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Abstract: This essay addresses one of the open questions of proof-theoretic
semantics: how to understand the semantic values of atomic sentences. I
embed a revised version of the explanatory proof system of Millson and
Straler (2019) into the proof-theoretic semantics of Francez (2015) and show
how to specify (part of) the intended interpretations of atomic sentences on
the basis of their occurrences in the premises and conclusions of inferences
to and from best explanations.
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1 Introduction

Proof-theoretic semantics (PTS) is an approach toward meaning that uses
rules for inferring to and from linguistic or logical expressions as a basis
for semantic evaluation. To date, however, there has been little discussion
of the semantic values of—or the rules that govern—atomic sentences in
PTS. Their values are generally either assumed given from outside the proof
system (e.g., Francez, Dyckhoff, & Ben-Avi, 2019, and Francez, 2015), or
provided by the inferences from their own assumptions as in (Francez, 2017),
or stipulated via definitional systems of the sort found in (Prawitz, 1973).
Francez (2015, p. 377) considers this one of the open questions within proof-
theoretic semantics: how should we understand the proof-theoretic semantic
values of the atoms of an interpreted language?

IThis essay forms a triad with (Stovall, 2019) and (Stovall, in press) which collectively
represent an attempt to rewrite the first two chapters of my dissertation. I am indebted to many
people for taking the time to talk with me and offer comments on this material. I am particularly
grateful for feedback from Robert Brandom, Ulf Hlobil, Daniel Kaplan, Jared Millson, Nissim
Francez, Jaroslav Peregrin, Ivo Pezlar, Mark Risjord, and Shawn Standefer at various times
over the last few years. I would also like to thank two reviewers for this journal, and the
participants at the 2019 Logica conference. Work on this article was supported by the joint
Lead-Agency research grant between the Austrian Science Foundation (FWF) and the Czech
Science Foundation (GACR), Inferentialism and Collective Intentionality, GF17-33808L.
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In this essay I provide an answer to that question by showing how to use
a revised version of the explanatory proof system of Millson and Stral3er
(2019) to individuate introduction and elimination rules for atomic sentences,
under an intended interpretation, in terms of their roles in explanation under
that interpretation. Within the context of (Francez, 2015), this determines
a proof-theoretic semantic value for the atoms of an interpreted language,
just as a specific assignment of truth conditions to sentences fixes atomic
sentence meaning in model-theoretic semantics. While this doubtlessly does
not exhaust everything one could mean by ‘proof-theoretic meaning’, it
provides a formally tractable mechanism for thinking about at least one
dimension of linguistic meaning: explanatory role.

2 Overview of the proof-theoretic semantics of Francez

2.1 Conventions

Consider a language .Z consisting of a countable set of atoms and the
recursively defined set of sentences derived from the atoms and the Boolean
operators in the usual way. Let uppercase Latin letters (except X and Y) range
over sentences of .Z, lowercase Latin letters range over atoms, uppercase
Greek letters range over finite sets of sentences, and X and Y range over
finite sets of literals (atoms and their negations). I abuse notation and use
metalinguistic variables as illustrating instances in the text of the essay.

For display of logical relations I use a natural deduction system of the
sort employed in (Francez, 2015). Rules of introduction and elimination
are associated with each logical operator. These are rules of inference in
that they determine which inferences can be made to and from the logically
complex sentences of .Z’: the introduction rules for an operator * specify
the conditions under which a sentence having * as a major operator can be
inferred to as the conclusion of an inference, and the elimination rules for *
specify the conditions under which such a sentence can be inferred from as a
premise in an inference. I treat inferences as single-step derivations in this
essay, rather than as acts of inferring, and I understand a derivation is an
ordered series of applications of these rules of inference displayed as a tree
structure. Thus, each application of a rule will count as an inference from
the premise(s) to the conclusion and a derivation of the conclusion from the
premises.

The object-language expressions that occur in the premises and conclu-
sions of applications of rules of inference in these derivation systems are
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sequents of the form I" : A, where the antecedent I" is a set of sentences
that encodes assumptions on which the derivation of the succedent A may
depend. This presentation is in what Francez calls logistic form, and it has
the virtue of displaying the background contexts that the application of a rule
may depend on (Francez gives I more structure, but that is not relevant here).
The rule — I, for instance, reads as follows:

I'A:B

I':A—B —1

As a natural deduction system (rather than a sequent calculus) elimination
rules operate on succedents rather than antecedents, as can be seen with the
elimination rules for the conditional and conjunction:

I':A I':A—B I':AANB I':AAB

T B —E r.a /\EL r.g /\ER

This notation allows for using the intuitive rules of natural deduction
while preserving the expressive power of sequent calculi in the ability to
keep track of the context from which some derivable formula is derivable.
This will in turn facilitate tracking various features of context that attend
explanatory inferences. Francez (2015) examines a variety of classical and
non-classical natural deduction systems; nothing I say here turns on adopting
any particular one.

2.2 Overview of PTS

In PTS the semantic values of sentences are delimited by their canonical
derivations. For logically complex sentences, these are determined by the
introduction and elimination rules for the logical operators (cf. Francez, 2015,
Def. 1.5.9; the major premise of an inference rule for a logical operator “*’ is
the premise containing ‘*’).

Definition 1 (Canonical Derivations of Logically Complex Sentences From
Open Assumptions) Let A be a logically complex sentence.

1. A derivation for I : A is I-canonical for A iff it satisfies one of the two
following conditions:

- The last rule applied in the derivation is an I-rule for the main
operator of A.
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- The last rule applied in the derivation is an assumption-discharging
E-rule, the major premise of which is some B in 1, and its encom-
passed sub-derivations are all canonical derivations of A.

2. A derivation for I', A : B is E-canonical for A iff it starts with an
application of an E-rule with A as the major premise.”

The second condition for I-canonical derivations ensures that the commu-
tativity and associativity of disjunction count as part of the meaning of
disjunctions. The proof-theoretic semantic value for a sentence A at a context
I' can now be defined as follows (cf. Francez, 2015, p. 38):

Definition 2 (I-Canonical and E-Canonical Comprehension)

- The I-canonical comprehension of A at I =g, the collection of all
I-canonical derivations for A from I

- The E-canonical comprehension of A at I =4, the collection of all
E-canonical derivations for A from I, A.

The use of the term ‘comprehension’ is meant to signal a contrast with the
extensional semantics of model theory. Notice that PTS is hyperintensional:
the compositionality of derivations ensures that the I-canonical derivations
for A will differ from those for A A A (cf. the discussion in Pezlar, 2018).

2.3 PTS and atomic sentences

The definition for comprehension is general with regard to atoms and logically
complex sentences. The notion of canonical derivability, however, applies
only to logically complex sentences. For atoms we have (recall that lowercase
Latin letters range over the atoms of .%):

Definition 3 (Canonical Derivations of Atomic Sentences From Open As-
sumptions)

1. A derivation for I : p is I-canonical for p iff the last rule applied in
the derivation is an I-rule for p.

2It is possible to loosen this definition and allow that a derivation is E-Canonical for a
formula A just in case the first rule applied to A as a major premise is an E-rule for A. This
would allow that derivations containing inferences prior to the application of an E-rule for A
as a major premise would still count as part of A’s meaning. My thanks to Nissim Francez for
pointing this out.

166



PTS and Atomic Sentences

2. A derivation for I', p : A is E-canonical for p iff it starts with an
application of an E-rule with p as the major premise.>

Once we have rules for introducing and eliminating atoms, this will determine
their I-canonical and E-canonical derivations, which in turn will fix their
comprehensions.

3 Explanation as a basis for introducing and eliminating
atomic sentences

The notion of an explanation has some intuitive appeal for fixing (part of)
the proof-theoretic semantic values of atomic sentences. Just as there are
both introduction and elimination rules, so are there two orders or directions
of explanation. On one hand we may keep a sentence fixed and look to
see which contexts or circumstances better explain it—e.g., we might ask
what explains the existence of Socrates. On the other hand we may consider
sentences across different contexts and look to see which other sentences are
better explained by it—and so we might ask what the existence of Socrates
explains. Whatever else it is to understand what a sentence means, one who
can specify what it explains and what explains it will know something of its
meaning. One might wish to call this the ‘explanatory comprehension’ of
atoms in PTS, as to distinguish the range of semantic content fixed by these
explanations from other sorts of proof-theoretic meaning, but I suppress that
here.*

Philosophical logicians are beginning to investigate proof-theoretic for-
malizations of explanatory inference (see Litland, 2017, Millson, Khalifa,
& Risjord, 2018, Millson & Straller, 2019, Poggiolesi, 2016 and Poggiolesi,
2018). Each of Litland (2017), Millson and Straler (2019), and Poggiolesi
(2016) use a proof-theoretic metalanguage containing explanatory inferences
in order to provide introduction and elimination rules for object-language
talk whose meaning has been historically difficult to render in precise terms:
viz., factive and nonfactive ground (Litland), best explanation (Millson and
Stra3er), and formal explanation (Poggiolesi). Each proof system distin-
guishes two sorts of rules and the derivations they define: one set of rules

3 A similar remark holds here as in footnote 2.

“One also might adopt an epistemological stance and consider the reasons we have for
believing what we do, as opposed to the reasons there are for things being that way, but I will
continue to speak in an ontological register.
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governing inferences that are explanatory, and the other governing non-
explanatory inferences. The latter set of rules delimits the fragment of the
language defined by the logical operators. I will follow this approach here.
Litland (2017, p. 283) refers to these as explanatory and plain arguments,
Poggiolesi (2016, p. 3149), following Aristotle and Bolzano, as proofs-why
and proofs-that, and Millson and Stra3er (2019, pp. 128 and 135) consider
explanatory arguments and a version of Smullyan’s (1968) classical logic for
the sequent calculus LK.

What is needed is an account that allows us to infer to and from some
sort of explanation (grounding, best, formal, etc). Schematically this would
be a pair of rules that tell us 1) that when one is entitled to infer A from some
context I', and certain other conditions are met, then one can infer that I" is
the relevant sort of explanation for A, and 2) that when A is the relevant sort
of explanation for something, and certain side conditions are met, we can
infer A. That is, where :* indicates that the antecedent explains (in whatever
sense) the succedent, we want to fill in the side conditions in the following:

I:A side conditions side conditions I A:>B
r:"A I':A

To do so s to specify when one can infer fo an explanation, and what one
can infer from an explanation. The system of Millson and Stra3er (2019) has
the virtue of specifying side conditions for sorting candidate explanations in
order to arrive at the best (if any).

4 The explanatory proof theory of Millson and Strafler

In this part of the essay I present a streamlined version of part 4 of (Millson &
StraBBer, 2019), though I have translated their sequent notation into a logistic
natural deduction notation of the sort Francez uses. Millson and Stra3er are
interested in non-monotonic or defeasible explanations, and they begin with
the idea of a defeasible inference, displayed as follows.

T A

There are two key technical devices in play here. First, inferences are
evaluated relative to both an antecedent I" whose content is explanatory and a
background X of sentences against which an explanation is assessed but which
are not playing a role in the explanation. This allows them to distinguish
background information, which may not be relevant to an explanation, from
that which is doing the explanatory work (consider inferring ‘the match is
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lit” from ‘the match is struck’ in situations where ‘today is Tuesday’ is part
of the background but is not relevant to the inference). Second, a defeater
set O keeps track of whether an inference is defeated. ® is a set of sets of
sentences, and the inference

YleA

is defeated anytime X U I" logically derives all of the members of any element
of ®.

Material axioms are given with antecedents and succedents as finite
sets of literals and literals, respectively. Millson and Stral3er integrate these
material axioms with rules for the classical logical operators, and an inference
Y |T :@ A is logical, and hence indefeasible, just in case ® is empty (see
Millson & Strafler, 2019, Lemma 4.4). And because any antecedent I" with
logically complex sentences will, against a given background X, derive a
set of literals, the material consequences of I" U X can be identified with
the material consequences of that set. Some of these defeasible inferences
will be explanations, and Millson and Straf3er specify a method for sorting
explanations so as to find the best. On this basis they give an introduction rule
for inferring to a best explanation, and thereafter derive an elimination rule.
I will sometimes refer to the antecedent of an explanation as the explanans
and to the succedent as the explanandum.

Millson and StraBer take the notion of sturdiness as the key desideratum
for a theory of best explanation. Roughly, an explanation is sturdy when its
explanans would remain a good explanation for the explandum even if all
of its competitor explanatia were false—understood as adding the negations
of the sentences occurring in those competing explanatia to the background
against which the explanation is assessed. There may be no such explanation
(no inference from an explanans remains good upon supposition of the falsity
of its alternatives). There may also be ties (multiple explanations remain
undefeated when all of the competing explanatia are false). We use & s 1 4) to
denote the set of explanations that compete with I for best explaining A at X
(see Definition 9 for the explicit definition of =y 1 4)). I will generally speak
of a single best explanation in what follows, but it is important to remember
that ties are possible. As we will see, sturdiness amounts to something like
an introduction rule for best explanations.

Unfortunately, the use of Zx 1 4) as a means of testing for sturdiness
admits a class of counterexamples (see Part 5 for discussion). To avoid this
problem I will eventually revise their account of sturdiness, but I begin by
laying out that account.
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4.1 Inferring to a best explanation

Our task is to determine whether an explanation is the best by determining
whether it is sturdy. Where X |I":@ A is the explanation in question, consider
the class of potential competitor explanations for A at ¥. This is the set of
candidate best explanations for A at X, denoted Sy 4y and referred to as an
Antecedent Set (cf. Millson & Strafler, 2019, Definition 4.8).

Definition 4 (Antecedent Set, Sy 4)) Forany @ CXL,0,A C 7, let
S(s.4) =def {X such that & C X C Lit and £|X :@ua A is provable }.

Notice that the inclusion of A in the defeater set ensures that we consider only
material inferences. To have an example to refer to throughout the discussion,
suppose that we are looking for the best explanation for the existence of
Socrates (A) at some context (X). The antecedent set S<Z7 A) will include as
possible explanations, we may suppose, that his parents met, that they fell in
love, that they were married, that a particular zygote (understood de re) was
formed, etc. Depending on what information is contained in the background
Y, any one of these might be explanatory, though clearly some are better than
others.

We arrive at competitor sets in two steps, first by using a principle to
restrict Sy 4) to those that are the simplest, and then by using two principles
to compare this restricted class of competitor explanations to I'. Both steps
are preserved in the revised notion of sturdiness introduced below, but the
two principles employed at the second step are put to slightly different uses.

At the first step we invoke a principle that rules out those explanations
that are more committive than necessary. We do this by removing any sets
from S5 4y that are supersets of other sets in Sz 4). The resulting set is

denoted S%Z e More generally (cf. Millson & StraBer, 2019, Definition 4.9;
and recall that X and Y range over finite subsets of the literals of .¥):

Definition 5 (Literal-Set Minimisation, S*)  For any S C 2(Lit), let
S* =4er S\{X such that Y € S and Y C X}.

Continuing with our example of Socrates, suppose that Sy 4y includes both
{a particular zygote was formed} and {a particular zygote was formed,
{Socrates} exists}. In this case S%Z’ 4
on the principle that if it was explanatory at this background then additional
information is otiose.

> will include only the former explanans,

170



PTS and Atomic Sentences

If the first step involves sorting good from bad explanations within Sy 4
according to a principle of simplicity, and arriving at the literal-set minimisa-

tion S%& A)

I" with the elements of S
explanans.

The first principle Millson and Straler enforce at the second step is
another principle of simplicity. Intuitively, if an explanation X for A implies
something Y that itself explains A, but which does not in turn imply X, then Y
is the simpler explanation and so is preferable to X. And so just as literal set-
minimalization removed supersets of other sets in Sy 4y in order to compare
only the simplest explanations with I', we want to ensure that any explanation
X in S%Z A) that 1s simpler than I" will undercut I" as an explanans by defeating
the inference from I" to A. This defeat is ensured by the fact that, when we

add the negations of every sentence in X to X, the resulting context-cum-
explanans is incoherent. But if an explanation in S& A) 1s more complicated
than I', we want to be sure not to add its negations to the background when
testing I so as not to defeat the inference from I" by default.

For instance, where I is {a particular zygote was formed, Heraclitus

as a result, the second step invokes two principles for comparing

%2 4y S0 as to arrive at the right class of competing

exists} and S%Z A) includes {a particular zygote was formed}, we want to

add the negation of ‘a particular zygote was formed’ to X and ensure that
the explanans I' is undercut. By contrast, where I is {a particular zygote

was formed} and S%Z A) includes {a particular zygote was formed, Heraclitus

exists}, we do not want to add the negations of the sentences in that latter set
to X.

To enforce this notion of comparative simplicity we first define ‘A is logi-
cally weaker than I as follows (cf. Millson & Stra8er, 2019, Definition 4.10;
as a definition for logical weakness, notice that the absence of a defeater set
indicates use of a logical consequence relation):

Definition 6 (Logically Weaker Than, I' > A) Forany ')A C .Z, let
> Aiff[T 2 \Abutnot (A: A\T)].
We then require Ey r 4) (the defeater set) to include the following:

U{X € S%ZA) such that T > X}

That is, we require that the competitor set include any explantia X that are
logically weaker than the candidate explanans I', meaning that I" logically
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derives every formula in X but not vice versa. Thus when X is a subset of
E(xr.a4)» the negations of the sentences of & 1 4) will include negations
of formulae that are logically derivable from I'. It follows that ¥ U I" is
incoherent, and so the inference to A will be defeated.

The second principle for comparing I with the minimal competitor expla-
nations in S%Z A) 1s a principle for evaluating competitor explanantia for I" that
are not logica’lly weaker than I' and so which should not straightaway defeat
the inference to A. For some explanations Y in S%Z 4 are either logically
stronger than I, in the sense that they imply every sentence in I without
the converse implication holding, or they are neither logically weaker nor
logically stronger than I'. Of these explanations Y that are not logically
weaker than I, we must ensure that when we consider whether I" remains a
good explanation on the supposition of their falsity that the explanation to
I is not undercut simply in virtue of the fact that they share some literals in
common with the set of literals implied by I'. And so we must ensure that
E(sr,4) does not contain any literals that are implied by I" and which only
occur in explanations Y that are not logically weaker than I'. We do this by
taking the union of the set of explanations Y in Xy 1 4y that are not logically

weaker than I" and removing any literals that are logically derived by I'.

!
(Z.4)

X = {a particular zygote was formed, Heraclitus exists}, and supposing
our candidate explanans is now {a particular zygote was formed, Socrates’
parents fell in love}, the fact that X is not logically weaker than I means that
we must remove the literal that X shares in common with I' (‘a particular
zygote was formed’) and add only the negation of ‘Heraclitus exists’ to
Y. before seeing whether the explanation still holds. And this is the right
result: when I consider whether I" remains a good explanation even when the
competing explanans X doesn’t hold, I consider whether the formation of the
zygote and his parents falling in love would still explain Socrates’ existence
if Heraclitus hadn’t existed, as this is the only information that is new to that
competing explanans (the inclusion of the sentence about his parents falling
in love is to ensure that X is not already excluded according to Definition 6).

Let the literal consequence-set of I, denoted Cnz;(I") be defined as
follows (cf. Millson & Straller, 2019, Definition 4.11; once again note the
restriction to the logical fragment of the consequence relation):

Returning to the example concerning Socrates, where S includes

Definition 7 (Literal Consequence-Set, Cnz;(I')) Forany I’ C &, let

Cnriy(T') =ger {! € Lit such that T": 1}
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And so we also include the following in &y 1 4):

(U{Y € S%E«‘W such that T} Y}) \Cnp;(T)

By barring from the competitor set Zy - 4) any literals that are consequences

of I" and are only had by explanations Y in sz’ ) that are not logically
weaker than I', we ensure that those competitors don’t straightaway defeat
the explanation from I" when we add the negations of every sentence in
Exra) to the background and test I for sturdiness. Taking these three
principles together we have the following general definition (cf. Millson &
Strafler, 2019, Definition 4.12; this relation is not named there):

Definition 8 (S\\ I') Forany X,Y C Lit, T C £ and S C & (Lit), let

S\ I' =g U{X €Sst I'>X}U ((U{Y €Sst T'F Y}) \Cnm(l“))

This says that we arrive at S \\ I" by taking the union of 1) every setin S
that is logically weaker than I', together with 2) the union of every set in S
that 1s not logically weaker than I', but subtracting any literal that is a logical
consequence of I'. Consider the following (from Millson & Straer, 2019,
p. 143; more examples are given there):

{=r}Ad}Ap. P\ A{p. a3 ={at U ({=p.p.r}\Cnii {p,4})) ={q,~p.r}

This yields the following definition for competitor sets (cf. Millson &
Straller, 2019, Definition 4.13):

Definition 9 (Competitor Set, iy 4)) Forany X |T":@ A, let the competitor
set of its antecedent 1" be

[x]

(LT.A) =def S%zm\\ Cnpi(I)

This says that the competitor set for I" is the set of formulae that are the result
of taking the union of the minimized sets that individually materially (de-
feasibly) explain A against the background X, and subtracting any formulae
that are literal consequences of I" and which are implied only by elements of
sz’ ) that are not logically weaker than I'.

To test whether I is the best explanation for A at X we then add the nega-
tion of all of the elements of this set (denoted ~Z 5 1 4)) to the background
and see whether the explanation still holds. If it does, one is entitled to infer
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that this is the best explanation. As noted above, this sturdiness rule amounts
to something like an introduction rule for best explanations (this rule and the
next are given at Millson & Stra8er, 2019, p. 144):

LIl:paA L, Esra)lleaA
YT g, A

STR

Here the black triangle above the defeater set signifies that I' is the best
explanation for A at X.

If Sturdiness (STR) functions as a rule for inferring o a best explanation
and is analogous to an introduction rule for best explanation, then Abduction
(ABD) functions as a rule for inferring something from a best explanation
and 1s analogous to an elimination rule for best explanation:

YIT,A:% B YT :¢pB

ABD
Z, Y/ |F, I’ ‘0.¥,B A

S A problem with Millson and StraBler’s account, and a
proposed solution

Only some best explanations are captured by Millson and Stra3er’s test for
competitors, however. For anytime there are multiple minimal competitors
that contain sentences that cannot all be false together, it will happen that
the addition of the negations of the sentences in the competitor set to the
background will lead to a contradiction. But from a contradiction anything
follows, and this means that in such a case all of the members of some
element of the defeater set will be derivable, thus defeating the inference.
This can happen even when the competitor explanations are much poorer
than the one they are competing against.

This can be seen with an example. Suppose we are evaluating the fol-
lowing explanations for the existence of Socrates: 1) a particular zygote was
formed; 2) Socrates’ parents fell in love and Heraclitus exists; 3) Socrates’
parents fell in love and Heraclitus does not exist. It is clear that the first is
the best explanation of this trio. But where
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s = Socrates exists. z = a particular zygote was formed

h = Heraclitus exists. f = Socrates’ parents fell in love
and using the familiar notation we have:

I'={z} Y=y

Si.g = b UL Y {f, —h})

B = (Slg W Cna(D)) = (21U ({2 £, b~ ) = (£ b —h)

And now when we add the negations of the elements of Zx iy (that is, f, h
and —h) to X we have an incoherent set. As a result, the explanation from z
to s is defeated.

The problem lies in the way the competitor set &y 1 4 18 calculated.

Millson and StraBBer combine the elements of all of the sets in S%Z A)

one set (subtracting the literal consequences from those sets that are not
logically weaker than I') and then test I" against the negations of all of these
sentences. Instead, we should test whether an explanation remains good on
the supposition of the falsity of each of its competitors separately.> We do
this as follows (with the superscripted R denoting that we have a revised
notion of a competitor set).

into

Definition 10 (Revised Competitor Set, E’& r A>) For any |1 :g A, let the
revised competitor set of its antecedent I" be
X e S%E,A) andl" > X, or
R _ :
(X TA) —def X such that either 010 is some Y € S%Z ) such that

' #Yand X =Y\Cnpi(I')

[x]

Whereas Z 5 - 4 1s a set of sentences, Efz rA) is a set of sets of sentences.
This preserves the two-step procedure for arriving at the competitors against
which an explanation is to be tested, but the two principles appealed to at

the second step are now employed separately, on the elements of S& 4y 10
define the revised competitor set. Where El& ra) = Xi,...,X,, and where —X;

3 A more complicated weighting could be given as well, of course; these are early days for
proof-theoretic investigation into the conditions for inferring to and from best explanations.
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denotes the negation of every sentence in X, we have the following revised
notion of sturdiness (RSTR):

Z|FZ@7AA Z,—|X1|FI@7AA Z,—|Xn|FI@7AA
TIT:B,A

RSTR

This definition delivers the right result with our example above, and using
this basis for inferring fo a best explanation, the rule for abduction does not
need adjustment. I thus propose the following:

Definition 11 (Introduction and Elimination Rules for Atomic Sentences)

- The introduction rules for an atom p are the applications of RSTR
where p is the succedent in the conclusion of the application of the rule.

- The elimination rules for an atom p are the applications of ABD where
p is in the succedent of the major premise of the application of the rule.

According to Definition 3 in Section 2.3, this determines the set of canonical
derivations for the atoms of .Z, which thereby determines their semantic
values according to Definition 2 in Section 2.2.

6 Summary

Proof-theoretic semantics offers a formally precise and philosophically il-
luminating investigation into areas of linguistic meaning and rule-governed
rationality that have been dominated by model-theoretic semantics and rep-
resentational notions of cognition over the last century. By establishing a
beachhead into these areas on the basis of a semantics for atomic sentences
that employs a framework for reasoning to and from best explanations, the
possibility of productive proof-theoretic interventions into some of these
debates is rendered more likely.
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