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Abstract

Relevant logics are a family of non‐classical logics charac-

terized by the behavior of their implication connectives.

Unlike some other non‐classical logics, such as intuitionistic

logic, there are multiple philosophical views motivating

relevant logics. Further, different views seem to motivate

different logics. In this article, we survey five major views

motivating the adoption of relevant logics: Use Criterion,

sufficiency, meaning containment, theory construction,

and truthmaking. We highlight the philosophical differ-

ences as well as the different logics they support. We end

with some questions for future research.Logic & Philosophy

of Language

Relevant logics, in the tradition coming out of the work of Anderson and Belnap (1975), are concerned with

implication. Relevant logics constitute a large family with great variety, even restricting attention to the

comparatively well known logics.1 Perhaps unsurprisingly, different philosophical motivations have been given

for relevant logics, targeted at different subfamilies of the broader group.2 In this article I will survey the

different philosophical views motivating relevant logics, indicating how they secure relevance, what logics

are most clearly supported by those views, and the presentation of the logic most naturally supported by the

view.

1 | BACKGROUND

We will focus on propositional logic in the basic logical vocabulary with → (implication), ¬ (negation), ∧ (conjunc-

tion), and ∨ (disjunction).3 For the purposes of this paper, we will primarily consider logics as sets of logical truths.4
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Perhaps the easiest way to characterize relevant logics is negatively: They are characterized by the rejection of

the paradoxes of implication, many of which were highlighted by C. I. Lewis. In the purely implicational fragment,

this means rejection of the following two paradoxes of implication,

� A → (B → A), and

� B → (A → A),

both of which are valid in classical and intuitionistic logic. Once other connectives are considered, additional

principles must be rejected in order to avoid letting the implicational paradoxes back in, such as ((A ∧ B) → C) →
(A → (B → C)) and A → (B → (A ∧ B)).5,6

While different relevant logicians disagree about many principles, there is substantial agreement, both on

principles that should be accepted and on those that must be rejected. For example, A → A is generally regarded as

alright, while A → (B → A) is not. One thing that has universal support among relevant logicians, at least at the

propositional level, is the use of Belnap's variable‐sharing criterion as a necessary condition on being a relevant

logic.7

Variable‐sharing criterion: A logic L satisfies the variable‐sharing criterion iff for any formulas A, B, if A → B is valid

in L, then A and B share a propositional variable.8

The variable‐sharing criterion, at the level of propositional logic, captures a sense of formal relevance for the

implication connective. There is a formal connection between the antecedent and consequent, some shared non‐
logical content, witnessed by the shared propositional variable. The variable‐sharing criterion requires rejecting

both paradoxes of implication, along with whatever entails them. The second paradox immediately violates the

criterion. To see that the first paradox also violates it, take the instance of the paradox (p → p) → (q → (p → p)). If

p → p is also valid, then by modus ponens we get as valid q → (p → p), which is an instance of the second paradox and

a violation of the variable‐sharing criterion.

Many logics used in philosophy, such as classical logic (C) and intuitionstic logic, violate the variable‐sharing
criterion, so the criterion has some teeth. To illustrate, the second of the paradoxes of implication, A → (B → B),

is valid in intuitionistic logic, so it is not a relevant logic.9 The criterion is standardly taken to be a necessary (but not

sufficient) condition on being a relevant logic.10 Beyond the core of agreement that implication should exhibit such

a connection, there is much disagreement, both about which principles should be accepted and the philosophical

views behind the logics.

There are many relevant logics that one can obtain from axioms and rules using the basic set of connectives,

although most of the standard relevant logics are extensions of the basic relevant logic B. To help orient the reader,

we present in Table 1 the axioms and rules for the logic B. In the table, the double arrow, ⇒, is used to indicate a

rule, where on the left are the premises of the rule and on the right is its conclusion. As an example, the first rule

listed, A, A → B ⇒ B, is modus ponens. To obtain stronger logics, we can add axioms or rules to B. The logics

extending B that come up in this paper are presented in Table 2, indicating how to obtain one logic from another by

adding axioms. For example, to get the logic TW, we add the prefixing, suffixing, and contraposition axioms to B, and

to get T, we further add the contraction and reductio axioms to TW. Each of the stronger logics keeps the rules and

axioms of the logic(s) it is extending.11 The relations among logics in this paper are presented in the diagram of

Figure 1, where arrows indicate containment.12

The relevant logics will be divided into two groups, the non‐contractive logics, among which are B, DJ, TW, and

RW, and the contractive logics, among which are T, E, and R. The distinction tracks whether the logics have

contraction principles, such as (A → (A → B)) → (A → B).13 The differences among logics, apart from their grouping

into contractive and non‐contractive, do not matter much for the ensuing discussion. One important difference

between the groups is that the contractive logics contain all the classical tautologies in the vocabulary {∧, ∨, ¬},
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while the non‐contractive logics do not. Thus, the contractive logics are, in a sense, closer to classical logic while the

non‐contractive ones are further away.

We will briefly note some differences between relevant logics and classical logic. In relevant logics, A → B is not

equivalent to ¬A ∨ B. Some classical tautologies that are not valid in any of the relevant logics discussed include A →
(B ∨ ¬B), (B ∧ ¬B) → A, ((A → B) → A) → A, (A → B) ∨ (B → A), A → (B → A), and A → (B → B). The non‐contractive
relevant logics depart further from classical logic than the contractive ones, as none of the following classically valid

TAB L E 1 Axioms and rules for B.

Axioms Rules

A → A A, A → B ⇒ B

(A ∧ B) → A, (A ∧ B) → B A, B ⇒ A ∧ B

A → (A ∨ B), B → (A ∨ B) A → B ⇒ (C → A) → (C → B)

((A → B) ∧ (A → C)) → (A → (B ∧ C)) A → B ⇒ (B → C) → (A → C)

((B → A) ∧ (C → A)) → ((B ∨ C) → A) A → ¬B ⇒ B → ¬A

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

¬¬A → A, A → ¬¬A

TAB L E 2 Relevant logics extending B.

To get From Add

DJ B ((A → B) ∧ (B → C)) → (A → C) (conjunctive syllogism)

(A → ¬B) → (B → ¬A) (contraposition)

TW B (A → B) → ((C → A) → (C → B)) (prefixing)

(A → B) → ((B → C) → (A → C)) (suffixing)

(A → ¬B) → (B → ¬A) (contraposition)

RW TW (A → (B → C)) → (B → (A → C)) (permutation)

T TW (A → (A → B)) → (A → B) (contraction)

(A → ¬A) → ¬A (reductio)

R RW (A → (A → B)) → (A → B) (contraction)

E T ((A → A) → B) → B (E axiom)

(□A ∧□B) → □(A ∧ B) (E axiom),

where □C is defined as (C → C) → C

F I GUR E 1 Relations of logics in this paper.
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formulas are valid in the non‐contractive logics though they are valid in the contractive ones: A ∨ ¬A, ¬(A ∧ ¬A), (A ∧
(A → B)) → B, and (A → ¬A) → ¬A.

In the following sections, we will look at differing motivations for relevant logics and philosophical views

offered in their support. The logics that will be mentioned have proof systems, different kinds of models, and

soundness and completeness results linking them. Nonetheless, the different motivations make certain approaches

to logic more natural, such as the Use Criterion favoring a proof‐theoretic approach. In the discussion, we will

highlight what approaches fit most naturally with the different views. As will emerge, the main motivations do not

pin down a unique logic as the logic of relevance. We will return to this point in the conclusion. Now, let us turn to

the first view motivating relevant logics, the Use Criterion, which we will discuss in more detail than the others

because it is the historically most prominent and the most widely discussed.

2 | USE CRITERION

The first motivation for relevant logics is the Use Criterion, due to Anderson and Belnap. Anderson and Belnap

criticized the violations of relevance found in classical and intuitionistic logics, one of which is exemplified in the

following derivation of a paradox of implication.14

To borrow from Anderson and Belnap,

In this example we indeed proved [q → q], but, though our eyes tell us that we proved it under the

hypothesis [p], it is crashingly obvious that we did not prove it from [p]: the defect lies in the definition,

which fails to take seriously the word ‘from’ in ‘proof from hypotheses’. And this fact suggests a so-

lution to the problem: we should devise a technique for keeping track of the steps used, and then

allow application of the introduction rule only when A is relevant to B in the sense that A is used in

arriving at B.15

This idea leads to the Use Criterion of relevant logics, glossed by Mares as the criterion “that the premises really

be used in the derivation of the conclusion.”16 To implement the Use Criterion, Anderson and Belnap use subscripted

formulas in a Fitch‐style natural deduction system. A new hypothesis gets a singleton subscript containing a new

numeral, and the rules are sensitive to the subscripts. For example, the implication rules are the following.

→ I From a derivation of Bα under the hypothesis A{k} to infer A → Bα\{k}, provided k ∈ α.
→ E From A → Bβ and Aα to infer Bα∪β.

In addition to these, there is a rule of reiteration, reit, for moving a formula into a subproof or repeating it, and it

does not alter subscripts. The idea behind the subscripts for the implication rules is that if an assumption, A{k} is used

in obtaining Bα, then the subscript on B, α, will reflect this fact by containing k. The function of the subscripts is easiest

to see with an example, so we will illustrate by attempting to repeat the above derivation with the subscripts.
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Line 4 is justified by the → I rule because 2, the subscript on the hyp step at line 2, is in the subscript on the

formula at the end of the subproof ending at line 3. The conclusion of the rule occurs outside the subproof with an

empty subscript, because the → I rule requires its conclusion to be {2}\{2}, which is the empty set. The paradoxical

derivation is blocked at line 5. The restriction on → I rule is not satisfied, as indicated by ✗, since the numeral on the

assumption p at line 1 is not found in the subscript on q → q. This indicates that line 1 is not really used in the

derivation of line 4, capturing the idea that the initial assumption of p did not contribute to proving q → q.

Therefore, the application of → I in the final line would be inappropriate, and there is no subscript for the formula of

line 5, as indicated by the question marks.

Consider the classical derivation of the other paradox of implication, presented on the left.

As before, the geometry of the Fitch‐style proof misleads; the mere fact that we have p under the hypothesis q

is no reason to think that the former was derived from the latter. The proof reproduced with subscripts is presented

on the right. As with the previous paradox, the use of subscripts blocks this derivation, with inappropriate uses

of → I marked by ✗, after which point there are not appropriate subscripts, as indicated by the question marks. The

subscripting makes it clear that line 2 was not properly involved in the justification of line 3, otherwise the subscript

on line 3 would contain 2.

As an illustration of a successful derivation, we have the following derivation of contraction.

STANDEFER - 5 of 18
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In this derivation, at line 4, →E combines the subscripts of its two premises. Line 6 comes from a successful

application of →I, as we really used the antecedent, p, in obtaining the consequent, q, as indicated by the presence

of subscript on the assumption of p at line 2 in the subscript on q in line 5.

The concept of use in the Use Criterion is most at home in proof systems, particularly natural deduction and

sequent systems. In other sorts of proof systems, such as Hilbert‐style axiom systems and tableaux systems, the

concept of use is perhaps less natural, and for models it is less natural still.17 As indicated above, the use of indexing

on formulas permits one to track use in natural deduction systems. In sequent systems, the appropriate sort of use

can be codified by rejection of the structural rule of weakening.18

Use is a holistic concept that takes different forms with other connectives, as illustrated by the rules for

conjunction, ∧.19 The introduction rule for ∧, from Aα and Bα to infer A ∧ Bα, requires the same assumptions are

used in obtaining both A and B, which is represented by them having the same subscript, α, which is attached to

A ∧ B.20 This is required to prevent the reintroduction of the paradoxes of implication via a detour through

conjunction.21

The Use Criterion is, at first blush, compelling. Anderson and Belnap took the Use Criterion to motivate some

of the stronger logics, R, E, and T. Apart from Anderson and Belnap, others have adopted a form of the Use Cri-

terion in motivating certain logics.22 Mares (2004) adopts a form of the Use Criterion in his theory of situated

inference, which supports the logic R.23 Read (1988) appeals to the Use Criterion, especially in connection with the

fusion connective, although he has a separate account of relevance in validity.

The Use Criterion has, nonetheless, had its detractors. Both Copeland (1980) and Meyer (1985) have objected

that the Use Criterion does not rule out irrelevance without a prior conception of use. A looser conception of use

can result in classical logic, rather than a relevant logic.24 And, further, even with a stringent conception of use, the

Use Criterion does not uniquely pick out R, as illustrated by Brady (1984b).25 The proper response, I think, is to

concede these points to Copeland and Meyer. The Use Criterion does not, on its own, distinguish a privileged

relevant logic, as there are different ways of formulating use. To land in the family of relevant logics, one must

adopt a more substantive conception of use than in a conception that results in classical logic, what Mares calls

“real use”.

The Use Criterion of Anderson and Belnap motivates relevant logics with the idea that if A → B is a logical

truth, one needs to use the antecedent in a substantive way to obtain the consequent. The concept of use is

typically spelled out in a proof system. Anderson and Belnap's conception of use naturally results in R, but one can

put more stringent requirements on use in order to obtain different relevant logics.26 For example, one might

prohibit repeated uses of assumptions by requiring that in → E, the subscripts be disjoint, which will block

contraction principles and lead to the logics RW or TW. We can see how the Use Criterion secures the variable‐
sharing criterion via a strict conception of use: If A and B do not share a variable, one will not be able to really

use A in obtaining B.

To summarize, the Use Criterion view says that valid implication reflects the fact that antecedents are used, in

a substantive way, in obtaining consequents. It is naturally associated with proof‐theoretic presentations of logics,

especially natural deduction and sequent systems. The Use Criterion has been primarily used in support of some of

the stronger relevant logics, such as R, E, and T. Despite this, the Use Criterion is compatible with a range of logics,

depending on the sense of use adopted.

3 | SUFFICIENCY

The next motivation, sufficiency, for relevant logics has been offered by Sylvan and Plumwood.27

Routley et al. (1982, p. x) say that genuine implication “amounts to total sufficiency”. A sufficiency implication is

one according to which nothing apart from the antecedent is needed for establishing the consequent.28 It is, in the

words of Routley (2019, p. 8), “a go‐anywhere notion, which is not limited by the fact that situation in which it

6 of 18 - STANDEFER
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operates is somehow classically incoherent.” In particular, neither changing the accessible situations nor even

changing the laws of logic should result in the truth of the antecedent failing to suffice for the truth of the

consequent.29 A sufficiency implication connective must avoid illegitimately appealing to unstated truths. Tradi-

tional enthymemes are typically viewed as invalid, omitting contingent premises, sufficiency prohibits the omission

of necessary or even logical truths. The reason is that sufficiency implication must work even where the omitted

logical truths fail, as they can in models for relevant logics.

Sufficiency is itself sufficient for relevance, although the latter is not a foundational concept. Sylvan says,

“Relevance of consequence [sic] to antecedent, though a hallmark of an adequate implicational relation, is strictly

a by‐product of a good sufficiency notion; for if B has nothing to do with A then A can hardly be sufficient for

B.”30 If A is not even formally relevant to B, in the sense that they share no atoms, then it will be possible to

make A true while B is false, thereby ensuring that A is not sufficient for B. Formal results, such as the

Ackermann property, Maksimova property, or depth relevance properties provide further detail on ways suffi-

ciency can fail.31

The sufficiency idea is first presented, by Routley and Routley (1972), in the context of first‐degree entailment

(FDE), a logic in which there are no nested implications and every formula is of the form A → B where A and B

contain only atoms and the connectives ∧, ∨, and ¬. FDE is important in the context of relevant logics because it is

contained in all the standard relevant logics.32 The axioms and rules of FDE are presented in Table 3.33 Sylvan and

Plumwood argue that, in the context of FDE, sufficiency is equivalent to two related ideas, suppression‐freedom and

maximum variation.

The first, suppression‐freedom, says that the implication of the logic must reject suppression principles. Ac-

cording to Routley et al. (1982, p. 141), “A suppression principle is one that suppresses information required to

proceed generally from antecedent to consequents. With suppression principles antecedents are not (everywhere)

sufficient on their own for consequents.” An example of a suppression principle is the rule A, (A ∧ B) → C ⇒ B → C.

According to this rule, the sufficiency of A and B together for C would yield the sufficiency of B for C, given the

validity of A. Traditional enthymemes are one form of suppression, but there are other forms of suppression.

Classical logic exhibits suppression, for example in the validity of q → (p → p), whose unsuppressed form is (q ∧ (p →
p)) → (p → p).

Once one moves beyond FDE to the full relevant logics, it is not clear that suppression‐freedom is equivalent to

sufficiency. Øgaard (2020) provides a natural way of formalizing suppression‐freedom in terms of the two

principles.34

Anti‐Suppressive Principle: For every formula A, there are formulas B and C such that (A ∧ B) → C is valid but B →
C is not.

Joint Force Principle: For every formula A, there are formulas B and C such that (A ∧ B) → C is valid while neither

A → C nor B → C is.

Øgaard shows that these principles are not stronger than Belnap's variable‐sharing criterion. Indeed, while

there are some principles identified as suppression principles that result in violations of Belnap's variable‐sharing

TAB L E 3 Axioms and rules of FDE.

Axioms Rules

(A ∧ B) → A, (A ∧ B) → B A → B, A → C ⇒ A → (B ∧ C)

A → (A ∨ B), B → (A ∨ B) A → C, B → C ⇒ (A ∨ B) → C

¬¬A → A, A → ¬¬A A → B ⇒ ¬B → ¬A

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)) A → B, B → C ⇒ A → C

STANDEFER - 7 of 18
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criterion, such as ((A ∧ B) → C) → (A → (B → C)),35 there are some principles that are so identified that are

compatible with relevance in the formal sense, e.g. (A → B) → ((B → C) → (A → C)).

The second idea that Sylvan and Plumwood say is equivalent to sufficiency in the context of FDE is the principle

of maximum variation: “for every proposition B which is not a consequence of A there is some [situation] which A is

in to which B does not belong. Any violation of this maximum variation principle will allow suppression some-

where”36 To ensure that nothing is suppressed in the antecedent, that an antecedent really is sufficient for the

consequent, one must consider a maximally varying array of situations. This has a clear meaning in the context of

FDE, although, as with suppression‐freedom, it is less clear how it is to be understood in the context of the full

logics.

Sufficiency, as a basis for relevant logics, is naturally associated with model theory, such as the ternary rela-

tional models developed by Sylvan and Meyer.37 The early work by Sylvan and Plumwood introducing sufficiency

focused on models, and models can be used to make sense of the laws of logic varying, as these models will have

points where some logical truths fail.38 Different situations may falsify different putative logical laws. The model‐
based approach fits naturally with the tendency of proponents of sufficiency to defend weaker logics, such as B and

DJ, since placing fewer conditions on models results in weaker logics being validated.39

Although there is a natural affinity between sufficiency and models, proponents of sufficiency, such as Sylvan

and Plumwood, do talk about sufficiency in connection with deducibility. Plumwood (2023) explicitly talks about

sufficiency linked with the Use Criterion of Anderson and Belnap.

Proponents of sufficiency do not advocate for a single logic. Sufficiency understood in terms of models, appears

to support the weaker, non‐contractive relevant logics. Routley (2019) strongly suggests that in his discussion of

the non‐contractive logics, there called “ultramodal logics”, and Mares (2019) argues that Sylvan's desiderata favor

a weak, non‐contractive relevant logic.40

The sufficiency idea has some shortcomings. One shortcoming is that it is unclear how one should understand

sufficiency, or the principle of maximum variation, in the context of models for the full logics, rather than the

restricted context of FDE. A second is that sufficiency builds in a commitment to the claim that no formula has a

substantive connection of meaning with every other formula, as in the Joint Force and Anti‐Suppressive Principles.

From the classical logician's point of view, every formula is sufficient for a tautology, as the meaning of a tautology

is empty. The classical logician may consider every classical valuation, or every classical possible world, but mere

truth‐functional sufficiency is not enough to establish sufficiency in the sense of Sylvan and Plumwood. The classical

logician has, according to the sufficiency advocate, not considered the recalcitrant situations where the laws of logic

fail and other impossible worlds.41 The principle of maximum variation needs to be formally specified in a way that

rules out classical truth‐functional sufficiency and other inadequate forms of sufficiency.

To summarize, the sufficiency view says that valid implication is a matter of the antecedent being sufficient for

the consequent, no matter what sort of situation one is in, even highly degenerate or otherwise impossible situ-

ations. It is naturally understood in terms of models. It motivates relevant logics because the connection it requires

of the implication connective must be strong. It delivers the variable‐sharing criterion as a consequence, since if A

and B do not even share an atom, there will be a situation in which A holds while B does not, meaning that A is not

sufficient for B. The view has been used primarily to motivate some of the weaker, non‐contractive relevant logics,

around B and DJ, although it does not clearly single out one as the preferred relevant logic.

4 | MEANING CONTAINMENT

The next motivation for relevant logics is that of meaning containment. Brady (2006) points out that Belnap's basic

relevance criterion fails to privilege a single logic, which he takes as an indication that it is too weak as a principle of

logic choice. The variable‐sharing criterion is a principle concerning mere meaning connection, which permits too

many options for logics. Instead, he opts for strengthening the connection to be one of meaning containment. Brady
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proposes that implications express meaning containments, where the content of the antecedent contains that of

the consequent.42

The meaning containment idea is used to argue against many principles of the stronger relevant logics that

feature nested implications. These principles do not generally reflect meaning containment, as the meanings of their

consequents are, plausibly, not contained in the meanings of their antecedents, such as p → ((p → q) → q), which is a

theorem of R. Brady has defended a few different, related logics of meaning of containment as he has refined his

view on meaning containment. These logics share the feature of being relatively weak, non‐contractive relevant

logics. The logic Brady has most recently defended, MC, differs from the logic DJ, defended by Brady (2006), in

dropping the distribution axiom, (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)), which is included in standard relevant logics.43

Brady has developed content algebra semantics, a kind of algebraic semantics, to provide some formal details

for his views on meaning.44 On this view, atoms have contents and the content of logically complex formulas

computed from the contents of their parts.45 On Brady's view, in a valid implication, the content of the antecedent

contains the content of the consequent. An important feature of the view is that the content of implications in-

cludes distinctive, implicational content, not generally found in the content of a non‐implication.46 The content of

implications includes anything that can be established from them. This fact can be used to explain why, for example,

p → (q → q) is invalid, as an atom need not have any implicational content.

The variable‐sharing criterion appears to be supported by the meaning containment view. One this view, all

formulas have content, and no formula is guaranteed to have a trivial content. If A and B do not share an atom, then,

in general, the content of A need not be contained in that of B. The content of A may, for example, deal with Mount

Taranaki, while the content of B may deal with the truths of group theory. Brady (1984a) presents a strengthened

variable‐sharing criterion that fits naturally with the meaning containment view.47

The meaning containment view has two potential shortcomings. The first is that, while the view works well to

justify the positive axioms, dealing with negation requires additional conceptual machinery. For this purpose Brady

introduces ranges, which are dual to contents, to interpret negation. Although formally elegant, they seem less

tightly connected to the motivating idea of meaning containment than content. The second is that the view is

difficult to combine with some of the other connectives often discussed in the area, such as fusion. Indeed,

Brady (2006, pp. 34, 35) argues in favor of rejecting fusion and some other connectives on the basis of concerns

stemming from meaning containment.

To summarize, the meaning containment view says that a valid implication expresses the containment of the

meaning of its consequent in its antecedent. It is naturally connected with an algebraic semantics. It motivates the

variable‐sharing criterion: if A and B do not share a variable, the meaning of B will, generally, fail to be contained in

that of A. The view provides a motivation for some non‐contractive relevant logics. The view highlights two

particular logics, DJ and MC, as most strongly supported by the view.

5 | THEORY CONSTRUCTION

An alternative route to relevant logics is offered by the view that logical entailment is the general operation of

theory closure.48 A theory is a set of formulas closed under some notion of logical entailment, represented by →,

which is to say that for a theory X, if A ∈ X and A entails B, then B ∈ X.49 The closure of a set of formulas is an

instance of the general operation of applying one set of formulas to another. Given sets of formulas X and Y, one can

consider the application of X to Y, X • Y, which will be the set of formulas B such that A → B ∈ X and A ∈ Y, for some

A. One obtains the logical closure of a set of formulas X by applying the logic, considered itself as a theory, to X.

Importantly, the application of one theory to another may fail to extend, or even be contained in, the latter theory.

In this context, theories are not required to contain every logical truth. This allows for the distinction between

theories containing a logic, namely containing every validity of the logic, and theories conforming to a logic, which is

the case for a theory X if whenever A ∈ X and A → B is valid in the logic, then B ∈ X. The distinction disappears in the
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face of non‐relevant logics. Such logics typically validate the principle A → T, where T is any logical truth, so every

theory will contain every logical truth. Theory construction is used both by Logan and by Mares to motivate

relevant logics.

Logan (2020, 2022, 2024), developing ideas from Beall (2017, 2018), argues for a relevant logic via the nature

of theories.50 Logic is a universal theory‐building toolbox, which can be used to construct theories of all sorts. The

general logical features of theories are supposed to come via the concept of theory application. Since logic is to be a

universal toolbox, as few assumptions are made about the concept of application as possible. On this view, valid

implications represent general principles of the universal theory‐building toolkit. Satisfying the variable‐sharing
criterion comes as a byproduct of the universality of logic, because it guarantees that there will be enough

theories to provide a counterexample to any implication where the antecedent and consequent do not share a

variable.

Taking a different approach, Mares (2024) is concerned with developing a logic of entailment, represented by

the implication connective. Entailment connects to theory construction because a logic of entailment is used to

elaborate the commitments of collections of axioms. This route to relevance starts with the lesson that avoiding the

paradoxes of implication is essential for a logic of entailment to be adequate. Otherwise, the logic will be contribute

its own content, not just elaborating the commitments of axioms. Mares motivates some plausible principles with

considerations derived from the concept of entailment.

Both Mares and Logan use theory application to construct models, adding an additional relation of theory

containment.51 Logan's models yield the logic B. Mares obtains a range of entailment logics by adopting plausible

principles on the application operator. In particular, Mares argues that considerations of necessity in connection

with entailment support adopting conditions on models that validate Anderson and Belnap's logic E.

In summary, the theory construction motivation connects valid implication with general approaches to building

theories. It leads fairly naturally to models, although they are different kinds of models than arose in the previous

sections. Variable‐sharing comes out as a consequence of the level of generality required of theory construction,

which results in few constraints being placed on the theory application operator. Mares's view is more tightly

connected to variable‐sharing, as it arises from concerns over entailment, while Logan's view seems less closely

wedded to variable‐sharing, as it arises more as a by‐product of the background view of theories. As with the other

motivations, theory construction does not clearly lead to a unique logic. Proponents have singled out two logics, B

and E, as plausible candidates for the preferred logics on this view.

6 | TRUTHMAKING

Truthmakers supply yet another route to relevant logics. According to truthmaker theory, a true statement is true

in virtue of some state of affairs obtaining. For example, the state of affairs in which Mount Taranaki is on the north

island of New Zealand makes true the claim “Mount Taranaki is on the north island of New Zealand”, while it is not

true in virtue of the state of affairs of the whole of the planet Earth. The latter state, in a sense, suffices for the

claim's truth, due to containing a state in virtue of which it is true. This is the difference between exact and inexact

truthmaking. The former requires that a verifying state “must be relevant as a whole to the truth of the statement”52

while inexact truthmaking simply requires a state to contain an exact truthmaker. Exact truthmaking brings with it

an intuitive notion of relevance, since if two claims share exact truth makers, they bear some relevance to each

other.53

Jago (2020) uses exact truthmaking and mereological fusion to provide an account of implication.54 The idea

behind these models is that an implication A → B is made true by a state x if, whenever a state y making true A is put

together, or mereologically fused, with x, the result is a state x ⊔ y making true B. Merelogical fusion is standardly

commutative, x ⊔ y = y ⊔ x, associative, (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z), and idempotent, x ⊔ x = x. Focusing on the

implicational fragment, the truthmaker models yield the logic R. One can obtain models for weaker logics by
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dropping postulates on mereological fusion, although the philosophical view works best and offers the most support

for R.55 Indeed, one departs from the theory of mereological fusion if one drops or alters the standard postulates.

It is important that a state exactly making true a claim does not suffice for a larger state exactly making true

that claim. One could have two states x and y that, respectively, exactly make true p and q while the mereological

fusion of states x and y, x ⊔ y, fails to exactly make true p, even though x is a part of x ⊔ y. Thus, x fails to exactly

make true q → p. This feature ensures that the paradoxes of implication can be invalidated.

The truthmaker view builds in a kind of relevance in the relation of exact truthmaking. This supports the

variable‐sharing criterion, as if A and B do not share an atom, then there will be a state that exactly makes true the

antecedent while yielding no exact truthmaker for the consequent.

In summary, the truthmaker view says that valid implications reflect an important relation between exact

truthmakers for antecedents and those of consequents. It naturally yields models for relevant implication. Incor-

porating the other connectives requires some additional conceptual machinery, in particular the addition of a

relation of refinement of states and the relation of compatibility between states. These relations are both philo-

sophically appealing and plausible, and the whole view provides a philosophical motivation for the logic R.

7 | CONCLUSION

We have surveyed five major motivations for relevant logics: the Use Criterion, sufficiency, meaning containment,

theory construction, and truthmaking. These have natural affinities with different presentations of logics. The Use

Criterion fits neatly with proof theory, the sufficiency view with model theory, particularly the Routley‐Meyer

models, meaning containment with content algebras, and the theory construction and truthmaking views with

versions of operational models.

These views have been associated with different logics. The Use Criterion and truthmaking views have been

associated with the contractive relevant logics, sufficiency and meaning containment with the non‐contractive
relevant logics, and the theory construction view has been associated with logic from both groups. To what

extent are these associations accident of history as opposed to important features of the philosophical views?

Getting clearer on the formal implications of the views may help settle the matter.

As noted, many of the motivations fail to privilege a single logic as the logic of relevance. Some logicians, such as

Mares and Meyer (2001) view this as a feature, while others, such as Brady (2017), view it as a bug. Can any of

those philosophical views be supplemented or augmented in a way that privilege a unique logic, the logic of rele-

vance? Should they be? To what extent are these views compatible with pluralism about logic?56 These seem to be

promising avenues to pursue.

As indicated above, some of the motivations can be combined. Some of these combinations are compelling and

underexplored, such as the combinations of use and sufficiency suggested by Plumwood (2023). There is room for

further development of these views, both on the philosophical and formal sides.

There are some philosophical views related to relevant logics that we have not covered but we will mention

them here. In a series of publications, Tennant has developed core logic, a kind of relevant logic, where the focus is

on a relevance constraint imposed at the sequent level, rather than at the level of the object language implication.57

Avron (1990, 1992) motivates the logic RM, which is related to the logic R but lacks the variable‐sharing property.

Finally, many authors have used informational semantics and informational interpretations of consequence in

support of relevant logics.58

ACKNOWLEDGEMENTS

I would like to thank Greg Restall, Ed Mares, Rohan French, Lloyd Humberstone, Tore Fjetland Øgaard, Thomas

Ferguson, Zach Weber, David Makinson, Ren‐June Wang, Fabio Lampert, S.M. Love, Andrew Tedder, Liam Kofi

Bright, Kaan Tabakci, Chanwoo Lee, Kory Matteoli, Shay Logan, and the students at Kansas State University for

STANDEFER - 11 of 18

 17479991, 2024, 2, D
ow

nloaded from
 https://com

pass.onlinelibrary.w
iley.com

/doi/10.1111/phc3.12965 by R
eadcube-L

abtiva, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



discussion and feedback on this material. This work was supported by the National Science and Technology Council

of Taiwan grant 111‐2410‐H‐002‐006‐MY3.

ORCID

Shawn Standefer https://orcid.org/0000-0002-3032-5290

ENDNOTES

1 See Dunn and Restall (2002), Bimbó (2007), and Mares (2020) for general overviews of the area.

2 This is a point noted, albeit in a more critical way, by Burgess (1983, p. 45), “Routleyanism and Ander-

sonianobelnapianism are so dissimilar that it is misleading to apply a single label ‘relevantism’ to both.”

3 There are other connectives commonly considered in the context of relevant logics, such as intensional

disjunction, aka fission, þ, omitted for lack of space. For further discussion of options for relevant conenctives, see

Standefer (2022).

4 For some discussion of relevant logics in the context of consequence relations, see Avron (2014), Øgaard (2022), or

Badia et al. (2022).

5 I use “principle” here as a neutral term for both axioms and rules.

6 These both lead to the first implicational paradox, given that (A ∧ B) → A is a logical truth. The former yields the first

paradox via modus ponens, and the latter yields the first paradox via a basic transitivity principle, inferring A → (B → D)

from A → (B → C) and C → D.

7 See Anderson and Belnap (1975, pp. 252–254) for a proof that many standard relevant logics satisfy the variable‐
sharing criterion. For further discussion of the variable‐sharing criterion and its refinements, see Brady (1984a),

Robles and Méndez (2011, 2012) and Logan (2021).

8 For discussion of the variable‐sharing criterion in the presence of propositional constants, see Yang (2013) and

Øgaard (2021).

9 It is worth noting one sometimes misunderstood feature of the variable‐sharing property. Whether an axiom, or axiom

scheme, produces violations of variable‐sharing may depend on the rest of the logic. The second paradox of implication

is a violation on its own, while other principles, such as A → (A → A), the mingle axiom, lead to violations of variable‐
sharing when added to R but not when added to T, as shown by Méndez et al. (2012). Because of this, one cannot

simply say that just because an implicational axiom has variables shared between antecedent and consequent, its

addition will not lead to violations of variable‐sharing.
10 For discussion of the sufficiency of variable‐sharing, see Standefer (in press).

11 The resulting axiomatizations are redundant, but that is fine for our purposes. Brady (1984b) provides non‐redundant
axiomatizations.

12 The logic FDE is presented in Table 3. It trades some axioms of B for rules, in addition to having an additional restriction

to be described later. The diagram in Table 1 says that DJ is contained in T even though conjunctive syllogism was not

explicitly added in Table 2. The reason is that the addition of contraction, along with the suffixing and prefixing axioms

and modus ponens, is enough to derive conjunctive syllogism.

13 For more on contraction principles, see Restall (1993), Bimbó (2006), Robles and Méndez (2014a), and Shapiro and

Beall (2021), among others. The study of naive set theory is an important motivation for the rejection of

contraction principles. For more about naive set theory, see, for example, Routley (2019) or Weber (2010, 2021,

2022).

14 In this section, we will talk about proofs involving assumptions, although the interest is in the theorems obtainable after

discharging all assumptions.

15 Anderson and Belnap (1975, p. 18). Emphasis in the original. The immediate context of the quotation is a Hilbert‐style
axiomatic derivation, but the points carry over to Fitch‐style natural deduction derivations.

16 Mares (2004, p. 6), emphasis in the original.

17 There are, of course, senses of use to be found in these latter proof systems. Anderson and Belnap (1975) explain what

this amounts to for the implication fragments of some logics, McRobbie and Belnap (1979) explain a way of

12 of 18 - STANDEFER

 17479991, 2024, 2, D
ow

nloaded from
 https://com

pass.onlinelibrary.w
iley.com

/doi/10.1111/phc3.12965 by R
eadcube-L

abtiva, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-3032-5290
https://orcid.org/0000-0002-3032-5290
https://orcid.org/0000-0002-3032-5290


understanding it in tableaux systems, and Makinson (2017, 2022) supplies an alternative way of understanding it in a

tableaux system.

18 The rule of weakening for sequent systems is . See Restall (2014a) for more on the representation of sequent

structural rules in natural deduction systems.

19 See Mares (2010) for a discussion of the rules for other connectives.

20 Another conjunction‐like connective, fusion (○), is used when the subscripts on A and B may potentially differ: from Aα

and Bβ to infer A ○ Bα∪β. The distinction between conjunction and fusion plays an important role in proof systems for

relevant logics. For discussion, see Read (1988) and Slaney (1990).

21 If one adopts the rule that from Aα and Bβ one can infer A ∧ Bα∪β, for example, then the paradoxes reemerge. From

assumptions of A{1} and B{2}, one could obtain A ∧ B{1,2}. One application of &E yields B{1,2}, from which A → (B → A)∅
follows by two applications of → I.

22 It is worth noting that Prawitz (1965, ch. 7) presents a proof system for a relevant logic based on a conception of strict

use, although it is a proof system for the semilattice logic of Urquhart (1972b). Urquhart (1989) presents an alternative

proof system for this logic and argues for it based on considerations of use.

23 The recent view of Mares (2024) is, in a way, a hybrid that combines the theory construction view and the Use Criterion.

24 As an example, if the conclusion of → E is Bγ where γ ⊇ α ∪ β, then one can derive both implicational paradoxes and land

at classical logic.

25 For additional discussion and criticism of the Use Criterion in the context of consequence relations for relevant logics,

see Øgaard (in press).

26 Anderson and Belnap provide some restrictions to the sense of use that result in different logics. Meyer and McRob-

bie (1982) present another way of tracking use, as does Mares (2021), whose systems are in many ways is similar to

those of Slaney (1990).

27 Richard Sylvan and Valerie Plumwood both had the surname Routley earlier in their lives. They later changed their

surnames, respectively, to Sylvan and Plumwood. We will follow the conventions of the field and cite their published

work under the published names, otherwise referring to them by their adopted names.

28 Routley et al. (1982, p. 141) claim that this idea can be found in Aristotle's Prior Analytics, where he says that in a valid

syllogism “no further term is required from without to make the consequence necessary.”

29 Cf. Routley (2019, pp. 7, 8).

30 Routley (2019, pp. 8, 9). Sylvan and Plumwood talk about entailment or implication relations in some places and con-

nectives in others.

31 For the first two, see Anderson and Belnap (1975, pp. 119, 243). The third was introduced by Brady (1984a), and for

further discussion, see Robles and Méndez (2014a, 2014b) or Logan (2021).

32 See Omori and Wansing (2017) for an overview of FDE. FDE has been widely used in philosophy and logic. For

example, Belnap (1977a, 1977b) argues that FDE is how a computer should reason about databases potentially

containing inconsistent or incomplete information, and Camp (2002) argues that FDE is a good logic for analyzing

confusion.

33 FDE is often presented as a sequent system, rather than as an axiom system, as done here, but this presentation in-

dicates how FDE can be contained in our other relevant logics.

34 These principles are also formulated by Plumwood (2023). Øgaard considers strengthenings of these principles as well.

35 To elaborate this claimed violation, the validity of A → (B → A) follows from (A ∧ B) → A, given the principle.

36 Routley and Routley (1972, p. 341).

37 The key feature of ternary relational models is a ternary relation R on a set of points K, used to interpret implication

with the following condition.

x ⊩ B → C iff for all y, z ∈ K, if Rxyz and y ⊩ B, then z ⊩ C.

As with Kripke models for modal logics, one can obtain models for different logics by placing conditions on R. The

logics of this paper are all sound and complete with respect to different classes of ternary relational models. For

discussion of the philosophical interpretation of these models, see Beall et al. (2012).
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38 See Sandgren and Tanaka (2020) for discussion of kinds of logical impossibility.

39 In this respect, perhaps the algebraic semantics of Meyer and Routley (1972), the simplified semantics of Priest and

Sylvan (1992), or the collection frames of Restall and Standefer (2023) make for even better candidates for establishing

sufficiency.

40 Nolan (2018) argues that Sylvan's desiderata can be met by much stronger logics.

41 Some classical logicians, such as Berto and Jago (2013), will admit impossible worlds into their models. Such logicians

will have a different conception of what it is for an implication to hold in a model. One can admit incomplete situations

into one's models and still get classical logic and even some of its modal extensions, as demonstrated by Humber-

stone (1981), for example.

42 It should be noted that Brady prefers the term ‘entailments’ for ‘implications’. There are so‐called logics of analytic

implication, developed by Parry and Angell, for example, that also adopt a version of this principle. For discussion of

connections between these approaches and relevant logics, see Deutsch (1985). See Ferguson (2017), French (2017),

and Szmuc (2021) for some recent developments of these logics. Further exploration between logics of analytic

implication and relevant logics seems promising.

43 See Brady and Meinander (2013).

44 See Brady (2006, ch. 2), and the citations found therein.

45 The contents described here are not sets of worlds. In some respects, they are similar to the topics discussed by

Berto (2022).

46 See Brady (1996, 2006) for the updated content semantics with distinctive content for the implications.

47 This strengthened criterion, depth relevance, concerns sharing a proposition variable under the same number of nested

implications. It is further discussed by Robles and Méndez (2014a, 2014b) and by Logan (2021).

48 A closure operator c is defined to obey the following three conditions, where X and Y are sets: (i) X ⊆ cðXÞ, (ii)

cðXÞ ¼ cðcðXÞÞ, and (iii) if X ⊆ Y, then cðXÞ ⊆ cðYÞ.

49 In the relevant logic context, there is typically a requirement that theories be closed under conjunction introduction, so

that if A ∈ X and B ∈ X, then A ∧ B ∈ X. We do not need to worry about this detail here.

50 Beall takes his arguments to support FDE rather than B.

51 The models are similar to the operational models of Fine (1974) and Urquhart (1972a), rather than the ternary relational

models of Routley and Meyer (1972a, 1972b). In these models, implications are interpreted using application as an

operation on a set of theories K with the following condition.

x ⊩ B → C iff for all y ∈ K, if y ⊩ B, then x•y ⊩ C.

52 Fine (2017, p. 628).

53 Van Fraassen (1969) demonstrated a natural connection between truthmakers, which he called facts,

and FDE. Restall (1996) arrives at a non‐relevant, near relative of FDE through considerations of truthmakers as

well.

54 The models based on truthmakers are formally similar to the operational models of Fine (1974) and of Urquhart (1972a).

In particular, they use the following semantic clause.

x ⊩ B → C iff for all y ∈ K, if y ⊩ B, then x ⊔ y ⊩ C.

55 Majer et al. (2023) generalize the formal theory beyond R to weaker logics.

56 See Beall and Restall (2005), Restall (2014b), and Kouri (2016) for discussion of logical pluralism and relevant

logics.

57 See Tennant (2017) for a presentation of the current form of core logic. Tennant (2015) compares core logic and R with

respect to various variable‐sharing properties.

58 See Urquhart (1972a), Slaney (1990), and Allo and Mares (2011), among others.

14 of 18 - STANDEFER

 17479991, 2024, 2, D
ow

nloaded from
 https://com

pass.onlinelibrary.w
iley.com

/doi/10.1111/phc3.12965 by R
eadcube-L

abtiva, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



REFERENCES

Allo, P., & Mares, E. (2011). Informational semantics as a third alternative? Erkenntnis, 77(2), 167–185. https://doi.org/10.

1007/s10670‐011‐9356‐1
Anderson, A. R., & Belnap, N. D. (1975). Entailment: The Logic of Relevance and Necessity, Vol. I. Princeton University Press.

Avron, A. (1990). Relevance and paraconsistency–a new approach. The Journal of Symbolic Logic, 55(2), 707–732. https://doi.

org/10.2307/2274660

Avron, A. (1992). Whither relevance logic? Journal of Philosophical Logic, 21(3), 243–281. https://doi.org/10.1007/

bf00260930

Avron, A. (2014). What is relevance logic? Annals of Pure and Applied Logic, 165(1), 26–48. https://doi.org/10.1016/j.apal.

2013.07.004

Badia, G., Běhounek, L., Cintula, P., & Tedder, A. (2022). Relevant consequence relations: An invitation. Review of Symbolic
Logic, 1–31. https://doi.org/10.1017/s1755020323000205

Beall, J. (2017). There is no logical negation: True, false, both, and neither. Australasian Journal of Logic, 14(1), 1–29. https://

doi.org/10.26686/ajl.v14i1.4025

Beall, J. (2018). The simple argument for subclassical logic. Philosophical Issues, 28(1), 30–54. https://doi.org/10.1111/phis.

12133

Beall, J., Brady, R., Dunn, J. M., Hazen, A. P., Mares, E., Meyer, R. K., Priest, G., Restall, G., Ripley, D., Slaney, J., & Sylvan, R.

(2012). On the ternary relation and conditionality. Journal of Philosophical Logic, 41(3), 595–612. https://doi.org/10.

1007/s10992‐011‐9191‐5
Beall, J., & Restall, G. (2005). Logical Pluralism. Oxford University Press.

Belnap, N. (1977a). How a computer should think. In G. Ryle (Ed.), Contemporary aspects of philosophy (pp. 30–56). Oriel

Press.

Belnap, N. (1977b). A useful four‐valued logic. In J. M. Dunn & G. Epstein (Eds.), Modern uses of multiple‐valued logic
(pp. 8–37). Reidel.

Berto, F. (2022). Topics of Thought. The Logic of Knowledge, Belief, Imagination. Oxford University Press.

Berto, F., & Jago, M. (2013). Impossible Worlds. Oxford University Press.

Bimbó, K. (2006). Curry‐type paradoxes. Logique et Analyse, 49(195), 227–240.

Bimbó, K. (2007). Relevance logics. In Jacquette, D., editor, Philosophy of Logic, volume 5 of Handbook of the Philosophy of
Science, pages 723–789. Elsevier.

Brady, R. T. (1984a). Depth relevance of some paraconsistent logics. Studia Logica, 43(1–2), 63–73. https://doi.org/10.1007/

bf00935740

Brady, R. T. (1984b). Natural deduction systems for some quantified relevant logics. Logique et Analyse, 27(8), 355–377.

Brady, R. T. (1996). Relevant implication and the case for a weaker logic. Journal of Philosophical Logic, 25(2), 151–183.

https://doi.org/10.1007/bf00247002

Brady, R. T. (2006). Universal Logic. CSLI Publications.

Brady, R. T. (2017). Some concerns regarding ternary‐relation semantics and truth‐theoretic semantics in general. IfCoLog
Journal of Logics and Their Applications, 4(3), 755–781.

Brady, R. T., & Meinander, A. (2013). Distribution in the Logic of Meaning Containment and in Quantum Mechanics. In

F. Berto, E. Mares, K. Tanaka, & F. Paoli (Eds.), Paraconsistency: Logic and Applications (pp. 223–255). Springer.

Burgess, J. P. (1983). Common sense and “relevance”. Notre Dame Journal of Formal Logic, 24(1), 41–53. https://doi.org/10.

1305/ndjfl/1093870219

Camp, J. L. (2002). Confusion: A Study in the Theory of Knowledge. Harvard University Press.

Copeland, B. J. (1980). The trouble Anderson and Belnap have with relevance. Philosophical Studies, 37(4), 325–334. https://

doi.org/10.1007/bf00354901

Deutsch, H. (1985). Relevance and conformity. Notre Dame Journal of Formal Logic, 26(4), 455–462. https://doi.org/10.1305/

ndjfl/1093870937

Dunn, J. M., & Restall, G. (2002). Relevance logic. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of Philosophical Logic
(volume 62nd ed., pp. 1–136). Kluwer.

Ferguson, T. M. (2017). Meaning and Proscription in Formal Logic: Variations on the Propositional Logic of William T. Parry.
Springer Verlag.

Fine, K. (1974). Models for entailment. Journal of Philosophical Logic, 3(4), 347–372. https://doi.org/10.1007/bf00257480

Fine, K. (2017). A theory of truthmaker content I: Conjunction, disjunction and negation. Journal of Philosophical Logic, 46(6),

625–674. https://doi.org/10.1007/s10992‐016‐9413‐y
French, R. (2017). A simple sequent calculus for Angell’s logic of analytic containment. Studia Logica, 105(5), 971–994.

https://doi.org/10.1007/s11225‐017‐9719‐y
Humberstone, L. (1981). From worlds to possibilities. Journal of Philosophical Logic, 10(3), 313–339. https://doi.org/10.1007/

bf00293423

STANDEFER - 15 of 18

 17479991, 2024, 2, D
ow

nloaded from
 https://com

pass.onlinelibrary.w
iley.com

/doi/10.1111/phc3.12965 by R
eadcube-L

abtiva, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s10670-011-9356-1
https://doi.org/10.1007/s10670-011-9356-1
https://doi.org/10.2307/2274660
https://doi.org/10.2307/2274660
https://doi.org/10.1007/bf00260930
https://doi.org/10.1007/bf00260930
https://doi.org/10.1016/j.apal.2013.07.004
https://doi.org/10.1016/j.apal.2013.07.004
https://doi.org/10.1017/s1755020323000205
https://doi.org/10.26686/ajl.v14i1.4025
https://doi.org/10.26686/ajl.v14i1.4025
https://doi.org/10.1111/phis.12133
https://doi.org/10.1111/phis.12133
https://doi.org/10.1007/s10992-011-9191-5
https://doi.org/10.1007/s10992-011-9191-5
https://doi.org/10.1007/bf00935740
https://doi.org/10.1007/bf00935740
https://doi.org/10.1007/bf00247002
https://doi.org/10.1305/ndjfl/1093870219
https://doi.org/10.1305/ndjfl/1093870219
https://doi.org/10.1007/bf00354901
https://doi.org/10.1007/bf00354901
https://doi.org/10.1305/ndjfl/1093870937
https://doi.org/10.1305/ndjfl/1093870937
https://doi.org/10.1007/bf00257480
https://doi.org/10.1007/s10992-016-9413-y
https://doi.org/10.1007/s11225-017-9719-y
https://doi.org/10.1007/bf00293423
https://doi.org/10.1007/bf00293423


Jago, M. (2020). Truthmaker semantics for relevant logic. Journal of Philosophical Logic, 49(4), 681–702. https://doi.org/10.

1007/s10992‐019‐09533‐9
Kouri, T. (2016). Restall’s proof‐theoretic pluralism and relevance logic. Erkenntnis, 81(6), 1243–1252. https://doi.org/10.

1007/s10670‐015‐9792‐4
Logan, S. A. (2020). Putting the stars in their places. Thought: A Journal of Philosophy, 9(3), 188–197. https://doi.org/10.

1002/tht3.462

Logan, S. A. (2021). Strong depth relevance. Australasian Journal of Logic, 18(6), 645–656. https://doi.org/10.26686/ajl.v18i6.

7081

Logan, S. A. (2022). Deep fried logic. Erkenntnis, 87(1), 257–286. https://doi.org/10.1007/s10670‐019‐00194‐3
Logan, S. A. (2024). Relevance Logic. Elements in Philosophy and Logic. Cambridge University Press. https://www.cambridge.

org/core/elements/abs/relevance‐logic/EE3D303684D4EC942A4988B3DFB2E64E

Majer, O., Punčochář, V., & Sedlár, I. (2023). Truth‐maker semantics for some substructural logics. In F. Faroldi & F. Van De

Putte (Eds.), Kit fine on truthmakers, relevance, and non‐classical logic (pp. 207–222). Springer. https://doi.org/10.1007/

978‐3‐031‐29415‐0_11

Makinson, D. (2017). Relevance via decomposition: A project, some results, an open question. Australasian Journal of Logic,
14(3), 356–377. https://doi.org/10.26686/ajl.v14i3.4009

Makinson, D. (2022). Relevance‐sensitive truth‐trees. In I. Düntsch & E. Mares (Eds.), Alasdair Urquhart on Nonclassical and
Algebraic Logic and Complexity of Proofs (pp. 23–65). Springer Verlag.

Mares, E. D. (2004). Relevant Logic: A Philosophical Interpretation. Cambridge University Press.

Mares, E. D. (2010). The nature of information: A relevant approach. Synthese, 175(1), 111–132. https://doi.org/10.1007/

s11229‐010‐9737‐z
Mares, E. D. (2019). The universality of relevance. In Z. Weber (Ed.), Ultralogic as Universal? (pp. 135–160). Springer In-

ternational Publishing.

Mares, E. D. (2020). Relevance Logic. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (winter 2020 edition).

Metaphysics Research Lab, Stanford University.

Mares, E. D. (2021). An informational interpretation of weak relevant logic and relevant property theory. Synthese, 199(S3),

547–569. https://doi.org/10.1007/s11229‐017‐1524‐7
Mares, E. D. (2024). The Logic of Entailment and its History. Cambridge University Press.

Mares, E. D., & Meyer, R. K. (2001). Relevant logics. In L. Goble (Ed.), The Blackwell Guide to Philosophical Logic (pp. 280–308).

Blackwell.

McRobbie, M. A., & Belnap, N. D. (1979). Relevant analytic tableaux. Studia Logica, 38(2), 187–200. https://doi.org/10.1007/

bf00370441

Méndez, J. M., Robles, G., & Salto, F. (2012). Ticket entailment plus the mingle axiom has the variable‐sharing property.

Logic Journal of IGPL, 20(1), 355–364. https://doi.org/10.1093/jigpal/jzr046

Meyer, R. K. (1985). A farewell to entailment. In G. Dorn & P. Weingartner (Eds.), Foundations of Logic and Linguistics,
Problems and Their Solutions, volume 577– 636. Plenum Press.

Meyer, R. K., & McRobbie, M. A. (1982). Multisets and relevant implication II. Australasian Journal of Philosophy, 60(3),

265–281. https://doi.org/10.1080/00048408212340681

Meyer, R. K., & Routley, R. (1972). Algebraic analysis of entailment I. Logique et Analyse, 15, 407–428.

Nolan, D. (2018). Reflections on Routley’s ultralogic program. Australasian Journal of Logic, 15(2), 407–430. https://doi.org/

10.26686/ajl.v15i2.4866

Øgaard, T. F. (2020). Farewell to suppression‐freedom. Logica Universalis, 14(3), 297–330. https://doi.org/10.1007/s11787‐
020‐00255‐0

Øgaard, T. F. (2021). Non‐Boolean classical relevant logics II: Classicality through truth‐constants. Synthese, 199(3–4),

6169–6201. https://doi.org/10.1007/s11229‐021‐03065‐z
Øgaard, T. F. (2022). Confused entailment. Topoi, 41(1), 207–219. https://doi.org/10.1007/s11245‐021‐09758‐x
Øgaard, T. F. (in press). Withered relevance: Evaluating the Anderson‐Belnap account of relevant logics. In A. Tedder, I.

Sedlár, & S. Standefer (Eds.), New Directions in Relevant Logic. Springer.
Omori, H., & Wansing, H. (2017). 40 years of FDE: An introductory overview. Studia Logica, 105(6), 1021–1049. https://doi.

org/10.1007/s11225‐017‐9748‐6
Plumwood, V. (2023). Some false laws of logic. Australasian Journal of Logic, 20(2), 97–137. https://doi.org/10.26686/ajl.

v29i2.8286

Prawitz, D. (1965). Natural Deduction: A Proof‐Theoretical Study. Almqvist and Wicksell.

Priest, G., & Sylvan, R. (1992). Simplified semantics for basic relevant logics. Journal of Philosophical Logic, 21(2), 217–232.

https://doi.org/10.1007/bf00248640

Read, S. (1988). Relevant Logic: A Philosophical Examination of Inference. Blackwell.

Restall, G. (1993). How to be really contraction free. Studia Logica, 52(3), 381–391. https://doi.org/10.1007/bf01057653

16 of 18 - STANDEFER

 17479991, 2024, 2, D
ow

nloaded from
 https://com

pass.onlinelibrary.w
iley.com

/doi/10.1111/phc3.12965 by R
eadcube-L

abtiva, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s10992-019-09533-9
https://doi.org/10.1007/s10992-019-09533-9
https://doi.org/10.1007/s10670-015-9792-4
https://doi.org/10.1007/s10670-015-9792-4
https://doi.org/10.1002/tht3.462
https://doi.org/10.1002/tht3.462
https://doi.org/10.26686/ajl.v18i6.7081
https://doi.org/10.26686/ajl.v18i6.7081
https://doi.org/10.1007/s10670-019-00194-3
https://www.cambridge.org/core/elements/abs/relevance-logic/EE3D303684D4EC942A4988B3DFB2E64E
https://www.cambridge.org/core/elements/abs/relevance-logic/EE3D303684D4EC942A4988B3DFB2E64E
https://doi.org/10.1007/978-3-031-29415-0_11
https://doi.org/10.1007/978-3-031-29415-0_11
https://doi.org/10.26686/ajl.v14i3.4009
https://doi.org/10.1007/s11229-010-9737-z
https://doi.org/10.1007/s11229-010-9737-z
https://doi.org/10.1007/s11229-017-1524-7
https://doi.org/10.1007/bf00370441
https://doi.org/10.1007/bf00370441
https://doi.org/10.1093/jigpal/jzr046
https://doi.org/10.1080/00048408212340681
https://doi.org/10.26686/ajl.v15i2.4866
https://doi.org/10.26686/ajl.v15i2.4866
https://doi.org/10.1007/s11787-020-00255-0
https://doi.org/10.1007/s11787-020-00255-0
https://doi.org/10.1007/s11229-021-03065-z
https://doi.org/10.1007/s11245-021-09758-x
https://doi.org/10.1007/s11225-017-9748-6
https://doi.org/10.1007/s11225-017-9748-6
https://doi.org/10.26686/ajl.v29i2.8286
https://doi.org/10.26686/ajl.v29i2.8286
https://doi.org/10.1007/bf00248640
https://doi.org/10.1007/bf01057653


Restall, G. (1996). Truthmakers, entailment and necessity. Australasian Journal of Philosophy, 74(2), 331–340. https://doi.org/

10.1080/00048409612347331

Restall, G. (2014a). Normal proofs, cut free derivations and structural rules. Studia Logica, 102(6), 1143–1166. https://doi.

org/10.1007/s11225‐014‐9598‐4
Restall, G. (2014b). Pluralism and proofs. Erkenntnis, 79(S2), 279–291. https://doi.org/10.1007/s10670‐013‐9477‐9
Restall, G., & Standefer, S. (2023). Collection frames for distributive substructural logics. Review of Symbolic Logic, 16(4),

1120–1157. https://doi.org/10.1017/s1755020322000272

Robles, G., & Méndez, J. M. (2011). A class of simpler logical matrices for the variable‐sharing property. Logic and Logical
Philosophy, 20(3), 241–249. https://doi.org/10.12775/llp.2011.014

Robles, G., & Méndez, J. M. (2012). A general characterization of the variable‐sharing property by means of logical matrices.

Notre Dame Journal of Formal Logic, 53(2), 223–244. https://doi.org/10.1215/00294527‐1715707

Robles, G., & Méndez, J. M. (2014a). Blocking the routes to triviality with depth relevance. Journal of Logic, Language and
Information, 23(4), 493–526. https://doi.org/10.1007/s10849‐014‐9199‐7

Robles, G., & Méndez, J. M. (2014b). Generalizing the depth relevance condition: Deep relevant logics not included in R‐
mingle. Notre Dame Journal of Formal Logic, 55(1), 107–127. https://doi.org/10.1215/00294527‐1960461

Routley, R. (2019). Ultralogic as Universal? The Sylvan Jungle ‐ Volume 4. Springer Verlag. This includes a republication of the

Appendix of Exploring Meinong’s Jungle and Beyond (1980), pp. 893–962.

Routley, R., & Meyer, R. K. (1972a). The semantics of entailment—II. Journal of Philosophical Logic, 1(1), 53–73. https://doi.

org/10.1007/bf00649991

Routley, R., & Meyer, R. K. (1972b). The semantics of entailment—III. Journal of Philosophical Logic, 1(2), 192–208. https://

doi.org/10.1007/bf00650498

Routley, R., Plumwood, V., Meyer, R. K., & Brady, R. T. (1982). Relevant Logics and Their Rivals, volume 1. Ridgeview.

Routley, R., & Routley, V. (1972). The semantics of first degree entailment. Noûs, 6(4), 335–359. https://doi.org/10.2307/

2214309

Sandgren, A., & Tanaka, K. (2020). Two kinds of logical impossibility. Noûs, 54(4), 795–806. https://doi.org/10.1111/nous.

12281

Shapiro, L., & Beall, J. (2021). Curry’s Paradox. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2021

edition). Metaphysics Research Lab, Stanford University.

Slaney, J. (1990). A general logic. Australasian Journal of Philosophy, 68(1), 74–88. https://doi.org/10.1080/

00048409012340183

Standefer, S. (2022). What is a relevant connective? Journal of Philosophical Logic, 51(4), 919–950. https://doi.org/10.1007/

s10992‐022‐09655‐7
Standefer, S. (in press). Variable‐sharing as relevance. In A. Tedder, I. Sedlár, & S. Standefer (Eds.), New Directions in Relevant

Logic. Springer.
Szmuc, D. E. (2021). A simple logical matrix and sequent calculus for Parry’s logic of analytic implication. Studia Logica,

109(4), 791–828. https://doi.org/10.1007/s11225‐020‐09926‐x
Tennant, N. (2015). The relevance of premises to conclusions of core proofs. Review of Symbolic Logic, 8(4), 743–784.

https://doi.org/10.1017/s1755020315000040

Tennant, N. (2017). Core Logic. Oxford University Press.

Urquhart, A. (1972a). Semantics for relevant logics. The Journal of Symbolic Logic, 37(1), 159–169. https://doi.org/10.2307/

2272559

Urquhart, A. (1972b). The Semantics of Entailment. PhD thesis. University of Pittsburgh.

Urquhart, A. (1989). What is relevant implication? In J. Norman & R. Sylvan (Eds.), Directions in Relevant Logic (pp. 167–174).

Kluwer.

Van Fraassen, B. C. (1969). Facts and tautological entailments. Journal of Philosophy, 66(15), 477–487. https://doi.org/10.

2307/2024563

Weber, Z. (2010). Transfinite numbers in paraconsistent set theory. Review of Symbolic Logic, 3(1), 71–92. https://doi.org/10.

1017/s1755020309990281

Weber, Z. (2021). Paradoxes and Inconsistent Mathematics. Cambridge University Press.

Weber, Z. (2022). Paraconsistency in Mathematics. Elements in the Philosophy of Mathematics. Cambridge University Press.

Yang, E. (2013). R and relevance principle revisited. Journal of Philosophical Logic, 42(5), 767–782. https://doi.org/10.1007/

s10992‐012‐9247‐1

STANDEFER - 17 of 18

 17479991, 2024, 2, D
ow

nloaded from
 https://com

pass.onlinelibrary.w
iley.com

/doi/10.1111/phc3.12965 by R
eadcube-L

abtiva, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1080/00048409612347331
https://doi.org/10.1080/00048409612347331
https://doi.org/10.1007/s11225-014-9598-4
https://doi.org/10.1007/s11225-014-9598-4
https://doi.org/10.1007/s10670-013-9477-9
https://doi.org/10.1017/s1755020322000272
https://doi.org/10.12775/llp.2011.014
https://doi.org/10.1215/00294527-1715707
https://doi.org/10.1007/s10849-014-9199-7
https://doi.org/10.1215/00294527-1960461
https://doi.org/10.1007/bf00649991
https://doi.org/10.1007/bf00649991
https://doi.org/10.1007/bf00650498
https://doi.org/10.1007/bf00650498
https://doi.org/10.2307/2214309
https://doi.org/10.2307/2214309
https://doi.org/10.1111/nous.12281
https://doi.org/10.1111/nous.12281
https://doi.org/10.1080/00048409012340183
https://doi.org/10.1080/00048409012340183
https://doi.org/10.1007/s10992-022-09655-7
https://doi.org/10.1007/s10992-022-09655-7
https://doi.org/10.1007/s11225-020-09926-x
https://doi.org/10.1017/s1755020315000040
https://doi.org/10.2307/2272559
https://doi.org/10.2307/2272559
https://doi.org/10.2307/2024563
https://doi.org/10.2307/2024563
https://doi.org/10.1017/s1755020309990281
https://doi.org/10.1017/s1755020309990281
https://doi.org/10.1007/s10992-012-9247-1
https://doi.org/10.1007/s10992-012-9247-1


AUTHOR BIOGRAPHY

Shawn Standefer is an Assistant Professor of Philosophy at National Taiwan University. He works primarily on

philosophical logic, particularly relevant logics. He is a co‐author, with Greg Restall, of Logical Methods (MIT

Press 2023). He is currently writing a manuscript on relevant logics.

How to cite this article: Standefer, S. (2024). Routes to relevance: Philosophies of relevant logics. Philosophy

Compass, e12965. https://doi.org/10.1111/phc3.12965

18 of 18 - STANDEFER

 17479991, 2024, 2, D
ow

nloaded from
 https://com

pass.onlinelibrary.w
iley.com

/doi/10.1111/phc3.12965 by R
eadcube-L

abtiva, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/phc3.12965

	Routes to relevance: Philosophies of relevant logics
	1 | BACKGROUND
	2 | USE CRITERION
	3 | SUFFICIENCY
	4 | MEANING CONTAINMENT
	5 | THEORY CONSTRUCTION
	6 | TRUTHMAKING
	7 | CONCLUSION
	ACKNOWLEDGEMENTS


