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1. INTRODUCTION AND NOTATION

This article presents important properties of the distributions used for cat-

egorical data analysis. Regardless of the population size being known or un-

known, or the specific observational stopping rule, the Bernoulli Processes gen-

erates the sampling distributions considered. On the other hand, the Gamma

distribution generates the prior and posterior distributions obtained: Gamma,

Gamma-Poisson, Dirichlet, and Dirichlet-Multinomial. The Poisson Processes as

generator of sampling distributions is also considered.

The development of the theory in this article is self contained, seeking

a unified treatment of a large variety of problems, including finite and infinite

populations, contingency tables of arbitrary dimension, deficiently categorized

data, logistic regressions, etc. These models also present a way of introducing

non parametric solutions.

This article adopts a singular notation and representation, first used in

Pereira and Stern (2005). Singular representations are unusual in statistical

texts. Nevertheless, the singular notation makes it simpler to extend and gen-

eralize theoretical results and greatly facilitates numerical and computational

implementation.

The generation form of the discrete sampling distributions presented in

Section 2 is, in fact, a characterization method of such distributions. If one

recalls that all the distribution classes being mixed are complete classes and

are Blackwell sufficient for the Bernoulli processes, the mixing distributions are

unique. This characterization method is completely described in Basu and Pereira

(1983).

Section 9 describes the Reny–Aczel characterization of the Poisson distri-

bution. Although it could be thought as a de Finetti type characterization this

characterization is based on alternative requirements. While de Finetti charac-

terization is based on a permutable infinite 0-1 process, Reny–Aczek characteri-

zation is based on a homogeneous Markov process in a finite interval, generating

finite discrete Markov Chains. Using Reny–Aczel characterization, together with

Theorem 3.1, one can obtain a characterization of Multinomial distributions.

Section 7 describes the Dirichlet of Second Kind. In this section we also

show how to use a multivariate normal approximation to the logarithm of a

random vector distributed as Dirichlet of Second Kind, and a log-normal ap-

proximation to a Gamma distribution, see Aitchison and Shen (1980). In many

examples of the authors’ consulting practice these approximations proved to be

a powerful modeling tool, leading to efficient computational procedures.
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Let us first define some matrix notation. The operator f : s : t, to be read

from f to t with step s, indicates the vector
[
f, f +s, f +2s, ..., t

]
or the cor-

responding index domain. f : t is a short hand for f : 1 : t. Usually we write a

matrix, A, with subscript row index and superscript column index. Hence, Aj
i

is the element in the i-th row and j-th column of matrix A. Index vectors can

be used to build a matrix by extracting from a larger matrix a given sub-set of

rows and columns. For example, A
n/2:n
1:m/2 is the northeast block, i.e. the block with

the first rows and last columns, from A. Alternatively, we may write a matrix

with row and column indices in parenthesis. Hence, we may write the northeast

block as A(1 :m/2, n/2 :n). The next example shows a more general case of this

notation:

A =




11 12 13
21 22 23
31 32 33


 , r =

[
1 3

]
, s =

[
3 1 2

]
,

As
r = A(r, s) =

[
13 11 12
33 31 32

]
.

V > 0 is a positive definite matrix. The Diagonal operator, diag, if applied

to a square matrix, extracts the main diagonal as a vector, and if applied to

a vector, produces the corresponding diagonal matrix:

diag(A) =




A1
1

A2
2...

An
n


 , diag(a) =




a1 0 ... 0
0 a2 ... 0
...

...
. . .

...
0 0 ... an


 .

A list of matrices can be indexed with left subscript or superscript indices.

In case of block matrices, these left indices indicate the row and column block

position, like in the following example:

A =




1
1A

2
1A ... s

1A
1
2A

2
2A ... s

2A...
...

. . .
...

1
rA

2
rA ... s

rA


 .

Hence, s
rA

j
i is the element in the i-th row and j-th column of the block situated

at the r-th block of rows and s-th block of columns of matrix A. Alternatively,

we may write block indices in braces, that is, we may write s
rA

j
i as A{r, s}(i, j).

The Vec operator stacks the columns of the argument matrix in a single

vector. The Kronecker product, also known as direct or tensor product, is defined
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as follows:

Vec(U1 :n) =




u1

u2

...
un


 , A⊗B =




A1
1B A2

1B ... An
1B

A1
2B A2

2B ... An
2B

...
...

. . .
...

A1
mB A2

mB ... An
mB


 .

We now introduce some concepts and notations related to the permutation

and partition of indices. Let 1 :m be an index domain or, in this article context,

a classification index. Let p = σ(1 :m) be a permutation of these indices. The

corresponding (Row) Permutation Matrix is

P = Ip =



Ip(1)

...
Ip(m)


 , hence , P




1
...
m


 =



p(1)

...
p(m)


 .

A permutation vector, p, and a termination vector, t, define a partition of

the m original classes in s super-classes:



p(1)
...

p
(
t(1)

)


 ,



p
(
t(1)+1

)
...

p
(
t(2)

)


 , ... ,



p
(
t(s−1) + 1

)
...

p
(
t(s)

)


 ,

where t(0) = 0 < t(1) < ... < t(s− 1) < t(s) = m .

We define the corresponding permutation and partition matrices, P and T , as

P = Ip(1 :m) =




1P

2P
...

sP


 , rP = Ip(t(r−1)+1 : t(r)) ,

Tr = 1′(rP ) and T =



T1
...
Ts


 .

These matrices facilitate writing functions of a given partition, like

• The class indices in the super-class r

rP (1 :m) = rP




1
...
m


 =



p
(
t(r−1) + 1

)
...

p
(
t(r)

)


 ;

• The number of classes in the super class r

Tr 1 = t(r) − t(r−1) ;
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• A sub-matrix with the row indices in super-class r

rP A =




Ap(t(r−1)+1)
...

Ap(t(r))


 ;

• The summation of the rows of a submatrix with row indices in super-

class r

Tr A = 1′(rP A) ;

• The rows of a matrix, added over each super-class

T A =



T1A

...
TsA


 .

Note that a matrix T represents a partition of m-classes into s-super-classes

if T has dimension s×m, T j
h ∈ {0, 1} and T has orthogonal rows. The element T j

h

indicates if the class j ∈ 1 :m is in super-class h ∈ 1 : s.

We introduce the following notation for observation matrices, and respec-

tive summation vectors:

U =
[
u1, u2, ...

]
, U1 :n =

[
u1, u2, ..., un

]
, xn = U1 :n 1 =

∑n

j=1
uj .

The tilde accent indicates some form of normalization like, for example, x̃ =

(1/1′x)x.

Lemma 1.1. If u1, ..., un are i.i.d. random vectors,

x = U1 :n 1 =⇒ E(x) = nE(u1) and Cov(x) = nCov(u1) .

Proof: The first result is trivial. For the second result, we only have

to remember the transformation properties for the expectation and covariance

operators by a linear operation on their argument,

E(AY + b) = AE(Y ) + b , Cov(AY + b) = ACov(Y )A′ ,

and write

Cov(x) = Cov
(
U1 :n 1

)

= Cov
((

1′⊗ I
)

Vec
(
U1 :n

))
=
(
1′⊗ I

) (
I ⊗ Cov(u1)

) (
1 ⊗ I

)

=
(
1′⊗ Cov(u1)

) (
1 ⊗ I

)
= nCov(u1) .
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2. THE BERNOULLI PROCESS

Let us consider a sequence of random vectors u1, u2, ... where, ∀ui can

assume only two values

I1 =

[
1
0

]
or I2 =

[
0
1

]
, where I =

[
1 0
0 1

]
,

representing success or failure. That is, ui can assume the value of any column

of the identity matrix, I. We say that ui is of class k, c(ui) = k, iff ui = Ik,

k ∈ [1, 2].

Also assume that (in your opinion), this sequence is exchangeable, that is,

if p =
[
p(1), p(2), ..., p(n)

]
is a permutation of [1, 2, ..., n], then, ∀n, p,

Pr
(
u1, ..., un

)
= Pr

(
up(1), ..., up(n)

)
.

Just from this exchangeability constraint, that can be interpreted as saying that

the index labels are non informative, de Finetti Theorem establishes the existence

of an unknown vector

θ ∈ Θ =

{
0 ≤ θ =

[
θ1
θ2

]
≤ 1

∣∣∣ 1′θ = 1

}

such that, conditionally on θ, u1, u2, ... are mutually independent, and the con-

ditional probability of Pr(ui = Ik | θ) is θk, i.e.

(
u1 ∐ u2 ∐ ...

)∣∣ θ or

∞∐

i=1

ui | θ , and Pr
(
ui = Ik | θ

)
= θk .

Vector θ is characterized as the limit of proportions

θ = lim
n→∞

1

n
xn , xn = U1 :n 1 =

∑n

j=1
uj .

Conditionally on θ, the sequence u1, u2, ... receives the name of Bernoulli

process. As we shall see, many well known discrete distributions can be obtained

from transformations of this process.

The expectation and covariance (conditionally on θ) of any vector in the

sequence are:

• E(ui) = θ ;

• Cov(ui) = E
(
ui ⊗ (ui)′

)
− E(ui) ⊗ E

(
(ui)′

)
= diag(θ) − θ ⊗ θ′ .

When the summation domain 1 :n is understood, we may use the relaxed

notation x instead of xn. We also define the Delta operator, or “pointwise power
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product” between two vectors of same dimension: Given θ, and x, n× 1,

θ△x ≡
n∏

i=1

(θi)
xi .

A stopping rule, δ, establishes, for every n = 1, 2, ..., a decision of observing

(or not) un+1, after the observations u1, ..., un.

For a good understanding of this text, it is necessary to have a clear in-

terpretation of conditional expressions like xn |n or xn
2 |x

n
1 . In both cases we

are referring to a unknown vector, xn, but with a different partial information.

In the first case, we know n, and therefore we know the sum of components,

xn
1 + xn

2 = n; however, we know neither component xn
1 nor xn

2 . In the second

case we only know the first component, of xn, xn
1 , and do not know the second

component, xn
2 , obviously we also do not know the sum, n = xn

1 + xn
2 . Just pay

attention: We list what we know to the right of the bar and, (unless we have

some additional information) everything that can not be deduced from this list

is unknown.

The first distribution we are going to discuss is the Binomial. Let δ(n) be

the stopping rule where n is the pre-established number of observations. The

(conditional) probability of the observation sequence U1 :n is

Pr
(
U1 :n | θ

)
= θ△xn .

The summation vector, xn, has Binomial distribution with parameters

n and θ, and we write xn | [n, θ] ∼ Bi(n, θ). When n (or δ(n)) is implicit in

the context we may write x | θ instead of xn | [n, θ]. The Binomial distribution

has the following expression:

Pr
(
xn |n, θ

)
=

(
n
xn

)(
θ△xn

)

where
(
n
x

)
≡

Γ(n+ 1)

Γ(x1 + 1) Γ(x2 + 1)
=

n!

x1! x2!
and n = 1′x .

It is not hard to check that expectation vector and the covariance matrix

of xn | [n, θ] have the following expressions:

E(xn) = nθ and Cov(xn) = n (θ△1)

[
1 −1
−1 1

]
.

The second distribution we discuss is the Negative Binomial. Let δ(xn
1 ) be

the rule establishing to stop at observation un when obtaining a pre-established
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number of xn
1 successes. The random variable xn

2 , the number of failures he

have when we obtain the required xn
1 successes, is called a Negative Binomial

with parameters xn
1 and θ. It is not hard to prove that the Negative Binomial

distribution xn
2 | [x

n
1 , θ] ∼ NB(xn

1 , θ), has expression, ∀xn
2 ∈ N,

Pr
(
xn |xn

1 , θ
)

=
xn

1

n

(
n
xn

)(
θ△xn

)
= θ1 Pr

(
(xn−I1) | (n−1), θ

)
.

Note that, from the definition of this distribution, xn
1 is a positive integer

number. Nevertheless, we can extend the definition above for any real positive

value a, and still obtain a probability function. For this, we use

∞∑

j=0

Γ(a+ j)

Γ(a) j!
(1 − π)j = π−a , ∀ a ∈ [0,∞[ and π ∈ ]0, 1[ .

It is not hard to check the last equation, as well as the following expressions for

the expectation and variance of xn
2 :

E
(
xn

2 |x
n
1 , θ
)

=
xn

1 θ2
θ1

and Var
(
xn

2 |x
n
1 , θ
)

=
xn

1 θ2
(θ1)2

.

In the special case of δ(xn
1 = 1), the Negative Binomial distribution is also

known as the Geometric distribution with parameter θ. If a random variables are

independent and identically distributed (i.i.d.) as a geometric distribution with

parameter θ, then the sum of these variables has Negative Binomial distribution

with parameters a and θ.

The third distribution studied in this article is the Hypergeometric. Going

back to the original sequence, u1, u2, ..., assume that a first observer knows the

first N observations, while a second observer knows only a subsequence of n<N

of these observations. Since the original sequence, u1, u2, ..., is exchangeable, we

can assume, without loss of generality, that the subsequence known to the second

observer is the subsequence of the first n observations, u1, ..., un. Using de Finetti

theorem, we have that xn and xN−xn = Un+1 :N1 are conditionally independent,

given θ. That is, xn ∐ (xN− xn) | θ. Moreover, we can write

xn | [n, θ] ∼ Bi(n, θ) , xN | [N, θ] ∼ Bi(N, θ) and

(xN− xn)
∣∣ [(N− n), θ

]
∼ Bi(N− n, θ) .

Our goal is to find the distribution function of xn |xN . Note that xN is

sufficient for U1 :N given θ, and xn is sufficient for U1 :n. Moreover xn | [n, xN ]

has the same distribution of xn | [n, xN , θ]. Using the basic rules of probability
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calculus and the properties above, we have that

Pr
(
xn |n, xN , θ

)
=

Pr
(
xn, xN |n,N, θ

)

Pr
(
xN |n,N, θ

)

=
Pr
(
xn, (xN− xn) |n,N, θ

)

Pr
(
xN |n,N, θ

)

=
Pr
(
xn |n,N, θ

)
Pr
(
xN− xn |n,N, θ

)

Pr
(
xN |n,N, θ

) .

Hence, xn | [n, xN ] has distribution function

Pr
(
xn |n, xN

)
=

(
n
xn

) (
N − n
xN − xn

)

(
N
xN

)

where 0 ≤ xn ≤ xN ≤ N 1 , 1′xn = n , 1′xN = N .

This is the vector representation of the Hypergeometric probability distribution:

xn | [n, xN ] ∼ Hy(n,N, xN ) .

It is not hard to check the following expressions for the expectation and

(conditional) covariance of xn | [n,N, xN ], and covariance of ui and uj , i, j ≤ n:

E(xn) =
n

N
xN and Cov(xn) =

n(N− n)

(N−1)

(
xN△1

) [ 1 −1
−1 1

]
,

Cov(ui, uj |xN ) =
1

(N−1)N2

(
xN△1

) [−1 1
1 −1

]
.

We finish this section presenting the derivation of the Beta-Binomial distri-

bution. Let us assume that the first observer observed xn
2 failures, until observing

a pre-established number of xn
1 successes. A second observer makes more obser-

vations, observing xN
2 failures until completing the pre-established number of xN

1

successes, xn
1 < xN

1 .

Since xn
1 and xN

1 are pre-established, we can write

xN
2 | θ ∼ NB(xN

1 , θ) , xn
2 | θ ∼ NB(xn

1 , θ) ,

(xN
2 − xn

2 ) | θ ∼ NB(xN
1 − xn

1 , θ) and xn
2 ∐ (xN

2 − xn
2 ) | θ .

As before, our goal is to describe the distribution of xn
2 | [x

n
1 , x

N ]. If one no-

tices that [xn
1 , x

N ] is sufficient for [xn, (xN− xn)], with respect to θ, the problem
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becomes similar to the Hypergeometric case, and one can obtain

Pr
(
xn

2 |x
n
1 , x

N
)

=
xN

2 ! Γ(xN
1 )

Γ(xN
2 + xN

1 )

Γ(xn
2 + xn

1 )

xn
2 ! Γ(xn

1 )

Γ
(
xN

2 − xn
2 + xN

1 − xn
1

)

(xN
2 − xn

2 )! Γ(xN
1 − xn

1 )
,

xn
2 ∈

{
0, 1, ..., xN

2

}
.

This is the distribution function of a random variable called Beta Binomial with

parameters xn
1 and xN :

xn
2 | (x

n
1 , x

N ) ∼ BB(xn
1 , x

N ) .

The properties of this distribution will be studied in the general case of the

Dirichlet-Multinomial, in the following sections.

Generalized categories for k > 2 can be represented by the orthonormal

base I1, I2, ...Ik, i.e., the columns of the k-dimensional identity matrix. The

Multinomial and Hypergeometric multivariate distributions, presented in the next

sections, are distributions derived of this basic generalization.

3. MULTINOMIAL DISTRIBUTION

Let ui, i= 1, 2, ..., be random vectors with possible results in the set of

columns of the m-dimensional identity matrix, Ik, k ∈ 1 :m. We say that ui is of

class k, c(ui) = k, iff ui = Ik.

Let θ ∈ [0, 1]m be the vector of probabilities for an observation of class k

in a m-variate Bernoulli process, i.e.,

Pr
(
ui = Ik | θ

)
= θk , 0 ≤ θ ≤ 1 , 1′θ = 1 .

Like in the last section, let U

U = [u1, u2, ...] and xn = U1 :n 1 .

Definition 3.1. If the knowledge of θ makes the vectors ui independent,

then the (conditional) distribution of xn given θ is the Multinomial distribution

of order m with parameters n and θ, given by

Pr
(
xn |n, θ

)
=

(
n
xn

)
(θ△xn)

where
(
n
x

)
≡

Γ(n+1)

Γ(x1+1) · · · Γ(xm +1)
=

n!

x1! · · · xm!
and n = 1′x .
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We represent the m-Multinomial distribution writing

xn | [n, θ] ∼ Mnm(n, θ) .

When m = 2, we have the binomial case.

Let us now examine some properties of the Multinomial distribution.

Lemma 3.1. If x|θ ∼ Mnm(n, θ) then the (conditional) expectation and

covariance of x are

E(x) = n θ and Cov(x) = n
(
diag(θ) − θ ⊗ θ′

)
.

Proof: Analogous to the binomial case.

The next result presents a characterization of the Multinomial in terms of

the Poisson distribution.

Lemma 3.2. Reproductive property of the Poisson distribution.

xi ∼ Ps(λi) =⇒ 1′x |λ ∼ Ps(1′λ) .

That is, the sum of (independent) Poisson variates is also Poisson.

Theorem 3.1. Characterization of the Multinomial by the Poisson.

Let x = [x1, ..., xm]′ be a vector with independent Poisson distributed

components with parameters in the known vector λ = [λ1, ..., λm]′ > 0. Let n be

a positive integer. Then, given λ,

x | [n = 1′x, λ] ∼ Mnm(n, θ) where θ =
1

1′λ
λ .

Proof: The joint distribution of x, given λ is

Pr(x|λ) =
m∏

k=1

e−λkλxk

i

xk!
.

Using the Poisson reproductive property,

Pr
(
x |1′x = n, λ

)
=

Pr
(
1′x = n ∧ x |λ

)

Pr
(
1′x = n |λ

) = δ(n= 1′x)
Pr(x |λ)

Pr
(
1′x = n |λ

) .

The following results state important properties of the Multinomial distri-

bution. The proof of these properties is simple, using the characterization of the

Multinomial by the Poisson, and the Poisson reproductive property.
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Theorem 3.2. Multinomial Class Partition.

Let 1 :m be the index domain for the classes of a order m Multinomial

distribution. Let T be a partition matrix breaking the m-classes into s-super-

classes. Let x ∼ Mnm(n, θ), then y = Tx ∼ Mns(n, Tθ).

Theorem 3.3. Multinomial Conditioning on the Partial Sum.

If x ∼ Mnm(n, θ), then the distribution of part of the vector x conditioned

on its sum has Multinomial distribution, having as parameter the corresponding

part of the original (normalized) parameters. In more detail, conditioning on the

t first components, we have:

x1 : t | (1
′x1 : t = j) ∼ Mnt

(
j ,

1

1′θ1 : t
θ1 : t

)
where 0 ≤ j ≤ n .

Theorem 3.4. Multinomial-Binomial Decomposition.

Using the last two theorems (3.2 and 3.3), if x ∼ Mnm(n, θ),

Pr(x|n, θ) =
n∑

j=0

Pr

(
x1 : t | j ,

1

1′θ1 : t
θ1 : t

)

· Pr

(
xt+1 :m | (n− j) ,

1

1′θt+1 :m
θt+1 :m

)

· Pr

([
j

(n− j)

]∣∣∣n,
[

1′θ1 : t

1′θt+1 :m

])
.

Analogously, we could write the Multinomial-Trinomial decomposition

for a three-partition of the class indices in three super-classes. More generally,

we could also write the m-nomial-s-nomial decomposition for the partition of the

m class indices into s super-classes.

4. MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION

In the second section we have shown how an Hypergeometric variate can

be generated from a Bernoulli process. The natural generalization of this result

is obtained considering a Multinomial process. As in the last section, we say that

ui is of class k, c(ui) = k, iff ui = Ik.

We take a sample of size n from a finite population of size N (> n), that

is partitioned into m classes. The population frequencies (number of elements

in each category) are represented by [ψ1, ..., ψm], hence N= 1′ψ. Based on the

sample, we want to make an inference on ψ. xk is the sample frequency of

class k.
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One way of describing this problem is to consider an urn with N balls of

m different colors, indexed by 1, ...,m. ψk is the number of balls of color k.

Assume that the N balls are separated into two smaller boxes, so that box 1 has

n balls and box 2 has the remaining N−n balls. The statistician can observe the

composition of box 1, represented by vector x of sample frequencies. The quantity

of interest for the statistician is the vector ψ− x representing the composition of

box 2.

As in the bivariate case, we assume that U1 :N is a finite sub-sequence in

an exchangeable process and, therefore, any sub-sequence extracted from U1 :N

has the same distribution of U1 :n. Hence, x = U1 :n1 has the same distribution

of the frequency vector for a sample of size n.

As in the bivariate case, our objective is to find the distribution of x|ψ.

Again, using de Finetti theorem, there is a vector 0 ≤ θ ≤ 1, 1′θ = 1, such that∐N
j=0 u

j | θ and Pr
(
c(uj) = k

)
= θk .

Theorem 4.1. As in the Multinomial case, the following results follow:

• ψ |θ ∼ Mnm(N, θ) ;

• x|θ ∼ Mnm(n, θ) ;

• (ψ−x) | θ ∼ Mnm

(
(N− n), θ

)
;

• (ψ−x) ∐ x|θ .

Using the results of the last section and following the same steps as in the

Hy2 case in the first section, we obtain the following expression for m-variate

Hypergeometric distribution, xn | [n,N, ψ] ∼ Hym(n,N, ψ) :

Pr
(
xn |n, ψ

)
=

(
n
xn

) (
N− n
ψ − xn

)

(
N
ψ

)

where 0 ≤ xn ≤ ψ ≤ N 1 , 1′xn = n, 1′ψ = N .

This is the vector representation of the Hypergeometric probability distribution:

xn | [n, xN ] ∼ Hy(n,N, xN ) .

Alternatively, we can write the more usual formula,

Pr(x |ψ) =

(
ψ1

x1

)(
ψ2

x2

)
· · ·

(
ψm

xm

)

(
N
n

) .
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Theorem 4.2. The expectation and covariance of a random vector with

Hypergeometric distribution, x ∼ Hym(n,N, ψ), are:

E(x) = nψ̃ , Cov(x) = n
N− n

N−1

(
diag(ψ̃) − ψ̃ ⊗ ψ̃′

)
where ψ̃ =

1

N
ψ .

Proof: Use that

Cov(xn) = n Cov(u1) + n(n−1)Cov(u1, u2) ,

Cov(u1) = E
(
u1⊗ (u1)′

)
− E(u1) ⊗ E(u1)′ = diag(ψ̃) − ψ̃ ⊗ ψ̃′

Cov(u1, u2) = E
(
u1⊗ (u2)′

)
− E(u1) ⊗ E(u2)′ .

The second term of the last two equations are equal, and the first term of the

last equation is

E(u1
i u

2
j ) =





ψi

N

ψi −1

N−1
if i = j ,

ψi

N

ψj

N−1
if i 6= j .

Algebraic manipulation yields the result.

Note that, as in the order 2 case, the diagonal elements of Cov(u1) are

positive, while the diagonal elements of Cov(u1, u2) are negative. In the off

diagonal elements, the signs are reversed.

5. DIRICHLET DISTRIBUTION

In the second section we presented the multinomial distribution, Mnm(n, θ).

In this section we present the Dirichlet distribution for the parameter θ. Let us

first recall the univariate Poisson and Gamma distributions.

A random variable has Gamma distribution, x | [a, b] ∼ G(a, b), a, b > 0,

if its distribution is continuous with density

f(x|a, b) =
ba

Γ(a)
xa−1 exp(−bx) , x > 0 .

The expectation and variance of this variate are

E(x) =
a

b
and Var(x) =

a

b2
.

Lemma 5.1. Reproductive property for the Gamma distribution.

If n independent random variables xi |ai, b ∼ G(ai, b), then

1′x ∼ G(1′a, b) .
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Lemma 5.2. The Gamma distribution is conjugate to the Poisson distri-

bution.

Proof: If y |λ ∼ Ps(λ) and λ has prior λ|a, b ∼ G(a, b), then

f(λ|y, a, b) ∝ L(λ|y) f(λ) =

= exp(−λ)
λy

y!

ba

Γ(a)
λa−1 exp(−bλ) ∝ λy+a−1 exp

(
−(b+1)λ

)
.

That is, the posterior distribution of λ is Gamma with parameters

[a+ y, b+1].

Definition 5.1. Dirichlet distribution.

A random vector

y ∈ Sm−1 ≡
{
y ∈ Rm | 0 ≤ y ≤ 1 ∧ 1′y = 1

}

has Dirichlet distribution of order m with positive a ∈ Rm if its density is

Pr(y |a) =
y△ (a−1)

B(a)
.

Note that Sm−1, the m−1 dimensional Simplex, is the region of Rm subject

to the “constraint”, 1′y = 1. Hence, a point in the Simplex has only m−1

“degrees of freedom”. In this sense we say that the Dirichlet distribution has a

“singular” representation. It is possible to give a non-singular representation to

the distribution [y1, ..., ym−1]
′, known as the Multivariate Beta distribution, but

at the cost of obtaining a convoluted algebraic formulation that also loses the

natural geometric interpretation of the singular form.

The normalization factor for the Dirichlet distribution is

B(a) ≡

∫

y∈Sm−1

(
y△ (a−1)

)
dy .

Lemma 5.3. Beta function.

The normalization factor for the Dirichlet distribution defined above is the

Beta function, defined as

B(a) =

∏m
k=1 Γ(ak)

Γ(1′a)
.

The proof is given at the end of this section.
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Theorem 5.1. Dirichlet as Conjugate of the Multinomial.

If θ ∼ Dim(a) and x|θ ∼ Mnm(n, θ) then

θ |x ∼ Dim(a+ x) .

Proof: We only have to remember that the Multinomial likelihood is pro-

portional to θ△x, and that a Dirichlet prior is proportional to θ△ (a−1). Hence,

the posterior is proportional to θ△ (x+ a−1). At the other hand, B(a+ x) is

the normalization factor, i.e., equal to the integral on θ of θ△ (x+ a−1), and so

we have a Dirichlet density function, as defined above.

Theorem 5.2. Dirichlet Moments.

If θ ∼ Dim(a) and p ∈ Nm, then

E(θ△ p) =
B(a+ p)

B(a)
.

Proof:
∫

Θ
(θ△ p) f(θ |a) dθ =

1

B(a)

∫

Θ
(θ△ p)

(
θ△ (a−1)

)
dθ

=
1

B(a)

∫

Θ

(
θ△ (a+ p−1)

)
dθ =

B(a+ p)

B(a)
.

Choosing the exponents, p, appropriately, we have

Corollary 5.1. If θ ∼ Dim(a), then

E(θ) = ã ≡
1

1′a
a ,

Cov(θ) =
1

1′a+ 1

(
diag(ã) − ã⊗ ã′

)
.

Theorem 5.3. Characterization of the Dirichlet by the Gamma.

Let the components of the random vector x ∈ Rm be independent variables

with distribution G(ak, b). Then, the normalized vector

y =
1

1′x
x ∼ Dim(a) , 1′x ∼ Ga(1′a) and y ∐ 1′x .

Proof: Consider the normalization

y =
1

t
x , t = 1′x , x = t y ,
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as a transformation of variables. Note that one of the new variables, say

ym ≡ t(1 − y1 · · · − ym−1), becomes redundant.

The Jacobian matrix of this transformation is

J =
∂ (x1, x2, ..., xm−1, xm)

∂ (y1, y2, ..., ym−1, t)
=




t 0 · · · 0 y1

0 t · · · 0 y2
...

...
. . .

...
...

0 0 · · · t ym−1

−t −t · · · −t 1 − y1 · · · − ym−1



.

By elementary operations that add all rows to the last one, we obtain the

LU factorization of the Jacobian matrix, J = LU , where

L =




1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
−1 −1 · · · −1 1




and U =




t 0 · · · 0 y1

0 t · · · 0 y2
...

...
. . .

...
...

0 0 · · · t ym−1

0 0 · · · 0 1



.

A triangular matrix determinant is equal to the product of the elements in its

main diagonal, hence |J | = |L| |U | = 1 tm−1.

At the other hand, the joint distribution of x is

f(x) =
m∏

k=1

Ga(xk |ak, b) =
m∏

k=1

bak

Γ(ak)
e−bxk(xk)

ak−1

and the joint distribution in the new system of coordinates is

g([y, t]) = |J | f
(
x−1([y, t])

)

= tm−1
m∏

k=1

bak

Γ(ak)
e−bxk(xk)

ak−1 = tm−1
m∏

k=1

bak

Γ(ak)
e−btyk(tyk)

ak−1

=

(
m∏

k=1

(yk)
ak−1

Γ(ak)

)
b1

′

a e−bt t1
′

a−m tm−1 =

(
m∏

k=1

(yk)
ak−1

Γ(ak)

)
b1

′

a e−bt t1
′

a−1 .

Hence, the marginal distribution of y = [y1, ..., yk]
′ is

g(y) =

∫ ∞

t=0
g([y, t]) dt

=

(
m∏

k=1

(yk)
ak−1

Γ(ak)

) ∫ ∞

t=0
b1

′

a e−bt t1
′

a−1 dt

=

(
m∏

k=1

(yk)
ak−1

Γ(ak)

)
Γ(1′a) =

y△ (a−1)

B(a)
.

In the last passage, we have replaced the integral by the normalization

factor of a Gamma density, Ga(1′a, b). Hence, we obtain a density proportional

to y△ (a−1), i.e., a Dirichlet.
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In the last passage we also obtain the Dirichlet normalization factor, prov-

ing the Beta function lemma.

Lemma 5.4. Bipartition of Indices for the Dirichlet.

Let 1: t, t+1:m be a bipartition of the class index domain, 1:m, of an

order m Dirichlet, in two super-classes. Let y ∼ Dim(a), and

z1 =
1

1′y1 : t
y1 : t , z2 =

1

1′yt+1 :m
yt+1 :m , w =

[
1′y1 : t

1′yt+1 :m

]
.

We then have z1 ∐ z2 ∐ w and

z1 ∼ Dit(a1 : t) , z2 ∼ Dim−t(at+1 :m) and w ∼ Di2

([
1′a1 : t

1′at+1 :m

])
.

Proof: From the Dirichlet characterization by the Gamma we can imagine

that the vector y is built by normalizing of a vector x, as follows:

y =
1

1′x
x , xk ∼ Ga(ak, b) ,

m∐

k=1

xk .

Considering separately each one of the super-classes, we build the vectors z1 and

z2 that are distributed as

z1 =
1

1′y1 : t
y1 : t =

1

1′x1 : t
x1 : t ∼ Dit(a1 : t) ,

z2 =
1

1′yt+1 :m
yt+1 :m =

1

1′xt+1 :m
xt+1 :m ∼ Dim−t(at+1 :m) .

z1 ∐ z2, that are in turn independent of the partial sums

1′x1 : t ∼ Ga(1′a1 : t, b) and 1′xt+1 :m ∼ Ga(1′at+1 :m, b) .

Using again the theorem characterizing the Dirichlet by the Gamma distri-

bution for these two Gamma variates, we obtain the result.

We can generalize this result for any partition of the set of classes, as

follows. If y ∼ Dim(a) and T is a s-partition of the m classes, the intra and extra

super-class distributions are independent Dirichlets, as follows:

zr =
1

Try
rPy ∼ DiTr1(rPa) ,

w = Ty ∼ Dis(Ta) .



218 C. A. B. Pereira and J. M. Stern

6. DIRICHLET-MULTINOMIAL

We say that a random vector x ∈ Nn |1′x = n has Dirichlet-Multinomial

(DM) distribution with parameters n and a ∈ Rm, iff

Pr(x|n, a) =
B(a+ x)

B(a)

(
n
x

)
=

B(a+ x)

B(a)B(x)

1

x△1
.

Theorem 6.1. Characterization of the DM as a Dirichlet mixture of

Multinomials.

If θ ∼ Dim(a) and x|θ ∼ Mn(n, θ) then x | [n, a] ∼ DMm(n, a) .

Proof: The joint distribution of θ, x is proportional to θ△ (a+ x− 1),

which integrated on θ is B(a+ x). Hence, multiplying by the joint distribution

constants, we have the marginal for x, Q.E.D. Therefore, we have also proved

that the function DM is normalized, that is

Pr(x) =

∫

θ∈Sm−1

(
n
x

)
(θ△x)

1

B(a)
θ△ (a−1) dθ

=
1

B(a)

(
n
x

)∫

θ∈Sm−1

(
θ△ (x+a−1)

)
dθ =

B(x+ a)

B(a)

(
n
x

)
.

Theorem 6.2. Characterization of the DM by m Negative Binomials.

Let a ∈ Nm
+ , and x ∈ Nm, be a vector whose components are independent

random variables, ak ∼ NB(ak, θ). Then

x | [1′x= n, a] ∼ DMm(n, a) .

Proof:

Pr(x|θ, a) =
m∏

k=1

(
ak + xk − 1

xk

)
θak(1− θ)xk ,

Pr(1′x|θ, a) =

(
1′a+ 1′x− 1

1′x

)
θ1

′

a(1− θ)1
′

a .

Then,

Pr
(
x |1′x = n, θ, a

)
=

Pr(x|a, θ)

Pr(1′x = n | θ)
=

∏m
k=1

(
ak + xk − 1

xk

)

(
1′a+ 1′x− 1

1′x

) .
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Hence,

Pr
(
x |1′x = n, θ, a

)
= Pr

(
x |1′x = n, a

)

=
m∏

k=1

Γ(ak + xk)

x! Γ(ak)

/ Γ(1′a+ n)

Γ(1′a) n!
=

B(a+ x)

B(a)

(
n
x

)
.

Theorem 6.3. The DM as Pseudo-Conjugate for the Hypergeometric.

If x ∼ Hym(n,N, ψ) and ψ ∼ DMm(N, a) then (ψ−x) |x ∼ DMm(N−n, a) .

Proof: Using the properties of the Hypergeometric already presented, we

have the independence relation, (ψ − x) ∐ x|θ. We can therefore use the Multi-

nomial sample x|θ for updating the prior and obtain the posterior

θ |x ∼ Dim(a+ x) .

Hence, the distribution of the non sampled pat of the population, ψ−x, given the

sample x, is a mixture of (ψ−x)θ by the posterior for θ. By the characterization

of the DM as a mixture of Multinomials by a Dirichlet, the theorem follows, i.e.,

(ψ − x) | [θ, x] ∼ (ψ − x) | θ ∼ Mnm(N− n, θ)

θ |x ∼ Dim(a+ x)

}
=⇒

=⇒ (ψ − x) |x ∼ Dim(N− n, a+ x) .

Lemma 6.1. DM Expectation and Covariance.

If x ∼ DMm(n, a) then

E(x) = n ã ≡
1

1′a
a ,

Cov(x) =
n(n+ 1′a)

1′a+ 1

(
diag(ã) − ã⊗ ã′

)
.

Proof:

E(x) = Eθ

(
Ex(x|θ)

)
= Eθ(nθ) = nã ;

E(x⊗ x′) = Eθ

(
Ex(x⊗ x′ | θ)

)

= Eθ

(
E(x|θ) ⊗ E(x|θ)′ + Cov(x|θ)

)

= Eθ

(
n
(
diag(θ) − θ ⊗ θ′

)
+ n2θ ⊗ θ′

)

= nEθ

(
diag(θ)

)
+ n(n−1)Eθ(θ⊗θ

′)

= n diag(ã) + n(n−1)
(
E(θ) ⊗ E(θ)′ + Cov(θ)

)

= n diag(ã) + n(n−1)

(
ã⊗ ã′ +

1

1′a+1

(
diag(ã) − ã⊗ ã′

))

= n diag(ã) + n(n−1)

(
1

1′a+1
diag(ã) +

1′a

1′a+1
ã⊗ ã′

)
;
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Cov(x) = E(x⊗x′) − E(x) ⊗ E(x)′ = E(x⊗x′) − n2 ã⊗ ã′

=

(
n+

n(n−1)

1′a+1

)
diag(ã) +

(
n(n−1)

1′a

1′a+1
− n2

)
ã⊗ ã′

=
n(n+ 1′a)

1′a+1

(
diag(ã) − ã⊗ ã′

)
.

Theorem 6.4. DM Class Bipartition.

Let 1: t, t+1:m a bipartition of the index domain for the classes of an

order m DM, 1:m, in two super-classes. Then, the following conditions (i) to

(iii) are equivalent to condition (iv):

(i) x1:t ∐ xt+1:m |n1 = 1′x1:t ;

(ii-1) x1:t |n1 = 1′x1;t ∼ DMt(n1, a1:t) ;

(ii-2) xt+1:m |n2 = 1′xt+1:m ∼ DMm−t(n2, at+1:m) ;

(iii)

[
n1

n2

]
∼ DM2

(
n,

[
1′a1:t

1′at+1:m

])
;

(iv) x ∼ DMm(n, a) .

Proof: We only have to show that the joint distribution can be factored in

this form. By the DM characterization as a mixture, we can write it as Dirichlet

mixture of Multinomials. By the bipartition theorems, we can factor both, the

Multinomials and the Dirichlet, so the theorem follows.

7. DIRICHLET OF THE SECOND KIND

Consider y ∼ Dim+1(a). The vector z = (1/ym+1)y1 :m has Dirichlet of the

Second Kind (D2K) distribution.

Theorem 7.1. Characterization of D2K by the Gamma distribution.

Using the characterization of the Dirichlet by the Gamma, we can write

the D2K variate as a function of m+1 independent Gamma variates,

z1 :m ∼ (1/xm+1)x1 :m where xk ∼ Ga(ak, b) .

Similar to what we did for the Dirichlet (of the first kind), we can write

the D2K distribution and its moments as:

f(z |a) =
z△ (a1 :m−1)

(1 + 1′z)1
′

a B(a)
,

E(z) = e = (1/am+1) a1 :m ,

Cov(z) =
1

am+1 − 2

(
diag(e) + e⊗ e′

)
.
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The logarithm of a Gamma variate is well approximated by a Normal vari-

ate, see Aitchison and Shen (1980). This approximation is the key to several

efficient computational procedures, and motivates the computation of the first

two moments of the log-D2K distribution. For that, we use the Digamma, ψ( ),

and Trigamma function, ψ′( ), defined as:

ψ(a) =
d

da
ln Γ(a) =

Γ′(a)

Γ(a)
, ψ′(a) =

d

da
ψ(a) .

Lemma 7.1. The expectation and covariance of a log-D2K variate are:

E
(
log(z)

)
= ψ(a1 :m) − ψ(am+1)1 ,

Cov
(
log(z)

)
= diag

(
ψ′(a1 :m) + ψ′(am+1)

)
1 ⊗ 1′ .

Proof: Consider a Gamma variate, x ∼ G(a, 1):

1 =

∫ ∞

0
f(x) dx =

∫ ∞

0

1

Γ(a)
xa−1 exp(−x) dx .

Taking the derivative with respect to parameter a, we have

0 =

∫ ∞

0
ln(x)xa−1 exp(−x)

Γ(a)
dx −

Γ′(a)

Γ2(a)
Γ(a) = E

(
ln(x)

)
− ψ(a) .

Taking the derivative with respect to parameter a a second time,

ψ′(a) =
d

da
E
(
ln(x)

)
=

d

da

∫ ∞

0

ln(x)

Γ(a)
xa−1 exp(−x) dx

=

∫ ∞

0
ln(x)2 xa−1 exp(−x)

Γ(a)
dx −

Γ′(a)

Γ(a)
E
(
ln(x)

)

= E
(
ln(x)2

)
− E

(
ln(x)

)2
= Var

(
ln(x)

)
.

The lemma follows from the D2K characterization by the Gamma.

8. EXAMPLES

Example 8.1. Let A,B be two attributes, each one of them present or

absent in the elements of a population. Then each element of this population can

be classified in exactly one of 22 = 4 categories:

A B k Ik

present present 1 [1, 0, 0, 0]′

present absent 2 [0, 1, 0, 0]′

absent present 3 [0, 0, 1, 0]′

absent absent 4 [0, 0, 0, 1]′
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According to the notation above, we can write x|n, θ ∼ Mn4(n, θ).

If θ = [0.35, 0.20, 0.30, 0.15] and n = 10, then

Pr
(
x10 |n, θ

)
=

(
10
x10

)
(θ△x10) .

Hence, in order to compute the probability of x = [1, 2, 3, 4]′ given θ, we use the

expression above, obtaining

Pr







1
2
3
4




∣∣∣∣∣




0.35
0.20
0.30
0.15





 = 0.000888 .

Example 8.2. If X |θ ∼ Mn3(10, θ), θ = [0.20, 0.30, 0.15], one can con-

clude, using the result above, that

E(X) = (2, 3, 1.5) ,

while the covariance matrix is

Σ =




1.6 −0.6 −0.3
−0.6 2.1 −0.45
−0.3 −0.45 1.28


 .

Example 8.3. Assume thatX|θ ∼ Mn3(10, θ), with θ = [0.20, 0.30, 0.15],

as in Example 2. Let us take A0 = {0, 1}, A1 = {2, 3}. Then,

∑

A1

Xi |θ = X2 +X3 | θ ∼ Mn1(10, θ2 +θ3) ,

or
X2 +X3 | θ ∼ Mn1(10, 0.45) .

Analogously,

X0 +X1 | θ ∼ Mn1(10, 0.55) ,

X1 +X3 | θ ∼ Mn1(10, 0.35) ,

X2 | θ ∼ Mn1(10, 0.30) .

Note that, in general, if X|θ ∼ Mnk(n, θ), then Xi | θ ∼ Mn1(n, θi), for

i = 1, ..., k.

Example 8.4. 3×3 Contingency Tables.

Assume that X | θ ∼ Mn8(n, θ), as in a 3×3 Contingency Tables:
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x11 x12 x13 x1•

x21 x22 x23 x2•

x31 x32 x33 x3•

x•1 x•2 x•3 n

Applying Theorem 3.2 we get

(X1•, X2•) | θ ∼ Mn2(n, θ
′) , θ′ = (θ1•, θ2•) , θ′0 = θ3 .

This result tell us that

(Xi1, Xi2, Xi3) | θ ∼ Mn3(n, θ
′
i) ,

with

θ′i = (θi1, θi2, θi3) , θ′0i = 1− θi• , i = 1, 2, 3 .

We can now apply Theorem 3.3 to obtain the probability distribution of each row

of the contingency table, conditioned on its sum, or conditioned on the sum of

the other rows. We have

(Xi1, Xi2) |xi• , θ ∼ Mn2(xi•, θ
′
i)

with

θ′i =
(θil, θi2)

θi•
, θ′0i =

θi3

θi•
.

The next result expresses the distribution of X | θ in term of the conditional

distributions, of each row of the table, in its sum, and in term of the distribution

of these sums.

Proposition 8.1. If X | θ ∼ Mnr2−1(n, θ), as in an r×r, contingency

table, then P (X | θ) can be written as

P (X | θ) =

[
r∏

i=1

P
(
Xi1, ..., Xi,r−1 |xi• , θ

)
]
P
(
X1•, ..., Xr−1• | θ

)
.

Proof: We have:

P (X | θ) = n!
r∏

i=1

θxi

i

xi!
= n!

θx11

11 · · · θxrr
rr

x11! · · · xrr!

=

[
r∏

i=1

xi•!

xi1! · · · xir!

(
θi1

θi•

)xi1

· · ·

(
θir

θi•

)xir

]
n!

xi•! · · · xr•!
θx1•

1• · · · θxr•
r• .

From Theorems 3.2 and 3.3, as in the last example, we recognize each of the first

r factors above as the probabilities of each row in the table, conditioned on its

sum, and recognize the last factor as the joint probability distribution of sum of

these r rows.
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Corollary 8.1. If X|θ ∼ Mnr2−1(n, θ), as in Theorems 3.2 and 3.3, then

P
(
X |x1•, ..., xr−1• , θ

)
=

r∏

i=1

P
(
Xi1, ..., Xi,r−1 |xi• , θ

)

and, knowing θ, x1•, ..., xr−1•,

(X11, ..., X1,r−1) ∐ ... ∐ (Xr1, ..., Xr,r−1) .

Proof: Since

P (X|θ) = P
(
X |x1•, ..., xr−1• , θ

)
P
(
X1•, X2•, ..., Xr−1• | θ

)
,

from Theorems 3.2 and 3.3 we get the proposed equality.

The following result will be used next to express Theorem 3.4 as a canonical

representation for P (X|θ).

Proposition 8.2. If X|θ ∼ Mnr2−1(n, θ), as in Proposition, then a trans-

formation

T :
(
θ11, ..., θ1r, ..., θr1, ..., θr,r−1

)
→
(
λ11, ..., λ1,r−1, ..., λr1, ..., λr,r−1, η1, ..., ηr−1

)

given by

λ11 =
θ11
θ1•

, . . . , λ1,r−1 =
θ1,r−1

θ1•...

λr1 =
θr1

θr•
, . . . , λr,r−1 =

θr,r−1

θr•

η1 = θ1• , η2 = θ2• , . . . , ηr−1 = θ(r−1)•

is a onto transformation defined in
{
0 < θ11 + · · · + θr,r−1 < 1 ; 0 < θij < 1

}
over

the unitary cube of dimension r2−1. Moreover, the Jacobian of this transforma-

tion, t, is

J = ηr−1 ηr−1
1 · · · ηr−1

r−1

(
1 − η1 − · · · − ηr−1

)r−1
.

The proof is not hard to check.

Example 8.5. Let us examine the case of a 2×2 contingency table:

x11 x12

x21 x22

n

θ11 θ12
θ21 θ22

1
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In order to obtain the canonical representation of P (X|θ) we use the transfor-

mation T in the case r = 2:

λ11 =
θ11

θ11 + θ12
,

λ21 =
θ11

θ21 + θ22
,

η1 = θ11 + θ12 ,

hence,

P (X|θ) =

(
x1•

x11

)
λx11

11 (1−λ11)
x12

(
x2•

x21

)
λx21

21 (1−λ21)
x22

(
n
x1•

)
ηx1•

1 (1−η1)
x2• ,

0< θ11< 1 , 0<θ21< 1 , 0<η1< 1 .

9. FUNCTIONAL CHARACTERIZATIONS

The objective of this section is to derive the general form of a homoge-

neous Markov random process. Theorem 9.1, by Reny and Aczel, states that

such a process is described by a mixture of Poisson distributions. Our presenta-

tion follows Aczél (1966, Sec. 2.1 and 2.3) and Jánossy, Rényi and Aczél (1950).

It follows from the characterization of the Multinomial by the Poisson distribu-

tion given in Theorem 3.1, that Reny–Aczel characterization of a homogeneous

and local time point process is analogous to de Finetti characterization of an

infinite exchangeable 0-1 process as a mixture of Bernoulli distributions, see for

example Feller (V. 2, Ch.VII, Sec. 4).

Cauchy’s Functional Equations

Cauchy’s additive functional equation has the form

f(x+ y) = f(x) + f(y) .

The following argument from Cauchy (1821) shows that a continuous solution of

this functional equation must have the form

f(x) = c x .

Repeating the sum of the same argument, x, n times, we must have f(nx) =

nf(x). If x = (m/n)t, then nx = mt and

nf(x) = f(nx) = f(mt) = mf(t) ,
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hence

f

(
m

n
t

)
=
m

n
f(t) ,

taking c = f(1), and x = m/n, it follows that f(x) = cx, over the rationals,

x ∈ Q. From the continuity condition for f(x), the last result must also be valid

over the reals, x ∈ R. Q.E.D.

Cauchy’s multiplicative functional equation has the form

f(x+ y) = f(x) f(y) , ∀x, y > 0 , f(x) ≥ 0 .

The trivial solution of this equation is f(x) ≡ 0. Assuming f(x) > 0, we take the

logarithm, reducing the multiplicative equation to the additive equation,

ln f(xy) = ln f(x) + ln f(y) ,

hence

ln f(x) = cx , or f(x) = exp(cx) .

Homogeneous Discrete Markov Processes

We seek the general form of a homogeneous discrete Markov process. Let

wk(t), for t ≥ 0, be the probability of occurrence of exactly k events. Let us also

assume the following hypotheses:

Time Locality : If t1 ≤ t2 ≤ t3 ≤ t4 then, the number of events in [t1, t2[

is independent of the number of events in [t3, t4[.

Time Homogeneity : The distribution for the number of events occurring

in [t1, t2[ depends only on the interval length, t = t2 − t1.

From time locality and homogeneity, we can decompose the occurrence of

no (zero) events in [0, t+ u[ as ,

w0(t+ u) = w0(t)w0(u) .

Hence, w0(t) must obey Cauchy’s functional equation, and

w0(t) = exp(ct) = exp(−λt) .

Since w0(t) is a probability distribution, w0(t) ≤ 1, and λ > 0.

Hence, v(t) = 1− w0(t) = 1− exp(−λt), the probability of one or more

events occurring before t > 0, must be the familiar exponential distribution.

For k ≥ 1 occurrences before t+ u, the general decomposition relation is

wn(t+ u) =

n∑

k=0

wk(t)wn−k(u) .
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Theorem 9.1 (Reny–Aczel). The general (non trivial) solution of this

this system of functional equations has the form:

wk(t) = e−λt
∑

〈r,k〉

k∏

j=1

(cj t)
rj

rj !
, λ =

∞∑

j=1

cj .

where the index set 〈r, k, n〉 is defined as

〈r, k, n〉 =
{
r1, r2, ..., rk

∣∣ r1 + 2r2 + · · · + k rk = n
}
.

and 〈r, k〉 is a shorthand for 〈r, k, k〉.

Proof: By induction: The theorem is true for k = 0. Let us assume, as

induction hypothesis, that it is true to k < n. The last equation in the recursive

system is

wn(t+u) =
n∑

k=0

wk(t)wn−k(u) =

= wn(t) e−λu + wn(u) e−λt + e−λ(t+u)
n−1∑

k=1

∑

〈r,k〉

∑

〈s,n−k〉

k∏

i=1

(ci t)
ri

ri!

k∏

j=1

(cj u)
sj

sj !
.

Defining

fn(t) = eλtwn(t) −
∑

〈r,n−1,n〉

n−1∏

j=1

(cj t)
rj

rj !
,

the recursive equation takes the form

fn(t+ u) = fn(t) + fn(u) ,

and can be solved as a general Cauchy’s equation, that is,

fn(t) = cn t .

From the last equation and the definition of fn(t), we get the expression of wn(t)

as in Theorem 9.1. The constant λ is chosen so that the distribution is normalized.

The general solution given by Theorem 9.1 represents a composition (mix-

ture) of Poisson processes, where an event in the j-th process in the composition

corresponds to the simultaneous occurrence of j single events in the original

homogeneous Markov process. If we impose the following rarity condition, the

general solution is reduced to a mixture of ordinary Poisson processes.

Rarity Condition : The probability that an event occurs in a short time at

least once is approximately equal to the probability that it occurs exactly once,

that is, the probability of simultaneous occurrences is zero.



228 C. A. B. Pereira and J. M. Stern

10. FINAL REMARKS

This work is in memory of Professor D. Basu who was the supervisor of

the first author PhD dissertation, the starting point for the research in Bayesian

analysis of categorical data presented here. A long list of papers follows Basu

and Pereira (1982). We have chosen a few that we recommend for additional

reading: Albert (1985), Gunel (1984), Irony, Pereira and Tiwari (2000), Paulino

and Pereira (1992, 1995) and Walker (1996). To make the analysis more realistic,

extensions and mixtures of Dirichlet also were considered. For instance see Albert

and Gupta (1983), Carlson (1977), Dickey (1983), Dickey, Jiang and Kadane

(1987), and Jiang, Kadane and Dickey (1992).

Usually the more complex distributions are used to realistic represent situ-

ations for which the strong properties of Dirichlet seems to be not realistic. For

instance, in a 2×2 contingency table, the first line to be conditional independent

of the second line given the marginal seems to be unrealistic in some situations.

Mixtures of Dirichlet in some cases take care of the situation as shown by Albert

and Gupta (1983).

The properties presented here are also important in non-parametric Bayes-

ian statistics in order to understand the Dirichlet process for the competitive

risk survival problem. See for instance Salinas-Torres, Pereira and Tiwari (1997,

2002). In order to be historically correct we cannot forget the important book of

Wilks, published in 1962, where one can find the definition of Dirichlet distribu-

tion.

This article adopts a singular notation and representation, first used in

Pereira and Stern (2005). Singular representations are unusual in statistical

texts. Nevertheless, the singular notation makes it simpler to extend and gen-

eralize theoretical results and greatly facilitates numerical and computational

implementation.

We end this article presenting the Reny–Aczel characterization of the Pois-

son mixture. This result can be interpreted as an alternative to de Finetti char-

acterization theorem introduced in Finetti (1937). Using the characterization of

binomial distributions by Poisson processes conditional arguments, as given by

Theorem 3.1, and Blackwell (minimal) sufficiency properties discussed in Basu

and Pereira (1983), Section 9 leads in fact to a De Finetti characterization for Bi-

nomial distributions. Also, if one recall the indifference principle (Mendel, 1989)

the finite version of Finetti argument can simply be obtained. See also Irony

and Pereira (1994) for the motivation of these arguments. The consideration of

Section 9 could be viewed as a very simple formulation of the binomial distribu-

tion finite characterization.
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