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Abstract

I consider statistical criteria of algorithmic fairness from the perspective of the
ideals of fairness to which these criteria are committed. I distinguish and describe three
theoretical roles such ideals might play. The usefulness of this program is illustrated by
taking Base Rate Tracking and its ratio variant as a case study. I identify and compare
the ideals of these two criteria, then consider them in each of the aforementioned three
roles for ideals. This ideals program may present a way forward in the normative
evaluation of candidate statistical criteria of algorithmic fairness.
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1 Introduction

Predictive algorithms are employed in a number of important social settings including de-
cisions about loans in the financial sector and sentencing in the criminal justice system.
Disparate impact across sub-groups of assessed populations has raised urgent ethical con-
cerns (Angwin et al., 2016). While it is widely recognized that algorithmic fairness is an
important goal, what fairness amounts to in such contexts is controversial. The dominant
approach is to articulate necessary conditions for fairness in the form of statistical criteria
that an algorithm’s assessments must satisfy for the algorithm to qualify as fair. Hedden
(2021) argues that none of the standard statistical criteria—except, perhaps, Calibration—
are genuine necessary conditions of algorithmic fairness. Grant (2023) defends (a version
of) Equalized Odds, another of the most prominent statistical criteria of algorithmic fair-
ness. In the background of this debate are impossibility theorems, theorems establishing
that certain criteria are impossible to jointly satisfy in non-trivial contexts. For example,
Calibration and Equalized Odds are jointly unsatisfiable outside of conditions that can be
called trivial (Kleinberg et al., 2017). Given these sorts of impossibility results, a crucial line
of research scrutinizes conceptions of fairness as formalized in these statistical criteria in an
effort to discern which are most compelling to retain.1 What’s more, the rapid proliferation

1Others have argued for certain modifications of all criteria featuring in an impossibility result with the
express aim of relieving the relevant inconsistency (Beigang, 2023).
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of alternative criteria for evaluating forecasts only exacerbates the need for general means of
evaluating or ways of bringing additional considerations to bear on such criteria themselves
(Narayanan, 2018; Verma and Rubin, 2018; Eva, 2022; Edenberg and Wood, 2023; Loi et al.,
2023).

My aim here is to emphasize a neglected dimension along which fairness criteria can be
compared: the ideals of fair assessment that candidate criteria encode. A criterion’s fairness
ideal is what maximal fairness looks like according to that criterion. For the criteria that I
discuss here, the ideals take very simple forms that recognizably concern fair treatment. Be-
cause of this, ideals may facilitate certain comparisons between candidate statistical criteria.
I distinguish different theoretical uses to which such ideals could be put in the normative
evaluation of putative statistical criteria of algorithmic fairness. The articulation of this
program is the primary conceptual contribution of this essay. I do not propose a satisfactory
account of algorithmic fairness; I present a tool to help in formulating such an account. I
then illustrate the usefulness of ideals with respect to the recently-proposed criterion of Base
Rate Tracking (Eva, 2022), identifying the fairness ideal to which that criterion is committed.
The ideal is compelling, but it is not one to which many other prominent criteria—including
an alternative form of Base Rate Tracking that Eva suggests—are committed. While certain
other considerations so far adduced in the literature fail to distinguish Base Rate Tracking
from its alternative form, ideals may contribute to a case for the original form of the crite-
rion. Characterizing maximal fairness for Base Rate Tracking (Theorem 1) and Ratio Base
Rate Tracking (Theorem 2) is the primary technical contribution of this study.

2 Statistical Criteria

In assessment problems of the sort in which we are interested, there is some population N of
individuals. The population might be candidates for loans, applicants to colleges, inmates
coming up for parole, or any number of other things. I focus on the simple case of assessing
whether the individuals have some property y or not. The property y might be whether the
applicant with graduate within six years or whether the inmate will reoffend. For individual
i in N , we write Y (i) = 1 if i has y, and Y (i) = 0 if i does not have y. In most interesting
cases, we do not know whether a given individual has property y. We have to predict on the
basis of information that we do have. Often this information is represented as a vector of
features associated with the individual. In the case of predicting recidivism, these features
might include type of crime, criminal history, employment status, age, etc. For the sake of
simplicity, we can abstract from making these lists of features explicit and deal only with
the individuals. An assessor is a function h : N → [0, 1]. We can interpret the number h(i)
as a prediction about whether individual i has property y; in particular, we will construe
h(i) as the probability that i has y. In the case of forecasting recidivism, h(i) is often called
a risk score and is produced by a particular forecasting algorithm.

Within a general population N , it is customary to distinguish certain groups. Standard
divisions of a population concern race, gender, disability status, nationality, age, and so on.
Each such way of looking at the population generates a partition π of N , a way of dividing
N into groups such that each individual belongs to exactly one group. Defining prominent
criteria of fairness requires reference to proportions in N and subpopulations (or groups in a
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given partition). To this end, we can introduce a uniform distribution P on N . The quantity
P (Y = 1) = µ is called the base rate, the proportion of individuals in N that have property
y. For any partition π = {G1, . . . , Gm} of N , Pk = P (·|Gk) is the uniform distribution on
Gk so that Pk(Y = 1) = µk is the prevalence of y in group Gk where k = 1, . . . ,m.

Standardly, the focus is on fair assessment across a given way of carving the population
into groups. The central ethical question is, What properties must an assessor have to count
as fair?2 The standard approach is to propose necessary conditions of algorithmic fairness.
Perhaps the most important statistical criterion in fair algorithms research is the familiar
probabilistic concept of Calibration.

Calibration. For an assessor h of N and any group G in a partition π of N ,
PG(Y = 1|h = p) = p for all p ∈ [0, 1] such that PG(h = p) > 0.

In words, Calibration for a partition requires that p% of the individuals in group G given the
score p actually have property y. So, of those assigned a score 0.8 in G, for instance, 80% of
them have y. Calibration mandates that the assessor’s forecast probabilities match the em-
pirical frequencies in this way. In the context of risk scores for recidivism, Calibration rules
out forms of overconfidence in one race, say, being more likely to reoffend than another. For
Calibrated assessors, it cannot be the case that 80% of white defendants who are assigned a
risk score of 2/3 go on to reoffend while only 40% of black defendants assigned a risk score
of 2/3 go on to reoffend. Not only do calibrated risk assessors not display this sort of simul-
taneous overconfidence in black recidivism and underconfidence in white recidivism, they do
not display over- or underconfidence at any score for any group. Sometimes Calibration is
motivated by the observation that it guarantees that scores for different groups will “mean
the same thing,” unlike the risk score 2/3 in the example above.

Another prominent criterion requires that error rates are the same across groups. We need
to introduce a bit more machinery to define it. The expectation EG is defined in terms of PG.
Define the generalized false positive rate in G as f+

G (h) = EG(h|Y = 0). Since PG is uniform
on G, EG(h|Y = 0) is just the average score in G for individuals that do not have property
y. Define the generalized false negative rate in G analogously as f−

G (h) = EG(1− h|Y = 1),
the average of the quantity 1− h (in G) for individuals that possess y.

Equalized Odds. For an assessor h of N and any groups G,G′ in a partition π
of N , f+

G (h) = f+
G′(h) and f−

G (h) = f−
G′(h) (whenever those terms are defined).

2There are different ways of understanding the relevant notion(s) of fairness for predictive algorithms.
While some have recently stressed the distinction between fairness in forecasts and fairness in decision-
making, arguing that different criteria might be appropriate for different tasks (Beigang, 2022), the more
standard view seems to be that bias in forecasts will infect decisions made on the basis of such forecasts and
that it is sufficient to focus on forecasts. About criteria like those considered here, Di Bello and Gong, for
example, write, “They are plausible measures of algorithmic fairness on the assumption that differences in
algorithmic performance will eventuate in differences in the allocation of benefits and burdens across groups
since algorithmic predictions guide these allocations” (2023, p. 4). Still others argue for special notions of
predictive justice that are supposed to apply to algorithmic forecasts (Lazar and Stone, 2023). It seems to
me that the relevance of the ideals program outlined below could be worked out for any of these various
views.
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Table 1: Calibration without Equalized Odds

Black h(1∗) = 2/3 h(2) = 2/3 h(3∗) = 2/3

White h(4) = 1/3 h(5) = 1/3 h(6∗) = 1/3

Equalized Odds for a partition requires that the mistakes an assessor makes are not dis-
tributed in a skewed way among groups in that partition. It rules out a much higher false
positive rate for black people than for white people, for instance. In the contexts of forecast-
ing recidivism for sentencing or parole decisions, an asymmetric distribution of errors would
impact the lives of black and white people in very different ways. Table 1 displays assessment
for a population of 6 individuals divided into two groups. An asterisk indicates that the in-
dividual has property y. While the assessor is calibrated for both Black and White groups, it
does not satisfy Equalized Odds. While f+

Black(h) = 2/3, for example, f+
White(h) = 1/3. This

could be the basis for a complaint by the non-recidivist (individual 2) in the Black group.
Violations of Equalized Odds are to be expected of Calibrated assessors in light of Klein-

berg et al.’s theorem. To the extent one recognizes something compelling in both criteria,
there is motivation for seeking ways of relaxing at least one criterion in compelling fashion.
The next property is a way of relaxing Calibration.

Predictive Equity. For an assessor h of N and any groups G,G′ in a partition
π of N , PG(Y = 1|h = p) = PG′(Y = 1|h = p) for all p ∈ [0, 1] such that
PG(h = p), PG′(h = p) > 0.

Predictive Equity for a partition requires that the percentage of people in any group in the
partition who are assigned a given score p is the same. Calibration is one way to secure this
since all those percentages are equal to p. But, obviously, those terms all being equal to any
other value will secure that Predictive Equity is satisfied just as well.

3 Ideal Fairness

Satisfying such a statistical criterion for all partitions is typically impractical in interesting
assessment exercises. Insofar as this is so, we have to reconcile ourselves with lingering bias
against some groups.3 This point should perhaps serve to encourage some additional caution
in drawing inferences about the nature and source of discovered bias. The infeasibility of
fairness across all partitions notwithstanding, I have suggested that such an ideal case may
still be theoretically informative.

We could think of what happens when a constraint is satisfied for all partitions
as revealing what ideal of fairness the constraint is committed to. As satisfying

3The (hopefully) more attainable goal, then, is to minimize biased assessment or classification for the
most relevant or protected groups.
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one of the constraints is supposed to represent a form of fair assessment for the
groups in a partition, satisfying a constraint for all partitions represents fair
assessment for all groups. This is, plausibly, the ideal case. (2022, p. 425)

Fairness to salient racial groups is a laudable goal; fairness across races, sexes, nationalities,
etc. is even better. In fact, many standard non-discrimination clauses prohibit unfairness
across several ways of partitioning a population. Maximal fairness according to a given
criterion would be satisfying that criterion across all ways of partitioning the population.
This ensures fairness to all groups since any group is a cell of some partition. The idea
then is to investigate what ideal assessment, i.e., fairness to all groups, looks like from the
perspective of a given statistical criterion. It may be that some ideals are more attractive
than others.

Here is another way to motivate the idea that satisfying a given statistical criterion of
fairness across all partitions represents maximal fairness according to that criterion. For a
given partition of the population, when the assessor fails to satisfy a criterion like Calibration
for the partition, some group has a complaint about being treated unfairly. If the assessor
satisfies Calibration for that partition, no group in the partition has such a complaint—at
least with respect to the notion of fairness Calibration encodes. But even if the assessor is
calibrated for one partition, it may be, and generally is, uncalibrated for another partition.
So some group in this other partition has an unfairness complaint. If the assessor were
calibrated for all partitions, there would exist no group at all that has such a complaint.4

I previously characterized ideal assessment for Calibration, Equalized Odds, and Predic-
tive Equity in terms of very simple properties that recognizably concern fair treatment (2022,
Observations 1–3). First, an assessor satisfies Calibration for all partitions if and only if it is

4One concern about this conception of ideals or maximal fairness—raised by an anonymous referee—is
worth addressing directly. Here as in Stewart (2022), an ideal is equivalent to a criterion’s satisfaction for
all partitions. But perhaps this is overly ambitious. Perhaps we should content ourselves with a notion of
maximal fairness that concerns only some set of relevant partitions. In practice, these often include categories
like race, gender, and so on. I think that there are a number of plausible things one might say in response
to this concern. Here are three. First, the conception of ideals presented here is clearly one sensible notion.
Even if there are others worth investigating, that does not imply that this one is not. Second, it is difficult to
see that other notions will be as well-behaved and informative as the notion explored here. Treated generally,
any set of partitions could be designated as relevant, and this includes sets consisting of a single partition. In
such cases, there may be no nice analytic characterizing condition of when a criterion holds for the relevant
partitions other than the criterion itself. By contrast, not only are the ideals as conceived here simple and
clearly about fairness, they are linked by a striking logical order. Third, the restriction to “relevant” groups
comes with seemingly implausible commitments. For instance, suppose that the set of relevant partition does
not include a rural/urban partition, as salient examples of non-discrimination clauses often do not. Still, the
discovery of significant bias against people from rural regions does not seem ethically irrelevant. Suppose
further that we have an assessor that satisfies some fairness criterion for all the relevant partitions, but not
for the rural/urban partition of the population. Another assessor satisfies the criterion, not just for the
relevant partitions, but for the rural/urban partition as well. Is the second assessor really not more fair in
an ethically relevant and theoretically interesting sense? More generally, I find it plausible that if h satisfies
some criterion for a set of partitions, but h′ satisfies the criterion for strictly more partitions, there is an
important sense in which h′ is more fair than h. Clearly, if h satisfies a criterion for all partitions, there can
be no “more fair” h′ as far as the relevant criterion goes, and so it makes sense to consider h maximally fair in
this sense. Despite finding these considerations quite persuasive, I think we should welcome the investigation
of alternative notions of maximal fairness/fairness ideals.
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Figure 1: Relations among Fairness Ideals for Non-Constant Assessors

Perfection
∀i ∈ N : Y (i) = h(i)

Perfect Non-Discrimination+

∀i, j ∈ N : Y (i) = Y (j) ⇒ h(i) = h(j) and ∀i ∈ {Y = 0} : Y (i) = h(i)

Perfect Non-Discrimination
∀i, j ∈ N : Y (i) = Y (j) ⇒ h(i) = h(j)

Perfect Distinction
∀i, j ∈ N : Y (i) ̸= Y (j) ⇒ h(i) ̸= h(j)

perfect. Here, Perfection is defined as h predicting 1 or 0 for all individuals in the population
without making any mistakes: h assigns 1 to those individuals with property y, 0 to those
without it. Second, an assessor satisfies Equalized Odds for all partitions if and only if it is
perfectly non-discriminatory. Here, Perfect Non-Discrimination means treating likes alike:
all individuals alike in the sense of having or lacking property y are assigned the same score.
Finally, an assessor satisfies predictive equity for all partitions if and only if it makes perfect
distinctions. By Perfect Distinction, I mean that the assessor treats individuals who differ
in the relevant way differently, namely, by not assigning individuals who differ with respect
to the salient property y the same score. For non-constant assessors, that is, assessors that
assign more than one score, these simple characterizing conditions stand in decreasing order
of logical strength. I summarize these clean logical relationships (including those of an addi-
tional characterizing condition discussed below) in Figure 1. One potentially interesting fact
about the logical relationships between these characterizing conditions is that, while Equal-
ized Odds is logically independent of Calibration in general, it is committed to a strictly
weaker fairness ideal. Moreover, and perhaps surprisingly, this fairness ideal is intermediate
between that of Calibration and that of Predictive Equity.

Regardless of feasibility, it is difficult to object to the conception of ideal assessment
as Perfection (cf. Hardt et al., 2016). It is the standard one might expect on a biblical
judgment day. Perfection recognizes the moral importance of getting each individual’s case
right. It also represents ideal accuracy (which goes “hand in hand” with access to more
individual-level data (Di Bello and Gong, 2023, p. 6)). In other words, Perfection, it seems
to me, is sufficient for fairness in assessment. This is less true of some other ideals. The
idea that fairness involves treating like cases alike and unalike cases differently is the formal
equality principle and has an ancient pedigree (Aristotle, 2019, Book 5). The requirement to
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treat like cases alike has also been emphasized, in different ways than here, in the literature
on algorithmic fairness (Dwork et al., 2012; Zimmermann and Lee-Stronach, 2022). While
there’s obviously something compelling in the ideal that likes should be treated alike as
it is formalized in Perfect Non-Discrimination, it seems equally obvious that something is
lacking. A constant assessor or an assessor that assigns everyone with property y a lower
score than everyone lacking it would count as maximally fair as far as non-discrimination
goes. In other words, Perfect Non-Discrimination does not seem sufficient for fairness in
assessment. On its own, then, Perfect Non-Discrimination is not a compelling conception
of fairness. Similarly, while treating unalike cases unalike is implied by perfect assessment
and so plausible, there are a lot of ways to satisfy Perfect Distinction that are intuitively
unappealing. Simply assigning everyone different scores, for instance, would work even if the
scores are not accurate or are systematically skewed in some way like all people from one
racial group receiving very high scores while all other individuals receive very low scores.
Again, Perfect Distinction by itself is not a fully compelling conception of fair treatment.

4 Roles for Ideals

The heart of the ideals program is the contention that ideals convey normatively relevant
information about candidate statistical criteria of algorithmic fairness.5 An account of the
appropriate use of such information, however, could be developed in different ways. I will
briefly canvas three possibilities here, essentially in order of increasing plausibility.

But first, to motivate the evaluative use of ideals, consider a loose analogy to a topic in
Bayesian epistemology. That Bayesian agents expect to (eventually) converge to the truth
and to (eventually) achieve consensus through inquiry with other sufficiently open-minded
Bayesians are supposed to be good-making features of Bayesian theory. But one line of
resistance objects to the asymptotic nature of these guarantees, often citing Keynes’s famous
dictum about the long run (e.g., Earman, 1992; Sprenger, 2018). Such guarantees offer little
comfort about real-life, short-run cases that might be our focus. Others see the function of
these guarantees differently, as minimal adequacy conditions or sanity checks for an inductive
methodology. As Autzen writes, “Under the ideal scenario of an infinitely large data set,
an inference procedure should show certain desirable features” (2017, p. 255). Ideals of
statistical fairness criteria might function in an analogous fashion as minimal sanity checks.
Inductive methodology should yield the right result—namely consensus or convergence—
when agents follow it and have access to an infinite stream of evidence, which might be
regarded as unrealistic in certain senses. Similarly, while ideals may correspond to remote
or unrealistic cases, cases in which fairness is achieved for more groups than is realistically
feasible, a sound account of fair assessment should likewise yield the right results—namely,
attractive ideals—in at least those extreme cases.

5Stewart (2022) does not propose using ideals in this way to distinguish the normative plausibility of
different candidate fairness criteria or of sets of them. Instead, I took the fact that a statistical criterion has
an ideal that is difficult to achieve in practice as a strike against the ideal, and did not discuss significant
distinctions in plausibility between the ideals. Here, I concede from the start that satisfying some criterion
for all partitions is unrealistic, but the contention is that ideals provide information about the contours of
the conceptions of fairness that the various criteria encode, and important distinctions between these criteria
can be made. As far as I know, this perspective has not been suggested previously.
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At least some readers of earlier versions of this essay have thought that the ideals program
presupposes that statistical criteria of fairness are both necessary and sufficient conditions
of fairness. But this is incorrect. Consider the analogy to long-run learning behavior in
Bayesian theory again. Even if a sound inductive method should secure consensus in the
long run—that is, under certain ideal conditions—it does not follow that merging of opinions
is also sufficient to secure the rational status of some method. The method may be very
unreasonable over shorter time horizons or when agents do not have access to the (perhaps
tremendous) amount of information required for the merging theorems, for example. And
similarly, for the three uses of ideals surveyed below. One might hold that any candidate
necessary condition of fairness should have a sufficiently compelling ideal, or that a candidate
set of sufficient conditions should, or that ideals can figure into cumulative cases for different
criteria, without construing any of the particular criteria of the sort studied in the literature
as sufficient by themselves.

4.1 Tests of Necessity for Individual Criteria

Most ambitiously, one could use ideals as adequacy conditions for candidate necessary criteria
of algorithmic fairness. The standard view of the sorts of criteria under consideration in this
essay is as necessary criteria for fairness. On this first proposal, then, in order for a candidate
criterion to be a genuine necessary condition for algorithmic fairness, it must pass the test
of having a sufficiently compelling ideal.6 Put differently, it must “aim at” a plausible
conception of fairness in the ideal case. In some ways, this is a natural thought. In response
to the question, “why should we think of a statistical condition like Calibration as a fairness
criterion?,” one could point out that, in the ideal or limiting case, it reduces to a property
that obviously concerns fairness and, arguably, suffices for fairness.

There are reasonable reservations about this role for ideals, reservations that, to me,
seem decisive even. If we were to regard Calibration, for instance, as a necessary condition of
fairness, it would follow that all logical consequences of Calibration are necessary conditions.
But some of these consequences will be very weak—like making forecasts at all—and will not
imply compelling ideals on their own. That is, making numerical forecasts does not imply
an ideal that is sufficient for fair assessment. So it looks like using ideals to test for necessity
is a dead end. Similar reservations arise outside of the case of logical implications of a given
necessary condition. It could be, for example, that the ideal implied by each condition in
a set of necessary conditions is not maximally fair in some pre-theoretic sense while the
ideal implied by the set of criteria taken together is. (Since the ideals of prominent criteria
that I discuss here stand in the logical relations displayed in Figure 1, it is very simple to
identify the ideal to which any subset of these criteria is committed: it is the strongest ideal
associated with a property in the set, the ideal highest up in Figure 1.) But this concern

6For the sake of clarity and simplicity, I’m describing things in very general terms here and eliding some
nuance. There are different ways of construing the tests of necessity interpretation that may be more or
less plausible. The one I’m considering requires that candidate criteria have sufficiently compelling ideals.
An alternative test of necessity might be that a criterion’s ideal is simply clearly concerned with some form
of fair or equal treatment. It is plausible that all conditions considered in this essay pass this alternative,
weaker test of necessity. This test, however, is still susceptible to the objections to the use of ideals as tests
for necessity.
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suggests the next possible role for ideals.

4.2 Tests of Insufficiency for Sets of Criteria

While statistical criteria of algorithmic fairness are standardly interpreted as individually
necessary conditions for fairness, the ultimate aim is to have fair algorithms. In other words,
the search is ultimately for jointly sufficient conditions for fairness. Can ideals help? As I
mentioned above, it’s hard to think of perfect assessment as leaving any room for unfairness.
It is much less difficult to see how an assessor that is calibrated across a salient partition
could be considered unfair (consider Table 1 again). So even if Calibration for all partitions
is equivalent to perfect assessment, it is implausible that it is sufficient for fair assessment for
a single partition in general. So having an ideal that is sufficient for fair assessment does not
imply that the criterion itself is sufficient for fair assessment for a given partition. And since
Perfection is quite a strong ideal—what would be a compelling way of strengthening it?—it
is implausible that ideals can be used to identify sufficient conditions just as Perfection does
not identify Calibration as sufficient for fairness. But maybe ideals can be used to diagnose
insufficiency.

To use ideals to test for insufficiency of a set of criteria is to use them as necessary con-
ditions, not for individual criteria exactly, but for candidate overall accounts of algorithmic
fairness. The idea is that any account of algorithmic fairness, any set of conditions that
are jointly sufficient, must imply a sufficiently compelling ideal—a condition, perhaps like
Perfection, that is sufficient for fairness. Put another way, the sufficiency of a set of alleged
sufficient conditions should be apparent in the extreme case of satisfaction for all partitions.
Crucially, this role does not claim that if a set implies a sufficiently compelling ideal, then
the set is sufficient for fairness. Again, one could find Perfection a compelling ideal but reject
Calibration as sufficient for fairness. Instead, the proposal is that ideals help to eliminate
criteria, or conjunctions of them, as candidate sufficient conditions for fairness. Maximal
fairness—that is, fairness across all partitions—according to an alleged set of sufficient con-
ditions for fairness for a single partition should be clearly and unambiguously fair. Consider
once again the leading analogy to Bayesian theory. If an inductive method defined by some
set of rules is put forward as a rational inductive method, but those rules fail to secure con-
sensus in the long run (for sufficiently open-minded initial opinions) even on the assumption
of an infinite, increasing stream of evidence, some would regard this as disqualifying for the
proposed method’s claim to rational status. Similarly, if a set of conditions that are sup-
posed to be sufficient for fair assessment in some partition fail to imply a compelling ideal
when imposed across all partitions, some might regard this as disqualifying for the account
of fairness.

To illustrate this role of ideals, consider that while Calibration is inconsistent with Equal-
ized Odds, the weaker Predictive Equity criterion is not. What is maximally fair assessment
according to the conjunction of Equalized Odds and Predictive Equity? It is the formal
equality principle as formalized by the conjunction of Perfect Non-Discrimination and Per-
fect Distinction; for non-constant assessors, this is equivalent to Perfect Non-Discrimination
(Figure 1). While this ideal requires a non-constant assessor to assign the same score to
everyone with property y and a different score to everyone without the property, the two
scores are otherwise unconstrained. This leaves ample room for assessments that are not
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intuitively fair. If that is right, the proposal under consideration would reject the sufficiency
of the conjunction of Predictive Equity and Equalized Odds for fair assessment.

There are ways, however, of resisting this use of ideals as well. It could be that while
Perfection is the correct standard in ideal cases, the best we can do in non-ideal cases requires
more of a concession to practicalities, requires using criteria that move decidedly away from
Perfection as their characterizing condition for when they are satisfied for all partitions.
Consider the distinction between ideal and non-ideal theory that Sen, for example, has
stressed. According to Sen, the identification of an ideal political state is neither necessary
nor sufficient to make at least a great many social and political comparisons and choices
(2010, pp. 15–16). It is not necessary since many such choices may be readily made without
appeal to an ideal state. And the identification of an ideal is not sufficient because it may fail
to inform us on how to compare non-ideal states that are feasible options, or how to move
from our present state to a non-ideal but better alternative state. On Sen’s view, ideal and
non-ideal theory address different questions, with ideal theory being “of no direct relevance”
to non-ideal theory (2010, pp. 16–17). Might one say the same about non-ideal algorithmic
assessment, assessment in cases in which Perfection is not remotely feasible?7 The situation
with ideals of algorithmic fairness is not directly analogous. We are considering certain
statistical criteria for fair assessment that are supposed to apply in non-ideal cases, namely,
in a given, salient partition of the population. The ideals I identify are not disconnected
from these criteria, are not addressing different questions, as Sen claims ideal and non-ideal
political theory are. Instead, ideals are simply what maximally fair assessment looks like
according to each criterion we have considered. They are defined in terms of the very criteria
that are supposed to be applicable in non-ideal cases. We need make no assertion that ideals
are the end of theorizing about fairness or that maximal fairness is realistically achievable.
Rather, they can be interpreted as providing information about the normative content of
the relevant criteria, as informing about how appropriate or compelling the various criteria
might be. Still, to insist that the concern about concessions to practicalities can be dismissed
outstrips the arguments I have at hand.

7The idea that different standards might be appropriate under ideal and non-ideal conditions finds sym-
pathetic expression in the algorithmic fairness literature. For instance, in response to Hedden’s alleged
chance-based counterexample to most statistical criteria, Di Bello and Gong say this:

One might argue that if a certain criterion of fairness is shown to be inapplicable under ideal-
ized conditions, then a fortiori the same criterion would be inapplicable under more realistic
conditions. But this argument is too quick. Even if [. . . ] predictive algorithms necessarily vio-
late several performance criteria under idealized conditions and this violation is not intuitively
unfair, the same violation under more realistic conditions may still count as unfair. For exam-
ple, a predictive algorithm whose risk scores perfectly track the objective risks may count as
intuitively fair even if it violates predictive parity. And yet, when the algorithm’s risk score no
longer track the objective risks, the algorithm need not be regarded as intuitively fair. Under
more realistic conditions, the violation of classification parity may become morally problematic.
(2023, p. 10)
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4.3 Elements of Cumulative Cases

More minimally still, ideals can be taken as simply important considerations in formulating
accounts of algorithmic fairness. A compelling ideal may be a consideration in favor of a
putative criterion or set of criteria without by itself being dispositive of the status of criteria
as necessary or sufficient conditions for fairness. While it is difficult to conceive of reasons for
the wholesale rejection of this use of ideals, it is also difficult to specify details of the nature
of cumulative cases in the abstract. It would be helpful to consider an example. In the
next section, I consider a case study. Among other things, ideals provide a means of making
certain subtle conceptual distinctions that may otherwise go unnoticed. My aim now is to
substantiate this claim, extending the ideals program to an interesting, recently-proposed
criterion as a case study. I identify the ideals of both Base Rate Tracking and Ratio Base
Rate Tracking below. They are distinct. Moreover, as I point out, there are grounds for
finding the ideal of Ratio Base Rate Tacking less compelling. This point could be used,
depending on the role for ideals found most compelling, as a test of necessity, insufficiency,
or just a consideration in a more encompassing case for preferring Base Rate Tracking to its
ratio form.

5 Case Study: (Ratio) Base Rate Tracking and Ideal

Fairness

Eva (2022) introduces a criterion he dubs Base Rate Tracking. The idea behind this condition
is that the average score for a given group should not deviate from that group’s base rate
more or less than the average score deviates from the base rate in another group. Put
differently, a group’s average score has to be related to the prevalence of the property in the
group in a uniform way.

Base Rate Tracking. For an assessor h of N and any groups G,G′ in a partition
π of N , EG(h)− µG = EG′(h)− µG′ .

Assigning groups with very similar base rates very different average scores clearly violates
Base Rate Tracking. Stewart et al. establish that Base Rate Tracking, like Predictive Eq-
uity, is a way of weakening Calibration (2024, Proposition 1). Since Base Rate Tracking is a
way of relaxing Calibration while maintaining some of its appeal as a fairness criterion, it is
especially interesting in light of the impossibility theorems. Such results motivate the search
for weaker criteria. Given that Base Rate Tracking weakens Calibration, it may be some-
what surprising that Base Rate Tracking, unlike Predictive Equity, retains a commitment to
Perfection. Call a population non-homogeneous if there are i, j ∈ N such that Y (i) ̸= Y (j).
Non-homogeneity is itself a kind of non-triviality assumption about the relevant assessment
exercise.

Theorem 1. An assessor h for a non-homogeneous population N satisfies Base Rate Track-
ing for all partitions iff h is perfect.
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Table 2: Base Rate Tracking without Ratio Base Rate Tracking

Black h(1∗) = 5/6 h(2) = 5/6 h(3∗) = 5/6

White h(4) = 1/2 h(5) = 1/2 h(6∗) = 1/2

(Rather than proving Theorem 1, I prove a generalization, Theorem 3, in the Appendix. The
generalization extends Theorem 1 to cases in which Base Rate Tracking is approximately
satisfied for all partitions.)

As Eva points out, the motivations he adduces for Base Rate Tracking do not pin down
the functional form the criterion should take. Rather than defining the condition in terms
of differences of expectations and base rates, we could use ratios (2022, p. 260).

Ratio Base Rate Tracking. For an assessor h of N and any groups G,G′ in a

partition π of N ,
EG(h)

µG

=
EG′(h)

µG′
(whenever both ratios are defined).

On the one hand, it is clear that Base Rate Tracking and Ratio Base Rate Tracking are
distinct. For example, Table 2 presents an assessor that satisfies Base Rate Tracking but
does not satisfy Ratio Base Rate Tracking in the partition consisting of the two racial groups
indicated. On the other hand, not only do Eva’s stated motivations for the criteria fail to
distinguish Base Rate Tracking from Ratio Base Rate Tracking, non-trivial consistency with
Equalized Odds also fails to differentiate the two forms of the criterion. Ratio Base Rate
Tracking like Base Rate Tracking is consistent with Equalized Odds only when the assessor
is perfect or the base rates for all groups in π are identical (Stewart et al., 2024, Theorem
and Proposition 2). Similarly, Hedden’s argument against statistical criteria other than
Calibration based on considerations having to do with objective chance would likewise fail
to mark a normatively relevant distinction between Base Rate Tracking and Ratio Base Rate
Tracking since, as consequences of Calibration, the argument does not apply to them. What
sorts of reasons can be used to adjudicate between these alternatives?8

8There is a well-known, relevantly analogous issue in Bayesian epistemology, where a plurality of non-
equivalent measures of confirmation have been proposed. Different functional forms of these measures failed
to distinguished by relevant normative considerations, at least for some time (Eells and Fitelson, 2000).
As Fitelson points out, “a great many of the arguments surrounding quantitative Bayesian confirmation
theory are implicitly sensitive to choice of measure of confirmation. Such arguments are enthymematic,
since they tacitly presuppose that certain relevance measures should be used (for various purposes) rather
than other relevance measures that have been proposed and defended in the philosophical literature” (1999,
p. S362). The “most standard” measure of confirmation is the difference between the posterior and prior—in
analogy to Base Rate Tracking—and other “more or less standard” measures include the log of the ratio
between posterior and prior—in analogy to Ratio Base Rate Tracking (Eells and Fitelson, 2000, p. 663). For
those arguments that presuppose certain measures should be used rather than others, relevant, normative
distinctions between measures must be made and considerations brought to bear on a comparative analysis.
The same thing is true of statistical criteria for algorithmic fairness. The ideals program is an attempt
making some relevant such distinctions.
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Table 3: Criteria and Their Associated Fairness Ideals

Perfection Calibration, Base Rate Tracking

Perfect Non-Discrimination+ Ratio Base Rate Tracking

Perfect Non-Discrimination Equalized Odds

Perfect Distinction Predictive Equity

There is a distinction between these two forms of Base Rate Tracking in terms of ideal
fairness according to each property that may be helpful. From the perspective of fairness
ideals, we can see that Ratio Base Rate Tracking loses at least a bit of the content of
Calibration that Base Rate Tracking retains. In addition to non-homogeneity, the following
characterization result for Ratio Base Rate Tracking makes the further mild assumption that
at least two individuals in the population have property y.

Theorem 2. An assessor h for a non-homogeneous population N such that |{Y = 1}| ≥ 2
satisfies Ratio Base Rate Tracking for all partitions iff h is perfectly non-discriminatory with
h(i) = 0 whenever Y (i) = 0.

According to Ratio Base Rate Tracking, an assessor that assigns all people with property y
the same score and all people who lack property y a score of 0 is maximally fair. Call this
ideal Perfect Non-Discrimination+. I summarize the fairness ideals to which these prominent
criteria of algorithmic fairness are committed in Table 3.

While Base Rate Tracking shares the compelling Perfection ideal with Calibration, Ratio
Base Rate Tracking does not. Perfect Non-Discrimination+, the ideal associated with Ratio
Base Rate Tracking, is weaker. A uniform, very low score could be intuitively unfair to
individuals with property y if loan or admissions decisions, for instance, are made on the
basis of a threshold above that score. In fact, a constant assessor could assign all individuals
a score of 0 without running afoul of Perfect Non-Discrimination+. While this is not a
conclusive consideration, pre-systematic judgment seems to find such an ideal does not suffice
for fair assessment. At the very least, we have a potentially interesting normative distinction
between the different forms of Base Rate Tracking in terms of their associated ideals.

Let’s now consider applications of the three uses of ideals introduced above to the case of
Base Rate Tracking and Ratio Base Rate Tracking. First, if a candidate necessary condition
for algorithmic fairness must have a fully compelling ideal, this suggests that Ratio Base Rate
Tracking, unlike Base Rate Tracking, is not a necessary condition of algorithmic fairness.
(Notice that could be so even though the ideal associated with Base Rate Tracking implies
the ideal associated with Ratio Base Rate Tracking. But as Table 2 shows, in general, Base
Rate Tracking does not imply Ratio Base Rate Tracking.) Reservations about this general
use of ideals were expressed above. For instance, Calibration shares an ideal with Base
Rate Tracking and implies Ratio Base Rate Tracking. If Calibration is deemed a necessary
condition of fairness, Ratio Base Rate Tracking would be, too, even though its ideal is less
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than fully compelling.
Second, due to the monotonicity of logical consequence, adding further necessary condi-

tions to a set that includes Base Rate Tracking will preserve a commitment to the ideal of
Perfection for the set. So if we find Perfection a compelling ideal, there will not be promis-
ing ideal-based arguments against candidate sets of sufficient conditions that include Base
Rate Tracking. The situation is different for Ratio Base Rate Tracking. If all of the ideals
discussed here other than Perfection are deficient in some way, then no set of these condi-
tions that excludes both Calibration and Base Rate Tracking is a candidate set of sufficient
conditions for algorithmic fairness. This follows again from the relations displayed in Figure
1. The tenability of Ratio Base Rate Tracking, then, depends crucially on supplemental
criteria in a way that the case for Base Rate Tracking does not. Admittedly, this is not a
decisive consideration against Ratio Base Rate Tracking, but, on this use of ideals, there is
a burden for an account starting from Ratio Base Rate Tracking that is automatically met
by an account starting from Base Rate Tracking.

Third, even if one were to reject these first two uses, ideals provide one philosophically sig-
nificant distinction between statistical fairness criteria including between Base Rate Tracking
and Ratio Base Rate Tracking. This distinction may be just one piece of a complex case to
be made for or against one of the properties. For example, if maximal fairness according to
Base Rate Tracking is clearly fair, that may be a consideration in its favor. Conversely, to the
extent that Ratio Base Rate Tracking’s ideal is recognizably defective in some way, that may
be a factor in a case against it. On a view that resists seeing ideals as a means of testing for
the necessity or sufficiency of some set of statistical fairness criteria, how such considerations
are to be weighed up ultimately may be very complex and involve a large number of other
considerations. Or ideals could simply function as tie-breaking considerations when the cases
for two criteria like Base Rate Tracking and Ratio Base Rate tracking are otherwise on a
par. So even if the first two roles for ideals are rejected, ideals may have even critical roles
to play in the normative evaluation of putative criteria of algorithmic fairness. Dismissing
ideals on the basis of not finding the first two roles compelling would be hasty.

6 Conclusion

The morass of a rapidly expanding set of inconsistent statistical criteria of algorithmic fair-
ness is a problem of both theoretical and practical significance. What’s needed are systematic
means of assessing the appropriateness of various criteria, of marking normatively relevant
distinctions between candidate criteria of fairness. The ideals program, while unlikely to be
the whole story, is an important part of such an enterprise. It is also an aspect of algorithmic
fairness that, to the best of my knowledge, has received scant attention so far. The relevant
ideals are much simpler to evaluate as standards of fair treatment than the associated statis-
tical criteria. The challenge now is in specifying how to make use of these ideals in assessing
their associated criteria. I canvassed three potential roles—as tests for necessity of individual
criteria, tests for insufficiency of sets of criteria, and elements of cumulative cases—finding
grounds to regard the latter two roles as more plausible than the first. How ideals might be
brought to bear in comparing particular criteria can be seen in the discussion of Base Rate
Tracking. Both Eva (2022) and Stewart et al. (2024) observe that the considerations in their
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discussions fail to make normatively relevant distinctions between Base Rate Tracking and
Ratio Base Rate Tracking. For the ideals program, such is not the case, as Theorems 1 and
2 show.9 These initial fruits suggests further harvests for the ideals program.
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Appendix

Proof of Theorem 2

Proof. Let h be an assessor for a non-homogenous population N with |{Y = 1}| ≥ 2.
(⇒). I note first that the special assumptions about the population are unnecessary for

establishing that h(i) = h(j) for all i, j ∈ {Y = 1}. It suffices to consider the partition of
singletons. For i, j ∈ {Y = 1}, we have µ{i} = µ{j}, so Ratio Base Rate Tracking implies
that h(i) = E{i}(h) = E{j}(h) = h(j).

Next, since |{Y = 1}| ≥ 2 and N is non-homogeneous, there is a partition

π = {{i}, N \ {i}},

where µ{i}, µN\{i} > 0. Using Ratio Base Rate tracking, the law of total expectation, and
the claim established above that h(i) = h(j) for all i, j ∈ {Y = 1},

h(i) =
E{i}(h)

µ{i}

=
EN\{i}(h)

µN\{i}

=
EN\{i}(h|Y = 1))µN\{i} + EN\{i}(h|Y = 0))(1− µN\{i})

µN\{i}

=
h(i)µN\{i} + EN\{i}(h|Y = 0))(1− µN\{i})

µN\{i}
. (1)

Equation 1 implies that EN\{i}(h|Y = 0))(1 − µN\{i}) = 0. Since 0 < µN\{i} < 1 by the
assumptions about the population, it follows that EN\{i}(h|Y = 0)) = 0. This establishes
that h(j) = 0 for all j ∈ {Y = 0}. Hence, if h satisfies Ratio Base Rate Tracking for all
partitions of N , then h is perfectly non-discriminatory and assigns score 0 to all individuals
without property y.

(⇐). Suppose that there is some r ∈ [0, 1] such that, for all i such that Y (i) = 1, we
have h(i) = r, and for all i such that Y (i) = 0, we have h(i) = 0. Let G be any group in a

9The ideals program has also been recently exploited in (Nielsen and Stewart, 2024).
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partition π of N . If µG = 0, then EG(h)
µG

is undefined. So suppose that µG > 0. Then, using
the law of total expectation and the assumption,

EG(h) = EG(h|Y = 1)µG + EG(h|Y = 0)(1− µG)

= EG(h|Y = 1)µG + 0(1− µG)

= EG(h|Y + 1)µG. (2)

By 2 and the assumption,
EG(h)

µG

=
EG(h|Y = 1)µG

µG

= r. (3)

Since G is arbitrary, 3 implies that for any G′ ∈ π such that
EG′ (h)
µG′

is defined, we have
EG(h)
µG

=
EG′ (h)
µG′

= r. Hence, h satisfies Ratio Base Rate Tracking.

Proof of Theorem 3

Say that h approximately tracks base rates (with respect to a specified margin of error ε ≥ 0)
in a partition π if, for any cells G,G′ of π,

|(EG(h)− µG)− (EG′(h)− µG′)| ≤ ε.

Approximate base rate tracking requires that the magnitude by which the expected score
deviates from the base rate is, not necessarily the same for all groups, but bounded by some
margin of error ε. An assessor is approximately perfect (for a specified margin of error ε ≥ 0)
if |h(i)− Y (i)| ≤ ε for all i ∈ N .

Theorem 3. Let h be an assessor for a non-homogeneous population N . If h is ε-approximately
base rate tracking for all partitions, then h is ε-approximately perfect. And if h is ε-
approximately perfect, then h is 2ε-approximately base rate tracking for all partitions.

Proof. Let h be an assessor for a non-homogeneous population N .
(⇒). Suppose that h is approximately base rate tracking for all partitions. That is, for

a given ε ≥ 0, and for all groups G,G′,

|(EG(h)− µG)− (EG′(h)− µG′)| ≤ ε. (4)

In particular, h approximately tracks the base rates in the finest partition {{1}, {2}, . . . , {n}}.
Substituting in 4, we have, for any i, j ∈ N ,

|(h(i)− Y (i))− (h(j)− Y (j))| ≤ ε. (5)

Since N is non-homogeneous, there are i, j such that Y (i) = 1 and Y (j) = 0. For such i, j,
we can rewrite 5 as

|(h(i)− 1)− (h(j)− 0)| ≤ ε. (6)

If |h(i) − 1| > ε, then h(i) − 1 < −ε. Since h(j) ≥ 0, h(i) − 1 − h(j) < −ε. Hence,
|(h(i) − 1) − (h(j) − 0)| > ε, contradicting 6. It follows that |h(i) − 1| = |h(i) − Y (i)| ≤ ε.
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Similarly, if h(j) > ε, then since h(i) − 1 ≤ 0, we have (h(i) − 1) − h(j) < −ε. Hence,
|(h(i)−1)−(h(j)−0)| > ε, contradicting 6. It follows that h(j) = |h(j)−0| = |h(j)−Y (j)| ≤
ε. Given that the population is non-homogeneous, for any i ∈ N there is a j ∈ N such that
Y (i) ̸= Y (j), and the foregoing reasoning can be repeated using j and the finest partition
to establish |h(i)− Y (i)| ≤ ε.

(⇐). Suppose that h is ε-perfect. That is, for any i ∈ N ,

−ε ≤ h(i)− Y (i) ≤ ε. (7)

For any non-empty G ⊆ N , it follows that

−ε ≤ EG(h− Y ) ≤ ε, (8)

that is, the average value of h − Y in G lies between −ε and ε. But by the linearity of
expectation,

EG(h− Y ) = EG(h)− EG(Y )

= EG(h)− PG(Y = 1)

= EG(h)− µG. (9)

From 8 and 9, we have |EG(h) − µG| ≤ ε. Since G was arbitrary, it follows that, for any
partition π and any G,G′ ∈ π, |(EG(h)− µG)− (EG′(h)− µG′)| ≤ 2ε. This establishes that
h is 2ε-approximately base rate tracking in all partitions.

Remark 1. Since one can find simple examples of ε-approximately perfect assessors that are
exactly 2ε-approximately base rate tracking, this upper bound is tight.

Remark 2. Observe that for ε = 0, Theorem 3 reduces to Theorem 1.

Remark 3. While Calibration and Base Rate Tracking share the same ideal, their rela-
tionships to Perfection are not the same in the approximate case. Compare Theorem 3 to
Observation 1′ in (Stewart, 2022).
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