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Abstract

Is the pool of fair predictive algorithms fair? It depends, naturally, on both the
criteria of fairness and on how we pool. We catalog the relevant facts for some of the
most prominent statistical criteria of algorithmic fairness and the dominant approaches
to pooling forecasts: linear, geometric, and multiplicative. Only linear pooling, a for-
mat at the heart of ensemble methods, preserves any of the central criteria we consider.
Drawing on work in the social sciences and social epistemology on the theoretical foun-
dations of the wisdom of crowds, we explain how our observations present an exception
to the general trend of finding tradeoffs between the accuracy and fairness of forecasts.
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Averages Law; opinion pooling

1 Introduction

Algorithms play a number of important roles in our private and public lives. They generate
search engine results, organize news feeds on social media, and identify promising romantic
partners. They inform judicial, loan, social benefits, and college admissions decisions. They
also raise pressing and vexing ethical challenges. For instance, some algorithms used in
the US criminal justice system predict whether individuals will recidivate. Famously, such
algorithms have been found to exhibit apparent race- and sex-based bias like rating black non-
recidivists as significantly more like to re-offend than white non-recidivists (Angwin et al.,
2016a,b). Partially in reaction to such findings, the study of algorithmic fairness has assumed
a prominent role in computer science, philosophy, and other fields.

A theoretically interesting and ethically salient finding that has emerged from these
studies is that implementing sensible notions of fairness can come at the cost of accu-
racy (Corbett-Davies et al., 2017; Menon and Williamson, 2018; Kearns and Roth, 2019).



Grgić-Hlača et al. (2017) consider this finding in the setting of ensemble methods. In en-
semble classification, a set of classifiers, rather than a single classifier, is produced. These
classifiers are then combined to yield a classifier that is, in many cases, superior in some
sense (Leutbecher and Palmer, 2008; Rokach, 2010). The goal of ensemble methods is often
to improve accuracy. Types of ensemble methods for classifiers that are popular in machine
learning and artificial intelligence research include bagging and boosting (Maclin and Opitz,
1997; Bühlmann, 2012). Bagging, for instance, generates a collection of individual or base
classifiers by training some model-fitting method on different sequences of random samples
from the training data. These classifiers can then be aggregated to form an ensemble classi-
fier with reduced variance and mean squared error (Bühlmann, 2012). Among the findings
that Grgić-Hlača and coauthors report are that ensemble classifiers preserve some notions of
fairness and that they “can achieve better accuracy-fairness trade-offs than a single classifier”
(2017: 1).

While the focus of Grgić-Hlača and coauthors is on binary classifiers, ours will be on more
general probabilistic forecasts. A large number of algorithmic fairness criteria have been
proposed for this setting. We consider ten such criteria. In Section 3, we observe, first, that
an ensemble formed by linear pooling preserves several criteria of central or recent concern
in work on algorithmic fairness and fails to preserve others. Second, unlike Grgić-Hlača and
coauthors, we consider geometric and multiplicative pooling, prominent alternative ways of
aggregating probabilities. Both geometric and multiplicative pooling fail to preserve any of
the ten criteria we discuss. This catalog is one of the main contributions of our essay, and
contributes data to debates regarding the appeal of various fairness criteria or approaches
to pooling forecasts. Third, appealing to the Crowds Beat Averages Law, we observe in
Section 4 that the inaccuracy of the linear pool is no greater than the average inaccuracy
of the individual assessors. While the accuracy benefits of ensemble methods are widely-
appreciated in computer science and machine learning, our route to this point emphasizes a
connection to the social science and social epistemology literature on the wisdom of crowds.
At least for several metrics of fairness and linear pooling, ensemble methods present a sort of
exception to the trend of finding tradeoffs between the two aims of accuracy and fairness for
predictive algorithms (Kearns and Roth, 2019). We comment on the dialectical significance
of our observations in Section 5.

2 Algorithmic Fairness

Predictive algorithms can be thought of as making forecasts about whether individuals in
some relevant population have a particular property y of concern. The property might be
whether or not the individual will recidivate or whether or not she or he will default on a loan,
for example. Let N be a finite population of individuals. Associated with each individual
i ∈ N typically is a vector of i’s features or characteristics. In general the relevant features
depend on the prediction task. It might include type of crime for predicting recidivism
or annual income in predicting loan default. Since these vectors will not play a central
role in our discussion, we will abstract from them, not representing them formally. Let
Y : N → {0, 1} be a random variable representing whether an individual i has property y:
Y (i) = 1 if i has y, and Y (i) = 0 otherwise. The population N can be divided into groups



in various ways. Concern with fair treatment is typically concern for fair treatment across
salient, sensitive social groupings: race, sex, disability status, and so on. Let π be a partition
of N representing some social grouping. Each individual in N belongs to exactly one cell of
π.

An assessor h : N → [0, 1] assigns each individual i a number in the unit interval which
can be interpreted as the probability that Y (i) = 1, that i has property y. In order to
talk about proportions in groups and to formulate certain central fairness criteria, we also
introduce a uniform probability distribution P on N . For any group G ⊆ N , we have
P (G) =

∑

i∈G P (i), and PG = P (·|G) is uniform on G. The base rate (or prevalence) of y
in G is µG = PG(Y = 1). In words, the base rate in G is the proportion of individuals in G
that have property y. The distribution P also allows us to define expectations. For example,
EG(h) = E(h|G) is the expected value of h in group G; since PG is uniform, this is just the
average value of h in G.

The interesting ethical question here concerns the properties that h should have in order
to be considered fair. The standard approach investigates potential necessary criteria of
fairness. A rapidly expanding set of statistical criteria have been introduced and studied in
the literature (Narayanan, 2018; Verma and Rubin, 2018; Eva, 2022; Nielsen and Stewart,
2024; Stewart, 2024). A sizeable subset of this expanding literature on criteria of algo-
rithmic fairness reports results establishing that many sets of these criteria are effectively
impossible to jointly satisfy (Borsboom et al., 2008; Chouldechova, 2017; Kleinberg et al.,
2017; Stewart et al., 2024). The influential result of Kleinberg and coauthors, for instance,
establishes that two compelling criteria—Calibration and Equalized Odds—are inconsistent
except in unrealistic cases in which the base rates for all groups are identical or the asses-
sor is perfect (Kleinberg et al., 2017). This observation has motivated a search for ways of
modifying Calibration and Equalized Odds. Here, we will consider ten of these statistical
criteria of fairness that are of core or recent interest. They can be divide into three groups:
criteria related to Calibration, criteria related to Equalized Odds, and criteria related to a
property called Statistical Parity. This division mirrors the one in (Barocas et al., 2023: 61).
Both because of space limitations and because it has been done a number of times elsewhere
in the literature (e.g., Barocas et al., 2023), we refrain from rehearsing explanations and
motivations for these properties.

First, we have Calibration—the “dominant fairness criterion” in the literature according to
some (Corbett-Davies et al., 2017: 799)—and various logically independent ways of relaxing
it (Stewart et al., 2024; Nielsen and Stewart, 2024).

Calibration. For an assessor h of N and any group G in the relevant partition
π of N , PG(Y = 1|h = p) = p for all p ∈ [0, 1] such that PG(h = p) > 0.

Base Rate Tracking. For an assessor h of N and any groups G,G′ in the
relevant partition π of N , EG(h)− µG = EG′(h)− µG′ .

Ratio Base Rate Tracking. For an assessor h of N and any groups G,G′ in the

relevant partition π of N ,
EG(h)

µG

=
EG′(h)

µG′

(whenever both ratios are defined).

Spanning. For an assessor h of N and any group G in the relevant partition π
of N , the base rate µG lies in the interval [mini∈G h(i),maxi∈G h(i)].



Predictive Equity. For an assessor h of N and any groups G,G′ in a partition
π of N , PG(Y = 1|h = p) = PG′(Y = 1|h = p) for all p ∈ [0, 1] such that
PG(h = p), PG′(h = p) > 0.

Next, we have Equalized Odds and two other criteria that often go by that name in the
literature (Grant, 2023). We follow the naming conventions adopted in (Nielsen and Stewart,
2024). Strong Equalized Odds implies both Equalized Odds and Threshold Equalized Odds,
but those two properties are logically independent of each other.

Strong Equalized Odds. For an assessor h of N and any groups G,G′ in
the relevant partition π of N , PG(h = p|Y = 0) = PG′(h = p|Y = 0) and
PG(h = p|Y = 1) = PG′(h = p|Y = 1) for any p (whenever those probabilities
are defined).

Equalized Odds. For an assessor h of N and any groups G,G′ in the relevant
partition π of N , EG(h|Y = 0) = EG′(h|Y = 0) and EG(h|Y = 1) = EG′(h|Y = 1)
(whenever those terms are defined).

Threshold Equalized Odds. For an assessor h of N , a specified threshold
t ∈ [0, 1], and any groups G,G′ in the relevant partition π of N , PG(h > t|Y =
0) = PG′(h > t|Y = 0) and PG(h < t|Y = 1) = PG′(h < t|Y = 1) for any p
(whenever those probabilities are defined).

Finally, we will also consider the following parity properties (Räz, 2021).

Strong Statistical Parity. For an assessor h of N and any groups G,G′ in the
relevant partition π of N , PG(h = p) = PG′(h = p) for any p ∈ [0, 1].

Statistical Parity. For an assessor h of N and any groups G,G′ in the relevant
partition π of N , EG(h) = EG′(h).

It is not difficult to show that Strong Statistical Parity implies Statistical Parity, which
we take to justify our naming convention. While Statistical Parity is similar to Equalized
Odds, formulated basically without conditioning on the positive or negative class, the two
properties are logically independent.

3 Pooling and Preserving Fairness

Various ways of aggregating a set of probabilistic forecasts have been studied in depth in
economics (Mongin, 1995), philosophy (Dietrich and List, 2016; Elkin and Pettigrew, 2025),
statistics (Genest and Zidek, 1986), and other fields of research. Pooling methods are ensem-
ble methods for probability assessments. Among the most prominent and best supported
means of aggregating probabilities is the linear pool. A number of considerations in favor
of linear pooling have been adduced, considerations having to do with informational parsi-
mony (McConway, 1981), accuracy (Pettigrew, 2019), and Pareto and coherence conditions
(Gilboa et al., 2004; Nielsen, 2019). Linear averages are at the core of ensemble methods, as



Bühlmann notes: “the general principle of ensemble methods is to construct a linear combi-
nation of some model fitting method, instead of using a single fit of the method” (2012: 985).
Here, we study the linear pool of assessors in the algorithmic fairness context.

Let h1, . . . , hm be a profile of m assessors on N . We focus on the well-behaved subset of
linear pools that are convex combinations. For α1, . . . , αm ∈ [0, 1] such that

∑m

j=1
αj = 1,

the linear pool h (without subscript) of the hj for each i ∈ N is given by

h(i) =
m
∑

j=1

αjhj(i). (Linear Pool)

Linear pooling allows us to weight the base assessors hj the same or very differently. For
instance, a weight of 0 might be assigned to models that were generated (e.g., by bagging)
but were “pruned” from the final, pooled assessment (Mendes-Moreira et al., 2012: 3–4).

In general, the base assessors may fail to satisfy some criterion of fairness. But when
they do—via a preprocessing, in-training, or post-processing approach (Barocas et al., 2023:
pp. 70–71)—a crucial question is whether linear pooling preserves fairness criteria of the
sort listed above since this would be a desirable feature whenever fairness is a concern. That
is, given that each of h1, . . . , hm satisfy some criterion of algorithmic fairness, does it follow
that the ensemble assessor h does? It depends on the criterion.

Theorem 1. (i) Linear pooling preserves Base Rate Tracking, Ratio Base Rate Tracking,
Equalized Odds, and Statistical Parity. (ii) Linear pooling does not preserve Calibration,
Predictive Equity, Spanning, Strong Equalized Odds, Threshold Equalized Odds, or Strong
Statistical Parity.

While we do not provide counterexamples for criteria that are not preserved—none require
big or complicated examples—proofs for the criteria that are preserved are in the Appendix.

There is a positive lesson and a negative lesson that we learn from Theorem 1. The
positive lesson is that, for several conceptions of fairness, the linear pool of fair assessors
is guaranteed to be fair. The set of properties preserved includes criteria from each of the
three categories we mentioned: those related to Calibration, those related to Equalized Odds,
and those related to Statistical Parity. The negative lesson is that, for other conceptions
of fairness, the linear pool may not be fair even if all of the hj are. The set of properties
that fail to be preserved also includes criteria from each of the three categories. It may
be worth remarking that the positive cases are criteria formulated in terms of expectations
and the negative cases are criteria not formulated in those terms. This makes some sense
mathematically since the central moves in the proofs exploit the linearity of expectation.

Alternatives to the linear pool have been studied in the pooling literature. Most promi-
nent among these alternatives is probably geometric pooling. The most salient virtues
of geometric pooling concern the various ways it interacts nicely with Bayesian updating
(Madansky, 1964; Dietrich, 2019, 2021; Baccelli and Stewart, 2021). Again assuming that
α1, . . . , αm ∈ [0, 1] and

∑m

j=1
αj = 1, the geometric pool is given by

h(i) = c

m
∏

j=1

hj(i)
αj (Geometric Pool)



where

c =
1

∏m

j=1
hj(i)αj +

∏m

j=1
(1− hj(i))αj

.

A less prominent alternative, closely related to geometric pooling, that has gained traction
recently is the multiplicative pool (Dietrich, 2010; Easwaran et al., 2016). The multiplicative
pool can be obtained from the geometric pool by setting αj = 1 for j = 1, . . . ,m.

h(i) = c
m
∏

j=1

hj(i), (Multiplicative Pool)

where

c =
1

∏m

j=1
hj(i) +

∏m

j=1
(1− hj(i))

.

While many things might be said in favor of these methods of pooling, that they preserve
any of the fairness criteria discussed here is not one of them.

Theorem 2. Neither Geometric nor Multiplicative pooling preserves Calibration, Base Rate
Tracking, Ratio Base Rate Tracking, Predictive Equity, Spanning, Strong Equalized Odds,
Equalized Odds, Threshold Equalized Odds, Strong Statistical Parity, or Statistical Parity.

When preserving fairness is valuable, linear pooling has a definite advantage over geomet-
ric and multiplicative for many central statistical criteria. Theorems 1 and 2 are stated for
cases in which every assessor in the profile satisfies some criterion. The issue can be studied
from a more general perspective of proximity to satisfying a criterion rather than satisfying
a criterion exactly. For example, is the linear pool of assessors guaranteed to be “at least as
close” to satisfying some criterion as the base assessors on average? Addressing this more
general perspective is beyond the scope of the current paper but is the subject of work in
progress. But it is because of Theorems 1 and 2 that we focus on linear pooling in Section
4.

4 Accuracy and the Wisdom of Crowds

Recall that a primary motivation for using ensemble methods is improving the accuracy of
forecasts. As we will show here by appealing to ideas from work on the wisdom of crowds,
linear pooling does have potential accuracy benefits. The wisdom of crowds refers to the
phenomenon of groups of individuals outperforming or being smarter than individuals in
some sense (Galton, 1907; Surowiecki, 2004). Attempts to account for the phenomenon or
its logic sometimes appeal to analytic results such as Condorcet’s Jury Theorem (Condorcet,
1785) and the Diversity Prediction Theorem (Hong and Page, 2012). In this section, we
note an analogue of the Crowds Beat Averages Law, a corollary of the Diversity Prediction
Theorem, for assessors.

Define the inaccuracy of an assessor h on N as h’s mean squared error:

1

n

∑

i∈N

(h(i)− Y (i))2.



Notice that implicit in this particular way of assessing inaccuracy is equal regard for the
accuracy of forecasts for each individual. The inaccuracies of h for any two individuals are
weighted the same—namely, 1/n—in the overall inaccuracy of h.1

The next result is a Crowd Beats Averages Law for ensemble assessors.

Theorem 3. Let h be a linear pool of a profile of m assessors h1, . . . , hm on N (such that
the weights are positive and sum to 1). Then, the inaccuracy of h is no greater than the
average inaccuracy of the hj:

1

n

∑

i∈N

(h(i)− Y (i))2 ≤
m
∑

j=1

αj

1

n

∑

i∈N

(hj(i)− Y (i))2.

We can state Theorem 3 in more slogan form.

Ensemble Assessor Inaccuracy ≤ Average Individual Assessor Inaccuracy

It does not follow from Theorem 3 that the ensemble assessor is at least as accurate as every
individual assessor in the profile, just that the ensemble’s accuracy will be at least as good
as the average accuracy of the assessors in the pool. And notice that the average on the
right hand side is taken with respect to the pooling weights that determine h, where those
weights need not be equal.

What Theorems 1.i and 3 help to make clear though is that linear pooling presents at once
the prospect of improvements in accuracy and the aforementioned preservation of important
fairness properties—a package that cannot be claimed for geometric or multiplicative pooling.

5 Discussion

To select from the “Pareto frontier” a class of assessors that are an optimal mix of accurate
and fair requires a precise way of weighing those goals against each other (Kearns and Roth,
2019). We do not adopt this perspective here. But there is another, informal perspective that
finds that imposing fairness constraints very often requires sacrifices in accuracy, and that
gains in accuracy come at the cost of fairness. Theorems 1 and 3 bear on this informal notion
of the accuracy-fairness tradeoff. In the context of assessors that take any value in the unit
interval, we can exploit the propensity of ensemble methods to improve accuracy without
sacrificing fairness for a number of statistical criteria studied in the literature, bucking the
trend of finding accuracy-fairness tradeoffs. We basically have two guarantees. First, for the
criteria indicated in Theorem 1.i, linear pools preserve fairness. Second, the inaccuracy of
a linear pool is no greater than the average inaccuracy of individual assessors in the profile.
So there are potential gains in accuracy that do not exact a fairness fee.

There are various lessons one could draw from our observations. Depending on one’s
antecedent sympathies for and commitments regarding the various fairness criteria, these
points might be motivation for the use of ensemble methods in prediction tasks where fairness
is a concern. This motivation, however, is limited in two respects. First, as far as our
observations go, it is restricted to linear pooling. Second, it is limited to only four of the

1Our observations can be generalized to other ways of assessing inaccuracy (see, e.g., Pettigrew, MS).



ten criteria we present. A commitment to some fairness criterion that no prominent pooling
method preserves may bring the accuracy-fairness tradeoff back in full force. Alternatively,
if one is sold on ensemble methods and is concerned with fairness in some predictive setting,
our points might be considerations in favor of particular statistical criteria. This can be
only one consideration among others for favoring certain criteria. That a certain criterion is
preserved by an ensemble assessor cannot be sufficient motivation for imposing the criterion
since impossibility results have been established for some subsets of these very properties
(Stewart et al., 2024).2
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Appendix

Proof of Theorem 1

Proof. Let h1, . . . , hm be assessors on N , and let π be a partition of N . Let h be a linear
opinion pool of h1, . . . , hm. We establish each positive claim of the theorem in turn, omitting
the counterexamples for the negative cases.

Base Rate Tracking. Suppose that hj satisfies Base Rate Tracking for j = 1, . . . ,m.
So for each j and for all G,G′ ∈ π,

EG(hj)− EG′(hj) = µG − µG′ .

Using this assumption and the linearity of expectation, we have

EG(h)− EG′(h) = EG

(

m
∑

j=1

αjhj

)

− EG′

(

m
∑

j=1

αjhj

)

=
m
∑

j=1

αjEG(hj)−
m
∑

j=1

αjEG′(hj)

=
m
∑

j=1

αj(EG(hj)− EG′(hj))

=
m
∑

j=1

αj(µG − µG′)

= µG − µG′ .

2Thanks to Jean Baccelli, Reuben Stern, Michael Nielsen, and two anonymous referees for helpful feedback.
We would also like to thank Frederik Van De Putte, Nicolien Janssens, Eva Schmidt, and Jakob Rehof for
helpful comments on a separate project led by Lee Elkin that merged with this one.



Hence, h, an arbitrary linear pool of h1, . . . , hm, satisfies Base Rate Tracking.

Ratio Base Rate Tracking. Suppose that hj satisfies Ratio Base Rate Tracking for
j = 1, . . . ,m. So for all j and all G,G′ ∈ π,

EG(h)

µG

=
EG′(h)

µG′

.

Using this assumption and the linearity of expectation,

EG(h)

µG

=
EG(

∑m

j=1
αjhj)

µG

=

∑m

j=1
αjEG(hj)

µG

=
m
∑

j=1

αj

EG(hj)

µG

=
m
∑

j=1

αj

EG′(hj)

µG′

=
EG′(h)

µG′

Hence, h, an arbitrary linear pool of h1, . . . , hm, satisfies Ratio Base Rate Tracking.

Equalized Odds. Suppose that hj satisfies Equalized Odds for j = 1, . . . ,m. So for all
j and for all G,G′ ∈ π,

EG(hj|Y = 0) = EG′(hj|Y = 0)

and
EG(1− hj|Y = 1) = EG′(1− hj|Y = 1).

Consider equal generalized false positive rates first. Using the assumption and the linear-
ity of expectation,

EG(h|Y = 0) = EG

(

m
∑

j=1

αjhj|Y = 0

)

=
m
∑

j=1

αjEG(hj|Y = 0)

=
m
∑

j=1

αjEG′(hj|Y = 0)

= EG′

(

m
∑

j=1

αjhj|Y = 0

)

= EG′(h|Y = 0)



An analogous argument establishes that EG(1− h|Y = 1) = EG′(1− h|Y = 1). Hence, h, an
arbitrary linear pool of h1, . . . , hm, satisfies Equalized Odds.

Statistical Parity. This proof is closely analogous to the proof for equal generalized
false positive rates, replacing the conditional expectations EG(h|Y = 0) and EG′(h|Y = 0)
with expectations conditional on only group membership: EG(h) and EG′(h).

Proof of Theorem 3

Proof. Note first that, for each i ∈ N ,

(h(i)− Y (i))2 ≤
m
∑

j=1

αj(hj(i)− Y (i))2. (1)

Equation 1 is a slightly generalized version of the Crowds Beat Averages Law for point
estimates, and follows immediately by Jensen’s Inequality. From 1, it follows that

1

n

∑

i∈N

(h(i)− Y (i))2 ≤
1

n

∑

i∈N

m
∑

j=1

αj(hj(i)− Y (i))2. (2)

Finally, switching the order of summation and rearranging on the right hand side of 2 gives
the desired result:

1

n

∑

i∈N

(h(i)− Y (i))2 ≤
m
∑

j=1

αj

1

n

∑

i∈N

(hj(i)− Y (i))2.
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