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ABSTRACT

We show how the Full Bayesian Signi�cance Test
(FBST) can be used as a model selection criterion.
The FBST was presented by Pereira and Stern [38-
42] as a coherent Bayesian signi�cance test.
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1 INTRODUCTION

The Full Bayesian Signi�cance Test (FBST) is pre-
sented in [38-42] as a coherent Bayesian signi�cance
test. The FBST is intuitive and has a geometric
characterization. It can be easily implemented using
modern numerical optimization and integration tech-
niques. The method is \Fully" Bayesian and consists
in the analysis of credible sets. By Fully we mean
that we need only the knowledge of the parameter
space represented by its posterior distribution. The
FBST needs no additional assumption, like a positive
probability for the precise hypothesis, that generates
the Lindley's paradox e�ect. The FBST regards like-
lihoods as the proper means for representing statis-
tical information, a principle stated by Royall in [49]
to simplify and unify statistical analysis.

Another important aspect of the FBST is its con-
sistency with the \bene�t of the doubt" juridical
principle, [18]. This kind of principle establishes that
there is no liability as long as there is a reasonable
basis for belief, e�ectively placing the burden of proof
on the plainti�, who, in a lawsuit, must prove false a
defendant's misstatement. Such a rule also prevents
the plainti� of making any assumption not explicitly
stated by the defendant, or tacitly implied by exist-
ing law or regulation. The use of an a priori point
mass on the null hypothesis, as on standard Bayesian
tests, can be regarded as such an ad hoc assumption.

In the application presented in this paper, as well
as in those in [23], [38-42], [55] it is desirable or nec-
essary to use a test with the following characteristics:

- Be formulated directly in the original (natural) pa-
rameter space.
- Take into account the full geometry of the null
hypothesis as a manifold (surface) imbedded in the
whole parameter space.
- Have an intrinsically geometric de�nition, indepen-
dent of any non-geometric aspect, like the particular
parameterization of the (manifold representing the)
null hypothesis being tested.
- Be consistent with the bene�t of the doubt juridical
principle (or safe harbor liability rule), i.e. consider
in the \most favorable way" the claim stated by the
hypothesis.
- Considering only the observed sample, allowing
no ad hoc arti�ce (that could lead to judicial con-
tention), like a positive prior probability distribution
on the precise hypothesis.
- Consider the alternative hypothesis in equal stand-
ing with the null hypothesis, in the sense that in-
creasing sample size should make the test converge
to the right (accept/reject) decision.
- Give an intuitive and simple measure of signi�cance
for the null hypothesis, ideally, a probability in the
parameter space.

FBST has all these theoretical characteristics and
can be e�ciently implemented with the appropriate
computational tools. Moreover, as shown in [32], the
FBST is also in perfect harmony with Bayesian de-
cision theory of Rubin [50], in the sense that there
are speci�c loss functions which render the FBST.
Although we do can cast the FBST in a decision the-
oretic framework, we must stress this is optional. Ac-
tually, the FBST was originally de�ned in a pure op-
erational form [39], based only on the bene�t of the
doubt juridical principle.

Interesting connections of some of the character-
istics stated above, with ethics, epistemology, law,
psychology and statistics can be found in [8], [10],
[14], [16], [18], [21], [27], [28], [29-30], [33], [37-42],
[43], [44], [49], [50], [52], [57]. Perhaps the most im-
portant characteristics concern the FBST symmetry.
By one hand, as the sample size grows, the FBST
converges to the Boolean indicator of the hypothe-
sis truth, so achieving perfect symmetry. This is in



sharp contrast with statements like \increase sample
size to reject (accept) the hypothesis" made by many
users of frequentist (standard Bayesian) tests. By the
other hand, for small samples, the FBST exhibits an
o�set. This o�set may counterbalance the intrinsi-
cally asymmetric formulation of a sharp hypothesis
test, or, with the appropriate prior, may also be seen
as a precaution or protection for the bene�t of the
doubt (or context equivalent) principle, keeping us
\within the line of the law" (lifnim mishurat hadin).

2 FBST OPERATIONAL DEFINITION

We restrict the parameter space, �, to be always a
subset of Rn, and the hypothesis is de�ned as a fur-
ther restricted subset �0 � � � Rn. Usually, �0

is de�ned by vector valued inequality and equality
constraints:

�0 = f� 2 � j g(�) � 0 ^ h(�) = 0g:
We are interested in precise hypotheses, so we have
at least one equality constraint, hence dim(�0) <
dim(�). f(�) is the posterior probability density
function.

The computation of the evidence measure used on
the FBST is performed in two steps, a numerical opti-
mization step, and a numerical integration step. The
numerical optimization step consists of �nding an ar-
gument �� that maximizes the posterior density f(�)
under the null hypothesis. The numerical integration
step consists of integrating the posterior density over
the region where it is greater than f(��). That is,

� Numerical Optimization step:

�� 2 argmax
�2�0

f(�) ; ' = f� = f(��)

� Numerical Integration step:

�� =

Z
�

f'(� j d)d�

where f'(x) = f(x) if f(x) � ' and zero other-
wise.

E�cient computational algorithms are available,
for local and global optimization as well as for nu-
merical integration, and they can be implemented in
very user friendly environments, [13], [17], [19], [20],
[24], [26], [31], [34], [48].

If the probability of the set T � is \large", it means
that the null set is in a region of low probability and
the evidence in the data, Ev(H) = 1� ��, is against
the null hypothesis. On the other hand, if the proba-
bility of T � is \small", then the null hypothesis is in
a region of high probability and the evidence in the
data is in its favor.

3 MULTIPLE LINEAR

REGRESSION MODEL

In the standard normal multiple linear regression
model we have y = X� + u, X n � k, where n is
the number of observations, k the number of indepen-
dent variables, � the regression coe�cients, and u is a
Gaussian white noise, soE(u) = 0 and Cov(u) = �2I ,
[7], [12], [15], [22], [62]. Using the di�use prior
p(�; �) = 1=�, the joint posterior probability density
for the parameters and � 2 [0;1[ and � 2 ]�1;1[k

is given by:

f(�; � j y;X) = 1
�n+1

: exp
�
� 1

2�2 ( (n� k)s2 + (� � �̂)0X 0X(� � �̂) )
�
,

�̂ = (X 0X)�1X 0y ;

ŷ = X�̂ ;

s2 = (y � ŷ)0(y � ŷ)=(n� k) :

The log-likelihood and its gradients are given by:

fl(�; �) = �(n+ 1) log(�)� 1

2�2
( (n� k)s2

+(� � �̂)0X 0X(� � �̂) ) ;

@fl

@�
(�; �) = � 1

�2
(� � �̂)0 X 0X ;

@fl

@�
(�; �) = �n+ 1

�
+

1

�3
( (n� k)s2

+(� � �̂)0X 0X(� � �̂) ) :

In the polynomial multiple linear regression model
of order k, the dependent variable y is explained by
powers 0 to k of the independent variable x, i.e., ma-
trix Xi;j = (xi)

j , i = 1 : : : n, j = 0 : : : k. Note the
model of order k has dimension d = k + 2, with pa-
rameters �0; �1; : : : �k; and �.

4 MODEL SELECTION AND

REGULARIZATION

The multiple linear regressionmodel family presented
in the last section is typical, in the sense that it o�ers
a class o models of increasing dimension, or complex-
ity. This poses the problem of deciding, among all
models in the family, the \better" adapted to our
data. It is natural to look for a model that accom-
plishes a small empirical error, the estimated model
error in the training data, Remp. A regression model
is estimated by minimizing the 2-norm empirical er-
ror. However, we can not select the \best" model
based only on the empirical error, because we would



usually select a model of high complexity. In gen-
eral, when the dimensionality of the model is high
enough, the empirical error can be made equal to
zero by simple interpolation. It is a well known fact
in statistics (or learning theory), that the predic-
tion (or generalization) power of such high dimen-
sion models is poor. Therefore the selection criterion
also has to penalize the model dimension. This is
known as a regularization mechanism. Some model
selection criteria de�ne a penalized (or prediction) er-
ror Rpen = r(d; n) � Remp, using a regularization (or
penalization) function, r(d; n), where d is the model
dimension and n the number of training data. Com-
mon regularization functions, using p = (d=n), are:

� Akaike's �nal prediction error:
fpe = (1 + p)=(1� p),

� Schwartz' Bayesian criterion:
sbc = 1 + ln(n)p=(2� 2p),

� Generalized cross validation:
gcv = (1� p)�2,

� Shibata model selector:
sms = 1 + 2p.

All those regularization functions are supported by
theoretical arguments as well as by empirical perfor-
mance; other regularization methods are model de-
pendent, like Akaike information criterion (AIC), and
Vapnik-Chervonenkis (VC) prediction error, [1], [2-
4], [5], [6], [9], [11], [25], [35], [36], [45], [46-47], [51],
[53], [54], [55], [58], [59], [60-61].

We can use the FBST as a model selection crite-
rion, testing the hypothesis of some of its parame-
ters being null, and using the following version of the
\Ockham razor: Do not include in the model a new
parameter unless there is strong evidence that it is
not null."

The FBST selection criterion has a intrinsic reg-
ularization mechanism, under some general circum-
stances discussed later.

Consider, as a simple example, the d-dimensional
vector x j� with normal distribution, N(�; I), and
suppose we want to use the FBST to test the hypoth-
esis H : �1 = 0. Consider the priori for � as N(0; I).
The posterir distribution of � is N(x=2; (1=2)I), De-
Groot (1990). The probability of the H.P.D. region
tangent to the null hypothesis manifold, H : �1 = 0,
is �� = Prf�2d � x21=2g.
The chi-square density with d degrees of freedom

is

fd(x) =
x(d=2�1) exp(�x=2)

2d=2 �(d=2)
;

with E(fd(x)) = d ; Var(fd(x)) = 2d.

So, subtracting the mean and dividing by the stan-
dard deviation,

�� = Pr

(
�2dp
2d
�
r
d

2
� x21

2
p
2d
�
r
d

2

)

Using the central limit theorem, as d!1,

Pr

(
�2dp
2d
�
r
d

2
� t

)
� � (t)

making it is easy to see that, as d!1,
evid(H) = 1� �� ! 1.

The intrinsic regularization of the example above
is partially explained by simple geometry related to
symmetry properties of the model density function,
[15]. The Normal distribution is spherically (or el-
liptically) symmetric, i.e., the (scaled) distribution is
invariant under action of the orthogonal group, whose
invariant metric is the 2-norm, whereas the unitary
volume in Rd is de�ned by a cube, a sphere in the
in�nite-norm. The volumes of the unitary radius d-
dimensional (2-norm) sphere and cube are, Vol(Sd) =
(2=d)�d=2=�(d=2) and Vol(Cd) = 2d. These volumes
ratio make it easy to see that the model invariant
sphere has comparatively \small volume in high di-
mension".

Vol(Sd)

Vol(Cd)
=

2

d

��
4

�d=2�
�

�
d

2

�

5 NUMERICAL EXAMPLES

In the classical example presented in Sakamoto [51],
we want to �t a linear regression polynomial model
of order k,

y = �0 + �1x+ �2x
2 : : :+ �kx

k +N(0; �I)

through n = 21 points, (xi; yi). This example was
produced by Sakamoto simulating the i.i.d. stochas-
tic process

yi = exp((xi � 0:3)2)� 1 + 0:1 �N(0; 1) ;

a structure that can not be expressed exactly as a
�nite order linear regression polynomial model.

Table 1 presents the empirical error, jjy�ŷjj22=n for
models of order k = 0; : : : 5, several regularizations
de�ned in section 5, and the Akaike information cri-
terion (AIC) computed by Sakamoto. Table 1 also
presents the FBST for the hypothesis H : �k = 0.
The FBST is computed with an absolute numerical
error of less than 1%.



We see that all the penalized errors, as well as AIC
criterion, are minimized for k = 2. The FBST gives
strong evidence against �k = 0, k = 0; 1 2, and week
evidence for non-null parameters of higher order. So
all selection criteria elect the second order model as
the better adapted to the example at hand. The situ-
ation is illustrated by Figure 2, presenting for models
of order k = 1 : : : 4, the data points, (+), the �tted
maximum posterior density model of order k, (�),
and the �tted maximum posterior model of order k
making �k = 0, (O).

As a second example, also taken from Sakamoto
[51], we want to �t the model

y = �0 + �1x1 + �2x2 + �3x3 +N(0; �I)

where y is the average daily minimum January tem-
perature for 20 cities in Japan, and the explanatory
variables are, respectively, the cities' latitude, alti-
tude and longitude. Sakamoto gives a detailed anal-
ysis of the model. The independent variables have al-
ready been ordered in decreasing explanatory power.
Table 2 presents the selection criteria for the mod-
els �j = 0; j > k, and the FBST for the hypothesis
H : �k = 0.

It is interesting to follow the discussion in
Sakamoto about the \instability" of the parameter
�2, due to the few observations in higher altitude,
only 6 above 100m. This explains why the FBST
stays at 5% when testing �2 = 0. Skamoto contin-
ues the discussion adding supplementary data of 19
cities, including 8 cities above 100m. The FBST for
H : �2 = 0, using all data, is less than 1%.
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Figure 1: Fitted model for order k = 1 : : : 4, also with �k = 0

Order EMP FPE SBC GCV SMS AIC FBST
0 0.03712 0.04494 0.04307 0.04535 0.04419 -07.25 0.00
1 0.02223 0.02964 0.02787 0.03025 0.02858 -20.35 0.00
2 0.01130 0.01661 0.01534 0.01724 0.01560 -32.13 0.00
3 0.01129 0.01835 0.01667 0.01946 0.01667 -30.80 1.00
4 0.01088 0.01959 0.01751 0.02133 0.01710 -29.79 0.99
5 0.01087 0.02173 0.01913 0.02445 0.01811 -27.86 1.00

Table 1: Selection Criteria for the Polynomial Model

k EMP FPE SBC GCV SMS AIC FBST
0 32.66 39.92 38.10 40.32 39.19 130.5 0.00
1 8.734 11.82 11.04 12.09 11.35 106.5 0.00
2 2.464 3.695 3.386 3.849 3.449 82.8 0.05
3 2.462 4.103 3.691 4.377 3.693 84.8 1.00

Table 2: Selection Criteria for the Japan Model


