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1 I N T R O D U C T I O N  

Notions involving change often have a dual character, an interplay between process 
and product.  While travelling from one place to another, one can either focus on 
the process of 'being on the road' or on the result of this process, 'being somewhere 
else'. Intellectual activities also have this dual na ture  ,scientific discovery denotes  
a process of reaching for new insights but also the resulting insights, judgement 
denotes both the process of reaching a rational decision and the decision that 
resul ts  fi'Oln t h a t  t)rocess, computation involves a t)rocess of stepwise changes, an(I 
the  outcome of such a process,  and  so on. 

The  logical stu(ly of the  in terp lay  be tween  process  and  t)ro(luct is called d y n a m i c  
h)gic. This  t)ai)er gives an overview of variolls sys tems  ()t" ( lynamic logic, wi th  
i lh ls t ra t ions  (h'awn fi'()m val'iOllS al)t)licat,ion ar( 'as" t ) r ( )g ra l l ln l i l lg ,  ( ' ,onmnmi('ativc 
a(:tion an(1 int(wa(:tion, (:ognitiv(~ t)roc(~ssing, nat ln 'a l  langl lage lm(lerstan(l ing.  It is 
aline(1 at  r(~scarch('rs wh() have an in teres t  in the formal  analysis  of coInt) l l ta t ional  
an(1 (:ommlmi(:ativ(, I)ro('('ss(:s. A ln()rc cxt(m(h~(l t(~xt,l)()()k intr()(lll('ti()n t ( ) ( lynamic  
l()gi(: t ha t  is ('xI)li(:itly g('al'c(l t()(:()rot)liter s(:i(m(:('~ is l,h(~ inf()I'ma(,iv(, [Harcl et al., 
2()0()]. An (,arlicr ov(,rvi(,w is [Har(:l, 1984]. Ct'. a l s , ) [win  B(,~ll~(',n, 1.()9(i] tbr m, 
illtr()(llw.tioIl t h a t  f()(:lls(,s ()n (:()gnitive at)i)li(:ati()ns. 

D y n a m i c  logic can 1)(, vi(,w('(l as (lealing wi th  tim h)gi(: ()f a('ti()n an(l th(, reslflt 
ot" act ion,  an(1 it, can 1)c lls(;(l t() ln()(M various kin(Is ot' a(:ti()ns an(1 t twir results .  A 
I'ollgh (:lassiti(:ati(m migtlt  l)e t,h(~ t'()llowing. F i rs t  of all t,h('r(~ arc comp'u, tation.s, i.e. 
ac t ions  t)erform(~(l on (:omt)lll,clS. Examt)h~s are (:omI)lH, illg tim t'a(:t()rial fimcti()n, 
(:omt)llting s(tllar(~ roots,  et(:. Slmh a(:tions tyt)ically involve (:hanging tim n m m o r y  
st, at,(~ ()t" a machin(~. An()th(,r l,yl)(' ()t' ac t ion  is t h a t  of comm'u',.icali't~e action.s, sll(:h 
as r(~a(ling an Engl ish  scnt,(m(:(, an(I tq)(lating olm's s t a te  ()t" kn()wl('(lg(~ a(:c()r(lingly, 
(qigaging in a (:()l~v(,rsati()~. s('~(ling an email  wit l~ c(:'s, t,(qlil~g ()~e's ln~sl)an(l a 
s(,(:ret. Th(:s(~ act ions  t,yt)i(:ally (:hailg(' th(' ('ognit,iv(~ st, at('s ()t t.h(' ag(mt, s inv()lvc(1. 
An(1 then  there  ar(! action.s in the world, such as t)uil(ling ('h(u'(:h('s, (lest, roying 
1)ri(lges, spilling milk. S~u:h a(:ti(ms chang(,, the  stat(~ of th(; worhl. Of  (:ours('. 
th(we are conn('(:tions 1)(,tw(,en t,h(~s(, (:at(;g()ri(~s an(1 act ions  ()t" a mixe(l nat,~n(~: a 
(:()mm~mi(:ativ(~ a(:tion will ~s~mlly involve s()m( ~ (:()mt)~tation inv()lving m(~m()ry, 
an(1 the  ~gt,(;ral~(:(; of an imI)crativ(', is a ('(mmnmi('ativ('~ ac t ion  t ha t  a ims at, an  
act ion in th(' worl(1. 
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For a researcher who is interested in the formal analysis of actions of various 
kinds dynamic logic can be viewed as a tool box: it provides concepts and methods  
for description of actions and means to characterise the propert ies of the resulting 
systems. Using these tools the researcher can then develop specialised, tailored 
systems for dealing with specific kinds of actions: logics of computat ion,  logics 
of communication,  logics of action. Inasmuch as they are geared toward specific 
applications such systems may differ quite widely, but  in many cases their core can 
nevertheless be characterised formally in a uniform way: many of these logics can 
be related to some variety of modal  logic, taken in a suitably broad sense, viz., as 
the logic of 'labelled transit ion systems'  

A labelled transi t ion system (or LTS, or mult i -modal  Kripke model) over sig- 
nature  (P, A}, with P a set of propositions and A a set of actions, is a triple 
(S, V, R} where S is a set of states, V �9 S ~ 7)(P) is a valuation function, and 

R - {--%c_ S x S [ a E A} is a set of labelled transitions, i.e. binary relations on S, 
one for each label a. Let us i l lustrate the idea of an LTS by a few simple examples. 

If one interprets the labelled transit ions as the changes in the memory  state of 
a computer,  LTSs model computat ions,  for example the simple assignment :r " -  y" 

x 3 

y 2 

z 4 

x : = y  ._ix 2 
y 2 

z 4 

The comman~l to I)llt, the wdlu'~ of register :~/ in register :,: n m k e s  tile contents 
of registers : r aml  9 eqlml. Pioneer papers in the logic of comtmtat ion  are [Floy(l, 
1967; Hoare, 1969]. 

If one interprets the labelle(l transit ions as accessitfility relations on the cognitiw'~ 
s tate  space of a group of agents, LTSs can be used to mo(M the information that  
such agents have al)out t, he worhl, about  each other 's  information about  the world, 
each other 's  information about  each other 's  information about  the world, aml so 
on. And it, can 1)e llser to r changes in such information states: 

~ b  A L 

M a p ~  

- b a,b 

 LLY 
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On the left is an epistemic si tuation where p is in fact the case (indicated by 
a double circle), but  a and b cannot distinguish between p and ~p. If in such 
a situation a receives the message tha t  p is the case, while b is not informed of 
this, the epistemic si tuation changes to what  is pictured on the right. In the new 
situation, a knows that  p, and a also is aware of the fact tha t  b does not know, 
while b still does not not know, and b still assumes tha t  a does not know. See 
[Hintikka, 1962] for one of the earliest t rea tments  of epistemic logic along these 
lines. An overview of the development of epistemic logic is given in [Gochet and 
Gribomont,  2005]. Cf., also [van Benthem, 1996]. 

Communicative actions may provide more detailed information about  the world 
than the information that  a certain state of affairs is realised. In a discourse (text, 
conversation), information is (often) conveyed piecemeal, and languages contains 
various means for keeping track of what  has been said about  what.  Anaphoric 
pronouns are a case in point. Their role can be modelled by interpreting states 
as consisting of discourse items to which information is added in an incremental 
fashion. The following illustrates the action on such a state tha t  is triggered by 
the use of an anaphoric pronoun: 

0 i man (0) 
t i woman (t) 

man (0) "he is angry" 0 
angry (0) 

1 ! woman (1) 

In a discourse where a man and a woman have been mentioned recently, an 
ut terance of 'He is angry' receives a natural  interpretat ion by linking tile pro- 
noun to the most salient appropriate  discourse item, viz., the man that  was 
just  mentioned. Early work in this area is in [Karttunen, 1976; Heim, 1982; 
Kamp,  1981]. See [Gochet, 2002] for an overview. 

Yet another illustration of how LTSs can be used to model action is when one 
interprets labelled transitions as actions on tile state of the world. In that  case 
LTSs model changes in the world itself: 

open  w i n d o w  .._[ 
-I 

The action of window-opening changes a state in which the window is closed 
into one in which it is open. More complex actions call for more complex models, 
of course, in particular when we are interested in a more fine grained analysis of 
the causality involved in bringing about  changes. An early overview of the logic 
of action is in [Wright, 1983]. For a more recent survey, cf., [Segerberg, 1992]. A 
different approach is tile stit-logic of Belnap, cf. [Belnap et al., 2001]. 
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These examples illustrate that it is possible to approach a wide variety of kinds 
of actions from a unified perspective. What  follows is intended to show that this 
is not only possible, but also fruitful. Note that the diversity of applications of 
dynamic logic also indicates that it is difficult to trace the various systems and 
application to a single historic root. In fact, some of what appears uniform now, 
as a matter of historical fact had quite diverse origins. For this reason we have 
opted for a mainly systematic treatment, with occasional historical side remarks 
where relevant. 

The larger part of the survey of dynamic logic that follows is devoted to an ex- 
position of two core systems of dynamic logic, viz., propositional dynamic logic 
and quantificational dynamic logic, and three illustrative areas of application, viz., 
programming, communicative action and dynamic semantics of natural language. 

One of the seminal papers in computer science is Hoare's [Hoare, 1969]. where 
the following notation is introduced for specifying what an imI)erative program 
(loes: 

{P} c {O}. 

Here C is a t)rogram fl'om a fornmlly defined progrmnming langlmge fl)r imt)erativc 
t)rogrannning, an(l P an(l (~ are coIl(litions oi1 the programming vltriaMes use(l in 
C. Statement  {P} C {Q} is tr~u; if whenever C is exec~m:(l in a state satisS"ing 
P an(1 if the exe(:lltion of C terminates,  then the state in which execlltion ot" C 
terminates satisfies O. The 'HoaI'e-trit,le' { P} (7 { (~ } is (:alle(1 a partial correctness 
specification; P is calle(l its t)re(:on(lition an(1 Q its 1)ost(:on(lition. Floy(1-Hoare 
logic, as the logi(: of reas~ming with such correctness st)ecifications is calle(1, is the 
I)recllrsor of all the (lylmmic logics known to(lay. We will (lemonstrate Floy(l-Hoare 
h)gic in Section 2.4, for the toy language st)ecifie(l in Section 2.1. The st)ecification 
of a toy programming lang~mge has the a(l(litional t)enefit that  it will allow lls to 
(lemonstrate vltrious at)I)roaches to the semantics of t)rogramming. We will present 
example programs, formldate questions about  their t)ehaviollr, an(1 show how some 
of these qlmstions are answere(1 with Floy(l-Hoare logic. After that ,  we turn t,~) 
(lynaInic h)gic t)rot)er as a more general means of tackling such (llmstiollS. 

In section 3 we i)resent what is t)erhaps the most basic system of (lynami(: logic, 
propositional dynamic logic (PDL), a logic in which basic actions are primitives. 
This R;ature makes PDL at)t)lic, able in a wide variety of cases. For example, if one 
interprets the basic actions its commlmicative actions thai, aft'et:t (:()gnitiw', states of 
sets of interactillg agents, then (lynaInic logic takes the shape of (lylmmic et)istelnic 
logic. This impor tant  a r e a  o f  at)t)lication is treate(1 in (letail in section 4. 

When one takes memory change its the basic action, one gets quantified dynamic 
logic (QDL), the system that  is intro(luced and (liscusse(1 in section 5. QDL has 
its origin in correctness reasoning based on annota t ing t)rograms with pre- and 
postconditions. These historical connections are briefly trace(1. It is possible to 
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interpret QDL programs also in a different way, viz., as changing the cognitive 
state of a language user. This potential relevance of QDL for an understanding 
of natural language was actualised in what has been called the 'dynamic turn '  
in natural language semantics. In section 6 we focus on dynamic predicate logic 
(DPL) as a subsystem of QDL. A more detailed treatment of the application of 
dynamic concepts in natural language semantics is given in section 7. 

2 DESCRIBING CHANGE AND REASONING ABOUT CHANGE 

Consider the following problem concerning the outcome of a pebble drawing action. 

A vase contains 35 white pebbles and 35 black pebbles. Proceed as 
follows to draw pebbles from the vase, as long as this is possible. Ev- 
ery round, draw two pebbles from the vase. If they have the same 
colour, then put a black pebble back into the vase, if they have dif- 
ferent colours, then put the white pebble back. You may assume that  
there are enough additional black pebbles. In every round one pebble 
is removed from the vase, so after 69 rounds there is a single pebble 
left. What  is tile colour of this pebble'? 

Here is an imi)h;mentation of this procedure, where tile vase is represente(1 as a 
list of integers, the white pebbles are the occurrences of 0, and the black pebbles 
the occurrences of 1. TILe draw flmction is coded in the progranmLing language 
Haskell [Jones, 2003]: 

draw :: [Integer] -> [Integer] 

draw [x] = [x] 

draw (O:O:xs) = draw (l:xs) 

draw (l:l:xs) = draw (l:xs) 

draw (O:l:xs) = draw (O:xs) 

draw (l:O:xs) = draw (O:xs) 

The question: if this flmction is called with a list of thirty-five 0's and thirty-five 
l's, in unknown order, will the outcome of the function be [0] or [1]'? 

The key to the solution is finding an invar iant  of the procedure, i.e. finding 
a condition that  does not change when a single pebble is removed from the vase. 
It is not hard to see that when a pebble is drawn, the number of white pebbles 
always remains odd. It follows that  the last pebble is white. So tile draw flmction 
will return [0] on any pernmtatioIl of the list of thirty-five 0's and thirty-five l's. 

With this piece of reasoning we are in the realm of dynamic logic. Rather 
than encode exanLples in an existing programnfing language like Haskcll  or Java, 

it will turn out to be useflll to introduce our own toy language for illustrations. 
As dynamic logic describes the interplay between actions and resulting states, the 
action description language is part and parcel of the dynamic logic language. 
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2.1 The WHILE Language 

In what  follows we define a simple p rogramming  language for p rog ramming  over 
the da ta  type of the na tura l  numbers,  i.e. the set N = {0, 1, 2, 3 , . . . } ,  wi th  func- 
tions + for addition, �9 for product ,  and - for cut-off subtract ion.  

First,  we dist inguish between numbers  and their  names. Numbers  are objects  
in the mathemat ica l  realm, names are syntact ic  objects.  A numeral  is a name 
for a na tura l  number.  E.g., '5' is a name for the na tura l  number  5. Assume N 
is a set of numerals.  Assume V is a set of variables. The  sets N and V may 
have fur ther  internal s tructure,  but  we will not bo ther  to spell this out. Given 
sets N, V, ar i thmet ic  expressions can be defined by means of +,  , , - ,  as follows 
(assume n ranges over the numerals  and v over the variables)" 

This says tha t  345 �9 (67 + 8) and (345 �9 67) + 8 are ar i thmet ic  expressions. (The 
brackets indicate the manner  of construct ion) .  

In terms of these ar i thmet ic  expressions we will now fix a small p rog ramming  
language for p rogramming  with the na tura l  numbers.  We assume two fur ther  
primitive relation symbols ' - '  for 'equal ' ,  and '_<' for 'less than or equal ' .  This 
allows us to define Boolean expressions (named after [Boole, 1854]), a~s follows" 

B " ' -  T [ a l  - a2 l a, _< a2 ] ~ B I B 1  VB2 

Note tha t  instead of listing equalities a l - a2 explicitly, we might  have in t roduced 
theIn by way of abbreviat ion,  as shor thand  for a l _< a2 A a2 < a l. Ari thinet ic  
expressions and Boolean expressions figure in p rogramming  commands,  as follows" 

C - =  SKIP I v " -  a lC1 ; C 2 I l F  B T H E N  C~ ELSE C2 I W H I L E  B DO C. 

The basic p rogramming  constructs  of the W H I L E  language are SKIP for the pro- 
gram tha t  does nothing,  and v " -  a for the program tha t  assigns the value of a 
to the variable v. Programs  or commands  can be composed by means of sequenc- 
ing, by means of conditionalisation, and by means of guarded repeti t ion.  Fur ther  
p rogramming  constructs  can now be defined, e.g., REPEAT: 

R.EPEAT C UNTIL B ' -  C ; W H I L E  -~B DO C. 

The  W H I L E  language looks deceptively simple, but  it is extremely expressive. In 
fact, this little language is Turing complete,  i.e. one can specify the behaviour  of 
any Turing machine in it ([Turing, 1936]). This means tha t  anything tha t  can be 
computed  on the na tura l  numbers  can (in principle) be computed  by means of a 
W H I L E  program. 

2.2 Semantics 

To specify the semantics,  we take the na tura l  numbers  N with the operat ions  
+,  . , -  and the relation _< as given. We also assume tha t  every numeral  n in N 



The  G a m u t  of Dynamic  Logics 505 

has an interpretat ion I ( n )  E N. Let g be a mapping from V to N (an assignment 
of natural  numbers to the variables). The ari thmetic expressions of the language 
are now interpreted relative to assignment g, as follows" 

[ 19 := 
:= g(v)  

~al -Jr-a2]g :=- ~al~g n t- ~a2]g 

Ial * a2~g : =  ~allo * ~a21g 

lal-a2~g := ~al~o-la2]g 

The semantics of the Boolean expressions (or 'Booleans') of the language is 
defined as follows: 

~T]]g 

Ial .Q a21g 

[IB~ v B21. 

�9 - T 

._  j" T if ~al~g -- ~a21g 
F otherwise 

._ f T if [[a~]~q _< ~a2]]~j 
F otherwise 

._ f T if ~B]]~j - F 
F otherwise 

._ f Z if ~ S l ~  I - -  T or  ~1~211,~1 
F otherwise 

- T  

Natur'al S e m a n t i c s  f o r  C o m m a n d s  

The semantics of tile commands  can be given in various styles. First  we give tile 
so-called na tura l  semantics,  in the form of a specification of a t ransi t ion system. 

For any valuat ion g, any variable v and any natura l  number  d, let g[v ~-~ d] 
be the valuat ion 9' tha t  differs from g at most  in the fact tha t  f ( v )  = d. This 
notion is familiar from the semantics of first order logic. Then  the t ransi t ion for 
assignment commands  is given by: 

.q ~':=~ , g [ v ~  H .q ]  

Tile SKIP command does nothing" 

SKIP 
9 ~g 

Sequential composition combines two transi t ion arrows: 

g C1 ~ gl g/ C2 ~ gn 

g CJ~ �9 C2 ~ gl l  
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Condi t iona l  act ion makes  a choice from two trans i t ion  relations,  d e p e n d i n g  on the  
eva luat ion  of the condit ion .  

g C, ~ g, 
g IF B T H E N  C,  E L S E  C2 , g '  ~B~g -- T 

g C2 > g, 

g IF B T H E N  Cl  E L S E  C2 > g t  ~ B ] g  - -  F 

G u a r d e d  i t e r a t i o n  does  n o t h i n g  if t h e  g u a r d  fails to  ho ld  �9 

F W H I L E  B DO C u~-'l19 g ~ g  

O t h e r w i s e  the  g u a r d e d  ac t ion  is p e r f o r m e d  a n d  t he  W H I L E  c o m m a n d  is e x e c u t e d  

aga in  in t h e  r e su l t  s t a t e .  

g C > g t  g t  W H I L E  B DO C > g t t  

.q W H I L E  B DO C ~ g t t  - T 

(7 
T h e s e  rules  define a t r a n s i t i o n  r e l a t i o n  ~ on t h e  set  of all v a l u a t i o n s ,  for every  

c o n m m m l  C.  In o rde r  to  der ive  a t r a n s i t i o n  g c: , 9' c o n s t r u c t  a f inite d e r i v a t i o n  

t ree  wi th  (.t (: g,  , .  a t  the  root ,  w i th  ax ionis  a t  t he  leaves an(1 each  i n t e r n a l  nodes  

licensec1 by a t r a n s i t i o n  rule.  Here  is an  exanq) le ,  for t he  c o m m a m l  z " -  x ; x " -  

y ; y " -  z, e x e c u t e d  in t i le s t a t e  g - {x ~-+ 3, y ~-+ 2, z ~-+ 5}. We  use 91 as 

shor than(1  for {:r H 3, y H 2, z ~-~ 3}, .(t2 as s h o r t h a n d  for {x H 2, y H 2, z ~-~ 3}, 

g3 as s t lo l ' t hand  fbr {x ~ 2, y ~-+ 3, z H 3}. 

.(]1 x : = y  y ' = z  g2 g2 ~ g 3  
Z ' - = X  : i : : - - ' 1 ]  " y : : z  

g >gl  91 , 93 
.q z:=:c �9 : r :=g  �9 y : = z  ) (.]3 

Thi s  conmlan ( l  c o m p u t e s  t i le r e m a i n d e r  u p o n  (t ivision of x by y in :r" 

W H I L E  y < :r D O  .r " - : r - y .  

Ti le  fol lowing v a r i a n t  c o m p u t e s  t tw re su l t  of t i le d iv is ion  of x by y in z, and  the  

r e m a i n d e r  in .T- 

z ' - 0  ; W H I L E y < : r D O  ( x  " -  x - y  ; z " -  z + l ) .  

A b b r e v i a t e  -~al = a 2  as a l  :/: a2, -~al <_ a 2  as a l  > a2 a n d  -~al ~ a 2  as a l  < a 2 .  

Euc l id ' s  well k n o w n  G r e a t e s t  C o m m o n  Div isor  a lgo , �9  is now r ead i ly  exp re s sed  

as a W H I L E  c o m m a n d .  T h e  fol lowing p r o g r a m  c o m p u t e s  t h e  G C D  of x a n d  y in 

x (and  in y). 

(1) W H I L E  x # y D O  IF  x > y T H E N  x " -  x - y  E L S E  y . -  y - x .  
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For s ta te  g = { x  ~-+ 24, y ~-+ 9} ,  p r o g r a m  (1) leads  to  the  fo l lowing  execut ion:  

{ x  ~ 24, y ~ 9}  x : = x - y  { x ~ 1 5 ,  y~-~9} 

x : = x - y  {x ~ 6, y ~ 9} 

y : = y - x  { x ~  6, y ~  3} 

x : = x - y  {x  ~ 3, y ~ 3}.  

Cons ider  the  fo l lowing  c o m m a n d :  

(2) y : =  1 ; W H I L E x r  1 DO ( y : = y , x  ; x : = x - 1 ) .  

Let g be a vahmt ion  wi th  g(x) = 3. T h e n  one can use the  t r ans i t ion  rules to show: 

.(.1 y : = l  �9 W I I I L E  x # l  DO ( y : = y . x  �9 x : = x  1) [2: ~-+ , g 1, y ~-+ 6]. 

W h e n  execute(1 in a s ta te  9, conmmn(l  (2) (:onq)utes the. factorial  of" .q(x) in y. 

We say tha t  a comman(1 C te'rmi'natr.s in s ta te  9 if there  is a stat(; g' wi th  
C 

.q , g', an(1 tha t  C loops in s ta te  9 i t ' C  (loes not  t e r m i n a t e  in s ta te  g. It can 
(: ( '> .qll be shown t)y inr t ha t  it, hol(ls fin" all C tha t  if 9 ' g' an(l g t, hell 

9' = g" ( W H I L E  t)rogrmns are, dete'rmi'ni.stic). 

In simple cases it is easy to s~w whe the r  a conmmn(1 tcrIninates  in a given s tate .  
For exanlt)h'., the  factorial  c o m m a m l  te r in ina tes  for all s ta tes  9, an(l the  coinman(l  

W H I L E  a: > 0 D ( )  x :=  :r + 1 

loops for all s ta tes  g wi th  g(x) r 0. In general ,  howevci', t e rmina t i (m of' W H I L E  
t)rograms for infinite s ta te  sets is un(leci(lal)le. As an examI)h', of a (litficlflt (lc(',i- 
sion t)roblenl abou t  p r o g r a m  te rmina t ion ,  take the  ques t ion  whe the r  the following 
p r og ram t e rmina te s  for all s ta tes  wi th  posit ive x: 

W H I L E  :r =/= 1 DO IF even (x) T H E N  .r := :,'/2 E L S E  :r := ( 3 ,  :r) + 1 

Not(; tha t  this exanq)le uses an ope ra to r  / fin" integer  (livision an(l a pre(l icate for 
evenness,  bu t  this is not  crucial, for tiles(; extens ions  are definable in tile W H I L E  
language.  Here is an example  run of the  program:  
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x 0 = 7  

x : = ( 3 , x ) + l  --~ xl = 2 2  

x : = x / / 2  ~ x 2 = l l  

x : - ( 3 , x ) + l  --~ x 3 = 3 4  

x : - x / 2  --~ x a = 1 7  

x : = ( 3 , x ) + l  --~ x 5 = 5 2  

x : = x / 2  ~ x 6 = 2 6  

x : = x / 2  ~ x 7 = 1 3  

x : = ( 3 * x ) + l  --* x s = 4 0  

x : = x / 2  ~ z ~ = 2 0  

x : = x / 2  ~ X l o = l O  

x : = x / 2  -~ x 1 1 =  5 

x : = ( 3 , x ) + l  ~ x l 2 =  16 

.T, :--= .T,/2 ~ X13 = 8 

: r : = x / 2  ~ x 1 4 = 4  

x : = x / 2  ~ : r 1 5 = 2  

x : = x / 2  ---* xl~s = 1 

Counterexamt)les against  te rminat ion  have never bccn folm(1, t)ut a proof of termi- 
nat ion has not been foun(l either. This te rminat ion  problem was posed by Lothar  
Collatz in 1937, an(1 it is still open [Guy, 1981, Problem E 16]. 

S t r u c t u r a l  Opera t iona l  S e m a n t i c s  f o r  C o m m a n d s  

An al ternat ive fashion of specifying tile semantics of an imperat ive p rogramming  
language, due to Plotkin [Plotkin, 1981], specifies the t ransi t ion system for a pro- 
gram in a slightly different way, focusing on the smallest steps tha t  a computa t ion  
can take. Here are the rules of what  is called ' s t ructura l  operat ional  semantics ' ,  
or 'small step semantics ' .  Tile t ransi t ions are now from pairs of a s ta te  and a 
command  to a s tatc  (such a t ransi t ion expresses tha t  the command  finishes in a 
single step), and from pairs of a s ta te  and a command  to a new sta te  and a new 
command  (such a t ransi t ion expresses tha t  the first s tep of the command  causes a 
shift to the new state,  where the remainder  of the command  is left, to bc executed).  

Assignment  commands  finish in one step: 

(g,v := a) --->. g[v ~ ~a~g]. 

The SKIP command  also finishes in a single step, and it does not change the state.  

(g, SKIP) --->. g. 
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If the first command of a command sequence finishes in a single step, then the 
second command of the sequence is all t ha t  is left" 

(g, C1) ~ g' 

(g, Cl ; C 2 ) ~  (gt, C2) 

If the first c o m m a n d  of a command sequence does not finish in a single step,  we 
get '  

(g, C1) ~ (g ' ,C l ' )  
(g, C1 ; C2) -----5, (gt, Clt ; C2) 

Rules for condi t ional  action: the  act ion depends on the ou tcome  of the test .  

(g, I F B T H E N C 1  ELSEC2)  ~ (g, C1) [B]]g = T 

(g, IF B THEN Ca ELSE C2) ---> (g, C2) IB]]q - F 

Finally, the  guarded  i te ra t ion  command .  If the  guard  is not  satisfied, the c o m m a n d  
finishes in a single step, and it does not change the state" 

- F 
(9, WHILE B DO C) ~ .q 

Otherwise  the first steI) of the guarded  act ion is t)erfornled, and ill the result  s ta te  
tt~e rellmiIl(ler of ttw act ion plus tile con(litional itel'atioll coImnan(1 are t)ut on the 
to-(lo list: 

(:t, C) ~ (:/ ,  C ' )  
(g, WHILE B DO C) ~ ( .q ' ,C' ;WHILE B D O C )  I B I s , - 7 '  

To see how t, tlis works, consider the connlmn(1 z " -  .r ; x " -  y ; y " -  z, execute(1 
in the s ta te  9 - {:r ~-~ 3,  y H 2,  z H 5}. The  s t ruc tu ra l  opera t iona l  senmntics  
rules yiehl the following: 

({x~-~3,  y ~ 2 ,  z ~ - , 5 } , z ' - x  ; x ' - y  ; y ' - z )  

> ({x ~ 3, y ~ 2, z ~ 3},:r " - y  ; y " -  z) 

> ({:,, 2,:; 2,:  3 } , : , j -  

{ z ~  2 , . q ~  3, z ~  3} 

It can now be proved by induct ion tha t  these rules define the same 'extellsional '  
behaviom" as the original rules, in the sense tha t  9 c ~ g '  iff (9, C) --->* g'. 

The  diflk~rence t)etween natm'al  semant ics  (large step semantics)  and struc- 
tural  ot)erat ional  semant ics  (small s tep semant ics)  shows up as soon as we add 
a cons t ruc t  for error abor t ion  to the language.  Suppose A B O R T  is a p rogram 
tha t  in any s ta te  g stops execut ion wi thout  yielding a new ou tpu t  s tate .  Then  
the difference between SKIP and A B O R T  is t ha t  we have (g, SKIP)  ---> g and 
g SKIP , g, while from (g, ABORT)  there  are no ,- arrows, and there  are no 
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s ta tes  g~ with g ABORT 91. ) It tu rns  out t ha t  in na tu ra l  semant ics  there  is no 
way to dis t inguish be tween abnormal  t e rmina t ion  and looping behaviour ,  while 
in s t ruc tu ra l  opera t iona l  semant ics  there  is. In na tu ra l  semantics ,  A B O R T  and 
W H I L E  T DO SKIP are equivalent,  bu t  in s t ruc tu ra l  opera t iona l  semant ics  they  
are not,  for the first has no der ivat ion sequence at all, while the second has an 
infinite one: 

(g, WHILE T DO SKIP) 
). 

(g, WHILE T DO SKIP) 

(g, WHILE -1- DO SKIP) 

The na tu ra l  semant ics  can be made  more  expressive by adding a special  er- 
ror s ta te  �9 different from all the regular  s tates ,  and adding the t rans i t ion  rules 
g ABORT C ) �9 and �9 ) �9 for all c o m m a n d s  C. Under  this modif ica t ion 
A B O R T  and W H I L E  T DO SKIP become dis t inguishable  again in na tu ra l  se- 
mantics ,  for the first has a t rans i t ion  to �9 from anywhere,  and the second has no 
t rans i t ions  from anywhere.  

In terFreted  vcrsu,s Uni'ntc'rprcted S e m a n t i c s  

The W H I L E  language over N is an exanlt)le of an intert)retc(l language.  Wc can 
also choose to intert)ret  W H I L E  over (liffercllt ( lata s t ructures .  To see tha t  this 
nmkcs a (liflbr(m('(~, ('oilsi(lcr tim fbllowing t)rogram: 

W H I L E  .r r 0 DO :r . -  p(:r) 

If p is intert)rcted as t)rc(h~ccssor, ttlis t)I'Ogl'anl will always t(:l'nlilmte when (~xecutc(l 
on N, |)ut it will only t(;I'llliImte for s ta tes  with a Ilon-ncgative value for x when 
(~x(;cutcd on Z (the (lonmiIl of integers).  As anot tmr  (~xanq)le, let 7- be the infinite 
t)inary trec given by: 

7- . . -  ( ) ] T ( ) l T 1  

with a unary  function ]"" 7- --~ 7- (lefined by means  of 

T<) - <), T~r0 - T ~ r l  - 7 

This specifies the following infinite b inary  tree" 

() 

0 1 

O0 11 10 11 

I I I I 
. . . .  

�9 . 
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Then the following WHILE program over T 

W H I L E x r 1 6 2  () DO ( x - - T x  ; y - T y )  

will always terminate  in a state where x = () or y = (}, depending on which of 
x, y is closer to the root () in the initial state. 

WHILE programs can also be studied under the aspect of uninterpreted com- 
putat ion.  Given a first order signature a, we may be interested in equivalence of 
WHILE programs for arbi t rary a models. E.g., the commands 

IF B THEN C1 ELSE (5'2 

and 
IF ~B  THEN C2 ELSE C, 

are equivalent for any choice of B, C1, C2 and any model A//for the predicate and 
function symbols that  occur in B, C1, (72. Uninterpreted reasoning is the right 
level for comparing expressive power of programming language constructs,  for on 
the fixed domain N with zero, successor, addition and multiplication all reasonable 
programming language have the same expressive t)ower: they all comt)ute exactly 
the partial recursive flmctions. At the unintert)rcte(1 level, exten(ling the WHILE 
language with a construct fl)r non-(teternfinisti(; choice Cl OR, C2 strictly increases 
expressive power. 

2.3  N o n - d e t e r m i n i s m  

Non-(leterministic WHILE is the extension of WHILE with a construct  for choice 
C1 Oil  C2, with semantics giwm by the tbllowing transit ion rules" 

9 (/~ ) 91 
.q C 1 O R  C2 ) (]! 

g C2 ) 91 

C~ OR. C2 .qt g 

What  this says is that  a t)rogranl like x "-  x + 1 Oil, x " -  x + 2, when executed in 
a state {x H 3} will produce two o~ltput states {x H 4} and {x H 5}. 

The structural  operational semantics rules for choice are as follows: 

(.q, C, Oi l  C2) ~ (.q, C,)  

(g, C1 OR. C2) ~ (.q, C2) 

Now consider program (3). 

(3) (WHILE T DO SKIP) OR. x " - x  + 2. 
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According to the natura l  semantics, for no input state g is there an output state g' 
w i t h 9  WHILE T DO SKIP gl ) . Therefore, program (3) will only get one derivation 
tree, namely tha t  for: 

g (WHILE T DO SKIP) OR x :=x+2  ) g{X ~ X-4- 2}.  

According to the structural operational semantics, we get two derivation sequences, 
one infinite 

(g, (WHILE T DO SKIP) OR x := x + 2) 
(g, (WHILE T DO SKIP) 
(g, (WHILE T DO SKIP) 

. . . .  ~9 ,  , o . 

and the other finite 

(g, (WHILE T DO SKIP) OR, x := x + 2) 
> (g ,x  := x + 2 )  

> g { x  ~ z + 2}. 

This illustratcs that  the s t ructural  operat ional  semantics is more 'fine-graine(t' 
than tlm natural  semantics. It also shows tha t  the presence of non-(leterminism 
may Inake loot)ing behaviour more (lifficult to (lctect. 

P rogramming  language semantics in wtrious styles for WHILE an(l its ext(;nsions 
arc (lis('ussc(l in [Niclson an(1 Niclson, 1992]. Cl~Lssics on (lenotational semantics 
for t)r()grammiIlg are [Stoy, 1977] an(l [S('.hIni(lt, 1986]. 

2.~ Floyd-Hoare. Logic 

One w~w of reasoning about  WHILE (:omman(ls (or about  imt)erativ(; t)rograms 
in general) is t)y llsing first or(ler t)re(licat(', logic for making ~ssertions at)ollt com- 
man(l (;x(;(:,ltion. Floyd [Floy(1, 1967] an(1 Uoarc [Uoare, 1969] t)roI)osc(l to use 
corrcctnc.s.s .statements of the following form" 

This ext)resses that  comman(t C takes us from a t)rccon(lition ~, truc at t.h(~ state 
where the comnmnd gets executed (the input state),  to a postcon(lition 4~, true 
immediate ly  after execution of the command.  Since we are programming over the 
natural  numbers,  we interpret  the t)re- and t)ostconditions in N. This gives the 
tbllowing tbrmal interI)retation of Floyd-Hoare correctness triples: 

for a l lg ,  h,, i f N ~ . ~ j ~ a n d g  c , h, t h e n N ~ h ~ p .  

An example of a true correctness s ta tement  is tile following" 

{.T,!--Z} y ' - - i  ; W H I L E x r  ( y ' - y , : c  ; x ' - x - 1 )  { y - Z }  
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Figure 1. Floyd-Hoare Calculus for WHILE 

assignment 

skip 

seqllei~ce 

con(litional choice 

guar(le(l iW, ration 

precon(litio,l strengthening 

postcon(lition weakening 

{ ~ }  ,, := a { ~ }  

{~} SKIP {~} 

{~} G {x} 
{(/9} C1 ; (72 {X} 

{~ A -~B} G {',/, } 
{~} if B then (71 else 6'2 {g~} 

{~ A B} c {~} 
{~} whi lcB( loC {~A~B} 

{~'} c {~} 

{~} c {~;~} 
{~} c {~'} 
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In connection with Floyd-Hoare style correctness assertions, the notions of 
strongest postcondition and weakest liberal precondition arise in a natural way. 

The strongest postcondition SP(~,  C) of a predicate logical formula ~ and a 
command C is the condition that holds in a state g if there is a state h satisfying 

that has a C transition to g. Formally: 

N ~g  SP(~,  C) iff there is an h with N ~h  ~ and h c > g. 

The weakest liberal precondition W L P ( C ,  ~) of a predicate logical formula p and 
a command C has the following interpretat ion:  

N ~g W L P ( C , ~ )  iff there is an h with N ~ h  p and g c , h. 

The connection with Floyd-Hoare correctness statements is as follows" 

N ~ {~} C {SP(p ,C)} ,  

if N ~ {p} C {~/~} then N ~ SP(~,  C) ~ ~/~, 

N ~ { W L P ( C , ~ ) }  C {~}, 

if N ~ {~} C {'~/~} then N ~ ~ ~ WLP(C ,  ~h). 

This illustrates the view of WHILE programs ~s t)re(li(:at(~ transformers,  mapping 
weakest precondition I)redicates on the natura l  mmfl)ers into strongest postcon(li- 
tion t)re(licates on the nat, lind mmfl)ers. 

A Floy(1-Hoare calclfllls 
for WHILE programs is given in Figure 1. In the rifle for assignment,  ~,' (lenotes 

the result of sul)stituti()n of a for v in ~. At first sight, one might think that  the 
assigmnent axiom shouhl rm~ {p} 'u := a {p~i} iI~st.ea(1 of { ~ }  'v := a {p}. This 
wouhl be a mistake, for COllsi(lcr the example where ~ e(tlmls t, tle s ta tement  'v = 0, 
and a equals v + 1. Then the rule {~} v := a { ~ }  yiehls the incorrect s ta tement  
{v = 0} v := v + 1 {'~, + 1 = 0}, while the correct rule {~::} ~, := a {~} yiehls the 
correct s ta tement  {v + 1 = 0} v := v + 1 {v = 0}. 

Note tha t  the rules of t)recon(lition s t rengthening and postcondit ion weakening 
in N are a kind of oracle rules, tbr implications ~/J ---, .~// on the natural  numbers 

may be un(leci(lat)le. 

I l l u s t r a t i o n  To illustrate the use of the calculus, consider the factorial program 
(2) again. Here are the correctness s ta tements  that  prove the fact that  this program 
actually computes the factorial function: 

1. { x ! = Z }  y : = l  { y , x ! - Z }  

2. {y,x!=zA:,,r y := 

3. { u , x ! = z }  

4. { y , x ! = Z A x r  ; x : = x - l { y , x ! = Z }  
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5.  { y , x !  - Z }  WHILE x r 0 DO (y "= y , x  ; x " -  x - l )  { y , x !  - Z A x  - -  0}. 

6. { x ! -  Z} 
y ' - I  ; WHILE x -C 0 DO ( y ' - y , x  ; x ' - x - 1 )  
{ y  �9 x !  - Z / x  x - 0 } .  

7. {x!-  z}  
y ' - i  ; W H I L E x r  ( y ' - y , x  ; x ' - x - 1 )  
{y-  z}. 

Properties 

The Floyd-Hoare calculus for WHILE programs is sound, in the following sense: 
if {~} C {0} is derivable, using the rules for precondition strengthening and 
postcondition weakening in N, then N ~ {~} C {0}.  Soundness is easily shown 
by induction on the length of Floyd-Hoare derivations. 

The presence of the precondition strengthening and postcondition weakening 
intro(luce an element of model checking into the Floyd-Hoare calculus, making it 
into a hybrid tool for deduction and evaluation in N. 

Since arithmetical tI'llttl is not effectively axioInatisabh;, the true correctness 
statements for WHILE t)rogranls over N are not effectively axioIlmtisable either. 
In(lee(l, we trove, %r (;very aritlunet, ical t'ornmla ~: 

hl ~ q# ilfN ~ {Y} SKIP {~}. 

However, t)ecause strongest t)ostcoIl(litions can  be expi'esse(1 in the l a I lguage  of N 
t)y llleans of enco(ling, we can get around tiffs t)y allowing memt)ers of TtI(N) (the 
set of all I)re(licate logical stat, emellts that are true on the natural Immbers) in 
correctness proofs [Cook, 1978]: 

THEOREM 1 (Cook, Relative Con~t)leteness). N ~ {p} C {0} implies that 
{ ~ } C {0} is dot'@able using Floyd-Hoare rules together with, Th(N). 

P roo f .  An induction on the structm'e of programs works. We just give tim case 
of guarded iterations. Let N ~ {~} WHILE B DO C {0}. Now use tt~e fact that 
strongest t)ostconditions are enco(lat)le in N to define 

i~ - -  ::]Yl""" yn(SP(~, WHILE B A (:rl r yl V . . .  V x,, =/= Yn) DO C)) 

where :r 1, . . .  ,x,,, are all the variat)les occurring in C, and Y l , . . .  ,Y,, are new. 
Then X (lefines the states that can be reached from a ~ state by Ineans of a finite 
number of C transitions through B states. Thus, N ~ {X~ A B} C {;~}. This 
formula is derivable by the induction hyt)othesis. By the Floyd-Hoare rule for 
guarded iteration, it tbllows from this that  

{X} W H I L E B D O C  { ~ A ~ B }  
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is derivable too. Since ~o ~ X and XA-~B ~ ~b are both  true in N (the lat ter  because 
X A ~B  is equivalent to SP(~a, WHILE B DO C)),  by the rules for precondit ion 
s trengthening and postcondit ion weakening we get tha t  

{9~} WHILE B DO C {~} 

must be derivable too. m 

It is impor tan t  to note tha t  Floyd-Hoare correctness s ta tements  if this sim- 
ple form are not expressive enough to reason about  termination.  The following 
correctness s ta tement  is true: 

{ x > l }  
W H I L E x r  DO IF e v e n ( x )  T H E N x : = x / 2 E L S E x : = ( 3 , x ) + I  
{ x =  1} 

This expresses tha t  i f  the command is executed in a s tate  where x has a positive 
value, after terminat ion x will have value 1. It does not express tha t  the command  
will te rminate  for all states with x positive. This is the reason tha t  Floyd-Hoare 
correctImss s ta tements  are sometimes called partial  correctness s ta tements .  

To renle(ly this, calculi have been t)rot)ose(1 with a stIongcr interpretat ion,  for 
reasoning about  Floy(l-Hoare trit)les exI)ressing total  correctimss: 

{~} c {~ ~} 

Sucll a total correctimss stat, emellt ext)resses that  if precoIlditioIl p is f'ulfille(l t, heIl 
C is glmI'anteed to terminate  in a s tate  satisfying ~b. To Inake tills work, the rule for 
glmI'(le(l ite, ration tins to be refoI'Xlnflat, e(l iIl terms of a (lecreasiIlg nmasm'e fllnction 
ill on the natural  numbers,  as follows (it, is assumed tha t  1%1 ~ (9~A]I/ = i +  1) ~ B 
aI,,l 1~ ~ (~ A ~[  = 0) ~ --n]~): 

{ ~ o A / ~ l = i + l }  C { # ~ A / ~ I = i }  

{3i(p A/~I = i)} WHILE B DO C {~ p A ]lI = 0} 

An overview of tile development of Floyd-Hoare reasoning can be foun(1 in [Apt, 
1981]. Floyd-Hoare reasoning is still a (tominant t radit ion ill progranl verification; 
pre- and postcondit ion annotat ions can be used as formal specifications with re- 
spect to which a program can be verified, where the verification process can be 
partially au tomated  [Gordon, 1988; Huth and Ryan, 2000]. 

Floyd-Hoare reasoning, the original flavour of dynamic logic for the analysis of 
t)rogramming, is apt)licable to sequential t ransformational  programs. Sequential 
prograins run on a single processor without  involving concurrency. Transforma- 
tional programs are programs tha t  are expected to terminate  with an output  after 
a finite number  of steps. Sequential t ransformat ional  programs are in the realm 
of dynamic logic in the sense of the present paper. 
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Reactive systems are systems tha t  are expected to ' run forever'; examples are 
text  editors, operat ing systems. Concurrent  reactive systems also involve interac- 
tion between processes; examples can be found in hardware systems, and embed- 
ded systems like the software tha t  controls ignition and fuel injection of cars. The 
analysis and verification of (concurrent) reactive systems calls for model checking 
methods  using temporal  computa t ion  tree logics such as CTL, LTL and CTL* 
[Pnueli, 1981; Clarke and Emerson, 1982; Clarke et al., 1993], and is outside the 
scope of our survey (but see Section 3.6 below). 

3 P R O P O S I T I O N A L  DYNAMIC LOGIC 

The language of propositional dynamic logic was defined by P r a t t  in [Pratt ,  1976; 
1980] as a generic language for reasoning about  computat ion.  Axiomatisat ions 
were given independently by Segerberg [Segerberg, 1982], F isher /Cadner  [Fischer 
and Ladner,  1979], and Parikh [Parikh, 1978]. These axiomatisat ions make the 
connection between propositional dynamic  logic and modal  logic very clear. 

3.1 Languagc 

Proposit ional dynamic logic can be viewe{1 as a basic logic of change. Prot}ositional 
dynamic logic abstracts  over the set of basic actions, in the sense tha t  basic actions 
are atoms. This means that  its range of apt)licat}ility is wtst. In the WHILE 
language, the t}asic actions are {lefinite assignments '~ := a and the trivial action 
SKIP. Now the basic acti{}ils can be anything. Tile only ttliIlg tha t  mat te rs  at){nlt 
a basic acti{m a is that  it, is iIltert}rete{t by some t}inary r{;lati{}Ii on a s tate  set. 

DyImInic logics lmv{; two 1}asic syntact ic  categories: foi'Imflae and progi'anls. 
Fornmlae are use{t tbr talking about  states,  I}rogrmns for {:lassif2ying transit ions 
between states. 

The same distinctioIl tail t}e found in all imperative pr{}graInnfiIlg languages, t}y 
the way. Iinperative t)rogramnfing languages have programs (often called 'state- 
ments ')  versus fornmlae ({}ft{m calle{1 'Boolean ext}i'essiolls' ). In the case of the 
WHILE language, the booleans ai}t)eared as conditi{ms in coiMitional s ta tements  
and as guar{ls in guarde{l iterations. 

Proposit ional  {lynamic logic is an extension of propositional logic with programs, 
just  like basic modal logic is an extension of propositional logic with modalitics. 
Let a set of basic propositions P be given. Appropriate  states will contain vahla- 
tions for these propositions. Assume a set of basic actions A. Every basic action 
corresponds to a binary relation on the s tate  set. 

Let p range over the set of basic propositions P,  an{1 let a range over a set of 
basic actions A. Then the fornmlae ~ and programs (t of t}ropositional {lynamic 
logic are given by: 

99 ::-- T IPI-  I , 
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We employ the usual abbreviations: _L is shor thand for ~T ,  ~1/~ ~2 is shor thand  
for ~ ( - ~ 1  V ~ 2 ) ,  ~1 + ~2 is shor thand fo r - '~1  V ~2, 991 ~ - ~  ~2 is shor thand  for 
(~1 --~ ~2)A (~2 --~ ~1), and [c~]~ is shor thand for -~/c~}-~. Also, we will use c~ n 
for the program consisting of a sequence of n copies of c~, i.e. we define c~ ~ by 
means of c~ ~ :=?T,  c~ n+l := c~ ; c~ n. 

Taking the basic actions to be computat ions,  we can use PDL to talk about  
programming:  for any program c~, ((~}T expresses tha t  the program has at least 
one successful computat ion,  and [c~]_l_ expresses tha t  the program fails (does not 
produce any output) .  If the basic actions are communicat ive actions, e.g., public 
announcements,  then {(~)~ expresses tha t  a public announcement  of c~ may have 
the effect tha t  ~ holds. If the basic actions are changes in the world, such as 
spilling milk S or cleaning C, then [C ; S]d expresses tha t  cleaning up followed 
by spilling milk always results in a dirty state,  while IS ; C]~d expresses tha t  the 
occurrence of these events in the reverse order always results in a clean state.  

Nor does this exhaust  the application areas of PDL. In [Blackburn ct al., 1993] 
and [Kracht, 1995], variants of PDL are used for defining a variety of s t ruc tura l  
relations in syntax trees for natural  language, and in [Marx, 2004] PDL is used to 
analyse XPath, a node addressing language of XML docunlents. 

3.2 S(:'m,a'n, tic.s 

If Rl,/?.2 are 1)iImry relations on a s tate  set N, ttlen tlle relational (:oIllt)osi(,i()II 
R l o/22 ()f R l aIl(l /?2 is given ))y: 

/-1)10 /-I)2 = { ( t l , t 2 )  E S X oQ I ~t:~ C o Q ( ( t l , t ; l )  ~ /~.1 /~ (t;{, ~2) C R2)  }. 

Let I t)e tim i(lentity relation on  S.  Tlmn the 'n-fold composition of a binary 
relatioIl R r S with itself is (lefiIle(1 t)3' recursion, as follows: 

R ~ = I 

R'" = R o R ' " - I  

The reflexive transitive closure of R is give:: by: 

R * -  U R n "  
hEN 

The seinantics of PDL over P, A is given relative to a labelled transit ion system 
M = {S, V, R} fbr signature P, A. Tile formulae of PDL are interpreted as subsets 
of SM, the actions a of PDL as binary relations on SM (with the interpreta t ion of 

basic actions a given as _2+), as ibllows: 
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~T~ M 

M M 

M 

~ 1  V ~2~ M 

= SM 

-- (8 E S M  [ p  E VM(8)}  

-- [~1~ M I,_J ~992~ M 

= {s  C S M I 3 t  ( s , t )  C la]] M and t ~ i~]] M}  

~a~ M 

M 

I(~1 ; Ct2~ M 

~O~ 1 I._J a2~ M 

a 

--- --+M 

= S M  • S M  M }  

= ~O~1~ M O ~Ct2~ M 

-- ~Otl~ M I._J ~ 2 ~  M 
- * 

If s E S M  t h e n  we use M ~.~ ~ for s C ~ M  
These  (tefinit ions specify  how fo rnmlae  of P D L  can be used  to make  a s se r t i ons  

a b o u t  P D L  models .  T h e  t b rmu la  {a}T, w h e n  i n t e r p r e t e d  at  some  s t a t e  in a P D L  
( t  

nlo(lel, ext)ress(~s t h a t  t h a t  s t a t e  has a s l lccessor in the  --~ re la t ion  in t h a t  m o ( M .  
A P D L  tbrmlf la  p is true in a m o ( M  if it, hohls  at  every  s t a t e  in t h a t  too(M,  i.e. 

if ~ ] M  _ SM. ~h-~lth of the  fo rnmla  (a}T in a ino(lel cxt)resses t h a t  2L is s(;rial in 
t h a t  mo(lel.  

A P D L  fo rmula  ~ is valid if it, hohls  for all P D L  too(Ms  M t h a t  ~ ix tr l le  in t h a t  
t oo ,M,  i.,,. t h a t  I~l  M - SM. An  examl)h  ~. of a vali,l fo rmula  is {a ; b)T ~-, {a){b)T. 

No te  t h a t  ? ix an o t )e ra t ion  for mat)t) ing fl)rnnflae to t ) rograms.  P r o g r a m s  of the  
form '.z~ are  calhxl test,s; t hey  are  intert)ret(~(l as the  i ( lent i ty re la t ion ,  restri(:t(;(l t() 
the  stat, es sa t i s fy ing  the  fornmla .  

P r o g r a m m i n g  C o n s t r u c t s  Th e  h)l lowing ab t ) rev ia t ions  i l lus t ra te  how P D L  

exI)resses t,h(~ key c o n s t r u c t s  of imt )e ra t ive  t ) rog ramming :  

S K I P  -= ?T 

A B O R T  "= ? •  

I F p T H E N ( ~  ELSE(~2  - ('.zP ; ( ~ ) U ( ' . z ~ p  ; (~2) 

W H I L E  ~ DO (~ " -  ('.z~ ; (~)* ; '.z-~ 

R E P E A T  (~ U N T I L  ~ " -  (~ ; ('.z-~p ; (~)*; ' .zp.  

3.3 PDL Equivalences 

The  two P D L  p r o g r a m s  /3 ; W H I L E  ~ DO/13 and  R E P E A T  fl U N T I L  ~ p  are  
equiva len t ,  in the  sense t h a t  t h ey  will receive the  s ame  i n t e r p r e t a t i o n s  in all P D L  
models ,  for any  choice of P D L  fo rmula  p a n d  P D L  p r o g r a m  f3. W h a t  th is  m e a n s  
is t h a t  for any  fo rmula  ~/J, tile fo rmula  
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(fl ; WHILE g) DO/3)~  ~ (REPEAT/3  UNTIL ~ ) ~  

will be true in all PDL models. 
Similarly, the formula 

( IF ~o THEN/3  ELSE 7)~b ~ ( I F  ~p  THEN 7 ELSE/3)~b 

will be true in all PDL models, for all choices of/3, 7, ~, ~. 
The regular expressions over a finite alphabet E are given by (or ranges over E): 

E : : =  ;E2IElUE2[E* 

The denotations of regular expressions over E are precisely the regular languages 
over E. Two regular expressions are equivalent if they denote the same language. 
It is clear that  if the basic actions are taken as the alphabet E, regular expressions 
correspond to PDL programs (take ?T for the empty string e). 

Regular expression equivalence can be expressed in PDL, as follows. The regular 
expressions (A U B)* and (A* ; B*)* are equivalent. This law translates into PDL 
as tile equivalence of the t)rograms ((~ U/3)* and ((~* ; /3")* (or the equivalence of" 
the fornmlae ((~, U/3)*)~ an(1 (((t* ; /3")*}~). And so on. 

3.~ Axiomat isa t ion  

The logic ~)f PDL is axiomatiser as ibllows. Axioms are all propositional tautolo- 
gies, plus the following axioms (we give box ([(t])w~rsions here, lint every axiom 
has an equivalent (lianum(l (((~)) version): 

(K) F 

(test) F- 

(sequence) F 

(choice) F 

(mix) F 

(induction) F 

[(1~1 ; (~2]~ ~ [(1~1][(~2199 

an(1 tile following rules of inference: 

( m o d u s  p o n e n s )  ~ 'om F ~t an(1 ~ ~t --' W2, inh~r F W2. 

( m o d a l  g e n e r a l i s a t i o n )  Prom / ~ ,  infer ~ [(~]W. 

The first axiom is the familiar K axiom from modal logic. The second captures 
the effect of testing, the third captures concatenation, the fourth choice. These 
axioms together reduce PDL formulae without �9 to formulae of multi-modal logic. 
The fifth axiom, tile so-called mix axiom, expresses the fact that  c~* is a reflexive 
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and transitive relation containing c~, and the sixth axiom, the axiom of induction, 
captures the fact that  c~* is the least reflexive and transitive relation containing c~. 

All axioms have dual forms in terms of (c~}, derivable by propositional reasoning. 
For example, the dual form of the test axiom reads 

I-" ("~1}~2 e-e (~1 A ~2)" 

The dual form of the induction axiom reads 

Use F k SD to express that  tP is derivable using hypotheses from F by means of the 
axioms and inference rules of PDL. By induction on the length of proofs it can be 
shown that  PDL satisfies the deduction theorem: 

r u { f , }  k- .?., i f f I 'k  e. 

The deduction theorem will be used to facilitate PDL reasoning in what follows. 
The following theorem shows that  in the presence of the other axioms, tile 

induction axiom is equivalent to the so-called loop invariance rule: 

THE()ItEM 2. h~, PDL 'without the inductio'n, axiom, the induction azio'm and the 
loop invariance 'rule arc intcrdcrivablc. 

Proof .  For (lcriving tile loop invariancc rifle fl'om the in(hmtion axiom, asmmm 
the in(lu(-tion axiom. Sut)t)os(' 

Then by Ino(lal gencralisation: 

NOW aSsllnle (tg. Then: 

Froin this t)y tile in(hmtion axiom and prot)ositional reasoning: 

From this by con(litionalisation (the lefl,-to-right (lircction of tile deduction theo- 
rein): 

Now assume the loop invariance rule. We have to establish the induction axiom. 
Assume ~ and [(~*](~ ~ [(~]~). Then by the mix axiom: 
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From this, by propositional reasoning: 

Conditionalisation: 
t - (~  A [~*](~-~ [4~) ) - -~  [4~ .  

Applying the loop invariance rule to this yields the induction axiom: 

I-- (~ A [~*](~--~ [4~))--~ [~*]~. 

II 

3.5 PDL and Floyd-Hoare Reasoning 

Floyd-Hoare correctness assertions are expressible in PDL, as follows. If ~, ~ are 
PDL formulae and (~ is a PDL program, then 

t ranslates into 

Clearly, {~} o {@} hohls in a s tate  in a mo(lel iff ~ --~ [(~](~ is true in that  s tate  in 
that  model. 

The Floy(l-Hoare inference rifles can now t)e (lcrive(l in PDL. As an cxamt)le we 
(h;rivc the rifle for glmr(le(l iteration: 

{~ A ,,/,} o {,,/,} 
{@} WHILE 9~ DO ,, {-~9~ A (,} 

Let the premise {~ A @} o {@} l,e given, i.e. assmne (4). 

(4) k (~ A t/~) ~ [,~]t/,. 

We wish to derive the conclusion 

k {,@} WHILE 9~ DO o {-~9~ A @}, 

i.e. we wish to derive (5). 

(,5) t-@ ---~ [('?~; r~)* ; '?-~q4(-~ A '@). 

h 'om (4) by means of propositional reasoning: 

From this, by means of the test and sequence axioms: 

k ~--~ [~ ; ~]~. 
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Applying the loop invariance rule gives: 

Since ~ is propositionally equivalent with --~ ---+ ( ~  A ~) ,  we get from this by 
propositional reasoning: 

I - ' ~  [(~ ; e ) * ] ( - - , ~  ( ~ A ~ ) ) .  

The test axiom and the sequencing axiom yield the desired result (5). 

3.6 Properties 
Failure of Compactness 

The presence of the * (Kleene star) operator  causes true infinitary behaviour. 
In particular,  the compactness theorem, which says tha t  finite satisfiability of 
an infinite set of formulae F implies satisfiability of F, fails for PDL. Here is an 
example of a set of PDL fornmlae that  is finitely satisfiable but  not satisfiable: 

{ (.,*)p) } u . . . .  } .  

Finite Model Property 

A logic tins the finite nlo(lel property (fillI)) if ew'I'y xlon-theoreIn of tim logk' has 
a fiIlite collIlterexamt)le. Having the flllt) iInplies decitlability, but not collversely 
(there are (leci(latfle h)gics without  the filll)). We will now show that  PDL has the 
fmp. 

For nornlal nlo(lal h)gic, the tint) can tm stlown by means of the so-caller1 filtra- 
tion mettlo(l [Blackbllrn et al., 2001, Ch 2], using sul)fornmla ch)sed sets of f'orllm- 
lae. Becmlse of the presence of the star operator,  in the case of PDL closure under 
subforimflae is not enough. We also nee(1 to make sure tha t  program mo(lalities 
arc decompose(l in an at)propriate way. For this, we use so-called Fisher-Ladner 
closures [Fischer and Ladner,  1979]. 

Define FL(~) ,  the Fisher-Ladner closure of a PDL formula p, as follows. FL(~)  
is the smallest set of formulae X containing p that  is closed under the following 
operations (the definition assumes diamond modalit ies here; an e(tuivahmt forum- 
lation in terms of box modalit ies is also possible): 

�9 if-~(~ C X then '(~ E X,  

�9 if ('(Jl V ('2) E X then ~t/) 1 C X,  '()2 E X ,  

�9 if (~)(~ C X then ~/~ E X,  

�9 if ((~, ; (x2)~ E X then (~.1)((x2)~/~ E X,  

�9 if (c~1 tO (~2)0 e X then (,~l}~b V (,~2)(a E X, 
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�9 if (?~31)2/)2 ~ X then 2/) 1 ~ X ,  2/) 2 ~ X ,  

�9 if (a*)~b ~ X then (a)(a*)~2 ~ X .  

Note tha t  FL(~)  is always finite. E.g., F L ( ( ( a  ; b)*)(p V q)) equals 

{((a ; b ) * ) ( p V q ) , p V q ,  p,q,  
((a ; b))((a ; b)*) (pVq) , (a) (b) ( (a  ; b )*) (pVq) , (b) ( (a  ; b )*) (pVq)} .  

Using FL(y)), define fi l trations of LTSs, as follows. Let M - (S, V, R) be an 
LTS. For every s, let g -  {~ E FL(~)  I M ~ ~}. 

Set g R a [ i f  3u, v E S such tha t  uRav and ~2 - g and ~ - t. Finally, pu t  
V(g) - {P ~ P I P  ~ g}. Let M - (S, 1),/~). Then  one can prove: 

L E M M A  3 (Fi l t ra t ion  Lemma) .  For all ~ E FL(~),  all s E S: 

M ~ ~ i f fM ~ ~. 

P r o o f .  ( )I le  sllows with induct ion on the comt)lexity of formulae an(1 t)rogI'ams 
occurr ing in FL(~)  that" 

�9 if sR,, t  titan .~/~,,~t. 

The  crucial st(q) is t, tlc fl)lh)wiIlg. Sut)t)osc t l lat  ((~)'t/, is trim in M on .~. Thcll  
t, tmrc exists a conq)lltatioIl I)ath fin" (r consistiIlg of a fillitc Se(lU(mce of atoInic 
t ransi t ions  

with  at)I)ropriate a tomic  /~. links })etwe(m :Si an(1 .~i+l, an(l I)ossiblc aI)t)rot)riatc 
tests  "?Xi at ,s i, an(1 with 4~ trll(~ a t  [. _ 

By the definition of R , ,  there has to be a corI'cspoIl(liIlg 't)scudo comt)utat ioIl  
pa th '  

where x ~ y cxt)rcss(~s tha t  .i: - ~0. Moreover,  we have by the in(tuction hypothes is  
tha t  the same test  coIl(litions '?i~(i tlo1(1 at, ,s.i and u,, an(1 t tmt  4; hohls at  u~ and t. 

Next,  prove by in(luction on (r" 

If (~)~/~ E FL(~)  an(1 ttmi'c is pseudo compu ta t i on  pa th  f o r . ,  from s to 
t with M ~ t  ~ then M ~ ((~)~h. 

This  clinches tile a rgument .  II 
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Decidability 

Decidability follows from the filtration lemma: 

T H E O R E M  4. Universal validity for PDL is decidable 

P r o o f .  By the filtration lemma, counterexamples for a formula ~ must  already 
show up in models with at most 2 IFL(~)l states. It is possible, in principle, to 
inspect all of these, m 

It follows immediately tha t  satisfiability for PDL is decidable too" to check tha t  
is satisfiable, just  find a satisfying model with at most 2 IFL(~)I states. 

Co~tve~"se 

Let ~ (converse) be an operator  on PDL programs with the following interpretat ion:  

~ 1  M = { ( s , t )  p ( t , s ) e N  M }  

It is easy to see tha t  the following equations hold" 

(,.~ u / ~ ) "  - ,-~'~ u / ~  "~ 

(~.)~ _ (~). 

This means tha t  it is enough to add converse to the PDL language for atomic 
programs only. To see tha t  adding converse in this way increases ext)ressive t)ower, 
observe tha t  in s tate  0 in the following pi(',tllre (a ~} T is true, while in s ta te  2 in the 
picture (a ~}T is false. On the assumption tha t  0 and 2 have the same valuation, 
no PDL fornmla without converse can distinguish the two states. 

<,D 
Suitable axioms to enforce tha t  a ~ behaves a~s tile converse of a are well known 

from temporal  logic (read {a) as F 'once in the fllture', [a] as G 'always in the 
future' ,  (a ~) as P 'once in the past ' ,  [a ~] as H 'always in the past ' ,  [Prior, 1957; 
19671): 

-~ [a](a~/~ 
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Wellfoundedness, Halting 

For de te rmin is t ic  p rog rams  c~, formula  (c~}T expresses  t ha t  ct does not  loop. For 
non-de te rmin i s t i c  p rog rams  c~, however,  the re  tu rns  out  to be no P D L  way to 
express  non- looping  behaviour .  If c~ is non-de te rmin is t i c ,  (c~}T mere ly  says t h a t  
in the cur ren t  s ta te  there  exists a t e r m i n a t i n g  run  for c~, it does not  prec lude  the  
existence of diverging runs. For example ,  formula  <(?T)*}T will be t rue  at  any  
s ta te ,  while (?T)* has diverging runs  from every s ta te .  

One way to deal wi th  this s i tua t ion  is to add  a pred ica te  to P D L  to express  
wellfoundedness.  A re la t ion R is wellfounded in so if there  does not exist  an 
infinite sequence so, s ~ , . . ,  wi th 

s o R ~ s 1 ,  s 1 / l ~ s  2 , . . . 

Let w e l l f o u n d e d  be a pred ica te  for this. Then  its i n t e rp re t a t i on  is: 

[wellfounded((~)]~ ~ = {s0 E SM [--n~,Sl,.S2,...Vi _> O(si, .si+l)  C ~(s 

In te rms of w e l l f o u n d e d ,  a I)redicate h a l t  for p r o g r a m  t e r m i n a t i o n  can be (lefine(1 
as follows: 

ha l t (a )  : -  -l- 

h a l t ( ? ~ )  : -  7- 

halt((~ ; /~) : -  halt ( (~) /~  [~]halt(/?) 

halt((~ U/~) : -  h a l t ( ~ )  A halt( /?)  

h a l t ( ~ * )  : -  w e l l f o u n d e d ( ~ ) A  [(~*]halt((~) 

W h a t  t,h('~ (h,tinit,i()ll of ha l t  for l ) rograms of the ti)rm (~* says is t ha t  fin" (~* t,() 
hal t  it has t,() t)e t,lle case tha t  (~ is wellfolm(l('(l at  the t)resent s ta te  (so t ha t  its 
ex(~cution <:an not  l)e reI)eate(l wi tho, , t  en(1), an(l also (~ has to hal t  at all s ta tes  
t ha t  can l)c reaclle(1 in a finite n u n l l ) e r  of (t st, el)S from the t)resent s ta te .  This  
expresses t ha t  (~* tai l  loop for two reasons" (i) t)ecmlse (~ can t)e repeate( l  withol l t  
en(1, or (ii) t)eciltllSC af'tcr r('peate(1 ex(~(:lltion of (~ tlmre is a s t a te  where  (~ itself 
(loes not t, ernfinat(,. 

Apply ing  this to the exampl(~ p rogrmn ('?T)*, we' g e t  

halt(( '?T)*)  - we l l founded( '? - l - )A  [('?-l-)*]halt('?T) 
- w e l l f o u n d e d ( ' ? T ) A  [(?-[-)*]-l- 

- wel l founded( '?- l - )  A T 

_-- _1_ 

W h a t  this says is t ha t  (7-[-)* does not  hal t  because  the test  '?T is not  wellfoun(le(1 
(for '?T can l)e repeate(1 an a rb i t r a ry  numt)er  of t imes).  

F loyd-Hoare  to ta l  correctness  s t a t e m e n t s  fin" P D L  t)rograms (~, 
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can now be expressed as: 

--~ [(~]~p A ~ ~ h a l t ( a ) .  

Every state in the infinite model of the following picture satisfies ha l t ( a ) ,  but 
clearly, any filtration of this model must collapse some of the states, and in these 
collapsed states ha l t (a )  will fail. This shows that  extending PDL with a h a l t  
predicate (and, a fortiori, extending PDL with a w e l l f o u n d e d  predicate) increases 
expressive power. 

(D 
a 

f 

a 

F'u'rth, cr E x t e n s i o n s  and  Var ia t ions  

Other possible extensions of PDL arc with intersection and Ilominals [Passy and 
Tinchev, 1991]. The extension with nominals turns PDL into a kind of hyt)rid logic 
[Areces ct al., 2001]. Replacing the regular programs of PDL by finite au tomata  
yields a formalism with the same expressive power but allowing more succinct 
descriptions: see [Harel ct al., 2000]. Replacing tile regular programs of PDL with 
another data  structure such as pushdown au tomata  or context free grammars  or 
flowcharts yields more expressive (but also more complex) formalisms. 
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Complexity 

Although satisfiability checking in individual LTSs can be done quite efficiently 
(i.e. in polynomial time), the above algorithm for checking satisfiability is highly 
inefficient, because the size of the models to check is exponential  in the size of the 
formula, and the number of these models is doubly exponential  in the size of the 
formula. So the naive satisfiability checking algorithm is doubly exponential  in 
the size of the formula. 

Time complexity of the satisfiability problem for PDL is singly exponential: an 
exponential algorithm is given in [Pratt,  1978]. One cannot do bet ter  than this: 
[Fischer and Ladner, 1979]establishes an exponential- t ime lower bound for PDL 
satisfiability, by showing how PDL formulae can encode computat ions  of linear- 
space-bounded alternating Turing machines. An exponential  t ime satisfiability 
algorithm for PDL with converse is given in [Streett, 1982]. Intuitively, adding 
converse does not increase complexity, for converses of atomic programs a can be 
taken as atoms, and the definition of converse for complex programs is linear in 
the size of the programs. 

Modal # calculus 

For a proper perspective on PDL, it is useflfl to contrast  it with a nmch more 
expressive dynamic logic, the modal t* calculus. 

Let a set of proposition letters P = {p0, P l , . . .  }, a set of actions A = {a0, a~ , . . .  }, 
an(1 a set of variables V = {X0, X 1 , . . .  } be given. Assume p ranges over P, a ranges 
over A, and X ranges over V. Ttlen the set of # formulae is given by the tbllowing 
definition: 

with the syntactic restriction on ttX.cp that  occurrences of X in r arc; positive. An 
occurrence of X in a formula r is positive if the occurrence is in the scope of an 
even number of negation signs. 

Interpretat ion is in LTSs M, relative to an assignment g :  V ---+/)(SM). If T is 
a subset of SM, g[X H T] is the assignment that  is like g except for the fact that  
it maps X to T. 

~IT]12 = SM 

~)]M .__ {8 E SM [p  E VM(8) 

bdl  = sM -Id  

[(a>r M = { S E S M  ]E It s - % t a n d t 6  [[r 

f"]{T c_ SM I Idl x-rl c_ T} [ ~ x . ~ g  = 
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The clause for #X.~  expresses that  the interpretation of this formula is the 
least fixed point of the operation T H ~ ] g  9IT--S]" Thanks to the fact that  X only 
occurs positively in ~o, this operation is monotone: 

if T C S t h e n  ~(~]M M g[X~-,T] C ~(~ - - g [ x ~ s ] .  

It follows, by a theorem of Knaster and Tarski (see, e.g., [Davey and Priestley, 
2002]), that  the operation has a least fixed point, and that  this least fixed point 
is given by the semantic clause for #X.~.  The proof of this fact is instructive. 

For simplicity we use [~aJT for  ~]g~XHT]' and [p] for T H [p]T. Let 

W �9 - ["I(T c_ sM I[<]f c :r} 
"-- { T  (Z SM I [gP]T (Z T } .  

We have to show that  W is the least fixed point of [p]. 
First we show [~a]W C W. Observe that  for all U E ~-we  have W c_ U and 

[p]U C U. By monotonicity of [p], [p]W C_ [~aJU, and therefore, by [~]U c_ U, 
[~]W c U. From the fact that  for all U E $- it holds that  [~p]W c U we get the 
desired result [~]W C_ W. 

Next we show W C [~z]W. We start  out from the previous result [~a]W C_ W. 
By monotonicity of [~] we get from this that  [~][~]W C_ [~]W. This shows that  
[~]W e .Y', whence W c_ [~]W. 

Finally, to show that  W is the least fixpoint, observe that  any fixpoint U of [~] 
is in9  c , s o t h a t  W C U .  

The modal [5 calculus translates into second order predicate logic as follows: 

X O 

~ 

�9 = 

�9 - vx(w( , ~  

This translation is called the standard translation into monadic second order logic, 
monadic because the predicate variables X quantified over in the translation are 
unary. 

The /z calculus can be presented in PDL format by distinguishing between 
formulae and programs, as follows: 

, , ~  

(2 ..-- 
T I p I X I ~ I so1 v ~2 I 4,~')~ I j~X.~ 

a ['.~ [ ,~1 u 0~2 [(21; 0,:2 I ~ *  

again with the syntactic restriction on #X .~  formulae that  X occurs only positively 
in qo. 

This PDL version of the 15 calculus does not have greater expressive power than 
the original, for we have tile following equivalences: 

(~1 U Oz2) ~ ~ (o:1) ~ V ((22} ~ 

( o , 1 ;  - 
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To see tha t  (ct*}9~ and #X.(t~V (ct}X) are equivalent ,  observe t ha t  the  least f ixpoint 
of the  opera t ion  

Z ~ ~99~M U {8 e S M I 3 t  C T.s -% t} 

is equal to the set 

{s r SM I 3t E [~]]M .s -~ t}. 

We will now show tha t  the # calculus has g rea te r  expressive power than  PDL.  In 
PDL,  there  is no way to express t h a t  a p r o g r a m  is wellfounded. The  following 
formula  expresses wellfoundedness of c~ in the # calculus: 

The  meaning  of this may  not be immedia te ly  obvious, so let us analyse  this a bit  
further .  Let 

W "-- {8 E SM I there  is no infinite ct pa th  from s}. 

Then  clearly, {s E ,S'M [ if s 2_, t then  t E W} - W. If there  is no infinite c~ p a t h  
s t a r t ing  form s, then  there  is no infinite (~ pa th  from any (t successor of c~, and if 
at  no (t successor of s an infinite (~ pa th  s tar ts ,  then no infinite (t pa th  s ta r t s  from 
s. In other  wor(ls, W is a fixpoint of the ope.ration 

T ~ {s c SM [ if s ~ t tt~en t �9 T}. 

We still have to show t tmt  W is also the least fixpoint of the oi)eration. So suppose  
U is another  solution: 

{,S E SM [ if s -Z t then t E U} - U. (,) 

We have to show tha t  W c_ U. Assume,  fox" a contra(l ict ion,  t ha t  there  is some 
.s E W with s r U. ~h'om (*), 

,S r {,S C SMI if s -Z t then  t C U}. 

It follows tha t  for some t E SM we have s -Z t and t ~ U. Cont inuing like this, we 
fin(1 t ~ t ~ with t' ~ U, t ~ _2~ t ~ with t ~' ~ U, and so on, an infinite (~ t)ath s t a r t ing  
from s, which contra(l icts  the a s sumpt ion  tha t  s E W. 

To define a grea tes t  fixpoint ot)erator  dual to t ~, use 

. -  

whe.I'e 99[X H ~X] denotes  the result  of replacing every occurrence of X in ~ by 
--nX. 

The  it calculus or iginates  in [Kozen, 1983]. It  has great  expressive power (it 
subsumes  PDL,  CTL,  LTL and CTL*),  it is decidable  and has the finite model  
p roper ty  [Streett  and E.A, 1989], but  it has grea te r  complexi ty  than  PDL" known 
decision procedures  use doubly exponent ia l  t ime. 
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Kozen [Kozen, 1983] proposed an elegant proof system: the axioms and rules 
of multi-modal logic together with the axiom 

, x . ~  ~ ~ [ x  ~ , x . ~ ]  

and the following rule of inference: 

~ [ x  ~ ~] + 

> X . p  + 

This axiomat isa t ion is sound and complete.  
Alternatively, PDL style > calculus is axiomatised by the axioms and rules of 

PDL plus the t* axiom and the it rule of inference. 

B i s i m u l a t i o n  

PDL and modal  I* calculus are bo th  in terpreted in LTSs. But  the correspondence 
between LTSs and processes is not one-to-one. The process tha t  produces an 
infinite number  of a t ransi t ions and nothing else can be ret)resented as an LTS in 
lots of (tifli~rent ways. The tbllowing representat ions  are all equiwflent: 

i~.-:_:_-m------~_- 
, , ,  

, i? 

( 2  .... 
- . _  _ . . _ . . . _  _ ~  - -  

( 4 )  

f .  

, 5 ) a 
.... . _ n  . ~ . - d - ~  ~ 

The notion of t)isinnllation is inten(te(1 to cat)ture such process equivalenc(~s. A 
bisinmlation C t)etween LTSs M and N is a relation on  SM X S N such tha t  if .sCt 

then the following hold: 

I n v a r i a n c e  V M ( S ) =  VN( t )  (the two states have the sa, ine  valuation),  

(t (t ~,/ 
Zig if for sonic (1, C SI ,S ---+ ,'~' C R M  then there is a t' C $2 with t ---+ E RN an(1 

s ' C t ' .  

Z a g  same requirenmnt in the other (lirection. 
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One uses M ,  s ~ N,  t to indicate  t ha t  there  is a b is imulat ion t h a t  connects  s 
and t. In such a case one says t ha t  s and t are bisimilar.  

b 

b 

In the LTSs of the t)icture, {} ~ 2 +-+ 4 and 1 ~ 3 ~ 5. 

Bis imulat ion is in t imate ly  connecte{1 to mo{lal logic, as follows. Mo{lal logic is a 
sllblogic of PDL.  It is given t}y res t r ic t ing the set of p rograms  to a tomic  programs.  
Usually, one writes O ,  for (a}: 

: : =  T l p l - ~ l ~ v ~ l ( a ) ~  

Bisinmlat ions can bc viewe{1 as a mot iwt t ion  for mo(lal logic. A gh)t)al p rope r ty  of 
LTSs is a funct ion P tha t  assigns to any LTS M over a given s igna ture  a p rope r ty  
P M  C_ SM. A global p roper ty  P is invariant for bisimulation if whenever  C is a 
1)isinmlation between M and N with sCt, then  s E P M  iff t E PN.  

Modal  formulae may be viewe(1 as global propert ies ,  for if ~ is a mo(lal formula,  
then/~M.~qp] M is a global property.  Similarly for formulae of first order  logic. 

An example  of a first order  logic formula tha t  is not invariant  for b is imulat ion 
is the formula Ra(X, X). This formula is t rue  in s ta te  0, but  false in bisimilar  s ta te  
1 in the following picture: 
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Another example of a first order logic formula that is not invariant for bisimu- 
lation: 

~(x) -~ ~y(Fga(X, y)/~ F~b(X, y)). 

The picture below indicates that ~(x)  is not invariant for the example bisimulation 
that links 0 to 2 and 1 to 3 and 4. The state 0 satisfies p(x)  while 2 does not, and 
the two states are bisimilar. 

t 

Clearly, all moda l  formulae  are invar iant  for bisimulation" If qp is a moda l  for- 
nmla  tha t  is t rue  of a s t a te  s, and  s is bisinlilar to t, then  an easy induc t ion  on 
tile s t ruc tu re  of qp establ ishes t ha t  ~ is t rue  of t as well. 

More surprisingly,  it tu rns  out  t ha t  all first or(ter formulae  t ha t  are invar iant  
tbr b is inmlat ion  are t r ans la t ions  of moda l  tbrnmlae.  If first order  logic is given an(1 
b is inmlat ion  is given, moda l  logic results  f rom the  following theorem" 

T H E O R E M  5 (Van Bcn them,  [Van Bcnthc ,n ,  1976]). A fir.st o','der formula g)(x) 
is invar iant  for bisimulation iff ~(x)  is equivalent to a modal formula. 

One (lirection of this can easily be vcrifie(1 t)y the  reader:  if ~ is a mo(tal tbrnnfla, 
it can t)c t)roved 1)y induc t ion  on fornmla  s t r lmture  t ha t  ~ canno t  (l ist inguish 
be tween  bisimilar  points.  

The  a r g u m e n t  for the  o ther  di rect ion is more  involved. We give a sketch of the  
proof. Define qJ as the set of moda l  tbrnmlae  t ha t  are implie(t by ~(x) ,  as follows" 

�9 - {~/~ [ ~/~ is a moda l  fornmla  an(1 ~(.r) D ~p}. 

Next,  if we can prove tha t  �9 ~ ~(x) ,  then  the  comt)actness  t heo rem for F O L  gives 
llS { ' / / )1 , . . . ,  'i/)n} ~ I~ with r  r ~ ~9(x), and  wc see tha t  ~(x)  is equivalent  
to the  moda l  fornmla  ~/~1 A . . .  A ~/J,~. 

So suppose  M D.~ ~.  We are done if we can show tha t  M D~ ~(x) .  For this, 
consider the  moda l  theory  of s, i.e. the  set of moda l  formulae  t rue  at s: 

" -  { ~ l ~  is a moda l  fornmla  and  M ~,, ~}. 

Now �9 U {~(x)}  nmst  be finitely satisfiable (i.e. any finite subset  mus t  be satisfi- 
able), for if not  then  there  are ~ 1 , . . . ,  ~ ,  E �9 wi th  ~(x)  ~ - ~  V . . .  V - ~ ,  which 
cont rad ic ts  the  fact t ha t  --1991 V . . .  V ~ , z  is false at s. Using the compac tnes s  
theo rem for F O L  again,  we see t ha t  there  mus t  be some node  t in an LTS N wi th  
N ~t  q) tO { ~ (x)} .  
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There is one given that we haven't used yet: ~ (x )  is invariant for bisimulation. 
To use that given, we replace M and N by so-called co saturated elementary 
extensions M ~ and N ~ 

A FOL model M is co saturated if whenever ~ (x ,  y l , . . . ,  yn) is a set of first order 
formulae, and d l , . . . ,  d,~ are elements of the domain of M,  then ff~[x, d l , . . . ,  d.] 
is finitely satisfiable, i.e. for every finite subset if% of ff~ we can find a d in the 
domain of M with M ~ ~[d, d l , . . . ,  d,] .  

Every FO model has a an a~ saturated elementary extension (see Chang and 
Keisler [Chang and Keisler, 1973, Ch 6] for a proof), so the replacement of M ,  N 
by M ' , N  ~ is warranted. Moreover, N ~ ~ g)(x), for truth of g)(x) is preserved 
under the extension. 

Lemma: If M,  N are co saturated, then the relation of modal equivalence is a 
bisimulation between them. 

Proof of the l emma:  Let  M ,  N be cc s a t u r a t e d .  Let  = be the relation of being 
m o d a l l y  equivalent. Let M ,  s = N ,  t. We show t h a t  s <-+ t, by checking the clauses 
for bis inmlat ion:  

Invariance Clearly,  ,s an(l t have tile s ame  va lua t ion .  

it. .%.1 
Z i g  Sul)I)OSC .~' --+ . Let  (P b(; the  set  of mo(lal  formlflae t h a t  are  t rue  at  s'. T h e n  

for every finite s,fl,set (1)(, of ,I), M ~.~ (a,) A (Po. sin(:e s - t, M ~, (a,) A (Po, 
so th('r(; is a l' with t -fL t' an(1 M ~t '  (b(). Tlnls, (b is f initely sltt, isfiat)h, in ,, 
succcSSOl'S of t. By the  fact t h a t  N is c0 satllrat,c(l,  it, tbllows t h a t  t,h(;rc ix a 
t' with t _2+ t' an(l N ~t '  (b. 

Zag  Sitme arglllll(',II|, in tlw, o the r  (lircction. 

Back to t.h('. ,nai , ,  l,r(,of. N ~ ~ t  ,I' A V(:':) an(l M ~ ~.~ ,I,, where  (I, is the  m,,(lal 
t heo ry  of .s. Tlnls,  .s. t have the  s a m e  mo(lal  t.h(;()ry, an(1 invoking t,h(; l c m m a  w(; 
see t h a t  .s ,--, t. Since ~ (x )  is invar ian t  h>r 1)isim~flation, M "  ~.~ ~(x) ,  hence 

M ~,~ ~(:r). ,. 
Bisimlflat, ions ar(' als() int imat( ; ly  connect( '( l  t,() PDL,  as follows. 
A glolml re la t ion  is a f lmct ion  R tha t  assigns to any LTS M over a giw'n 

signat, lm'  a re la t ion  RM C_ SM • SM- A glolml re la t ion  R is ,safe for b'isim'u, la, tio'l~ 
if whenever  C ix a 1)isimlflation })(,tw(;('n M an(l N wi th  .sCt, then:  

Zig: if' .sRM.s' t hen  (,h(:r(: is a t '  w i th  tRNt '  an(l .s'Cl', 

Zag" vice versa: if tRNt' th(',n t tmre is an s' wi th  sRM.s' an(1 .s'Ct'. 

An cxamt)lc  of it re la t ion  t h a t  is not  safe tbr })isinudatioIl is the  re la t ion  given 
|)y l, tl(' following first Ol'(l(q" tonmfla :  

~ ( x , y )  -- R . ( x , y )  A : r - -  !I. 

Look at  the  coun te rexanq)h '  picture for invar iance  of R , ( x , x )  again.  Formula 
~(x ,  y) is t rue  of s t a t e  pair  ((), 0) and  false of the  s t a t e  t)air (1, 2) in t h a t  picture, 
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but 0 and 1 are bisimilar, and (0, 0) satisfies the zig, and (1, 2) the zag condition 
for bisimulation. 

Another  counterexample for safety for bisimulation is provided by the following 
formula: 

~)(X, y) --" I~a(X , y) A 12~b(X, y). 

Look at the counterexample picture for invariance of 3y(Ra(x, y)ARk(x ,  y)) again. 
Formula r  y) is true of s tate  pair (0, 1) and false of s tate  pairs (2, 3) and (2, 4), 
while 0 and 2 are bisimilar, (0, 1) satisfies the zig condition, and both  (2, 3) and 
(2, 4) satisfy the zag condition for bisimulation. 

In fact, invariance for bisimulation and safety for bisimulation are closely con- 
nected. If ~(x) is invariant for bisimulation then ~(x)/~ x - y is safe for bisimula- 
tion. Conversely, if ~(x, y) is safe for bisimulation, and P is some unary predicate 
tha t  does not occur in ~ then ~y(~p(x, y)/~ P(y)) is invariant for bisimulation. 

Note tha t  the notion of safety for bisimulation generalises the zig and zag condi- 
tions of bisimulations, while invariance for bisimulation generalises the invariance 
condition of bisimulations. 

A modal  program is a PDL program that  does not contain * Modal programs 
can be viewed as global relations, for if c~ is a modal  program, then AM.[cr~] M is a 
global relation. 

It is not difficult to see tha t  all mo(lal t)rograms are safe fin" bisiInulation. The 
sui'prising thing is the converse: all first order relations tha t  are safe for bisimula- 
tion turn out to be translat ions of modal programs. 

T H E O R E M  6 (Van Benthem [van Benthem, 1994]). A fir.st orde'r" J'o'rmula ~(:r, y) 
is safe for bisimulation iff y)(:r, y) is equivalent to a modal program. 

Proofs of this can be fouIl(l in [van BentheIn, 1994; Hollent)erg, 1998]. Tim 
i)erst)(~ctiv(~ on Van Benthenl 's  charact(~risations of modal  logic aIl(l PDL is from 
[Holh~nbcrg, 1998}. In fact, Van Benthem gives a slightly different characterisation. 
He proves tha t  any bisinmlatioil safe first order fornmla can t)e generated from 
atomic tests '.zp, atomic actions a, se(tueIltial composit ion ; , ctloice W an(l dynamic 
negation -.,, where ~(~ is interprete(l by: 

~'-'()t~ M : {(.";, ,S)E S M  X S M l - ~ 3 t ( s , t ) ~  ~(1~1 M } 

The two characterisat ions are equivalent, for ~(~ is definabh~' as the PDL program 
?([(t]_L), while any modal PDL test '.~ can be ext)resse(l in te,'n,s of (lynanlic 
negation using tile following translation: 

~ - ~_L  

V _ V 

_ 

= ; 

Looking at PDL programs from an algebraic perspective, tile obvious notion 
to be axiomatised is tha t  of PDL program equivalence. A calculus that  produces 
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precisely the equations of the form (21 - -  Oz2 for those O~1, Oz2 tha t  have the same 
interpretat ion in any PDL model is given in [Hollenberg, 1996] (see also [Hol- 
lenberg, 1997], where equivalence of modal  PDL programs is axiomatised).  The 
axiomatisat ion has the following quasi-equations between programs: 

associativity of ; 
associativity for U 
commuta t iv i ty  of U 
idempotency of U 
left dis tr ibut ivi ty 
right dis tr ibut ivi ty 
left identity 
right identi ty 
left zero 
right zero 
zero sum 
�9 expansion 
left induction 
right induction 
test choice 
test sequence 
domain test 

;(/3;7)=(o~ ; / ~ ) ; 7  
o~u ( ~ u 7 )  = (o~u/~) u s  
o~ u /~  = ,~ u o~ 

Ot U oz - -  oz 

( ~ u / ~ ) ; 7 = ( ( ~  ; 7 )  u ( / ~ ; 7 ) )  
; ( / ~ u T ) =  ((~ ; /~ )u(~  ; 7 ) )  

? T  ; c~=(~ 
o~ ; ? T  = o~ 

?2. ; c~ = ? 1  
c~ ;?2_ = ? 1  
c ~ U ? l  = 
ol* = ? T U ( o ~  ; c~*) 

'.~(~ v ~) ='.~u'.~,~ 
?(~ A ~,) ='.~ ; '.~ 
' ? ( a ) X  ; a = ( ~  

where st _< fzt is defined as (tU/3 - fl, and the following equations between booleans 
hohl: 

equations of boolean algebra 
choice ((~ U/~)~ = ((~}~ V (~)~ 

i teration (c~*)~a = tP V (c~)(c~*)~ 
induction (~*)~ = ~ V (c~*)(-~ A ((~)~) 
test, d iamond ('?~)~p = ~ A ~/~ 

If one restricts a t tent ion to tile modal part  of PDL (PDL without  *, for this 
is equivalent to mult i -modal  logic), the quasi-equations for * drop out, and an 
equational axiomatisat ion of modal PDL results. 

We end with mentioning an int imate connection between modal /z  calculus and 
tfisimulation: 

T H E O R E M  7 (Janin and Walukiewicz [Janin and Walukiewicz, 1996]). A monadic 
second order formula 9~(x) is invariant for  bisimulation if[ it is equivalent to the 
standard translation in monadic second order logic of a It sentence. 

4 ANALYSING THE DYNAMICS OF C O M M U N I C A T I O N  

Dynamic logic is the logic of action and the results of action, but  it is also a branch 
of modal logic, and it enjoys the same breadth  of applications as modal logic. 
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What  happens if we reinterpret the atomic action modalities as something else? In 
epistemic logic, atomic accessibilities denote epistemic similarity relations of agents 
in a multi-agent epistemic setting. Epistemic PDL is the result of reinterpreting 
the basic action modalities as epistemic relations. Now [a; b]~ means that  agent 
a knows that  agent b knows that  ~. This is more expressive than multi-agent 
epistemic logic. E.g., [(a t2 b)*]~p expresses that  ~a is common knowledge among a 
and b, and it is well known that common knowledge for a, b cannot be expressed 
in terms of basic modalities [a], [b] alone. 

As an aside, expressing implicit knowledge would require extending epistemic 
PDL with an intersection operation. Implicit knowledge among a, b that  ~ can 
be expressed in this extended language as [a A b]~p. This extension results in a 
logic that  is still decidable, but the invariance for bisimulation gets lost. Implicit 
knowledge will not concern us in what follows. 

Interestingly, the shift of application from computation to epistemics turns PDL 
into a description tool for static situations, for under this interpretation LTSs 
denote multi-agent epistemic situations instead of sets of computations within a 
set of states. Still, at a higher level, there is again a dynamic turn. We can study 
how multi-agent epistemic situations evolve as a result of communicative actions. 
An important example of such actions is public announcement. What  happens to 
the knowledge of a set of participating agents if it is suddenly announced to all that 

is the case'? On the assumption that none of the agents takes ~ to be impossible, 
this shouh| result in a new epistemic state of affairs where it is common knowledge 
among the agents that ~. In this section we will see that epistemic PDL (PDL, 
with the basic modalities interpreted as epistemic relations) is eminently suited 
for the analysis of the dynamics of communication. 

Dynamic epistemic logic (cf., e.g., [Baltag, 2002; Baltag and Moss, 2004; Baltag 
ct al., 1999; 2003]) analyses the changes in epistemic information among sets of 
agents that result from various communicative actions, such as public am~ounce- 
ments, group messages and individual messages. The logics studied in [Baltag ct 
al., 2003] add information update operations to epistemic description languages 
with a common knowledge operator, in such a way that  the addition increases ex- 
pressive power. This makes axiomatisations complicated and completeness proofs 
hard. In [Kooi and van Benthem, 2004] it is demonstrated how update axioms 
can be made susceptible to reduction axioms, by the simple means of switching 
to more expressive epistemic description languages. In particular, it is shown in 
[Kooi and van Benthem, 2004] how generic updates with epistemic actions can be 
axiomatised in automata  PDL [Harel ctal., 2000, Chapter 10.3]. 

We will follow [van Eijck, 2004] in giving a direct reduction of the logic of generic 
updates with epistemic actions in the style of [Baltag et al., 1999; 2003] to PDL. 

~. 1 S y s t e m  

L e t / :  be a language that can be interpreted in labelled transition systems. Then 
action models for s look like this: 
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DEFINITION 8 (Action models for s Ag). Let a set of agents Ag and an LTS 
language/2 with label set Ag be given. An action model for s Ag is a triple 

A = ({so, . . . ,  8n-l],  pre, T) 

where [so, . . . ,  8n--1] is a finite list of action states, pre :  {So,. . . ,  8n--1 } ----+ s assigns 
a precondition to each action state, and T : Ag --+ P({s0 , . . .  , sn-1} 2) assigns an 

accessibility relation --% to each agent a E Ag. 

L; actions can be executed in labelled transition systems for s by means of the 
following product construction: 

DEFINITION 9 (Action Update). Let an LTS M = (W, 17, R), a world w E W, 
and a pointed action model (A,s), with A = ( [ s0 , . . . ,S~- l ] ,p re ,  T), be given. 
Then the result of executing (A,s) in (M, w) is the model (M | A, (w, s)), with 
M | A = (W', V', R'), where 

W ! 

V'(w, s) 
R'(~) 

-- {(~/ ' ,8)  I 8 E { 8 0 , . . . , 8 n _ 1 } , ~ )  E Ipre(s)~ M} 
= V(w)  

= {( (w, .~) , (~ , , ' , .r  I ( , , , ,w')  ~ R(~) , ( .~ , . r  e r ( a ) } .  

For the set of basic propositions P and the set of agents Ag, the language of 
PDL DI';I" (which we will call 'update PDL')  over t:', Ag is like that for standard 
PDL over P, Ag, but with a constrlmt for action update added: if g) is an update 
PDL fbrnmla, ai~(l [A, s] is a single t)ointed ac.tion model, then [A, ,s]g) is ai~ up(late 
PDL tbrilmla. I f /3 is a set of agents {bl . . . .  , b n. }, then we abbreviate bi tO... U b,, 
as B. Now [B]F expresses that p is gcnc'ral knowledge aInong B (they all know 
~, bllt they nee(l not know that the others know g)) and [B*]g) expresses that ~ is 
co'm'moTt, knowledge among B (they all know p and they all know that  the others 
know ~). 

The senmntics of PDL DEL is given by the standard PDL clauses, with the 
following clause for update added: 

I[A, ,'~]~91M = {~1, E W M i i f  M ~,,, pre(,s) then (w, ,s) E ~ ] M |  }. 

Using (A, .s}~ as shorthand for ~[A, s ] ~ ,  we see that the interpretation ['or (A, .s)p 
turns out as: 

~(A, s)~]] M = {w E WM I M ~ ,  pre(s) and (w,s) E [w]MOa}. 

UI)dating with multiple pointed update actions is also possible. A nmltiple pointed 
action is a pair (A, S), with A an action model, and S a subset of the state set of 
A. Exten(l the language with updates [A, S]~, and interpret this as follows: 

~[A, S])9] M = {It? E W M  I V.S E S( if M ~,,, t,re(s) then M @ A ~(~,,,) ~)}. 

The reason to employ multiple pointed models for updating is that it allows us to 
handle choice. Suppose we want to model the action of testing whether ~ followed 
by a public announcement of the result. More precisely: 
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A test  is performed to check whether  y) holds in the actual  world. If 
the outcome  of the test  is affirmative, then ~ gets  announced.  If the 
test reveals that  ~ does not hold, then ~y) gets  announced.  

Single pointed update  models  do not allow us to model  this. 

T H E O R E M  10 (Preservation of bisimulation; Baltag,  Moss,  Solecki).  The action 
update operation | preserves bisimulation on episternic models: 

if M +--, N then M |  ~ N |  

We can also look at the update  models  modulo  action bis imulation.  An action 
bis imulat ion is like an ordinary bisimulat ion,  wi th  the clause for ' same valuat ions '  
replaced by a clause for 'equivalent precondi t ions ' .  

T H E O R E M  11 (Preservat ion of act ion bis imulat ion) .  The action update operation 
preserves action bisimulation: 

i r A  ~ B then M ( ~ A  ~ M |  

P r o o f .  Let, Z 1)e a t)isim~flation between A an(l B.  Define a relat ion relati()n (m 
M ~ A x M (~ B t)y means  of 

(u, .s)C(v, t) iff ,u - ~, an(l .s Zt. 

It, is easily shown tha t  this is a 1)isimlflati()n. II 

4 . 2  Logics  of C o m m u n i c a t i o n  

In terms of the sys tem .illst (lefined a wtriety ()t' t,yt)('s of comnmni(:ativ('~ actions 
can 1)e (les(:ril)e(l. Th(; two most  important ()lies are l)ld)li(: amlounc('~m(;nts an(l 
g r o u p  allllOllll(:(qll(~llts. 

Public A n'nou'n, cen~,c'n,t.s 

The  langlmge of p u b l i c  a n n o u n c e m e n t s  is t,h(~ langlmge tha t  one gets if one 
alh)ws action too(Ms tbr t)ld)li(: annolm(:( 'ment.  The  a('.tion m()(h'l f()r t)lfl)li(: an- 
no lmcement  tha t  ~ consists of a single s ta te  s0 with I)re('.on(lition ~ and epis temic 
relat ion {s()-L s ( ) l a  E Ag}. Call this mo(M P~. 

The  following e(tuivalence shows how pul)lic annolmc('~nmnt relates to (:omm()n 
knowle(lg(~ am(rag set of agents  B: 

(6) 

W h a t  this says is tha t  after public announcenwJl t  with 7) it is common  knowledge 
among B tha t  ~h if and only if befbre the upda t e  it hohts at the end of every 
('?~ ; B)* t)ath th rough the model  tha t  a public upda t e  wi th  ~ will result  in 
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g;. Axiomatisations of public announcement  logic are given in [Plaza, 1989] and 
[Gerbrandy, 1999b; 1999a], for a language tha t  cannot express common knowledge. 
An axiomatisat ion for a language with a common knowledge operator  is given in 
[Kooi and van Benthem, 2004]. Below we will show how this equivalence emerges 
in the axiomatisat ion of PDL DEL from [van Eijck, 2004]. 

Group Announcemen t s  

The language of g r o u p  a n n o u n c e m e n t s  is the result of allowing action models 
for group messages. These will be defined below. Similarly, we can define the lan- 
guages of s e c r e t  g r o u p  c o m m u n i c a t i o n s ,  of i n d i v i d u a l  m e s s a g e s ,  of tes t s ,  
of lies, and so on [Baltag, 2002]. All these languages are comprised in the lan- 
guage of PDL DEL, because all these communicative actions can be characterised 
by appropriate  action models. 

,4.3 PrY)gram Tra'n,s'f ormation 

We will now show how PDL DEL h)rmulae (:an t)e re(lu(:e(1 to PDL fi)rmulae. For 
every action mo(lel A with states .s0, . . . ,  s,,_ 1 we define a set of 7t 2 program trans- 
formers T A  (0 < i < 'it, 0 < j < 'it,) as ibllows: 

Ti.O(a) _ { '?pre(s~) ; a if si-2+ s.j, 
?_L otherwise 

{ ?~ if i - j ,  
7)~ ('?~) -- '?_L otherwise 

n-1 
TiA(Trl; 71-2) -- U (TA(TrI) ; T/~.1(Tr2)) 

k=(} 
Ti'j4. (Tr 1 U/1-2) - ~ f (71 l )  U Ti f ( / r2) 

- /~u,,(~) 

-A (transformed) program for all the re* paths from si to sj that  where Ilijk(Tr ) is a 
can be traced through A while avoiding a pass through intermediate states sk and 
higher. Thus, KiA,~ (rr) is a program for all the rr* paths from s i to sj tha t  can be 
traced through A, period. 
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KiAk(rr) is defined by recursion o n  k, as follows: 

_ ~ ?T U ziA(rr) if i -- j ,  
K.A0(rr) 

TiA (rr) otherwise 

A 

a ; Kkjk(r~ ) A 

- K A A ; 

�9 , * 

A Kij(k+l)(rr) 

i f i = k = j ,  

i f i = k # j ,  

i f i # k = j ,  

�9 *ok3 , k (re)) otherwise 
(i =/= k # j ) .  

For some runs th rough  example applicat ions of these definitions, see section 4.5 
below. 

L E M M A  12 (Kleene Path) .  Suppose (w, w') E ~TiA(Tr)~ M i f f  thc?"c is a 7t path from, 
"A * (W,,S'i) tO (Wt,.'~j) 1:71 M ~ A. Then (w,u/)  E ~tkijn(Tr)~ M {0' there is arr path 

from (w, ,s,i) to (w', .sj) in M ~ A. 

-A P r o o f .  Use tim (h;finition of E ij k to t)rovc by in(luction oil k tha t  ( w , u / )  C 
"A * ~I{ijk(Tr)~ M iff there is a r r  pa th  f'ron~ (w, s i) to (u/ ,  sg) in M ~ A t tmt (toes not 

pass through any pairs (v, s) with s E { s k , . . . , . s , , - ,  }. 
Base case, i = j:  A rr* pa th  fl'Oln (w,.s,) to (u/,.s.i) tha t  (loes not visit, m~y 

intermediate  s tates  is either tim enq)ty pa th  or a si l@e rr step fronl (w, si) to 
~ , A  M K A  . (w ' , s j ) .  Such a Imt,tl exists iff (w, w') E ~'?T tO I i j  ~ ill" (/12, w') C ~ ij()(7r)l M 

Base (:as(,, i :/: j :  A re* pa th  from (w,.s,,) to ( , / , s j )  t tmt (loes not visit any 
intermediate  s tates  is a single rr step fi'om (w,,s,:) to (,,/ , .sj).  Such a pa th  exists 
ifr ( , , , , , , , , ' ) e   ggl M ifl ( , , , , , , , / )  e M.  

Induct ion st, el). Assume tha t  (w, w') E ~h'Ak(rr)~ M iff ttmre is a rr* pa th  froIn 
(w,s,.) to ( , / , . sy)  in M ~ A tha t  does not pass thi 'o~gh any pairs ('~,,.s) witt~ 

Case i = k = j .  A pa th  from (w, si) to (u/ ,  sg) in M (~ A tha t  does not pass 
th rough  any pairs (v,,s) with s C {Sk+l , . . .  ,s,,~_~ } now consists of an a rb i t ra ry  
number  of rr* pa ths  from .sk to .sk tha t  do not visit any in termediate  s tates  with 
action component  sk or higher. By the induct ion hyt)othesis, such a patll exists 
iff (w,  w ' ) C  [[( -A jIM ~-A (rr)~]M Kkkk(rr))* ill" (w,w') e IEij(k+l) 

Case i = k =/= j .  A pa th  from (w, si) to ( w ' , s j )  in M ( ~  A tha t  does not 
pass through any pairs (v,s)  with s E {Sk+l , . . .  ,.s,,_~ } now consists of a rr* t)ath 
s tar t ing  in (w, .sk) visiting states of the form (u, sk) an a rb i t ra ry  number  of times, 
but  never touching on states with action componen t  sk or higher in between, and 
ending in (v, sk), followed by a rr* pa th  from (v, sk) to (u/,  s j )  tha t  does not pass 
th rough  any pairs (v, s) with s E { s k , . . . ,  s , ,_l}.  By the induct ion hypothesis ,  
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A ),  M a pa th  from (w, sk) to (v, sk) of the first kind exists iff (w,v) E ~(Kkkk(rc ) ~] . 
Again by the induction hypothesis, a pa th  from (v, sk) to (~/, sj) of the second 

A M kind exists iff (v, w') E [Kkjk~ . Thus, the required pa th  from (w, si) to (w', sj) 
in M |  A exists iff (w, w') E I( A �9 A (71.)~M KA M Kkkk(rr)) ;Kkj k iff ( w , w ' ) e  [ ij(k+l)(rc)~ . 

The other two cases are similar. II 

The Kleene path  lemma is the key ingredient in the following program trans- 
formation lemma. 

LEMMA 13 (Program Transformation).  Assume A has n states so, . . . ,  S~-l .  Then: 

n - 1  

M ~ ,  [A, si][rr]~ iff M ~w A [TiA(rr)][A' sj]p. 
j=O 

P r o o f .  Induction on the complexity of rr. 
Basis, epistemic link case: 

M ~,,, [A, si][a]~ 

iff M ~,,, I,,'e(si) implies M 6o A ~(,,,,.~,) [a]p 

itt" M ~,,, t)re(si) inlplies for all .sj C A, all ~u/c M :  

if .s, -2+ .s.i, w _2+ w', then M ~,,,, [A, .s.i]p 

iff tbr all .sj e A:  if.si _2+ .sj thin, M ~,,, [I,re(si) ; a][A,,sj]~ 
n--I  

itt" M ~,,, A [T/~(a)][A, sj]~. 
j =(} 

Basis, test case: 

M ~,,,  [A, s,]['?,~/J]~ 

iff M ~,,, pre(,si.) implies M ~ A ~(,,,,.~,) ['?,/~]~ 

iff M ~,,, i, re(s,:)in,plies M ~.,,, ['?~bJ[A,.s;]~ 

iff M ~,,, A [TiO('?~/')][A's.J]~ 
j=O 

Induction step, cases rrl ; rr2 and rrl U rr2 are straightforward. The case of rr* is 
settled with the help of the Kleene path  lemma. II 

~.~ Reduct ion Ax ioms  for  Update PDL 

Tile program transformations can be used to t ranslate  PDL DEE to PDL by means 
of the following mutual ly recursive definitions of translat ions t tbr formulae and r 
for programs: 
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t ( T )  

t(p) 
t ( ~ v )  

t ( ~  1 A ~a2) 
t([~-]V) 

t([A,s]T) 
t([A,s]p) 

*([A, ~]-~V) 

t ( [ A ,  s ] (~ l  A ~2))  

t ( [A,  si] [Tr]~) 

t([d,s][d',s']~) 

- T 

= p 

= - ~ t ( ~ )  

= t((~91) A t((r 

= [ ~ ( ~ ) ] t ( ~ )  

= Y 

= t(pre(s))  --~p 

= t(pre(s))  ~ ~t([A,s]y)) 
= t([A, 8](r A t([A, s]y)2) 

n--1 
-- Z [TiA(r(Tr))]t([A' sj]~) 

j=o 

= t([A, s]t([A', s ']~)) 

, . (a)  = 

, .(?.~) = ?. t (~)  

?.(71-1; 71-2) __-- ?'(71"1 ) ; ?'(71-2 ) 
?'(71" l U 71-2) -- 1"(7I" 1 ) U '/'(71"2) 

, ' (~*)  = ( , ' (~))* 

The correctness of this translation follows ffOnl (lirect semantic inst)ection, using 
the t)rogl'am transformation h 'mma for the translation of [A, s i] [Tr]~ formulae. The 
translation points tile way to at)l)rot)riate reduction axionls, ~Ls fl)lh)ws. 

Take all axionls an(1 rules of PDL [Segerberg, 1982; Fischer an(l La(lner, 1979; 
Parikh, 1978], plus the following reduction axioms: 

[A,s]p ~ (pre(s) =~ p) 
[A,.s]~ ~ (pre(s) =~ ~[A,s]~) 

[A,s](~l A ~2) ~ ([A,s]~l A [A,.s]~2) 

[A,.s',:][Tr]~ ~ Z [TiA(Tr)][A' s j]~ 
j =0 

and necessitation for action model nlodalities. Tile reduction axioms fi)r [A, sip, 
[A, ,';]~99 ~II(1 [A, s](991 A 9)2) are as ill [Kooi and  van  Ben then l ,  2004]. Ti le  final 
reduction axiom is based on t)rogram transformation and is new. Note that  if we 
allow Inultiple action models, we need the following reduction axiom for those" 

sES 
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If updates with multiple pointed action models are also in the language, we 
need the following additional reduction axiom: 

[A ,S]~  ~ A[A's ]~P 
s E S  

T H EOREM 14 (Completeness).  If ~ cp then ~ ~. 

P r o o f .  The proof system for PDL is complete, and every formula in the language 
of PDL DEL is provably equivalent to a PDL fornmla. II 

~.5 Special Cases 

Public Announcement and Common Knowledge 

As introduced above, in section 4.2.1, the action model for public announcement  
that  ~ consists of a single state so with precondition ~ and epistemic relation a 
{s0--~ so [a E Ag}. We call this n~odel P~. 

A_._ 
., -..., 

We are intereste(1 in how Infl~lic annolmcement thai, ~ l~rings al)ollt common 
knowle~lge of '~h among group of agents B, i.e. we want to ('Olnl,,ge [P~, .so] [B* ]~b. 
For this, we nee(1 To(P((g*), which is (h;fined as K(,(P*i (B). 

- P . o  P . P .  
To work out I-(ool(g), we ilee(l Ko,~,(g), an(l for /x(,(;(,(B), we nec(l T{)(~*'(B), 

which turns ollt. to be ~beB('?~ ; b), or equivalently, '?~; B. WoI'king upward from 
this, we get" 

.P,. r'. ,,,,,, (B) ='?-r u %,; (g)  -'?-r u ('?~; B). 

aml th~,refi)re: 

. P .  I< ~,& ( B) - (t~{,{;{,(B))* 

= (?T U ('?~;B))* 

= ('?,; B)* 

Ttnls, the reduction axiom for the public annolmcement  action Ps  with respect to 
t,h('~ program for common knowle(lge among agents B, works out as tbllows: 

~.-P~ 
[/~001 (U)] [Pqo, s01l/) 

[(':~; B)*I l ee ,  .~,,]~. 
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This expresses tha t  every B path  consisting of ~ worlds ends in a [P~, s0]r world, 
i.e. it expresses exactly what  is captured by the special purpose operator  CB (~, ~) 
introduced in [Kooi and van Benthem, 2004]. Indeed, the authors  remark in a 
footnote tha t  their proof system for CB(Cp, ~) essentially follows the usual PDL 
t rea tment  for the PDL transcript ion of this formula. 

Secret Group Communication and Common Belief 

The logic of secret group communicat ion is the logic of email CCs. The action 
model for a secret group message to B that  y) consists of two states so, sl ,  where 
so has precondition y) and s l has precondition -l-, and where the accessibilities T 
are given by: 

b 
r - { s o ~ . % 1 5 � 9  

a 

u{s0 ~ s~ l a e A g -  B} 
a 

U{Sl ~ Sl l a E Ag}. 

The actual world is so. The members of B are aware that  action V) takes place; 
the others think that  nothing happens. In this they are mistaken, which is why 
CC updates generate KD45 models: i.e. CC updates  make knowle(lge (legenerate 
into belief. 

We work out tile program transformations that  this ut)dat, e engen(lers fl)r conz- 
B mon knowledge among some group of agents D. Call the action mo(M CC~. 

( , ( ,  1~ .C,C', I~ C C  1~ . C'(',/~ 
We will have to work out Koo2 ~" D, /~/o12 ~" D, Kl1s ~ D, /~/lo;z ~ D. 

C C  1~ C C  I~ C C  I~ ( ' C  I~ 
For these, we need K,,i,; r D, A'0i,;  D, A' , , I"  D, A'li,; ~ D. 

( ' C  I~ C C  I~ . C C  1~ CC/~ 
For these in turn, we nee,l tV000; D, A',,i,, ~ D, /~ ~,,,~" D, K,i,0 r P .  
For these, we need" 

CC/~ 
Too~D - U 

d C B n D  

z ( C  c i i 
D - U }1 

d E D - B  

C C / ~  
Tll"'~D 

C C  1~ 
TlO ~ D 

- D 

- ' ? J _  

(?~ ; d) - ' ? ~  ; ( B N D )  

(?~ ; d) - ? ~  ; ( D - B )  
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It follows that" 
C B 

KooCo~ D = 

C B 

KCC2 
11o D - 

KCC 
l o o  D = ? l  

From this we can work out the I~ijl, a s  follows: 

C ~ , 
Koo I D = (79~ ; (BC-ID)) 

K(C1 CI3 I~D = ('?qZ ; ( B A D ) ) *  

h.cc2 111 D = ?T W D 
H 

-~-CC v 
Al01 D = 71. 

Finally, we get Ko02 and h)J12 from thin: 

.CCtJ 
K oo2" D 

7TU(Tp ; ( B n D ) )  

K(} 12" O 

?~ ; ( D -  B) 

?T U D, 

; ( D -  B) 

- h'oi,;" D U h 'ol ;  r D ; (Kl i [ ' :  D)* ; K,i,i*" D 
(,( ,1~ 

= K,,i,;; D (since the right-han(1 expression evaluates to ?• 

= ('?~ ; ( B c ~ D ) ) *  
(,(,/~ (,(,1~ .(:C/~ 

- K o ~  r D U K ~ i i  ~ D ; (/~11~" D)*  

( ,( ,~  . (  ,( ,'J 
= K,,ii  CD ; (K l ,  I ' D ) *  

= ('?~9 ; ( B N D ) ) *  ; ( D - B )  ; D* 

Thus,  the program transfi)rmation for common  belief among D works out  as 
follows" 

[CC~, so][D*]f, 

[('?r ; (B N D))*][CC~,.s'o](, A [('?~ ; (B A D))* ; (D - B) ; D*][CC~,.st],r 

Compare  [Ruan, 2004] fin" a (lirect ax iomat i sa t ion  of the logic of CCs. 

Group Messages and Common Knowledge 

The action model  fi)r a group message to B tha t  ~o consists of two states so, s l, 
where so has precondi t ion ~ and ~sl has precondi t ion T, and where the accessibil- 
ities T arc giw;n by" 

T 
b 

{ S o - ~ . ~ o { b  e B }  
b 

U { s l - ~ S l l b < B }  

U{s,, --% Sl { a E A g -  B}  

U{Sl -% s o l a  e A g -  B}.  
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This captures  the fact tha t  the members  of B can distinguish the ~ upda te  from 
the T update ,  while the other agents (the members  of A g -  B)  cannot.  The  actual  
action is so. Call this model G~.  

B B 

A difference with the CC case is tha t  group messages are $5 models. Since 
updates  of $5 models with $5 models are $5, group messages engender common 
knowledge (as opposed to mere common belief). Let us work out the program 
t ransformat ion that  this update  engenders for common knowledge among some 
group of agents D. 

We will have to work out Koo;2D, Eo12D, E 112 D, E 102D. 

For these, we need hoe 1 D Kol ~ D, h l l  1 D /XlO 1D. 

For these in turn ,  we Iloed/k'(,((')il D, /X"(,;~ D, /X'l;~ ) D, /X'l;)(~) D. 
For th(~so, wc I1O(~,(1: 

(,1~ 
Toi,;D - U ( ? ~  ; d ) - ? ~  ; D, 

dE D 
,(; I~ [ ] 

7()I ;D -- ('.~r ; d ) = ? ~  ; ( D - B ) ,  
dE D-  B 

It follows tlmt" 

(,1~ 
7"1[; D 

T,c[, ~ D 

D? 

- D - B .  

Koo~D - ? T U ( ? r  ; D), 

IX'O(;1 i ~ ) D - ? ~  ; ( D - B ) ,  
(,1~ 

/X'll~} D -- '?T U D, 

Klo ~D - D - B. 

From tiffs we can work out tile K.ijl, as follows" 

Koo ~ D - ( ? ~ ; D ) * , 
(,1~ 

Ko]~D - (?~ ; D ) * ; ? ~  ; D - B ,  

K111D - V T U D L J ( D - B ; ( ' z ~  ; D ) * . ' ~  ; D - B )  

k l o l D  - D - B  ; (V~;D)* 
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Finally, we get Koo2 and K012 from this: 

c~ c~ c~ c~ 
Koo 2 D Koo I D t2 K o 11 D ; ( D)* c~" --  K i11  ; K 1 0 1 D  

= (?90 ; D)*t_J 
(?9~ ; D ) * ; ? ~  ; D - B ;  

( D t . J ( D - B ; ( ? c p  ; D ) * ; ? c p  ; D - B ) ) *  
B G ~  B G~ 

Ko12D -- /(Ol ~ D ; (KlllC;~ D)* 
= (?~ ; D)* 

; D - B  ; (?gn ; D)*, 

;?W ; D - B  ; ( D U ( D - B  ; (?r  ; D - B ) ) *  

Abbreviat ing DU(D-B ; (?~p ; D)* ; ?~ ; D - B )  as 7r, we get the following 
t ransformation for common knowledge among D after a group message to B that  

[GB, s0][D*]r 
+--+ 

[(?p ; D)* U((?cp ; D ) * ; ? ~ p  ; D - B  ; r r* ; D - B  ; (79~ ; D ) * ) ] [ G B , s o ] ~  
A 
[ ( ?. cp ; D ) * ; ? gn ; D - B  ; 7r*][Gvn,Sl]~/,. 

This equivalence gives a precise characterisation of two path requirements that  
have to hold in the original model in order tbr common knowledge among D to 
result from the group message to B. The fornmla may look conlplicate(l, but 
lneclmnical verification of the r e q l l i r e n l e n t  is quite easy. 

5 QUANTIFIED DYNAMIC LOGIC 

Tim second core systenl of (lynanlic logic tha t  will be (tiscllsse~l iIl (letail is that  of 
q'uantificd d y n a m i c  logic (QDL). QDL was developed by Harel [1979] and Gold- 
blatt  [1982]. Both monograt)hs were inspired by Pra t t  [1976]. Further  information 
about the development of QDL can be found in [Harel, 1984; Harel et al., 2000; 
Goldblatt ,  1992/1987]. 

Quantified dynamic logic can be viewed as the first order version of propositional 
(lynamic logic. It is less abstract  than PDL, for progranl atoms now get further 
analysed as assignments of values to program variables or as relational tests, and 
states take the concrete shape of mappings from program variables to appropriate  
values. At the background is a first order s tructure M consisting of a domain phas 
interpretations of relation and function symbols. 

Recall tha t  the assignment programs of WHILE looked like v "-  t, with v a 
progI'anl variable and t a term of the WHILE language. In QDL, the basic actions 
at 'el 

�9 assigning a ran(tom value to a variable: 
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�9 assigning a definite value to a variable:  

V :-- t, 

�9 and  tes t ing  for the  t r u t h  of a formula:  

?~. 

Various versions of QDL result  from impos ing  fur ther  res t r ic t ions  on tes t ing,  e.g., 
by only allowing tes ts  on boolean  combina t ions  of re la t ional  and  equa t iona l  a toms.  

Consider  a s ta te  where  x has value 3 and  y value 2. Assuming  we are c o m p u t i n g  
on the  na tu ra l  numbers ,  r a n d o m  ass ignment  of a new value to z causes infinite 
b ranch ing  to the s ta tes  wi th  

{x H 0, y H 2}, {X H 1,y  H 2}, {X ~ 2, y ~ 2}, {X ~ 3, y ~ 2}, 

and so on. The  subsequen t  test  x = y only succeeds for the  s ta te  wi th  {x ~-+ 2, y ~-+ 
2}. The  ne t t  effect of x :=? ; ?(x = y) is a t r ans i t ion  from {x ~-~ 3, y ~-, 2} to 

~ - ~  __ 

. x:=? ......... x:=? ....... ~ x'=~ x'=~ " x:=? x:=? x:=? " .... �9 ' �9 �9 X ~'", '"~. 

r x t l  x y y y I" 2 1 2 2 ?(x=y) 4 2 5 2 6 2 

5.1 Language 

Take a s igna ture  for first order  logic. 
follows: 

Define terIns, formulae  an(1 programs ,  as 

: : - -  

71- : : ~  

v I f t l ' " t , ,  

T I R t , ' . "  t,, I t ,  = t2 I - ~  } ~, v ~2 I ~*'~ I (~)~ 

v :='.~lv : = t l ' ~ . ~ l ~ ,  ; ~,e I~ ,  u ~  I~ *  

Abbrev ia t ions  are as in the  case of PDL.  In t)art icular ,  tile SKIP, ABORT, WHILE, 
REPEAT, IF-THEN-ELSE cons t ruc t s  are also define(1 as in the case of PDL.  
W h a t  Quantifie(1 Dynamic  Logic gives us is a fleshe(1 out  version of PDL,  wi th  
ass ignments  ( r andom and  definite) and tes ts  as basic actions.  Tile ass ignments  
change re la t ional  s t ruc tures ,  and therefore  the  app rop r i a t e  asser t ion language  is 
built  from first order  pred ica te  logic r a the r  t han  propos i t iona l  logic, as in PDL.  
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Floyd-Hoare correctness statements 
for WHILE programs can be expressed directly in QDL. Recall the example of 

the correctness statement for the factorial program from section 2.4" 

x ! - Z - - - + [ y ' -  1 ; WHILEx=2(= 1 DO ( y ' - y , x  ; x - - x - 1 ) ] y - Z .  

This expresses partial correctness of the factorial program. Total correctness of 
the factorial program can be expressed in QDL as the conjunction of the above 
with the following: 

( y - -  1 ; W H I L E z #  1 D O  ( y ' - - y , x  ; x ' - - xL1) )T .  

5.2 Semantics 

A first order  s ignature  is a pair  (f, R)  where f is a list of f lmction symbols  wi th  
their  arities and R is a list, of relat ion symbols  with  their  arities. Nul lary  func- 
tion symbols  are individual  constants ,  nullary relat ion symbols  are proposi t ional  
constants ,  una ry  relat ion symbols  are t)redicates. 

A nlo(lel for a s ignature  (f, R)  is a s t ruc tu re  of tim tbrnl 

M - ( / ~ M  f M  R M  ) 
, , �9 . . , , �9 . . , 

wliere E ix a llol>emI)ty set, tim f M  are intert)retatioIls ill E t'()r l, lm illenfi)ers of 
f (i.e. if f ix an 'l~,-ary flm(:tioIl synfl)ol, then f M  . E "  --, E) ,  ml(l tile R M are 
iIltert)retatioIls in E for tlm nmlld)ers of R (i.e. i t 'R  is ml lt,-ary relat ion syInl)ol, 
titan R M C_ E'"). 

Let V be the set of varial)les of tim l a n g u a g e .  As u s u a l  .q -.~,, h, ext)resses tha t  
s ta te  h (lifters at, most  fr()Ill s ta te  9 on '~. Inter t ) re ta t ion of terills in M is define(l 
relative to a variable assigninent  g" V -+ E M, as follows- 

M _ ( ] ( ' U )  

M) M __ f M ( ~ t l ~ M  ' , ~tn~g ~ftl" �9 �9 t,,.l: t . . .  

T ru th  in M for fornmlac an(1 relat ional  meaning  in M tbr I)rogranls are (lefine(1 
by s imul taneous  recursion: 

M ~:j T always 
M) cRM 

M M is the same as [[t2~.q M ~ t l  - -  t2 iff ~tl l .  

M ~ j  -~y) iff not M ~.~j 

M ~ . q ~ I V ~ 2  iff M ~ . q ~ l  o r M ~ . q ~ 2  

M ~ . q 3 ~  iff for s o m e h w i t h g ~ v h ,  M ~ h  

M ~.q (Tr)y) iff for some h, with .q[Tr]] M, M ~ h  Y) 
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g~V :=?~M iff g ~v  h 

glV "-- t~ M iff h equals 9[v H ~tl M] 

g[?~l M iff g - h a n d M ~ 9  

gITl'l ; 7T2~ M iff there is an assignment f with 

g~Trl~ M and  f~71-2~ Mh 

g~Trl U 7r2]]~ iff 9~Zrl~ M or girt2]] M 

g~Tr*~ M iff (g,h) E ( I T I ' ~ M )  * 

Validity of QDL formulae over a given s ignature  is defined in terms of t r u th  in 
all models for the signature. A QDL formula p over a given s ignature  is satisfiable 
if there is model  M for tha t  s ignature  together  with a variable assignment g in the 
domain of tha t  model, such tha t  M ~ ~. 

Note tha t  the presence of v :=? does not increase the expressive power of the 
language. Indeed, we have the following validities: 

3'v? ~ {v :='.">? 
V'v? ~ ['v :='.~]g 

Next, if 't~ (loes not o(:(:llr in t, (lefinite assignment of t to v is e(tlfivah;Ilt to random 
assignment to v followc(1 by a test of the equali ty v = t. In other  wor(ls, if 't~ (loes 
not o(',cllr in t we have the following wfliditics: 

< v : = t > ?  ~ ( v : = ? ; ' . ~ v = t > ~  

Substitution and Assignment 

The COmlmtational t)rocess of assigning a value to a variat)le is im, imatcly linked 
to the syntactic t)rocess of making a sul)st i tution of a ternl for a vai'ial)le. 

Ilecall the s i tuat ion in first or(ler logic. There,  the basic t r l gh  definition is 
t)hrase(1 in terms of a first or(lcr mo(M M,  a variable assignment 9, an(1 a fornmla 
~" M ~.0 ~ means tha t  variable assignment g makes p t rue in M.  Let t",~ be the 
result of replacing variable v everywhere in te rm t by te rm ,s. Then  the tbllowing 
term subs t i tu t ion  lemma hohls tbr FOL and tbr QDL: 

LEMMA 15 (Term subst i tut ion)  ,, M M �9 ~ t ~ ,  - ~ t ~ g i , , ~ . q M  1. 

This is easily proved with induction on the s t ructure  of t. 
Using this, one can prove the subs t i tu t ion  lemma for FOL. Recall tha t  a te rm t 

is subs t i tu table  for v in p (or: free for v in ~) if the subs t i tu t ion  process does not 
cause accidental  capture  of variables in t. Use ~ '  for the result of subs t i tu t ing  t 
for all fl'ee occurrences of v in F. The  tbllowing holds for FOL: 
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LEMMA 16 (Substi tution).  If t is free for v in qD then 

M ~9 ~ iff M ~9[~-,~t]M] ~D. 

The proof uses induction on the structure of qp, using the term subst i tut ion 
lemma for the atomic case. In the case of QDL, we can rephrase this as follows: 

LEMMA 17 (Assignment) .  

M ~g Iv " -  t]~ i f f  M ~g[v~t ]M]  ~D. 

W h a t  this means is tha t  in QDL we can replace syntactic subst i tut ions ~ by 
[v-- 

Below we will be interested in the subsystem of QDL defined by 

7r . ' z  " . ?~ t l  " ' "  t 2  IYt l  - t 2 [ v  I 171"1 ; 71"2" 

where ~zr is an abbreviat ion of ?[TrIA. 
It turns out tha t  this subsystem, baptised DPL in [Groenendijk and Stokhof, 

1991], has the same expressive power as first or(ler h)gic, but its quantifier v :=? has 
(lifferent t)in(ling bchavioln from tim, qllantifiers of first or(ler logic. [Grocnen(lijk 
and Stokhof, 1991] t)rot)oses to employ the (lynamic bin(ling behaviour of the 
DPL qlmntifiers for analysing anat)horic linking (estal)lishing tile links between 
pronouns an(l their antccc(lcnts) ill natural  l a n g u a g e .  

Exprcssivc'nc.~s 

We can imnm(liately see that  the expressive power ()f QDL is greater than  tha t  of 
FOL. The fbllowing fbrnmla in the language of natural  numt)er ar i thmetic  expresses 
in(luction on the natural  numbers: 

(7) V y ( x : = O  ; W H I L E  :," # y D O  :,: : -  :,: + I ) T .  

This asserts tha t  for all y the program x := 0 ; W H I L E x ~ y D O x : = x + l h a s  
a terminat ing execution. Tha t  is, every y can be reachc(1 by s tar t ing from 0 and 
ret)eatedly applying the successor function. This (lefines the natural  numbers  ut) 
to isomorphisnl, an(l no first or(ler formula can do that .  Let ~N be tile conjunction 
of formula (7) with the Peano axioms for ar i thmet ic  except tile induction axiom. 
Then the valid QDL sentences of the form ~N ~ ~/~, with ~/J a first order sentence, 
specify the first or(lcr sentences ~/J tha t  are true oil hi. But we know from G6del 's 
incomt)leteness theorem and Church's  Thesis tha t  this set, of sentences cannot  be 
cfl'ectively emlIneratc(l. 

5.3 In terpreted versus Uninterprctcd Reasoning  

As wax the case with the WHILE-language and other systems, we are often inter- 
ested in computa t ion  with respect to some s tandard  structure,  such as the na tura l  
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numbers.  In such cases, we evaluate QDL formulae and programs in this s t ructure ,  
and talk, e.g., about  N-validity: t r u t h  for all variable assignments in N, and so on. 

Note tha t  all W H I L E  programs over a given s ignature  are QDL programs  over 
tha t  same signature.  Thus,  we can use QDL for making assertions about  the 
behaviour  of W H I L E  programs.  W h e n  interpret ing with respect  to N, we can 
specify Euclid 's  GCD algori thm as the following QDL program: 

7r=  W H I L E x = / = y D O I F x > y T H E N x : = x - y E L S E y : = y - x .  

Clearly, Floyd-Hoare correctness s t a tements  about  W H I L E  programs can be ex- 
pressed in QDL. E.g., the following QDL s ta tements  about  the GCD program,  
expressing the total  correctness of the program,  are valid in N: 

( x  = x '  A y = y '  A x • ~ > 0 )  - ~  [~]  �9 = g ~ a ( ~ ' ,  y ' ) .  

x x y > 0 --, (~- )T 

The first, of these says tha t  if p rogram 7r over N terminates  then in the outt)ut 
s ta te  x holds the value of the GCD of x' and y'. The  second of these expresses 
tha t  the program does indeed te rmina te  for all s tates with x x y > 0, for (Tr}T 
expresses te rminat ion  fbr all (leterministic programs.  

In the case of lmintert)reted reasoning we arc interested in t ru th  in all s t ructures .  
The  fbllowing is wfli(l in all models: 

(:,- = :,.' A ~j = J )  ~ [ ,  : =  .T ; :,: : =  ~j ; ~j : =  ~]( , , .  = ~ / A  .~j = .~') .  

5.~ Undccidability and Complctcnc.,s's 

QDL is a t)rot)er extension of classical FOL, anti, as we haw; seen, its vali(lity 
t)roblcm is not effectively cmmmrabh~. This retails tha t  there can be no proof 
theory for QDL lmsc(l on an cmmmrable  set of axioms and an cnunmrable  set of 
decidable inference rules. A proof theory will haw; to lm tmsed on infinitary (hence 
un~lecidable) intbrcnce rules. 

The  following axioms relate random assignment to quantif icat ion and definite 
assignment to subst i tut ion:  

Vv~ ~ ['~, :='.~]~ 
Vv~ ---, [v := t]~ 
Vw[v := w]~  ~ V'v~ 
Vv~ --, [v := t]V'v~ 
v,,,,[v : =  t ] ~  --, [~, : =  t]v,,,,~ 
(,,, : =  t ) ~  ,-, [,,, : -  ~]~ 

I )  . , t ? l ,  l )  ['t~ " - -  t ] R t l  " ' "  t n  e-+ I~,t~lt  " t 

'v _ _  t 2  v [v "- -  t ] t l  - -  t 2  ~-+ t l t  t 

[~,, :=  t] [,,,, :=  ,~]w --, [,,, :=  ,~f][v :=  ~]w 
s = t ~ ([ , ,  : =  t ] w  ~ [,, : =  .~]w) 

Now take as axiom schemes the following: 

,., r {,,, } u , , , , .(~) 

,,,, ~ {,,,} u ,,a,.(t) 

~,, r { v }  u , , , , - ( t )  
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�9 All instances of valid FOL formulae, 

�9 all instances of valid PDL formulae, 

�9 the assignment axiom schemes above, 

and as rules of inference: 

�9 modus ponens 

�9 quantifier generalisation 

�9 program generalisation 

�9 and infinitary convergence: 

Vvqp 

where 7c" is given by 7r ~ ='?T, 71 " ' t + l  = 71" ; 7l "n 

A proof in this (:alcuhls may have infinitely Inany premises. This infinitary proof 
system is som~d and comph~te (Harel [1984] or Gol(ll)latt [1992/1987]): 

THEOI-tEM 18. Fo'l" any QDL formula ~2, 

6 DPL AS A F R A G M E N T  OF QDL 

In the introduction we mentione(l that  dynamic logic is also used in linguistics, 
in particular in the analysis of wtrious ptmnomena involving information flow in 
discourse (text, conversation). In this section we turn to the study of a particular 
h)rmalism, that  of Dynamic Pre(licate Logic (DPL), that  has played a prominent 
role in the (levelot)ment of (lynamic semantic theories tbr natural  language. 

The DPL system is a representative instance of a whole variety of systems that  
have been developed in formal semantics of natural language to deal with dynamic 
aspects of meaning an(l infoI'mation flow: the contribution of dcclarativcs to the 
'common ground', presuppositional phenomena, anal)boric links across sentence 
boundaries, the temporal  structure of discourse, the semantic effects of impera- 
tives, and so on. DPL is an illustrative example in the present context because 
of its obvious affinities with systems develot)cd in other areas, in particular with 
PDL and QDL. The formal properties of the DPL system have been studied quite 
extensively (cf., e.g., [van Benthen~, 1996] and the references below). Also, DPL 
provides a nice illustration of some of the central concepts of QDL. A more elebo- 
rate discussion of the specific linguistic issues involved can be found in section 7. 
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6.1 System 

DPL is the subsystem of QDL that is given by the following syntax" 

DEFINITION 19 (DPL syntax). 

t "'-  v l c ] f t l . . . t ~  

7r " ' =  ? . t ~ t l ' ' "  t 2 I7. t l  - -  t 2 I v  "--'?. ] ~ T r  [71-1 ; 71- 2. 

Semantics: as in the definition of QDL. The meaning of ~Tr is given by: 

g[~Tr]]h iff g equals h and for no g' it holds that g~Tr]]gM,. 

As was noted earlier, ~Tr can be taken as an abbreviation of ?[Tr]_l_. 
FOL can be interpreted in DPL, as follows: 

( R t ,  "" t~)" 

( t l  = t 2 ) *  

( ~ ) *  

(('P1 V (r e 

( 3 v ~ ) "  

= ? R t l . . . t ~  

- -  'It1 - -  t 2  

- -  f x a ( ~  0 

- ~ ( ~  ; ~ ~ )  

- ~ ( ~ ,  . - ' }  ; ~ ' )  

DPL and FOL 

An inst)cction of the DPL semant ics  yiel(ls: 

L E M M A  20 (Emt)cd(ling). For all FOL fov'm'u, lac ~2, all models M for  the signat'u'rc 
of ~, all a.s.sign'mc'nt.s 9, h, in M :  

M ~:j ~ and 9 -  tt "if]' ~j~2"l M. 

DPL programs  can be reversed, as follows: 

('?. R t  l " ' "  t n  )'~ - '1. R t  l " ' "  t n  

( ' } t l  = t 2 ) ~  = '} t l  - -  t2  

(~,:='})~ = ~, := '}  

(~~)~ = ~ 

(71"1 ; 71"2) "~ --- 7i-2" ; 71"1 "~ 

This r shows tha t  ~ is definable in DPL,  because ? R t l . . .  t,,,,, ?tl = t2, 
~Tr, ~ :=? and ~Tr are all symmet r i c  aml hence self-converse. W h a t  this means  ix 
tha t  adding a converse opera to r  to DPL does not increase expressive power. The  
following reversal  lenmla is proved by induct ion on DPL p rogram s t ructure :  

L E M M A  21 (Reversal) .  For" all DPL programs 7r, all models M ,  all ass ignments  
g, h in M :  

M , ,H, M d , , M , ,  
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DPL and DPL' 

One of the features  of D P L  is t ha t  it does not have the dis t inct ion between pro- 
g rams  ( in terpre ted as b inary  relat ions on a set of appropr i a t e  valuat ions)  and 
f o r m u l a e  ( i n t e r p r e t e d  as p r e d i c a t e s  on  a set  of  a p p r o p r i a t e  v a l u a t i o n s ) .  Sti l l ,  it is 
s o m e t i m e s  useful  to  be  able  to  m a k e  s t a t e m e n t s  a b o u t  D P L  p r o g r a m s .  For this ,  
we define D P L '  formulae as follows (Tr ranges over D P L  programs) :  

::= m ] R t l ' " t n  ] t l  = t2  ]-~PI~Pa V~p2 [Zlv~pl (Tr}~P. 

Sta t emen t s  abou t  DPL programs  can now be made  in DPL ' .  The  formula  (rr}T 
character ises  the ass ignments  where  rr succeeds. In [Groenendi jk  and Stokhof, 
1991] this is called the sat isfact ion set of rr. The  set of possible o u t p u t  ass ignments  
for rr (the p roduc t ion  set of rr) is charac ter i sed  by (Tr~)T. The  following formula  
expresses tha t  rex and rr~ have the same sat isfact ion and p roduc t ion  sets: 

(8) ((Trl)V ~ (Tr2)T) A ((Tr,~)T ~-+ (Tr2~)T). 

Note  tha t  it does not follow from (8) t ha t  rra and 7r2 are equivalent.  Let 71-1 be 
'.~X -- :r~ and let 7r2 bc :r 1=?. Tllen (Tr 1 )T  ~ T ~ (Tr 1 }T ~tll(1 (Trl '~}T ~ T ~ (Trl" }T, 
but  th{' two p rograms  ar{; not equivalent.  Th{' int{;rt)rctation of 7rl is the i{lentity 
relat ion on t, lle set of ass ignments ,  t ha t  of" 7r2 is the set of all I}airs .q, h sllctl t ha t  
g "~z h. 

6 .2  P r o o f  th,(:or'9 

Reduction to FOL 

Tiler(; m'c vaiiolls t ) r o o f  systc,  lllS for  DPL or closely relate(1 logics. An early CXalnI)lc 

is the Floyd-Hoare- tyt)e  syst, e n l  of Van Eijck and De Vries [win Eijck and de Vrie, s, 
1992]. Basically, this calculus uses Floyd-Hoare  rules to re<lute D P L  to FOL. We 
can also use QDL to re{lute DPL to FOL. Here is a t ranslat ioi l  f imction from DPL '  
to FOL: 

( T )  ~ - T 

( R i l l  " ' '  t n )  ~ - -  R t l  " ' "  t , , ,  

( t l  - -  t 2 )  ~ - -  t l  - -  t 2  

_ 

_ 

( 3 v ~ )  ~ - 3,v~ ~ 

~ - m , . . . t , , . A  o 

~ - t,-t A o 

_ 3 , , , o  

( ( ~ T r ) ~ )  ~ - -  - 7 ( (T r }m)  ~ A ~o 
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Direct inspection of the semantics reveals that  this translation is correct, in the 
following sense: 

LEMMA 22 (Translation Correctness). For all D P U  formulae ~, all FO models 
M for the signature of ~, all variable assignments g in M: 

M pg ~ iffM pg (~)~ 

It follows from this that  the following reduction axioms for DPL are sound" 

test relation 
test equality 
random assignment 
dynamic negation 
sequence 

(?Rt: . . .  t~)F ~-+ Rt l  . . .  tn A 
(7tl = t2)cp ~-+ tl = t2 A 99 
(v :=?)~ ~ 3v~ 
(~Tr}cp <-~ -~(Tr)T A cp 
(71-1 ; 71"2}~ ~-+ (71"1)(71-2) ~. 

The boxed counterparts of these axioms can be derived by propositional rea- 
soning" 

test relation 
test equality 
ran(lonl assignment 
dynamic negation 
s e q u e n c e  

[ ' . ~ R t l ' - .  t n ] ~  ~-~ ( R t l "  ' '  tn  --+ 99) 

['.~tl = t2](iP ~ ( t l  = t2 --~ ~9) 

The calculus for DPL ~ can now consist of the axioms for FOL, the axioms for 
test relation, test equality, (lynamic negation and sequence (either in their box or 
in their (liamond versions), anti the infe, rence rules of FOL: modus ponens and 
gcneralisation. It follows Kom tim translation lclnnla that this axiomatisation is 
sound. The axiomatisation is also conlt)lete. 

THEOREM 23 (DPL' completeness). 
For all DPL' formulae ~: if  ~ ~ then ~ ~. 

Proof .  The proof system for FOL is complete, and every DPU fornmla ~ is 
provably equivalent to some FOL formula, m 

By way of example of the at)plication of tile calculus we give the (lerivation of 
tile FOL counterpart  to the, DPL rendering of so-called 'donkey sentences' (cf., 
section 7.2 below for more extensive discussion of this type of t)tmnomenon): 

1. If a farmer owns a donkey then he beats it,. 

DPL translates this using a defined operator for dynamic implication, given by: 

. =  ; 

The DPL rendering of (1) looks like this: 

( x - ?  ; ?Fx  ; y = ?  ; ?Dy ; ?Oxy) =>?Bxy. 
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H e r e  is  t h e  r e d u c t i o n  t o  F O L  u s i n g  t h e  r e d u c t i o n  a x i o m s :  

( ~ ( x : = ?  ; ?Fx ; y : = ?  ; ?Dy  ; ?Oxy  ; ~ ? B x y ) ) T  

~-~ I x : = ?  ; ?Fx ; y :=? ; ?Dy ; ?Oxy  ; ,~?Bxy]_l_ 

Vx[?Fx ; y :=?  ; ?Dy ; ?Oxy ; ~?Bxy]_l_ 

~-~ V x ( F x - - ~  [y : = ? ;  ?Dy ; ?Oxy ; ~?Bxy]_l_) 

V x ( F x  ~ Vy[?Dy ; ?Oxy ; ~?Bxy]_L_) 

V.v(Fx -~ Vy([?Dy ; ?O.Ty ; ~ ? B x y ] L ) )  

V.T(Fx -~ Vy(Dy -~ (Oxy  ~ [~?.Bxy]L))) 

(Ox  _L)))) 
,--, V.T(Fx ~ Vy(Dy ~ (O.T,y ~ Bxy) ) ) .  

Clearly,  this  is the  des i red  universa l  r ead ing  of the  example .  

A xiomati,sation 

Axiomat, is ing D P L  l)('com(;s mor('~ of a (:hall(;ng(; if ()n(: is aft('1" an ax iomat i sa t i ( )n  
at  t im h;vcl of t)r()grams, wi thol l t  r('colu'sc t() a st, ati(' ass( ' r t ion lang, mg(; like FOL.  
Slwh a (lir('ct ax i ( )mat i sa t ion  is t)rovi(h'(1 in Van Eijck [van Eijck, 19991. K('y 
(;h'm(;nt ()f t,tw (:al(:lfllls is an al)I)r()l)riat(' t,r('atlll(,nt ,)f" Slfi)stit, llti()n i~l DPL.  

For rca(lal)ility, it, is us(:flfl to s l ight ly  rct)hras(; t tw D P L  langlmgc,  1)y l('aviIlg 
ollt th(; st)lu'iolls t,(;st, Ol)(;rators an(1 1)y llsing qlmIlt, ifi(;r n() tat ion for ran(lore  as- 
signm(;nt:  

D E F I N I T I O N  24 ( D P L  syn t ax  again) .  

T y p e s  o f  V a r i a b l e  O c c u r r e n c e s  Let V b(; the  variat)lcs of the  D P L  language .  
Th(; s(;t, ()f wtrial)h;s wlfi(:h hay(; a fix(;(1 o('.('.lu'r(;n(:(, in a D P L  l ) rogram 7r is given 1)y 
a f lmct ion J'ree.: D P L  --~ 7")V, t, tl(: set (>f variat)lcs whi(:h arc intro<luc('d in a fl)rmlfla 
is given t)y a flm(:ti()n int'ro : D P L  --~ T'V, an(1 th(' s('t of w~riabh's whi('h have a 
classi(-ally t)oun(1 ()(:(:ln'rcnce in a f()rnmla is given t)y a f lmct ion  cbnd: D P L  --~ T)V. 

The  intro(1,u:(,(1 variabh,s  of 7r (callc(1 '|)lock('~(l' var iables  in [Visser, 1998]) are  
the  wtriat)h~'s y such t h a t  7r conta ins  an  3y not  in the  scope of a nega t ion .  The  free 
w~riat)h;s of'Tr arc th(' w~rial)h's on which intnlt  vallmti()ns have to agr(;e on o u t p u t  
valuat ions .  The  classically t)(mn(1 wtriablcs of w ar(; t tw variat)lcs t h a t  behave  like 
the  boun(1 varial)lcs of FOL.  Let "t~a'r(Ptl... t,,) 1)(: t.tw set of all var iables  a m o n g  

t I " " " t . .  

D E F I N I T I O N  25 (free, intro,  cbn(1). 

�9 f l ee (T)  := r intro(T) := 0, cbnd(T) := 0. 
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�9 free(3v ; 
intro(3v ; 
cbnd(3v ; 

~) :=  f ~ < ~ )  - {v}, 
rr) :=  {v} U intro(rr), 
rr) := cbnd(rr). 

�9 f r ee (P t l . . ,  tn ; rr) := v a r ( P t l . . . t n )  tOfree(rr), 
i n t r o ( P t l . . . t n  ; r r ) : = i n t r o ( r r ) ,  
c b n d ( P t l . . . t n  ; r r ) : =  cbnd(rr). 

�9 f/'eC("-'(7]" 1 ) ; 
intro(~(rrl ) ; 
cbnd(~(rrl ) ; 

71" 2 ) : :  f?"ee(71 1 ) U fFec(7"l" 2 ), 

rr2) := intro(rr2), 
~ )  := i ~ t ~ o ( ~ , )  u ~b~d(~i) u c b n d ( ~ ) .  

�9 f/'cg((71"171"2) ; 71"3):~-f/'cg(7]" 1 ;(71" 2 ; 71"3)), 
intro((rrlrr2) ; r r3) := in tro(rr l  ; (rr2 ; rr3)),  
cbnd((rrlrr2) ; 7 1 3 ) : =  cbnd(rrl ; (rr2 ; 713)). 

Some examples may clarify this definition. Let 

r r : = 3 v  ; 3w ; Ruvw.  

T h e n  intro(rr) = {v, w }, free(rr) = {u }, cbnd(rr) = 0. T h e  occur rence  of u in R u v w  

is free. 
Var iables  intro(llwe(l withiIl  the  scope of nega t ion  b e c o m e  classically bound .  

Let  

r r : =  ~ ( 3 v  ; 3w ; R u v w ) .  

T h e n  intro(rr) = O, free(rr) = {u}, cbnd(rr) = {v, w}. Tim O C C l l r r e n ( : ( ~  of **, in Ru, ,w 

is still free. 
A var iable  can have tixe(l, b o u n d  and  in t roduce( l  occur rences  in an express ion.  

Let  

rr := P x  ; 3x ; ~ P x  ; ~(q : r  ; Q.r). 

T h e n  in t ro (Tr )=  {x}, f rec(Tr )=  {:r}, cbnd(Tr)= {x}. The  leftI,lost occu r rence  of :r 

is flee, tile o the r  occur rences  are not.  

B i n d i n g  Note  t h a t  for all D P L  p r o g r a m s  rr, intzv(rr)N free(rr)= 0. Let  g ~ x  h. 
if var iable  a s s ignmen t s  g and h. (liflhr at  mos t  in the  values of var iables  a m o n g  X.  
Let  .q[X]h if .q ~ v - x  h, where  V is the  set  of all variat , les.  Thus ,  g[X]h expresses  
t h a t  g and h agree  oil the  values of var iables  in X.  

L E M M A  26 ( D P L  binding) .  If  9 ~  M then g ~intro(~) h and .q[free(~)]h. 

Thus ,  the  l e f tmos t  occur rence  o f x  in Px  ; 3x ; ~ P x  ; ~ ( 3 x  ; Qx) is free, 
the  o the r  occur rences  are not.  Use rr~' for the  resul t  of s u b s t i t u t i n g  t for all free 

occur rences  of v in rr: 
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D E F I N I T I O N  27 (Try). 

T~' " - -  T 
�9 12 12 . ( R t l " " t n  , 7c) f  "-- R t l t  " " t n t  , 7c~ 

(tl -- t2 ; 7r)~ "-- tl~ -- t n ~  ; 7c~ 

v I)  v 
( ~ ( ~ )  ; ~:)~ = ~(~1~) ; ~ 
((~1 ; ~ )  ; ~ ) ~  - (~1 ; ( ~  ; ~ ) ) f  

Note  t ha t  this definit ion of subs t i tu t ion  takes  the dynamic  binding force of 3v 
over the text  t ha t  follows into account  (cf. the  clause for (3v ; 7r)~, where  the 
occurrence  of 3v blocks off the 7r t ha t  follows). Visser [Visser, 1998] calls this 
subs t i tu t ion  'left '  subs t i tu t ion .  

S e q u e n t  D e d u c t i o n  R u l e s  Figure  2 gives a set of sequent  deduc t ion  rules 
for DPL,  using the format  p ~ ~/;, where --,~ is the  sequent  separa tor .  Note  
tha t  ~ ---> • expresses t ha t  ~ is inconsistent .  The  calculus defines a re la t ion 
-->C_ DPL 2 by means  of: ~ ---> ~/J iff ~ -=-> '~/J is at the root  of a finite t ree with 
sequents  at its nodes, such tha t  the sequents  at a leaf node are axioms of the  
calculus, and tile sequents  at the internal  nodes follow by means  of a rule of the 
calculus from tile sequent(s)  at tile daugh te r  node(s)  of tha t  internal  no(le. 

In the calculus, C, with and wi thout  subscripts ,  is used as a variable over 
contexts ,  where a context  is a formula  or the emp ty  list e. Subs t i tu t ion  and 
evaluat ion are ex tended  to contexts  in the obvious way. If C is a context  and ~ a 
formula, then  we use C ~  for the formula  given by: C ~  " -  ~ if C - e, C p  " -  t/a; 
if C - ~p. Similarly for ~C ,  and for C1 ~C2. 

It is convenient  to extend the definition of subs t i tu t ion  to sequents.  

D E F I N I T I O N  28 ((C ~ ~)i ').  Induc t ion  on tile s t ruc tu re  of C: 

(~ ---,, ~)~ .= ~ ---,, ~i' 

( ~ _ _ ~ , ~ v  . _  ~ ~ / ~ ~ ~  if v E i n t r o ( ~ p )  

otherwise.  

Subs t i tu t ion  for sequents  carries in its wake a not ion of being free for a variable 
in a sequent:  

D E F I N I T I O N  29 (t is free for v in C ----->, '~b). 

1. t is free for v in e > ~p if t is free for v in ~p. 

2. t is free for v in ~ ~ r if t is free for v in ~, and ei ther  v C i n t r o ( ~ a )  or t is 
free for v in ~P. 
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Figure 2. The  Calculus for DPL 

test axiom 

transi t ivi ty  

test swap 

quantifier move 

quantifier intro 

var refreshment  

s e q u e n c i n g  

negation 

double negation 

T = ~  T 

~ ---> x 

CIT1 ; T2C2 =::=:::~ ~ 

CIT2 ; TIC2 ~ (~ 

C1T  ; 3v C2 ~ 

C1 ~1) ; TC2 ---> y) 
v ~ f ree(T)  

C131; ; TC2 ---> ~p 

C 1 T  ; B'v C2 ~ 
!, r f ree(T)  

~ ,~'v 
t 

y) ~ ~v ; 
t free for v in ~/J 

C1 ~1; C2 --% 
~,, r ~,,,t,~o( C, ) u/,-~(c, ) 

i n t ro ( r  n free(X) = 0 

~------~, ,.,j,~ 



562 Jan van Eijck and Mart in  S t o k h o f  

W h e n  a rule ment ions  a subs t i tu t ion  p~ in the consequent  of a sequent  then  the 
s t anda rd  as sumpt ion  is made  t ha t  t is free for v in ~. W h e n  a rule ment ions  a 
subs t i tu t ion  C1 ((72 ~ ~)~ then  it is a ssumed tha t  t is free for v in (72 ~ ~. 

In the rules of Figure  2 T is used as an abbrev ia t ion  of formulae ~ with  
intro(p)  = 0 (T  for Test formula).  

Here is an example  appl ica t ion of the quantif ier  intro rule. 

R x x  ~ R x x  
R x x - - - >  3y ; R x y  

R x x  equals (Rxy)Yx, so this is indeed a correct  appl ica t ion of the  rule. 
Variable ref reshment  allows the l ibera t ion of a cap tu red  variable,  e.g., of the  

first two occurrences  of x in 3x ; P x  ; ~x ; Qx,  by means  of rep lacement  by 
a variable t ha t  does not occur as an in t roduced  or free variable in the left context  
in tile given sequent:  

3x ; P x  ; 3x ; Qx  ~ Qx  

3y ; P y  ; 3x ; Qx----> Qx  

It is also t)ossit)le to cllange the o ther  occurrences  of x in the same example.  
Tile following ix also a correct  appl icat ion of the rule: 

3.r ; P:r ; 3x ; Q x - - - > Q : r  

3:r ; P:r ; 3y ; Q y ~ Q y  

Not(; t ha t  tile rule Call also t)e use(1 to recycle a variat)le: 

3y ; P y  ; 3x ; Qx  ~ Qx  

3:r ; P:r ; 3x ; Q x ~ Q : r  

This appl icat ion ix also correct ,  for 

(~:,, ; P.~ ; 3:~ ; Q:,, ~ Q : r ) -  (3.T ; ( P ~ j ;  ~:,, ; Q:,, ~ Q.~):,;,:). 

An example  appl icat ion of the rule for ; r ight is: 

R x x  ~ 3y ; R y x  R x x  ~ 3z ; R x z  

R x x - - - > 3 9  ; Ryx ; 3z ; R x z  
; r ight 

In case tile condit ion on the rule for ; right ix not satisfied, e.g. for the two 
sequents  ~ P x ;  3 x ;  P x  ~ 3 x ;  ~ P x  and ~ P x ;  3x ; P x  ~ P x ,  this can 
always t)e remedied by one or more appl icat ions  of 3 Right  to the second premise.  

It ix not  hard  to see tha t  the rules of the calculus arc sound. The  calculus 
ix also complete .  For tile proof  a modif icat ion of the s t anda rd  Henkin style 
completeness  proof for classical first order  logic ..... we refer to [van Eijck, 1999]. 
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6.3 Computational DPL 

In [Apt and Bezem,  1999] a c o m p u t a t i o n a l  in terpretat ion  of s tandard  first order 
logic is proposed ,  wi th  as key ingredient  a new interpretat ion  of ident i ty  s t a t e m e n t s  
(in sui table  context s )  as as s ignment  act ions.  C o m p u t a t i o n  s tates  are partial  m a p s  
of variables to values.  The  gist of the  proposal  is this" in a s tate  a that  is def ined 
for a term t but  undef ined for a variable v, an ident i ty  s t a t e m e n t  v - t or t - v is 
interpreted as an ins truct ion  to ass ign the value t ~ to the variable v. 

Let AJ - (M,  I)  be a FO model ,  and let V be a set of variables.  Let A "-  { a  E 
AI X [ X C_ V}. If c~ E AI X, then call X the d o m a i n  of c~; a term t is a - c lo sed  if 
all variables in t are in X ,  an a t o m  P t l . "  t,~ is a - c lo sed  if all ti are a -c losed ,  and 
an ident i ty  t x - t2 is a -c losed  if bo th  of t i, t2 are. Use  T for 'undefined'  and I for 
'defined'. Term interpretat ion  in m o d e l  M - (/lI, I)  wi th  respect  to vah la t ion  c~ 
now has to take the poss ibi l i ty  into account  that  the  value of the term under  a is 

un( lef ined.  

,u,~ .=  ~ ( v )  if 'u is ~-close(1 
T o t h e r w i s e  

(4 (I ~ (4 " t ( f t l ' ' "  t.,,) = I ( f ) t  1 . . . t  n i f  . 1 , . . . ,  t.,, ,~-( ' lose(l  
T o t h e r w i s e  

An  i ( lent i ty  tl - t2 is an  r r - a s s i g m n e n t  if e i t he r  t i  - "t~, t'l ~ - T ,  t~ ~ - l ,  o r  t2 = 

t~, t '  l' - I ,  t',~ =T. An  ( r - a s s i g m n e n t  can  |)(; ~ls(;(l as a s t a t e m e n t  t h a t  ext, en(ls a 
vallmt, ion rt w i th  a new vullu;. 

A first  Ol'(I(;r I)re(l icate w i th  its al'g;lllll(qlt,S P t l  "'" t,, is ilfl, crt)ret, e(1 as it t,(:st, t h a t  
(:an e i t he r  fail or succeet l ,  I)I'ovi(le(1 t, h a t  all of t he  ti a re  (h:fine(l for t he  inI)llt st, at(; 
r o t h e r w i s e  an  e r ro r  is gCllel'al,t;(1. T h e  eml)t,y (:OlljllllCtiOll is int,erI)ret, e(l as t he  
iIlst,rllt:t, iOll to  Sll('('t;e(1 in any  st, at, c it, w i th  olfl, t m t  r 

Th i s  is t h e n  exten(le(1 to f ini te  ( ' ,onjlln(:tions of imt) l ica t ions ,  n e g a t i o n s ,  <lisjlmc- 
t ions  an(1 e x i s t e n t i a l  q lmnt i f icat io l lS ,  accort l i l lg  to  t he  fol lowing rifle set: [PI , ,  

(h',notes t, lle COlnt)llt, at, ioIl t,i'(;(', for 99 t)II in t ) lg  ~r. A t r ee  is s lwcessful  if" it, c o n t a i n s  
a t  h:ast  ()ll(; h;af (',Ollsisting of j~st, a wu'ia |)h: m a p ,  it, fails if all i ts h,afs eq~ml f a i l .  

I 

[ if' .t, ~ ,1,,1,, (a), t~ not  free in e.  
[? A 

i f ?  ~'-(:lose(l, I?l,~ faile(l. 

(le 

if'qp ~-close(1, I~p]],~ successfl l l .  
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(~1 ~ ~2) A @, ct 
! 

[~[~ll if ~1 c~-closed, [~l]]a failed. 

(991 ~ 992) A ~,  ct 

[[~2 ~ ~]]~ if ~1 ct-closed,[~l~c~ successful. 

(@1 V ~92) A @, ct 

[~1 A ~ A  ~]]~ 

All cases not listed generate an error. 
This computa t ion  procedure has the property  tha t  for any ~ and any input 

valuation (~, the valuations at success nodes in [~1~ are extensions of (~. Com- 
plltations never change the input valuations. In particular,  3x~ A ~/~ is treate(1 as 
equivalent with ~ A ~/~ t)rovide(1 the variable comlitions hohl. Thus, the quantifier 
has no computat ional  effect, but acts as a prohibit ion sign: its only flmction is to 
rule out oc('llrrences of x in the outside context of 3x~. 

The comt)utational engine can be adapted to a sett ing where quantifiers are rea~l 
(lynamically, by giving assignments '~ :=? an at)propriate coinputat ional  meaning. 
The relational intert)retation of v :=? is comt)utationally infeasible, for the instrlm- 
tion to replace the value of register v by an arbi t rary  new value is awkwar(l if one 
is computing ow~r an infinite domain, say the (lolnain of natural  numbers. As a 
s ta tement  on N, v :='? is an instruction to t)ick an arbi t rary  natural  number  and 
assign it to '~. Since this can be done in an infinite number  of ways, this does not 
represent any fn i te  comt)utational  procedure. 

In the computat ioIml interpretat ion of DPL one therefore changes the quantifier 
action as tbllows. Instead of letting the quantifier action v :=? perform its flfll duty, 
the action v :=? is split into two tasks: 

1. throwing away the old value of v, and 

2. identifying appropriate  new values for v. 

On infinite (h)nmins any a t t empt  to perform task (2) immediate ly  will cause an 
infinite branching transit ion, and therefore this task is postponed. Tile duty of 
finding an appropriate  new value for v is relegated to an appropria te  identifying 
statement for v fllrther on. This move is inspired by tile computa t ional  interpre- 
ta t ion of identity s ta tements  from [Apt and Bezem, 1999]. See [van Eijck et al., 
2001] and [Heguiabehere, 2001] for more information on comput ing with DPL. 
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6.4 Extensions of DPL 

DPL can be viewed as the most basic of a hierarchy of formulae-as-programs 
languages. We will now look at extensions of DPL with the six operations U, 
~, a, a, N, 5]. Extensions of DPL with A (relation intersection) and 5] (local 
variable declaration) are studied in [Visser, 1998], while in [van Eijck et al., 2001], 
an extension of DPL with U (relation union) and a (simultaneous substitution) 
is axiomatised, and w-completeness is proved for the extension of DPL with U, a 
and Kleene star. 

E x t e n d e d  S e m a n t i c s  

A subs t i t u t i on  is a finite set of b indings  x H t, wi th  tile usual  condi t ions  t ha t  no 
b ind ing  is tr ivial  (of the  form x ~-+ x) and  tha t  every x in the  set has at mos t  one 
b inding  ( subs t i tu t ions  are funct ional) .  Examples  of subs t i tu t ions  are {x ~-+ f ( x ) }  
("set  new x equal  to f - vahm of oht x") ,  {x H y, y ~-~ X} ("swap values of x and 
y").  If a subs t i t u t i on  conta ins  jus t  a single b inding  we omit  the  curly brackets  
and  write jus t  tile a s s i g n m e n t  s t a t e m e n t  x " -  t. Note  tha t  if x occurs  in t, the  
ass ignment  x " -  t is not  expressible in DPL.  Similarly , there  is no D P L  p r o g r a m  
tha t  is equivalent  to {:r H y, y H X}. 

Lcfl,-t~>right sut)s t i tu t ions  cr have r ight- to-lef t  c.ountcrI)arts r~ ((:onvcrsc substi-  
t l l t ions).  For pre- an(l t)ostcon(li t ion reasoning wi th  extellsions of DPL,  converse 
slfl)stitution an(1 re la t ion converse ~ are a t t rac t ive .  

A conw;I'Se sul )s t i tu t ion is a finite set of converse bin(lings (:r H t) ~, wi th  the  
s a n l e  conr as those for sut ,s t i tu t ions .  An examt)lc is (.r H f (x) )~  ("set  ol~l x 
equal  to f - vahm of new x",  i.e. "look at all int)llt, s g t ha t  (lifter from the ol l t tmt  tt 
only in x, anti t ha t  satisfy f ( 9 ( x ) ) -  h(:r)").  

The  semant ics  defini t ion for tim new ope ra to r s  runs: 

~o.IM __ {(.q, .r ,  . . . .  r , ,  , ' '  
- -  ( . ]d , . . . d , ,  ) I {it'1 . , 3 ' n }  - - ( l o n l ( o ' )  an( l  d i  - a ( : r i )  M ' 9  

[(3.~ M __ { (.(]~: .... r , ,  , . .  --  .d,, -q) I { "/;1 . , : t ' n}  - - d o I n ( c y )  a n d  d i - o ( : r i )  M'.q 

z ~,:i? ;I ,  M ((v,  fo, e l[q M } 

[[/r l N 7r2~ M - -  H/ r l ]  M N I7r2] M 

~Tr~l M --- I M} 

Tile 5] ope ra to r  allows for the  dec la ra t ion  of local variables.  S inml taneous  
sul )s t i tu t ion pe rmi t s  pe r forming  cer ta in  c o m t m t a t i o n s  wi thou t  tile use of auxi l iary 
varial)les. Converse  an(l converse s imul taneous  subs t i t u t i on  are useful for t)re- and  
postcon( l i t ion reasoning,  as they  allow lls to (tefine the  inverses of p rog rams  under  
cer ta in  condi t ions  [Gries, 1981, C h a p t e r  21]. 

Le f t - to -R igh t  and R igh t - to -Le f t  Subs t i t u t i on  

Because  the  semant ics  of D P L  p rog rams  is comple te ly  symmet r ic ,  pe r fo rming  a 
subs t i t u t ion  in a D P L  p rog ram can be done in two directions:  lef t - to-r ight  and  
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r ight - to- le f t  [Visser, 1998] (see also [Vermeulen,  2001], where  s u b s t i t u t i o n s  for D P L  
wi th  a s tack  s eman t i c s  are s tud ied) .  Lef t - to - r igh t  s u b s t i t u t i o n s  affect the  lef t-free 
var iab le  occur rences ,  r ight - to- le f t  s u b s t i t u t i o n s  the  r ight - f ree  (or ' ac t ive ly  b o u n d ' )  
var iab le  occur rences .  

D P L  has two d i rec t iona l  ana logues  to the  s u b s t i t u t i o n  l e m m a  f rom FOL:  one 
for le f t - to- r ight  s u b s t i t u t i o n  and  one for r igh t - to- le f t  subs t i t u t ion .  For l e f t - to - r igh t  
s u b s t i t u t i o n  we get  t h a t  g [ a ( r r ) l M h  iff g~,~rr]]Mh. Viewing  the  s u b s t i t u t i o n  i tself  
as a s t a t e  change,  we can d e c o m p o s e  this  in to  g[cz~Mg'[[rr]]Mh. This  uses g~cl]]Mk 
i f f  k = g ~ .  

T h e  r ight - to- lef t  s u b s t i t u t i o n  l e m m a  for D P L  says t h a t  g~(~(rr)~Mh iff g~rr~Mh~,. 
Viewing  the  r igh t - to- le f t  s u b s t i t u t i o n  i tself  as a s t a t e  change,  we can d e c o m p o s e  
this  into g~rclMh'[[~Mh. This  uses k ~ l M h  iff k = h~. Again,  since in genera l  
(~ is not  express ib le  in DPL,  we have a m o t i v a t i o n  to ex t end  the  l anguage  wi th  
converse  subs t i t u t ions .  

Use o for r e la t iona l  compos i t i on  of s u b s t i t u t i o n  ext)ressions, (lefine(1 as tbl- 
lows: 

D E F I N I T I O N  30 ( C o m p o s i t i o n  of s l lbs t i tu t ions) .  Let  

t)c slll~sl,il, l ltions. T h e n  a o p ix the  l"(;slflt of r emov ing  from the  set 

{, , , ,  ~ ~ ( , , . , ) , . . . ,  ,,,,,, ~ , ( , . , , , ) .  ,,, ~ t ,  . . . . .  ,,,, ~ l,, } 

the  lfimlings w~ ~-+ c,('ri) fl)r which ( r ( ' r , ) =  ,~,, aml  the  tfimlings ~'.i H l.i fin which 

~b c { " '1  . . . . .  "',,, }. 

It, is (',asily t)rov('sl now t h a t  (r ; p is (;(llfiwtl(:nt to c, o p. E.g.,  ;r := ;r + 1 ; !! :-- ;r 

ix e(llfivahmt to {x ~-+ x + 1, y H ;r + 1 }, aml  ;r := y ; ;r := ;r + 1 is C(llfivalent to 
;r := y + 1. 

Every  DPL(U,  a)  forInllla (',a, ll |)(, w r i t t e n  wi th  ; a s soc ia t ing  t,() t,}l(, r ight ,  a,s a 
list, of l)re(li(',ates, quant i f icat iol ls ,  l legat ions,  choices an(1 subs t i t u t ions ,  wi th  a sul)- 
st, it,~lt.i(~li p at, t,ho, o,n(l (1)ossil)ly the, onH)ty Slll)stit l l t ion).  Lef t - to - r igh t  mll)stitlit, i~)ll 
in DPL(U,  (r) ix (lefine(l l)y: 

, ',(r,) 
" ( r ,  ; ~-) 

~(3',, ; rr) 
~ ( P {  ; rr) 

c,(  t j = t2 ; rr)  

~(~(,~) ; ~,e) 
o((~-~ u ~~); ~-:~) 

:-- o o p  

:= o o p  ; rr 

: -  3,,, ; ~ ' ~  wh , , r , ,  , , ' =  ~,\{,, ,  ~ t i t  ~ 7"} 

:= Pc, l; (rrc 
:= cytl = cyt2 ; crrr 

: =  ~ ( ~ r r l )  ; ~ r 2  
:= ,-,-(~-,; ~-;~) u ,-,-(~-,,,; ~-:~) 
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A t e r m  t is l e f t - to-r ight  free for v in re if all variables  in t are i n p u t - c o n s t r a i n e d  in 
all p o s i t i o n s  of the  left-free occurrences  of  v in re. A s u b s t i t u t i o n  cr is safe for re if 
all b ind ings  v ~-+ t of c~ are such tha t  t is l e f t - to-r ight  free for v in re. T h i s  a l lows 

us to prove" 

L E M M A  31 (Lef t - to -Righ t  S u b s t i t u t i o n ) .  I f  cr is safe for  re then g~cr(re)~h if f  
g~Mh. 

Right - to - l e f t  s u b s t i t u t i o n  is def ined in a s y m m e t r i c  fashion,  now read ing  the  
formulae  in a l e f t -as soc ia t ive  manner ,  w i th  a converse  s u b s t i t u t i o n  at the  front, 
and over load ing  the  n o t a t i o n  by also us ing  o for the  re lat ional  c o m p o s i t i o n  of  
converse  s u b s t i t u t i o n s  (def ined as one would  expec t ,  to get  c~ o fi - (p o cy)~) �9 

a ( r  . -  

a ( ~  ; ~) - -  

a(Tr; 3v)  : =  

a(re ; P O  := 

o(rr  ; t l - t 2 )  - 

a-(~-, ; (~-~ u ~-:,)) :=  

~ o ~  

7r ; a-o,a 
c, rr ; 3v where  c~' t ) ~ l t  C T} 

a r e ;  Pc,  t 

c~re ; (Ttl - c r t 2  

(3"(7"1-1 ;71"2) U ~(7r 1 ;71"3) 

A t e r m  t is r ight- to-h;f t  fl'ce fi)r v in re if all variat)h 's  iIl t are out t )ut -const ra i Iu; ( l  
in all pos i t ions  of the  r ight-free  (act iw;ly b o u n d )  occlu'reImeS of ~ in re. A conw;rse 
s u b s t i t u t i o n  (~ is safe for re if all converse  bin(l ings (v H t)~ ot'(~ are such t h a t  t is 
r ight- to-h;f t  fi'ee tor ~ in rr. Th is  allows us to I)rove: 

L E M M A  32 (Righ t - to -Lef t  S u b s t i t u t i o n ) .  I f  g, is ,s@, ]'o'rrr then 9[[5(re)lh iff 

Ezprcs.sive Power  

T h e  f'ollowing reslflt;s are fronl [tell Care  et al., 2001]; i I l ( lexHegll iabehere,  .l. nlany 
of the  proofs  are a(lapte(1 f rom p rooN given in [Visser, 1998]. 

T H E O R E M  33. D P L ( 3 )  i,s equall?] czprcssive as D P L ( U , N , ' ~ , o , 5 , 7 ) .  

P r o o f .  Let  a fo rmula  rr be given, and  let V be the  set  of var iables  occu r r i ng  in re. 
Fu r the rn lo re ,  let V '  and  V"  be sets  of var iables ,  such t h a t  V, V'  and  V"  are nm- 

! 
tua l ly  dis joint  and  of equal  cardinal i ty .  Let  V - { : r l , . . . ,  :r,,. }, V '  - { z ' l , . . . ,  .r~,~ }, 

I t  ~ I I  and  V"  - { .T1, . . .z ,~}.  T h e  following f imct ion  C t r an s l a t e s  a f o rmu la  f rom 
D P L ( U ,  N, ~, a, g,,:~) into a tes t  f rom D P L .  
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X ! C(3y) = A~ev \{~}  - x 
C ( R t l  . . . tn)  = A x ~ v  x '  = x ; 
C(t~ = t 2 )  
c ( ~ ~ )  
C(71-1;  71-2) 

C(~rl n 7r2) 
C ( ~ I  u ~2) 
c ( ~  ~) 
c(~,) 

c ( ~ )  
C(=nx.~r) 

R i l l  �9 �9 �9 t n  

X / -- A x ~ v  - x ; t l  - t2 
X t = A x ~ v  - x  ; ~ ( ~ x l ; . . . ; 3 x ' ~  ; c ( ~ ) )  

- ~ ( 3 X ' l ' ; . . .  ;?x~;  C(~rl)[Xl/Xi" .... x:,/x,,(l , C(Tr2)[Xl/Xi', .... ~,,/~1;]) 
- c ( ~ , ) ;  c ( ~ )  
- ~ ( ~ c ( ~ , ) ;  ~ c ( ~ , ) )  
_._ C ( , . ] . r ) [ X l / x '  1 . . . . .  x,n / x i, , x '  1 / x  I . . . . .  x.:,, / x ,,, ] 

= Axedo~(~  x '  - ~,(x); Ax,~V\eom(,~)x '  = 
X t = A ~ e d o m ( o ) x  - c ~ ( x )  [ ~ ' / ~ '  ..... x./x,,l; A ~ e v \ d o m ( , , )  - -  x 

= ~ ~ ( 3 x ;  3x'; c ( ~ ) ) ;  ~' - 

Here, A is used as a shorthand for a long composition, which is non-ambiguous 
because the order of the part icular  sentences involved doesn' t  mat ter .  By induc- 
tion, it can be shown tha t  every 7r containing only variables in V, is equivalent to 

l . ! 
~.T,~ . . . .T~, n(C(71") ; .7 : ,  1 = . T , ~ ; . . .  ; .T n : =  X n ) .  

T H E O R E M  34. DPL(*,=R) is equally expressive as D P L ( * ,  U,N,~,a,c~,qt) 

P r o o f .  As the proof of Theorem 33, now adding the following clause to the 
definition of C. 

c ( ~ * )  - --~(?~,I '  ; . . .  ; 3:~',',; ( c ( ~ )  [:,: /:,::'l ; Ax~v.~, - x")*  ; A : ~ v  :~, - x ' )  

II 

It follows immediately tha t  every h)rnmla 7r c D P L ( U , G , ~ , c I , ~ , 3 )  is equivalent 
to a first order logic formula, in the sense that  rr can be executed in .Ad with input 
assignment 9 iff tile first order t ranslat ion of 7r is true in Ad under g. 

T H E O R E M  35 (Visser). D P L ( 3 )  can bc cmbcddcd into D P L ( N ) .  

P r o o f .  Let rr be of the form 3x(~/J), and let {Yl , . . .  ,yn} = I(Tr)\{x}, where I(Tr) 
are the introduced variables of ~r, i.e. the variables in intvo(rr), i.e. the variables 
y such that  Tr contains an 3y not, in the scope of a negation. Then 7r is equivalent 
to (3.r,; ~; 3.r,) n ( 3 y ~ ; . . .  ; 3 y , )  m 

In a similar way, the following can be proved: 

T H E O R E M  36. DPL(*,=R) can be cmbcddcd into D P L ( * , N ) .  

It, is also easy to show that  * gets us beyond first order expressive power: 

T H E O R E M  37. The f o r m u l a  

- , (3y  ; y = O  ; (3z  ; z = f ( y )  ; 3y ; y = f ( z ) ) *  ; z = y )  

cannot  be expressed in D P L ( U ,  N, ~, a, ~, :~). 
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P r o o f .  O n  the  n a t u r a l  n u m b e r s  ( i n t e r p r e t i n g  f as t he  successor  r e la t ion) ,  th i s  
fo rmula  defines t h e  o d d  n u m b e r s .  O d d n e s s  on t he  n a t u r a l  n u m b e r s  c a n n o t  be  
c a p t u r e d  in a first o rde r  fo rmula  w i th  only  successor ,  m 

D E F I N I T I O N  38. A s u b s t i t u t i o n  {X 1 ~ t l , . . .  , X  n ~ t n }  is full if eve ry  xi occur s  
in some  tj and  every  ti con ta ins  some  xj .  

E x a m p l e s  of full s u b s t i t u t i o n s  are  x := f ( x )  and  {x H y , y  H x}, whi le  t he  
s u b s t i t u t i o n  x := y is no t  flfll. I t  is easy  to  see t h a t  full s u b s t i t u t i o n s  are  c losed 
u n d e r  compos i t i on .  No te  t h a t  a s u b s t i t u t i o n  w i t h o u t  func t ion  s y m b o l s  is full ift it is 
a r enaming .  Also, no te  t h a t  any  fo rmula  of D P L ( a )  or any  of its ex t ens ions  can  be  
t r a n s f o r m e d  into  a fo rmula  in t he  s a m e  l an g u ag e  c o n t a i n i n g  only  full s u b s t i t u t i o n s ,  
by  rep lac ing  b ind ings  of the  form x ~-~ t, where  t does  not  con t a in  var iables ,  by  
3x ; x = t .  

L E M M A  39. Every formula 7r C DPL(c~) is equivalent to a formula of on('~ of the 
following forms (for some ~/J, x, X, (~, where cy is full): 

1. ~ X ;  o .  

2. ~/~; 3 x ; - , ~ x ;  a .  

P r o o f .  F i r s t  r ewr i t e  7r into a fo rnmla  t tmt  con ta ins  only  flfll s u b s t i t u t i o n s .  Af te r  
t ha t ,  the  only  non- t r iv i a l  c~se in the  t r a n s l a t i o n  i n s t r u c t i o n  is the  case of T ; "~/~, 
where  7- is full and  ~/J is of the  first form, i.e. whe re  '~/J is equiwflent  to - - ~ X ; a ,  for 
some  X~, a ,  wi th  a flfll. In this  case, 7- ; '~/~ is equ iva len t  to  ----(T; X~) ; r o a .  whe re  
T o ~ is flfll because  cT and  7- are. II 

T H E ( ) R E M  40. (3:r U 3y) cannot b~" ~;:rprc.,~se.d in D P L ( a ) .  

P r o o f .  S u p p o s e  7r E DPL(cy) is equiwflent  to (3x  U 3y). Take  a n~otlel wi th  as 
d o m a i n  the  n a t u r a l  n u m b e r s ,  and  let R be the  i n t e r p r e t a t i o n  of 7r. By  L e m m a  
39, it follows t h a t  7r is equ iva len t  to '~/~; 3z; ~ X ;  c~, for some fo rnmlae  ~/J, X, some  
var iable  z and  some  full s u b s t i t u t i o n  c~ (o therwise ,  7r would  be de t e rmin i s t i c ) .  T w o  
cases can be d i s t ingu i shed .  

1. z does  no t  occur  in or. W i t h o u t  loss of genera l i ty ,  a s sume  t h a t  z =/= :r. Take  

any pai r  of a s s i g n m e n t s  9, h such t h a t  g =/= h and  9 ~, .  h. T h e n  gri t .  Take  
any  k =/= h such t h a t  k ~z  h. T h e n  gRk,  b u t  g and  k (lifter wi th  r e spec t  
to two var iab les  (z and  z), which  is in c o n t r a d i c t i o n  wi th  the  fact  t h a t  7r is 
equ iva len t  to  (3z  U ~y). 

2. z occurs  in c~. By the  fact t h a t  t he re  are no func t ion  sym bo l s  involved,  anti  
by the  fact  t h a t  a is flfll, t he r e  m u s t  be exac t l y  one  b ind ing  in a of the  fo rm 
u H z. We can  app ly  tile s a m e  a r g u m e n t  as before,  now us ing u i n s t ead  of 
z, and  aga in  we arr ive  at  a con t r ad i c t i on .  

II  
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Every  s u b s t i t u t i o n  is equiva lent  to a D P L  formula  con ta in ing  only full subs t i tu -  
t ions,  and  since every  full s u b s t i t u t i o n  w i t h o u t  func t ion  symbols  is a r enaming ,  
and  the re fore  has  a converse  t h a t  is also a r enaming ,  we get: 

L E M M A  41. Every converse substitution containing no function symbols is equiv- 
alent to a formula in D P L ( a ) .  

This  i m m e d i a t e l y  gives: 

T H E O R E M  42. (3x U 3y) cannot be expressed in DPL(cr,~). 

L E M M A  43. Every formula in DPL(c~, U) is equivalent to a formula of the form 
7rl U . . .  U 7cn (n >_ 1) where each ?ri E DPL(cr). 

T H E O R E M  44. (x ~ f ( z ) )  ~ cannot be expressed in DPL(cy, U). 

P r o o f .  Suppose  7r E DPL(cy, U) is equiva len t  to (x ~-~ f ( z ) )  ~. By L e m m a  43, we 
can a s sume  t h a t  7r is of the  form 7rl U . . .  U 7r,~, where  each 7ri E DPL(cr). Cons ider  
the  mode l  wi th  as d o m a i n  { 0 , . . . ,  n},  and  where  f is i n t e r p r e t e d  as the  "successor  
m o d u l o  n + 1" f imct ion.  

Let  us say t h a t  a re la t ion  R fixes a var iable  x if for Vgh c cod(R): g "~ h 
implies t tmt  h = g. Ana lys ing  each ~ri, we can ( l is t inguish the  following two cases. 

�9 7ri is equiva len t  to ~ ;  a ,  witll  a fifll. T h e n  [7c,:~] fixes :r. 

�9 7ri is cql l ivalent  to '~/J; 3y; ~ \ ~ ;  or, again  wi th  c~ full. If y occurs  in or, t hen  
let zi t)c the  (mlique)  wtr iable s~l(:ll t lmt  a con ta ins  a bin(l ing of the  form 
z i ~-~ fk (y) .  If a (lots not  contai i l  y then  let z,i - y. T h e n  it, nms t  be the  
case t lmt  ~r.s]] fixes z,i, for othci 'wise [Tril is not  injectivc.  

Tiros, we trove t h a t  every  ~r,i fixes sonic variat)le zi. Let  { Z l , . . . ,  z,,, } t)c all var iables  
t h a t  are fixe<l by somc ~r~ (wtlei'c 'In _< 'r~). 

Co~lsi(ler all possible  ways of ass igning ob jec t s  f rom the  d o m a i n  to tlm var iables  
z ~ , . . ,  z,,,, (ass igning 0 to all o the r  var iables) .  This  gives us (n + 1)"'" a s s ignments ,  
<'ach of wtlich is in the  co -domain  of 7r. Now, of this  space  of a s s ignments ,  each 7r, 
can cover only a smal l  par t :  at  mos t  ('n + 1) ' ' ' -1  (since one var iable  is fixed). So, 
toge ther ,  7r 1 , . . . ,  7r, can cover at  mos t  'j~,, ('n + 1)"~-1 _ ('n + 1)"~ - ('n + 1) '"-1 < 

('It,+ 1)'" a s s ignments ,  which m e a n s  t h a t  some a s s ignmen t s  are  not  in the  co-( lomain 
of 7r. This  is in con t r ad ic t ion  wi th  the  fact t h a t  7r is equiva len t  to (:r ~-, ./(:r)) ~. m 

By s y m m e t r y ,  we get  the  following 

T H E O R E M  4 5 . . T  H f ( z )  cannot bc cxprcsscd in DPL((r,  U). 

Final ly  we have 

T H E O R E M  46. 3y (y  = z; 3.T ; R.T?I) cannot be expressed in DPL(U,  cr,~). 

P r o o f .  Tile s ame  proof  as for T h e o r e m  44 can be used. A s s u m e  a s igna tu re  
w i thou t  func t ion  symbols .  Let  the  d o m a i n  of the  mode l  be the  set  { 0 , . . . ,  n}. Let  
R be i n t e rp re t ed  as "successor m o d u l o  n + 1". T h e n  R is i n t e r p r e t e d  in the  s ame  
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way as f was in the proof of Theorem 44. Notice that ,  under this interpretation,  
q y ( y  = z ; 3x ; R z y )  means the same as (x ~ f (x ) )  ~ did in the proof of Theorem 
44. It follows that  :Ry(y = x; 3z  ; R z y )  cannot be expressed in DPL(U,  ~). Since 
the signature contains no function symbols, it follows by Lemma 41 that  this 
formula cannot be expressed in DPL(U,  cy, ~) either, m 

DPL and Dynamic Relational Algebra 

Yet another way in which the logic of DPL and sundry systems has been studied 
is by looking at the connection with dynamic relational algebra. 

A dynamic relation algebra is an algebra for the signature {• ~, ;}, i.e. it 
consists of all binary relations on a set B (all members of 7)(B x B)), with • 
interpreted as the empty relation , ; as relation comt)osition, and ~ as (lynamic 
negation. A dynamic relation algebra is completely determined by its carrier set B. 

Note tha t  this is different from the usual relational algebra in the sense of 
[Tarski, 1941], where the signature consists of the Boolean operations { - , N ,  U, 
_1_, T } and the order operations plus the identity relation { o, ~, i(1}. In fact, (lynamic 
relation algebra can be viewed as a small non-Boolean fragment of relation alget)ra. 
Dynamic negation can be (lefine(l in or(linary relatioIl algebra by means of: 

~-,R := i(1 Cq - (R;  T) 

Hollenl)erg [H~)llent)erg, 1997] gives the ti)llowillg axionmtisation of (lyImnli(: re, la- 
t,ion alget)ra: 

~R; R 

R;_I_ 

i(l; R 

R ; ( S ; T )  

R 

~ ( ~ R ;  ~ s )  

~(/~; (s v T)) 

= _L (falsln~l (letilfit, i(m) 

= • (falslml right) 

= R (i(lentity left) 

= (R; S ) ; T  (associativity) 

= "-'S; "-'/~, (|,(;st t)(Tnlllta, t i on )  

= ( ~ R ) ; R  ((lomain test) 

= ~ R ; ~ S  (test comt)osition) 

= (~(R; s);/~); ~ s  (,.,,,h~,~ p,,.,:.,~) 

= ~((R;  S) v (R;T))  (~listril,ution), 

where R V S is an at)t)reviation of ~ ( ~ R ;  ~S) .  
Note that  ~R;  R = _1_ can be viewed as a (lcfinition of • Or(ler is imt)ortant, 

tbr R; ~ R  does not alwsws (lenote the empty relation. 
Tests are slll~sets of the identity relation. ~ R  is always a test, an(l R is a test 

iff ~ R  = R, so ~ ( ~ R ;  ~ S )  = ~R;  ~ S  ('xt)rcsscs that  the comt)osition of two 
tests is again a test. 

The fact that  ~(R;  S); R = (~(R;  S); R); ~ S  is calle(l modus poncns is explaine(l 
by detining R ~ S as ~ (R;  ~ S )  and subst i tut ing ~ S  tbr S. This gives: 

(R ~ S); R = (R ~ S); R; ~ S .  
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Hollenberg [Hollenberg, 1997] has a proof that this axiomatisation is sound and 
complete for dynamic relation algebra. In [Hollenberg and Visser, 1997] it is 
proved that in any model (M, _L, ~ ,  ;) of this axiom system, dynamic negation is 
fully determined by the underlying monoid (M, ;). 

In [van Benthem and Cepparello, 1994] it was shown that DPL-negation ~ is 
the only permutation-invariant operator in dynamic relational algebra that satifies 
the following conditions: 

H_I_ -- id 
, - - , (u .~R~)  - u~ ( , . - . ,R~ )  

, - - , . , , - . . , .Ru( .R; - I - )  - R ; T  

~ R ; R  - R. 

Permutation-invariant operators are operators 0 satisfying 

~ ( o ( ~ , s ) )  - o(~(R), ~(s)) 

for every p e r m u t a t i o n  7r on the s ta te  set, on which the relat ions are defined. 
This  result  abou t  DPL-nega t ion  led [van B e n t h e m  and Cet)parello, 1994] to 

c, onjectllre tha t  DPL is coInt)lete tbr ( lynamic relat ional  algebra,  in the sense tha t  
colmterexaml)h:s  to relat ional  i(h,.nl,it,ies in the vocal)itlary { I ,  ,-.,, ; } are (:xl)ressil)le 
in DPL.  This  coiijecture was I)r()v(:(I in [Viss(:r, 1997]. 

T H E O R E M  47 (Visser). Sch,('matic "validity in DPL i.s comple.tc for dynamic rc- 
latio'nal algebra. 

P r o o f .  S1H)t)ose some relat ional  eqllation E in the vocal)lflary {_L, ~ ,  ; } ix refim~(l 
t)y a family of bilmry relatiolls {R. I a, C A} ()ver some (:aI'ri(;r S(~(, B, wh(w(? A is 
the set of a tomic  relati(m syml)()ls o(:currillg in the equat ion  E. 

We will consi(ler DPL forImllae over the variat)les x, y. Consi(ler the space 
B {:':'.u} ()f all ass ignnmnts  in B to :r and y. 

DPL f'ormlflae in x, y denote  r(~lations t)etween input  anti ou t i ng  ass ignments  
to {x, y}. For each R ,  we (lefine a new relat ion R ,  on B {:r'~/}, l)y set t ing 

A 

The  crllcial insight is tha t  the f lmction .q ~-~ 9(x) is a funct ional  bisimulatioll  (also 

known as: a p -morph ism)  from the t rans i t ion  systetn of the R~, on B {,,'u) to the 
t rans i t ion  sys tem of the R~ on B, since ~ and ; are safe tbr | ) isimulation. 

Let the new relat ion symbol  I (lenote ident i ty  in (B, {R ,  la  E A}). Then  the 
A 

relat ions R(, can be defined in DPL by means  of: 

3y; R ,  xy; 3:r; Ixy; 3y. 

If the relat ions at the left, hand  an(l the r igh thand  side of E are different, their 
originals under  g are different too. Thus,  an inequal i ty  defined in te rms of ~ and 
; o n  (B, {R~ l a E A}) corresponds to an inequal i ty  on 
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(B {x'~}, { / ~  I a ~ A}).  

This shows that the left- and righthand sides of the equation E yield a pair of 
non-equivalent DPL formulae. 1 

7 DYNAMIC LOGIC AND NATURAL LANGUAGE SEMANTICS 

7.1 Intwduction 

As we saw in Section 6 the difference between dynamic predicate logic (DPL) and 
quantified dynamic logic (QDL) is that whereas the latter makes a distinction, 
both in the syntax and in the semantics, between static formulae and dynamic 
programs, tile former has basically only one kind of construct: programs. All for- 
nmlae are programs, so there is no distinction either in syntactic category or in 
semantic type, between different kinds of linguistic constructions: all constructs 
are given a dynamic interpretation. The motivation for this is not a matter of 
expressive I)ower, but  one of 'i(leology'. The difference call be characteI'iser as fol- 
lows: whereas QDL acknowle(lges two (lifferent notions of meaning: one (lescriptive 
aIl(1 one imperative, DPL enfl)o(lies a unified conception: all nmanings are rela- 
I, iolls t)etween states. By (toing so, DPL instantiates a concet)tioIl of llmaning that  
tlas t)(~COlll(~ t)rolninc.Ilt ill na tura l  lallgllagc senmntics  fl'otn the early eigllties on- 
war(l all(1 t l lat  sonletinlt~,s is mlllnlmrise(l ill t, lle slogall 'MemliIlg is (',()Ill,(~.xt clmnge 
t)otentiM'. 

Tills view on nleaning is oftell referre(1 to as ~(lynanlic SelllallI, ics' Various 
I)eoI)h; tmve contrit)llte(1 to it,, nlotivat(~r |)y vari(nls COliC(Wiis. Broa(lly speak- 
illg we may (liscern two main tre.ll(ls. First of all there is w()rk tlmt t'ocllses 
oil et)ist(ullic an(1 pragInatic issues ttmt arise ill conllection wit, tl t)resut)l)ositions, 
t, lw st, nwt~lre of iifformatitnl exctmllge, l)11t, also with comlitionals an(1 motlal ex- 
t)ressioIlS. Very influential ill this tren(1 is the early work t)y Stalnaker oil as- 
sertioIl an(1 t)resut)positions [Stalllaker, 1974; 1979]. Otller early work is that  
of VeltmaIl [Veltman, 1984]. A sec(nl(l influx of ideas (lerives fl'tnn issues con- 
cerIling selllaIlt, ics, in I)arti('lflar l)rOllOlllillal reference an(1 (tlmntificatioIl. This 
is exenlt)lified by work t)t' Heinl [Heinl, 1982; 1983] an(t Kanl  I) [Kalni) , 1981; 
Kalnp and Reyle, 1993]. Sonmwtlat orthogonal to these two trends is ttic work 
on ganm-l, lmoretical selnalltics for natural  language explore(1 by Hintikka an(t oth- 
ers [Hiigikka, 1983]. Anottmr at)i)roacll that  tlas clear affinities with it r 
ai)t)roacll is that  of situation semantics [Barwise an(l Perry, 198;{]. 

The variety of emI)irical subjects tlmt Immlt)ted the use of (lynamic concepts 
have resulte(l in an analogous variety of systems. Also, different authors  entertain 
difl'erent views on how tile use of these concepts affect tile notion of ineaning as 
it ai)plies to natural  language. Some inaintain a t ru th  conditional, propositional 
notion of Ineaning and relegate dynamics to tile realm of language use, i.('~, prag- 
matics, whereas others argue that  the notion of meaning as such needs to t)( viewed 
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as a dynamic concept. Yet others take a middle position and locate the dynamic 
aspects in the construction of representations that themselves have a static inter- 
pretation. Cf., [Stalnaker, 1998; Kamp, 1990; Groenendijk and Stokhof, 2000] for 
discussion. In what follows we focus on those systems in which the use of dynamic 
concepts directly interacts with the concept of meaning that is modelled. 

The general characteristic of dynamic systems is that formulae are interpreted 
as entities that change the context. In natural language semantics and pragmat- 
ics, 'context' is an umbrella concept, that covers a wide variety of elements that 
are somehow tied to the use and the interpretation of expressions. Speaker and 
addressee, time and place, elements from preceding discourse, objects and prop- 
erties i n t roduced  in conversat ion,  in fo rmat ion  of speech pa r t i c ipan t s  a b o u t  the  
world, themselves ,  each other ,  and so on, all these factors may  be involved in 
linguistic exchanges. 

With in  a par t i cu la r  sys tem the relevant  aspects  of the  context  are r epresen ted  
in the  sys tem as states.  Which  aspects  counts  as relevant  depends  on the  specific 
at)plication a n d / o r  the  expressive resources of the  syst(;m. For examt)le,  in D P L  
s ta tes  arc simt)ly assignIneIlts of wtlues to variabh;s, ml(1 this reflects t ha t  D P L  
is t'~)(:llsc(l oi1 those asI)ects ()f (:~mtext t tmt  (:onceI'Ii bin(ling rclationsllit)s bctwct;n 
allt, c(:c(lcllts, i.e. (ltmlltific(l llOlIll t)tu'ascs all{| t)I'OI)C,r ImIlles, an(l aimi)tloric cx- 
In'cssitn>, i.(;. t)roIlomls. Wtlcll ()1It (;xt(;II(ls or al ters  the  scoi)(, ()f' aI)t)lication, the 
Ilt~t, ioIl of a s ta te  (:tmIlg(;s as w~'ll, resllltiIlg iIl a Illo(lificati~)ll ~)r exteilsi(m of' the  
~)rigillal systenl.  Iil t |lis tyi)~' t~t' sysl,cni s ta tes  (:o~lsist ,)t' ,)]).j~'(:l,s mill ttieir t)rot )- 
ert, ies all(1 relati(nisliiI)s aml (lylimiiic i~lteI'I)retatio~l clia~lges l,lie~li |)y a{l(ling new 

As we liote(l, anot t ier  ilili)()rl,alll, ast)ect of tile (:()lit,ext is t,|le illt'~rIlmtioil of 
l,t~c speech t)articit)ants. ()l~ a ~lymunic view the  ut, t,('rancc of a sent,encc is to t)c 
rcgaI'(le(l as an ins t ruc t ion  to l,t~c sI)cect~ t)articit)aI~ts to up(la te  their  informatioi~ 
witt~ l, tm coI~tcnt of tim lltt('rallCC. (U(m(:e tim nanm '~q)datc scnlal~tics'.) A sys tem 
~no(lelling tl~is will have s ta tes  l,|mt rcprcsei~t the i l fformational  statc.s of st)ccct~ 
l)articit)ants , e.g., as sets of i)rot)ositions, sets of worlds, t)ossibilitics, or s i tuat ions .  
Ul, t,cral~ces t, tlcI~ arc, ii~tcrt)rcl,c(l as ~lt)r of such states.  For cxamI)lc, a ( lynamic 
('~q)(lat, c') se~mIxti(:s for a (:~n~r ~2 --+ ~/~ wo~llr (ro~lgtfly) lm r162 as mt 
olmrat ion t ha t  ctiecks wtmthcr  ew:ry ~q)(late of a given set of possi|)ilitics with the 
an tecedent  satisfies satisl[y the consequent .  

Actually,  these points  of view ar{; not incompat ib le .  For cxanqflc,  we can look 
ut)(m DRT-  an{1 DPL-l ikc sys tems as concerned  with iilfoI'I~mtio~l as well, viz., 
with in format ion  abo'ut the disco'ur,sc: tile enti t ies  tha t  tlavc 1)(~,r in t roduced ,  
their  t )ropert ies and relationshiI)s, an(l the  various t)ossibilities t tmt  are available 
for aImt)horic reference. InformatioI~ in the  ut )date  SellS(', is the~ in format ion  about 
the world: in format ion  abou t  the  ac tual  s ta te  of things as well as t)ossibilities t ha t  
are still open.  As a m a t t e r  of fact, combin ing  these two perspect ives  is a more 
in teres t ing exercise than  jus t  pu t t i ng  two o r thogona l  sys tems together :  there  are 
in teres t ing in terac t ions  be tween  the two. 
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In the remainder of this section we start with the use of dynamic logic in account- 
ing for certain problems in semantics.  Then we will turn to systems motivated by 
epistemic-pragmatics concerns. Finally, we will briefly look at combined systems. 

Z2 Dynamic Semantics 

Dynamic Phenomena 

Discourse Representation Theory (DRT,[Kamp, 1981; Kamp and Reyle, 1993; 
van Eijck and Kamp, 1997]), File Change Semantics (FCS, [Helm, 1983]), dy- 
namic predicate logic (DPL, [Groenendijk and Stokhof, 1991]) are systems that 
originated in the late eighties, early nineties of the last century. Their initial moti- 
vation was linguistic. They grew out of attempts to deal with certain facts concern- 
ing anaphora and binding that had resisted adequate treatment in the Montague 
framework that dominated natural language semantics at the time. Other impor- 
tant areas of application are tense and aspect, t)resupt)osition, I)lurality. For more 
extensive (liscussion of the  linguistic applications of these systems, cf., [Chierchia,  
1995], [van B e n t h e m  ct al., 1997], and  the references given above. Here  it suffices 
to give just  a t)rief i l lus t ra t ion of one examt)le ot' the  kind of p h e n o m e n a  these  sys- 
t e n >  were illt(;n(l(;(1 t,o (leal with: scot)c anti 1)in(ling. Basically, in this area  t,her(; 
are two grollt)s of t)rol)lems: (:ross-scntential anat)llori(: relationshit)s an(1 so-calle(l 
' ( lonkey'-(:onstrlmtions,  whi(:h t)resent a I)artimflar form of in t ra-scntent ia l  l~in(ling. 

Cross-sent( 'nt ial  anat )hora  refers to cons t r lmt ions  slu:h as: 

A man  (mt,er('~(1 tile I)lfl). He wore a 1)la(:k hat .  

The  t)ronolm 'He'  in t,h(; secon(l sentence is m()st lmt, lmdly  taken to reh'r  t)ack to, 
i.e. as an anaI)hori(: lef(;rence to, the referent  o f ' a  man" in th(; first scntcnc(;. At t,h(, 
t ime there  was a t)retiwence for (lealing with  a n a p h o r a  antece(hmts  relat ionshit)s  
in te rms  of varial)le 1)in(ling: the  antece(lent  'a man '  semant ica l ly  ot)erates as a 
quantif ier ,  bin(ling the wu'ial)h, t ha t  correst)on(ls to t,h(' I)ronolm. Tim t)rol)h'm 
with  this type  of cross-sentent ial  antece(tent  anaph()ra  rc la t i ,mships  is, of collrse, 
t ha t  the })in(ling can 1)e estal)lishe(1 only when the  (lis(:olus(' is finishe(1. An(1 even 
then,  one nmst  take care with such antecet lents  as ' ()no man ' ,  so as not  to on(1 11t) 
wi th  the wrong in ter l ) re ta t ion ( 'One  man  p. He t/~' is not  the same as 'One  m a n  

and  '~') 
Donkey anai)hora is connecte(1 wi th  intra-senteIl t ial  l~in(ling, e.g., t)etween an- 

tecedent  and consequent  in con(tit ional constr lmtions:  

If John  spots  a good inves tment  ot)t)ortunity, he grasps it. 

The  fact to be accounted  tor here is the  b inding  of tile anaphor ic  p r o n o u n  in the  
consequent  by the in(lefinite noun  t)hrase in the  an teceden t  in such a way t ha t  the  
indefinite gets 'universal '  force: tile sentence is mos t  na tura l ly  t aken  to exI)ress 
t ha t  John  grasps  every o p p o r t u n i t y  he sees. (Not  all sentences  wi th  this s t r uc tu r e  
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have a universal (also called 'strong') reading: 'If I have a quarter, I'll put it in the 
parking meter'. Cf., [Kanazawa, 1994] for extensive discussion of so-called 'weak' 
and 'strong' readings of these kinds of constructions.) 

Note that in each case the problem is not finding an adequate representation of 
the meanings of these sentences in (first) order logic. Rather, the problem is coming 
up with such a representation while using the standard meanings of the expressions 
involved, and deriving the representation in an 'on line', i.e. incremental fashion, 
without delayed interpretation or after the fact re-analysis. 

DPL again 

Although it was not the first sys tem to be developed, we focus on D P L  because it 
is the most  'pure '  ins tan t ia t ion  of a dynamic  view on meaning.  It was develope(1 
because of a certain dissat isfact ion with  the representational, non-composi t ional  
nature of, e.g., DRT. It intends to do away with dynamica l ly  constructed repre- 
sentations as par t  of tile semant ics  and wants  to locate tile ( lynamics t)urely in the 
meanings  themselves.  

T h e  s y s t e m  The  stan(lar(1 i'(;f(;renc(; is [Gr()('nen(lijk an(l Stokhof, 1991], earlier 
similar views w(;r(, (l('v('lot)('(1 in [Barwis(:, 1987] an(1 [Stm~(la(:h(:r, 1987]. Th(, ()rig- 
inal DPL-sys ten l  staye(l as cl()s(; as t)()ssit)h: to stan(lar(l first or(h;r l()gic F()L: it 
('mt)loye(1 the sam(; langlmg(; an(1 only change(1 th(; s(;nmntics. In section 6 th(; 
syst(;m was given in a t'()rnl tha t  st.ay(;(l cl()s(; to tha t  ()f QDL. W h a t  fi)ll()ws is the 
original f()rnnflation, i.(;. wittl th(; syn tax  of FOL an(1 an a(lat)t('(l s(;llmntics. 

t . . _ _  

( , ~  . . u  

t~ I (' 

Th(; oth(;r connectiv( 's an(l th(: lufiv(;l'sal (lllantifi('r can 1)e (lefin(;(l in th(; umml 
fashi(m. (But  note tha t  comt)are(l t() FOL the choice of t)as(; logical cons tants  is 
limit(;(1. ) 

The  s(;mantics uses the Salll( ~, ingr(;(lients as tha t  of FOL. A mo(M 51 is a t)air 
<E, F>, where E is a non-emI)ty set aml /iv, M((:) E .~ an(l F 'M(R n) C .z~ n. States 
.(] ~ S ;tI'(} a s s i g n l n e n t , s  V ---+ E. As llsllal g ~,, h. (l(;notes the st, at(', h tha t  (litM's 
f'r(ml g at most  on u. 

�9 M ( t ) . F M ( t )  for variables and con- In te rp re ta t ion  of te rms is given by ~t~, - g 
s tants  rest)ectively. Formulae  (l(;not(; sllbset, s of S x S: 

M ~t,,,lM} C l~"M(/r~) , f fRt t . . . t , , ] ]  M iff g - h &  <~tt]]q . . .  , 

M M i f l  , -  h & - 

:jI[_,~]]M iff 9 - h. & there  exists no g'" , ~ ] ] y  

9 ~ 1  A ~2~ M iff there exists a g'" g ~ l l ~  ~ g' ~9921Mh 
M ,~3v9~ M iff there  exists a g'" g ~,, .q'& g'~9~h 



The Gamut of Dynamic Logics 577 

Note that although all formulae denotes relations between states (assignments), 
only conjunction and existentially quantified formulae actually change states, the 
others are tests. Conjunction is effectively re-interpreted as program composition, 
and an existential quantified formula has the cumulative effect of re-setting the 
state with respect to the variable and feeding the result into the formulae. It is 
easy to see that 

for all M, g, h" g[3XCp]]I~ iff g~x "-?-. ; r 

The definitions of truth and validity as given in section 6 carry over, as do the 
notions of production set and satisfaction set. Equivalence as identity of interpre- 
tation transcends identity of input (satisfaction set) and output (production set). 
Cf. section 6 for an example in DPL'. ~(Px A--,Px) and 3x~(Px A -,Px) both 
have S as their satisfaction set and as their production set. But their meanings 
are different: the identity relation on S, and the set of all pairs 9, h such that 
g ~.r h, respectively. Note the meaning of a test can be completely characterise(1 
in terms of its satisfaction set and its t)roduction set and that all valid tests denote 
the identity relation on S. 

S o m e  c h a r a c t e r i s t i c  e x a m p l e s  The  following two (;xamt)les exhil)it (-hara(:ter- 
istic I)r()t)erties of the semant ics  ()f DPL.  Both  concern the exten(l(;(l t)in(ling f ( ) r c (  ~, 

of th(; existent ial  quantifier.  
The first ()n('~ (:onc('xns the iilterac~ti()n ()f th(; exis tent ia l  (luantifier an(1 (:()n, jlm(:- 

ti()n. In 3xP:r  A Qx the existential  quantif ier  3:r l'ail(lonfly assigns a vallm to 3: 
tha t  is l)asse(1 on to P:r, an(1 teste(1. If it slm(',ee(ls, conjunct ion,  which is relati()nal 
comt)ositi(m, t)asses it on to Qx, to t)e teste(1 again. (We leave ()lit r('~t'(~reIl(:(; t() 
the m()(M 51 whenever  this (loes not lea(l to COllfllsion.) 

,~3:rP:r  A Q:rlh iff there  exists a .q': , I3xP:r]] , ,  & ,,~Q:rI~h 

iff there  exists a g': g ~:,, g' & g'(:r) E F(P)  & g'(:r) E F ( Q )  

This allows DPL to (leal with cross-sentent ial  anat )hora  of the kin(l: 'A man  . . . .  
H e . . .  ' 

Note  t ha t  exten(h'~(1 l)in(ling can also o(:(',llr across o ther  (tuantifiers, as e.g., in 
q:rP:r A 3yR:ry, where the occurr(m(:e of :r in R:ry is t)oml(l t)y 3:r; an(1 a(:r()ss 
negation: in 3.r, Px  A ~Q.r, the x in ~Q:r is also t)(mn(1 t)y 3:r. Note tha t  since 
we (lo not t)rohibit the same (luantifier to occur more  than  once we have to be 
careflfl which o(:currence of a quantif ier  1)in(ls a par t icu la r  variat)le OCC1HT(*,nc(~,: in 
3:rP:r A Q:r A 3:rH:r the occm'renc(; of :r in H:r is t)olm(1 1)y the last o(:(:urr('a(:(,~ ()f 

The  secon(l example  of exten(le(1 bin(ling concerns the t)ehaviollr of the exis- 
tent ia l  quantif ier  in condi t ional  construct ions .  Consi(ler the fornufla 3:rP:r --~ Qx, 
which is shor thaiM for ~ ( 3 x P x  A ~Qx).  Here we have an existent ial  quantif ier  in 
the antece(lent  of a condit ional  an(1 an occurrence of x in the consequent  t ha t  in 
FOL would l)e free. However, if we comt)ute its meaning,  we see that the secon(1 
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occurrence  is b o u n d  by the  ex i s tent ia l  quantif ier,  and, moreover ,  that  the  latter  
gets  universal  force" 

g~3xPx ---* Qx~h iff 

iff 

iff 

~[-~(?xP~ A-,Qx)~h 
there exists no g'" g [3xPx]]g, &g, [=Qx~]h 
for all g" if g[3xPxlg, then g,[Qx~h 

So, every way of re-se t t ing  the  value of x to one t ha t  satisfies P is one tha t  satisfies 

O. 
Note  t h a t  the  ex tended  b inding  force of the  exis tent ia l  quant i f ier  is blocked by 

negation: in ~3xPx  A Qx the  occurrence  of x in Qx is free. This  is because  the  
nega t ion  tu rns  3xPx into a test: the  value ass igned by 3x to x remains  local to 
Px, and is not  passed on to Qx. Thus  in 3xPx  ~ Qx tim b inding  of the  exis tent ia l  
quantif ier  in the  antece(lent  exten(ls to the  consequent ,  bu t  not  b(;yon(l the  fornmla  
as a whole. 

Thus  wc can (listinguish t)etween fornmlae  t tmt  are intc:'rnally dynamic, i.e. 
in which an exis tent ia l  (llmntifier 1)in(ls variaI)les outsi(h~ its scoI)e, but  only in 
th('~ f'ormlfla its(,lf; an(1 th()s(' t tmt  ar(; e:1:te'r'nally d?lnami(:, in which (;xistcntial 
(lllantifi('rs have th('~ t)owcr t() 1)in(l wtrial)les in a(l(litiomtl f()rnlllla(; tha t  arc a(l(h;(1 
t() its right. Th(; latt(;r ar(; r(;sl)()nsil)h; for D P L ' s  t r e a t m e n t  ()t" (;xtra-sent(;ntial, 
i.,('., (lis(:(nlrs(: 1)in(ling; t,h(' t'()rlll('r (h;al with  int(;rnal 1)in(ling f'r()In ant(;(:('~(h;nt t() 
('()ns('qlwnt. 

O t h e r  p r o p e r t i e s  ()th(;r ('tmract('risti('. I)r()t)('rti('s ()f" th(' Dt-'L-h)gi(: f'()lh)w ill 
a s t ra ightfbrwar( l  mann( ' r  fl'()m th(' semantics .  Dollt)l('~ n(;gati()n fails in view of 
n('gati()n 1)h)cking ( lynamic t)in(ling; ('.on.jlHl(:tion an(l the exist(;ntial (t~mntifi(;r (;an 
not 1)(; (h;fin(;(1 in t e rms  of, (;.g., n(;gation, ( l isj lmction an(1 th('. lmiv('rsal (luantifi('r, 
t)(;(:aus(; of the  a s y n m m t r y  of tim r(;sl)('ctiv('~ ext)ressions w.r.t ,  l)in(ling; ('.onjun(:t, ion 
is not lmcon(l i t ionally conmnltativ('~ an(1 i(h'~mt)ot('~nt; th(; exist(;ntial an(1 universal  
(tlmntifi('rs are not  fully int,('r(h,finat)h;; an(1 finally, we can n()t take alt)hal)(;tic 
wlriants ()t" (,xist('ntially (lllantiii('(l t'()rlmflae. 

As for ei l ta i lnwnt,  n(;ith(:r in('hlsion of tI'llth c()n(titions, nor m( 'aning in('lllsi()n, 
provide a su i table  (lefinition. The  reason is t ha t  we want  exis tent ia l  (llmntifiers in 
tim t)remises of an a r g u m e n t  to |)e able to b ind variables in the  conchlsion,  in view 
of the i)ossit)ilities of ant('c(;(h'nt ana t )hora  links in nat, lmtl langlmgc r(;asoning: 
from 'A m a n  came in car ry ing  a stick'  wc want  to t)c able to concllul(; 'So, he was 
(:arrying a stick'.  So ;~/J follows from ~l  . . .  ~,,~ iff in all mo(h~ls cv('ry in t e rp re t a t ion  
of the  i)r(;mises (in sequent ia l  or(h'x, of course) leads to a succ(;ssflfl i n t e rp re t a t ion  
of the conclusion: 

~ l ,  �9 �9 �9 ~, ,  ~ ~/~ iff 

for all M ,  g, h" if . q ~ l  /~ . . .  A y)n]] M, then  there  exists an h" h[~h,M 
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In terms of DPL'  (see section 6): 

9 9 1 , . . . , ~ n  ~ ~) iff for all M :  [[~1 ; "'" ; ~rt]( l / ))T~ M 

equals the set of all assignments.  

It is easily checked that, e.g., ~xPx ~ Px, as required. Further we have: 

~1, . . . ,  ~n ~ 1/) iff P (~1 A " "  A ~n) - - - ~  

Notice that if no binding o c c u r s  fronl  premises to conclusion, the notion of en- 
tailment defined boils down to the truth-condit ional  one. It is easily checked that 
entailment is not reflexive and also not transitive. 

DPL being a first order language, it differs from FOL in its non-standard binding 
behaviour. As we saw in section 6, FOL can be embedded in D P L  in a straightfor- 
ward way. Since D P U  can be t r a n s l a t e d  into FOL (cf., section 6), the same holds  
for DPL.  

C o n t e x t  As was note(l  at)ove, con tex t s  in D P L  are a s s i g n m e n t s  of values to 
w~riat)les, sa t i s [y ing ce r ta in  (tescrit)tive condi t ions .  W h a t  t hey  I'et)reseIlt are the  
iIl(livi(llmls all(l th(:ir I)r()I)erties t t la t  trove t)eeIl intr()(lllc(~(1 iil a (liscollise (a text ,  
a coilversat iol l) ,  e.g., t)y I)roI)er 1mines or (lescrit)ti(nls, ()r l)y iI~(lefi~ite NPs.  ()tt~er 
(~xi)i'essiolls , Sllctl as I)ront)llllS, Illay (h'aw fronl tiffs I)()()1 of availalfle referelltS, h~ 
D P L  tliis is acc(nlIlte(l for via t,lie llse of (in(lexe(1) varialfl(~s. Coli text-clm~lge is 
reI)res(uite(l I, hl 'ollgh oi)erati()lis (hi assigIHnelit, s, as, f'or exmill)le, 1)3" t, lie existei l t ial  
(l,~a~t,iti(~r, wlii(:t~ 'res('~ts" t,l~(~ (:tn~t,ext wit, l~ regar(1 t,o a t)arti( '~lar wu'iat)le. (Cf., the  
t~)n~n~latio~ of D P L  i~ s(~ct, i(n~ 6, t, lmt t)ri~gs t, tfis o~fl, ~ o r e  exI)licitly, t)y regai'(liI~g 
I,l~t' (~xisteIfl, ial (t~alfl, ifier as a c(n~str~ct of its ow~.) 

Di.~co'u'rsc Rcp'r,~.sc'ntatio'n Th, cory 

Now we 1)riefly intro(lllce a very streallfline(l aml  l)asic vel'si(nl of Discourse  R et)- 
r(~selltatioll T h e o r y  (DRT) .  For all ex tens ive  iIltro(luctioIl,  l,tle rea(ler is rel'erre(1 
to the  stail(lal'(1 [Karat) an(1 Reyle,  1993]. T h e  (liflk~rences 1)etweell D P L  all(l D R T  
are (plite like tl lose l)etweell D P L  an(1 D P U  or D P L  an(1 QDL:  wtlereas  D P L  is a 
'i)111(! . l anguage  ill which SIt) (listillcti()ll is nla(le t)etweell t ) rogra l l lS  all(l s t a t e l l l e n t s ,  

DRT,  like D P L  ~ and  QDL,  (loes nmke  such a ( l is t inct ion,  | )etweell  w h a t  are calle(1 
'con(l i t ions '  and  w h a t  are calle(1 ' ( t iscourse re t ) resentat io l l  s t r u c t u r e s '  (DI/,Ss). Th is  
sy~ta( ' t ic  ( l is t inct ion is reflecte(1 ill tlm senmnt ics ,  and  is Illotivate(1 t)y wlmt  Kanlt)  
ill lfis se~llinal I)aper on D R T  [Kmllt), 1981] c la ims is essent ia l  for a proI)er account 
of iml,lmd l anguage  Illeallillg, viz., t h a t  it, ' combii les  a (lefinitioll of trllt, h wi th  a 
sys te ina t ic  a( 'c(mnt of s eman t i c  re t ) resen ta t ions '  (op.cit., p.1). Ttnls,  the  ( lynamics  
in D R T  takes  place in the  bull(l ing of s eman t i c  ret)resentations. 

T h e  s y s t e m  T h e  canonical fl)rmat of D R T  uses so-called b o x - n o t a t i o n  (see be- 
low for some  examples ) .  In or(ter to faci l i ta te  compar i son ,  however ,  we recas t  the  
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syntax and semantics of DRT in a linear format.  The  non-logical vocabulary  con- 
sists of n-place predicates,  individual constants ,  and variables. Logical cons tants  
are negat ion ~, implication ---,, and identi ty - .  

DRT terms are constants  and variables: 

t " '~  2 ; [C  

Condit ions ~a and DRSs �9 are defined as follows: 

,tO . . m  R t l . . . t ~  I t l - t 2 l - ~ l e b l = = > ~ 2  

[ X l . . .  Xk][~ l -  �9 �9 ~ n ]  

Disjunction of DRSs can be defined in the usual way. 

In the box notat ion,  a DRS looks like this: 

X l �9 �9 �9 , T , k  

9 9 1  

(~ l  l, 

wtmre the ~i are con(litions ml(l the :ri intro(luce(1 wu'iat)les. An exanq)le of a 
coIl(litional DRS 1)llilt ['roI~l two other  DRSs in box nota t ion looks like this- 

:r, ~] 

P:r, Q!j, R:ry s:,,y 

Tt~e language of DRT resenflfles tha t  of QDL an(l DPL '  ill its 'mixed mode '  
nature.  This carries over to the senmntics. 

Models for tile DRS-lmlglmge are the same as those tbr DPL, as are assignments  
ml(1 the intert)retat ion of terms. Con(litions are interI)rete(1 as F()L-fbrmulae,  
wlwreas DRSs get a relational nleaning. Thus,  like iil tlle case of QDL (cf., sec- 
tion 6)), the semantics is (lefine(I t)y s imultaneous recursion. Note tha t  we use 
total  assignments instead of partial  ones, as is customari ly  the case in DRT. For 
present purposes,  the difference can be neglected. 

M ~ , j  R t  ~ . . . t ,~ iff 

M ~ , j t l  = t 2  iff 

M ~:j -~,I, iff 

M ~,j (I)l =:~ (I)2 iff 

there exists no h," .q~(I)~ Mh 

for all h" if" ~ ; ~ ~  there exists a k '  h I~I)2~ Mk 

9~., . ,  .... r~ h . & M ~ h  ~ l . . . M ~ h  ~,,, 
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D R T  and  D P L  The close link between DRT and DPL is illustrated by the 
following embedding of DRT into DPL: 

( / i ~ l . . .  t n ) t  ---  i ~ l ; 1 .  . . / ; n  

= 

= 

((I)l ~ (I)2)t ---- el t ~ (1)2 t 

([Xl...Xk][~l...~n])t ---- ~Xl... ~Xn[~l t A... A ~nt] 

The embedding is meaning-preserving in the following sense: 

M M ~g ~ iff there exists an h" 9~y)t]]h 
M 

i s  

C o n t e x t  As it tu rns  out,  the notion of a context in DRT does not diflbr all 
t ha t  much from the one DPL is concerned with: bo th  mo(lel basically the same 
thatures of a discourse context .  But  the two sys tems mo(tel context  in different 
ways: DPL uses only assignmeIlts an(1 ot)erations on ttlein, DRT llses sI)ecial tyI)eS 
of ext)ressioIls in its syntax.  

Va'r iat ions  a n d  t~:l:l~cn.,~io'Jt,.,~ 

A mlml)(T of w~riati()ns on DRT, DPL an(l o ther  syst(;nls have |)een t)rot)ose(l in ttl(, 
liteI'atlH'e. S()Ille are Ill()tivate(l by reasolls of forInal sillq)licit, y an(l elega~l(',e, ottmrs 
t)y coIlc(:t)tlml all(1 (lescrit)tive reasons. It is t)ey()n(l tll(; scot)e of this art icle t() 
discuss them exteI~sively; here it sutiices to t)oint to a n l l n l b e r  of  issues n~otivatiI~g 
these al ternat ives.  

P a r t i a l  a s s i g n m e n t s  One (lifference between DPL an(l DIRT is the use tha t  the 
former makes  of total  ass ignment  flmctions, iilst, ea(1 of tile t)artial ones use(1 t)y 
DRT. Tile ctloi('e for t)artial ass ignments ,  t ha t  iIlterI)ret ()Ifiy the variat)les t t lat  
are ext)licitly intro(lllce(1 in a discourse, is a nat l l ral  one fl'oin the t)erst)ective of a 
procedural  i i l tert)retation, which was one of the mot iva t ions  of the original DRT-  
sys tem (of. above). The  use of total  ass ignments  in the original D P L  sys tem was 
mainly  motivate(t  t)y a wist~ to s tay as close as l)ossil)le to the semant ics  of stan(lar(1 
first or(ler logic. R,efornmlating the DPL-semaIl t ics  llsing t)artial assignnlents  is 
an easy exercise. We siInt)ly let the iIlterI)retation t)e llIl(lefine(1 in case a formula 
contains occurrences  of vm'iat)les tha t  are not in the (lomaiIl of the ass ignment  
function. The  only interest ing case is the existent ial  (tlmIltifier. Here we shoul(1 let 
the (pmntifier exten(1 the domain  of the ass ignment  flmction, if necessary, an(1 let 
it assign an a rb i t r a ry  value to the new element  in its domain.  Cf., e.g., [Vermeulen, 
1995] and the sys tem in section 7.4 below. 
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F r e s h  v a r i a b l e s  One of the advantages of using partial assignments is that it 
becomes more natural to constrain the use of variables in the syntax. Recall some 
of the more awkward logical properties of DPL,  such as the failure of reflexivity 
of entailment: 

P x  A ~ x P x  [t: P x  A ~xP.r. 

This essential depends on the possibility of a variable occurring in the same formula 
first free and then bound by an existential quantifier. One way of preventing this 
(and similar) issues, is to require the existential quantifier to always use a 'fresh' 
variable. Cf., also the discussion below, on incremental semantics.  

C o m p o s i t i o n a l i t y  As the preceding discussion will have made clear, the dis- 
cussion between D P L  and DRT centres on composi t ional i ty .  In DIRT the repre- 
sentational level of DRSs plays an essential  role, and the cognitive plausibi l i ty  of 
the resul t ing sys tem depends  on their  presence (cf., the discussion in [Kamp, 1981, 
section 1]). O the r  formulat ions of a comt)osi t ional  a l te rna t ive  for DIRT have been 
proI)osed by, among others,  Zeevat [Zeevat, 1989], Muskens [Muskens, 1996], and 
Vail Eijck an(1 K a m p  [van Eijck an(1 Kanq),  1997]. DPL ' s  reliance on an in(lexing 
nlectmnislll oil varia|)les t() ac(:(nult for anaI)horic binding lms been criticise(1 sinc, e 
it, (linli~fistms tile 1)lm~sil)ility ()t' l,tl(: al)I)eal t,o co~li)ositio~mlity ('()~si(lerati(ms, aIl<l 
ires st)re're(1 a ~l~u~fl)er ()t' alt,('~ri~ative at)t)roaches, s~i('tl as Dekker 's  't)re(licate logic 
wittl axmpllora' [Dekker, 2()()2], [B~U, ler an(1 l\,Iattliell, 2004]. C['., als()l,tl(; illcrenlell- 
tal systeili (lis(',llss('~(l 1)eh)w ill s(,(:l,i()ll 7.2, aIl(1 tile co~lll)i~mti()li ()t ~li)(lat,e selllaIltit:s 
ml(1 (13"lmmic se~lmltics i~l s('('l,i()~l 7.4. 

S t a c k s  a n d  r e g i s t e r s  Tlle llse ot" D P L  as a ttle()ry ()t" t estillg ml(1 l'esettiIlg 
registers was explore(1 1)y Viss(:r [Visser, 19.9S] a~(1 Verll~(,~le~l [Ver,~w,~fien, 1995; 
2000]. The t)asic i(lea ot" a stack seilmntics for DPL is (level()l)e(l itl [Vel'Ineulell, 
2001]. The  i(tea is to rel)la(:e tile ( testructive assiglnllelit ()f ()r(tilmry DPL,  which 
ttu'ows away o1(1 vahms wtl(ui resettiIlg, l)y a s tack value(l one, t lmt  alh)ws o1(1 values 
t.() 1)e re-llse(l. Stack wdlm(1 assiglullellts assign to e, acti wu'ia|)le a s tack of values, 
tile tot) of the stack t)eiilg tile (:lH'r(ult vahm. Exis tent ia l  (llmntifi(:ation I)11shes a 
Ii(;w vallw, ()i1 t, lle sta(:k, 1)lit, l, ll(;re is also the t)ossil)ility ot" I)Ol)i)ing the sta(:k, to 
re-llse a previously assigxle(l vallle. A(l(ling exi)licit 'I)llsll" aIl(l 't)()t)'-ot)erators to 
t,lle language,  tins s()Ine iIlterestillg (:()Ilse(tuen(:es. AIl i l lustrat ive exai~q)le (:()Iwerns 
its efficieImy in expressing Illixe(l scopes .The i(lea is as follows. We a(l(1 [:,, and .,:] 
as two new programs and (lefine their  semant ics  as follows: 

,~ [.,, ~,, itf" .q[.r)h, 
rzI:,,] 1,, iff h,[:r}~.t 

where .q[.,:}h, hoMs by definition iff there  is a d in the domain  with h(:r) = d :  g(w), 
(i.e. h(:,:) equals the result  of pushi,~g d on top of the z-s tack  ot 'g), and h(y) = g(y) 
for all y wi th  y ~ x. Clearly, the p rograms  [, and ,] then f lmction as pop and 
push fl)r the .r-stack. 
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Now consider the FOL-statement" 

qx3y3zqu(Rxy  A Ryz  A Rzu A Rux) 

This can be expressed in DPL more succinctly as: 

3 x 3 y ( 3 z R x v  A 3x(Ry.~ A R x z )  A R z x )  

But using the push and pop programs we can express the same in terms of only 
two variables. 

[x [~R.~,y[,Ry.~[yR.~yx]Ry*,~] x] ~] 

The variable free indexing of [van Eijck, 2001] is a special case of the Vermeulen 
method,  where there is just a single variable. Below we take a variation on DPL 
with  variable free indexing as point of departure for the development of a fl'agment 
of dynamic Montague g r a m m a r .  

I n c r e m e n t a l  S e m a n t i c s  

DestIlwtiv(:  ass igImmnt  is (,he ma in  weakn(:ss of D P L  as a basis for a comt)os i t ional  
s(unanl,i(:s ()f nal,ln'al langlmg(:" in DPL,  (,h(: s(:manti(: effe(:t of a (lllantifi(:r a(:tion 
q.r is sll(:tl t ha t  the t)reviolls wthle of :r gets lost. In w h a t  follows w(: first r(:l)la(:(: 
D P L  l)y (,he s t r ic t ly  in(-renmntal syst(:nl front [wm Eijck, 2001]. Slfl)s(:(llu:nt, ly , w(: 
(h:v(:l()t) its tyi)(: th(:or(:ti(: version. This  will all()w lls to give ot' a fiflly (:()nll)()sil,ional 
an(l in(:r(:m(:nl, al senmnti(:s t ha t  is with()ll(, l,tl(: (h:strlwtiv('  assignm(:nt  ttaw. Similar  
i(h:as w(w(: (h:v(:l(~l)(;(1 in [Dekk(:r, 1994; 1996]. 

W(: s ta r t  wi(,h a slight var ia t ion  ()t" (,h(: D P L  l ang l l age ,  in which 3 is a s(:t)arat(: 

(:xl)r(:ssi(m an(l �9 is lls(:(l fi)r (lynanli(: (:()n.jlm(:ti()n. Asslm~(: a first or(l(:r m o ( M  
k l  - (D, F) .  We will lls(: c o n t c x t s  ('(~ D*, an(l r(:l)la(:(; wn'ial)h:s I)3' in(lic(:s into 
(:ont(:xts. The  set  of t e rn l s  of th(: langlmg(: is N. We use l(:l fin" th(: h:ng(,h ()i' 
(:oIH,(:x(, ('. 

Given  a m o ( M  3 I  - (D, F ) a n d  a con tex t  c -  c [ 0 ] . . ,  c[',,.- 1], where  ' ~ , -  I"1 (th,;  
l ength  of the COlll,(:xl,), we intcri)ret  t e rms  of th(: lang ,mge by IIIC,HIS of ~ i~( . -  (t[i]. 

Not(: t ha t  ~i},. is ~m(h:fin(:(1 fin" i _> If'J; w(: will t,herefore have to make  s~r(: t h a t  
in(lic(:s a r(, ()nly (:vahlate(1 in at)t)r()l)riat(: (:()ntexts. I will t)e lls(:(l fi)r 'lm(h:tin(:(l'. 
Th i s  all()ws us to (lefine the two r(:lations 

M ~,.  R il . . . .  i,, ml(l M ~ ,. 

t)y means  of: 

M ~, .  R i ,  . . . .  i,, 4=~ V j (1  <_ j <_ '~,.--, [i.)],. 7L T) 

M ~ , .R i l  . . . .  i,, "~=~ Vj(1 <_ j <_ '~. ~ ~ij]],. r 

and similar ly for the  relat ions:  

/"~/i 1 . . . .  i , t  

T) Ili,,n,)  

M ~ it - i 2 ,  AI ~ oil - i 2  
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If c ~ D n and d ~ D we use c^d for the  contex t  c ~ ~ D n+l  that  is the  result  of  
a p p e n d i n g  d at the end of c. 

T h e  interpretat ion  of formulae can now be given as a map  in D* ~-, 7 ) (D *) (a 
part ial  funct ion,  because  of the poss ib i l i ty  of undef inedness) :  

~3]](c) :=  {c^d l d e D} 

T if 3 j ( 1  < j < n and ~ij~c - T) 

~ R i l  " " " i n ~ ( C )  " - -  {C} 

T 
~il - - i 2 1 ( c )  "-- {c} 

0 

i f M  ~ c  P i ~ " i , ~  

if M ~ cPil  . . .  in 

if ~ i l l c  -- T o r  ~ i l ~ c  

if M ~ c  i l = i2 

if M ~ c i l  - -  i2 

if [[y)]}(c) = T 

if ~(p]](c) = 0 

otherwise  

= T  

T 

( 
T 

( 
T h e  (lefinition of I?l ; ~21 enq,loys the  fact t h a t  all con tex t s  in I ? l ( c )  have the  
s a m e  length  This  tm)t)er ty  flfllows by an easy in(ll lction on fl)nmfla s t ruc t l l r e  fi'om 
the  (lefinition ()f the  re la t iona l  semant ics .  Tln~s, if one elen~ent (" C ~ ( ( : )  is s~(:tl 

t h a t  [ [~21(c ' )= J', tllell all c' C [[~11(c) have this  Im,t)erty.  
D y n a m i c  impli(:ati(m (~.91 ~ (~92 is (lefine(l in t e r m s  of --7 an(l ; })y Ineans of 

~(~1 ; ~Y)2). IJniversal  quan t i f i ca t ion  V~ is (leline(1 in t e r m s  of 3,--1 an(1 ; as 
~ (3  ; ~ ) ,  or a l t e rna t ive ly  as 3 ~ ~. 

One  a( lvantage  of the  llse of con tex t s  is t h a t  in(leiinite N P s  (10 not  have to 
ca r ry  inr i n fo rma t ion  anymore .  T h u s  a sen tence  s lMl as 'Some m a n  love(l some 

w o m a n '  can be analyse(1 as: 

3 ; llIi ; 3 ; W i + l  ; L i ( i + l )  

where  i deno tes  the  length  of the  inpll t  context .  ()I1 the  e m p t y  inp lg  (:ontext,  this  
gets  interI)rete(1 as the  set of all ( : o n t e x t s  [c(), C1] t h a t  satisflv the  re la t ion  'love' in 
the  nlo(lel ml(ler c()nsi(leration. Tile  resul t  of this  is t h a t  a subsequen t  sen tence  
'He() kissed her1. '  can use this  c o n t e x t u a l  d iscourse  in fo rnmt ion  to pick ut) tile 
references.  Thus  we a s sume  t h a t  t )ron(mns ca r ry  in(lex in fo rmat ion .  Bu t  if a 
t)roce(lure for reference  resohlt ioIl  of t ) ronouns in con tex t  is a(t(led we can (lo away 

wi th  t h a t  a s sumpt ion .  

if ~71]](c) - T 

or 3c' c ~711(c) wi th  ~72]] (c ' )=  ]" 

oth( ' rwise.  

Extension to Type Logic 

C o m p o s i t i o n a l i t y  has  always been  an i m p o r t a n t  concern  in the  use of logical sys- 
t e m s  in natural  l anguage  semant ics .  And  it is th ro l lgh  the  use of h igher  o rder  
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logics (such as type theory) that a thoroughly compositional account of, e.g., the 
quantificational system of natural language could be achieved. The prime exam- 
ple of this development is that of classical Montague Grammar [Montague, 1974; 
1970; 1973]. Cf., [Partee, 1997] for an overview. It is only natural, therefore that 
the dynamic approach was extended to higher order systems. 

However, the various proposals that have been made, such as [Groenendijk 
and Stokhof, 1990; Chierchia, 1992; Jansche, 1998; Muskens, 1995; 1996; 1994; 
van Eijck, 1997; van Eijck and Kamp, 1997; Kohlhase et al., 1996; Kuschert, 
2000], all share a problem with the DPL-system, viz., that of making re-assignment 
destructive. Interestingly, DRT does not suffer from this problem: the discourse 
representation construction algorithms of [Kamp, 1981] and [Kamp and Reyle, 
1993] are stated in terms of fllnctions with finite domains, and careflllly talk about 
'taking a fresh discourse referent' to extend the domain of a verifying function, for 
each new noun phrase to be processed. 

Here we present  the  ex tens ion  to t yped  logic of i nc remen ta l  d y n a m i c s  t h a t  
is based on variable free indexing and that avoids the destructive assignment 
problem.  T h e  resul t ing  sys t em is called Inc remen ta l  T y p e  Logic ( ITL) [van Ei- 
jck, 2000]. Ext) loi t ing techniques  f rom t)olynlorphic tyt)e t heo ry  [Hindley, 1997; 
Miln(;,', 1978] it us(;s tyt)e st)ecifications of cont( 'xts  t ha t  (:arry in fo rma t ion  a b o u t  
the length  of the context .  E.g., the  tyI)e of a con tex t  is given as [(']i, where  i is 
a t,yt)e varial)le. Here, we will ( 'avalicrly use [c] tbr the t,yt)e of any context ,  an(1 
t. t'or the t, yt)(; of any in(lex, t,lnls relying Oil nleta-(:ontexl, t~) make  clear w h a t  the  
c lm'ent  cons t ra in t s  on (:ont,(~xl, an(l imlexing into (:onl,~;xl, a r e .  I l l  tYI)eS such as 
i. ---, [('], we will tac i t ly  asslun(; t ha t  the  index fits the size, (~t" l,h~; context .  Ttnls,  
t -+ [('] is really a type  scheme ra the r  t h a n  a type,  alt, h(nlgh t, lle type  t )olymort)hism 
remains  hi(l(lcn from view. Sill('e i. --+ [~'] general ises  ()ver the  size of the context ,  
it is shor than( l  tbr the tyI)eS 0---+ [('],,, 1 --+ [(']1, 2 ----+ [( ' ]2 ,  ~t , l ( |  S(, ()I1. 

Let lls i l lus t ra te  this t~y consi(lering how this at)I)lies to the or( l inary s ta t ic  h igher  
(~r(l(;r t r ans l a t ion  of an in(letinite holm t)hrase. In ex tens iona l  M(mtaglu;  g r a m m a r  
'~1. 111~-1.I1' tr~Hlslat, es  ~ts: 

In ITL  this  l)e(:omes: 

AP3:,:(ma,l  :,: A P:,'). 

A / ~ A ( . A ( . ' . 3 , ( , , ~ ,  .,, A Pt(,t(( ,^,)( . ') .  

Her,; P is a var iable  of tyI,e ,,---+ [,~] ---+ It'] --+ t, while c, c' are varial , les of tyt ,e [('J 
(varial,lcs rang ing  over contexts ) .  T h e  t r ans l a t i on  as a whole has tyt,c (,.---, [('] --+ 
It]) --+ [c] ---, [c] --+ t. The  P wtrial,le ma rks  the  slot fi,," the  VP  i ,m,r l , re ta t ion.  I('I 
gives the length  of the  ini)~ll. (:~)nl,exl,, i.e. the  posi t ion of the next  awtilat)le slot. 
Note  t ha t  (:^:r[[c[] = :r. 

Note  t h a t  the  t r ans l a t i on  of the  indefini te  NP  does not  intro(llu:(', an anat)horic  
index, as would bc the case for examt)le  in D M G  [Groenen(l i jk an(l Stokhof,  1990]. 
Instea(l ,  an  anaphor i c  index i is picked ut) f rom the  int)ut context .  Also, the  
contex t  is not  reset  t)~lt incrcmcntc(l :  con tex t  lq)(late is not  ( lestructive,  whereas  
it is in D P L  and  D M G .  
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In order to obtain a proper dynamic higher order system we first define the 
appropriate dynamic operations in typed logic. Assume y) and ~ have the type of 
context transitions, i.e. type [e]--~ [el--~ t, and that c, c', c" have type [el. Note  
that ^is an operation of type [e] --~ c ~ [e]. 

g �9 - , X c c ' . 3 x ( c ^ z  = c ' )  

�9 - ) ~ c c ' . ( c -  c '  A ~ 3 c " p c c " )  

�9 - A c c ' . 3 c " ( ~ c c " / ~  Oc"c ' )  

These operations encode the semantics for incremental quantification, dynamic 
incremental negation and dynamic incremental conjunction in typed logic. Dy- 
namic implication, =~, is defined in the usual way. 

We have to a s sume  that the lexical meanings of CNs, VPs  are given as one- 
place pred ica te s  ( type  c ~ t) a nd  those  of T V s  as two place p red ica t e s  ( type  
c ~ c ~ t). We the re fore  (lefine b low-up  o p e r a t i o n s  for l if t ing one-place(1 and 
two-place(l  pre( l icates  to the  d y n a m i c  level. Let  A be an express ion  of t ype  c --+ t, 
an(l B an ext)ression of type  e + c ---+ t; we ~s(; (:, c' as var iables  of type  [c], an(1 j ,  j '  
as varial)h,s ()t' t, yl)(; i, an(1 we ('mI)l()y I)()stfix ll()tati()n for the, l if t ing ot)erati()ns: 

A o 

B" 

�9 - -  A.j(:c'.(('- (" A At'[j]) 

�9 - a j j ' , ' , , ' . ( , ' -  , , '  A B, ' [ j ] , , [ j ' ] )  

T h e  enco(l ings of the  ( lynamic  o p e r a t i o n s  in tyi)e(1 logic an(1 the  t)low-1 H) Ol)era- 
t ions for ()n(;- an(1 t.wo-I)laced I)re(ticates are (unI)h)ye(l in the  s eman t i c  st)ecili(:ation 
of the  fl)ll()wing simt)le f l 'agment.  T h e  senmnti(:  speci f ica t ions  enlt)loy wtrial)les 
P, Q of t y p e , - - +  [,'] ---+ [c] --+ t, wn'ial)les j , j '  of tyt)e ,., an(1 var iables  (:, (:' of t ype  

[4 .  
We also (leline an oI)eratioI~ ! (,.---+ [(:] --+ [r --+ 1) ---+ [c] ---+ [r ---+ t (fl'om lifted 

one-place  t)Ic(licates to con tex t  t r ans fo rmer s ) ,  t,o ext)ress t h a t  a lifte(1 t)rc(licate 
apt)lies to a single in(livi(llml in a given coIltext.  Ass lml ing  P to be an ext)ressi(nl 
of tyt)e (,. ---+ [,'] ~ [,'] ---+ t) (a lift.e(1 t)re(licate), an(1 ('. ,:' to 1,e of t ype  [c] (con tex ts ) ,  
we (lefine ! as folh)ws 

! e  . -  a d . ? : , , v : , j ( P I , .  (,,~,j),,' ~ : , - -  v) .  

This  exI)resses t h a t  P is the  lift, of a pre( l icate  t h a t  appl ies  to a single indiv idual .  
As sai(1 above,  we a s sume  t h a t  t)ronolnls are  the  only N P s  t h a t  ca r ry  indices; 

p r o n o u n  refi'xen(:e reso lu t ion  is not  treate(1. At)t)roI)riate in(lices for p r o p e r  names 
are extracte(1 f iom the  cu r ren t  context .  In the  rifles, X refers to the  semantics 
of the  lef t-han(l  side of the  s yn t a x  rule, to be  (lefined in t e r m s  of the  s eman t i c  
t r ans l a t i ons  of the  m e m b e r s  of the  r i g h t - h a n d  side of the  s y n t a x  rule. Xi  refers to  
the  seman t i c s  of the  i - th  memt)er  of the  r i g h t - h a n d  side of the  s y n t a x  rule. 
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S " ' -  N P V P  X " ' -  ( X ~ X ~ )  

S ' -  i f S S  X "'= X ~ X 3  

S " -  S . S  X " =  X ~  ; X 3  

N P  " -  M a r y  X "'= APcc ' .=~ j (c [ j ]  - m A P j c c ' )  

N P  " ' -  P R O  ~ X "'= A P c c ' . ( P k c c ' )  

N P  ' -  D E T  C N  X "'= ( X a X 2 )  

N P  "'= D E T  R C N  X " ' - -  (X 1X 2) 
D E W  " =  e v e r y  X "'= A P Q c . ( ~ ( g  ; P Ic l  ; , , ~ Q I c ) ) c  

D E W  . .=  s o m e  X " =  A P Q c . ( g  ; P Ic l  ; Q I c l ) c  

D E W  " =  n o  X "'= A P Q c . ( ~ ( s  ; P l c l  ; Q l c l ) ) c  

D E W  "'= the  X " ' -  A P Q c . ( ! P  ; s ; P I c  ; Q c [ )c  

C N  "'= m a n  X " ' -  111 ~ 

C N  "'= w o m a n  X " ' -  W ~ 

C N  "'= boy  X "'= 13 ~ 

R C N  " =  C N  t h a t  V P  X " ' -  A j . ( (X  1 j )  ; (X3 j ) )  

R C N  " -  C N  t h a t  N P  T V  X "'= A j . ( ( X 1  j ) ; ( X 3 ( A j ' . ( ( X 4  j ' ) j ) ) ) )  

V P  " ' -  l a u g h e d  X "'= L ~ 

V P  " ' -  . smi led  X "'= S ~ 

V P  = T V  N P  X " =  A./.(X2 ; Aj ' . ( (XI  j ' ) j ) )  

T V  "'= l o v e d  X "'= L ~" 

T V  "'= rc . sprc t rd  X "'= R "  

Note  t lmt  (l(;ter~llilwrs (h) Ii~)t, ca r ry  in(lices, ttl(; aI)l)r~i)riat,(; ill(h;x is t)r()vi(h;~l 
1)y t i le  le~lgtl l  ()f" t, ll(' i l l I) l l t ,  (:~)llt,(;xt,. I t  is asS~lllle(l t,llat, al l  Im) l )e r  Im l lws  at( '  l i l lk(,( l  
to  ancl lor( ; ( l  ( ' le l~wl l ts i l l  (:() l l t(:xt. In  fact ,  t, tl(: ml ( ' l l ( ) r i l lg  l l l(;( ' lmXfiSIn tins 1)een 
g r e a t l y  i l lq)rove(1 1)5" tt l(; swi t ( ' l l  to  tt l(; i l l ( : r( ;x~e~tal,  x~()x~-(h;st, r~( : t ive at ) t ) roach,  f l)r 

(; le~lieilts (:a~l ever })e ov(~,rwI'il, t,(,n. 
Tim followix~g very si~q)le exan~t)l( ~, i l l~s t ra tes  h()w l, lm sS'sl,(~ (leals witl~ cross- 

sen ten t ia l  anat) l~ora: 

2. genie Ill~l~II s~i l ( ; ( l .  He lm@~e(1. 
T h e  strllCtllr(~s assigxw(l to the  se, IlteliC(',s mak ing  ~t) tlfis se(l~m~ce t)y the  s y s t e n l  

are tile fl)lh)wing: 

(2) a. S 1). 

N P  V P  

D E T  CN smile<l 

I I 
s o n i c  Ill~:tll 

S 

NP V P  

I I 
He lm@m~l 

Note  t h a t  the  t ree  tbr the  second sen tence  in sequence  2 ac tua l ly  can not  be 

I)ro<luce<l by the  rules given above: those  rules a s sume  t h a t  surface p r o n o u n s  are 

generate( l  as indexed  abs t r ac t  P R O - e l e m e n t s ,  as in" 
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(2) b'. S 

NP VP 

J I 
PRO 5 laughed 

Translations of the two sentences are derived in a composit ional  fashion. For 
example,  the NP 'Some man' translates as: 

( A P Q c . ( s  ; Plcl ; Q t c l ) c ) ( M  ~ 

With  S ~ as the translation of the V P  'smile', the sentence, 'Some man smiled' 
then receives the following translation: 

This  is an express ion  of type  [c] ---+ [e] ---+ t and  deno t e s  a re la t ion  b e t w e e n  con tex t s .  
It takes  a con tex t  and extends it w i th  an ob jec t  t h a t  is b o t h  a m a n  and t h a t  
smiles,  as is ev iden t  if we reduce  it ms follows, us ing the  def ini t ions  of the  d y n a m i c  
( 'xis tent ial  quant i f ier ,  the  (tyImmi(: c o n j u n c t i o n  and  the  lift ope ra t ion .  

W(: first rewr i te  g: 

(a, . , , ' .3: , . ( ,<, ,  = ,,') ; ~z~ ; s~  

ail(l ll(;xt t, tlc liftc(l t)r(',(licat(;s: 

( a , , , . ' . 3 : , . ( , . >  = ,. ') ; (a , , , . ' ( , ,  = ,.' a a / , [ I , l ] )  ; (a , . , . ' ( , .  = ,.' a s , , [ I , l ] )  

Ttl(; ill(l(;tillit(; (h;terIniIler cxten(ls  t,tl(; c()Im;xt wi th  a new ot)j(;('t. Ttl(; ()tll(;r clmls(;s 
tes t  tile, last  (;h;Incnt of the  curreIl t  collt(;xt fl)r tll(; prot)er t ics  _AI an(1 S, rest)ectivcly. 

R(;wI'itixlg the  ( lynamic  CoIljuncti()II straws tlow the  d e i n c n t  intro(lucc(1 l)y the  
iil(h;filfit(; (let(;rilfiner is passe(1 ()ll t() th(; ()ttl(;r clauses.  T h e  first two clmlses 
|)e(',OIIIC: 

a( . , , ' .g ( . " ( (a( . ( . ' .3 : r (~ ,^ . , ,  = ( , ' )( , , ,"  A ( a , . ' ( ( .  = (.' A nZ~'[ l ( ' l ] ) ( ,"(")  

whictl aft(w some rc(hmt ion  bccoIll(~s: 

Acc'.3.r(c^.r = c' A M z )  

R,ewritiIlg t, tie second occur rence  of tt~(; ( lynanfic con junc t i on  gives the  following 
re(limed t r a n s l a t i o n  for the  first sent(;nc(;: 

Acc'.3:r(c^z = c' A ~l:r, A S:r) 

For the  second sen tence  we get: 

)~cc'. (L o 5cc') 
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which reduces  to 

Acc'. (c = c' A Lc[5]) 

and for the sequence  as a whole  we get: 

)~cc'.3x(c^x = c' A M x  A S x )  ; )~cc'.(c = c' A Lc[5]) 

which reduces to: 

Acc ' .~x(c^x  = c' A M x  A S x  A Lc[S]) 

Note  that  we obta in  the reading in which the pronoun in the second sentence  
of 2 refers back to the man  introduced in the first sentence  only if the index of 
the P1RO-element is su i tably  chosen. This  means  that  this  approach relies on a 
separate  pronoun resolut ion c o m p o n e n t  in the grammar.  

Z 3  Update Semantics 

In section wc illustrate tile use of dynamic logic in another area of natural  language 
semantics, one that  is concerned with c.t)isteInic concerns, modal ext)rc.ssitms an(1 
with tilt; interaction })etwcen issues that  are strictly semantic an(l i)henoinena that  
arc of a I)ragInatic natllrc, i.e. that  t)crtain to t, hc use of language in information 
exchange. 

The gist, ,)f the (lynaIni(: at)t)roach to nat lnal  langlmgc meaning is caI)tln'(;(l in 
the sh)gan 'Meaning is context-change potential ' .  In the case of a thc.ory slmh as 
DPL, th('~ t:(ml,cxt t:onsists of assignments of ~)l).jt~'t:l,s satisflying certain t)r~)t)t,rl, it;s 
to varia|~les. In that  case, context-chang(,, means change of assignments. Sll(:h 
changes  are  l~rollght about  tyt)ically by referring expressions such as prot)er names 
or trent)oral ext)ressions antl t)y (llmntifit:ational cxt)rcssions such as nolHl I)hrases 
or t ense  ot)erators. All other ext)ressions are tests. In the case of D1RT a different 
notion of cont(:xt is use(l, viz. t, hat of a (liscom'se ret)resentation that  c.ontains 
discourse referents satisfying certain properties that  point to objects satis(ving 
correst)onding t)rot)crties: here context change is change, of the (liscourse rct)rescn- 
tation. With  rest)cot to empirical coverage that  (h)es not make a ditt'ercncc,, again 
it is referential an(t qlIantificational cxI)rcssioI> that  change tile context, other 
expressions are treater1 as parts of conditions. 

In epistenlic systems, context is yet another  type of object, viz., intbrmation, 
modelled by a set of possible worlds or t)ossit)h; situations or propositions. The 
pioneering work in this area is that  of Stalnakcr (of., among others, [Stalnakcr, 
1979; 1974]). Stalnaker focuse(1 on the context as the 'common ground',  i.e. the 
information that  is available by all st)eech t)articipants anti that  is maintaine(1 as it 
gets uptlatc(1 (l,lring a linguistic infbrmation exchange. This conmlon ground can 
be characterised as a set of worhts, viz., those worhls which are compatible with tile 
shared intbrmation, or, alternatively, as a set of propositions. A linguistic exchange  
then consists of utterances that  shift the context, by updat ing  the common ground, 
or that  test whether something holds in the context. Each utterance  represents 
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a particular way of updating or testing the common ground, and this update is 
conceived as the meaning of the utterance in question. 

Within such an approach, sentences that are tests in DPL or conditions in DRT 
in most cases do have an effect on the context,  and thus are treated dynamically. 
A simple subject-predicate sentence such as 'John is at home' updates the com- 
mon ground with the information that John has the property of walking, and 
conjunctions are ordered updates. Examples  of exceptions, i.e., sentences that 
do not update the context but test it, are modal sentences, such as 'John might 
be at home', and 'John must be at home'. These do not add new information, 
but check whether the existing common ground satisfies a requirement: that it is 
possible t h a t  John  is at  home, and t h a t  it not  possible t h a t  J o h n  is not  at  home, 
respectively.  

Another type of linguistic construction that can be treated in this fashion con- 
cerns presuppositions. A sentence carrying a presupposition typica l ly  tes ts  the 
common groun(t  for the  t)r(~sence of the  t)resut)t)ose(1 in fbrmat ion ,  besi(les ut)(lat- 
ing it wi th  new in fo rmat ion  An(1 yet ano the r  example  is presente(1 by condi t ionals :  
the sentence  'If JohIl is at  hoInc, M a r y  is there,  too '  tes ts  the  coxltext by  check- 
ing wh(~th(~," llI)(lat, i,lg wi th  the ant(~('(~(l(mt ' J ohn  is at home '  lca(ls to a co, l tcxt  ill 
whi(:h ' M a r y  is at  h()m(" h()hls. 

Of  t)articlflar int('~r('st is wha t  (:ons('qlu'nc(~s ol)tain if a t(;st ()r an llI)(late fails. 
In th(; cas(; of' a I)I'(;Slll)t)()siti()n failing 1)(;(:alls('~ th('~ inf()rlnation is not  t)rcscnt, 
1)lit, is consist(;nt wi th  th(, (:()mm()n gl'Olln(1, t,h('~ I)r(',sllI)t)()siti()n ix ()ft(;n sat(1 to l)c 
'ac(x)mmo(lat( ' , l ' ,  i.(;. an ilnl)li(:it lli)(late takes  l)lac(' [B(;av('r, 1997]. Ill oI, her cases, 
e.g., the faillu'c of a test  sll(:ll as '.]()hn might  l)e at  hi)hie', ()r ()f a s t raightforwar(1 
llI)(lat('~ sllch as ',I()hn ix at  h()m(;', t,h(' (x)ntt'xt n('c(ls to 1)e (h)wn-tlat(',l, i.(,. wvise(t.  
This  is t,h('~ a rea  ()f 1)(;lief wvisi()n [(;Sr(h,nfors, 1984] an()tll(,r aSl)(,(:t ()t" th(; (lynami('.s 
of in fo rmat ion  ('xchang('~. 

System 

Ul)(lat(; s( ;mantics was original ly (h,vise(1 as a way of (lcaling wi th  th('~ s(;manti(:s ()f 
mo(lal ( 'xI)rcssions slwh as 'migh t '  an(l 'nuls t '  [Vcltman, 1984]. Thes(; ext)ressions 
have a sI)(;('.ifically et)istenli(' nl( 'al l ing,  whi(:h nlak(;s ilnI)li('it I'('f('l'(;ll(X' to  the infor- 
ma t ion  s t a t e s  of st)(;aker an(1 h('ar('r. ()th('~r uses of ut)(lat, c scnlall t ics are ,  alllOng 
others ,  in accounts  of coi,(li t ionals [Velt, nlan,  1986], defaul ts  [VcltmaI,, 1996], t)re- 
suppos i t ions  [Beaver, 1997], [Zccvat, 1992], an(1 o ther  issues involving in fo rmat ion  
exchang('~. 

H(;rc we t)r('scnt a core syst(;m tha t  forms the  basis of m a n y  var ia t ions  in the  
l i t( ' raturc.  

Let  P be a set, of a tolnic  for,mlla('~. The  language, ix t h a t  of t)rot)ositional logic, 
wi th  an a(l(litional ope ra to r  ~ .  Assl lme p ranges  over P.  

: := P l ~ [ ~ 1  Acp2 I '09P 
~' ::= O~ 
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The other connectives are defined in the usual fashion. 
A model M consists of a set of possible worlds W and in interpretat ion function 

V : P ~ P ( W ) .  Information states s are subsets of W, with 0 the absurd 
information state,  W the s tate  of no information, and singletons {wi } states of 
maximal  information. 

The semantics takes the form of a definition of 's[p]M', i.e. the result of updat ing  
an information s tate  s in M with (the information conveyed by) )9: 

8[m)9]M = 8 \ 8[)9] M 

8[)91 A )92]M = 8[)91]M[)92]M 

s if s[)9]M :/: O 
8[0)9]M -- 0 otherwise 

An atomic formula updates  s with the information it conveys; a negation -~)9 
deletes those worlds in which the information conveyed by p holds from s; con- 
junction is a sequential update  with the conjuncts. The mo(lal ~)9 is a test: it 
returns the original s tate  if an update  with )9 is possible, the absur(l s tate  other- 
wise. 

This systenl analyses a special case of public a imounccment  logic [Plaza, 1989; 
Gert~ran(ly, 1999b], where the knowledge of a single agent is modelle(1. The Ino(M 
M abow' tail be viewe(l as an $5 mo(lcl wittl a llniw~rsal acccssitfility I'elatioil 
[van Eijck aml (le Vrics, 1995]. Up(lating witll a Ira)positional tbrmula F tins tile 
elti;ct of" amlollncillg F to the agent, i.e. llt~(lat, ing witll action model 

in the sensfl of [Baltag and Moss, 2004].Updating with a modal  fornnlla O F  boils 
down to updat ing with the following action illo(lel: 

The notion of 'acceptance in M,  s' is defined as follows" 

S ~ M  )9 i~" 8 C ";[)9]M 

Validity can be defined in a number of ways; tile most coIilnlon one is as follows: 

)91. . .  )gn ~ //) if[ for all M, s s[)91]M~...  [)9,,z]M ~ 1/) 
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i.e. every state that  accepts the premises, accepts the conclusion. 
This system is eliminative (s[~a]M C_ ~); not distributive (s C_ s' :/~ s[~a] C s'[~p]); 

neither right- nor left-monotone; and conjunction is not commutative. A complete 
sequent calculus can be found in [Groeneveld, 1995, chapter 3]. 

Characteristic examples 

A characteristic example, that  illustrates the non-commutativity of conjunction, 
involves the +-operator.  If we read it as the formal counterpart of the modal 
expression 'might'  (in its epistemic meaning), and represent discourse sequencing 
as conjunction, we can explain the difference between the following two sentences: 

a. Somebody is knocking at the door . . .  It might be John . . .  It is Mary 

b. Somebody is knocking at the door . . .  It is Mary . . .  *It might be John 

In the first sequence tile second sentence 'It might be John' tests the state (that 
contains the information that somebody is at the door, due to the update with 
tile first sentence) for the possibility that the person knocking is John. If that  
succeeds, it is only confirmed that  this is a possibility. Tile subsequent update 
with the information that in fact it is Mary, is consistent with that. In tile second 
se<luence the information that it is Mary is ar before the test takes place, 
resulting in its failure, which explains the odd status of this sequence. 

The failure of right- en left-inonotonicity is also due to the O-operator: 

O - ~  ~ O ~  but < ) ~ ,  ~ ~ ~--,~ 

~ but - ~  ~: ~ 

Another instantiation of the ideas behinr uptlate senmntics is provided t~y con- 
(litionals. Many aspects of conditionals in natural language can be captured in 
an update framework, by keeping in mind the 'modal '  nature of the conditional 
construction: 

S[(~91 ----+ ( / P 2 ] M  - -  {i E S I i f /  E s[(/91]M then i E ,s[(~l]M[(C92]M} 

The update efl'ect of a con<lition thus is to retain those possibilities in a given state 
s such that updating them with the antecedent alh)ws a subsequent update with 
tile consequent. 

Applications of up<late semantics can be found in a variety of areas, such as 
deontic modality [van <let Torte and Tan, 1998]; interrogatives [Groenendijk, 1999]; 
imperatives [Zarnic, 2002; Lascarides and Asher, 2003]; counterfactuals and other 
irrealis-constructions [Veltman, 2005]. 

7.~ Combining dynamic and update semantics 

The dynamic semantics used in systems such as DPL and DRT can be combined 
with an update type of semantics as just defined. Various proposals exists (cf., 
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e.g., [Groenendi jk  et al., 1995; Dekker ,  1996]). The  idea is to pu t  the  semant ics  
for quant i f ied formulae in an u p d a t e  format .  In [Groenendi jk  et al., 1996] this  is 
done as follows. 

Exis ten t ia l  quantif iers  in t roduce  new kind of objects ,  so-called 'pegs ' ,  model led  
by the  na tu r a l  numbers .  This  no t ion  was first i n t roduced  by Vermeulen ,  cf., [Ver- 
meulen,  1995]. A referent  sys tem r is a func t ion  from a finite set of variables to 
pegs. An exis tent ia l  quant i f ier  3x add  its var iable  x, in t roduces  the  next  peg and  
associates x wi th  t ha t  peg. So, if r is a referent  sys t em wi th  d o m a i n  v and  range  of 
pegs n, t hen  r[x /n]  is the  referent  sys tem r ~ which is like r except  t ha t  its doma in  
is v U {x} its range  is N + 1 and r ' ( x )  - n .  Let r and  r '  be two referent  sys tems  
wi th  doma in  v and v ~, and  range  n and  n ~, respectively.  T h e n  we say tha t  r ~ is an 
ex tens ion  of r, r _< r ' ,  iff v c ~/; n _< n'; if x E v then  r (x )  - r ' ( x )  or n _< r ' (x ) ;  if 
x r v and x E v' then  n <_ r ' ( x ) .  

States  s are sets of tr iples i consis t ing of the  same referent  sys t em r, an assign- 
ment  g and a world w. So s ta tes  conta in  in fo rmat ion  a b o u t  b o t h  the  world (via 
the possible world pa r ame te r )  as well as the  discourse (via the  referent  sys tem) .  
Growth  of in format ion  is then  twofold as well" via the  e l imina t ion  of possibili t ies,  
and  via ex tens ion  of tile referent  system.  Firs t  we introduce:  

- w> 
. s [ . T / d ]  - -  E s} 

an(1 then we define these two not ions  of in format ion  growth  as fl)llows. Let i, i ~ E 
I, i - - ( r , g ,  w) and i ' -  (r ' ,g',  w'}, and s, s' E S" 

i ~ < i  ~ iff r < r  ~ .qCg~ 

s < s ~ iff for all i ~ E s ~" there  exists an i E .~" i < i' 

Finally, we define the u p d a t e  semant ics  for exis tent ia l ly  quant i f ied formulae  3x? 
as follows ( the o ther  clauses arc merely  repe t i t ions  of the  above)" 

This  defines the  u p d a t e  eflhct of 3.T,~ point-wise on the  objec ts  in tile domain:  the  
referent sys tem of the s ta te  s is u p d a t e d  by add ing  a peg, the  variable  is associa ted  
with  the peg, and  an object  d is selected and assigned to the  peg; then  the  resul t ing 
s ta te  S[.T,/d] is u p d a t e d  wi th  ~; this p rocedure  is r epea ted  for every objec t  in the  
domain;  tile results  are collected and toge the r  make  up the  new s ta te  S[3.T,~]. 

Tile resul t ing sys tem is capable  of t r ea t ing  complex  cases concern ing  tile in- 
te rac t ion  of quantif iers  and  modal i t ies .  For example  it can be used to show tha t  
whereas  3xP.T, A OVy-~Py  is not  consis tent ,  3 x P x  A VyO-~P?j is: if we know tha t  
someth ing  has the  p rope r ty  P this ipso facto rules out  tile t)ossibility t ha t  no-one 
has tha t  proper ty ,  bu t  it does not  rule out  the  possibil i ty t ha t  we are un in fo rmed  
abou t  the  ident i ty  of this P .  For o ther  examples ,  involving also ident i ty  we refer 
tile reader  to [Groenendi jk  et al., 1996] and [Aloni, 2002]. 
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8 CONCLUDING REMARKS 

The overview of dynamic logics and their applications presented in this paper 
has focused on a number of core systems (Floyd/Hoare logic, PDL, epistemic 
PDL, QDL, DPL), and a number of central applications: program analysis, tree 
description, analysis of communication, semantics of natural language. References 
to other applications were thrown in as an incentive to the reader for further 
exploration. 

The field of dynamic logic, including its applications in various domains, is still 
developing. Dynamic logic started out as a way of studying various aspects of com- 
putation, mainly in traditional computational settings, with a focus on sequential 
transformational programs. When theoretical computer science broadened to en- 
compass the theory of reactive systems and concurrency, dynamic logic evolved 
by developing systems that could handle these too (branching time logics and it 
calculus). Thus, tile core concepts of dynamic logic have proved to be applicable 
in a wide range of settings, allowing formalisation of a great diversity of concepts 
and phenomena. 

In certain areas, such as natural language semantics, the use of dynamic con- 
cepts initially a,'ose independently, and it was only subsequently that these notions 
were eInbetldcr in r logic. This trove given rise to interesting intcI'actioIlS, 
that arc still t)eiIlg actively pursued. 

The at)I)lication to conmnmicative action stays sonmwtmt closer to the origi,lal 
motivation tbr the (levelopment of (tynaInic logic,. Here the use of (lynamic logic ties 
in witli an existing tratlition of using mo(lal logic in t, lm analysis of coInnmnicatioIl 
protocols [Halpel'Ii ('.t al . ,  1995]. Also in t, tle analysis of various other phenolncim 
that are con('erIler wit, ll iIlt, eractions 1)etweeIl indivitluals an(1 with proI)erties of 
the collectives (groups, societies) that they fornl, coImepts of dynamic logic play a 
role, as is testifie(l by work (lone on, for example, collective decisions (of., [Pauly 
and Parikh, 2003] on game logic as an extension of propositional dynamic logic). 

As more aspects of the ways in which truman beiIlgs interact are brought into 
tile picture, concepts like perception, causality, justification and intention apt)caI. 
Here insights from the t)hilosot)hy of action and fl'oIn game theory must augment 
the tool set fron~ (lynaInic logic, thus creating an exciting amalgam of logic, tt~eo- 
retical comImter science, philosophy and game theory. Whatever the fllture holds 
in store for this area, it seems more than likely that concepts and results f,'om 
dynamic logic will continue to play a major role in its develot)ment. 
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