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ABSTRACT: A model of analogical mapping is proposed that uses five principles to 
construct an analogical map from a source to a target domain.  The principles follow the 
fine conceptual structure of the domains.  They are: (1) the principle of proportional 
analogy; (2) the principle of mereological analogy, (3) the principle of chain 
reinforcement; (4) the principle of transitive reinforcement; and (5) the principle of 
mutual inconsistency.  Each principle generates hypotheses regarding assignments of 
elements of the source domain to analogous elements of the target domain.  A constraint-
satisfaction network is used to find the set of hypotheses that preserves the greatest 
relational structure of the source.  In contrast to the model proposed here, most models of 
analogical mapping use only the principle of proportional analogy.  The use of many 
principles is shown to be superior in that it permits smoother integration of pragmatic 
factors and results in a more efficient mapping process. 
 
1. Introduction 
 
1.1 The Process of Analogical Cognition 
 Analogical cognition is a mental process that exploits parallelisms within existing 
knowledge to generate new knowledge.  Here we are concerned with analogies involving 
propositional knowledge.1  Propositional knowledge consists of terms organized into 
propositions.  A proposition is a structure containing a name, a predicate, and a set of 
arguments.  The name, predicate, and arguments are all terms.  We allow terms to 
correspond to concepts in long-term memory, and therefore hold that propositions are 
conceptual structures in long-term memory.2  Analogical cognition working with 
propositional knowledge is generally thought to have three phases (Hall, 1989): (1) an 
access phase; (2) a mapping phase; (3) a transfer phase.  The access and mapping phases 
find parallelisms between conceptual structures already existing in long-term memory; 
the transfer phase uses these parallelisms to extend conceptual structures, thereby 
creating new knowledge. 
 Analogical cognition begins with a particular system of terms about which the 
mind desires to know more.  This initial system is traditionally called the target.  Given 
the target, the access phase finds another system of terms which shares some relational 
structure with the target system.  This other system is traditionally called the source.   
The two systems involved in analogical cognition are usually called domains.  Hence we 

                                                
1Analogies involving propositional knowledge can be contrasted with perceptual and motor analogies.  
2We include both semantic and episodic memory in long-term memory; that is, we include both semantic 
and world knowledge in long-term memory.  We hold that the same principles organize both semantic and 
world knowledge.  Long-term memory contains both propositional and non-propositional knowledge: 
images (from all sensory modalities) are one kind of non-propositional knowledge; motor-programs are 
another.  
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speak of the target domain and the source domain.  We conceive of a domain as a set of 
propositions.  A set of propositions is a complex conceptual structure.  Domains can be 
thought of in terms of the scripts proposed by Schank and Abelson (1977), the 
experiential gestalts proposed by Lakoff and Johnson (1980), or the semantic fields 
proposed by Kittay (1987).   
 Once the target and source have been isolated, the mapping phase specifies a 
precise set of correspondences between source and target terms.  Formally, the task of the 
mapping phase is to produce an analogical mapping relation fM that pairs source terms 
with target terms.  The relation fM is a set of ordered pairs (s, t) where s is in the source 
and t is in the target.  Such ordered pairs are sometimes called matches, correspondences, 
or simply analogies.  The relation fM must preserve as much of the relational structure of 
the source as possible.  A function fM preserves the relational structure of the source to 
the extent that for each relation R(x,y) in the source there is a corresponding relation 
R(fM(x), fM(y)) in the target.  According to Gentner (1982, 1983), Gentner and Gentner 
(1983), and Falkenhainer, Forbus, and Gentner (1989), the structure-preserving relation 
fM must be a one-to-one function.  That is, fM must be an isomorphism.  As Holyoak & 
Thagard (1989) point out, the constraint that fM be one-to-one is too strong; they require 
only that fM be a function, thus allowing it to be many-to-one.  However the analogical 
mapping relation is conceived, analogical mapping generally is divided into two 
subprocesses: (1) generating candidate analogical matches (match hypotheses); (2) 
finding the "best" set of analogical matches within the set of match hypotheses.  This best 
set is the analogical mapping relation fM. 
 Whenever the knowledge associated with a source term is more extensive than the 
knowledge associated with a corresponding target term, the transference phase copies the 
source knowledge and associates it with the target term.  New knowledge about the target 
is thereby created. 
 
 
1.2 Approaches to Analogical Mapping 
   Recently several highly sophisticated computational approaches to analogical 
mapping have been developed.  Foremost among these recent approaches are Gentner's 
structure-mapping approach  (Gentner, 1982, 1983, 1988, 1989; Falkenhainer, Forbus & 
Gentner,1989) and Holyoak & Thagard's constraint-satisfaction approach (Holyoak & 
Thagard, 1989, 1990).  Each of these approaches is embodied in a computer program.  
Gentner's approach is realized in the Structure-Mapping Engine (SME), while Holyoak & 
Thagard's approach is embodied in the Analogical Constraint Mapping Engine (ACME).   
 The structure-mapping approach represents propositions as predicate calculus 
expressions, and domains as lists of such expressions.  It uses a set of match rules to 
generate match hypotheses.  The match rules used to compute match hypotheses 
implement a single principle, the classical principle of proportional analogy.  According 
to the principle of proportional analogy, if R(S1, S2, . . . Sn) is a proposition in the source, 
and R(T1, T2, . . . Tn) is a proposition in the target, then (Si,Ti) is a match hypothesis for i 
= 1, 2, . . . n.  Once match hypotheses have been computed, a variety of combinatorial 
techniques are used to combine them into maximally consistent collections called global 
matches.  Each global match is given a structural evaluation score.  The analogical 
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mapping relation is the global match with the highest score.  The structure mapping 
approach is primarily syntactic, concerned only with "the syntactic properties of the 
knowledge representations, without regard to either the specific content of the domains or 
the goals to be accomplished" during analogical cognition (Novick, 1988: 126).  The 
structure-mapping approach incorporates neither semantic nor pragmatic considerations.   
 The ACME approach to analogical mapping (Holyoak & Thagard, 1989a, 1989b, 
1990) incorporates syntactic, semantic, and pragmatic considerations.  ACME represents 
propositions as predicate calculus expressions, and domains as lists of such expressions.  
The ACME approach use a single principle, again the principle of proportional analogy, 
to generate match hypotheses.  According to Holyoak & Thagard, the analogical map is 
the set of match hypotheses that best satisfies a number competing syntactic, semantic, 
and pragmatic constraints.  This set is easily found using standard connectionist 
constraint-satisfaction techniques.  We agree with Holyoak & Thagard that constraint-
satisfaction techniques are most appropriate for finding the analogical map once the set of 
possible matches has been established.  Because ACME incorporates semantic and 
pragmatic considerations, we regard ACME as a mapping engine superior to SME.    
 While both SME and ACME are powerful approaches to analogical mapping, we 
believe neither is adequate.  Both SME reduce relations among terms to participation in 
predicate calculus expressions.  However, we believe there are many different kinds of 
relations among terms besides mere participation in predicate calculus expressions.  Both 
SME and ACME utilize a single principle, namely, the principle of proportional analogy, 
to generate match hypotheses.  The principle is applied universally to all terms in all 
propositions in the domains.  In other words, the generation of match hypotheses in SME 
and ACME is a brute force combinatorial process.  In contrast to both SME and ACME, 
we believe there are many principles for generating match hypotheses.  Reducing all 
relations among terms to the single relation of participation in a predicate calculus 
expression, and then applying a single matching principle universally, these mapping 
engines cannot be sensitive to the fine conceptual structure of the source and target 
domains.   
 In contrast to SME and ACME, we develop an approach to analogical mapping 
that is sensitive to the fine conceptual structure of the domains involved.  The approach 
developed here is realized in a computer program called NETMET.3  We argue that an 
approach to mapping that is sensitive to the fine conceptual structure of the domains 
makes for a more efficient computation of the analogical mapping relation and allows for 
a better integration of pragmatic factors into analogical cognition.  NETMET refines 
ACME's approach to generating match hypotheses, and uses ACME's constraint-
satisfaction approach to finding the analogical mapping relation.  Because both ACME 
and NETMET involve constraint-satisfaction, we develop NETMET in contrast to 
ACME.  First, we present ACME.  Second, we discuss the difficulties that emerge from 
using only one principle to generate match hypotheses.  Third, we present NETMET.  
Fourth, we compare the performance of ACME and NETMET on several examples.  Our 
comparisons reveal the value of an approach to mapping that is sensitive to the fine 
conceptual structure of the mapped domains.   

                                                
3NETMET is written in C and runs on IBM PCs.  A copy of NETMET can be obtained by writing to the 
author. 
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2. Analogical Mapping by Constraint Satisfaction 
 
 Holyoak and Thagard's ACME model of analogical mapping is a powerful and 
general engine for producing analogical maps by constraint satisfaction.  ACME 
represents a proposition as a predicate calculus expression; target and source domains are 
lists of such expressions.  A proposition has the form N: P(A1, A2, . . . An) where N is the 
name of the proposition, P is its predicate, and Ai for i = 1 to n are the arguments of the 
proposition. 
 
 
2.1 Generating Match Hypotheses 
 ACME uses only one principle to generate match hypotheses.  This is the 
principle of proportional analogy.  ACME applies the  principle of proportional analogy 
to every pair of propositions with the same number of arguments in the target and source, 
regardless of the semantic similarity of the predicate.  ACME generates match 
hypotheses whose elements are arguments of propositions, predicates of propositions, and 
names of propositions.  If P is a proposition, let NameOf(P) be the name of the 
proposition, PredOf(P) be the predicate of the proposition, and Arg(P,i) be the i-th 
argument of the proposition.  For each target proposition T, and for each source 
proposition S, ACME generates: (1) a match hypothesis (NameOf(S), NameOf(T)) for 
the proposition names, (2) a match hypotheses (PredOf(S), PredOf(T)) for the proposition 
predicates, (3) a match hypothesis (Arg(S, i), Arg(T,i)) for each argument in the 
propositions.  It should be noted that the generation of match hypotheses by ACME is a 
brute force combinatorial process. 
 For example, consider the target and source domains for the THEAETETUS IS A 
MOTHER analogy shown in Table 1.  The analogy is taken from Plato's Theaetetus, in 
which the production of ideas by the young man Theaetetus is compared to the 
production of a baby by a mother.  Notice that most of the conceptual structure of these 
domains is provided by the relation "contains".  We use the relation "contains" to express 
a generalized part-whole relation; to say that X contains Y is equivalent to saying that X 
is a whole that contains or includes Y in some way.  Part-whole relations are also called 
mereological relations, and we will refer to them as such.  Given the domains in Table 1, 
ACME generates the match hypotheses shown in Table 2.  In Table 2, each target 
proposition is shown paired with all source propositions to generate match hypotheses. 
 
 Source (MOTHER)   Target (THEAETETUS) 
 S1:produce(mother,baby)   T1:produce(Theaetetus, idea) 
 S2:contains(mother,womb)  T2:contains(Theaetetus, mind) 
 S3:contains(womb,baby)   T3:contains(mind,idea) 
 

Table 1. Source and target for analysis of ACME. 
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T1:produce(Theaetetus, idea) 
 S1:produce(mother,baby) 
  (T1,S1), (produce,produce), (Theaetetus,mother), (idea,baby) 
 S2:contains(mother,womb) 
  (T1,S2), (produce,contains), (idea,womb) 
 S3:contains(womb,baby) 
  (T1,S3), (Theaetetus,womb) 
T2:contains(Theaetetus, mind) 
 S1:produce(mother,baby) 
  (T2,S1), (contains,produce), (mind,baby) 
 S2:contains(mother,womb) 
  (T2,S2), (contains,contains), (mind,womb) 
 S3:contains(womb,baby) 
  (T2,S3) 
T3:contains(mind, idea) 
 S1:produce(mother,baby) 
  (T3,S1), (mind,mother) 
 S2:contains(mother,womb) 
  (T3,S2) 
 S3:contains(womb,baby) 
  (T3,S3) 

 
Table 2. Generation of match hypotheses by ACME. 

  
 
2.2 Relations between Match Hypotheses 
 Match hypotheses in a set of match hypotheses are not isolated; they bear two 
important relations to one another.  These relations are (1)consistency and (2) 
inconsistency.  
 All the match hypotheses produced by a single application of the principle of 
proportional analogy to a pair of propositions are consistent.  For each target proposition 
T, and for each source proposition S, if T and S both have n arguments, ACME generates 
relations of consistency as follows.  Relations of consistency are generated between (S, 
T) and (PredOf(S), PredOf(T)).  For i = 1 to n, relations of consistency are generated 
between (S, T) and (Arg(S,i), Arg(T,i)).  For i = 1 to n, relations of consistency are 
generated between (PredOf(S), PredOf(T)) and (Arg(S,i), Arg(T,i)).  Finally, for i = 1 to 
n and for j = 1 to n, ACME generates a relation of consistency between (Arg(S, i), Arg(T, 
i)) and (Arg(S,j), Arg(T,j)).  The generation of some of the relations of consistency for 
the domains in Table 1 is illustrated in Table 3.  In Table 3, the two-headed arrow "↔" 
between match hypotheses indicates two relations of consistency, one from each match to 
the other.  It should be noted that in ACME the generation of relations of consistency is a 
brute force combinatorial process.  The relation of consistency functions as a structural 
constraint on an analogical map.  Consistency is a positive constraint on an analogical 
map; if two matches are consistent, an analogical map that contains the one is constrained 
to contain the other.  Consistency is a symmetrical relation: if a match X is consistent 
with Y, then Y is consistent with X.  ACME generates the relations of consistency as it 
generates match hypotheses. 
 Inconsistency occurs when a single source concept is matched with many target 
concepts, or when a single target concept is matched with many source concepts.  The 
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relation of inconsistency functions as a structural constraint on an analogical map.  Since 
ACME prefers to maximize isomorphism, inconsistency is a negative constraint on an 
analogical map; if two matches are inconsistent, an analogical map that contains one is 
constrained not to contain the other.  Importantly, inconsistency functions as a soft 
constraint; it is a pressure that discourages many-many mappings, but it does not forbid 
them.  Like consistency, inconsistency is a symmetric relation.  ACME generates the 
relations of inconsistency after all match hypotheses have been generated. 
 

T1:produce(Theaetetus, idea) 
 S1:produce(mother,baby) 
  Matches:  
   (T1,S1), (produce,produce), (Theaetetus,mother), (idea,baby) 
  Relations of Consistency:  
   (T1, S1) ↔ (produce, produce) 
   (T1, S1) ↔ (Theaetetus, mother) 
   (T1, S1) ↔ (idea, baby) 
   (produce, produce) ↔ (Theaetetus, mother) 
   (produce, produce) ↔ (idea, baby) 
   (Theaetetus, mother) ↔ (idea, baby) 
 S2:contains(mother,womb) 
  Matches:  
   (T1,S2), (produce,contains), (Theaetetus,mother), (idea,womb) 
  Relations of Consistency: 
   (T1, S2) ↔ (produce, contains) 
   (T1, S2) ↔ (Theaetetus, mother) 
   (T1, S2) ↔ (idea, womb) 
   (produce, contains) ↔ (Theaetetus, mother) 
   (produce, contains) ↔ (idea, womb) 
   (Theaetetus, mother) ↔ (idea, womb) 
 S3:contains(womb,baby) 
  Matches:  
   (T1,S3), (produce,contains), (Theaetetus,womb), (idea,baby) 
  Relations of Consistency: 
   (T1, S3) ↔ (produce, contains) 
   (T1, S3) ↔ (Theaetetus, womb) 
   (T1, S3) ↔ (idea, baby) 
   (produce, contains) ↔ (Theaetetus, womb) 
   (produce, contains) ↔ (idea, baby) 
   (Theaetetus, womb) ↔ (idea, baby) 
 

Table 3. Relations of consistency among some match hypotheses. 
 
 
2.3 Finding the Analogical Mapping Relation 
 The task of finding the maximal coherent one-to-one map in a set of match 
hypotheses is a combinatorially complex task.  Thagard and Holyoak (1989, 1990) 



 7 

showed that this task can be thought of as a constraint satisfaction problem.  They 
identified three kinds of constraints on finding an analogical map: (1) structural 
constraints, (2) semantic constraints, and (3) pragmatic constraints.   
 Structural constraints favor the emergence of a maximally consistent map.  The 
maximally consistent map between two domains is the largest possible isomorphism 
between them.  Structural constraints encourage the analogical mapping relation to be the 
closest possible approximation to such an isomorphism.  Semantic constraints favor 
matches that are supported by semantic similarity.  The match hypotheses associated with 
propositions S and T are favored to the degree that the predicate of S is semantically 
similar to the predicate of T.  Pragmatic constraints favor match hypotheses that 
contribute to the goal of the analogy.      
 Having shown how the problem of finding the analogical mappng relation can be 
formulated as a constraint satisfaction problem, Thagard and Holyoak then showed how 
the problem could be solved in parallel by a constraint-satisfaction network (a CS 
network).  A CS network is a connectionist network. CS networks were first used by 
McClelland and Rumelhart (1981) to model visual word recognition.  McClelland (1981) 
and McClelland and Rumelhart (1985) used CS networks for the storage and retrieval of 
general and specific information. 
 A CS network consists of nodes linked by weighted connections.  In the case of 
analogical mapping, the nodes in the CS network are match hypotheses.  The CS network 
is therefore called a hypothesis network.  Connections between match hypotheses embody 
the relations of consistency and inconsistency between match hypotheses, thus capturing 
the structural constraints on the analogical mapping function.  If two match hypotheses 
are consistent, there is an excitatory connection from each to the other; if two match 
hypotheses are inconsistent, there is an inhibitory connection from each to the other.  
Excitatory and inhibitory connections are given weights corresponding to the strength of 
the excitatory or inhibitory relations they represent.  Excitatory connections have a 
weight proportional to the number of proposition pairs that induce those connections.  For 
example, both (T2, S3) and (T3, S3) induce the excitatory connection (contains, contains) 
× (idea, baby).  The weight of an excitatory connection is a constant +0.1 multiplied by 
the number of proposition pairs inducing the connection.  Inhibitory connections have a 
weight of -0.2.  Figure 1 shows the hypothesis network constructed from the domains in 
Table 1.  In Figure 1, "+" indicates an excitatory connection, "-" an inhibitory connection.  
The network contains 20 nodes, 106 excitatory connections, and 64 inhibitory 
connections for a total of 170 connections.  
 Every node in a CS network is associated with a parameter called its activation.   
In the case of analogical mapping, the activation of a match hypothesis is its degree of 
membership in the analogical mapping relation.  Semantic and pragmatic constraints are 
used in ACME to supply activations to the hypotheses in the network.  Thus the semantic 
and pragmatic constraints used by ACME are posterior to the principle of proportional 
analogy, since activations are assigned to match hypotheses already constructed on the 
basis of the principle of proportional analogy alone. The semantic constraint is 
implemented by giving all predicate-predicate match hypotheses excitatory connections 
to a node called the Semantic Unit.  If S is a source proposition and T a target 
proposition, the weight of the excitatory connection between (PredOf(S), PredOf(T)) and 
the semantic unit is proportional to the semantic similarity of PredOf(S) and PredOf(T).  
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The pragmatic constraint is implemented by giving each match hypotheses that is 
important for pragmatic reasons an excitatory connection to a node called the Pragmatic 
Unit that supplies it with activation.  Connections to the Semantic and Pragmatic Units 
are not shown in Figure 1. 
 

 
 

Figure 1. Network for domains in Table 1. 
 
 
2.4 Running the Hypotheses Network 
 A CS network solves a constraint satisfaction problem by running through a 
number of cycles.  On each cycle, each node interacts directly or indirectly through its 
connections with all the other nodes in the network.  How a node X influences another 
node Y is a function of X's activation and its connection to Y.  If X has an excitatory 
connection to Y, then the activation of X tends to increase the activation of Y.  In other 
words, if X and Y are consistent match hypotheses, the degree of membership of X in the 
maximally consistent map tends to increase Y's degree of membership in that map.  If X 
has an inhibitory connection to Y, then the activation of X tends to decrease the 
activation of Y.  In other words, if X and Y are inconsistent match hypotheses, the degree 
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of membership of X in the maximally consistent map tends to decrease Y's degree of 
membership in that map. 
 On each cycle, each node in the network computes a new activation.  To see how 
this is done, let aj(t) be the activation of node j on cycle t.  Let outi(t) be the output of 
node i on cycle t; outi(t) is max(ai(t), 0).  Letwij be the weight of the connection from unit 
i to unit j; note that wij  > 0 if the connection is excitatory, wij  < 0 if the connection is 
inhibitory.  The net excitatory input to a node j is enetj  = Σi wij outi(t)  for wij  > 0 and the 
net inhibitory input to a node j is is inetj  = Σi wij outi(t)  for wij  < 0.  The new activation 
aj(t +1) of node j is based on the rule given in Formula 1. 
 
 [1] aj(t +1) = aj(t)(1-d) + enetj(max-aj(t)) + inetj(aj(t) - min) 
 
where d is is the rate at which activation decays, max is the maximum activation of a 
node, min is the minimum activation of a node.  In ACME, decay = 0.1, max = 1.0, min = 
-1.0. 
 The nodes in an CS network interact with one another, cycle after cycle, until 
their activations stabilize.  This is called running the network to convergence.  The 
network is run to convergence by updating the activations of all nodes until the change in 
the activation of each node from cycle to cycle is less than some specified constant.  
Once the network has converged, activations of match hypotheses can be used to rank-
order them.  Among competing match hypotheses, the one with the greatest activation is 
the best match and is referred to as the winner.  A one-to-one map can be constructed by 
accepting for each source term only the winning match hypothesis for that term. 
 
 
3. Difficulties with Proportional Analogy 
 
3.1 Sensitivity to Conceptual Structure in Analogical Mapping 
 Both SME and ACME utilize a single principle, the principle of proportional 
analogy, to generate match hypotheses and their relations.  If a single principle is used for 
generating match hypotheses, that principle is applied universally to all concepts in the 
source and target domains, regardless of their structural positions in those domains.  
Consequently, if a single principle is used for generating match hypotheses, the fine 
conceptual structure of the source and target domains cannot be taken into consideration. 
 A pragmatic analysis argues against the universal application of a single principle 
for generating match hypotheses and their interconnections.  The purpose of analogical 
mapping is to discover the most coherent map between two existing domains.  A process 
that ignores the fine conceptual structures of the two domains  discourages that goal by 
creating match hypotheses and connections that can only frustrate the emergence of a 
coherent global map.  For instance, in domains structured by mereological relations, the 
brute force application of the principle of proportional analogy produces match 
hypotheses that both violate and respect the mereological structures of the domains.  
Match hypotheses that violate the mereological structure of the domains compete with 
match hypotheses that respect those structures; such competition degrades the coherence 
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of all the match hypotheses that respect the conceptual structures of the domains.  The 
result is larger constraint-satisfaction networks that converge to less coherent maps.  
 In the case of the THEAETETUS IS A MOTHER analogy, ACME applies the 
principle of proportional analogy to the propositions whose predicate is "contains".  Such 
application creates the seven match hypotheses: (mother, Theaetetus), (womb, 
Theaetetus),  (womb, mind), (baby, mind), (mother, mind), (womb, idea).  But this 
proliferation is absurd.  Attending to the mereological relations that hold between 
Theaetetus, the mind in Theaetetus, and the idea in the mind in Theaetetus, and also to 
those that hold between the mother, the womb in the mother, and the baby in the womb in 
the mother, it is apparent that "contains" should only induce the match hypotheses: 
(mother, Theaetetus), (womb, mind), and (baby, idea).  Consequently, ACME generates 4 
invalid match hypotheses; these invalid match hypotheses are involved in 24 invalid 
excitatory connections.  
 Application of the principle of proportional analogy to propositions whose 
predicate is "contains" creates many invalid match hypotheses and connections.  This is 
because "contains" creates a hierarchical structure in each domain; matching concepts at 
different levels in these mereological hierarchies violates the mereological order of the 
domains.  Hence such match hypotheses are mereologically invalid.  Figure 2 shows both 
mereologically valid and invalid match hypotheses.  In Figure 2, the arrow "∅" denotes 
the relation "contains".   Note that ACME generates both mereologically valid and 
invalid match hypotheses.  The mereological relation "contains" is not the only relation 
that does not induce analogies according to the principle of proportional analogy.  Other 
pervasive and transitive relations, such as spatial, temporal, and causal relations, fail to 
induce proportional analogies and instead induce analogies according to other principles.  
In what follows, only the mereological relation "contains" is analyzed; similar analyses 
can be performed for spatial, temporal, and causal relations. 
 We do not believe that the mind generates match hypotheses and their 
interconnections by the brute force application of a single principle. We believe that the 
mind is sensitive to the fine conceptual structure of the source and target domains.  The 
structure of the knowledge in the source and target domains guides the production of 
match hypotheses and their interconnections.  We believe that the mind generates match 
hypotheses by tracing out parallel patterns through the structure of the source and target 
domains.  For each move that is made in the source, a parallel move is made in the target.  
Such moves should not be determined by a single rule.  Different rules are more 
appropriate for moving along the different relations that structure the knowledge in the 
two domains.  For example, the rule of proportional analogy is acceptable for generating 
match hypotheses from propositions.  However, several other rules are used to generate 
match hypotheses from mereological relations.  
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Figure 2. Mereologically valid and invalid match hypotheses. 
 
3.2 Pragmatics and Sensitivity to Conceptual Structure 
 An approach to analogical mapping that follows the fine conceptual structure of 
the domains by using several rules is more open to pragmatic factors than an approach 
that universally applies a single rule.  Pragmatic factors can influence constraint-
satisfaction models of analogical mapping in two ways: (1) by encouraging or 
discouraging individual match hypotheses; (2) by guiding the construction of the 
hypothesis network itself.   
 In constraint-satisfaction approaches to analogical mapping that use only one rule 
for creating their match hypotheses and interconnections, pragmatic factors can 
encourage or discourage individual match hypotheses, but cannot guide the construction 
of the hypothesis network.  No guidance is possible, since the application of the rule to 
the source and target domains is purely combinatorial.  For example, in ACME pragmatic 
factors influence individual match hypotheses through connections to the pragmatic unit; 
however, pragmatic factors do not guide the construction of the hypothesis network.   
 In constraint-satisfaction models of mapping that use more than one rule for 
creating match hypotheses and interconnections, pragmatic factors can both encourage or 
discourage individual match hypotheses and can also guide the construction of the 
hypothesis network.  We believe that match hypotheses and their interconnections are 
created by making parallel moves through the source and target systems.  Structured 
systems of concepts can be traversed in many ways.  At each point in such a system, it is 
possible to branch in several directions via different conceptual relations.  Pragmatic 
factors determine which moves are made (i.e. which rules are executed and which 
relations are followed).  The context and purpose of analogical cognition determine 
which rule is applied at each point.  Pragmatic factors also determine how far moves are 
made in the domains.  For example, given a match hypothesis (s,t), pragmatic factors 
determine whether or not we explore the mereological relations in which s and t 
participate.  If it is decided to explore these relations, pragmatic factors determine how 
far they are explored. 
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4. A Structural Model of Analogical Mapping 
 
4.1 Representing Propositional Knowledge in Semantic Networks 
 While SME and ACME represent propositions as predicate calculus expressions, 
we represent propositions as semantic frames.  A semantic frame consists of a set of 
interconnected terms.  We use semantic field theory to provide principles for the 
organization of terms into semantic frames.  According to semantic field theory (de 
Saussure, 1966; Lyons, 1977; Cruse, 1986; Kittay, 1987), terms are organized by sense 
relations.  If two terms are brought together by a sense relation, they are linked in a 
semantic frame by a connection that is labelled with that sense relation.   
 Sense relations determine semantic frames.  We classify semantic frames 
according to the sense relations that structure them.  Sense relations are divided into 
paradigmatic and syntagmatic relations.  Paradigmatic relations involve terms from the 
same conceptual category.  Here we allow conceptual categories to be grammatical 
categories, such as nouns, verbs, adjectives, and adverbs.  Paradigmatic relations are 
divided into contrastive and affinitive relations.  Contrastive relations include binary and 
n-ary oppositions among terms.  Here we consider only binary opposition. A contrastive 
frame consists of two terms with approximately opposite senses symmetrically linked by 
connections labelled ANTONYM. Affinitive relations are generally divided into synonymic 
relations, taxonomic relations and mereological relations.  A synonymic frame consists of 
two terms with approximately the same sense symmetrically linked by connections 
labelled SYNONYM. Taxonomic relations are relations between a term and its subordinates 
(for example, "dog" is a subordinate of "animal"; "walks" is a subordinate of "moves").  
A taxonomic frame consists of a term and a subordinate term linked both by a connection 
labelled SPECIES directed from the term to the subordinate and a connection labelled 
GENUS directed from the subordinate to the term.  Mereological relations are relations 
between a term and its parts.  A mereological frame consists of a term and a part linked 
both by a connection labelled CONTAINS directed from the term to its part and by a 
connection labelled WHOLE directed from the part to the term.  Syntagmatic relations 
group terms from different conceptual categories.  Syntagmatic relations include relations 
between a proposition and its predicate (either verb or adjective) as well as relations 
between that proposition and its arguments (nouns).  Such relations are often called 
thematic relations or thematic roles.  In case the predicate of a proposition is a verb, the 
syntagmatic frame  representation of that proposition contains the name of the 
proposition, its verb predicate, and its noun arguments.  Connections labelled VERB 
symmetrically link the verb predicate to the proposition name.  Connections labelled with 
thematic roles, such as AGENT, PATIENT, and INSTRUMENT, among others, symmetrically 
link each noun argument to the proposition name.  In case the predicate of a proposition 
is an adjective, the syntagmatic frame representation of that proposition consists of a 
connection labelled FEATURE that links the adjective predicate to the noun of which it is 
predicated.  Semantic frames form complex networks in long-memory.  Such networks 
are called semantic networks.  Figure 3 shows the knowledge from Table 1 encoded in a 
semantic network.  Connections are labelled with thematic roles; an arrow X∅Y means 
"X contains Y". 
 We hold that different principles of analogical mapping are used for different 
sense relations, hence for different kinds of semantic frames.  NETMET incorporates 
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principles for all the types of semantic frames discussed above.  In what follows, 
however, we outline principles of analogical mapping only for syntagmatic and 
mereological frames.  First, we describe two analogies for the illustration of semantic 
networks and the principles of analogical mapping.  These analogies are the ATOM IS A 
SOLAR-SYSTEM analogy and the COULOMB'S LAW IS NEWTON'S LAW.  The 
mereological relation "contains" occurs pervasively in these analogies. Second, we 
describe the principles of analogical mapping themselves.  Third, we discuss the 
hypothesis networks built by NETMET.  

 
Figure 3. Semantic network version of knowledge in Table 1. 

 
4.2 The ATOM IS A SOLAR-SYSTEM Analogy 
 We use the analogy between the ATOM and the SOLAR-SYSTEM as an example 
of a complex analogy for illustrating the structural model of analogical mapping.  Both 
the ATOM and the SOLAR-SYSTEM are structured wholes.4   The propositional 
knowledge in these domains is represented as a list of predicate calculus expressions in 
Table 4. 
 

Source (SOLAR-SYSTEM) Target (ATOM) 
contains(solar-system, sun)  contains(atom, nucleus) 
contains(solar-system,asteroid-belt) contains(atom, electron-cloud) 
contains(solar-system, planetary-system) contains(electron-cloud, electron-shell) 
contains(asteroid-belt, asteroid)  contains(electron-shell, electron) 
contains(planetary-system, planet)  orbits(electron, nucleus) 
contains(planetary-system, moon)  surrounds(electron-cloud, nucleus) 
contains(planetary-system, ring) 
contains(ring, subring) 
contains(subring, debris) 
orbits(asteroid, sun) 
orbits(planetary-system, sun) 
orbits(moon, planet) 
orbits(debris, planet) 
surrounds(asteroid-belt, sun) 
surrounds(ring, planet) 

Table 4. The SOLAR-SYSTEM and the ATOM. 

                                                
4Note that very different analogies involving the ATOM arise if the ATOM is thought of, not as a 
structured whole, but as unities involving attraction, repulsion, and union.  In such analogies, the atom is  
personified.  For instance, flourine is hungry for electrons, or fluorine lusts after electrons, or fluorine is 
greedy for electrons.  The "noble" gasses are not reactive; they don't share their electrons, they don't lust 
after the electrons of other atoms, they're self-sufficient.  Mr. Oxygen lusts after Miss Hydrogen's electrons, 
and grab's them; when they get married, they form water. 
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 A semantic network representation of the source domain SOLAR-SYSTEM and 
target domain ATOM is shown in Figure 4.  An arrow X→Y means "X contains Y".  
Proposition names have the form "Fi", where i is some number.  Due to lack of space, 
connections are not labelled; however, the thematic roles can be easily inferred (e.g. an 
asteroid orbits the sun, so the asteroid is the AGENT and the sun is the PATIENT). 
 

 
 

Figure 4. Semantic net representation of SOLAR-SYSTEM and ATOM. 
    
 
4.3 The COULOMB'S LAW IS NEWTON'S LAW Analogy 
 Mathematical formulae are often analogous.  Newton's law of gravitational 
attraction is analogous to Coulomb's law of electrostatic attraction (Halliday & 
Resnick,1974: 424-5).  Another example of such a mathematical analogy is the analogy 
between a mass-spring system performing simple harmonic motion and an oscillating LC 
circuit. (Halliday & Resnick,1974: 628-9).  We use the analogy between Coulomb's law 
and Newton's law as another example to illustrate the structural model of analogical 
mapping.  Newton's law is shown in Formula 2. 
 
 [2] Newton's law: A = G*((m1*m2)/pow(d,2)) 
 
where A is the attraction between masses m1 and m2, d is the distance between the 
masses, G is a constant, and pow(x,y) is x raised to the y-th power.  Coulomb's law is 
shown in Formula 3. 
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 [3] Coulomb's law: F = k*((q1*q2)/pow(r,2)) 
 
where F is the attraction between charges q1 and q2, r is the distance between the 
charges, and k is a constant. 
 Each of these equations is a structured whole in which one mathematical 
expression contains another.  The containment relations are given by the parentheses 
(except for functions, such as pow()).  Formulae 4 and 5 show these functions written in 
LISP notation.  LISP notation reveals the structure of the analogy between the equations 
more clearly.   
 
 [4] (= A (* G (/ (* m1 m2) (pow d 2)))) 
 [5] (= F (* k (/ (* q1 q2) (pow r 2)))) 
 
If Newton's law is taken as the target domain and Coulomb's law is the source domain, 
these domains can be written as the lists of predicate calculus expressions shown in Table 
5.  Notice that most of the information in the domains is mereological.  The semantic 
network representations of the two equations are shown in Figure 5.   
 
  Source (COULOMB'S LAW)  Target (NEWTON'S LAW) 
  contains( E1, F)    contains( Z1, A) 
  contains( E1, E2)    contains( Z1, Z2) 
  contains( E2, k)    contains( Z2, G) 
  contains( E2, E3)    contains( Z2, Z3) 
  contains( E3, E4)    contains( Z3, Z4) 
  contains( E3, E5)    contains( Z3, Z5) 
  contains( E4, r)    contains( Z4, d) 
  contains( E4, 2)    contains( Z4, 2) 
  contains( E5, q1)    contains( Z5, m1) 
  contains( E5, q2)    contains( Z5, m2) 
  equals( F, E2)    equals( A, Z2) 
  multiplication( k, E3)   multiplication( G, Z3) 
  division( E5, E4)    division( Z5, Z4) 
  pow( r, 2)    pow( d, 2) 
  multiplication( q1, q2)   multiplication( m1, m2) 
 

Table 5. Coulomb's and Newton's laws. 
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Figure 5. Semantic net representation of Coulomb's and Newton's laws. 

 
 
4.4 Principles for Generating a Hypothesis Network 
 While SME and ACME apply one principle of analogical mapping to every 
predicate calculus expression, NETMET applies a different principle to each different 
kind of semantic frame.  Here we discuss only the principles for syntagmatic and 
mereological frames.  These are: (1) the principle of proportional analogy, (2) the 
principle of mereological analogy, (3) the principle of chain reinforcement, and (4) the 
principle of transitive reinforcement.  The four principles for generating match 
hypotheses listed above generate relations of consistency between matches.  To generate 
relations of inconsistency between matches, we use a fifth principle.  This principle is (5) 
the principle of mutual inconsistency.  Each of these principles is discussed below. 
 
 
 4.4.1. The principle of proportional analogy.  If SF:P(S1, S2, . . . Sn) is a 
syntagmatic frame in the source and TF:Q(T1, T2, . . . Tn) is a syntagmatic frame in the 
target, and if the similarity SIM(P,Q) of source predicate P to target predicate Q exceeds 
some threshold, then (SF, TF) is a match and (Si, Ti) are matches for i = 1, 2, . . . n.  The 
match hypotheses {(SF, TF), (S1, T1), . . . (Sn, Tn)} are all consistent.  We stipulate that 
SIM(P,Q) is 0 for no similarity and 1 for identity.  The threshold is determined by 
pragmatic considerations.  We use the pair (P,Q) to form the semantic input table, 
discussed below.  Note we do not treat (P,Q) as a match hypothesis.   The matches 
induced by the principle of proportional analogy are called proportional matches.  We 
speak of the pair of predicates (P,Q) as inducing the proportional matches.  If P = Q, we 
simply speak of the predicate P as inducing the proportional matches.  
 For example, the predicate "orbits" in the propositions "SF:orbits( debris, planet)" 
and "TF:orbits( electron, nucleus)" induces the proportional matches {(SF, TF), (debris, 
electron), (planet, nucleus)}; all these matches are consistent with one another.  These 

R5 R10

R1 = R6

R2 * R7

R3 div R8

R4 pow R9

E1

E2
F

E3
k

E5
E4

q1
q2

r

2

Z1

A

Z2

Z3
G

Z4
Z5

2

d
m1

m2



 17 

proportional matches, and their generation in the semantic network, are illustrated in 
Figure 6. 

 

 
 

Figure 6. Proportional matches induced by "orbits". 
 
 
 4.4.2. The principle of mereological analogy.  In a mereological frame, if X 
contains Y, then X is the WholeOf(Y).  If (A,B) is a match and if both WholeOf(A) and 
WholeOf(B) are non-nil, then (WholeOf(A), WholeOf(B)) is a match, and (A,B) and 
(WholeOf(A), WholeOf(B)) are consistent.  Matches generated by application of this 
principle are called mereological matches.  This principle can be applied recursively to 
generate a containment chain.  A containment chain is a list of matches: ((A, B), 
(WholeOf(A), WholeOf(B)), (WholeOf( WholeOf( A)), WholeOf( WholeOf(B))).  All 
the matches in a containment chain are consistent with one another. 
 The principle of mereological analogy dictates that mereological matches are 
generated in a bottom-up fashion in a mereological hierarchy.  Matches at the bottom 
level are typically not mereological, but are induced by some other principle, such as the 
principle of proportional analogy.  The classical analogy between an animal and a watch 
supports the view that proportional matches induce mereological matches.  This analogy 
was proposed by Hobbes (1651/1962) and later by de la Mettrie (1748/1912).  Here is 
Hobbes's statement of the analogy between an animal and a watch: 
 

For seeing life is but a motion of limbs, the beginning whereof is some 
principal part within; why may we not say, that all automata (engines that 
move themselves by springs and wheels as doth a watch) have an artificial 
life?  For what is the heart but a spring; and the nerves, but so many 
strings; and the joints, but so many wheels, giving motion to the whole 
body, such as was intended by the artificier? (Hobbes, 1651, Introduction). 

 
Here it is apparent that the animal and watch are analogous because their parts are 
analogous.  That is, because proportional analogies hold among the parts, there is a 
mereological analogy among the wholes containing those parts.  
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 Figure 7 illustrates how mereological matches are generated from a proportional 
match by making parallel moves up the mereological hierarchies in the source and target.  
Pragmatic factors determine whether and how far such moves are made.  In Figure 7, as 
in all figures involving matches, an arrow X∅Y indicates the inverse of "contains" and 
means "X is contained by Y".  In Figure 7, as in all figures involving matches, a box 
drawn with a solid line indicates a match induced by the principle of proportional 
analogy; a match drawn with a broken line indicates a match induced by some other 
principle.  The containment chain generated in Figure 7 is ((debris, electron), (subring, 
electron-shell), (ring, electron-cloud), (planetary-system, atom)).  
 

 
 

Figure 7. Mereological matches induced by a proportional match. 
 
 4.4.3. The principle of chain reinforcement.  If two containment chains generated 
by the same pair of predicates (or verb) have identical last members, then these two 
containment chains converge on the same wholes, and the chains themselves are 
mereologically consistent.  All the matches in both chains are consistent.   
 To see how chain reinforcement works, consider the enlarged versions of the 
SOLAR-SYSTEM and ATOM domains shown in Table 6.  In the domains in Table 6, the 
verb "orbits" induces the following proportional matches: (debris, electron) and (planet, 
nucleus).  These matches represent the proportional analogy that debris is to planet as 
electron is to nucleus.  The containment chain generated by (debris, electron) is ((debris, 
electron), (subring, electron-shell), (ring, electron-cloud), (planetary-system, atom)).  The 
containment chain generated by (planet, nucleus) is ((planet, nucleus), (planetary-system, 
atom)).  These containment chains are shown in Figure 8. 
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   Source Domain     Target Domain 
   contains(planetary-system, planet)   contains(atom, nucleus) 
   contains(planetary-system, ring)   contains(atom, electron-cloud) 
   contains(ring, subring)     contains(electron-cloud, electron-shell) 
   contains(subring, debris)     contains(electron-shell, electron)  
   orbits(debris, planet)     orbits(electron, nucleus) 
 

Table 6. Sample source and target domains. 
 
 Since both containment chains converge on the same matches, the chains are 
mereologically consistent and the all matches in each are consistent with one another.  
This means that the union of the matches in both containment chains is a set whose 
members are all consistent.    
 

 
 

Figure 8. Mereologically consistent containment chains. 
 
 The validity of the chain reinforcement principle can be seen by considering what 
happens when two containment chains generated by the same verb fail to converge.  The 
failure of two chains to converge is a mereological inconsistency.  To see the failure of 
convergence, consider the versions of the SOLAR-SYSTEM and ATOM domains shown 
in Table 7. 
 
   Source Domain      Target Domain 
   contains(planetary-system, planet)    contains(atom, nucleus) 
   contains(planetary-system, moon)   
   contains(planetary-system, ring)    contains(atom, electron-cloud) 
   contains(ring, subring)      contains(electron-cloud, electron-shell) 
   contains(subring, debris)      contains(electron-shell, electron)  
   orbits(moon, planet)      orbits(electron, nucleus) 
   

Table 7. Sample source and target domains. 
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The verb "orbits" induces the matches (moon, electron) and (planet, nucleus).  The match 
(moon, electron) generates the containment chain ((moon, electron), (planetary-system, 
electron-shell)).  The match (planet, nucleus) generates the containment chain ((planet, 
nucleus), (planetary-system, atom)).  Comparing the last members of these chains, it is 
easy to see that the analogy "moon is to planet as electron is to nucleus" is not 
mereologically consistent, since it implies two inconsistent  matches for "planetary-
system".5   Figure 9 shows these inconsistent containment chains. 
 

 
 

Figure 9. Mereologically inconsistent containment chains. 
 
 4.4.4. The principle of transitive reinforcement.  If (x,y) and (a,b) are proportional 
matches, and if x directly or indirectly contains a and y directly or indirectly contains b, 
then (x,y) and (a,b) are consistent.  Notice that this principle enables a proportional match 
to supersede the mereological orderings of the domains.  To see how the principle of 
transitive reinforcement works, consider the analogies indicated in Figure 10.      
 

                                                
5The failure of structural consistency leads to the idea that if the ends of two containment chains induced 
by the same semantic relation are not equal, the resulting structural inconsistency should be represented by 
making the elements of these chains mutually inconsistent, and by weakening the support of the match 
hypotheses originally induced by the pair of predicates.  Here again, pragmatic factors determine whether 
or not this is to be done. 
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Figure 10. Some matches. 
 
Figure 10 contains the proportional matches (asteroid, electron) and (asteroid-belt, 
electron-cloud); it contains the mereological matches  (asteroid-belt, electron-shell) and 
(solar-system, electron-cloud).  According to the principle of mereological analogy, 
(asteroid, electron), (asteroid-belt, electron-cloud), and (solar-system, electron-cloud) are 
all consistent.  But, due to the transitivity of CONTAINS, "electron-cloud" contains 
"electron", so (asteroid-belt, electron-cloud) and (asteroid, electron) should be consistent.   
 
 
 4.4.5. The principle of mutual inconsistency.  A match is an ordered-pair.  We 
denote the first member of a match X as FIRST(X) and the second member of a match X 
as SECOND(X).  Two matches X and Y (i.e. two ordered pairs) are mutually inconsistent 
if FIRST(X) is equal to FIRST(Y) but SECOND(X) is not equal to SECOND(Y), or if 
SECOND(X) is equal to SECOND(Y) but FIRST(X) is not equal to FIRST(Y).  For instance, 
(solar-system, electron-cloud) is mutually inconsistent with (solar-system, atom) and is 
also mutually inconsistent with (asteroid-belt, electron-cloud).  The rule of mutual 
inconsistency is applied to all the pairs of matches generated by the other rules. 
 
 
4.5 Hypotheses Networks Constructed by NETMET 
 Hypotheses networks constructed by NETMET are very similar to those 
generated by ACME.  Like ACME, NETMET encodes relations of consistency in 
excitatory connections and relations of inconsistency in inhibitory connections.  Like 
ACME, NETMET allows semantic and pragmatic factors to supply activations to match 
hypotheses.  However, NETMET does not supply activations to match hypotheses in the 
same way that ACME does.  ACME supplies such activations indirectly, through the 
Semantic and Pragmatic units.  NETMET supplies activations directly to the match 
hypotheses themselves.  Activation supplied directly to the match hypotheses is called 
external activation, and is either pragmatic or semantic.  Pragmatic activation supplied to 
a match hypothesis is proportional to the importance of that match.  We now discuss how 
NETMET supplies external semantic activations to its match hypotheses.  

solar-system

asteroid-belt

asteroid

electron-cloud

electron-shell

electron



 22 

 Since the match hypotheses generated by the principle of proportional analogy are 
the basis for all other analogical match hypotheses, proportional matches receive external 
semantic activation.  Each pair of predicates (P,Q) that induces a proportional match 
supplies that proportional match with external activation equal to the quantity SIM(P,Q).  
Minimally, SIM(P,Q) is the threshold for inducing proporitional matches.  Maximally, in 
case P and Q are identical, SIM(P,Q) is 1.  If a pair of predicates (P,Q) induces the 
proportional matches (A,C) and (B,D), then (P,Q) gives external activation equal to 
SIM(P,Q) to both of the match hypotheses (A,C) and (B,D).  Since (P,Q) may induce 
many analogies, (P,Q) may supply external activation to many match hypotheses.  Since 
(P,Q) may induce many analogies in which the same match hypothesis occurs, (P,Q) may 
supply external activation equal to some integral multiple of SIM(P,Q) to a single match 
hypothesis.   
 To see how pairs of predicates supply external activation to match hypotheses, 
consider the verbs "orbits" and "surrounds" in the target domain of the ATOM and the 
source domain of the SOLAR-SYSTEM, as shown in Table 8.  To save space in the 
discussion, matches of proposition names are not shown in Table 8. 
 
  Source Domain  Target Domain 
  orbits(asteroid, sun)  orbits(electron, nucleus) 
  orbits(planetary-system, sun) 
  orbits(moon, planet) 
  orbits(debris, planet) 
  surrounds(asteroid-belt, sun) surrounds(electron-cloud, atom) 
  surrounds(ring, planet) 
 

Table 8. Sample source and target domains. 
 
The occurence of "orbits(planetary-system, sun)" and "orbits(asteroid, sun)" means that 
"orbits" induces (sun, nucleus) twice.  Likewise, "orbits" induces (planet, nucleus) twice.  
In each of these cases, "orbits" supplies these two match hypotheses with two units of 
external activation, since SIM(orbits, orbits) is 1.  Similar remarks apply to the match 
hypotheses induced by "surrounds".  The quantity of external activation supplied by each 
of these pairs of predicates is shown in Table 9. 
 
 Match Hypothesis  "orbits" "surrounds" Total 
 (asteroid,electron) 1 0 1 
 (sun,nucleus) 2 1 3 
 (planetary-system,electron) 1 0 1 
 (debris,electron) 1 0 1 
 (planet,nucleus) 2 1 3 
 (moon,electron) 1 0 1 
 (asteroid-belt,electron-cloud) 0 1 1 
 (ring,electron-cloud) 0 1 1 
 

Table 9. Units of external activation for match hypotheses. 
 
 After the external activations have been assigned to all match hypotheses, they are 
normalized so that they vary between 0 and 1. The normalized external activation 
assigned to a match hypothesis is the total quantity of external activation for that match 
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hypothesis divided by the maximum number of times that pairs of predicates that induce 
matches, where this maximum is taken over the whole set of match hypotheses.  In the 
example, the maximum number of times that pairs of predicates induce match hypotheses 
is 3.  The normalized external activations are shown in Table 10.  This table is called the 
semantic input table.  If a match hypothesis is not in the semantic input table, its external 
activation is set to zero.  
 

  Semantic Input Table 
 Match Hypothesis External Activation 

 (asteroid, electron) 1/3  
 (sun, nucleus) 1 
 (planetary-system, electron) 1/3 
 (debris, electron) 1/3 
 (planet, nucleus) 1 
 (moon, electron) 1/3 
 (asteroid-belt, electron-cloud) 1/3 
 (ring, electron-cloud) 1/3 

 
Table 10. The semantic input table. 

 
 Like ACME, NETMET runs the hypothesis network as a constraint-satisfaction 
network.  However, NETMET uses updating rules proposed by McClelland & Rumelhart 
(1986) rather than those proposed by Grossberg.6  On each cycle, each node in the 
network computes its net input in accordance with the rule in Formula 6.  
 
 [6] neti  = Σj wij outputj  + extinputi 
 
where neti is the net input to unit i, wij is the weight of the connection from unit j to unit i, 
outputj is the output of unit j, and extinputi is the external input to unit i.  Once the net 
input has been computed for every unit in the network, the change in the activation of 
each unit is given by the rules in Formulae 7 and 8, 
 
 [7] Δai  = (max  - ai)neti - decay(ai  - rest ) if neti  > 0 
 [8] Δai  = (ai - min)neti - decay(ai - rest ) if neti  <= 0 
 
where ai is the activation of unit i, decay is a parameter indicating the rate at which 
activation decays, max is the maximum activation of a unit, min is the minimum 
activation of a unit, and rest is the resting activation of a unit.  For NETMET, decay = 
0.1, max = 1.0, min = -0.2, and rest = -0.1. 
 
 
 
 
                                                
6ACME also can use rules like those of McClelland & Rumelhart.  Except for some complex cases 
(Holyoak & Thagard, 1989, p. 315), there is little difference between these updating rules and those of 
Grossberg. 
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5. Comparison of NETMET and ACME 
 
 In order to compare NETMET and ACME, we applied each program to the 
THEAETETUS IS A MOTHER analogy, the ATOM IS A SOLAR-SYSTEM analogy, 
and to the COULOMB'S LAW IS NEWTON'S LAW analogy.  In each case, we compare 
the hypothesis networks constructed by NETMET to those constructed by ACME.  Since 
NETMET does not use a semantic unit as ACME does, we do not consider the 
connections between the semantic unit and other units in ACME's hypothesis networks.  
Since connections between the pratmatic unit and other units are the same for NETMET 
and ACME, we do not consider those connections in our comparisons. 
 
 
5.1 Performance on the THEAETETUS IS A MOTHER Analogy 
 NETMET was applied to the source domain of the MOTHER and target domain 
of the STUDENT from Table 1.  The resulting hypothesis network is shown in Figure 11.  
As before, a plus sign "+" indicates an excitatory connection and a minus sign "-" 
indicates an inhibitory connection.  The network constructed by NETMET contains 4 
match hypotheses, 10 excitatory connections, and 0 inhibitory connections for a total of 
10 connections.  The network converged after 35 cycles.  By comparison, the network 
constructed by ACME contains 20 match hypotheses, 106 excitatory connections, and 64 
inhibitory connections for a total of 170 connections.  The NETMET network in Figure 
11 should be compared with the ACME network in Figure 1. 
 

 
 

Figure 11. NETMET network for THEAETETUS IS A MOTHER. 
 
 
5.2 Performance on the ATOM IS A SOLAR-SYSTEM Analogy 
 NETMET was applied to the source domain of the SOLAR-SYSTEM and target 
domain of the ATOM from Table 4.  The resulting hypothesis network is shown in Figure 
12.  In Figure 12, a plus sign "+" indicates an excitatory connection and a minus sign "-" 
indicates an inhibitory connection.  The network constructed by NETMET contains 21 
match hypotheses, 72 excitatory connections, and 62 inhibitory connections for a total of 
134 connections.  By comparison, the network constructed by ACME contains 153 match 
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hypotheses, 970 excitatory connections, and 2428 inhibitory connections for a total of 
3398 connections.  
 

 
 

Figure 12. NETMET network for the ATOM IS A SOLAR-SYSTEM. 
 
 In the NETMET simulation, match hypotheses received external activations 
shown in the semantic input table in Table 10.  The network converged after 77 cycles.  
The activations of the match hypotheses on convergence are shown in Table 11.  The 
winning match hypothesis for each member of the Target is shown in boldface. 
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 Match Hypotheses Activations  
 (moon, electron)  0.52 
 (planet, nucleus)  0.93 
 (planetary-system, electron-shell)  -0.17 
 (solar-system, electron-cloud)  -0.17 
 (planetary-system, atom)  0.84 
 (asteroid, electron)  0.75 
 (sun, nucleus)  0.90 
 (asteroid-belt, electron-shell)  -0.17 
 (solar-system, atom)  0.61 
 (planetary-system, electron)  -0.16 
 (solar-system, electron-shell)  -0.17 
 (debris, electron)  0.86 
 (subring, electron-shell)  0.86 
 (ring, electron-cloud)  0.88 
 (asteroid-belt, electron-cloud)  0.83 

Table 11. Map for the ATOM IS A SOLARSYSTEM analogy. 
 
5.3 Performance on the COULOMB'S LAW IS NEWTON'S LAW Analogy 
 NETMET was applied to the COULOMB'S LAW IS NEWTON'S LAW analogy 
from Table 5.  The network constructed by NETMET contains 26 match hypotheses, 126 
excitatory connections, and 44 inhibitory connections.   By comparison, the network 
constructed by ACME contains 367 match hypotheses, 2418 excitatory connections, and 
8764 inhibitory connections for a total of 11182 connections.  The NETMET network 
converged after 20 cycles.  The activations of the match hypotheses on convergence are 
shown in Table 12.  The winning match hypothesis for each member of the target is 
shown in boldface. 
 
 Match Hypotheses Activations  
 (q1, G) 0.88 
 (q2, Z3) 0.88 
 (E5, Z2) -0.10 
 (E3, Z1) -0.16 
 (K, G) 0.91 
 (E3, Z3 0.95 
 (E2, Z2) 0.97 
 (E1, Z1) 0.94 
 (K, m1) 0.88 
 (E3, m2) 0.88 
 (E2, Z5) -0.10 
 (E1, Z3) -0.16 
 (q1, m1) 0.93 
 (q2, m2) 0.93 
 (E5, Z5) 0.95 
 (E4, Z4) 0.95 
 (r, d) 0.94 
 (2, two) 0.94 
 (F, A) 0.91 

Table 12. Map for the COULOMB'S LAW IS NEWTON'S LAW analogy. 
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6. Conclusion 
 
 Most theories of analogical mapping generate analogical match hypotheses by 
applying a single principle, the classical principle of proportional analogy, to all the 
propositions in the source and target domains in the analogy.  When only a single 
principle is applied to all the propositions in the domains, the generation of match 
hypotheses cannot be sensitive to the fine conceptual structure of the domains.   
 In contrast, the theory proposed here uses several principles generate analogical 
match hypotheses and to integrate these hypotheses into a constraint-satisfaction network 
for producing an analogical map.  The principles are designed to attend to the fine 
conceptual structures of the domains involved in the analogies.  The use of several 
principles enables pragmatic factors to be smoothly incorporated into the construction of 
the constraint-satisfaction networks for analogical mapping.  Moreover, the networks 
constructed using several principles are smaller and more coherent than those constructed 
using only the principle of proportional analogy.  Consequently, we believe that the mind 
uses many principles to construct analogical maps, and that its principles are designed to 
trace out the parallelisms between the fine conceptual structures of the source and target 
domains. 
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