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We formuiate the problem of permuting a matrix to block angular form as the
combinatorial minkmization of an ehjective function. We motivate the use of
simulated annealing (SA) as an optimization tool. We then lntroduce a heuristic
temperature dependent penaity function in the simulated annealing cost function,
to be used instead of the real oljective function being minimized. Finaly we show
that this temperature dependent penalty function version of simulated annealing
consistontly outperforms the standartl simulated annealing approach, producing,
with smaller running times, better solutions. We helieve that the use of a

temperature dependent poenalty function may be useful in developing SA alge-
rithms for other combinatorial probiems.

neducing a matrix to block angular form (BAF) is impor-
tant for a variety of decomposition methods. In Section 1
we formulate the BAF reduction problem as a combinato-
rial partition problem, where the cost of a given partition or
state, cost(p), is the objective function to be minimized.

In Section 2 we present a “standard” simulated anneal-
ing (SSA) algorithm to approximately solve this combinato-
rial problem. The SSA can be seen as a generalization of
simulated annealing (SA) algorithms for the graph parti-
tioning problem.!'!!

In Section 3 we motivate the use of a heuristic cost
function,

cost(p, (1)) = cost(p) — p(t) penalty( p),

in the SA, instead of the real objective function being
minimized, cost(p). Parameter u is temperature depen-
dent, and only in the zero temperature limit we have & = 0
and cost(p, 0) = cost(p). The main reasons for using
cost(p, ) are:

e it is only marginally more expensive to compute than
cost(p);
® it helps us “sense” the proximity of low cost states;

® it breaks down massively degenerate states of cost(p)
that can “trap” the SSA in nonoptimal metastable states.

In Sections 4 and 5 we report numerical experiments. In
these experiments the temperature dependent penalty func-
tion simulated annealing (TPSA) consistently outperforms
the SSA, producing much better solutions with smaller
running times. In Section 5 we also relate the temperature
dependent penalty function, that can be seen as perturbing

the metric of the original problem, to other variants of the
SA algorithm. Finally in Section 6 we compare SA to
another heuristic to solve the BAF reduction problem.

1. The Block Angular Form

The Column Block Angular Form (CBAF) reduction prob-
lem is, by rows and columns permutations, P and Q, to
reduce a given matrix A, m X n, to CBAF; i.e.,, we want
PAQ with b diagonal rectangular blocks, B,,..., B,, plus
some residual columns C (Figure 1). This can also be seen
as a hypergraph partition problem where we paint all
nonzero elements (NZEs) of each vertex or row, i € M =
{1,..., m}, with a color p(i) € B ={1,..., b}. The color q(j)
of an edge or column j € N ={1,..., n}, is then the set of
all its NZE’s colors, and multicolored edges of the hyper-
graph correspond to residual columns in the CBAF.

A more General Block Angular Form (GBAF), also al-
lows some residual rows, B,, to remain uncolored, or to
receive the color 0 (Figure 2). Finally the Row Block Angu-
lar Form (RBAF) only allows residual rows (Figure 3). Our
interest in reducing a matrix to a BAF relates to techniques
for sparse matrix computations,” 2! 2 26- 30 and some other
general decomposition methods. In these applications we
always want:

1. Roughly the same number of rows in each block.
2. Only a few residual rows or columns.

From 1 and 2 it is natural to consider the minimization of
the function

b
cost(p) =a Y, [m/b - s(k))* + Bc(p) + yr(p)
k=1

c(p) =l{j € N:lg(j)l > 2}
r(p) =i e M: p(i) = 0}l
s(k) = {i € M: p(i) = k}I.

The first term in cost(p) measures the deviation of each
block from the ideal size m/b; ¢(p) is the number of
residual columns, and r(p) is the number of residual rows.

In most applications one can view the diagonal blocks as
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FAgure 8. RBAF.

subproblems that can be solved independently, and the
residual rows and columns as a final step, or masterprob-
lem, that can not start until the subproblems are complete.
Usually the BAF reflects a natural substructuring of the
original problem: subsystems in a power or data network,
intra and interdepartmental transactions in a company,
dependence on sectorial and global econometric indices,
substructures of a truss, etc.

The next sections address the block angular form reduc-
tion problem for a general rectangular matrix. For clarity,
we will restrict ourselves to CBAF. Even very special cases
of the CBAF reduction problems are NP-hard. For example:
take A, the incidence matrix of a graph, m an exact multi-
ple of b =2, normalize 8 =1, and take a big enough to
force all blocks to have exactly m/b rows. CBAF then
becomes the exact-graph-2-partitioning problem, and the
recognition version of this problem is known to be NP-
complete; see [10] (problem ND14 on page 209).

2. Standard Simulated Annealing

The NP-hardness of the CBAF reduction problem, and the
many degrees of freedom in its formulation, suggests Sim-
ulated Annealing (SA) as an optimization tool. We follow
the approach of Johnson et al.'¥l From the matrix A, it
suffices to have, for any row i, a list of columns in which
there are NZE's, i.e.

aijs(i) = {j € N: A[i, j] + 0}

We begin the standard simulated annealing (SSA) setting
an initial random state or coloring p: M — B. We then
compute the number of NZEs of each color per column,
i.e., the n X b matrix of weights:

WI[j k]l =l{i e M: A[i,j] # 0 A p(i) = k}l

and from W it is trivial to compute s(k) and cost( p).
From state p we propose a possible move. In our case a
move is a random change in the color of a row

p(i) = p'(i) €B
The set of states p’ reachable from p by a single move is
the neighborhood, nbd(p) of p. In our problem, any state p
has a neighborhood of the same size, NBDSIZE. We can

choose one of the m rows, and then choose one of the b
colors for this row, so:

NBDSIZE = |nbd(p)l = m+b
Next compute the cost of this proposed move Ag.
Ay = cost(p') — cost(p)
The move is then accepted with probability prob(4,)

if Ay <0

if Ag >0

1
pfOb(AO) = {exp(—Ao/temP)

To compute A, it suffices to scan W[}, k] for j € aijs(i).
If the proposed move was accepted we update p, W, and
cost(p). The temperature parameter temp is initially set at
temp = STARTTEMP.

New moves are proposed until we either:

e make LENGTH = SIZEFACTOR x NBDSIZE proposals,
or
® accept CUTOFF « LENGTH moves.

Then we go to a cooling step, where we:

e compute the acceptance rate for this temperature:
accrate = |accepted moves|/| proposals|

® cool the temperature setting temp « temp » TEMP-
FACTOR

The SSA is said to be frozen at a given temperature if
accrate < MINACCEPT. The algorithm terminates after
FROZENMAX consecutive frozen temperatures.

The parameters STARTTEMP, TEMPFACTOR, SIZE-
FACTOR, CUT-OFF, MINACCEPT, and FROZENMAX are
set by the user, as discussed in [14] and Section 4 of this
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paper. Our reliance on [14] to define a “standard”” SA is
convenient for our study, but by no means the only possi-
bility. Alternative approaches, methodologies and views of
the field can be found in [1, 2, 5, 6, 20 and 29].

3. A Temperature Dependent Cost Function

The SSA behaves poorly in the CBAF problem, mainly
because it is very difficult to sense the proximity of low
cost states, i.e.:

1. Most of the neighbors of a low cost state, p, can have
much higher costs.

2. The problem is massively degenerate, i.e., often a “’con-
nected by single moves” set of equal cost states, S =
{p1,..., ps}, has such a large degeneracy d, that, even
rejecting all proposals that would take us out of S,
would still give us a significant acceptance rate.

Difficulty 2 implies, in particular, the failure of the SSA
termination criterion: A degenerate locally minimum con-
nected component of S, = {p, cost(p) = c}, could trap the
SSA into forever sustaining an acceptance rate above the
threshold MINACCEPT.

The best way we found to overcome difficulties 1 and 2
is to use a temperature-dependent cost function:

cost(p, (1)) = cost(p) — p(t) penalty( p)

penalty(p) = 2 (b—lg(j))
7, lg(l>1

The additional term in cost(p, u) can be seen as an heuris-
tic penalty function that rewards multicolored columns for
using fewer colors. This penalty function, and some possi-
ble variants, are inspired by the tally function 6(j) used in
the P3 heuristicl'? for sparse LU factorization. The tem-
perature dependent parameter wu(f) gives the relative
weight of the penalty function in cost(p, u).
Function cost( p, ) also has the following properties:

1. cost(p,0) = cost(p)
2. cost(p, u) is linear in pu.

Properties 1 and 2 suggest that we can cool the parameter
u along with the temperature, much in the same way we
decrease a parameter of the barrier functions in some
constrained optimization algorithms.l'® We use cost(p, u)
in the temperature-dependent penalty function simulated
annealing (TPSA)?* as follows:

o Initially set u = STARTMLU;
set p an initial partition, and initialize w, s, ¢, and
cost = cost( p)

® For each proposal compute
Ay =cost(p') — cost(p)

A, = cost(p', u) — cost(p, )

® Accept the move with probability prob(A,)
and then update w, s, c, and cost = cost + A,

® Keep track of the best, i.e. smallest cost(p), solution
found

® At each cooling step set u « u* MUFACTOR.

To compute A, and A; we scan the same columns of W
that would be scanned to compute A, alone. It only takes a
few more arithmetic operations to compute A, along with
Ag, which has little impact on the running time of the SA.
The cost(p, u) is never computed (only the differentials
A

#The main goals for the temperature dependent penalty
function, namely to accelerate the SA convergence to the
global optimum and to avoid premature convergence to
locally optimal solutions, have motivated many others in-
teresting strategies. Closest to our approach, directly in-
volving the cost function, are [23] and [28]. Alternative
approaches deal with the cooling schedules, {13] and [31],
or with the topology of the neighborhood, [11] and [17}. We
believe that the TPSA method, which can be seen as a
perturbation on the metric of the problem, could be useful
in developing SA algorithms for other problems where the
user is aware of some heuristic merit or penalty function.
Also, there is no a priori impediment to combining metric
perturbations with better topologies (ie., neighborhood
structures) or improved cooling schedules.?’]

4. Numerical Experiments

We tested the SSA and the TPSA for CBAF reduction on
three different matrices. These matrices are coefficient ma-
trices from linear programs in the NETLIB collection of test
problems. A portrait of the sparsity structure of these
matrices can be found in [18].

NETLIB LP m n NZEs  Matrix Structure
scatpl 300 660 1872 9 steps stair case
scfxm1 330 600 2732 4 diagonal blocks

of diff. sizes
growl5 300 645 5620 narrow band with

dense clusters

For each matrix we used all possible combinations of the
parameters:

STARTMU € {0.5,1.0} and MUFACTOR €
{0.90,0.95,0.98} plus STARTMU = 0.0 that corresponds to
the SSA, in which case MUFACTOR is irrelevant. The cost
function parameters were chosen according to our specific
applications,*> %! always b =4, o = 0.01 and B8 = 1. Fi-
nally we always had SIZEFACTOR = 16, CUTOFF = 0.125,
TEMPFACTOR = 0.95, and STARTTEMP was set to give
us an initial acceptance rate of = 40%. We set these last
four parameters following the guidelines in [14], but the
relative performances of the various annealings do not
depend heavily on them.

To avoid the problems with termination criteria men-
tioned in Section 2, we gave each SA run a fixed “budget”
of 1.0E6 (1.0 X 10°) proposals. In each run, after comple-
tion of 0.1E6, 0.2E6, 0.3E6, 0.4E6, 0.5E6 and 1.0 E6 propos-
als, we recorded bestcost = the best cost( p) already found,
and fotmove = the total (cumulative) number of accepted
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moves. With bestcost we can monitor the progress of the
annealing; totmove and tfotprop (the total number of propos-
als) are measures of the running time of the SA. Variable
totprop is more important for a pure sequential implemen-
tation, while fotmove may dominate in parallel machines.
In each SA run, the initial state, row selection, color
change and acceptance processes were controlled by 4
different streams of a C-coded 100-streams 32-bits linear
congruential random number generator. For each matrix
and parameter setting we performed an experiment consist-
ing of 82 runs, each controlled by a different 4-stream set.

5. Experimental Results

Our results are summarized by the box-plots of bestcost
and fotmove for each experiment (Figures 4-9). The three
horizontal lines of a box, inside, lower and upper ends,
correspond to the median, lower and upper quartiles; from
the ends of the box “whiskers”” may extend for up to 1.5
times the inter-quartile distance, and beyond that, detached
points indicate extreme outliers®! Each figure contains
seven sequences of five plots. Each sequence corresponds
to budgets of 0.1E6, 0.2E6, 0.3E6, 0.5E6 and 1.0 E6 propos-
als. The seven sequences correspond to the parameters
STARTMU and MUFACTOR set to:

[0.0,*][0.5,0.90] [0.5,0.95] [0.5,0.98]
[1.0,0.90] [1.0,0.95] [1.0,0.98]

Stern

As noted in the last section, the leftmost sequence of plots
correspond to the SSA, since STARTMU = 0.0.

From the box-plots we see that the TPSA outperforms
the SSA for all of our test matrices, for all TPSA parameter
setting, and all budgets we tried. Also, the TPSA usually
continued to make progress with bigger budgets, while the
SSA “saturated” much earlier. Moreover, for a given tot-
prop budget, the totmove component of the running time is
usually smaller in the TPSA than in the SSA!

For the SSA in matrix grow15, note the convergence of
bestcost to a very precise level » min{cost(p)}. Most of the
connected components of the macro-state S, = {p, cost(p)
= ¢} are not only massively degenerate, but also local
minima, which give us an intuitive explanation of the
metastable character of S_.[*! The penalty term in cost(p, u)
decreases degeneracy and local minima overall, thereby
destroying the metastability of S..

The ratio MUFACTOR/TEMPFACTOR is very impor-
tant for the TPSA performance. In our experiments we set
MUFACTOR to 090, 0.95, and 0.98, respectively a slow,
neutral, or fast cooling of u relative to TEMPFACTOR =
0.95. The slow cooling of u very effectively avoids degen-
eracy, at the expense of optimizing a biased cost( p, ) with
a relatively big penalty factor . In Table I we show some
statistics of the TPSA performance. Each line of Table I
corresponds to a series of 82 independent annealings, for a
given test matrix and setting of parameters STARTMU and
MUFACTOR. The statistics in Table I are: aoc, the approxi-

1(?0

bestcost

1?0

80

STARTMU={0.0,0.5,1.0} X MUFACTOR={0.90,0.95,0.98} X budget={1,2,3,5,10}E5

Figure 4.

bestcost for matrix sctapl.
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Table . TPSA Dependence on STARTMU and
MUFACTOR
SMUu  MUF aoc naoc  mbc  sdbc  mtm
Matrix sctapl
0.0 * 103.3 1 1281 123 54972
0.5 0.90 81.8 2 96.6 7.7 74578
0.5 0.95 81.9 2 98.7 6.7 64098
0.5 0.98 80.6 1 99.4 8.2 45460
1.0 0.90 80.5 1 91.2 71 79760
1.0 0.95 80.5 4 91.2 72 61654
1.0 0.98 80.5 4 96.1 8.5 44843
Matrix scfxm1
0.0 * 41.8 1 103.6 309 51240
0.5 0.90 38.1 40 62.6 303 52136
0.5 0.95 38.1 25 65.3 278 42667
0.5 0.98 38.1 20 683 296 34313
1.0 0.90 381 44 553 232 63759
1.0 0.95 38.1 47 572 267 48695
1.0 0.98 38.1 38 59.2 270 36900
Matrix grow15
0.0 * 300.0 82 300.0 0.0 29642
0.5 0.90 63.0 24 1145 57.6 30359
0.5 0.95 63.0 27 92.0 402 23956
0.5 0.98 63.0 40 821 390 19733
1.0 0.90 63.0 24 986 443 37525
1.0 0.95 63.0 29 821 294 23668
1.0 0.98 63.0 21 85.7 328 20941

mate optimal cost, i.e., the smallest bestcost found in the 82
annealings; naoc, how many times the approximate optimal
cost was found; mbc and sdbc, the mean and standard
deviation of bestcost; and mtm, the mean of totmove.

6. Alternative Heuristics
There are in the literature several alternative heuristics to
special cases of our original problem, i.e., the CBAF reduc-
tion or hypergraph partition problem.

The most common restriction of the original problem are:

1. Graph-Partition: A is the incidence matrix of a graph, i.e.
A has only two nonzero elements (NZEs) per column.

2. 2-Partition: There are only two blocks, i.e. b = 2.

3. Exact-Partition: Each block must have exactly m/b rows,
ie., B =

Examples of such heuristics, with the restrictions applied to
the original problem listed in parentheses, are: Kernighan
and Lin!'® (1,2,3); Fiduccia and Mattheyses?! (1,2); San-
giov-Vincentelli and Chua®? (1); and Exposito and Fran-
quelo®®! (1). We present a generalization of the “Contour”
heuristic (CH), as described in [22]. Exposito and
Franquelol® give more efficient variations of the CH for
graphs and highlight some of the connections between the
graph partition problem and computational linear algebra.

The cut of a block, cut(B), is defined as the set of
hyper-edges incident to vertices in the block and to vertices
in its complement (or the set of columns of A with NZE's

Stern

in rows of B and in rows outside B). The cost of a block is
defined as the cardinality of its cut, i.e.

cost(B) = |cut(B)I.

The CH forms the row blocks in A (vertex clusters in the
hypergraph) one at a time. To form the first block, B, we
take at random the first vertex. At step t,£=2,3... we
then add to the block a vertex v, that minimizes cosé(B,) =
cost(B,_; + v,). For each ¢ we store v, and cost(B,). Our
final step is to select at which # to ““terminate” the block
B = B;. To avoid having too small or too large a block, we
impose

(1-o)m/b<f<(l+w)m/b
where the parameter o € [0, 1] is set by the user, and then
take f so to minimize cost(B;). After we finish block B we
eliminate from A the rows of B, and the columns having
any NZEs in rows of B. If b > 1 we use the CH to form a
new block in the reduced A, with parameters m « m — f
and b« b~ 1.

As in the TPSA, we tried to improve the performance of
the CH by using a heuristic penalty function. When select-
ing the vertices for the sequence vy, v, ..
use the perturbed cost function:

Y A+wymsplr WE

cost( B, u) = cost(B,) — p* penalty(B,)
penalty(B,) = |{e € cut(B,),
e adjacent to exactly 1 vertex not in B}.

The interpretation of penalty(B,) is similar to the penalty
term in the TPSA, and even closer to the tally function of
Hellerman and Rarick.'?

We tested the CH on our three test matrices. We tested
parameter p € {0.0,0.5,1.0). The case u = 0.0 corresponds
to the unperturbed block cost. Experimentation indicated
that taking » = 0.2 was a good choice. We used the CH to
form 3 blocks, considering the remaining vertices as the
fourth block, and then evaluated the final configuration
with the cost function cost(p), as described in Section 1,
and using the parameters given in Section 4. In Figure 10
we have box-plots of these final costs. For each test matrix
and parameter setting, we ran the CH 600 times, which
demands a computing time roughly equivalent to 10 runs
of the SA. Although the CH outperforms the SSA for one of
the test matrices (grow15), the TPSA clearly outperforms
the CH in all cases. Also the “‘response” of the CH perfor-
mance to the value of parameter p is not as uniform as in
the TPSA.
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