
36, no. 4 (1998): 567–593, and Stan, “Newton’s Concepts of Force among the Leibnizians.”

 The laws were basic principles of one-body motion and interaction; the rules, kinematic 34

predictions of outcome in two-body collision—ancestors of equations of motion.
 Wolff, Cosmologia Generalis, 228, § 303.35

 Wolff, Cosmologia Generalis, 229, 252; §§ 304, 346.36



mation strategy that would loom large in the Enlightenment.  It is a mixture 37

of metaphysics of body, conceptual analysis, and the Principle of Sufficient 
Reason (PSR).  38

As illustration, consider his defense of his second law of motion. First, 
he analyzes the concept “interaction” as denoting the encounter between an 
agent and a patient body. Then, from his ontology of body, he takes that 
there are active and passive forces. He assigns the former to agents and the 
latter to patient bodies. Next, he invokes PSR to infer, there is no sufficient 
reason why an agent should exert more active force (needed to break the pa-
tient’s resistance) than the latter puts up passive force to oppose the agent. 
So, he concludes, in any interaction the active force spent by the agent 
equals the passive force put up by the patient—no more, no less. This is his 
Law of Action and Reaction.  39

This seems broadly Newtonian, but that appearance misleads badly. 
Wolff’s dynamical laws, and the concepts behind them, differ sharply from 
Newton’s. In fact, we ought to wonder if they are at all compatible with the 
Principia. That book neither supports nor requires Wolff’s heterogeneous 
dualities agent vs. patient, active vs. passive force, and action vs. reaction. 
Newtonian action and reaction are homogeneous, not different in kind: both 
are vires impressae ruled by the Second Law—and Wolff lacks all that. Thus, 
Newtonianism is again conspicuously absent from his system. The reason, I 
show elsewhere, is that Wolff’s mechanical foundations really come from 
Leibniz. Jakob Hermann, another Leibnizian, likewise shaped his basic laws 
of dynamics, which never aimed to ground Newton’s theory.  40

It is hard for us to grasp how influential Wolff and his views were then. 
Like much else he wrote, his doctrinaire natural philosophy swayed many in 

 Even his philosophical opponents adopted it. For instance, d’Alembert, whose 1743 trea37 -
tise on dynamics rests on three explanatory principles, or “laws of motion,” and a general 
heuristic, nowadays called D’Alembert’s Principle. Like Wolff, d’Alembert grounds his laws 
in conceptual analysis and the PSR; cf. Alain Firode, La dynamique de d’Alembert (Paris: 
Vrin, 2001). Kant too succumbs to this Wolffian strategy, even in his Critical years. I call 
this pattern of inference “analysis plus,” and I explain it in Marius Stan, Kant’s Natural Phi-
losophy (Cambridge: Cambridge University Press, forthcoming), for the particular case of 
Kant.

 Quite unlike Leibniz, Wolff and argued that PSR was necessary—and so facts grounded 38

in it are themselves necessary. A sharp account of Wolff’s grounding of PSR is Brandon C. 
Look, “Grounding the Principle of Sufficient Reason,” in The Rationalists, ed. C. Fraenkel 
et al. (New York: Springer, 2011), 201–219.

 Wolff, Cosmologia generalis, 234–238; 251–255.39

 Stan, “Newton’s Concepts of Force among the Leibnizians.”40



Germany: Ludwig Philipp Thümmig, Johann Christoph Gottsched, Johann 
Heinrich Winckler, Johann Friedrich Stiebritz, Friedrich Christian Baumeis-
ter, Nikolaus Burkhäuser, Jean-Henri-Samuel Formey , and the compen-
dious Michael Christoph Hanov, who in the 1760s set out to rival his master 
in output. Many of them just paraphrase his physical teachings when they do 
not repeat them verbatim. Nowadays forgotten, their sheer number then 
made Wolff’s account into the received consensus, and made them a power-
ful presence.  

So powerful, in fact, that the young Kant began his Neuer Lehrbegriff  der 
Bewegung und Ruhe in 1758 hoping the Wolffians would forgive his dissent 
from their dogmas (2:15). And yet, Kant does not write it to roll back 
Wolff’s foundations in the name of Newton, as one would expect from a re-
cent convert.  Rather, he merely corrects that dogma, by subverting the 41

Wolffian distinction between agent and patient. Otherwise, he keeps an as-
tonishing amount of their ultimately Leibnizian views. Like them, Kant 
thinks that the basic laws of motion are two (not three, as Newton had it); 
they are derivable a priori; impact is the paradigm of interaction, and is a 
mutual exercise of “force of motion,” a descendant of Wolff’s vis motrix, not 
Newton’s vis impressa. Remarkably, these Leibniz-Wolffian commitments 
and agenda survive almost unscathed in Kant’s mature philosophy of 
physics.  42

Builders.  While the philosophers aimed at absolute certainty, the theo-
rists’ driving force was the search for descriptively general laws of motion, 
i.e. proven to entail equations of motion for all types of bodies and mechani-
cal systems. Despite our initial expectations, Newton and his contemporaries 
did not bequeath such laws to the Enlightenment. And, this became quite 
clear before too long. Of the mechanical principles handed down by the 17th 
century, the young Euler says: 

 Many take Kant’s Theory of  Heavens (1755) to signal his move to Newtonianism. The 41
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These principles are of no use in the study of motion, unless the bodies are in-
finitesimally small, hence the size of  a point—or at least we can regard them as 
such without much error: which happens when the direction of the soliciting 
power passes through the centre of  gravity […] But if it does not pass through 
that centre, we cannot determine the entire effect of these powers. That is all the 
more so when the body to be moved is not free, viz. is constrained by some ob-
stacle, depending on its structure.  43

In our terms, his complaint is that the laws of the late 1730s could not predict 
the motion of extended bodies and of constrained systems—a very large 
class of behaviors, to be sure. That realization set off a quest for ostensibly 
general principles of mechanics. However, as Euler and his peers set out to 
uncover them, no one foresaw they would end up with not one but three dis-
tinct and independent sets of basic laws. This makes the foundations of me-
chanics ca. 1780 overdetermined, a situation that continues today. 

The first general principle originated in the 1740s with Maupertuis, who 
found that when two bodies collide directly or balance each other on a lever, 
the integral ∫ Mv ds tends to a minimum.  This was evidence for a new dy44 -
namical law, which he called the Principle of Least Action. At Berlin, his 
colleague Euler extended the insight to the motion of a particle attracted by 
one or more central forces, in his Harmonie entre les principes généraux de 
repos et de mouvement de M. de Maupertuis.  Euler then claimed optimisti45 -
cally that, “with an easy and natural addition,” Maupertuis’ law “extends 
with the greatest success to the whole Science of motion.”  46

Still, it was no proof that the principle was demonstrably general. That 
breakthrough came from the young Lagrange. Though his feat happened at 
Turin, it earns mention here for developing results Lagrange had first had in 
a memoir (submitted to the Berlin Academy) that greatly impressed Euler, 

 Leonhard Euler, “Dissertation sur la meilleure construction du cabestan,” in Pièces qui 43
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who brought Lagrange to Berlin, where he became the leading innovator in 
mechanics.   47

What moved Euler to awe was Lagrange’s creation of a new mathematic, 
the calculus of variations. He then exported it to mechanics, in Application 
de la méthode précédente à la solution de différentes problèmes de dynamique 
of 1762,  which he started with a “General principle.” Let a set of masses 48

M, M′, etc. interacting by central forces cross the spaces s, s′, etc. in a time 
t. Let u, u′, etc. be their instantaneous velocities. “Then the formula M∫uds 
+ M′∫u′ds′ + M′′∫u′′ds′′ + etc. will always be a minimum or a 
maximum.”  More exactly, Lagrange’s law says that the variation of a cer49 -
tain quantity, viz. the action integral, is null: 

[1]     δ ∫ Mv ds = 0 

This is the Maupertuis-Euler Principle of Least Action, restated by Lagrange 
in variational terms. From it he derived equations of motion for a large class 
of mechanical setups, including systems of constrained particles, a gas, a flu-
id in laminar flow, and a rigid body. It was proof that his principle was a 
general law of dynamics.  

The second principle was born abroad, though from a seed sown by Jo-
hann Bernoulli, a vocal Leibnizian. It was this: the virtual work of the ap-
plied forces on a system in equilibrium vanishes. His friend, Varignon, made 
it public and used it to suggest a statics of rigid bodies, in Nouvelle Mé-
canique, ou Statique.  Another seed was planted by d’Alembert in his great 50

dynamical treatises of the 1740s. To find equations of motion for constrained 
systems, he reasoned as follows. The motions acquired in fact by the system 
do not coincide with the motions impressed on it by the external causes; 
some impressed motion is lost to the constraints.  To find the acquired mo51 -
tions, i.e. the actual accelerations, d’Alembert proposed a heuristic: the ac-
quired motions, if  their sign were reversed, would balance the impressed mo-

 Dionigi Galletto, “Lagrange e le origini della Mécanique Analytique,” Giornale di Fisica 47
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problèmes de dynamique,” Miscellanea Taurinensia 2 (1762): 196–298.
 Lagrange, “Application de la méthode précédente,” 198.49

 Pierre Varignon, Nouvelle Mécanique, ou Statique, vol. 2 (Paris: Jombert, 1725), 176.50

 Think of a body on an inclined plane. Part of the acceleration of gravity—viz. the compo51 -
nent normal to the plane—is never acquired actually by the body.



tions. That is, if all these motions were given to the dynamical system at is-
sue, it would be in equilibrium. At this point, it can be handled with the tools 
of statics.   52

It was the young Lagrange who unified the two insights above, into a 
principle he knew quite well to be general. His thought was this. Take the 
masses in a system, and multiply them by their respective actual accelera-
tions. Suppose that forces, equal to these products but opposite to them, act-
ed on the system in addition to the real forces already acting on it. (This is 
Lagrange recasting d’Alembert’s idea in terms of forces, not “motions”). 
Then the system would be in static equilibrium. Thereby, it comes under the 
jurisdiction of the Bernoulli-Varignon statical law above: the virtual work of 
all these forces is zero. We call it the Principle of Virtual Work: 

[2]   ∑ (Fi + Ji) ⋅ δri = 0 

To make a dynamical system reveal its equations of motion, Lagrange sub-
jects it to a thought experiment. In addition to the actual forces Fi acting on 
it, he introduces a set of fictive forces Ji such that they balance the combined 
Fi. With the system now reduced (in thought) to rest, he gives each part 
(again in thought) a virtual displacement δri compatible with the constraints. 
His principle is that Fi and Ji are such that their net mechanical work along 
these displacements is null. From this, he derived a “general formula con-
taining the solution to all the problems on the motion of bodies.”   53

Lagrange first applied and advertised this law in Recherches sur la libra-
tion de la lune, 1763. Soon after that he moved to Berlin, where he spent 
twenty years figuring out how to extend his law to all of mechanics. That 
comprehensive effort produced his Méchanique analitique, in which he called 
his law the “General Principle of Virtual Velocities.” Its principle became the 
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norm for some key German figures too; e.g. Gauss’ work on hydrostatics.  54

Elsewhere, it was the basic dynamical law for much of the next century.  55

The third general principle was twofold. Because of its descriptive power, 
it has been called Euler’s Laws of Motion.  However, unlike Lagrange’s two 56

consecutive achievements above, Euler did not write a comprehensive trea-
tise to demonstrate the range of his two laws. Rather, he piecewise proved 
that they are general.  The first law by itself enabled him to determine the 57

motion of a rigid body around a fixed point;  the linear flow of inviscid flu58 -
ids;  and later, mass points with constraints.  However, as he expanded his 59 60

scope, Euler came to realize that his First Law was generally not enough to 
determine completely the mechanical behavior of extended bodies. Rather, a 
second basic law is needed, analogous to the first but logically independent 
from it. This insight emerges clearly in Euler’s later work on elasticity, rigid 
bodies, and constrained motion.  There, he always starts “from first princi61 -
ples,” by setting down two laws:  62

[3a]     f = ma  

[3b]     h = iα 

 Carl Friedrich Gauss, Principia generalia theoriae figurae fluidorum in statu aequilibrii. 54
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The equation of motion for the particular system at issue follows in every 
case from them. If Euler’s two laws above look Newtonian, it is because they 
generalize Newton’s Lex Secunda. The laws assert that there are two funda-
mental kinds of mechanical agencies and effects. The first is forces, which 
impress linear accelerations; the second is torques, or causes of angular ac-
celeration (around some instantaneous axis of rotation). Bodies resist the 
first in proportion to their mass, the second in proportion to their moment of 
inertia.   63

Against this backdrop, it may seem as if the passage of time takes me-
chanics toward its broadly Newtonian version we learn early in college. We 
should resist that impression; it is a side effect of my having to end my ac-
count with the 1780s. In the evolution of mechanics, that is an artificial cut-
off point. From that perspective, Newton-Euler dynamics is the minority 
view in the two centuries after the Principia. Lagrange’s Principle of Virtual 
Work becomes the basic law in French mechanics for well over half a centu-
ry after his move to Paris in 1783. In Britain, Stokes embraced it too. And, 
the Principle of Least Action becomes the basic law of Hamiltonian mechan-
ics, which took hold in Germany and much of Britain from the 1830s on-
ward. We recognize these two formulations as the ancestors of our analytic 
mechanics. 

Drift.  And so, we see how by the mid-1780s mechanics and philosophy 
have grown apart, which brings Descartes’ program to a tragic end of sorts. 
Excessively concerned with certainty for mechanics, the philosophers end up 
with dynamical laws that may be safe from doubt but are explanatorily too 
narrow: they cannot determine by themselves all the possible motions of all 
the possible bodies. Regrettably, philosophers—even great ones, like Kant—
did not seem quite alert to this problem then.  

The theorists, in turn, seem afflicted by a converse problem. Having se-
cured true generality for their laws, they are at a loss about how to show 
their absolute certainty, which they continue to believe in, swayed by philos-
ophy. They either state it blankly, like Euler in the Lettres, who asserts with-
out proof that the Principle of Least Action is “perfectly founded in the na-

 Verdun, Leonhard Euler’s Principle of  Angular Momentum is an exhaustive account of 63

Euler’s two laws of motion.



ture of body, and those who deny it are very much in the wrong.”  Or they 64

proffer basic dynamical principles while bracketing entirely the question of 
evidential support for them, as Euler does with his two laws in his late pa-
pers. Or, finally, they flail about ineffectually as they try to derive these basic 
laws from deeper, supposedly more certain premises. Such is the case of La-
grange and a host of others, ca. 1780–1825. Having left Berlin for Paris, he 
and his new confrères at the École Polytechnique spend decades seeking in 
vain to ground the Principle of Virtual Work, our statement [2] above, in 
something absolutely certain or self-evident.  After Fourier they give up in 65

frustration, and the question becomes dormant. But it just makes the split 
more painfully obvious to those who care to look. 

3.  Kinematic Foundations 

Lastly, there were debates on whether motion is “relative” or there are “ab-
solute” motions. However, these terms are highly misleading and laden with 
anachronistic connotations. It is best to present this debate from within.  

Early modern mechanics presupposed an (often implicit) distinction be-
tween true and apparent motion. For instance, if taken to be about apparent 
motions and rest, both Copernicanism and the Law of Inertia are trivially 
false.  So, it was assumed, the dynamical laws are statements about the true 66

motions of bodies. Inevitably, a metaphysical question arises now: what is 
the nature of true motion? What does motus in re vera (as Descartes called 
it) consist in? Newton notoriously claimed that true motion is absolute mo-
tion. That is, it consists in velocity in absolute space, a rigid immobile frame 
metaphysically distinct from bodies. His opponents retorted that true motion 
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addressed to a German Princess, 2nd ed., trans. H. Hunter (London: Murray and Highley, 
1802), 303.

 For details, see Brading and Stan, Philosophical Mechanics, chap. 12, and the older 65

Patrice Bailhache, L. Poinsot: La théorie générale de l’équilibre et du mouvement des systèmes 
(Paris: Vrin, 1975). 

 The Earth indisputably appears to rest and the Sun to move. Given an initial impulse, a 66

ball rolling on a smooth, long, flat table will describe a curve—a cycloid—not as straight 
line, as the Law of Inertia predicts. (This is evidently because the table, and the Earth to 
which it is fastened, is a rotating frame, hence is not inertial.) 



is relational. Namely, it consists in a distinguished relation of matter to mat-
ter, not to space itself.  67

Newton did not just declare that true motion was absolute, but he also 
gave a very powerful argument that it must be so. Briefly, its logic was as fol-
lows. (i) Bodies have true motions: for any given body, there is a fact of the 
matter as to whether it really moves or rests. (ii) True motion is either abso-
lute or “relative,” i.e. relational; tertium non datur. (iii) Any correct account 
of true motion must satisfy the “properties, causes, and effects” of true mo-
tion. (iv) Relative motion fails to meet these criteria. (v) Absolute motion 
always meets them. (vi) So, true motion is absolute motion, i.e. velocity in 
absolute space.  68

In the century after Newton, the most striking fact is how little under-
stood—thus, never directly addressed—his argument was. Though Leibniz 
admitted to Clarke that each body has an “absolute true motion,” he avoided 
explaining precisely what it consists in, all while denying that it is velocity in 
absolute space, as the Newtonians had it. Instead, Leibniz sought to preempt 
their conclusion by arguing that there is no absolute space, hence there can 
be no motion in it. This move ultimately solves nothing; Leibniz still owes 
the world his own account of what true motion is, and a proof that it sup-
ports a mechanics of inertial forces. Still, in Germany the post-Leibnizians 
followed his tactic. Led by Wolff, they rehashed his genetic account of our 
representation <space>. First, they alleged, we perceive direct metric rela-
tions between material objects. Then, by “abstraction,” we form the concept 
of a system of situations for the class of all actual bodies: space.  Motion, in 69

turn, is nothing but a body’s change of situation relative to some set of bod-
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relativistic. I.e., they denied that bodies have any true motions. Confusingly, they phrased 
this as a claim that motion is “relative.” Thus, interpreters must use extreme caution with the 
term “relative motion.” It was a linguistic vehicle for logically contrary views, viz. relation-
ism and relativism. I explain these facts at length in Marius Stan, “Absolute Space and the 
Riddle of Rotation: Kant’s Response to Newton,” in Oxford Studies in Early Modern Philos-
ophy, vol. 7, ed. D. Garber and D. Rutherford (New York: Oxford University Press, 2015), 
257–308. 

 See Isaac Newton, The Principia: Mathematical Principles of  Natural Philosophy, ed. I. B. 68

Cohen and A. Whitman (Berkeley: University of California Press, 1999), 408–412. New-
ton’s case for absolute motion is in the Scholium to the Definitions, in his Principia. I follow 
here the reading in Robert Rynasiewicz, “‘By Their Properties, Causes and Effects:’ New-
ton’s Scholium on Time, Space, Place and Motion,” Studies in History and Philosophy of  
Science Part A 26, no. 1 (March 1995): 133–153, 295–321. 

 Christian Wolff, Philosophia prima, sive Ontologia (Frankfurt: Libraria Rengeriana, 69

1730), 455–461; §§ 593-600.



ies.  Possibly true, but insufficient. At any instant, a given body changes 70

infinitely many kinematic relations to others. And yet, both the new mechan-
ics and his natural philosophy assume that bodies have unique true motions, 
which he ought to define and defend. Regrettably, Wolff always remained 
oblivious to this deep, difficult problem. So did his disciple, Thümmig, who 
went on to write a useless, repetitive “sixth letter to Clarke” after Leibniz’s 
death, without ever grasping that true motion all but inexorably requires ab-
solute space.  71

Against this background of general obliviousness to Newton’s point, 
Euler in 1748 made a strong kinematico-dynamical case for absolute space, 
with his Réfléctions sur l’espace et le tems.  Here is a capsule. (i) True mo72 -
tion and rest obey the Law of Inertia: only external forces can change a 
body’s true uniform translation or rest; and they always change them if ap-
plied to it. (ii) “Relative” motion does not satisfy the Law. That motion can 
be changed without applying a force to the body; and a net force can fail to 
change it. (iii) In contrast, motion in absolute space is guaranteed to obey the 
Law. Therefore true motion, i.e. change of true place, 

is governed by the idea of place as conceived of in Mathematics, and not at all 
by the body’s relation to other bodies. Now, one cannot say that [the Law of 
Inertia] rests on something that subsists only in our imagination. Hence, we 
must absolutely conclude that the mathematical idea of place is not imaginary, 
but that there exists something real that corresponds to this idea. Therefore in 
the world, beyond the objects that constitute it, there is some reality that we 
represent by the idea of place.   73

In essence, this is the very same logic as Newton’s. Recall Newton’s premise 
(iii) above: true motion has certain “properties, causes, and effects.” The 
causes are “forces impressed upon bodies to generate motion.”  Now, the 74

Law of Inertia governs these forces: they alone change true inertial transla-
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tion; and they always change it. But, to change a body’s relative motion, 
forces are neither necessary nor sufficient, in flat contradiction with the Law. 
Thus, Newton and Euler concluded separately, true motion cannot consist in 
a relation of matter to matter. This raises a fascinating question, as yet un-
solved. Did Euler in Réfléctions just restate a part of Newton’s argument 
without acknowledging him as the originator? Or did he rediscover it inde-
pendently? His powerful intellect and peerless grasp of the foundations of 
mechanics certainly point to the latter. 

As Euler was for absolute motion at that time—its sole yet ablest defend-
er—so was Kant for relationism. He first advocated it in Neuer Lehrbegriff  
der Bewegung und Ruhe, a little-read but very important paper from 1758. 
Recall, a relationist grants that any body has a unique true motion, and ex-
plicates it as a distinguished relation to other bodies or matter. Kant is no 
exception. For him, true motion (wahrhafte Bewegung) is the kinematic rela-
tion between any two interacting bodies. (In keeping with the Wolffians’ par-
adigm process, Kant in the 1750s restricts his account to collision.) Again 
like any standard relationist, he explains why that relation is privileged: in his 
view, because it results in dynamical effects, unlike any other kinematic 
change relative to bodies outside the interacting system. Further, the two col-
liding bodies share in this mutual relation—their motion toward each oth-
er—to the same extent: “tell me if one can infer, from what happens between 
them, that one is at rest and only the second moves, and also which of them 
rests or moves. Must we not ascribe the motion to both, namely in equal 
measure? Their mutual approach may be attributed to the one just as much 
as to the other” (2:18). So, he infers, in any impact one body is in true mo-
tion relative to the other, and vice versa. Quantitatively, this motion is its 
momentum with respect to the mass center of the two-body system. Thus 
each body has a true velocity, which consists in a relation to a material sys-
tem of reference, the so-called center-of-mass (CM) frame of the collision.  

What is more, Kant keeps this version of relationism into the 1780s, 
modulo his switch to transcendental idealism. In Anfangsgründe, he reasserts 
his early relationist credo: “all motion is relative only […] That is, matter can 
be thought as moved or at rest solely in relation to matter, and never with 
respect to mere space without matter” (4:559). However, a body has (in-
finitely) many such relations to “matters” outside it. Which is its true mo-
tion? Kant explains, true motion is an “active relation of matters in 
space” (4:545). A “matter” is in that relation if it interacts with another by 
exerting a “moving force.” His paradigm is again direct collision, for which 



he argues that each body has a true velocity relative to the CM-frame. (In 
this case, its “moving force” is linear momentum, or capacity to accelerate 
objects in its path.) Then he claims, without really explaining, that his analy-
sis applies to interactions by attractive forces as well, e.g. gravitation.  And, 75

in a novel development, he extends his relationism to circular motion—
specifically, to a spinning body. Allegedly, that too is relative motion, be-
cause any two “opposite parts” in the body—diametrically across, normal to 
the axis of rotation—endeavour to recede from each other (4:561f ). Thus 
Kant convinces himself that all true motion is a relation of matter to matter, 
and so there is no need for Newton’s absolute space as the fundamental 
frame of reference.  76

Kant could not have known it, but his key insight rediscovered an idea 
the young Leibniz had, but left fallow. Around 1677, Leibniz too had sur-
mised that true motion is a mutual relation between colliding bodies, such 
that each has a true momentum relative to their CM-frame:  

If space is a certain thing consisting in a supposed pure extension […] and mo-
tion is change of space, then motion will be something absolute. But in reality 
[…] motion is not something absolute, but consists in relation. And therefore if 
two bodies collide, the speed must be understood to be distributed between them 
in such a way that each runs into the other with the same force. Thus […] all the 
phenomena consistent with experiments will be at once deduced from this fact 
alone.  77

Combine this with the fact that Kant’s relationism was originally an engage-
ment with Wolff’s foundations of mechanics, not with Newton or Euler.  78

Then it turns out that, in this period, there is a strong Leibnizian strand in 
kinematic foundations too, not just in matter theory or dynamical principles, 
as I have explained. 

 Friedman, Kant’s Construction of  Nature, 494ff. reconstructs Kant’s reasoning for this 75

sort of process.
 This account is based on results obtained in Marius Stan, “Kant’s Early Theory of Mo76 -

tion: Metaphysical Dynamics and Relativity,” The Leibniz Review 19 (2009): 29–60, and 
Stan, “Absolute Space and the Riddle of Rotation.” There is an alternative reading, on 
which Kantian true motion is motion relative to an inertial frame designated by matter. 
(Ultimately, the global CM-frame of the physical universe.) Friedman (Kant and the Exact 
Sciences [Cambridge, MA: Harvard University Press, 2013], and Kant’s Construction of  
Nature) has defended it with great sophistication.

 Gottfried Wilhelm Leibniz, The Labyrinth of  the Continuum, ed. and trans. R. T. W. 77

Arthur (New Haven: Yale University Press, 2001), 225 (my italics).
 Stan, “Kant’s Third Law of Mechanics.”78



4.  Conclusions 

Natural philosophy in post-Leibnizian Prussia is a greatly diverse milieu, 
rich in seminal developments that shaped mechanics and its philosophy into 
the late modernity. Notably, Newtonianism—in both theory construction 
and conceptual foundations—long remains a minor presence. And, when it 
becomes established it never gains full supremacy. Strong Leibnizian ele-
ments always remain in place to challenge its rule, as do other, novel me-
chanical ideas and constructions genuinely born out of the Age of Reason, 
not grown from early modern seeds.  

At the same time, this diversity of foundational perspectives defies any 
attempt to show that post-Newtonian mechanics is a unified theory. Three, 
mutually irreconcilable ontologies are offered as material basis for its mod-
els. The epistemic status and identity of basic dynamical laws become split 
beyond easy reconciliation. And, the 17th-century schism between abso-
lutists and relationists about motion remains in place. Together, these dis-
agreements should give us an edifying glimpse into the discord that reigned 
in much of 19th-century mechanical foundations.  

Hopefully this preview is enough to inspire us to give Enlightenment nat-
ural philosophy in Germany the attention and respect it deserves. 
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