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Abstract. The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test
for sharp hypotheses. This paper proposes the FBST as a model selection tool for general mixture
models, and compares its performance with Mclust, a model-based clustering software. The FBST
robust performance strongly encourages further developments and investigations.

THE FBST EVIDENCE VALUE

The Fully Bayesian Significance Test (FBST) is presented by Pereira and Stern (1999),
as a coherent Bayesian significance test. The FBST is intuitive and has a geometric
characterization. In this article the parameter space,Θ, is a subset ofRn, and the
hypothesis is defined as a further restricted subset defined by vector valued inequality
and equality constraints:H : θ ∈ ΘH where ΘH = {θ ∈ Θ |g(θ) ≤ 0∧ h(θ) = 0}.
For simplicity, we often useH for ΘH . We are interested in precise hypotheses, with
dim(H) < dim(Θ) . f (θ) is the posterior probability density function.

The computation of the evidence measure used on the FBST is performed in two
steps: The optimization step consists of findingf ∗ and f̂ , the constrained (over H) and
unconstrained maxima of the posterior. The integration step consists of integrating the
posterior density over the Tangential Set,T where the posterior is higher than anywhere
in H, i.e.,T = {θ ∈Θ : f (θ) > f ∗}, f ∗ = maxH f (θ) = f (θ ∗), f̂ = maxΘ f (θ) = f (θ̂),

Ev(H) = Pr(θ ∈ T |x) =
∫

T
f (θ)dθ .

Ev(H) is the evidence againstH, and Ev(H) = 1−Ev(H) is the evidence supporting
(or in favour of)H. Intuitively, if Ev(H) is “large”, T is “heavy”, and the hypothesis set
is in a region of “low” posterior density, meaning a “strong” evidence againstH.

Let us consider the cumulative distribution of the evidence value against the hypoth-
esis,V(c) = Pr(Ev≤ c), givenθ 0, the true value of the parameter. Under appropriate
regularity conditions, for increasing sample size,n→ ∞, we can say the following:

- If H is false,θ 0 /∈H, thenEv converges (in probability) to one, that is,V(c)→ δ (1).
- If H is true,θ 0∈H, thenV(c), the confidence level, is approximated by the function

W(t,h,c) = Chi2
(
t−h,Chi2−1(t,c)

)
, wheret = dim(Θ), h= dim(H) and Chi2(k,x) is

the cumulative chi-square distribution withk degrees of freedom.
Several FBST applications and examples, efficient computational implementation,

interpretations, and comparisons with other techniques for testing sharp hypotheses, can
be found in the authors’ papers in the reference list.
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DIRICHLET-NORMAL-WISHART MIXTURE MODELS

In a d-dimensional multivariate finite mixture model withm components (or classes),
and sample sizen, any given samplex j is of classk with probabilitywk; the weights,wk,
give the probability that a new observation is of classk. A samplej of classk = c( j) is
distributed with densityf (x j |ψk).

This paragraph defines some general matrix notation. Letr:s:t indicate either the
vector [r, r + s, r + 2s, . . . t] or the corresponding index range fromr to t with steps;
r:t is a short hand forr:1:t. A matrix array has a superscript index, likeS1 . . .Sm. So
Sk

h,i is theh-row, i-column element of matrixSk. We may write a rectangular matrix,X,
with the row (or shorter range) index subscript, and the column (or longer range) index
superscript. Soxi , x j , andx j

i
are rowi, column j, and element(i, j) of matrixX. 0 and1

are matrices of zeros and ones which dimensions are given by the context. In this paper,
let h, i be indices in the range 1:d, k in 1:m, and j in 1:n.

The classificationszj
k

are boolean variables indicating whether or notx j is of class

k, i.e. zj
k
= 1 iff c( j) = k. Z is not observed, being therefore named latent variable or

missing data, see Robert (1996). Conditioning on the missing data, we get:

f (x j |θ) = ∑m
k=1 f (x j |θ ,zj

k
) f (zj

k
|θ) = ∑m

k=1wk f (x j |ψk)

f (X |θ) = ∏n
j=1 f (x j |θ) = ∏n

j=1∑
m
k=1wk f (x j |ψk)

Given the mixture parameters,θ , and the observed data,X, the conditional classifica-
tion probabilities,P = f (Z |X,θ), are:

p j
k

= f (zj
k
|x j ,θ) =

f (zj
k
,x j |θ)

f (x j |θ)
=

wk f (x j |ψk)
∑m

k=1wk f (x j |ψk)

We useyk for the number of samples of classk, i.e.yk = ∑ j z
j
k
, or y= Z1. The likelihood

for the “completed” data,X,Z, is:

f (X,Z |θ) = ∏n
j=1 f (x j |ψc( j)) f (zj

k
|θ) = ∏m

k=1

(
wk

yk∏ j |c( j)=k f (x j |ψk)
)

We will see in the following sections that considering the missing dataZ, and the con-
ditional classification probabilitiesP, is the key for successfully solving the numerical
integration and optimization steps of the FBST. In this article we will focus on Gaus-
sian finite mixture models, wheref (x j |ψk) = N(x j |bk,Rk), a Normal density with mean
bk and variance matrixVk, or precisionRk = (Vk)−1. Next we specialize the theory of
general mixture models to the Dirichlet-Normal-Wishart case.

Consider the random matrixX j
i
, i in 1:d, j in 1:n, n > d, where each column contains

a sample element from ad-multivariate Normal distribution with parametersb (mean)
andV (covariance), orR= V−1 (precision). Letu andSdenote the statistics:

u = (1/n)∑n
j=1x j = (1/n)X1 , S= ∑n

j=1(x
j −b)⊗ (x j −b)′ = (X−b)(X−b)′

The random vectoru has Normal distribution with meanb and precisionnR. The
random matrixShas Wishart distribution withn degrees of freedom and precision matrix
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R. The Normal, Wishart and Normal-Wishart pdfs have expressions:

N(u|n,b,R) = ( n
2π

)d/2|R|1/2 exp
(
−(n/2)(u−b)′R(u−b)

)
W(S|e,R) = c−1 |S|(e−d−1)/2 exp(−(1/2)tr(SR))

with normalization constantc = |R|−e/22ed/2πd(d−1)/4 ∏d
i=1Γ((e− i +1)/2) .

Now consider the matrixX as above, with unknown meanb and unknown precision
matrixR, and the statistic

S= ∑n
j=1(x

j −u)⊗ (x j −u)′ = (X−u)(X−u)′

The conjugate family of priors for multivariate Normal distributions is the Normal-
Wishart. Take as prior distribution for the precision matrixR the Wishart distribution
with ė> d−1 degrees of freedom and precision matrixṠand, givenR, take as prior forb
a multivariate Normal with mean ˙u and precision ˙nR, i.e. let us take the Normal-Wishart
prior NW(b,R| ṅ, ė, u̇, Ṡ). Then, the posterior distribution forR is a Wishart distribution
with ëdegrees of freedom and precisionS̈, and the posterior forb, givenR, is k-Normal
with mean ¨u and precision ¨nR, i.e., we have the Normal-Wishart posterior:

NW(b,R| n̈, ë, ü, S̈) = W(R| ë, S̈) N(b| n̈, ü,R)
n̈ = ṅ+n , ë= ė+n , ü = (nu+ ṅu̇)/n̈

S̈ = S+ Ṡ+(nṅ/n̈)(u− u̇)⊗ (u− u̇)′

All covariance and precision matrices are supposed to be positive definite, and proper
priors have ˙e≥ d, andṅ≥ 1. Non-informative Normal-Wishart improper priors are given
by ṅ= 0, u̇= 0, ė= 0, Ṡ= 0, i.e. we take a Wishart with 0 degrees of freedom as prior for
R, and a constant prior forb, see DeGroot (1970). Then, the posterior forR is a Wishart
with n degrees of freedom and precisionS, and the posterior forb, givenR, is d-Normal
with meanu and precisionnR.

The conjugate prior for a multinomial distribution is a Dirichlet distribution:

M(y|n,w) =
(
n!

/
y1! . . .ym!

)
w1

y1 . . .wm
ym

D(w|y) =
(
Γ(y1 + . . .+yk)

/
Γ(y1) . . .Γ(yk)

)
∏m

k=1wk
yk−1

with w > 0 andw1 = 1. Prior information given by ˙y, and observationy, result in the
posterior parameter ¨y = ẏ+y. A non-informative prior is given by ˙y = 1.

Finally, we can write the posterior and completed posterior for the model as:

f (θ |X, θ̇) = f (X |θ) f (θ | θ̇)

f (X |θ) = ∏n
j=1∑

m
k=1p j

k
wkN(x j |bk,Rk)

f (θ | θ̇) = D(w| ẏ)∏m
k=1NW(bk,Rk | ṅk, ėk, u̇

k, Ṡk)

p j
k
= wkN(x j |bk,Rk)

/
∑m

k=1wkN(x j |bk,Rk)
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f (θ |X,Z, θ̇) = f (θ |X,Z) f (θ | θ̇) = D(w| ÿ)∏m
k=1NW(bk,Rk | n̈k, ëk, ü

k, S̈k)

y = Z1 , ÿ = ẏ+y , n̈ = ṅ+y , ë= ė+y

uk = (1/yk)∑n
j=1zj

k
x j , Sk = ∑n

j=1zj
k
(x j −uk)⊗ (x j −uk)′

ük = (1/ÿk)(ṅku̇
k +yku

k) , S̈k = Sk + Ṡk +(ṅkyk

/
n̈k)(u

k− u̇k)⊗ (uk− u̇k)′

GIBBS SAMPLING, INTEGRATION AND OPTIMIZATION

In order to integrate a function over the posterior measure, we use an ergodic Markov
Chain. The form of the Chain below is known as Gibbs sampling, and its use for
numerical integration is known as Markov Chain Monte Carlo, or MCMC.

Givenθ , we can computeP. GivenP, f (zj | p j) is a simple multinomial distribution.
Given the latent variables,Z, we have simple conditional posterior density expressions
for the mixture parameters:

f (w|Z, ẏ) = D(w| ÿ) , f (Rk |X,Z, ėk, Ṡ
k) = W(R| ëk, S̈

k)

f (bk |X,Z,Rk, ṅk, u̇
k) = N(b| n̈k, ü

k,Rk)

Gibbs sampling is the MCMC generated by cyclically updating variablesZ, θ , andP,
by drawingθ andZ from the above distributions, Häggström (2002), Johnson (1987).

Given a mixture model, we obtain an equivalent model renumbering the components
1 : m by a permutationσ([1 : m]). This symmetry must be broken in order to have an
identificable model, Stephens (1997). Let us assume there is an order criterion that can
be used when numbering the components. If the components are not in the correct order,
Label Switching is the operation of finding permutationσ([1 : m]) and renumbering the
components, so that the order criterion is satisfied.

If we want to look consistently at the classifications produced during a MCMC run, we
must enforce a label switching to break all non-identificability symmetries. For example,
in the Dirichlet-Normal-Mixture model, we could choose to order the components
(switch labels) according to the the rank given by: 1- A given linear combination of
the vector means,c′ ∗bk; 2- The variance determinant|Vk|. The choice of a good label
switching criterion should consider not only the model structure and the data, but also
the semantics and interpretation of the model.

The semantics and interpretation of the model may also dictate that some states, like
certain configurations of the latent variablesZ, are either meaningless or invalid, and
shall not be considered as possible solutions. The MCMC can be adapted to deal with
forbidden states by implementing rejection rules, that prevent the chain from entering
the forbidden regions of the complete and/or incomplete state space, see Bennett (1976),
Meng and Wong (1996).

The EM algorithm optimizes the log-posterior functionf l(X |θ) + f l(θ | θ̇), see
Dempster et al. (1977), Ormoneit and Tresp (1995), Russel (1988). The EM is derived
from the conditional log-likelihood, and the Jensen inequality: Ifw,y > 0,w′1 = 1 then
logw′y≥ w′ logy. Let θ andθ̃ be our current and next estimate of the MAP (Maximum
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a Posteriori), andp j
k
= f (zj

k
|x j ,θ) the conditional classification probabilities. At each

iteration, the log-posterior improvement is:

δ (θ̃ ,θ |X, θ̇) = f l(θ̃ |X, θ̇)− f l(θ |X, θ̇) = δ (θ̃ ,θ |X)+δ (θ̃ ,θ | θ̇)

δ (θ̃ ,θ | θ̇) = f l(θ̃ | θ̇)− f l(θ | θ̇)

δ (θ̃ ,θ |X) = f l(X | θ̃)− f l(X |θ) = ∑ jδ (θ̃ ,θ |x j)

δ (θ̃ ,θ |x j) = f l(x j | θ̃)− f l(x j |θ) = log∑kw̃k f (x j | ψ̃k) − f l(x j |θ) =

= log∑k

p j
k

p j
k

w̃k f (x j | ψ̃k)
f (x j |θ)

≥ ∆(θ̃ ,θ |x j) = ∑kp j
k
log

w̃k f (x j | ψ̃k)
p j

k
f (x j |θ)

Hence,∆(θ̃ ,θ |X, θ̇) = ∆(θ̃ ,θ |X) + δ (θ̃ ,θ | θ̇), is a lower bound toδ (θ̃ ,θ |X, θ̇).
Also ∆(θ ,θ |X, θ̇) = δ (θ ,θ |X, θ̇) = 0. So, under mild differentiability conditions, both
surfaces are tangent, assuring convergence of EM to the nearest local maximum. But
maximizing∆(θ̃ ,θ |X, θ̇) over θ̃ is the same as maximizing

Q(θ̃ ,θ) = ∑k, j p
j
k
log

(
w̃k f (x j | ψ̃k)

)
+ f l(θ̃ | θ̇)

and each iteration of the EM algorithm breaks down in two steps:
E-step: ComputeP = E(Z |X,θ) . M-step: OptimizeQ(θ̃ ,θ) , givenP.

For the Gaussian mixture model, with a Dirichlet-Normal-Wishart prior,

Q(θ̃ ,θ) = ∑m
k=1∑

n
j=1p j

k

(
logw̃k + logN(x j | b̃k, R̃k)

)
+ f l(θ̃ | θ̇)

f l(θ̃ | θ̇) = logD(w̃| ẏ) +∑m
k=1 logNW(b̃k, R̃k | ṅk, ėk, u̇

k, Ṡk)

Lagrange optimality conditions give a simple analytical solutions for the M-step:

y = P1 , w̃k =
(
yk + ẏk−1

)/(
n−m+∑m

k=1ẏk

)
uk = 1

yk
∑n

j=1p j
k
x j , Sk = ∑n

j=1p j
k
(x j − b̃k)⊗ (x j − b̃k)′

b̃k =
ṅku̇

k +yku
k

ṅk +yk
, Ṽk =

Sk + ṅk(b̃
k− u̇k)⊗ (b̃k− u̇k)′+ Ṡk

yk + ėk−d

In more general (non-Gaussian) mixture models, if an analytical solution for the M-
step is not available, a robust local optimization algorithm can be used, see for example
Birgin et al. (2004). The EM is only a local optimizer, but the MCMC provides plenty
of good starting points, so we have the basic elements for a global optimizer. To avoid
using many starting points going to a same local maximum, we can filter the (ranked
by the posteriori) top portion of the MCMC output using a clustering algorithm, and
select a starting point from each cluster. For better efficiency, or more complex problems,
the Stochastic EM or SEM algorithm can be used to provide starting points near each
important local maximum, see Celeux et al. (1996), Pflug (1996) and Spall (2003).
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MODEL SELECTION AND COMPARATIVE RESULTS

The problem under study is to determine the number of components (or classes) in a
population, given a sampleX drawn from that population. Each componentk is assumed
to follow a multivariate Normal distribution, whose mean vectorbk and variance matrix
Vk must also be estimated.

In the FBST formulation of the problem, the base model hasm components, and the
hypothesis to be tested is the constraint of havingm−1 components, i.e., components
m andm− 1 are identical. The FBST selects them component model, rejectingH, if
the evidence against the hypothesis is above a critical level,Ev(H) > c, and selects the
m−1 component model, acceptingH, otherwise. In order to determine the number of
components, we apply the FBST in the base model withm= 2,3, ... components, and
stop the process at the lowestm such that the hypotheses is accepted,mf . The elected
model hasmf −1 components.

Several methods can be used to choose the critical levelc. Empirical power analysis,
see Stern and Zacks (2002), Lauretto et al. (2003), and sensitivity analysis, Stern (2004),
require calibration procedures. Loss functions, Madruga et al. (2001), require decision
theoretical interpretations. Application of these methods will be discussed in forthcom-
ing papers. Following an anonymous referee suggestion, we proceed with a traditional
power analysis. This is a form of the Rule of Parsimony, or Occam’s Razor: AcceptH,
the smaller model, unless there is strong evidence not to do so.

We use approximate (asymptotic) critical levels corresponding to the standard Fisher
confidence level of 1−α for α = 0.01. For example (see section 1), at them= 3 base
model,t = 17 andh = 11, givingc = 0.53.

When implementing the FBST one has to be careful with trapping states on the
MCMC. These typically are states where one component has a small number of sample
points, that become (nearly) collinear, resulting in a singular posterior. A standard way
to avoid this inconvenience is to use flat or minimally informative priors, instead of non-
informative priors, see Robert (1996). We used as flat prior parameters: ˙y = 1, ṅ = 1,
u̇= u, ė= 3, Ṡ= (1/n)S. Robert (1996) uses, with similar effects, ˙e= 6, Ṡ= (1.5/n)S.

In this work we compare the FBST performance with Mclust, a software for model-
based cluster analysis, see Banfield and Raftery (1993) and Fraley and Raftery (1999).
Mclust is available at the authors’ internet site as an easy to use and ready to run software
package, that has been extensively and successfully used in many applications. Also,
Mclust has no extra parameters that need to be adjusted or calibrated to the specific
application. These characteristics motivated our choice of Mclust for a first comparison
with the FBST. Forthcoming articles will include other well published methods, based
on Dirichlet processes, jump-diffusion and birth-death MCMC.

In Mclust, the variance structure and the number of components are selected via
Bayesian Information Criterion (BIC), see Schwarz (1978):BIC = 2Λ−κ log(n), where
Λ is the maximum model log-likelihood,κ its number of parameters, andn the sample
size. BIC is a regularization criteria, weighting the model fit against the number of
parameters. A larger BIC score indicates stronger evidence for the corresponding model.

Our numerical experiments are based on theOld Faithfuldataset, see Stephens (1997),
which consists of 272 eruptions observations of the Old Faithful geyser in the Yellow-
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stone National Park. Each observation has the eruption duration and waiting time before
the next eruption. The problem is to decide how many classes of eruptions there exist.
Old Faithful is a standard dataset for experiments in the area, allowing our results to be
easily reproduced, but our general conclusions have been confirmed in several randomly
generated datasets.

Two numerical experiments on simulated data were performed, using parameters
θ ∗ and θ̂ , the maximum likelihood estimators for 2 and 3 component models in the
original dataset. In the first experiment, our interest was to analyze the overestimate
and underestimate rates on the number of components, for FBST and Mclust. We used
Mclust library to generate a random collection of 500 datasets with 272 points each
using parameterθ ∗ and a second collection of 500 datasets with 272 points each using
parameter̂θ . Table 1 shows the number of datasets according to the estimated number of
components by FBST and Mclust. Each column corresponds to one of the collections,
at θ ∗ andθ̂ , and each row represents the estimated number of components.

In the second numerical experiment we examine the FBST and Mclust choice be-
tween the 2 and 3 component models, as the sample sizen increases. For eachn ∈
{200,300,400,500,600}, we simulated two collections of 500 datasets withn points
each, one using the parameterθ ∗, and the other using parameterθ̂ . Table 2 shows the
number of missclassifications for FBST and Mclust, at each of the 10 collections.

These (preliminary) results corroborate the authors’ previous findings, indicating that
the FBST is a robust Bayesian sharp hypothesis test, and a promissing tool for model
selection, deserving further development and investigation.

Finally, let us point out a related topic for further research: The problem of discrimi-
nating between models consists of determining which ofmalternative models,fk(x,ψk),
more adequately fits or describes a given dataset. In general the parametersψk have dis-
tinct dimensions, and the modelsfk have distinct (unrelated) functional forms. In this
case it is usual to call them “separate” models (or hypotheses). Atkinson (1970), al-
though in a very different theoretical framework, was the first to analyse this problem
using a mixture formulation,f (x|θ) = ∑m

k=1wk fk(x,ψk). The general theory for mixture
models presented in this article can be adapted to analyse the problem of discriminating
between separate hypotheses. This is the subject of the authors’ ongoing research with
C.A.B.Pereira and B.B.Pereira, to be presented in forthcoming articles.

The authors are grateful for the support of CAPES - Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior, CNPq - Conselho Nacional de Desenvolvimento Científico
e Tecnológico, and FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo.

Estimated FBST Mclust Dataset FBST Mclust
components θ ∗ θ̂ θ ∗ θ̂ Size θ ∗ θ̂ θ ∗ θ̂

1 0 0 0 0 200 4 356 0 390
2 498 187 500 280 300 2 82 0 235
3 2 288 0 218 400 1 47 0 156
4 0 25 0 2 500 5 3 0 69
− − − − − 600 6 0 0 31

Table 1: Datasets (in 500), according to estimated number of components.
Table 2: Missclassifications (in 500), according to dataset size.
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