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Abstract

In order to reason in a non-trivializing way with contradictions, para-
consistent logics reject some classically valid inferences. As a way of re-
covering some of these inferences, Graham Priest ([Priest, 1991]) proposed
to nonmonotonically strengthen the Logic of Paradox by allowing the se-
lection of “less inconsistent” models via a comparison of their respective
inconsistent parts. This move recaptures a good portion of classical logic
in that it does not block, e.g., disjunctive syllogism, unless it is applied to
contradictory assumptions. In Priest’s approach the inconsistent parts of
models are compared in an extensional way by considering their inconsis-
tent objects. This distinguishes his system from the standard format of
(inconsistency-)adaptive logics pioneered by Diderik Batens, according to
which (atomic) contradictions validated in models form the basis of their
comparison. A well-known problem for Priest’s extensional approach is
its lack of the Strong Reassurance property, i.e., for specific settings there
may be infinitely descending chains of less and less inconsistent models,
thus never reaching a minimally inconsistent model.

In this paper, we demonstrate that Strong Reassurance holds for the
extensional approach under a cardinality-based comparison of the incon-
sistent parts of models. Furthermore, we introduce and investigate the
metatheory of the class of first-order nonmonotonic inconsistency-tolerant
construct over the extensional or quantitative comparisons of their respec-
tive models. Core model-theoretic properties for these logics, such as the
Löwenheim-Skolem theorems, along with other nonmonotonic properties,
are further studied.

1 Introduction and outline of the paper

In this paper, we investigate a specific family of nonmonotonic logics that in-
terpret a given set of premises as consistently as possible. While these logics,

∗christian.strasser@rub.de

1

This is a pre-copyedit version of an article forthcoming in the 
Australasian Journal of Logic



unlike classical logic, tolerate inconsistencies, they re-capture a good portion
of the inferential power of classical logic. The basic idea is the following. We
start with a fixed monotonic paraconsistent logic PL. Given a possibly inconsis-
tent premise set Σ, PL offers a class of possible interpretations or models of Σ:
MPL(Σ). Some of these interpretations will be less inconsistent, while others
will be more so. The meaning of interpreting the premises “as consistently as
possible” can be disambiguated in several ways. Throughout the paper we fol-
low quantitative or qualitative considerations, coupled with considerations over
linguistic or extensional aspects. Further details about these approaches will be
provided in Section 2. What is common to both is that they equip us with an
ordering ≺ on MPL(Σ), where M ≺ M ′ if M offers a less inconsistent interpre-
tation of Σ than M ′. Then, one can choose the minimally inconsistent models
in min≺(MPL(Σ)) to define a consequence relation ⊨nmPL: Σ ⊨nmPL A iff for all
M ∈ min≺(MPL(Σ)), A holds in M .

In a nutshell, the linguistic approach considers (formulas expressing) contra-
dictions validated in a model to measure how inconsistent is the interpretation
offered by the model. On the other hand, the extensional approach considers
inconsistent extensions of predicates in a model. When comparing different
models M and M ′ through the ordering ≺ with respect to their inconsistent in-
terpretations, be it linguistically or extensionally, one can either consider subset
relations by demanding that every contradiction in M is also in M ′, or one can
compare the cardinality of their respective set of contradictions.

The linguistic approach in both its qualitative and quantitative flavour, in
the form of adaptive logics ([Batens, 2007, Straßer, 2014]), has been shown to
be based on a robust meta-theory with many properties that are deemed to be
at the core of defeasible inference (such as cumulativity [Gabbay, 1985, Kraus
et al., 1990]). The situation for the extensional approach, on the other hand,
is unflattering. One of the main reasons is that its qualitative version lacks
the property of strong reassurance ([Batens, 2000]), and therefore also lacks
central properties of nonmonotonic inference, such as cautious monotony and
cumulativity. Strong reassurance states that for any model M ∈ MPL(Σ) either
M is ≺-minimal or we can find a minimally inconsistent M ′ ∈ min≺(MPL(Σ))
that is less inconsistent than M (so, M ′ ≺ M).

As a central result, we show that if one adopts a quantitative extensional
approach, strong reassurance and the core properties of nonmonotonic inference
hold. Furthermore, we investigate under what circumstances classical logic (or
another Tarskian deductive standard) is recaptured by the nonmonotonic logic,
whether it makes a difference for the nonmonotonic entailment relation to in-
terpret the equality symbol as identity or merely as a congruence relation, and
whether the nonmonotonic logic also satisfies the Löwenheim-Skolem theorems.

We proceed as follows. In Section 2 we motivate the move from mono-
tonic paraconsistent logics to nonmonotonic inconsistency-tolerant logics. We
introduce the linguistic and the extensional approaches, as well as the qualita-
tive and the quantitative model comparisons. After having demonstrated that
the qualitative extensional approach does not satisfy strong reassurance and
related properties, we move our focus in Section 3 to the quantitative exten-
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sional approach. There we introduce different ways to disambiguate the phrase
“interpreting the premises as consistently as possible”. In Section 4 we show
that the latter approach is based on a robust meta-theory which satisfies strong
reassurance and the core properties of nonmonotonic inference. In Section 5
we discuss whether classical logic or another deductive standard is recaptured
when the nonmonotonic logic takes as an input a premise set that can be inter-
preted consistently. In Section 6 we recall and enhance some of the discussion
concerning philosophical problems underlying the extensional or the linguistic
approaches. Section 7 is concerned with the interpretation of the equality sym-
bol as either identity or congruence. Finally, we investigate nonmonotonic and
abnormality-aware versions of the Löwenheim-Skolem theorems in Section 8. In
Section 9 we conclude our paper.

2 Reasoning with contradictions: from mono-
tonic to nonmonotonic logics

It has been argued that, in specific reasoning tasks, humans and artificial agents
benefit from adopting a tolerant attitude towards contradictions. For instance,
scientific theories (especially in their earlier stages) have been argued to be in-
consistent1, semantic paradoxes such as the liar paradox give rise to contradic-
tions, databases may contain contradictions, and some philosophical traditions
embrace conceptual contradictions (see e.g., [Priest, 2002]). Classical logic’s
attitude towards contradictions is inconsistency-intolerant, as it does not allow
for models in which contradictions are true and therefore validates the explosion
principle, according to which anything follows from a contradiction.

As a remedy, several families of paraconsistent logics have been proposed in
the literature (see [Priest et al., 2018] for an overview). A common feature of
these logics is that they make use of a negation (¬) which is inferentially weaker
than its classical counterpart (∼), thus allowing for both A and ¬A to be true.
The price to pay for inconsistency-tolerance is that some classical inferences
such as disjunctive syllogism (if A and ∼A ∨ B, then B) fail in paraconsistent
logics. To address this issue, nonmonotonic systems , have been proposed that
allow to interpret a given premise set as consistently as possible, and thereby
to validate some instances of disjunctive syllogism.

2.1 Paraconsistent logics considered in this contribution

Before we equip paraconsistent logics with more strength, let us shortly shed
some light on what kind of paraconsistent logics we consider in this paper.
Since our results apply to a whole class of logics, we decided to keep most of
the informal discussion on an abstract level. Nevertheless, some constraints are
in place.

1Such as Bohr’s atomic theory and Newton’s cosmology. See [Vickers, 2013, Šešelja and
Straßer, 2014].
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Firstly, our perspective is a semantic one. We consider any Tarskian logic2

PL in a first order language L with a countable set of predicate symbols {Pi |
i ∈ I} (with I being an initial subset of N) with corresponding arities denoted
simply in typewriter font by i (so i =df arity(Pi)), countably many sentential
letters pi and a set of countably many constants denoted by ConstL. We denote
the set of L-sentences [resp. wffs] by sentL [resp. by wffsL]. We only consider
logics with finitely many truth-values collected in V and truth-functional (deter-
ministic) matrices. We assume there to be a non-empty, finite and strict subset
D of V of designated truth-values, and a non-empty set of designated values
A ⊆ D that are considered “abnormal”. Typically, these will be truth-values
tracking inconsistencies. E.g., in three-valued logics with values V = {0, i, 1}
and D = {i, 1}, A will typically be the singleton {i}. In what follows, we intro-
duce nonmonotonic logics that “avoid” interpreting formulas with values in A
as much as possible.3

As usual, we consider models of PL to be structures M = ⟨D, v⟩, where D is
a non-empty discourse domain and v interprets each constant, each sentential
letter, and each predicate symbol. For this, each constant is associated with
a member of D and each sentential letter is associated with a truth-value in
V. Furthermore, for each predicate symbol Pi and each tuple (d1, . . . , di) ∈
Di, v maps (Pi, (d1, . . . , di)) to V. Similarly for identity =, non-identity ̸=
and congruence symbols ≈.4 In that case v additionally satisfies the following
constraints:5

Eq For all d, d′ ∈ D, v(=, (d, d′)) ∈ D iff d = d′.

InEq For all d, d′ ∈ D, v(̸=, (d, d′)) ∈ D iff d ̸= d′.

Cong For all d, d′, d′′ ∈ D,

(Ref) v(≈, (d, d)) ∈ D, and
(Str) For all Pi, for all (d1, . . . , di−1) ∈ Di−1, and for all 1 ≤ j ≤ i, if

v(≈, (d, d′)) ∈ D then

v(Pi, (d1, . . . , dj−1, d, dj+1, . . . , di−1)) =

v(Pi, (d1, . . . , dj−1, d
′, dj+1, . . . , di−1)).

The reader may note that from (Ref) and (Str) follow, e.g., symmetry (if
v(≈, (d, d′)) ∈ D then v(≈, (d′, d)) ∈ D) and transitivity (if v(≈, (d, d′)), v(≈, (d′, d′′)) ∈
D then also v(≈, (d, d′′)) ∈ D).

2A logic PL is Tarskian if its consequence relation ⊨PL is reflexive (Σ ⊨PL A for all A ∈ Σ),
transitive (if Σ ⊨PL A for all A ∈ ∆ and Σ ∪ ∆ ⊨PL B then Σ ⊨PL B) and monotonic (if
Σ ⊨PL A then Σ ∪∆ ⊨PL A).

3In order to reduce clutter –especially in the already spacious meta-theoretic proofs– we
will not consider functional symbols in the first-order languages studied in this paper.

4Of course, whether a symbol ◦ ∈ {=, ̸=,≈} is interpreted as identity, non-identity or
a congruence depends on constraints imposed on the given models. In this paper we will
conventionally use the symbol “=” [resp. “ ̸=”, “≈”] only in the context of models that satisfy
Eq [resp. InEq, Cong].

5We use lazy notation here by using also in the meta-language the symbols “=” and “ ̸=”.
Also, all expressions in the meta-language have their usual classical interpretation.
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A ¬A
V \ D V \ A
A A

D \ A V \ D

A ¬A
0 1
i i
1 0

A ¬A
f t
n n
b b
t f

∧ V \ D A D \ A
V \ D V \ D V \ D V \ D
A V \ D A A

D \ A V \ D A D \ A

∧ 0 i 1
0 0 0 0
i 0 i i
1 0 i 1

∧ f n b t
f f f f f
n f n f n
b f f b b
t f n b t

Table 1: The schematic truth-tables for negation (left, row 1), conjunction (left,
row 2) express our requirements (Neg) and (Con). E.g., the first line of the
left table for negation reads: f¬[V \ D] ⊆ V \ A. These schemes are not to
be misunderstood as a nondeterministic truth-tables (as in [Avron, 2005]). We
also list the truth-tables for the paraconsistent negation and conjunction of LP
(center) and of the four-valued characterization of FDE (where A = {b} and
D = {t,b}, see [Omori and Wansing, 2017] for an introduction to FDE). We
highlight the correspondences between the schemes on the left and the truth-
tables of LP and FDE.

Formulas are associated with truth-values by means of a valuation function
vM which proceeds in a bottom-up way:

• for atomic formulas A = Pi(c1, . . . , ci) we let

vM (Pi(c1, . . . , ci)) = v(Pi, (v(c1), . . . , v(ci)))

• for atomic formulas A = pi we let vM (pi) = v(pi).

For complex formulas we assume each n-ary connective in the language to
be truth-functional. That means, for each connective ◦ of arity n there is a
function f◦ : Vn → V such that vM (◦(A1, . . . , An)) = f◦(vM (A1), . . . , vM (An)).

A typical paraconsistent logic has a unary connective ¬ that allows for truth-
value gluts, i.e., for which f¬[D] ∩ D ̸= ∅ (see Fig. 2.1 (left) for the schematic
truth-table).6 In what follows, let (Neg) and (Con) be the respective truth-
conditions based on the truth-tables for negation and conjunction (Fig. 2.1).

Fact 2.1. For any valuation function vM that satisfies (Neg) for ¬ and (Con)
for ∧ (see Fig. 2.1)7, we have: vM (A) ∈ A iff vM (A ∧ ¬A) ∈ A.

6For functions f : X → Y and a non-empty X ⊆ X we will use the notation f [X] for the
set {f(x) | x ∈ X}.

7If f∧ is a min-operator, this means that ∧ respects the ordering V \ A < A < D \ A (in
lazy notation, more precisely: for all v ∈ V \ A, for all v′ ∈ A and for all v′′ ∈ D \ A we have
v < v′ < v′′).
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Proof. Suppose vM (A) ∈ A. By (Neg), vM (¬A) ∈ A and by (Con), vM (A ∧
¬A) ∈ A.

Suppose vM (A ∧ ¬A) ∈ A. By (Con), we have the following cases: (1)
vM (A) ∈ A and vM (¬A) ∈ A, (2) vM (A) ∈ A and vM (¬A) ∈ D \ A, and (3)
vM (A) ∈ D \ A and vM (¬A) ∈ A. For cases (1) and (2), we’re done. For case
(3), by (Neg), vM (A) ∈ A follows.

The fact shows that in a typical paraconsistent logic, in order to interpret
a premise set “as consistently as possible”, sentences need to be interpreted in
V \ A as much as possible.

For technical reasons we will consider the following (rather harmless) con-
straints on quantifiers and the presence of an existential quantifier throughout
the paper. Namely, for each quantifier µ we assume there to be a function
fµ : ℘(V) \ {∅} → V such that8

Q0. vM (µxA(x)) = v iff fµ({vM (A(d)) | d ∈ D}) = v,

and for all V,V ′ ∈ ℘(V) \ {∅},

Q1. fµ(V) ∈ V, Q2. if fµ(V ∪ V ′) ∈ V then fµ(V) = fµ(V ∪ V ′).

Finally, we assume the presence of an existential quantifier, i.e., a quantifier
∃ that fulfills (for all V ∈ ℘(V) \ {∅}):

Q∃. f∃(V) ∈ D iff V ∩ D ̸= ∅.

Fact 2.2. Whenever V is totally ordered by some <, the requirements Q0,
Q1, and Q2 are fulfilled for the standard definitions of ∃ and ∀ in terms of
f∃ = max< and f∀ = min<.

9

As usual, we define M |= A iff vM (A) ∈ D, else M ̸|= A. We shall write
MPL for the class of all PL-models and MPL(Σ) for the class of PL-models of a
given set of L-sentences Σ.

Example 2.1 (The logic of paradox, LP.). The logic of paradox LP ([Asenjo
et al., 1966, Priest, 1979]) is one of the best-known and most simple paracon-
sistent logics. In the rest of the paper we will use it in our examples. It comes
with three truth-values: V = {0, i, 1}, where D = {i, 1} and A = {i}. The values
0 and 1 behave as their classical counter-parts, while i allows for negation-gluts.
This is captured by the truth-table for negation in Table 2.1 (right). Disjunction
and conjunction behave in the usual way in that f∧ = min< and f∨ = max<
where 0 < i < 1. In this way, both (Neg) and (Con) are satisfied in LP and so

8Where d is an element of the given domain D, we denote by d the pseudo/auxiliary-
constant whose interpretation is d. Moreover, we use the notation A(x1, . . . , xn) to indicate
that all free variables in A are among x1, . . . , xn. In particular, A(x) denotes that the only
free variable in A is x or A is a sentence. Furthermore, A(c) denotes the result of the uniform
substitution of all free variables in A by c.

9Recall that V is finite. For infinite V with f∃ = sup or f∀ = inf Fact 2.2 does not in
general hold.
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Fact 2.1 applies. Similarly, the quantifiers ∃ and ∀ are defined by f∀ = max<
and f∃ = min<. Identity ‘=’ fulfills our requirement and identity-gluts of the
type (c = c) ∧ ¬(c = c) are allowed for the case in which v(=, (v(c), v(c))) = i.

Example 2.2. Other paraconsistent logics that fall in our class are, e.g., CLuNs,
FDE, J3 and RM3.

2.2 Inconsistency-tolerant nonmonotonic logics

The central question is how to tolerate contradictions without paying the full
price in inferential power. The solution adopted here is to sacrifice another totem
of classical logic: monotonicity ([Priest, 1991, Batens, 2000]). Inconsistency-
tolerant nonmonotonic logics (in short, ITNMLs) interpret a given set of premises
“as consistently as possible”.10 In other words, we take a given paraconsistent
logic PL – let us call it the base logic–, but instead of considering all its mod-
els/interpretations, we only select those which are most consistent, i.e., the “less
inconsistent” ones.

Example 2.3. Suppose our premise set is {¬p, p∨q}. An ITNML, let us call it
nmPL, will consider models of its base logic PL (e.g., LP from Ex. 2.1) in which
¬p is true, p is false, and therefore q is true. This means, disjunctive syllogism
will be validated: {¬p, p ∨ q} ⊨nmPL q. Nonmonotonicity strikes again if we add
more information to our premises in the form of p: {¬p, p, p ∨ q}. In this case,
nmPL will only consider models in which both p and ¬p are true. And since p
is true, p ∨ q will also be true.11 Thus, there are models of {¬p, p, p ∨ q} where
q is false. Hence, {¬p, p, p ∨ q} ⊭nmPL q. This is nonmonotonicity on the level
of the entailment relation of an ITNML: adding new information may cause the
loss of consequences.

The underlying rationale of ITNMLs is the following assumption:

Consistency by Default (CbD) It is plausible to assume that (our descrip-
tion of) the world is consistent in a given aspect X unless we have reasons
to believe the opposite.

There are several ways to interpret a set of premises “as consistently as
possible”, each of which we discuss in more detail below:

1. quantitative vs. qualitative 2. extensional vs. linguistic

Example 2.4. We start off with an example in the propositional version of LP
with the premises

Σ =
{
¬p,¬q,¬s, p ∨ q, p ∨ s, p ∨ t, q ∨ t, s ∨ t

}
.

10As a clarification: one can, of course, turn any nonmonnotonic logic into a paraconsistent
logic by merely changing its base logic. ITNMLs cover specifically those logics whose purpose
is to interpret a possibly (classically) inconsistent set of premises “as consistently as possible”.

11We suppose the disjunction ∨ behaves as expected. The reader may assume LP to be the
underlying logic.
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We distinguish the following models of our premises relative to the literals that
are true in them:

model literal contradictions
M1 p,¬p,¬q,¬s, t p ∧ ¬p
M2 ¬p, q,¬q, s,¬s, t q ∧ ¬q, s ∧ ¬s
M3 p,¬p, q,¬q,¬s, t p ∧ ¬p, q ∧ ¬q
M4 p,¬p,¬q, s,¬s, t p ∧ ¬p, s ∧ ¬s
M5 p,¬p, q,¬q, s,¬s,¬t p ∧ ¬p, q ∧ ¬q, s ∧ ¬s
M ′

5 p,¬p, q,¬q, s,¬s, t p ∧ ¬p, q ∧ ¬q, s ∧ ¬s
M6 p,¬p, q,¬q, s,¬s, t,¬t p ∧ ¬p, q ∧ ¬q, s ∧ ¬s, t ∧ ¬t

In order to select those models of Σ in which the given information is in-
terpreted as consistently as possible, it is useful to define the inconsistent or
abnormal part of a model. In this section we let (see Section 3 for a more
detailed discussion):

Ab(M) =df {A ∈ Atoms | vM (A) ∈ A}.

In view of Fact 2.1, this can equivalently be expressed by Ab(M) = {A ∈ Atoms |
M |= A ∧ ¬A}. We can then compare models in terms of their respective
abnormal parts.

According to the qualitative comparison, a model M of Σ is more consistent
than another model M ′ of Σ iff Ab(M) ⊊ Ab(M ′). The most consistent models
of Σ according to this approach are M1 and M2. In Figure 1 (right) we illustrate
how the given models compare.

According to the quantitative comparison, M1 is better than all other models
since it validates the least number of contradictions (in atoms). According to
this approach, a model M of Σ is more consistent than another model M ′ of
Σ iff card(Ab(M)) < card(Ab(M ′)).12 In Figure 1 (left) we illustrate how the
given models compare.

In order to discuss the last distinction, extensional vs. linguistic, we better
move to the more expressive language of predicate logic. Suppose we have a
unary predicate symbol P in our language. The extensional approach to the
abnormal part of a model M = ⟨D, v⟩ is defined by considering the inconsistent
extension of P , i.e., all objects d ∈ D for which v(P, d) ∈ A.13 For instance,
in the case of LP, all objects d ∈ D for which v(P, d) = i. So the abnormal
part consists of inconsistent objects relative to P . The linguistic approach, on
the other hand, only considers those inconsistencies in atomic formulas such as
Px and Pc that are expressible as sentences in the object language, such as
∃x(Px ∧ ¬Px) or Pc ∧ ¬Pc, for a constant c.

12The quantitative comparison was first mentioned in [Priest, 1988] for propositional LP.
It was not further studied in view of the fact that minimal and LP-models collapse in the
context of premise sets that give rise to infinitely many contradictions in atoms, i.e., in case
the inconsistent part of a model is taken to be the set of all contradictory atoms. See also
Remark 3.1. In the present paper, we take a more general perspective in that we consider
various ways of comparing models quantitatively and in that we consider a more expressive
1st order language.

13In [Batens, 1999] the extensional approach is called ontological.
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M6

M5 M ′
5

M2 M3 M4

M1

M6

M5 M ′
5

M3 M4

M1 M2

Figure 1: Orderings of models based on the quantitative [qualitative] (left)
[right] approach.

Example 2.5. To illustrate the difference between the two approaches consider
the premise set

Σ =
{
(c1 = c2 ∧ Pc1 ∧ ¬Pc1) ∨ (Pc1 ∧ ¬Pc1 ∧ c2 = c3 ∧ c4 = c5)

}
.

We consider two types of models:

1. M1 for which the left disjunct of our premise holds and M1 ̸|= Pci ∧¬Pci
for any 3 ≤ i ≤ 5.

2. M2 for which the right disjunct of our premise holds and M2 ̸|= Pci∧¬Pci
for any 2 ≤ i ≤ 5.

In the linguistic approach there is no need to further consider the extensions
of our predicates to determine the abnormal parts of our models. We have:
Ab(M1) = {∃x(Px ∧ ¬Px), P c1 ∧ ¬Pc1, P c2 ∧ ¬Pc2} and Ab(M2) = {∃x(Px ∧
¬Px), P c1∧¬Pc1}. Hence, M2 fares better in our comparison and models such
as M2 will be selected. Thus, for instance, c4 = c5 is entailed. Notice that in
M1, despite the fact that M1 |= c1 = c2, we have two linguistic entities Pc1 ∧
¬Pc1 and Pc2 ∧ ¬Pc2 that count as different abnormalities. In the extensional
approach, with its focus on extensions, this linguistic difference will not matter
and both models will turn out equally inconsistent.

To see this, we first have to consider the structures of our models in more
detail. For simplicity, suppose that both models have the same domain consist-
ing of the individuals d1, d2 and d3. The following table gives an overview of
the underlying interpretations.

M = ⟨D, v⟩ D AbP (M) v(c1) v(c2) v(c3) v(c4) v(c5)
M1 {d1, d2, d3} {d1} d1 d1 d2 d2 d3
M2 {d1, d2, d3} {d1} d1 d2 d2 d3 d3

In both models only object d1 falls both in the extension and the “anti-
extension” of P and therefore both models have the same abnormal parts. In
this case, c4 = c5 is not derivable.
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Let us sum up:

1. An ITNML is based on a paraconsistent base logic PL whose class of
interpretations for a given premise set is further refined by implementing
the rule of Consistency by Default.

2. For this purpose, models of PL are subjected to an ordering ≺ where
M ≺ M ′ if the abnormal part Ab(M ′) of M ′ is to be considered less
inconsistent than Ab(M).

3. The qualitative and the quantitative approach compare these abnormal
parts according to different considerations: either by cardinality or via
set-inclusion.

4. Given the resulting ordering ≺, models which are deemed sufficiently con-
sistent are selected. In this paper we focus on the selection of ≺-minimal
models, which means that the set of selected models is min≺(MPL(Σ)).

14

5. The induced nonmonotonic entailment relation of nmPL is defined by:
Σ ⊨nmPL A iff for all M ∈ min≺(MPL(Σ)), M |= A.

In view of this we can consider an ITNML a pair ⟨PL,≺⟩ consisting of a
paraconsistent (monotonic) base logic and a relation that compares models rel-
ative to their consistency (by taking into account the set of abnormalities Ab in
M).

2.3 (Strong) reassurance

An important meta-theoretic desideratum for a given ITNML nmPL = ⟨PL,≺⟩
is that it does not trivialize premise sets which are not already trivialized by its
corresponding paraconsistent base logic PL. So,

Reassurance. For all sets of L-sentences Σ, min≺(MPL(Σ)) ̸= ∅ if MPL(Σ) ̸=
∅.

In case the trivial model either doesn’t exist or is always strictly worse
than any non-trivial model, we can characterize reassurance also in view of
the following consequence relation: if there is a L-sentence A for which Σ ⊭PL A
then there is an L-sentence B for which Σ ⊭nmPL B.

A similar property is strong reassurance.

Strong Reassurance. For all sets of L-sentences Σ and all M in MPL(Σ) \
min≺(MPL(Σ)), there is an M ′ ∈ min≺(MPL(Σ)) for which M ′ ≺ M .15

14In the context of adaptive logics many other types of selections were already presented
(see [Straßer, 2014, Ch. 5]).

15This property is also known under the name smoothness ([Kraus et al., 1990]) or stop-
peredness ([Makinson, 2005]): an ordered structure (X,≺) is smooth iff for every x ∈ X, either
x ∈ min≺(X) or there is an x′ ∈ min≺(X) for which x′ ≺ x. So, strong reassurance means
that for any premise set Σ, the structure (MPL(Σ),≺) is smooth.
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Strong reassurance has important merits when it comes to properties of
nonmonotonic entailment. E.g., Cautious Monotony, which is considered one of
the core properties of defeasible inference, is a corollary of strong reassurance
and the monotonicity of the core logic PL.

Cautious Monotony For all sets of L-sentences Σ∪{A,B}, if Σ ⊨nmPL A then

1. min≺(MPL(Σ ∪ {A})) ⊆ min≺(MPL(Σ)) and

2. if Σ ⊨nmPL B then Σ ∪ {A} ⊨nmPL B.

Theorem 2.1. If nmPL = ⟨PL,≺⟩ satisfies Strong Reassurance, it also satisfies
Cautious Monotony.

Proof. Suppose Σ ⊨nmPL A. We show that min≺
(
MPL(Σ∪{A})

)
⊆ min≺

(
MPL(Σ)

)
.

From this it immediately follows that if Σ ⊨nmPL B then also Σ ∪ {A} ⊨nmPL B.
Suppose M ∈ min≺

(
MPL(Σ ∪ {A})

)
. Since M ∈ MPL(Σ), by Strong Re-

assurance, either M ∈ min≺(MPL(Σ)) or there is a M ′ ∈ min≺(MPL(Σ)) for
which M ′ ≺ M . Assume the latter. Since Σ ⊨nmPL A, M ′ ∈ MPL(Σ ∪ {A}), in
contradiction to the fact that M is ≺-minimal in MPL(Σ∪{A}). So we are left
with the former case which is what had to be shown.

In view of these considerations we have good reasons to grant strong reas-
surance a special status in obtaining a well-behaved formal model of defeasible
reasoning. Accordingly, we have good reasons to worry about violations of
strong reassurance. The danger of violations of strong reassurance looms since
it is by no means clear why the structure (MPL(Σ),≺) should not give rise to
infinitely ≺-descending chains of better and better models without ever reach-
ing a best model in min≺(MPL(Σ)). And indeed, the extensional qualitative
approach doesn’t have the property of (strong) reassurance as the following
example by Batens ([Batens, 2000]) shows16:

Example 2.6. We consider the base logic LP. Let Σ = {An | n ≥ 2}, where

An = ∃x1 · · · ∃xn

 n∧
i=1

(Pxi ∧ ¬Pxi) ∧
∧

1≤i<j≤n

¬(xi = xj)

 .

We consider the model M0 = ⟨N, v0⟩ for which v0(P, n) = i for all n ∈ N and

v0(=, (n, n′)) =

{
0 n ̸= n′

1 else.

We now show that there is an infinitely descending chain of ≺-better and better
models in the extensional qualitative approach. For this let Ni =df {0, . . . , i} and
Mi = ⟨N, vi⟩ be just like M0 except that the inconsistent extension of P is given
by vi(P, n) = 0 for all n ∈ Ni and vi(P, n) = i for all n ∈ N \ Ni. Note that

16This is a slightly simplified version of his example. Other examples can be found in
[Crabbé, 2011].
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Mi+1 ≺ Mi in the extensional qualitative approach since Ab(Mi+1) ⊊ Ab(Mi).
Therefore we have

. . . ≺ Mi+1 ≺ Mi ≺ . . . ≺ M1 ≺ M0

and, moreover, there is no ≺-minimal model M⋆ of Σ for which M⋆ ≺ Mi for
all i ≥ 0.

The good news is that strong reassurance has been established for the lin-
guistic approach: for the qualitative comparison in [Batens, 2000] and for the
quantitative comparison in [Straßer, 2014].

It is an open question whether the quantitative extensional approach is sim-
ilarly doomed as its qualitative counterpart. In fact, the question has not been
considered in the literature. In the remainder of the paper we will fill this lacuna
by

1. proposing ways of comparing models under the extensional and the quan-
titative approach (Section 3),

2. demonstrating that strong reassurance holds for all of them (Section 4)
and give some more meta-theoretic insights into them (Sections 5, 7 and
8).

3. Additionally, we introduce some linguistic properties as a way to highlight
some differences between the linguistic and the extensional approaches
(Section 6).

3 Counting inconsistencies

Having adopted an extensional and quantitative approach in the context of
ITNMLs still allows for several different ways of comparing models relative to
how inconsistent their underlying interpretations are. In this section, we present
several such variants. We will proceed in increasing degrees of fine-grainedness
for each comparison.

While in our examples, so far, we have considered only minimizing abnormal-
ities in predicates, we now generalize this to an ordered set of arbitrary formulas
Φ = ⟨αi(x1, . . . , xai

)⟩i∈P, where P is a initial subset of N. We then let the ab-
normal part of some model M in an αi(x1, . . . , xai

) be Abαi(x1,...,xai
)(M) =df

{(d1, . . . , dn) ∈ Dn | vM (ϕ(d1, . . . , dn)) ∈ A}, for which we shall simply write
Abi(M).17 Examples for a choice of Φ are Φ = Pred, where Pred =df ⟨Pi(x1, . . . , xi)⟩i∈I

is the set of all predicates. Another possibility is to consider gluts or abnormal
behavior in other connectives, say some ◦ by letting αi(x1, x2) = Px1 ◦ Qx2,
etc. In the remainder of this section, we distinguish several ways of determining
and comparing the abnormal parts of models relative to Φ: globally by simply

17In order to reduce clutter from hereafter we shall neglect abnormalities in sentential
letters. To consider them, all we need to do is to add the set of abnormal sentential letters
{p | v(p) ∈ A} to the set of abnormalities considered.
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considering
⋃

i∈P Abi(M), by means of the product order, and by means of the
lexicographic order. After that, we refine each ordering by taking into account
the distinct comparison types.

3.1 Comparing abnormalities

The most coarse-grained comparison is to consider the contradictory extension
of all formulas αi in Φ at once by letting AbΦ(M) =

⋃
i∈P Abi(M). Proceeding

quantitatively, we let:

Definition 1 (Global order). M ≺g
Φ M ′ iff card(AbΦ(M)) < card(AbΦ(M

′)).18

As the reader may note, this global type of comparison may lead to undesired
outcomes in specific scenarios.

Example 3.1. Let Σ =
{
∀x(P1x∧¬P1x)∨∀x(P2x∧¬P2x), P3c,¬P3c∨P4c, P1c

′,

¬P1c
′ ∨ P4c

′} and Φ = ⟨P1(x), P2(x), P3(x), P4(x)⟩. Consider the following
models Mi = ⟨N, vi⟩ of Σ:

M Ab1(M) Ab2(M) Ab3(M) Ab4(M) AbΦ(M) M |= P4c M |= P4c
′

M1 N ∅ ∅ ∅ N ✓
M2 ∅ N ∅ ∅ N ✓ ✓
M3 N ∅ v3(c) ∅ N

According to ≺g
Φ, M1 and M2 are not strictly better than M3, as may be expected.

In a sense, the contradictions in P1 resp. P2 contaminate the global abnormal
part so that we are not anymore able to take into consideration that M1 and M2

fares better than M3 relative to the predicate P3.

Motivated by the previous example, we now consider abnormalities for each
formula in Φ separately19. For this we use the product order relative to Φ:

Definition 2 (Product order). M ≺p
Φ M ′ iff

1. for all i ∈ P, card(Abi(M)) ≤ card(Abi(M
′)), and

2. there is an i ∈ P for which card(Abi(M)) < card(Abi(M
′)).

Example 3.2 (Ex. 3.1 cont.). In our Example 3.1 we now get M1 ≺p
Φ M2

and so P4c will be nonmonotonically entailed since it is true in all ≺p
Φ-minimal

models.

In some scenarios it may be intuitive to order the members of Φ according
to how important it is to avoid inconsistencies in them. Suppose contradictions
in αi are worse than contradictions in αj for any i, j ∈ P for which i < j. For
this we use the lexicographic order relative to Φ:

18The ordered nature of Φ plays no role for this type of comparison of models, but will
be relevant for the lexicographic comparison below. We chose Φ for the sake of a unified
parametrized notation.

19This corresponds to the way models are compared in, e.g., [Crabbé, 2011], except for the
fact that the qualitative approach is explored by the author.
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Definition 3 (Lexicographic comparison). M ≺l
Φ M ′ iff there is an i ∈ P such

that

1. for all 1 ≤ j < i, card(Abj(M)) = card(Abj(M
′)) and

2. card(Abi(M)) < card(Abi(M
′)).

Example 3.3 (Ex. 3.2 cont.). Now, we have also M2 ≺l
Φ M1 since abnormal-

ities in P1 are considered more severe than those in P2. Now, also P4c
′ will be

nonmonontonically entailed since it is true in all ≺l
Φ-minimal models of Σ.

Remark 3.1. To keep things streamlined, we focused in this section on ab-
normal parts relative to the extension of predicates. Concerning propositional
letters, similar distinctions can be made, of course. Take, e.g., the premise set

Σ = {!p∨ !q1, !p∨ !q2}, where !A
def
= A∧¬A, and consider the following models:

model M M |= !p M |= !q1 M |= !q2
M1 ✓
M2 ✓ ✓

If we consider Prop = ⟨p, q1, q2⟩, then M1 ≺g
Prop M2. If we compare them by

≺p
Prop, the two models are incomparable. Note also that in a purely propositional

logic the quantitative approach in which propositional letters are compared by
≺p

Prop coincides with the qualitative approach.

Example 3.4 (Ex. 3.3 cont.). Taking a closer look at Example 3.1, we can
identify another possibly strange property of our comparisons. Consider for this
an LP-model M0 = ⟨{d}, v0⟩ of Σ with only one element in its domain and for
which AbΦ(M0) = Ab2(M0) = {d}, while Ab1(M0) = Ab3(M0) = Ab4(M0) =
∅. We can observe that any model with at least two elements in the domain
will be strictly worse for any comparison ≺⋆

Φ where ⋆ ∈ {g, l}. For instance,
M0 ≺⋆

Φ M1, M0 ≺⋆
Φ M2, and M0 ≺⋆

Φ M3. (Of course, a similar problem can
be identified for ⋆ = p.) One may, of course, critically ask whether we should
derive anything about the size of the domain based on the premises in Σ.

3.2 Additionally comparing the domains of models

The situation critically analyzed in Example 3.4 can be improved by imposing a
necessary condition for M ≺ M ′ to hold in terms of the domains DM and DM ′

of M and M ′: they have to be in some sense comparable. Options are:

[Cf ] no requirement (free) [C⊇] DM ⊇ DM ′ ,
[C=] DM = DM ′ , [C≥] card(DM ) ≥ card(DM ′).
[C=c] card(DM ) = card(DM ′),

Definition 4. Where π ∈ {f ,=,=c,⊇,≥} and † ∈ {g, p, l}, we define M ≺π,†
Φ

M ′ iff [Cπ] holds and M ≺†
Φ M ′.
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Remark 3.2. The [C=] restriction for the ≺p
Pred ordering appears in Priest’s

original proposal ([Priest, 1991]). However, due to some shortcomings pointed
out by [Batens, 1999, Batens, 2000], Priest decided to drop the conditon and
accept [Cf ] [Priest, 2017]. Some of these problems, as shown in [Crabbé, 2011],
can be avoided by adopting [C⊇]. The choice of [Cπ] is also consequential for
properties such as Recapture (see Section 5).

It is not our task in this paper to ultimately pick one comparison type over
the others (this may very well depend on the given application context), but
rather to study their meta-theoretic properties and in this way to provide further
evidence and criteria for such a comparison.

Example 3.5 (Ex. 3.4 cont.). We have M0 ≺f ,l
Φ M2 while for π ∈ {=,=c,⊇,≥}

the models M0 and M2 are incomparable (given their different “sized” domains)

and only M2 ≺π,l
Φ M1 and M2 ≺π,l

Φ M3. So, both M0 and M2 are selected and
we can conclude P4c and P4c

′, but nothing concerning the size of the discourse
domain. This may be considered the intuitive outcome.

Fact 3.1. Where ⋆ ∈ {g, p, l} and π ∈ {f ,=,=c,⊇,≥}, ≺π,⋆
Φ is transitive and

irreflexive.

Proof. Irreflexivity follows directly from the definition of ≺π,⋆
Φ . We paradig-

matically give a proof of transitivity for ≺ = ≺≤,p
Φ . Assume M1 ≺ M2 and

M2 ≺ M3. By definition of ≺, it follows that (1) for all i ∈ I, card(Abi(M1)) ≤
card(Abi(M2)) and (2) there is a i ∈ I for which card(Abi(M1)) < card(Abi(M2)).
Similarly, (1′) for all i ∈ I, card(Abi(M2)) ≤ card(Abi(M3)) and (2′) there
is a i ∈ I for which card(Abi(M2)) < card(Abi(M3)). Moreover, card(D1) ≤
card(D2) ≤ card(D3). Clearly, (1

′′) for all i ∈ I, card(Abi(M1)) ≤ card(Abi(M3))
and (2′) there is a i ∈ I for which card(Abi(M1)) < card(Abi(M3)). Hence,
M1 ≺ M3.

4 Nonmonotonic Reasoning Properties

In this section we demonstrate that the quantitative extensional approach has
a robust underlying metatheory. In particular, it is not haunted by the lack
of strong reassurance (and therefore the lack of cumulativity) as its qualitative
extensional relative. In the following, ≺ is any of the paradigmatic comparison
types defined in the previous section, i.e., ≺ = ≺π,⋆

Φ , where π ∈ {f ,=,=c,⊇,≥},
⋆ ∈ {g, p, l}, Φ = {αi(x1, . . . , xai

) | i ∈ P} and P is an initial subset of N.
As pointed out in the introduction, strong reassurance is (a) a necessary

requirement for core properties of nonmonotonic inference, such as cumulativity,
and (b) it doesn’t hold for the qualitative extensional approach. Hence, our
first result is a key contribution of the paper paper since it shows that the
meta-theory of the quantitative extensional approach can be built on a firm
foundation.
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Theorem 4.1 (Strong Reassurance). nmPL satisfies Strong Reassurance.20

Cautious monotony states that if we add a nonmonotonic consequence of Σ
to Σ, our nonmonotonic consequence set does not decrease.21

Theorem 4.2 (Cautious Monotony). nmPL satisfies Cautious Monotony.22

Cautious transitivity (or cautious cut) is the inverse of cautious monotony:
if we add nonmonotonic consequences of Σ to Σ, our nonmonotonic consequence
set does not increase. Its proof does not rely on strong reassurance.

Theorem 4.3 (Cautious Transitivity). nmPL satisfies Cautious Transitivity.
That is, for any set of L-sentences Σ and any L-sentences A and B, if Σ ⊨nmPL A
then

1. min≺(MPL(Σ)) ⊆ min≺(MPL(Σ ∪ {A})), and

2. if Σ ∪ {A} ⊨nmPL B then also Σ ⊨nmPL B.

Proof. Suppose Σ ⊨nmPL A. We show Item 1 from which Item 2 follows im-
mediately. If min≺(MPL(Σ)) = ∅, the claim follows trivially. Otherwise,
suppose M ∈ min≺(MPL(Σ)). Since Σ ⊨PL A, M ∈ MPL(Σ ∪ {A}). As-
sume for a contradiction that there is an M ′ ∈ MPL(Σ ∪ {A}) for which
M ′ ≺ M . Since M ′ ∈ MPL(Σ), this contradicts M ∈ min≺(MPL(Σ)). Thus,
M ∈ min≺(MPL(Σ ∪ {A})).

As a corollary we get one of the core properties of nonmonotonic inference.

Corollary 1 (Cumulativity). nmPL satisfies Cumulativity. That is, for any
set of L-sentences Σ and any L-sentences A and B, if Σ ⊨nmPL A then

1. min≺(MPL(Σ)) = min≺(MPL(Σ ∪ {A})), and

2. Σ ∪ {A} ⊨nmPL B iff Σ ⊨nmPL B.

Another property often considered in the context of nonmonotonic inference
is rational monotony. Similar to cautious monotony, it concerns the robustness
of consequences under the addition of information to a given premise set Σ. In
particular, it concerns the addition of information that is consistent with the
nonmonotonic consequences of Σ.

Rational Monotony For all sets of L-sentences Σ, if Σ ⊨nmPL A and Σ ̸⊨nmPL

¬B then Σ ∪ {B} ⊨nmPL A.

20Since the proof of this result is technically involved, we present it in the technical Appendix
9.

21Often nonmonotonic reasoning properties are only presented in terms of their characteri-
zation via the consequence relation. Due to its informativeness, we will in the following also
list the semantic characterization in terms of set-theoretic relations among classes of models.

22The proof was presented in the introduction (see Theorem 2.1).
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In the following example we show that Rational Monotony does not hold
in general for nmPL. In that respect, the quantitative approach follows the
footsteps of many central nonmonotonic logics, such as Default Logic ([Reiter,
1980]) and, in particular, of the qualitative approach to measuring inconsistency,
for which Rational Monotony also fails ([Straßer, 2014]).

Example 4.1. Let L be a language with four unary predicates P, S,Q,R, and
a constant c. Let

Σ = { !Qc ∨ !Sc, ¬Pc ∨ !Sc, !Pc ∨Rc }

We consider ≺ = ≺π,p
Pred, for any π ∈ {=,=c,⊇,≥, f}. We have four types of

models, M1, M2, and M ′
2 in min≺(M(Σ)), listed in the following table.23

M #(AbP (M)) #(AbQ(M)) #(AbS(M)) M |= Pc M |= ¬Pc M |= Rc
M1 0 1 0 ✓ ✓
M2 0 0 1 ✓ ✓
M ′

2 0 0 1 ✓ ✓
M3 1 1 0 ✓ ✓

Note that Σ ̸⊨nmPL ¬Pc (in view of model M2), while Σ ⊨nmPL Rc. Consider-
ing Σ∪{Pc}, model M1 and M ′

2 are not in M(Σ∪{Pc}), but we have minimal
models of the type M2 and M3. In view of M3, however, Σ ∪ {Pc} ⊭nmPL Rc,
the opposite to what rational monotony requires.24

A similar property to Rational Monotony is that of Disjunctive Rationality.

Disjunctive Rationality For all sets of L-sentences Σ and all L-sentences
A,B and C:
if Σ ∪ {A ∨B} ⊨nmPL C then (Σ ∪ {A} ⊨nmPL C or Σ ∪ {B} ⊨nmPL C).

We also have to report negative results for this property in the general case.

Example 4.2. Let L be a language with the unary predicates P, P ′, Q,Q′, and
S. Let

Σ =
{
(!Qc ∧ !Q′c) ∨ (!Pc ∧ !P ′c), !Pc ∨ Sc, !Qc ∨ Sc

}
.

We distinguish the models in the following table under the quantitative ordering
≺ = ≺π,p

Pred, where π ∈ {=,=c,⊇,≥}.

M #(AbQ(M)) #(AbQ′(M)) #(AbP (M)) #(AbP ′(M)) M |= Sc
M1 1 1 0 0 ✓
M ′

1 1 1 1 0
M2 0 0 1 1 ✓
M ′

2 1 0 1 1

23In this and the following tables we often write # instead of card to save space.
24The example also shows that rational monotony does not hold for the qualitative com-

parison under ≺π,p
Pred.
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All models in min≺(M(Σ∪{!Pc∨ !Qc})) are of the types M1 and M2 relative
to their abnormal parts. Models in min≺(M(Σ ∪ {!Pc})) are of types M2 and
M ′

1, and models in min≺(M(Σ ∪ {!Qc})) are of types M1 and M ′
2. We observe

that Σ∪{!Pc∨!Qc} ⊨nmPL Sc, while Σ∪{!Pc} ⊭nmPL Sc and Σ∪{!Qc} ⊭nmPL Sc.
This shows that Disjunctive Rationality does not hold in general for comparisons
based on the product order.

A slightly more complicated example demonstrates that also the global and
lexicographic orderings do not satisfy Disjunctive Rationality, if not combined
with f (see Ex. H.1 in Appendix 9). For orderings ≺f,⋆

Φ with ⋆ ∈ {g, l}, we can
report positive results.

Lemma 4.1. Where ⋆ ∈ {g, l} and Σ ⊆ sentL, ⟨M(Σ),≺f,⋆
Φ ⟩ is modular.25

Proof. Let ≺ = ≺f,⋆
Φ . We consider ⋆ = l, the other case is similar and left to

the reader. Suppose M1,M2,M3 ∈ M(Σ) and M1 ≺ M2 while M3 ̸≺ M2. We
have to show that M1 ≺ M3. As M1 ≺ M2 there is a minimal k ≥ 1 such
that for all 1 ≤ j < k, card(Abj(M1)) = card(Abj(M2)) and card(Abk(M1)) <
card(Abk(M2)). If for all j ≥ 1, card(Abj(M1)) = card(Abj(M3)) then M3 ≺ M2

which contradicts our assumption. So, there is a minimal i ≥ 1 such that
for all 1 ≤ j < i, card(Abj(M1)) = card(Abj(M3)) and card(Abi(M1)) ̸=
card(Abi(M3)). If card(Abi(M3)) < card(Abi(M1)), then M3 ≺ M1 and by tran-
sitivity (Fact 3.1)M3 ≺ M2 which contradicts our assumption. So, card(Abi(M1)) <
card(Abi(M3)) and thus, M1 ≺ M3.

As in [Lehmann and Magidor, 1992], the proofs of the following two theorems
make essential use of the modularity of our order (Lemma 4.1).26

Theorem 4.4. Where ≺ = ≺f,⋆
Φ , ⋆ ∈ {g, l}, nmPL = ⟨PL,≺⟩ satisfies Disjunc-

tive Rationality if f∨[(V \ D)× (V \ D)] ⊆ V \ D.27

Proof. Suppose Σ ∪ {A ∨ B} ⊨nmPL C. Assume for a contradiction that Σ ∪
{A} ̸⊨nmPL C and Σ ∪ {B} ̸⊨nmPL C. Thus, there are MA ∈ min≺(M(Σ ∪
{A})) and MB ∈ min≺(M(Σ ∪ {B})) for which MA ̸|= C and MB ̸|= C.
Since Σ ∪ {A ∨ B} ⊨nmPL C, by Strong Reassurance (Theorem 4.1), there are
M ′

B ,M
′
A ∈ min≺(M(Σ∪ {A∨B})) for which M ′

B ≺ MA and M ′
A ≺ MB . Since

MA ∈ min≺(M(Σ ∪ {A})), M ′
B /∈ M(Σ ∪ {A}). Since M ′

B ∈ M(Σ ∪ {A ∨ B})
and since f∨[(V \ D) × (V \ D)] ⊆ V \ D, M ′

B ∈ M(Σ ∪ {B}). Similarly,
M ′

A ∈ M(Σ ∪ {A}). By the modularity of ⟨M,≺⟩ (Lemma 4.1), M ′
A ≺ MA

or M ′
B ≺ M ′

A. The former is impossible since MA ∈ min≺(M(Σ ∪ {A})). The
second is impossible since M ′

A ∈ min≺(M(Σ∪{A∨B})). Altogether this shows
that our assumption is false and so Σ ∪ {A} ⊨nmPL C or Σ ∪ {B} ⊨nmPL C.

25An order ⟨X,≺⟩ is modular if for all x, y, z ∈ X, x ≺ y implies x ≺ z or z ≺ y [Lehmann
and Magidor, 1992].

26Since unlike [Lehmann and Magidor, 1992] our systems are not necessarily based on
classical logic and since we don’t operate with single-premise consequence relations we state
the short proof.

27The requirement on the disjunction is fulfilled for instance in LP and FDE.
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Theorem 4.5. Where ≺ = ≺f,⋆
Φ , ⋆ ∈ {g, l}, nmPL = ⟨PL,≺⟩ satisfies Rational

Monotony if f¬[V \ D] ⊆ D.

Proof. Suppose Σ ⊨nmPL A and Σ ̸⊨nmPL ¬B. Thus, there is aMB ∈ min≺(M(Σ))
for which MB ̸|= ¬B. Since f¬[V \ D] ⊆ D, MB |= B. Suppose M ∈
min≺(M(Σ ∪ {B})). Assume for a contradiction that M ̸|= A. Hence, M /∈
min≺(M(Σ)). Thus, by Strong Reassurance (Theorem 4.1) there is a M ′ ∈
min≺(M(Σ)) such that M ′ ≺ M . By the modularity of ⟨M,≺⟩ (Lemma 4.1),
MB ≺ M or M ′ ≺ MB . The latter is impossible since MB ∈ min≺(M(Σ)) and
the former is impossible since MB ∈ M(Σ∪{B}) and M ∈ min≺(M(Σ∪{B})).
Hence, our assumption is false and so Σ ∪ {B} ⊨nmPL A.

5 Recapture

In [Crabbé, 2011], Marcel Crabbé shows that for some choices of π under the
extensional qualitative approach, the logic at hand is not able to agree with
classical logic in consistent situations.

Example 5.1. Consider the premise set {∃xPx,∃x¬Px} in a logic PL with
an existential quantifier (satisfying Q0-Q2 and Q∃). Note that there are no
consistent PL-models with cardinality 1, however for each higher cardinality there
are consistent models. Thus, where ≺ = ≺π,⋆

Pred, π ∈ {=c,=}, and ⋆ ∈ {g, p, l},
min≺(M(Σ)) contains models of size 1 that have an P -inconsistent element. In
contrast, where π ∈ {⊇,≥, f}, min≺(M(Σ)) only contains models all of whose
individuals are P -consistent.

This gives rise to the following simple observation.

Definition 5. We call nmPL = ⟨PL,≺⟩ [upwards/downwards] cardinality-sensitive,
iff there is a cardinality κ > 0 for which there is a set of sentences Σ such that
MPL(Σ) contains models M of some cardinality κ and there are no models
M ′ ∈ min≺(MPL(Σ)) of cardinality κ [but there are models of higher/of lower
cardinality in min≺(MPL(Σ))]. nmPL is fully cardinality-sensitive iff there is a
cardinality κ such that there are models in MPL(Σ) with cardinalities smaller
and larger than κ, but min≺(MPL(Σ)) only contains models of cardinality κ.

Fact 5.1. Where ≺ = ≺π,⋆
Pred, ⋆ ∈ {g, p, l}, π ∈ {f,⊇,≥}, the approach is

linguistic or extensional, (i) nmPL = ⟨PL,≺⟩ is cardinality-sensitive. (ii) Where
π ∈ {⊇,≥}, nmPL is upwards cardinality-sensitive. (iii) Where π = f and L
contains an identity, nmPL is fully cardinality-sensitive.

Proof. Items (i) and (ii) are shown in Example 5.1. For (iii) consider Σ =
{∀x(c = x ∨ c′ = x ∨ !Px),¬(c = c′)}. The only models without inconsistencies
are those of cardinality 2.

Crabbé shows that, in the context of LP, one can also recover classical logic
for premise sets that have a classical model for orderings based on π = ⊇ and ⋆ =
p. The rationale is the following. Consider we have LP with A = {i}. Suppose
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we are dealing with a premise set that does not give rise to contradictions, such
as {∀xPx}. In that case we may expect that nmLP interpret the given premises
only in terms of the classical truth-values 0 and 1, and so “recaptures” classical
logic. Indeed, the result of restricting the truth-tables of LP to {0, 1} is exactly
the truth-tables of the classical connectives.

In our more abstract setting the desideratum can be informally phrased as
follows. For a given logic PL, based on the truth-values V, and given a set
of abnormal truth-values A ⊆ V, let PLV\A be the result of restricting PL-
truth-assignments to V \A (we make this more precise below). Then, recapture
expresses that if a premise set Σ has PL-models with assignments only based on
the truth-values V \ A, then nmPL interprets Σ just like PLV\A.

Clearly, not every PL truth-assignment can be restricted to V \ A in such a
way that every formula obtains a value in V \A. E.g., suppose there is a unary
connective ◦ such that f◦ maps a value v ∈ V \ A to a value va ∈ A. Then
in some model M , even if vM (A) = v, vM (◦A) /∈ V \ A. Thus, we need our
truth-tables to separate abnormal truth-values from “normal” truth-values.

Definition 6. Where PL is a logic based on the language L and L′ is a sub-
language of L, PL is A-separable (on L′) iff

1. for all n-ary connectives π (in L′), fπ[(V \ A)n] ∈ V \ A and 2.
D \ A ̸= ∅.

Definition 7. Where PL is A-separable, let PLV\A be the logic which is defined
just like PL, but the set of truth-values is restricted to V \ A.

Let us come back to our previous example.

Fact 5.2. LP is {i}-separable and LP{1,2} = CL.

We are now able to phrase our desideratum in a formally precise way:

Definition 8. Where PL is a logic based on the language L and L′ is a sub-
language of L, nmPL = ⟨PL,≺⟩ satisfies semantic recapture (for L′), iff,

1. PL is A-separable (on L′) and

2. for all Σ ⊆ sentL′ that are PLV\A-satisfiable, M ∈ MnmPL(Σ) iff M ∈
MPLV\A(Σ).28

We additionally define:

28We slightly abuse notation here since PLV\A-models are not, strictly speaking, PL-models,
since their assignment functions have restricted domains. More precisely one can phrase
item 2 as follows. We say that a PL-model M = ⟨D, v⟩ has corresponding PLV\A-model iff

vM (A) ∈ V \ A for all A ∈ sentL[D]. In that case the corresponding PLV\A model is ⟨D, v′⟩
where v′ assigns the same values as v (since M has a corresponding PLV\A-model this doesn’t

violate the domain restrictions underlying v′). Given a PLV\A-model M = ⟨D, v⟩ we let its
corresponding PL-model be ⟨D, v′⟩ where v′ assigns identical values to v. We can now rephrase

item 2 as follows: for each M ∈ MnmPL(Σ) there is a corresponding PLV\A-model and for each
M ∈ MPLV\A (Σ) there is a corresponding PL-model in MnmPL(Σ).
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• nmPL satisfies entailment recapture (for L′) iff for all Σ ⊆ sentL′ that are

PLV\A-satisfiable and all A ∈ sentL′ , Σ ⊨PLV\A A iff Σ ⊨nmPL A.

• nmPL satisfies recapture (for L′) iff it satisfies semantic and entailment
recapture (for L′).

• nmPL satisfies classical recapture iff PLV\A = CL and nmPL satisfies re-
capture.

In the following, we will focus on semantic recapture which implies recapture.

Fact 5.3. If nmPL satisfies semantic recapture it satisfies entailment recapture
and therefore also recapture.

Fact 5.4. Where nmPL = ⟨PL,≺⟩, if PL is A-separable, then MPLV\A(Σ) ⊆
min≺(MPL(Σ)) for any set of sentences Σ.

This holds since for any M = ⟨D, v⟩ ∈ MPLV\A(Σ), Abi(M) = ∅ for every Pi.
As a first positive result we notice that for any ordering without restrictions

on the size of the domains of models we get recapture for A-separable base
logics.

Theorem 5.1. Where ⋆ ∈ {g, p, l}, ≺ = ≺f ,⋆
Φ , nmPL = ⟨PL,≺⟩, if PL is A-

separable then nmPL satisfies recapture.

Proof. Let Σ be PLV\A-satisfiable. Suppose M ∈ min≺(MPL(Σ)). Assume for
a contradiction that Abi(M) ̸= ∅ for some i ∈ P. Let M ′ ∈ MPLV\A(Σ). Thus,
Abj(M) = ∅ for every j ∈ P. Thus, M ′ ≺ M which is a contradiction. The
other direction is due to Fact 5.4.

However, in the presence of an identity = or a non-identity ̸=, recapture
does not hold for typical core logics for any ordering ≺†,⋆

Φ where † ∈ {=,⊇,≥}.
We illustrate this point with LP.

Fact 5.5. Where † ∈ {=,⊇,≥} and ⋆ ∈ {g, p, l}, nmLP = ⟨LP,≺†,⋆
Pred⟩ does not

satisfy recapture.

Proof. Take as an example Σ = {∃x∀y(y = x ∨ !Py)}. It is easy to see that
there is a normal model of cardinality 1 and every model of higher cardinality
has abnormalities in P and is therefore not a PLV\A-model. In view of the
selection type † these models of higher cardinality are selected.
For a counterexample with ̸=, consider Σ = {∃x∀y(¬(y ̸= x)∨!Py)}. Every
model of cardinality 1 is consistent, but models of higher cardinality have ab-
normalities relative to either ̸= or P .

The situation improves for logics without (non-)identity. Such a logic may
still feature a congruence relation ≈. In fact, we show something stronger: given
any A-separable base logic PL and a premise set Σ without occurrences of (non-
)identities, nmPL satisfies recapture for any ordering of the type ≺π,⋆

Φ where
π ∈ {≥,⊇} and ⋆ ∈ {g, l, p}.29

29The proof can be found in Appendix 9.
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Theorem 5.2. Where PL is A-separable and based on L and L′ is a sub-
language of L without identity and non-identity (but possibly with a congruence

≈), ⋆ ∈ {g, p, l}, and † ∈ {≥,⊇}, nmPL = ⟨PL,≺†,⋆
Φ ⟩ satisfies recapture for L′.

6 The Linguistic (In)Dependence of the Linguis-
tic and the Extensional Approach

In this section we highlight two ways in which the extensional approach is less
dependent on linguistic subtleties than the linguistic approach. We first consider
the following example.

Example 6.1. Let Σ = {∃x!Px}. We first consider a language L0 without
constants and only one unary predicate symbol P and then move to a language
Lc that adds a constant c to L0. In the linguistic approach the minimal L0-
models of Σ will be identical to the PL-models of Σ since all these models have
the abnormal part {∃x!Px}. The situation changes in the context of Lc. All
models of cardinality 1 will have the abnormal part {∃x!Px, !Pc} while minimal
models of higher cardinalities will have the smaller abnormal part {∃x!Px} and
be therefore preferable (if we compare with ≺π,g

Pred where π ∈ {f ,⊇,≥}). In
terms of nonmonotonic entailment, in the context of the language Lc we get the
nonmonotonic consequence ∃x∃y¬(x = y) which is not entailed in the context
of the language L0. In contrast, when considering the extensional approach,
the class of minimal L0 models is identical to the class of minimal Lc models
according to any comparison type ≺. In the context of both languages we have
the same nonmonotonic entailments.

We now show that the extensional approach (unlike the linguistic approach)
is robust under extending the (non-logical) signature of the language. In the fol-
lowing we denote by LPL the class of languages that contain the logical symbols
of PL but vary in their non-logical symbols.

Definition 9. Where L,L′ ∈ LPL, let L′ be an extension of L by non-logical
symbols (i.e., predicate symbols and constants). Where M = ⟨D, v⟩ ∈ ML′

PL let
M↓L =df ⟨D, v↓L⟩ where v↓L is the result of restricting v to the language L.
Moreover, where M ⊆ ML′

PL is a set of L′-models, we let M↓L =df {M↓L | M ∈
M}.

Definition 10. Where L,L′ ∈ LPL, nmPL = ⟨PL,≺⟩ is linguistically robust
relative to L if for any set of L-sentences Σ and any extension L′ of L by
non-logical symbols, min≺(ML

PL(Σ)) = min≺(ML′

PL(Σ)
↓L). We say nmPL is

linguistically robust if for any L ∈ LPL, nmPL is linguistically robust relative to
L.

As shown in Example 6.1, the linguistic approach is not linguistically robust.
As the next proposition shows, the extensional approach is.

Proposition 6.1. Where ≺ = ≺π,⋆
Φ , ⋆ ∈ {g, l, p}, π ∈ {f ,=,=c,⊇,≥}, nmPL =

⟨PL,≺⟩ is linguistically robust.
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Proof. Let L′ be an extension of L by non-logical symbols.
(⊆) Suppose M = ⟨D, v⟩ ∈ min≺(ML

PL(Σ)). We let M ′ = ⟨D, v′⟩ ∈ ML′

PL be
such that v′ extends v to L′ in the following way: 1. for each constant c in L,
v′(c) = v(c); 2. for each predicate Pi in L and each tuple d1, . . . , di ∈ Di we let
v′(Pi, (d1, . . . , di)) = v(Pi, (d1, . . . , di)); 3. for each constant c in L′ that is not
in L, we let v′(c) = d for an arbitrary d ∈ D; 4. for each predicate Pi in L′ that
is not in L and each tuple (d1, . . . , di) ∈ Di we let v′(Pi, (d1, . . . , di)) = v for
an arbitrary v ∈ V \ A.

It is easy to see that (a) M ′ ∈ ML′

PL(Σ) since Σ is a set of sentences of L and
(b) Abi(M) = Abi(M

′) for all predicates i ∈ P (note that αi ∈ wffsL). Assume
for a contradiction that there is a M ′′ ∈ ML′

PL(Σ) for which M ′′ ≺ M ′. In view
of (b), also M ′′↓L ≺ M . This is not possible since M ∈ min≺(ML

PL(Σ)) and
M ′′↓L ∈ ML

PL(Σ).

(⊇) Suppose now that M ′′ ∈ min≺(ML′

PL(Σ)). Assume for a contradiction
that there is a M ∈ ML

PL(Σ) for which M ≺ M ′′↓L. By the (⊆)-direction, there

is a M ′ ∈ ML′

PL(Σ) for which items (a) and (b) hold. Thus, also M ′ ≺ M ′′ which
is a contradiction.

Another type of linguistic dependency has to do with naming conventions
and the cardinality of the selected models. We take a look at another example.

Example 6.2. Consider the premise set

Σ =
{
(c1 = c2 ∧ !Pc1 ∧ ¬p) ∨ (c2 = c3 ∧ !Pc1 ∧ p)

}
and the following models of Σ (where v[P, i] denotes the set {d ∈ D | v(P, d) =
i}):

M = ⟨D, v⟩ D v[P, i] v(c1) v(c2) v(c3) M |= p M |= ¬p
M1

a {d1} {d1} d1 d1 d1 ✓
M1

b {d1} {d1} d1 d1 d1 ✓
M2

a {d1, d2} {d1} d1 d1 d2 ✓
M2

b {d1, d2} {d1} d1 d2 d2 ✓

While for M i
a (where i ∈ {1, 2}) we have M i

a |= c1 = c2 ∧ !Pc1 ∧ ¬p, for M i
b

we have M i
b |= c2 = c3 ∧ !Pc1 ∧ p. Now, according to the linguistic approach we

have:

AbP (M
2
b ) = {∃x!Px, !Pc1} ⊂ AbP (M

2
a ) = {∃x!Px, !Pc1, !Pc2} ⊂

AbP (M
1
a ) = AbP (M

1
b ) = {∃x!Px, !Pc1, !Pc2, !Pc3}

Where ≺ = ≺π,⋆
{P} and π ∈ {f ,≥,⊇}, ⋆ ∈ {g, p, l} we have therefore M2

b ≺ M2
a ≺

M1
a ,M

1
b in the linguistic approach and we can conclude p. We note that

1. the linguistic approach is sensitive to naming conventions: for instance,
the main difference between M2

b and M2
a is that in the situation depicted
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by M2
a two names are used for the inconsistent object d1 (namely, c1 and

c2) while in M2
b only one name is used namely, c1.

30

2. observation 1 also has repercussions on the cardinality of the selected mod-
els (for π ∈ {f ,≥,⊇}): models M1

a and M1
b are not selected since (due to

the size of their respective domains) there are more names for inconsistent
objects than in their larger counterparts M2

a and M2
b .

The situation is different in the extensional approach, where all four models
are on a par since P has in all of them the same abnormal extension. All
depicted models will be selected and therefore p is not nonmonotonically entailed.

Altogether, we observe that the linguistic approach interprets the premise
sets also by adhering to pragmatic considerations according to which naming
conventions are such that they minimize the number of names for inconsistent
objects. Let us make this more precise.

Definition 11. We say that nmPL = ⟨PL,≺⟩ is non-pragmatic iff for every
M = ⟨D, v⟩ ∈ MPL and every M ′ = ⟨D, v′⟩ for which v′ agrees with v on all
predicates (but differs possibly in the interpretation of the constants), M ′ ̸≺ M
and M ̸≺ M ′. We say nmPL is pragmatic if it is not non-pragmatic.

As we have seen in Example 6.2, the linguistic approach is pragmatic since
M2

a and M2
b agree on all predicates and still M2

b ≺ M2
a .

31 The extensional
approach, in contrast, is non-pragmatic:

Fact 6.1. Where ≺ = ≺π,⋆
Φ , ⋆ ∈ {g, p, l}, π ∈ {f ,=,=c, ⊇,≥}, nmPL = ⟨PL,≺⟩

is non-pragmatic.

In sum, we present an overview of our results in Table 2. We have shown that
the linguistic and extensional perspectives are based on different intuitions as
to what should count as an “abnormality” when measuring and comparing the
inconsistency of two given models. Moreover, in the linguistic approach prag-
matic considerations are taken into account, while the extensional approach is
linguistically more robust. Depending on whether one leans more toward one or
the other side, one will find certain logical behavior of the respective accounts

30In the context of some applications, a reader may critically ask as to why interpreting
a premise set as consistent as possible should tell us anything about naming conventions.
E.g., our model M2

a may depict a situation in which two groups of scientists discover an
element d1 which behaves abnormal w.r.t. property P . Each group gives d1 a different name,
say “strangelet” (c1) and “weirdlet” (c2). Why should interpreting the world as consistently
as possible exclude such a scenario? Of course, in some situations there may be pragmatic
arguments in favor of not multiplying names for the same object (e.g., to reduce linguistic
“clutter” and this may be modeled by a nonmonotonic logic), but these considerations seem
to be independent of an object’s status of being inconsistent or abnormal. Similar critical
thoughts can be raised in the context of observation 2. For a relevant defense of this behavior
see [Batens, 2000].

31In a presentation of this paper it has been suggested to us that the linguistic approach can
easily be adjusted to obtain a non-pragmatic variant. This seems not be the case, however.
In Appendix 9, we demonstrate that some intuitive suggestions along these lines do not work
as intended.
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approach π recapture card.-sensitive pragmatic ling. robust

extensional π ∈ {=,=c} ✓
linguistic π ∈ {=,=c} ✓
extensional π ∈ {≥,⊇} ✓ (upwards) ✓
linguistic π ∈ {≥,⊇} ✓ (upwards) ✓
extensional π = f ✓ ✓ (fully with =) ✓
linguistic π = f ✓ ✓ (fully with =) ✓

Table 2: Overview results

more or less compelling. The fact that logical principles are connected to differ-
ent styles of reasoning is well known in the context of nonmonotonic logic: see,
for instance, the discussion on the so-called floating conclusions ([Horty, 1994]),
on the credulous vs. the skeptical reasoning style ([Meheus et al., 2013]), and
disagreements on the status of Rational Monotony ([Rott, 2017]).32

7 Identity, Congruence and their (Ir)Reducibility

In this section we investigate whether it matters how the equality symbol ≈ is
interpreted in models for the resulting nonmonotonic entailment relation. More
precisely, the question is whether we get different consequences if we select only
minimal models that interpret ≈ as an identity (so satisfying the constraint Eq)
or if we consider the class of minimal models that interpret ≈ as a congruence
(so, satisfying the weaker constraint Cong).

In the following we consider a language L with a symbol ≈ and we suppose
that all models MPL satisfy the constraint Cong for it. We call these models
general models. We suppose the logic PL to be fixed in the background and will
from now on skip the subscript. Let Mid be the subclass of id-normal models
that satisfy Eq for ≈. Similarly, where Σ ⊆ sentL, we write M(Σ) resp. Mid(Σ)
for the class of models of Σ in M resp. in Mid. Let in the following |∼ denote

⊨nmPL where nmPL = ⟨PL,≺⟩. We define two variants |∼id,1
and |∼id,2

of |∼ as
follows:

Definition 12. Where Σ ∪ {A} ⊆ sentL,

1. Σ |∼id,1
A iff for all M ∈ min≺(M(Σ)) ∩Mid, M |= A.

2. Σ |∼id,2
A iff for all M ∈ min≺(Mid(Σ)), M |= A.

Our initial question can then be phrased by: Do (⋆1) resp. (⋆2) hold?, where

32It is not our intention to give ultimate arguments in favor of one account (linguistic vs.
extensional) over the other, especially since we consider this an issue depending on the context
of application and so an issue which cannot be decided from the abstract meta-theoretical
perspective of this paper. Rather, our aim is to provide precise formal criteria/properties that
may assist a formal modeler in choosing an adequate formal system (besides issues concerning
the content of the to be formalized reasoning).
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property qualitative quantitative
(⋆1,⇒) Fact 7.1 Fact 7.1

(⋆1,⇐) Cor. 2 Ex. 7.2

(⋆2,⇒) Ex. 7.1 Ex. 7.1

(⋆2,⇐) Cor. 3 Ex. 7.2

Table 3: Comparison of quantitative and qualitative approaches. The results
apply to any ordering≺ considered in this paper. The gray background indicates
that the property does not hold and a reference to a counter-example is given.

(⋆1) Σ |∼A iff Σ |∼id,1
A. (⋆2) Σ |∼A iff Σ |∼id,2

A.

Crabbé in [Crabbé, 2011, Remark 7.2] observed that (⋆1) holds for ⟨LP,≺⊇,p
Pred⟩

for qualitative comparisons. In the following we will give some more positive as
well as negative results. We provide an overview in Table 3. By the definition
of |∼id,1

≺ we immediately get:

Fact 7.1. If Σ |∼A then Σ |∼id,1
A.

Furthermore, we have:

Fact 7.2. min≺(M(Σ)) ∩Mid ⊆ min≺(Mid(Σ)).

We now consider the (⇒)-direction of (⋆2).

Example 7.1. We consider the base logic LP and ≺ = ≺†,⋆
Pred where † ∈

{⊇,=,≥,=c} and ⋆ ∈ {g, p, l}. For the example it will not matter whether we
compare the abnormal parts of our models qualitatively or quantitatively. For
simplicity we consider the language L consisting of only one unary predicate
symbol, P . Let our premise set Σ be:

Σ = {∀x(x ≈ c) ∨ !Pc}

We consider the model M = ⟨D, v⟩ where D = {d1, d2}, v(c) = d1, [d1]≈ =
{d1, d2} (where [d]≈ = {d′ ∈ D | v(≈, (d, d′)) ∈ D}) and the extensions of our
predicate as follows (where the v[P, v] denotes the set {d ∈ D | v(P, d) = v}):

v[P, 1] v[P, 0] v[P, i]
{d1, d2} ∅ ∅

This model is minimal, i.e., M ∈ min≺(M(Σ)). However, it is not id-normal,
i.e., M /∈ Mid. Consider now M ′ = ⟨D, v′⟩ where v(c) = d1, v[P, i] = d1, and ≈
is interpreted as identity. Note that M ′ |= !Pc since vM ′(∀x(x ≈ c)) = 0 (in view
of Eq and since v′(≈, (d1, d2)) /∈ D = {1, i}). Clearly, M ′ /∈ min≺(M(Σ)) since
M ≺ M ′. Nevertheless, M ′ ∈ min≺(Mid(Σ)). In fact, we have Σ |∼ ∀x(c ≈ x)

while Σ |̸∼id,2 ∀x(c ≈ x). This illustrates that for all our orders ≺ the left-to-
right direction of (⋆2) does not hold. As we have seen (Fact 7.1), the situation
is different for (⋆1).
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⟨D, v⟩ D AbR(M) [c]≈ [c′]≈ [c′′]≈ M |= ∀x!R(x, x) M |= B
M1 {1} {(1, 1))} {1} {1} {1} ✓ ✓
M1

3 {1, 2, 3} {(1, 2), (1, 3)} {1} {2} {3} ✓
M2

3 {1, 2, 3} {(i, i)}3i=1 {1} {2} {3} ✓
M1

ω N1 {(1, i)}i≥2 {1} {2} N3 ✓
M2

ω N1 {(i, i)}i≥1 {1} {2} N3 ✓

Table 4: Models for Example 7.2, where B = ∀x∃y(!R(x, y) ∨ !R(y, x)) and
Ni = {j ∈ N | j ≥ i}.

We now show that for quantitative comparisons also the (⇐)-direction of
(⋆1) and (⋆2) fail.

Example 7.2. Let ≺ = ≺†,⋆
Pred where † ∈ {=,=c,≥,⊇} and π ∈ {g, p, l} under

the quantitative comparison. Let

Σ = {∀x(x ≈ c ∨ x ≈ c′ ∨ x ≈ c′′), ∀x!R(x, x) ∨B}.

and
B = ∀x∃y((!R(x, y) ∧ (x ≈ c)) ∨ (!R(y, x) ∧ (y ≈ c))).

We consider the models in M(Σ) presented in Table 4. We also assume
that M1 and M1

3 are in Mid(Σ). Clearly, M1
ω and M2

ω are not id-normal since
∀x(x ≈ c∨ x ≈ c′) holds in them while their domains are infinite. In fact, there
are no id-normal models of Σ with domains of cardinality greater than 3. Note
that M1

ω,M
2
ω ∈ min≺(M(Σ)). We also observe that M1

3 ≺ M2
3 and Σ |∼id,k

B
for k ∈ {1, 2}, while Σ |̸∼B in view of models like M2

ω. Thus, the right-to-left
directions of (⋆1) and (⋆2) fail for quantitative comparisons. We also notice
that M2

3 is a quotient model of M2
ω (see Def. 13 below) and, while the latter is

≺-minimal, the former is not.

Interestingly, the (⇐)-direction of (⋆2) and both directions of (⋆1) hold for
the qualitative comparison. The reason is the following observation by Crabbé,
here slightly generalized for different qualitative comparison types and different
base logics. We first define quotient models.

Definition 13. Where M = ⟨D, v⟩ ∈ M and ≈ satisfies Cong, we define the
quotient model M≈ = ⟨D≈, v≈⟩ as follows:

1. D≈ = {[d]≈ | d ∈ D}, where [d]≈ =df {d′ ∈ D | v(≈, (d, d′) ∈ D)},

2. v≈(P, ([d1]≈, . . . , [dn]≈)) = v(P, (d1, . . . , dn))

3. v≈(≈, ([d]≈, [d
′]≈)) = v(≈, (d, d′))

4. v≈(c) = [v(c)]≈
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Lemma 7.1. Let the underlying comparison be qualitative, ≺ = ≺†,⋆
Φ , † ∈

{=,⊇,≥,=c, f}, and ⋆ ∈ {g, p, l}: if M ∈ min≺(M(Σ)) then M≈ ∈ min≺(M(Σ))∩
Mid.33

As we have seen in Example 7.2, this fails for quantitative comparisons.

Corollary 2. Where ≺ = ≺π,⋆
Φ , π ∈ {=,⊇,≥,=c, f}, ⋆ ∈ {g, p, l} and the

underlying comparison is qualitative, if Σ |∼id,1
A then Σ |∼A.

Proof. Suppose Σ |∼id,1
A and supposeM ∈ min≺(M(Σ)). Thus, by Lemma 7.1,

M≈ ∈ min≺(M(Σ))∩Mid. By the first supposition,M≈ |= A and henceM |= A.
Thus, Σ |∼A.

Corollary 3. Where ≺ = ≺π,⋆
Φ , π ∈ {=,⊇,≥,=c, f}, ⋆ ∈ {g, p, l} and the

underlying comparison is qualitative, if Σ |∼id,2
A then Σ |∼A.

Proof. Suppose Σ |∼id,2
A. Thus, for all M ∈ min≺(Mid(Σ)), M |= A. Suppose

M ∈ min≺(M(Σ)). By Lemma 7.1, M≈ ∈ min≺(M(Σ)) ∩ Mid and thus by
Fact 7.2, M≈ ∈ min≺(Mid(Σ)). Hence, M≈ |= A and so M |= A.

8 Löwenheim-Skolem

The Löwenheim-Skolem theorems tell us, for instance, that for any model of a
countable language L with an infinitely large domain, we find a model with the
same theory whose domain has cardinality κ, where κ is an arbitrary infinite
cardinal.34 It is not obvious that this property also holds when considering
semantic selections. The reason is that abnormal parts may grow in models
with larger cardinality. While we expect this not to affect orderings ≺†,⋆

Φ where
† ∈ {=,=c,⊇,≥} and ⋆ ∈ {g, p, l}, for π = f one can easily show that for specific
premise sets, even if infinitely large models exist, the only selected ones have
countable cardinality.

Example 8.1. Consider Σ = {∀x!Px} ∪ {¬(ci = cj) | i ̸= j and i, j ≥ 1}.
Models M without abnormalities in = will have an infinitely large domain D
for which AbP (M) = D. Two such models are Mω and Mκ in Table 5 (where

κ > ℵ0). Some of these will be minimal according to ≺f,p
Pred, namely models M =

⟨D, v⟩ for which card(D) = ℵ0. E.g., Mω is minimal. Models with uncountable
domains, such as Mκ, may have the same theory as Mω but are not selected,
since for these models AbP (Mκ) > ℵ0.
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In view of this example we observe, that the upwards version of Löwenheim-
Skolem does not hold for orderings ≺f,⋆

Pred where ⋆ ∈ {p, l}.
33We prove this Lemma in Appendix G and refer the reader interested in the intricacies of

quotient models in the context of many-valued logic to [Ferguson, 2020].
34In this section we focus on countable languages L. The generalization to the uncountable

case works as expected.
35A similar reasoning applies to ≺f,l

Pred where abnormalities in = are prioritized to abnor-
malities in P .
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M = ⟨D, v⟩ card(D) card(AbP (M)) card(Ab=(M))
M1 1 1 1
Mω ℵ0 ℵ0 0
Mκ κ κ 0

Table 5: Models of Example 8.1. We have: Mω ≺f,p
Pred Mκ while M1 and Mω

(resp. and Mκ) are ≺f,p
Pred-incomparable.

In the remainder of this section we give more results. We start with the
monotonic base logic, for which we state “abnormality-aware” versions of the
two Löwenheim-Skolem theorems. They illustrate that, given a model M with
infinite domain, for all predicates whose abnormal parts do not have the same
cardinality as M ’s domain, we find a just as good model with the same theory
but arbitrarily larger domain. In fact, for all such predicates, the abnormal part
will maximally be countable. We paradigmatically show this for orderings ≺†,⋆

Φ

where ⋆ ∈ {p, l} and any †. We first define:

Definition 14. Where M = ⟨D, v⟩ ∈ M is a model, let

1. Pcoinf(M) be the set of all i ∈ P for which ℵ0 ≤ card(Abi(M)) < card(D);

2. Pfin(M) be the set of all (i, l) for which i ∈ P and card(Abi(M)) = l ∈ N;

3. Pfin/coinf(M) be the set of all i ∈ P for which card(Abi(M)) < card(D).

Definition 15. For a logic L, a cardinal κ and a set of L-sentences Σ let
M=κ

L (Σ) [resp. M<κ
L (Σ), M≤κ

L (Σ), M>κ
L (Σ), M≥κ

L (Σ)] be the sub-class of mod-
els in ML(Σ) with cardinality equal to [resp. smaller than, smaller or equal

to, greater than, greater or equal to] κ. We abbreviate M†
L(∅) by M†

L for

† ∈ {=κ,<κ,≤κ,>κ,≥κ}. Similarly, we define Σ ⊩†
L A iff for all M ∈ M†

L(Σ),
M |= A.

In addition to the property of preservation of validity (Item 4 in the fol-
lowing definition) that is expressed in the Löwenheim-Skolem theorems, we will
also consider properties concerning preservation relative to the cardinality of
abnormal parts (Items 1–3):

Definition 16 (LS-Ab). Where ℵ0 ≤ κ < λ (upwards version) resp. ℵ0 ≤
λ < κ (downwards version), for all Σ ⊆ sentL and for all Mκ ∈ M=κ

L (Σ),
there is a Mλ ∈ M=λ

L (Σ) for which36

1. Pfin(Mκ) = Pfin(Mλ) (and so, for all (i, l) ∈ Pfin(Mκ), card(Abi(Mκ)) =
l = card(Abi(Mλ)));

36In the context of a monotonic logic L and in virtue of Item 4, stating “for all Σ ⊆ sentL
and for all Mκ ∈ M=κ

L (Σ) there is a Mλ ∈ M=λ
L (Σ)” is equivalent to “for all Mκ ∈ M=κ

L

there is a Mλ ∈ M=λ
L ”. Since we below also consider nonmonotonic logics we state it more

generally.
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2. for all i ∈ Pcoinf(Mκ), card(Abi(Mλ)) = ℵ0 ≤ card(Abi(Mκ));

3. if κ, λ > ℵ0, Pcoinf(Mκ) ⊆ Pcoinf(Mλ);

4. for all A ∈ sentL, vMκ
(A) = vMλ

(A).

In the following we write Mλ ⊑ Mκ in case Items 1–4 hold for Mκ and Mλ.

Lemma 8.1. Let Mκ ∈ M=κ
PL and Mλ ∈ M=λ

PL such that Mλ ⊑ Mκ. Then for
all i ∈ Pfin/coinf(Mκ), card(Abi(Mλ)) ≤ card(Abi(Mκ)). If κ ≥ λ, then for all
i ∈ P, card(Abi(Mλ)) ≤ card(Abi(Mκ)).

Proof. Let i ∈ P. If there is an l for which (i, l) ∈ Pfin(Mκ) then (i, l) ∈
Pfin(Mλ) and therefore card(Abi(Mκ)) = card(Abi(Mλ)). If i ∈ Pcofin(Mκ) then
card(Abi(Mκ)) ≥ ℵ0 = card(Abi(Mλ)). If i ∈ P \ Pfin/coinf(M) and κ ≥ λ, then
card(Abi(Mκ)) = κ ≥ λ ≥ card(Abi(Mλ)).

We now state the abnormality-sensitive versions of the Löwenheim-Skolem
theorems for the monotonic base logic.37

Theorem 8.1. LS-Ab (upwards) holds for every logic PL.

Theorem 8.2. LS-Ab (downwards) holds for every logic PL.

Corollary 4. For all sets of L-sentences Σ ∪ {A}, Σ ⊩PL A iff Σ ⊩≤ℵ0

PL A.

The next question is whether we get LS-Ab also for our nonmonotonic
logics nmPL = ⟨PL,≺⟩. Our previous theorem should make us optimistic since
it shows that for many predicates the size of the abnormal part is robust under
changes of the size of the domains of our models (given they are infinitely large).
Nevertheless, our hopes are only partially fulfilled.

Example 8.2. Let Σ = {(∀x!P2x ∧ !P1ci) ∨ ∀x!P1x | i ≥ 1} and κ > ℵ0. Let,

moreover, ≺ = ≺†,⋆
Pred where † ∈ {=,=c,≥,⊇} and ⋆ ∈ {p, l}. Consider the

models in the following table.

⟨D, v⟩ #(D) #(AbP1
(M)) #(AbP2

(M)) M |= ∀x!P2x ∧ !P1ci M |= ∀x!P1x
Mκ κ ℵ0 κ ✓
M ′

κ κ κ 0 ✓
Mω ℵ0 ℵ0 ℵ0 ✓
M ′

ω ℵ0 ℵ0 0 ✓

Note that Mκ ∈ min≺(M(Σ)). However, there is no minimal model with
the same theory as Mκ with cardinality ℵ0. Note for this that M ′

ω ≺ Mω. This
shows that Theorem 8.2 and Corollary 4 do not generalize to the nonmonotonic
setting.

Example 8.3. Let Σ = {∀x!Px ∨ p} ∪ {!Pci | i ≥ 1} ∪ {¬(ci = cj) | i ̸= j} and

≺ = ≺†,⋆
Pred (where Pred includes =), where † ∈ {=,=c,≥,⊇} and ⋆ ∈ {g, p, l}.

Consider the models in the following table, where κ > ℵ0.

37Proofs are provided in Appendix C.
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M = ⟨D, v⟩ #(D) #(AbP (M)) #(Ab=(M)) M |= ∀x!Px M |= p
Mκ κ κ 0 ✓
M ′

κ κ ℵ0 0 ✓
Mω ℵ0 ℵ0 0 ✓
M ′

ω ℵ0 ℵ0 0 ✓

Although Mω ∈ min≺(M(Σ)), there is no model in min≺(M(Σ)) with the
theory of Mω and cardinality κ. Note for this that M ′

κ ≺ Mκ.

Despite these examples one can establish two weaker results for nmPL.

Definition 17 (LS-Ab->ω). We define LS-Ab->ω just as LS-Ab, except that
κ, λ > ℵ0.

Lemma 8.2. Let ⋆ ∈ {g, p, l}, † ∈ {=,=c,≥,⊇}, ≺ = ≺†,⋆
Φ . Moreover, let

M1,M4 ∈ M=κ
PL , M2 ∈ M=λ′

PL , M3 ∈ M=λ
PL where κ, λ, λ′ > ℵ0. Then, M1 ⊑ M2

and M2 ≺ M3 and M3 ⊑ M4 implies M1 ≺ M4.

Proof. We first prove the case for ⋆ = p. Since M2 ≺ M3, for all i ∈ P,
card(Abi(M2)) ≤ card(Abi(M3)) and there is a k ∈ P for which card(Abk(M2)) <
card(Abk(M3)).

We show (1) that for all i ∈ P, card(Abi(M1)) ≤ card(Abi(M4)) and (2)
card(Abk(M1)) < card(Abk(M4)). This suffices for M1 ≺ M4.

Let i ∈ P. Assume first that (i, l) ∈ Pfin(M4) for some l ≥ 0. Since M3 ⊑ M4,
(i, l) ∈ Pfin(M3). Since M2 ≺ M3, (i, l

′) ∈ Pfin(M2) for some l′ ≤ l. If i = k,
l′ < l. Since M1 ⊑ M2, (i, l

′) ∈ Pfin(M1). So, card(Abi(M1)) ≤ card(Abi(M4))
and, if i = k, card(Abi(M1)) < card(Abi(M4)).

Assume now that i ∈ Pcofin(M4). Since M3 ⊑ M4, card(Abi(M3)) = ℵ0.
Since M2 ≺ M3, card(Abi(M2)) ≤ ℵ0 and if i = k, there is an l ≥ 0 for
which (i, l) ∈ Pfin(M2). Since λ′ > ℵ0, i ∈ Pfin/coinf(M2). Since M1 ⊑ M2,
i ∈ Pfin/coinf(M1) and card(Abi(M1)) ≤ ℵ0. So, card(Abi(M1)) ≤ card(Abi(M4)).
Moreover, if i = k, (i, l) ∈ Pfin(M1) and therefore card(Abi(M1)) < card(Abi(M4)).

If i ∈ P \ Pfin/coinf(M4), card(Abi(M4)) = κ and trivially card(Abi(M1)) ≤
card(Abi(M4)), since M1 ∈ M=κ

PL . Suppose i = k. Since M3 ⊑ M4, i ∈ P \ Pfin.
We have two cases, (i) card(Abk(M3)) = λ or (ii) ℵ0 ≤ card(Abk(M3)) < λ.
Moreover, since M2 ≺ M3, λ′ ≥ λ. So, in both cases, card(Abk(M2)) < λ
and therefore i ∈ Pfin/coinf(M2). Since M1 ⊑ M2, i ∈ Pfin/coinf(M1). Thus,
card(Abk(M1)) < card(Abk(M4)).

Let now ⋆ = l. Since M2 ≺ M3 there is a k such that for all i < k,
card(Abi(M2)) = card(Abi(M3)) and card(Abk(M3)) < card(Abi(M2)).

We show (1) that for all i < k, card(Abi(M1)) ≤ card(Abi(M4)) and (2)
card(Abk(M1)) < card(Abk(M4)). This suffices to show that M1 ≺ M4.

Let i ≤ k. We can prove (1) and (2) analogously to how we proceeded for
⋆ = p. The case ⋆ = g is similar and left to the reader.

Theorem 8.3 (Löwenheim-Skolem, uncountable, nonmonotonic). Where ⋆ ∈
{g, p, l}, † ∈ {=,=c,≥,⊇}, ≺ = ≺†,⋆

Φ , LS-Ab->ω (both upwards and down-
wards) hold for nmPL = ⟨PL,≺⟩.
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Proof. Suppose ℵ0 < λ ≤ κ resp. ℵ0 < κ ≤ λ and Mκ ∈ min≺(MPL(Σ)∩M=κ
PL ).

Let Mλ ⊑ Mκ in M=λ
PL as in Theorem 8.1 resp. 8.2. Assume for a contradiction

that there is an M ′
λ′ ∈ M=λ′

PL (Σ) such that M ′
λ′ ≺ Mλ (therefore λ′ ≥ λ).

Then let M ′
κ ⊑ Mκ in M=κ

PL as in Theorem 8.1 resp. 8.2. By Lemma 8.2 (with
M1 = M ′

κ, M2 = M ′
λ′ , M3 = Mλ and M4 = Mκ) we have M ′

κ ≺ Mκ which
contradicts the ≺-minimality of Mκ. Thus, Mλ ∈ MnmPL(Σ).

Although we have no equivalent result to Corollary 4 for the nonmonotonic
setting, we have the following weakened version:

Corollary 5. Where ⋆ ∈ {g, p, l}, † ∈ {=, =c, ≥, ⊇}, ≺ = ≺†,⋆
Φ , and nmPL =

⟨PL,≺⟩, for all sets of L-sentences Σ ∪ {A},

Σ ⊩nmPL A iff Σ ⊩≤ℵ1

nmPL A.

Finally, for the global (Thm. 8.4) or f-based orderings (Thm. 8.5), Löwenheim-
Skolem downwards holds for the standard version:

Theorem 8.4 (Löwenheim-Skolem, downwards, nonmonotonic, global). Where

† ∈ {=,=c,≥,⊇}, ≺ = ≺†,g
Φ , LS-Ab (downwards) holds for nmPL = ⟨PL,≺⟩.

Proof. Let Mκ ∈ M=κ
nmPL(Σ) and ℵ0 ≤ λ < κ. By Theorem 8.2, there is an

Mλ ∈ M=λ
PL (Σ) that satisfies Items 1–4 of Definition 16.

Consider first the case card(AbΦ(Mκ)) < κ. Then, P \ Pfin/coinf(Mκ) = ∅.
Also, by Items 1-3 of Definition 16, card(AbΦ(Mλ)) = card(

⋃
i∈Pfin(Mκ)

Abi(Mκ))+

card(Pcoinf(Mκ) × ℵ0). Hence, card(AbΦ(Mλ)) ≤ ℵ0 and card(AbΦ(Mλ)) ≤
card(AbΦ(Mκ)). Assume for a contradiction that Mλ /∈ MnmPL(Σ). Thus,
there is a M ′ ∈ Mλ′

PL(Σ) for which card(AbΦ(M
′)) < card(AbΦ(Mλ)) and

λ′ ≥ λ. Therefore, card(AbΦ(M
′)) = n for some n ∈ N. Note that λ′ ̸= κ

since n < card(AbΦ(Mκ)) and by the ≺-minimality of Mκ. By Theorem 8.1 (if
λ′ < κ) resp. Theorem 8.1 (if λ′ > κ), there is a model M ′

κ ∈ M=κ
PL (Σ) for which

M ′
κ ⊑ M ′. Thus, card(AbΦ(M

′
κ)) = n < card(AbΦ(Mλ)) ≤ card(AbΦ(Mκ)).

This contradicts the ≺-minimality of Mκ. So, Mλ ∈ M=λ
nmPL(Σ).

Consider now the case in which card(AbΦ(Mκ)) = κ. Assume first for
a contradiction that P \ Pfin/coinf(Mκ) = ∅. Then, by Items 1-3 of Defini-
tion 16, card(AbΦ(Mλ)) = card(

⋃
i∈Pfin(Mκ)

Abi(Mκ)) + card(Pcoinf(Mκ) × ℵ0) =

card(
⋃

i∈Pfin(Mλ)
Abi(Mλ)) + card(Pcoinf(Mκ)× ℵ0). Note that card(AbΦ(Mλ)) ≤

ℵ0. By Theorem 8.1, there is a model M ′
κ ∈ M=κ

PL (Σ) for which M ′
κ ⊑ Mλ.

Hence, card(AbΦ(M
′
κ)) = card(

⋃
i∈Pfin(Mλ)

Abi(Mλ)) + card(Pcoinf(Mκ) × ℵ0) =

card(AbΦ(Mλ)) ≤ ℵ0. But then, card(AbΦ(M
′
κ)) < card(AbΦ(Mκ)), which con-

tradicts the ≺-minimality of Mκ.
Thus, P\Pfin/coinf(Mκ) ̸= ∅. Assume for a contradiction thatMλ /∈ MnmPL(Σ).

Thus, there is a λ′ ≥ λ and a M ′
λ′ ∈ M=λ′

PL (Σ) for which M ′
λ′ ≺ Mλ. So,

card(AbΦ(M
′
λ′)) < λ.

In case λ = ℵ0, card(AbΦ(M
′
λ′)) < ℵ0 and therefore P \ Pfin(M

′
λ′) = ∅.

By Theorem 8.2 resp. 8.1 there is a M ′
κ ∈ M=κ

PL (Σ) for which M ′
κ ⊑ Mκ.
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logic L LS ⊩L = ⊩≥κ
L

PL LS-Ab ℵ0

⟨PL,≺†,⋆
Φ ⟩ LS-Ab->ω ℵ1

⟨PL,≺‡,g
Φ ⟩ LS-Ab (down) ℵ0

⟨PL,≺f,⋆
Φ ⟩ LS-Ab (down) ℵ0

Table 6: Results related to the Löwenheim-Skolem Theorems, where ⋆ ∈
{g, p, l}, † ∈ {=,=c,⊇,≥} and ‡ ∈ {f,=,=c,⊇,≥}.

So, P \ Pfin(M
′
κ) = ∅ and card(AbΦ(M

′
κ)) ≤ ℵ0. But then M ′

κ ≺ Mκ which
contradicts the ≺-minimality of Mκ.

Suppose then that λ > ℵ0. By Theorem 8.2 resp. 8.1 there is a M ′
κ ∈

M=κ
PL (Σ) for which M ′

κ ⊑ Mκ. By Lemma 8.2, M ′
κ ≺ Mκ.

Corollary 6. Where † ∈ {=,=c,≥,⊇}, ≺ = ≺†,g
Φ , and Σ ∪ {A} ⊆ sentL,

Σ ⊩nmPL A iff Σ ⊩≤ℵ0

nmPL A.

Theorem 8.5 (Löwenheim-Skolem, downwards, nonmonotonic, f). Where ⋆ ∈
{g, p, l} and ≺ = ≺f,⋆

Φ , LS-Ab (downwards) holds for nmPL = ⟨PL,≺⟩.

Proof. WhereM=κ
nmPL(Σ) = min≺(M(Σ))∩M=κ, supposeMκ ∈ M=κ

nmPL(Σ) and
ℵ0 ≤ λ < κ. By Theorem 8.2, there is a Mλ ∈ M=λ

PL (Σ) for which Mλ ⊑ Mκ.
By Lemma 8.1, for all i ∈ P, card(Abi(Mλ)) ≤ card(Abi(Mκ)). Assume for a
contradiction that there is a M ′ ∈ M=λ

PL (Σ) such that M ′ ≺ Mλ. Clearly then
also M ′ ≺ Mκ. This contradicts the minimality of Mκ. So, Mλ ∈ M=λ

nmPL(Σ).

Corollary 7. Where ⋆ ∈ {g, p, l}, ≺ = ≺f,⋆
Φ , and Σ ∪ {A} ⊆ sentL, Σ ⊩nmPL A

iff Σ ⊩≤ℵ0

nmPL A.

9 Conclusion

In this paper we have presented a study of a class of nonmonotonic inconsistency-
tolerant logics. The underlying rationale is to interpret a premise set as consis-
tently as possible. For this we only considered models of the premise set in a
given paraconsistent base logic PL that give rise to minimally many contradic-
tions. Given a model M , we count for each of the given predicates how many
inconsistent individuals they give rise to and prefer those models that give rise
to less. Thus, we follow an extensional approach in that we count inconsistent
individuals in the extension of predicates as opposed to linguistic representa-
tions of contradictions. Also, the approach is quantitative in that we consider
the cardinality of the inconsistent extension of predicates. In contrast, in the
qualitative approach that was originally proposed by Priest (following the ex-
tensional approach) and Batens (following the linguistic approach) a model is
better than another one if its set of contradictions is a subset of the other sets
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of contradictions. By turning quantitative we solved the problem of a lack of
strong reassurance that underlies the extensional approach and demonstrated
that our approach is based on a robust meta-theory by, for instance, validating
the cumulativity property and specific versions of the Löwenheim-Skolem theo-
rems. Our approach is highly modular in that the resulting nonmonotonic logics
can be based on any paraconsistent and finitely-valued Tarskian base logic with
truth-functional connectives.

Some paths for future exploration are left open, such as to extend our study
to infinitely-valued, non-deterministic, and non-truth-functional paraconsistent
logics,38 or, as suggested in [Priest, 2014], to a second-order language.
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APPENDIX

A Outline of the proof of strong reassurance

Before we jump into the rather technical proofs (see Sections B–E of this Ap-
pendix), let us outline the basic underlying ideas. For this outline we con-

sider the logic nmPL = ⟨PL,≺⟩ where ≺ = ≺=c,l
Φ for some set of L-formulas

Φ = ⟨αi(x1, . . . , xai
) | i ∈ P⟩ and PL satisfies the requirements from Section

2.1. We discuss other cases ≺π,⋆
Φ where ⋆ ∈ {g, p, l} and π ∈ {f ,=,=c,⊇,≥}

in Section E. Without loss of generality we will assume that P = N, but the
proof generalizes to P being any initial sequence of N. We write αi(x1, . . . , xai)
to signify that the (only) free variables in αi are x1, . . . , xai

. We will also write
αi(x) for αi(x1, . . . , xai

) where x = x1, . . . , xai
.

Given a modelM⊤ = ⟨D⊤, v⊤⟩ ∈ MPL(Σ)\min≺ (MPL(Σ)), we have to show
that there is a M⊥ ∈ min≺ (MPL(Σ)) for which M⊥ ≺ M⊤. Let κ = card(D⊤).
We will address the case where κ ≥ ℵ0. The other case κ < ℵ0 will be treated
in similar but simpler ways (see Remark D.1).

The following definitions will be useful for this.

Definition 18. M↓ =df

{
M ∈ MPL(Σ) | M ≺ M⊤

}
.

We have to show that min≺(M↓) ̸= ∅. We first select models in M↓ that
minimize abnormalities in α1, then out of these those that minimize abnormal-
ities in α2, and so on. Some definitions will help to make the idea precise.

Definition 19. For any i ∈ P we define ≺i ⊆ M↓ ×M↓ and ⪯i ⊆ M↓ ×M↓,
where

M ≺i M
′ iff card(Abi(M)) < card(Abi(M

′)),

M ⪯i M
′ iff card(Abi(M)) ≤ card(Abi(M

′)).

Furthermore, let M0 =df M↓, M1 =df min≺1(M↓), and Mi+1 =df min≺i+1(Mi).

Three key insights will be used in our proof:

1. Mi ̸= ∅ for each i ∈ P (Lemma D.1),

2.
⋂

i≥1 Mi ⊆ min≺(M↓) (Lemma D.2), and

3.
⋂

i≥1 Mi ̸= ∅ (Corollary 10).

From this follows that min≺(M↓) ̸= ∅, what is to be shown.

Step 3 will be the most demanding. We will construct a model M ∈⋂
i≥1 Mi. For this we will enhance the premise set Σ to gain more control in

the construction of M . In order to explain the nature of this extended premise
set we first define:
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Definition 20. Let αi be l-finitary inM↓ iff for any/all39 M ′ ∈ Mi, card(Abi(M
′)) =

l. We let
Pfin =df

{
(i, l) ∈ (P× N) | αi is l-finitary in M↓

}
.

Let αi be co-infinitary relative toM↓ iff for any/all M ′ ∈ Mi, ℵ0 ≤ card(Abi(M
′)) <

κ. Let

Pcoinf =df

{
i ∈ P | αi is co-infinitary in M↓

}
, and

Pfin/coinf =df Pcoinf ∪
{
i ∈ P | ∃l((i, l) ∈ Pfin)

}
.

In view of our abnormality-sensitive version of Löwenheim-Skolem (LS-Ab,
Theorems 8.1 and 8.2) we will observe in Lemma D.4 that

• for all i ∈ Pcoinf and all M ∈ Mi, card(Abi(M)) = ℵ0.

Clearly, for all (i, l) ∈ Pfin and allM ′ ∈ Mi, card(Abi(M
′)) = l. That means that

the model M⊥ we are searching for has to satisfy the following three demands:

1. for all (i, l) ∈ Pfin, card(Abi(M⊥)) = l,

2. for all i ∈ Pcoinf , card(Abi(M⊥)) = ℵ0, and

3. for all i ∈ P \ Pfin/coinf , card(Abi(M⊥)) = κ.

Enhancing our premise Σ to a set T⋆ will help us expressing some of these
conditions formally. We will proceed in a similar way as in the proof of the
upwards version of the Löwenheim-Skolem Theorem. We enhance our language
L with κ many new constants ki, resulting in Lκ, for which we require that they
refer to different entities and that they are “normal” relative to all i ∈ Pfin/coinf .
That is, the formula αi(k1, . . . , kai

) has to have a truth-value in V \ A.
In many paraconsistent logics this is not expressible since the available nega-

tion is not sufficiently expressive (LP is a case in point). Similarly, the non-
identity of new constants may be inexpressible in our given language. In order
to prove the satisfiability of T⋆ in the enriched language we will utilize a “Henkin-
extended” language in which witnesses are provided for quantified formulas. For
this we need to express that, in every model, A(cA∃ ) (where cA∃ is our “Henkin-
witness” for ∃xA(x)) has the same truth-value as ∃xA(x). Again, a strong
bi-conditional that can express such dependencies is typically not available in
a given paraconsistent logic with no detachable conditional. It will be our task
to conservatively extend our given language adequately, i.e., in such a way that
the generality of our results remains unrestricted.40

In sum, our first sub-task in Section B will be to develop a meta-theory in
the conservatively extended language, including a proof of compactness which

39In view of the iterative construction of ⟨Mi⟩i≥1 it is easy to see that for all M,M ′ ∈ Mi

and any i ≥ 1, card(Abi(M)) = card(Abi(M ′)).
40We will also add a conjunction and disjunction to the language in case they are not already

available and an operator @ which expresses that a formula has an abnormal truth-value. We
show that the extension of the language is conservative.
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will help us (a) to express all necessary requirements in T⋆ and (b) to prove the
satisfiability of T⋆.

Having a model M⋆ of T⋆ is not the end of the story, however. Even if we
can ensure that the domain of M⋆ has the size κ, and all newly added κ many
constants are normal relative to all i ∈ Pfin/coinf and refer to different κ many
entities, there may still be some i ∈ Pcoinf for which card(Abi(M⋆)) > ℵ0. The
reason is that having κ many “normal” counter-instances does not warrant that
there are not also more than ℵ0 (possibly even κ many) abnormal elements in
the domain of M⋆. How do we get rid of them? This is where things get a
bit tricky. One idea could be to build a term-model for the theory of M⋆. But
the problem is that with the Henkin enrichment of Lκ we introduce κ many
new constants which can serve as witnesses for formulas such as ∃xA(x) ∈ Lκ.
So, whenever for a i ∈ Pcoinf , Abi(M⋆) > ℵ0, we will get more than ℵ0 many
witnesses to this effect. Clearly, we would introduce too many witnesses were
we to Henkin-enhance Lκ.

To avoid this problem, we will only introduce Henkin-witnesses for our base
language L (resulting in Lh): this will result in ℵ0 many new constants in Lh

to serve as witnesses of quantified formulas in Lh, but not for the full Lh ∪ Lκ.
Clearly, for all i ∈ Pcoinf , there will be ℵ0 many Henkin-witnesses which will be
abnormal relative to i. The idea is then to build a term-model based on (the
theory of) M⋆ and on the constants in Lh and Lκ. Since all constants in Lκ \Lh

are normal relative to all i ∈ Pfin/coinf , the only candidates to be abnormal are
constants in Lh, which –and this is the important bit– are “only” ℵ0 many. This
is exactly what we need to satisfy our requirement 2.

The resulting model M⊥ will satisfy requirements 1–3 which suffices to show
that M⊥ ∈

⋂
i≥1 Mi (and so

⋂
i≥1 Mi ̸= ∅).

In the remainder of the appendix we will present the proof in all its de-
tails. In Appendix B we enrich the language of PL and prove compactness.
In Appendix C we prove abnormality-aware versions of the Löwenheim-Skolem
theorems. Appendix D provides the core of our proof of Strong Reassurance.
We focus there on orderings of the type ≺=c,l

Φ . Finally, in Appendix E we
show Strong Reassurance for the remaining other ordering types from Section 3.
Given the results established before this will not require much labor anymore.
Finally, in Appendix G we prove a technical lemma of Section 7.

B Compactness for an enriched language

For the proof of the strong reassurance of nmPL in Section D it is key to show
that PL is compact.41 There it will be most useful to employ a more expressive
object language. Note that we do not require that the base logic PL comes

41In [Ferguson, 2014] the reader finds compactness results for finitely valued non-
deterministic logics. However, the proof there is (a) based on a different Fregean semantics
(based on a set-theory without function extensionality) and (b) on a construction based on
the ultraproduct. For what follows (such as the Löwenheim-Skolem theorems) it will be useful
to construct a Henkin model as part of the compactness proof.
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readily equipped with the demanded expressive power. If it is not, we can
simply superimpose the needed connectives on the language L underlying PL,
resulting in a richer language L′. Super-imposing them is easy from a technical
point of view. We will comment more on this after introducing the necessary
ingredients. We will show compactness for this enriched language, but the result
of course also applies to PL in its original form based on L. L′ is supposed to
include the following ingredients:42

• an inequality relation ̸= for which InEq holds;

• an existential quantifier ∃ for which Q0–Q2 andQ∃ hold;

• a conjunction ∧ for which (Con) holds; and

• a unary connective @ which tracks abnormalities and respects the follow-
ing schematic truth-table:

A @A
A D \ A

V \ A V \ D
(T@)

Furthermore, we require that all connectives are truth-functional, and that
all quantifiers satisfy Q0–Q2.

We will use these ingredients, e.g., to express that there are at least n many
elements (1) resp. abnormalities (2) for a given formula αi(x). To avoid clutter,
when using the notation “∃x1 . . . ∃xn . . . αi(x1) . . . αi(xn)” below we suppose
that each xi has the form xj = xj1 , . . . , xjai

where for all 1 ≤ j < k ≤ n and all
1 ≤ j′ < k′ ≤ ai, xjj′ ̸= xkk′ . Also, ∃xj abbreviates ∃xj1 · · · ∃xjai

. Finally, we
abbreviate

∨
1≤l≤ai

xjl ̸= xkl
by xj ̸= xk.

∃x1 . . . ∃xn

∧
1≤j<i≤n

xi ̸= xj (1)

∃x1 . . . ∃xn

 n∧
l=1

@αi(xl) ∧
∧

1≤j<j′≤n

xj ̸= xj′

 (2)

The reader may wonder why we require a primitive inequality symbol instead
of an equality symbol = that satisfies (Eq) and instead of expressing (1) simply
by

∃x1 · · · ∃xn

∧
1≤j<i≤n

¬(xi = xj) (3)

The reason is that in paraconsistent logics such as LP (3) may be true in models
which have less than n elements simply because the value of both xi = xj and

42See Section 2.1 for the definitions of the constraints.
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¬(xi = xj) may be i where xi and xj refer to the same entity. In contrast, this
is not possible with an inequality symbol that satisfies (InEq).

As mentioned above, if (some of) these ingredients are not part of PL already,
we superimpose them on the language L. Superimposing a set of connectives
π1, . . . , πn of arities ζ1, . . . , ζn on a language L (supposing no πi is already in the
logical signature of L) is to close the set of well-formed formulas of L under these
connectives. As a result, no πi will occur in the scope of one of the connectives
of L.

By superimposing them we don’t disturb the inner workings of PL and ob-
tain, without much ado, a conservative extension PL′ of PL. Given our finite set
of truth-values V such connectives and quantifiers can easily be characterized.
E.g., where v1 ∈ D \ A and v0 ∈ V \ D are fixed, let

v(̸=, (d, d′)) =df

{
v1 if d ̸= d′

v0 else.
(4)

Similarly, if there is no conjunction in the language that satisfies (Con), one
may define ∧ by imposing a total order < on V that separates V \ D from D
such that for all v ∈ V \ D and all v′ ∈ D, v < v′. From that just define

f∧(v, v
′) =df min<(v, v

′). (5)

The exact nature of < does not matter for our purposes.
Most probably there will be no operator @ which satisfies (T@) in our lan-

guage. In that case we define it by

f@(v) =df

{
v1 v ∈ A
v0 else.

(6)

Finally, if there is no existential quantifier in the language that fulfills Q0–
Q2 and Q∃ we may define ∃ via

f∃(V) =df max<(V). (7)

Let the enriched language be L′ and the enriched logic based on L′ be PL′.
This enrichment of PL leads to a conservative extension.

Proposition B.1.

1. For every M = ⟨D, v⟩ ∈ MPL there is an M ′ = ⟨D, v′⟩ ∈ MPL′ such that
(a) for all A ∈ sentL[D], vM (A) = vM ′(A) (where L[D] is the language L
enriched with pseudo-constants d for every d ∈ D which are interpreted by
v(d) = v′(d) = d), (b) for all predicates Pi (incl. identities, non-identities
and congruences), v(Pi, (d1, . . . , di)) = v′(Pi, (d1, . . . , di)) and (c) for all
i ∈ P, Abi(M) = Abi(M

′).

2. For every M ′ ∈ MPL′ there is an M ∈ MPL such that (a) for all A ∈
sentL[D], vM (A) = vM ′(A) and (b) for all predicates Pi (incl. identities,
non-identities and congruences), v(Pi, (d1, . . . , di)) = v′(Pi, (d1, . . . , di))
and (c) for all i ∈ P, Abi(M) = Abi(M

′).
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Proof. Given M = ⟨D, v⟩ ∈ MPL we let M ′ = ⟨D, v′⟩, where v′ is defined just as
v on the language L and atomic formulas that are inequalities are characterized
as in (4). The claim that vM (A) = vM ′(A) is then shown inductively over the
length of A. The proof is trivial in view of v′ being identical to v on L.

Given M ′ = ⟨D, v′⟩ ∈ MPL′ we let M = ⟨D, v⟩, where v is the restriction of
v′ to L. Again, vM (A) = vM ′(A) is then shown inductively over the length of
A. The proof is trivial in view of v′ being identical to v on L.

Corollary 8. PL′ conservatively extends PL, i.e., for all set of L-sentences Σ
and every L-sentence A, Σ ⊨PL A iff Σ ⊨PL′ A.

In view of the conservativity of PL′ relative to PL, we will henceforth show
Strong Reassurance for the richer language L′. The result then immediately
applies to PL as well. To avoid clutter in the notation we will henceforth skip
the prime notation for L′ and PL′.

To express that, for instance, there are maximally n many abnormalities for
a formula α, or to express that our Henkin witnesses have in every interpretation
the same truth-value as the quantified formula for which they are witnesses, we
go one step further in generalizing the underlying language L of PL by working
with io-formulas (“io” for “input/output”).43

Definition 21. Where L is a 1st-order language, an io-formula [io-sentence]
in L is of the form (A,B) or (∅, B) or (A, ∅) where A and B are formulas
[sentences] in L. An io-theory is a set of io-sentences, which will be denoted
by calligraphic letters S, T , etc. We write sentioL resp. wffsioL for the set of io-
sentences resp. well-formed io-formulas in L.

The interpretation of (A,B) is that B holds or A doesn’t hold. The inter-
pretation of (∅, B) is that B holds, and that of (A, ∅) is that A doesn’t hold.

We define a generalized validity relation to capture this intuition:

Definition 22. Where M is a PL-model, M |=io (A,B) iff M |= B or M ̸|= A.
And similarly, M |=io (∅, B) iff M |= B, and M |=io (A, ∅) iff M ̸|= A.

For a given io-theory T we write MPL(T ) for the class of models M for
which M |=io (A,B) for all (A,B) ∈ T .

This way we can express that there are maximally n many abnormalities for
αi(x) (where i ∈ P) by (recall the notation introduced in the context of Eq. (2)):

M |=io

∃x1 · · · ∃xn+1

n+1∧
j=1

@αi(xj) ∧
∧

1≤j<j′≤n+1

xj ̸= xj′

 , ∅


43One finds these kind of syntactic units with the same interpretation in Input/Output

logics [Makinson and Van Der Torre, 2000]. One can also think of io-formulas as expressing a
superimposed and detachable implication that cannot be nested. Note that some paraconsis-
tent logics do not have a detachable implication (e.g., standard LP).
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Indeed this expresses that

M ̸|= ∃x1 · · · ∃xn+1

n+1∧
j=1

@αi(xj) ∧
∧

1≤j<j′≤n+1

xj ̸= xj′


and therefore there can be maximally n different abnormal entities in the ex-
tension of αi(x).

Remark B.1. We proceed by utilizing io-formulas because –in the general case–
connectives such as a classical negation, a detachable implication, etc., that
could be used to express the same, may not be available in the language L of
the underlying PL. We found working with io-formulas as less intrusive and
more elegant to work with than super-imposing a classical negation, a classical
co-implication, etc., on L (e.g., we don’t need to bother with truth-tables over V,
questions of nesting, etc.). Since this choice has no impact on the studied system
and its language L, it is inconsequential for the main results of this paper. Note
also that the presence of an inequality symbol that satisfies (InEq) is in general
not sufficient to define a classical negation.

For technical reasons that have to do with the construction of a term-model
for the compactness proof (see, e.g., Definition 27), we will work with sentences
that are annotated with truth-values.

Definition 23. A V-annotated io-formula [resp. sentence] (in L) is given by
(A,B,V), where A,B ∈ wffsL [resp. A,B ∈ sentL] and V ⊆ V is non-empty.
Where V is a singleton {v} we write (A,B, v). We write sentVL [resp. wffsVL] for
the set of V-annotated io-sentences [resp. formulas].

Fact B.1. The set sentVL is countable.

This follows by basic cardinality calculations in view of the fact that L is
countable and V is finite.

We generalize |= and |=io for PL-models M as expected:

Definition 24. Where (A,B,V) is an V-annotated io-formula, we define:

M |=V (A,B,V) iff vM (A) /∈ V or vM (B) ∈ V.

A V-annotated theory is a set of V-annotated io-sentences. We again use cal-
ligraphic letter to denote such theories. For a given V-annotated theory T we
write MPL(T ) for the class of models M for which M |=V (A,B,V) for all
(A,B,V) ∈ T .

Fact B.2. We have: M |=io (A,B) iff M |=V (A,B,D).

Satisfiability and consistency are then defined in the standard way:

Definition 25. A set of sentences Σ [io-theory T , V-annotated theory T ] is

1. satisfiable iff MPL(Σ) ̸= ∅ [MPL(T ) ̸= ∅],
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2. consistent iff every finite subset of it is satisfiable.

Below we show the following generalized version of compactness for V-
annotated theories, namely:

Proposition B.2 (V-Compactness). Where T is a V-annotated theory, T is
satisfiable iff it is consistent.

Before proving it, we point out that in view of it we immediately get com-
pactness for io-theories (Proposition B.3) and for PL (Corollary 9):

Proposition B.3 (io-Compactness). Where T is an io-theory, T is satisfiable
iff it is consistent.

For the proof of Proposition B.2 we utilize the following lemma.

Lemma B.1. Where T is an io-theory and T v = {(A,B,D) | (A,B) ∈ T }: T
is satisfiable iff T v is satisfiable.

Proof. Suppose T is satisfiable. Let M be a model of T . For every (A,B) ∈ T ,
M |= B or M ̸|= A. Thus, vM (B) ∈ D or vM (A) /∈ D. Thus, M is a model of
T v. The other direction is analogous.

Proof of Proposition B.3. Suppose the io-theory T is not satisfiable. Let T v =
{(A,B,D) | (A,B) ∈ T }. By Lemma B.1, T v is not satisfiable. By V-
compactness (Proposition B.2), there is a finite T v

f ⊆ T v that is not satisfiable.
By Lemma B.1, also Tf = {(A,B) | (A,B,D) ∈ T v

f } is not satisfiable.
If the io-theory T is satisfiable then it trivially is consistent as well.

Since any set of L-sentences Σ can be expressed by
{
(∅, A) | A ∈ Σ

}
as an

io-theory, we immediately get compactness for PL.

Corollary 9 (Compactness). Where Σ is a set of L-sentences, Σ is satisfiable
iff it is consistent.

For proving the right-to-left direction of Proposition B.2, we proceed as usual
by building a term-model based on the Henkin-enrichment of our language L. In
particular, given a consistent V-annotated theory T , we show that its Henkin
extension Th (Definitions 26 and 27) is consistent as well (Lemma B.4). We
then build a maximal consistent extension Tm of Th by the usual Lindenbaum
construction (Lemma B.5). The purpose of Tm is to build a term-model M of
T to demonstrate its satisfiability. For this we first show that Tm is complete in
several meanings of the term (Definition 28 and Lemmas B.6, B.7, B.8, B.10).
This allows us to “read off” the term-model: vM (A) = v iff (∅, A, v) ∈ Tm.

Definition 26. We define the Henkin extension of a language L in the usual
way inductively, where Lh,0 =df L:

1. where A(x) ∈ wffsLh,i
and µ is a quantifier, we add a new constants cµA to

the language Lh,i. Let the resulting language be Lh,i+1.
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2. Lh is L enriched with all new constants cµA and wffsLh
=

⋃
i≥0 wffsLh,i

.

Fact B.3. The set of sentences sentLh
in the enriched language is countable.

This fact follows in the usual way by basic cardinality calculus in view of
the fact that L is a countable language.

Definition 27. Given a Henkin-enriched language Lh, we define H as the ⊂-
smallest set containing for each quantifier µ, each truth-value v ∈ V and each
µxA(x) ∈ Sent(Lh) both

1.
(
µxA(x), A(cµA), v

)
and 2.

(
A(cµA), µxA(x), v

)
.

Given a V-annotated theory T in L, we define its Henkin-extension Th by T ∪H,

Lemma B.2. Where M = ⟨D, v⟩ ∈ MPL and µ is a quantifier, there is a
d ∈ D for which vM (µxA) = vM (A(d)) (where d is the pseudo-constant for
which v(d) = d).

Proof. By Q0, vM (µxA) = fµ({vM (A(d)) | d ∈ D}). By Q1, fµ({vM (A(d)) |
d ∈ D}) ∈ {vM (A(d)) | d ∈ D} and so there is a d ∈ D for which fµ({vM (A(d)) |
d ∈ D}) = vM (A(d)).

Lemma B.3. If the V-annotated L-theory T is satisfiable (by an L-model M =
⟨D, v⟩), then also T ∪H is satisfiable (by an Lh-model Mh = ⟨D, vh⟩ such that
vh conservatively extends v).

Proof. Suppose T is satisfiable and let M = ⟨D, v⟩ be a model of T . We now
conservatively extend the L-assignment v to vh defined over the language Lh

to obtain Mh = ⟨D, vh⟩. Since we let vh be identical to v on L we only need
to interpret each new constant cµA in Lh (where µ is a quantifier and A(x) is in
Lh). We do so inductively starting with the constants in Lh,1 (recall Def. 26).

• Let cµA in Lh,1. Then µxA(x) ∈ sent(L). By Lemma B.2 there is a d ∈ D
for which vM (µxA(x)) = vM (A(d)). Let vh(cµA) = d.

• Let cµA ∈ Lh,i+1. Then µxA(x) ∈ sent(Li). By Lemma B.2 there is a
d ∈ D for which vM (µxA(x)) = vM (A(d)). Let vh(cµA) = d.

We note that for all new constants cµA we have: (†) vMh(µxA(x)) = vMh(A(cµA)).
We also note that (‡) Mh is a model of T since the interpretation of all formu-
las in T is identical to M (since these formulas do not contain any of the new
constants). We need to still show that Mh ∈ MLh,V(H). All elements in H
have the form: (µxA(x), A(cµA), v) or (A(cµA), µxA(x), v).

Consider the former. We have to show that vMh(µxA(x)) ̸= v or vMh(A(cµA)) =
v. Suppose vMh(µxA(x)) = v. By (†), vMh(A(cµA)) = v. The other case is anal-
ogous. Thus, Mh is a model of H and in view of (‡) also of Th.

Let in the following T be a V-annotated theory in L. We now show that
moving from T to Th preserves consistency.
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Lemma B.4. If T is consistent, so is Th.

Proof. Suppose T is consistent and let Tf be a finite subset of Th. By the
consistency of T there is a L-model M = ⟨D, v⟩ of Tf ∩T . By Lemma B.3, also
(Tf ∩ T ) ∪H is satisfiable and so trivially also Tf since Tf ⊆ (Tf ∩ T ) ∪H.

As usual, we build a maximal consistent extension of T by the Lindenbaum
construction.

Lemma B.5. If a set of sentences S in Lh is consistent, there is a ⊂-maximal
consistent extension Sm of S.

Proof. We first note that sentVLh
is countable (see Facts B.1 and B.3). Let now

A1, A2, . . . be a list of sentVLh
. We build Sm in the usual way, where T0 = S and

Ti+1 =

{
Ti ∪ {Ai+1} if Ti ∪ {Ai+1} is consistent

Ti else.

we define Sm =
⋃

i≥0 Ti. It is easy to show that each Ti is consistent, and that
Sm is ⊂-maximal consistent.

Definition 28. A V-annotated theory S in Lh is

1. V-classical, iff, for every sentence A there is a v ∈ V such that

• (∅, A, v) ∈ S,
• (A, ∅, v) /∈ S, and
• for all v′ ∈ V \ {v} we have (A, ∅, v′) ∈ S and (∅, A, v′) /∈ S.

2. ∅-prime, iff, (A,B, v) ∈ S iff (A, ∅, v) ∈ S or (∅, B, v) ∈ S,

3. ω-complete (relative to Lh, see Definition 26) iff, for all v ∈ V and
all quantifiers µ there is a constant cµA such that, (∅, µxA(x), v) ∈ S iff
(∅, A(cµA), v) ∈ S,

4. closed under connectives, iff, for every n-ary connective π and all L-
sentences A1, . . . , An we have:

(a) for all v ∈ V, if (∅, π(A1, . . . , An), v) ∈ S then there are v1, . . . , vn ∈ V
for which fπ(v1, . . . , vn) = v and (∅, Ai, vi) ∈ S for every 1 ≤ i ≤ n;
and

(b) for all v1, . . . , vn ∈ V, if (∅, Ai, vi) ∈ S for every 1 ≤ i ≤ n then also

(∅, π(A1, . . . , An), fπ(v1, . . . , vn)) ∈ S.

5. closed under substitution, iff, whenever (∅, ci ̸= c′i, vi) and vi ∈ V \ D for
each 1 ≤ i ≤ n, then for all sentences A and B and every v ∈ V,

(A,B, v) ∈ S iff (A[c1/c
′
1, . . . , cn/c

′
n], B[c1/c

′
1, . . . , cn/c

′
n], v) ∈ S,
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where A[c1/c
′
1, . . . , cn/c

′
n] and B[c1/c

′
1, . . . , cn/c

′
n] are the results of sub-

stituting each ci for c′i.

Lemma B.6. A maximal consistent V-annotated theory S in Lh is V-classical.

Proof. Suppose V = {w1, . . . ,wn}. Assume for a contradiction that (∅, A,wi) /∈
S for all 1 ≤ i ≤ n. Thus, S ∪{(∅, A,wi)} is inconsistent for each 1 ≤ i ≤ n and
so there is a finite Si ⊆ S such that Si∪{(∅, A,wi)} is not satisfiable. Note that
Sf =

⋃n
j=1 Si is a finite subset of S and as such satisfiable by the consistency

of S. Let M be a model of it. Trivially vM (A) ∈ V and so M |=V (∅, A,wi) for
some 1 ≤ i ≤ n. This is a contradiction. So, there is a 1 ≤ i ≤ n for which
(∅, A,wi) ∈ S. Without loss of generality suppose i = 1.

For classicality we have to show two additional things: (1) (A, ∅,w1) /∈ S
and for all 2 ≤ j ≤ n, (2) (∅, A,wj) /∈ S and (3) (A, ∅,wj) ∈ S.

1. Assume for a contradiction that (A, ∅,w1) ∈ S. By the consistency of S,
{(∅, A,w1), (A, ∅,w1)} is satisfiable which is impossible.

2. Let 2 ≤ j ≤ n. Assume for a contradiction that (∅, A,wj) ∈ S. By the
consistency of S, {(∅, A,w1), (∅, A,wj)} is satisfiable which is impossible.

3. Similar and left to the reader.

Lemma B.7. A maximally consistent V-annotated theory S is ∅-prime.

Proof. Suppose (A,B, v) ∈ S. Assume for a contradiction that (∅, B, v) /∈ S and
(A, ∅, v) /∈ S. So, S∪{(∅, B, v)} and S∪{(A, ∅, v)} are inconsistent. Thus, there
are finite S1 ⊆ S and S2 ⊆ S for which (†) S1 ∪ {(∅, B, v)} and S2 ∪ {(A, ∅, v)}
are not satisfiable. By the consistency of S, the finite Sf = S1∪S2∪{(A,B, v)}
is satisfiable. So there is a model M of Sf for which vM (B) = v or vM (A) ̸= v.
This is a contradiction to (†).

Lemma B.8. A maximally consistent V-annotated theory S is closed under
connectives.

Proof. Let π be an n-ary connective. Suppose (∅, π(A1, . . . , An), v) ∈ S. By the
V-classicality of S (Lemma B.6), for each 1 ≤ i ≤ n there is a vi ∈ V for which
(∅, Ai, vi) ∈ S. Assume for a contradiction that fπ(v1, . . . , vn) ̸= v. Since S is
consistent,

{(∅, A1, v1), . . . , (∅, An, vn), (∅, π(A1, . . . , An), v)}

is satisfiable by some model M . However, since

vM (π(A1, . . . , An)) = fπ(vM (A1), . . . , vM (An)) ̸= v,

this is a contradiction. The other direction is similar and left to the reader.

Lemma B.9. Any maximal consistent V-annotated theory S is closed under
substitution.
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Proof. Suppose (∅, c1 ̸= c′1, v1), . . . , (∅, cn ̸= c′n, vn) ∈ S where v1, . . . , vn ∈ V\D.
And suppose that (A,B, v) ∈ S. Assume for a contradiction that

(A[c1/c
′
1, . . . , cn/c

′
n], B[c1/c

′
1, . . . , cn/c

′
n], v) /∈ S.

Thus, S ∪ {(A[c1/c
′
1, . . . , cn/c

′
n], B[c1/c

′
1, . . . , cn/c

′
n], v)} is not consistent.

Hence, there is a finite Sf ⊆ S such that

Sf ∪ {(A[c1/c
′
1, . . . , cn/c

′
n], B[c1/c

′
1, . . . , cn/c

′
n], v)}

is not satisfiable. Since S is consistent,

S ′
f = Sf ∪ {(A,B, v), (∅, c1 ̸= c′1, v1), . . . , (∅, cn ̸= c′n, vn)}

is satisfiable. Let M be a model of S ′
f . Since, for all 1 ≤ i ≤ n, vM (ci ̸= c′i) =

vi ∈ V \ D, by InEq, v(ci) = v(c′i). Thus, vM (B) = vM (B[c1/c
′
1, . . . , cn/c

′
n])

and vM (A) = vM (A[c1/c
′
1, . . . , cn/c

′
n]). Thus,

M |=V (A[c1/c
′
1, . . . , cn/c

′
n], B[c1/c

′
1, . . . , cn/c

′
n], v)

since M |=V (A,B, v), which is a contradiction.
The other direction is similar and left to the reader.

Lemma B.10. Any maximal consistent V-annotated theory S that contains its
Henkin-extension Sh is ω-complete (relative to the Henkin enhancement Lh).

Proof. Suppose (∅, A(cµA), v) ∈ S. Assume for a contradiction that (∅, µxA(x), v) /∈
S. Thus, S ∪ {(∅, µxA(x), v)} is inconsistent. Thus, there is a finite S ′ ⊆ S for
which S ′ ∪ {(∅, µxA(x), v)} is not satisfiable. By the consistency of S, and
since (∅, A(cµA), v), (A(cµA), µxA(x), v) ∈ S, S ′∪{(∅, A(cµA), v), (A(cµA), µxA(x), v)}
is satisfiable. LetM be a model of S ′∪{(∅, A(cµA), v), (A(cµA), µxA(x), v)}. Thus,
vM (A(cµA)) = v and since M |=V (A(cµA), µxA(x), v), vM (µxA(x)) = v. But then
M ∈ MPL(S ′ ∪ {(∅, µxA(x), v)}) which is a contradiction.

The other direction is similar and left to the reader.

Lemma B.11. Any maximal consistent V-annotated theory S that contains its
Henkin-extension Sh is satisfiable.

Proof. We define a model M = ⟨D, v⟩ based on S. Let for this c ∼ c′ iff
(∅, c ̸= c′, v) ∈ S for some v ∈ V \ D, and [c] = {c′ ∈ ConstLh

| c ∼ c′}. Let
D = Const/∼ = {[c] | c ∈ ConstLh

}. The interpretation v is defined as follows:

• We let v(c) = [c] for all c ∈ ConstLh
.

• For all predicates Pi and all c1, . . . , ci ∈ ConstLh
, we let

v(Pi, ([c1], . . . , [ci])) = v iff (∅, Pi(c1, . . . , ci), v) ∈ S.

• For all c, c′ ∈ ConstLh
we let v(̸=, ([c], [c′])) = v iff (∅, c ̸= c′, v) ∈ S.
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• If there is an identity = in the language L, for all c, c′ ∈ ConstLh
we let

v(=, ([c], [c′])) = v iff (∅, c = c′, v) ∈ S.

• If there is a congruence ≈ in the language L, for all c, c′ ∈ ConstLh
we let

v(≈, ([c], [c′])) = v iff (∅, c ≈ c′, v) ∈ S.

We have to show that v is well-defined. Note for this that with Lemma
B.6, for any sentence A, there is a unique v ∈ V for which (∅, A, v) ∈ S. We
also have to show that the definitions are independent of the representatives
of the equivalence classes ∼. This is a direct consequence of the closure under
substitution (Lemma B.9).

Finally, we have to verify that our requirements (Eq) resp. (InEq) resp.
(Cong) for = (if there is an identity in L) resp. for ̸= resp. for ≈ (if there is a
congruence in L) are met. We first discuss (Eq) (assuming there is a = in our
language).

Suppose v ∈ D and v(=, ([c], [c′])) = v. Thus, (∅, c = c′, v) ∈ S. We have
to show that [c] = [c′] and thus that c ∼ c′. For this we have to show that
(∅, c ̸= c′, v′) ∈ S for some v′ ∈ V \ D. Assume for a contradiction that there
is no v′ ∈ V \ D for which (∅, c ̸= c′, v′) ∈ S. By Lemma B.6, there is a v′ ∈ D
for which (∅, c ̸= c′, v′) ∈ S. By the consistency of S, {(∅, c = c′, v), (∅, c ̸=
c′, v′)} is satisfiable by some model M ′ = ⟨D′, v′⟩. Thus, vM ′(c = c′) = v and
vM ′(c ̸= c′) = v′. By Eq, v′(c) = v′(c′) and by InEq, v′(c) ̸= v′(c′). This is a
contradiction. Thus, there is a v′ ∈ V \ D for which (∅, c ̸= c′, v′) ∈ S and so
c ∼ c′. The other direction is analogous and left to the reader.
We now discuss (Cong).

(Ref) Let c ∈ ConstLh
. By the V-classicality of S (Lemma B.6) there is a v ∈ V

for which (∅, c ≈ c, v) ∈ S. Assume v /∈ D. By the consistency of S,
{(∅, c ≈ c, v)} is satisfiable by a model M ′ = ⟨D′, v′⟩. However, by (Cong
(Ref)), v′(≈, (v(c), v(c))) ∈ D which is a contradiction since v /∈ D. So
v ∈ D.

(Str) Suppose v(≈, ([c], [c′])) = v ∈ D and thus ϕ0 = (∅, c ≈ c′, v) ∈ S. Assume
for a contradiction that v(P, ([c1], . . . , [ci−1], [c], [ci+1], . . . , [cn])) = v1 ̸=
v2 = v(P, [c1], . . . , [ci−1], [c

′], [ci+1], . . . , [cn]). So,

ϕ1 = (∅, P (c1, . . . , ci−1, c, ci+1, . . . , cn), v1) ∈ S,
and ϕ2 = (∅, P (c1, . . . , ci−1, c

′, ci+1, . . . , cn), v2) ∈ S.

By the consistency of S there is a model M ′ = ⟨D′, v′⟩ of {ϕ0, ϕ1, ϕ2}.
However, v′ violates (Cong) (Str) and so we reached a contradiction.

The case for ̸= and (InEq) is analogous and left to the reader.

We now show that vM (A) = v iff (∅, A, v) ∈ S inductively over the length of
A.

For the base case this follows right from our definition.
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• vM (Pi(c1, . . . , ci)) = v iff v(Pi, ([c1], . . . , [ci])) = v iff (∅, Pi(c1, . . . , ci), v) ∈
S.

• If there is an identity in L, vM (c = c′) = v iff v(=, ([c], [c′])) = v iff
(∅, c = c′, v) ∈ S.

• vM (c ̸= c′) = v iff v( ̸=, ([c], [c′])) = v iff (∅, c ̸= c′, v) ∈ S.

• If there is a congruence in L, vM (c ≈ c′) = v iff v(≈, ([c], [c′])) = v iff
(∅, c ≈ c′, v) ∈ S.

We now move to the inductive step.

• We first look at connectives. Let π be an n-ary connective.

– Suppose vM (π(A1, . . . , An)) = v. Therefore, fπ(v1, . . . , vn) = v,
where vM (Ai) = vi for each 1 ≤ i ≤ n. By the inductive hypothesis,
(∅, Ai, vi) ∈ S. By Lemma B.8, (∅, π(A1, . . . , An), v) ∈ S.

– Let now (∅, π(A1, . . . , An), v) ∈ S. By Lemma B.8, there are v1, . . . , vn ∈
V for which fπ(v1, . . . , vn) = v and (∅, Ai, vi) ∈ S. By the in-
ductive hypothesis, vM (Ai) = vi. Therefore vM (π(A1, . . . , An)) =
fπ(v1, . . . , vn) = v.

• We consider quantifiers µ. Suppose vM (µxA(x)) = v. Thus, by Q0,
fµ({A(c) | [c] ∈ D}) = v. Where {vM (A(c)) | [c] ∈ D} = {w1, . . . ,wm} let
c1, . . . , cm be such that vM (A(ci)) = wi. By Lemma B.6, there is a unique
v′ for which (∅, µxA(x), v′) ∈ S. We have to show that v = v′. By Lemma
B.10, (∅, A(cµA), v′) ∈ S. By the inductive hypothesis, vM (A(cµA)) = v′

and (∅, A(ci),wi) ∈ S (for each 1 ≤ i ≤ m). As S is consistent there is a
model M ′ = ⟨D′, v′⟩ of{

(∅, A(c1),w1), . . . , (∅, A(cm),wm), (∅, A(cµA), v
′),

(µxA(x), A(cµA), v
′), (A(cµA), µxA(x), v

′)
}
.

Note that in M ′ we have vM ′(µxA(x)) = v′ since vM ′(A(cµA)) = v′. Note
also that {vM ′(A(d)) | d ∈ D′} ⊇ {vM (A(c)) | [c] ∈ D}. Thus, by Q2,
fµ({vM ′(A(d)) | d ∈ DM ′}) = v′ = fµ({vM (A(c)) | [c] ∈ D}) = v.

For the other direction suppose (∅, µxA(x), v) ∈ S. Let {vM (A(c)) |
[c] ∈ D} = {w1, . . . ,wm}. Let c1, . . . , cm be such that vM (A(c1)) =
w1, . . . , vM (A(cm)) = wm. By the inductive hypothesis, (∅, A(c),wi) ∈ S.
By the consistency of S there is a modelM ′ of {(∅, µxA(x), v), (∅, A(c1),w1),
. . . , (∅, A(cm),wm)}. So, fµ({w | ∃d ∈ D′(vM ′(A(d)) = w)}) = v. Note
that {w | ∃d ∈ D′(vM ′(A(d)) = w)} ⊇ {w1, . . . ,wm} and v ∈ {w1, . . . ,wm}.
So, byQ2, fµ({w1, . . . ,wm}) = v. Thus, vM (µxA(x)) = fµ({w1, . . . ,wm}) =
v.
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We finally show that M ∈ MPL(S). Let for this (A,B, v) ∈ S. By Lemma
B.7, (∅, B, v) ∈ S or (A, ∅, v) ∈ S. In the former case, as shown above vM (B) =
v, and so M |=V (A,B, v). Assume the latter. By Lemma B.6, there is a
v′ ∈ V \ {v} such that (∅, A, v′) ∈ S. As shown, vM (A) = v′. Therefore
vM (A) ̸= v and so M |=V (A,B, v).

We are now ready to prove Proposition B.2 and the model existence lemma.

Lemma B.12 (Model Existence). Any consistent V-theory T in a language L
has a L-model with maximal cardinality card(L).

Proof. Suppose the V-theory T in L is consistent. By Lemma B.4, also its
Henkin-extension Th is consistent. Let Tm be a maximal consistent extension
of Th in Lh (which exists with Lemma B.5). By Lemma B.11, Tm is satisfiable
in Lh by a model M = ⟨D, v⟩. Note that card(D) = card({[c] | c ∈ ConstLh

}) ≤
card(Lh) = card(L). Clearly, then also T is satisfiable in L (e.g., just restrict
the assignment v of M to L).

Proof of Proposition B.2. This follows directly from Lemma B.12.

C Abnormality-aware versions of the Löwenheim-
Skolem Theorems

We now prove Theorems 8.1 and 8.2 from Section 8. Recall for this

• Definition 14 of Px(·) where x ∈ {fin, coinf, fin/coinf},

• Definition 16 of our abnormality-aware versions of the Löwenheim-Skolem
Theorems, and

• Definition 15 of M≤κ(·) and ⊩≤κ
L .

For the proof we need some more definitions first.

Definition 29. Where i ∈ P and l ≥ 1, we introduce the following abbreviations:

∃≥l
i =df

∅,∃x1 · · · ∃xl

 l∧
j=1

@αi(xj) ∧
∧

1≤j<j′≤l

xj ̸= xj′

 ,D



∃≤l
i =df

∃x1 · · · ∃xl+1

l+1∧
j=1

@αi(xj) ∧
∧

1≤j<j′≤l+1

xj ̸= xj′

 , ∅,D


Lemma C.1. Where M = ⟨D, v⟩ ∈ MPL, card(Abi(M)) = l iff (M |=V ∃≥l

i

and M |=V ∃≤l
i ).
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Proof. Let M = ⟨D, v⟩. Suppose that card(Abi(M)) = l. Thus, Abi(M) =
{d1, . . . ,dl} ⊆ Dai . Where d = ⟨d1, . . . , dai⟩ we write d for ⟨d1, . . . , dai⟩. So,

M |=
∧l

j=1 @αi(dj) and M |= dj ̸= dj′ for all 1 < j ≤ j′ ≤ l (compare

the notation in the context of Eq. 2). Thus, M |=V ∃≥l
i . Assume now for a

contradiction that M ̸|=V ∃≤l
i . Thus,

M |= ∃x1 · · · ∃xl+1

l+1∧
j=1

@αi(xj) ∧
∧

1≤j<j′≤l+1

xj ̸= xj′


Thus, we have:

• There are d1, . . . ,dl+1 ∈ Dai for which

M |=

l+1∧
j=1

@αi(dj)

 ∧

 ∧
1≤j<j′≤l+1

dj ̸= dj′

 .

• Thus, (a) for each 1 ≤ j ≤ l + 1, M |= @αi(dj) and (b) for each 1 ≤ j <
j′ ≤ l + 1, M |= dj ̸= dj′ .

• By (InEq) and (b), dj ̸= dj′ for all 1 ≤ j < j′ ≤ l + 1.

• By (a), {d1, . . . ,dl+1} ∈ Abi(M) and so card(Abi(M)) ≥ l + 1.

The other direction is similar and left to the reader.

Definition 30. As before, let Lh be the language L enriched by Henkin-constants
(see Definition 26). Let Lκ be the language L enhanced with κ-many constants
{ki | i ∈ I}.

Finally, let Lh,κ = Lh ∪Lκ where we suppose that Const(Lh)∩Const(Lκ) =
Const(L) (so, the new κ-many constants in Lκ do not occur as Henkin-constants
of Lh).

We denote L [Lh,Lκ,Lh,κ]-models of PL by ML [MLh ,MLκ ,MLh,κ ].

Definition 31. Where M = ⟨D, v⟩ ∈ ML let TM be the Lh,κ-V-annotated
theory built step-wise as follows:

1. We start with T = {(∅, A, v) | A ∈ sent(L), vM (A) = v}.

2. We then let Th be the Henkin-extension of T in Lh as defined in Defini-
tion 27. We then extend Th in Lh,κ by:

3. (∅, ki ̸= kj ,D) where i ̸= j and ki, kj ∈ Const(Lκ) \ Const(L)

4. Normi(k) for all i ∈ Pfin/coinf(M) and all k ∈ (Const(Lh,κ) \ Const(Lh))
ai ,

where Normi(k) =df

(
@αi(k), ∅,D

)
;

5. and both ∃≥l
i and ∃≤l

i for every (i, l) ∈ Pfin(M).
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6. ∃≥l
i for all (i, l) such that i ∈ P \ Pfin(M) and l ≥ 1.

Fact C.1. Where card(D) = κ ≥ ℵ0 and card(D′) < κ, card(D \ D′) = κ.

Proof. Note that (given the axiom of choice):

card(D) = card(D \ D′) + card(D′) = max(card(D \ D′), card(D′)) = κ.

So card(D \ D′) = κ since card(D′) < κ.

Lemma C.2. Where M = ⟨D, v⟩ ∈ ML and card(D) ≥ ℵ0, MLh,κ(TM ) ̸= ∅.

Proof. Let Mh = ⟨D, vh⟩ be the Lh-model of Th from Lemma B.3. By compact-
ness (Proposition B.2), we have to show that any finite Tf ⊆ TM is satisfiable.
We conservatively extend the Lh-assignment vh of Mh to an Lh,κ-assignment
vf and show that the resulting model Mf = ⟨D, vf ⟩ is a model of Tf . Let i ∈ P
be the maximal index for which some Normi(k) or ∃≤l

i or ∃≥l
i occurs in Tf . We

define the assignment vf as follows:

• vf (c) =df v
h(c) for all c ∈ Const(Lh).

• vf (Pi, (d1, . . . , di)) =df v
h(Pi, (d1, . . . , di)) for all i ∈ I and all d1, . . . , di ∈

Di.

• and analogous for =,≈ and ̸=.

We still have to fix the reference of the new constants in Lκ. Where Ab⋆j (Mh)
contains all individuals dl contained in some ⟨d1, . . . , daj

⟩ ∈ Abj(Mh), let A =df⋃
{Ab⋆j (Mh) | j ≤ i and j ∈ Pfin/coinf(M)}.
Suppose first that card(D) = ℵ0. In that case Pcoinf(M) = ∅. Thus,

card(A) < ℵ0 = card(D).
Suppose now that card(D) > ℵ0. In that case card(A) = max({card(Abj(M)) |

j ∈ Pfin/coinf(M), j ≤ i}) < card(D). In any case, by Fact C.1, there is a bijective

function µ from ConstLκ
to D \ A. We let: vf (ki) = µ(ki) for each 1 ≤ i ≤ m′.

We now show that Mf is a model of Tf . Clearly, Mf is a model of Th ∩ Tf
since vf is a conservative extension of vh and Th only contains elements of the
language Lh.

• Suppose (∅, ki ̸= kj ,D) ∈ Tf . Since vf (ki) ̸= vf (kj), v
f (̸=, (vf (ki), v

f (vj))) =
vh( ̸=,(vf (ki), v

f (kj))) ∈ D by InEq.

• Suppose Normj(k) ∈ Tf , where k = ⟨ki1 , . . . , kiaj
⟩. Since vf (kji) ∈ D \A,

vM (αj(vf (ki1), . . . , v
f (kiaj

))) /∈ A. Therefore, vMf (αj(ki1 , . . . , kiaj
)) /∈ A

and so vMf (Normj(k)) ∈ D.

• The cases for ∃≤l
i and ∃≥l

i are shown analogously.

Definition 32. Where M⋆ = ⟨D⋆, v⋆⟩ ∈ MLh,κ(H) (recall Definition 27), we
define M ′

⋆ = ⟨D′
⋆, v

′
⋆⟩ ∈ MLh,κ as follows:
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1. Where c, c′ ∈ Const(Lh,κ), let c ∼ c′ iff v⋆(c) = v⋆(c
′). Let [c] = {c′ ∈

Const(Lh,κ) | c ∼ c′} be the ∼-equivalence class of c.

2. Let D′
⋆ = {[c] | c ∈ Const(Lh,κ)}.

3. Let v′⋆(c) = [c] for all c ∈ Const(Lh,κ).

4. If “=” is part of L, let v′⋆(=, ([c], [c′])) = v⋆(=, (v⋆(c), v⋆(c
′))).

5. If “≈” is part of L, let v′⋆(≈, ([c], [c′])) = v⋆(≈, (v⋆(c), v⋆(c
′))).

6. Let v′⋆(̸=, ([c], [c′])) = v⋆(̸=, (v⋆(c), v⋆(c
′))).

7. Let v′⋆(Pi, ([c1], . . . , [ci])) = v⋆(Pi, (v⋆(c1), . . . , v⋆(ci))).

The next two lemmas are relative to Definition 32

Lemma C.3. v′⋆ is well-defined and M ′
⋆ is a model.

Proof. We first show that v′⋆ is well-defined in the sense that its interpretation
is independent of the choice of representatives of the equivalence classes of con-
stant. I.e., if v′⋆(=, ([c], [c′])) = v (resp. v′⋆( ̸=, ([c], [c′])) = v resp. v′⋆(≈, ([c], [c′])) =
v) then for all c1 ∈ [c] and all c2 ∈ [c′] also v′⋆(=, ([c1], [c2])) = v (resp.
v′⋆( ̸=, ([c1], [c2])) = v resp. v′⋆(≈, [c1], [c2]) = v).

So, assume c1 ∼ c and c2 ∼ c′. Thus, by Item 1 (in Definition 32), (†)
v⋆(c1) = v⋆(c) and v⋆(c2) = v⋆(c

′). Let ◦ ∈ {=, ̸=,≈}. Suppose v′⋆(◦, ([c], [c′])) =
v. Therefore, by Items 4–6, v⋆(◦, (v⋆(c), v⋆(c′))) = v. By (†), v⋆(◦, (v⋆(c1), v⋆(c2))) =
v and thus, by Items 4–6, v′⋆(◦, ([c1], [c2])) = v.

Similarly, suppose v′⋆(Pi, ([c1], . . . , [ci])) = v and c′i ∈ [ci] (where 1 ≤ i ≤ i).
Then v⋆(Pi, (v⋆(c1), . . . , v⋆(ci))) = v by Item 7. Since, by Item 1, v⋆(ci) =
v⋆(c

′
i), also v⋆(Pi, (v⋆(c

′
1), . . . , v⋆(c

′
i))) = v and so by Item 7, v′⋆(Pi, ([c

′
1], . . . , [c

′
i])) =

v.
We now show that Eq (if there is an identity), InEq, and Cong (if there is

a congruence) are fulfilled in M ′
⋆.

Concerning Eq suppose v′⋆(=, ([c], [c′])) = v ∈ D.
Therefore, by Item 4, v⋆(=, (v⋆(c), v⋆(c

′))) = v and by Eq, v⋆(c) = v⋆(c
′). By

Item 1, [c] = [c′].
Concerning InEq suppose that v′⋆(̸=, ([c], [c′])) = v ∈ V \ D.

Therefore, v⋆(̸=, (v⋆(c), v⋆(c
′))) = v and by InEq, v⋆(c) ̸= v⋆(c

′). By Item 1,
[c] ̸= [c′].

Cong is shown in a similar straight-forward way. This is left to the reader.

Lemma C.4. For every A ∈ Lh,κ, vM ′
⋆
(A) = vM⋆

(A).

Proof. We show this inductively over the length of A ∈ sent(Lh,κ).
Base. (We refer to justifications of the items in the Definition 32 of v′⋆.)

• Let c, c′ ∈ Const(Lh,κ) and let ◦ ∈ {=, ̸=,≈}. In view of Items 4–6 we
have: vM ′

⋆
(c ◦ c′) = v iff v′⋆(◦, ([c], [c′])) = v iff v⋆(◦, (v⋆(c), v⋆(c′))) = v iff

vM⋆
(c ◦ c′) = v.
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• Let c1, . . . , cn ∈ Const(Lh,κ). In view of Item 7 we have: vM ′
⋆
(Pi(c1, . . . ,

ci)) = v iff [by Item 3] v′⋆(Pi, ([c1], . . . , [ci])) = v iff v⋆(Pi, (v⋆(c1), . . . ,
v⋆(ci))) = v iff vM⋆

(Pi(c1, . . . , ci)) = v.

Inductive step.

• Consider an n-ary connective π. We have:

vM ′
⋆
(π(A1, . . . , An)) = fπ(vM ′

⋆
(A1), . . . , vM ′

⋆
(An)) and

vM⋆
(π(A1, . . . , An)) = fπ(vM⋆

(A1), . . . , vM⋆
(An)).

By the inductive hypothesis, vM ′
⋆
(Ai) = vM⋆

(Ai) for each 1 ≤ i ≤ n.
Thus, vM ′

⋆
(π(A1, . . . , An)) = vM⋆

(π(A1, . . . , An)).

• Consider the quantifier µ. We have, by Items 2 and 3,

vM ′
⋆
(µxA(x)) = fµ({vM ′

⋆
(A(d)) | d ∈ D′

⋆}) = fµ({vM ′
⋆
(A(c)) | c ∈ Const(Lh,κ)})

and vM⋆(µxA(x)) = vM⋆(A(cAµ )) since M⋆ ∈ M(H). By the induc-
tive hypothesis, {vM ′

⋆
(A(c)) | c ∈ Const(Lh,κ)} = {vM⋆

(A(c)) | c ∈
Const(Lh,κ)} ⊆ {vM⋆

(A(d)) | d ∈ D⋆} and vM ′
⋆
(A(cAµ )) = vM⋆

(A(cAµ )). By

Q2, fµ({vM ′
⋆
(A(d)) | d ∈ D′

⋆}) = vM ′
⋆
(A(cAµ )) and therefore, vM ′

⋆
(µxA(x)) =

vM⋆
(µxA(x)).

Lemma C.5. Where M ∈ ML and M⋆ ∈ MLh,κ(TM ) (see Lemma C.2) and
M ′

⋆ ∈ MLh,κ is as defined in Definition 32,

1. Pfin(M) = Pfin(M
′
⋆);

2. for all i ∈ Pcoinf(M), card(Abi(M)) ≥ card(Abi(M
′
⋆)) = ℵ0;

3. Pcoinf(M) ⊆ Pcoinf(M
′
⋆) in case κ > ℵ0,

4. card(D′
⋆) = κ.

Proof. Ad 1. Let (i, l) ∈ Pfin(M). By Lemma C.1, M |=V ∃≥l
i and M |=V ∃≤l

i .

Since M ′
⋆ ∈ M(TM ), also M ′

⋆ |=V ∃≥l
i and M ′

⋆ |=V ∃≤l
i . Again by Lemma C.1,

card(Abi(M
′
⋆)) = l = card(Abi(M)). Thus, (i, l) ∈ Pfin(M

′
⋆).

For the other direction suppose (i, l) ∈ Pfin(M
′
⋆). By Lemma C.1, M ′

⋆ |=V ∃≥l
i

and M ′
⋆ |=V ∃≤l

i . In case there is a k for which (i, k) ∈ Pfin(M), then (i, k) ∈
Pfin(M

′
⋆) (as established in the previous paragraph). Again, by Lemma C.1,

M ′
⋆ |=V ∃≥k

i and M ′
⋆ |=V ∃≤k

i . But then it is easy to see that l = k. Suppose,

then, that there is no k ∈ N for which (i, k) ∈ Pfin(M). Thus, ∃≥k
i ∈ TM for

every k ≥ 1. In particular, ∃≥l+1
i which contradicts the fact that M ′

⋆ |= ∃≤l
i .

Ad 2. Let i ∈ Pcoinf(M). So, card(Abi(M)) ≥ ℵ0. Since for all k in
(Const(Lh,κ) \ Const(Lh))

ai , M ′
⋆ |=V Normi(k) and since Const(Lh) is count-

able, card(Abi(M
′
⋆)) = ℵ0 ≤ card(Abi(M)).
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Ad 3. This follows immediately with Item 2.
Ad 4. Note that card(Const(Lh,κ)) = κ which implies card(D′

⋆) ≤ κ. Also,
for each i, j ∈ I (see Definition 30), if i ̸= j then (∅, ki ̸= kj ,D) ∈ T⋆. By InEq,
v⋆(c) ̸= v⋆(c

′) and so [c] ̸= [c′] (see Definition 32). Thus, card(D′
⋆) = κ.

We are now in a position to prove Theorems 8.1 and 8.2.

Theorem C.1. LS-Ab (upwards) holds for every logic PL.

Proof. We proceed in the following steps:

1. first we enrich the language L with κ many new constants obtaining Lh,κ

(Definition 30);

2. then we enrich the premise set, to encode that the new constants refer
to different entities and that they are, whenever possible, non-abnormal,
obtaining TM (Definition 31);

3. we show that the enriched premise set TM is satisfiable by an Lh,κ-model
M ′

⋆ = ⟨D′
⋆, v

′
⋆⟩ of cardinality κ that has the desired properties (Lemma C.5).

4. Finally, we let v′ be the restriction of v′⋆ to L to obtain the L-model
M ′ = ⟨D′

⋆, v
′⟩ that has all the desired properties.

Theorem C.2. LS-Ab (downwards) holds for every logic PL.

Proof. Suppose M = ⟨D, v⟩ ∈ M and card(D) = λ > ℵ0. Let λ > κ ≥ ℵ0. We
define TM as in Def. 31 and M ′

⋆ as in Def. 32. In view of Lemma C.5, M ′
⋆ has

all the desired properties.

D Strong Reassurance for ≺=c,l
Φ .

In the following we show that nmPL = ⟨PL,≺⟩ has the property of Strong

Reassurance for ≺ = ≺=c,l
Φ following the path outlined in Section A. In Section

E we discuss how the proof can be adjusted for other orderings.
Given a M⊤ = ⟨D⊤, v⊤⟩ ∈ MPL(Σ) \min≺

(
MPL(Σ)

)
, we have to show that

there is a M⋆ ∈ min≺(MPL(Σ)) for which M⋆ ≺ M . As in Section A we will
first work under the assumption that, where κ = card(D⊤) ≥ ℵ0 and address
the other simpler case in the end of this section (Remark D.1). Following the
strategy outlined in Section A we show that

1.
⋂

i≥1 Mi ̸= ∅ and that 2.
⋂

i≥1 Mi ⊆ min≺(M↓).

For what follows recall Definition 19.

Lemma D.1. For each i ≥ 0, ⟨Mi,≺i+1⟩ is well-founded and therefore Mi ̸= ∅.

Proof. We show this by induction. Let i = 0. Assume for a contradiction that
there is an infinitely ≺1-descending sequence of modelsM⊤ = M1, . . . ,Mn, . . . in
M↓ (so Mi+1 ≺1 Mi for all i ≥ 1). Hence, card(Ab1(Mi+1)) < card(Ab1(Mi)).
But (given the axiom of choice) there is no infinitely decreasing sequence of
cardinals. The inductive step is analogous and left to the reader.
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Lemma D.2.
⋂

i≥1 Mi ⊆ min≺(M↓).

Proof. Assume for a contradiction that there are models M ∈ MPL(Σ) and
M⋆ ∈

⋂
i≥1 Mi for which M ≺ M⋆. Thus, there is a j ∈ P such that (1) for all

i ∈ P smaller than j, card(Abi(M)) = card(Abi(M
⋆)) while (2) card(Abj(M)) <

card(Abj(M
⋆)). Note that since M⋆ ∈ M↓, it follows that M⋆ ≺ M⊤. And

since M ≺ M⋆, by the transitivity of ≺ (Fact 3.1), we have M ≺ M⊤, and
so M ∈ M↓. Moreover, by (1), M ∈ Mi for all i smaller than j. But then
M⋆ /∈ Mj since M ≺j M

⋆. This is a contradiction with M⋆ ∈
⋂

i≥1 Mi.

In order to establish that
⋂

i≥1 Mi ̸= ∅ we will construct a model MΦ in⋂
i≥1 Mi. Let, in the following, T =df {(∅, A,D) | A ∈ Σ}.
As in Definition 30, we enrich our language L to a language Lκ with κ many

new constants ki. We also define the Henkin enrichment Lh of the base language
L as in Definition 26. The joint language of Lh and Lκ is denoted by Lh,κ.
We denote sets of L [Lh,Lκ,Lh,κ]-models of PL by ML [MLh , MLκ , MLh,κ ].
Similarly, we denote the set of constants by Const(L) [Const(Lh), Const(Lκ),
Const(Lh,κ)].

Definition 33. We now enrich T to T⋆ in two steps (recall the Definition 20

of Pfin, Pcoinf and Pfin/coinf , and Definition 29 of ∃≥l
i and ∃≤l

i ):

1. First we build its Henkin extension Th in Lh as defined in Definition 27.

2. Then we enhance Th to a set of Lh,κ-V-annotated sentences T⋆ by adding:

• (∅, ki ̸= kj ,D) where i ̸= j and ki and kj are newly added constants
in Const(Lκ);

• Normi(k) for all i ∈ Pfin/coinf and all k = ⟨kj1 , . . . , kjai
⟩ ∈ ConstLκ

ai ,

where Normi(k) =df

(
@αi(k), ∅,D

)
;

• and both ∃≥l
i and ∃≤l

i for every (i, l) ∈ Pfin.

Definition 34. Given a model M = ⟨D, v⟩ in a language L, we let in the
following L[D] be the language L enriched by pseudo-constants d for every d ∈ D.

Lemma D.3. For every model M = ⟨D, v⟩ ∈ ML(T ), there is a Mh =
⟨D, vh⟩ ∈ MLh for which:

1. vM (A) = vMh
(A) for every wff A in L[D],

2. Mh |=V (A(cAµ ), µxA(x), v) for every A(x) in Lh and every v ∈ V,

3. Mh |=V (µxA(x), A(cAµ ), v) for every A(x) in Lh and every v ∈ V,

4. Mh ∈ MLh(Th), and

5. for every i ∈ P, Abi(M) = Abi(Mh).

Proof. WhereM = ⟨D, v⟩ ∈ ML is a model of T , let the Lh-modelMh = ⟨D, vh⟩
be defined as follows:
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• Let vh(c) = v(c) for all c ∈ Const(L).

• For cAµ we proceed in the usual iterative way over the inductive structure
of Lh =

⋃
i≥1 Lh,i (see Definition 26).

– Consider Lh,1. In view of Q0 andQ1 we know that for each A(x) ∈ L
there is a dAµ ∈ D for which vM (A(dAµ )) = vM (µxA(x)). Let vh(c

A
µ ) =

dAµ .

– Consider Lh,i+1. Again, for each A(x) ∈ Lh,i there is a dAµ ∈ D such

that vM (A′(dAµ )) = vM (µxA′(x)) where A′ is the result of substitut-

ing each cBµ ∈ Lh,i in A for dBµ . Let vh(c
A
µ ) = dAµ .

• For all Pi and all d1, . . . , di ∈ D, let vh(Pi, (d1, . . . , di)) = v(Pi, (d1, . . . , di)).

• For all d, d′ ∈ D, (if there is an identity) let vh(=, (d, d′)) = v(=, (d, d′)),
vh( ̸=, (d, d′)) = v(̸=,(d, d′)), and (if there is a congruence) let vh(≈, (d, d′)) =
v(≈, (d, d′)).

By the definition of vh, vM (A) = vMh
(A) for all A ∈ L[D] (Item 1) and

Abi(M) = Abi(Mh) for all i ∈ P (Item 5). Items 2 and 3 follows immedi-

ately since by the definition of vh, vM (A(dAµ )) = vM (µxA(x)) = vMh
(A(dAµ )) =

vMh
(A(cAµ )) = vMh

(µxA(x)). Item 4 follows from Items 1–3 and the fact that

M ∈ ML(T ).

The following fact is a direct consequence of the definition of Pfin.

Fact D.1. Where (i, l) ∈ Pfin, for all M ∈ Mi, card(Abi(M)) = l.

Lemma D.4. Where i ∈ Pcoinf , for all M ∈ Mi, card(Abi(M)) = ℵ0.

Proof. Let M ∈ Mi. By Theorems 8.1 and 8.2 there is a M ′ that satisfies
items 1–4 of Definition 16 relative to M whose domain has the same size as the
domain of M . Thus, M ′ ∈ M(Σ) (by Item 4) and M ′ ∈ Mi by Items 1–3.
Since card(Abi(M

′)) = ℵ0 also card(Abi(M)) = ℵ0.

Lemma D.5. T⋆ is satisfiable. (See Definition 33)

Proof. Consider a finite Tf ⊆ T⋆. We show that Tf is satisfiable and so, by
compactness (Proposition B.2), is T⋆.

Let i ∈ P be the maximal index such that some Normi(k) or ∃≥l
i or ∃≤l

i

is contained in Tf . Consider an M = ⟨D, v⟩ ∈ Mi (recall that by Lemma
D.1, Mi ̸= ∅). Thus, card(D) = κ. Let Mh = ⟨D, vh⟩ be the ω-complete
enhancement of M based on the new constants in Lh as in Lemma D.3. We
define M ′ = ⟨D, v′⟩ ∈ MLh,κ as follows:

1. v′(c) = vh(c) for all c ∈ Const(Lh).

2. Where Ab⋆j (Mh) contains all individuals dl contained in some ⟨d1, . . . , daj
⟩ ∈

Abj(Mh), let A =df

⋃
{Ab⋆j (Mh) | j ≤ i, j ∈ Pfin/coinf(M)}.
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3. Note that card(A) ≤ ℵ0 in case κ > ℵ0 and card(A) < ℵ0 in case κ =
ℵ0. The reason is that with Lemma D.3, Lemma D.4 and Fact D.1, for
every j ∈ Pi

fin/coinf we have card(Abj(M)) = card(Abj(Mh)) ≤ ℵ0 and so

also card(Ab⋆j (M)) = card(Ab⋆j (Mh)) ≤ ℵ0. In case κ = ℵ0, Pcoinf = ∅
and so card(Abj(M)) = card(Abj(Mh)) < ℵ0 whence card(Ab⋆j (M)) =
card(Ab⋆j (Mh)) < ℵ0.

4. By Fact C.1, there is a bijection η : Const(Lh,κ) \Const(Lh) → D\A. Let
v′(c) = η(c) for all c ∈ Const(Lh,κ) \ Const(Lh).

5. Let v′(Pi, (d1, . . . , di)) = vh(Pi, (d1, . . . , di)) for all d1, . . . , di ∈ D and all
predicate symbols Pi.

6. Let v′( ̸=, (d, d′)) = vh(̸=, (d, d′)) for all d, d′ ∈ D.

7. If there is an identity “=” in L, let v′(=, (d, d′)) = vh(=, (d, d′)) for all
d, d′ ∈ D.

8. If there is a congruence “≈” in L, let v′(≈, (d, d′)) = vh(≈, (d, d′)) for all
d, d′ ∈ D.

Note that:

(†) vM ′(A) = vMh
(A) for every A ∈ Lh since v′ conservatively extends vh on

Lh in view of Items 1, 5–9. Thus, since Mh ∈ M(Th), also M ′ ∈ M(Th).

(‡) For the same reason, card(Abj(M
′)) = card(Abj(Mh)) = card(Abj(M)) for

every j ∈ P.

We still have to show that M ′ verifies all members of Tf ∩ (T⋆ \ Th).

• Consider (∅, ki ̸= kj ,D), where i ̸= j and ki, kj ∈ Const(Lκ). We have
vM ′(ki ̸= kj) = v (for some v ∈ D), iff, v′(̸=, (v′(ki), v

′(kj))) = v, iff, [by
Item 7] vh(̸=, (v′(ki), v

′(kj)) = v, iff, [by InEq] v′(ki) ̸= v′(kj). Note that
v′(ki) = η(ki), v

′(kj) = η(kj), and since η is injective [by Item 5] and
i ̸= j, η(ki) ̸= η(kj).

• Consider Normj(k), where k = ⟨kl1 , . . . , klaj
⟩ ∈ Const(Lκ)

aj and j ≤ i.

This holds in M ′ since v′(kl1), . . . , v
′(klaj

) ∈ D \ A by Items 2–5.

• Since M ∈ Mi, card(Abj(M)) = l for all (j, l) ∈ Pfin for which j ≤ i.

Thus, by Item (‡) also card(Abj(M
′)) = l. By Lemma C.1, M ′ |=V ∃≥l

j

and M ′ |=V ∃≤l
j .

This concludes our proof.

Lemma D.6. Let M ′
⋆ = ⟨D′

⋆, v
′
⋆⟩ ∈ MLh,κ be the term-model based on M⋆

defined in Definition 32 and M⊥ = ⟨D′
⋆, v⊥⟩ ∈ ML where v⊥ is the restriction

of v′⋆ to L.
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1. M ′
⋆ ∈ M(T⋆) and so M ′

⋆ ∈ M(Σ) and M⊥ ∈ M(Σ),

2. card(D′
⋆) = κ,

3. Pfin(M
′
⋆) = Pfin(M⊥) = Pfin,

4. Pcoinf(M
′
⋆) = Pcoinf(M⊥) = Pcoinf , and

5. M⊥ ∈
⋂

i≥1 Mi.

Proof. Ad 1. Since M⋆ ∈ M(T⋆) it is sufficient to show vM ′
⋆
(A) = vM⋆

(A), for
all A ∈ Lh,κ. This is Lemma C.4.

Ad 2. Since card(ConstLh,κ
) = κ, card(D′

⋆) ≤ κ. Also, card(D′
⋆) ≥ κ since

M |= (∅, ki ̸= kj ,D) for all ki, kj ∈ Const(Lκ) \ Const(Lh) and by (InEq).
Ad 3. This follows by Item 1 and Lemma C.1.
We show Items 4 and 5 together. By Item 1, M ′

⋆ |= Normi(k) for all i ∈ Pcoinf

and all k ∈ ConstLκ

ai . Thus, Abi(M
′
⋆) ⊆ ConstLh/∼

ai . Since Lh is countable,

ConstLh/∼
ai is countable as well and so card(Abi(M

′
⋆)) ≤ ℵ0. Thus, (†), Pcoinf ⊆

Pfin/coinf(M
′
⋆). Thus, (‡), for any i ∈ P and any Mi ∈ Mi, card(Abi(Mi)) ≥

card(Abi(M
′
⋆)). To see this we distinguish the three cases (a) (i, l) ∈ Pfin for some

l ≥ 0, (b) i ∈ Pcoinf and (c) i ∈ P \ Pfin/coinf . In case (a), card(Abi(Mi)) = l =
card(Abi(M

′
⋆)) by Item 3 and Lemma C.1. In case (b), card(Abi(Mi)) ≥ ℵ0 and

by (†), card(Abi(M ′
⋆)) ≤ ℵ0. In case (c), card(Abi(Mi)) = κ ≥ card(Abi(M

′
⋆)).

This is (‡).
Now assume for a contradiction that there is an i ∈ P and an Mi ∈ Mi

for which card(Abi(Mi)) > card(Abi(M
′
⋆)). Let i be minimal with this property

and therefore for all j < i and all Mj ∈ Mj , card(Abj(Mj)) = card(Abj(M
′
⋆)) =

card(Abj(M⊥)) and soM⊥ ∈ Mj . But then also card(Abi(Mi)) > card(Abi(M⊥))
and so M⊥ ∈ Mi and therefore Mi /∈ Mi which is a contradiction. Hence, (‡′),
for all i ∈ P and allMi ∈ Mi, card(Abi(Mi)) = card(Abi(M

′
⋆)) = card(Abi(M⊥)).

Thus, Items 4 and 5 hold.

Corollary 10.
⋂

i≥1 Mi ̸= ∅.

This concludes our proof, we only have to put together the pieces as explained
in Section A (see Proposition D.1 below). Recall, however, that our initial
assumption was that κ ≥ ℵ0 (where κ = card(D⊤)). We will therefore now
briefly discuss the remaining simpler case: κ < ℵ0.

Remark D.1. We proceed analogous to the proof above but we also encode in
T⋆ that the size of our domain is κ by adding

∃(≤ κ) =df

(
∃x1 · · · ∃xl+1

∧
1≤i<j≤κ xi ̸= xj , ∅,D

)
and

∃(≥ κ) =df

(
∅,∃x1 · · · ∃xl

∧
1≤i<j≤κ xi ̸= xj ,D

)
to T⋆. In order to show that T⋆ is satisfiable, we again have to find a model of
a finite Tf ⊆ T⋆ which can be established just like in Lemma D.5. Finally, any
model M⊥ of T⋆ will be in

⋂
i≥0 M1+i and M⊥ ≺ M⊤ (this time there is no

need to construct a term model as in Lemma D.6 because any model of T⋆ has
the right size since the size of the domain is encoded in T⋆).

60



π ∈ . . . ⋆ ∈ . . . Str. Reas. for ≺π,⋆
Φ

{=c} {l} Prop. D.1
{≥} {l} Prop. E.1

{f,=,=c,≥,⊇} {g} Prop. E.2
{=c,≥} {p} Prop. E.3
{⊇} {p, l} Prop. E.4
{=} {p, l} Prop. E.5
{f} {p, l} Prop. E.6

Table 7: Overview: Results concerning Strong Reassurance

Proposition D.1. nmPL =
〈
PL,≺=c,l

Φ

〉
satisfies Strong Reassurance.

Proof. Suppose M⊤ = ⟨D⊤, v⊤⟩ ∈ M(Σ) \ min≺(M(Σ)), where ≺ = ≺=c,l
Φ .

We consider the case that card(D⊤) > ℵ0. By Corollary 10, there is a M⊥ ∈⋂
i≥1 Mi and by Lemma D.2, M⊥ ∈ min≺(M↓). Hence it follows that M⊥ ∈

min≺(M(Σ)). And since M⊥ ∈ M↓, we have M⊥ ≺ M⊤, what completes our
proof. For the case in which card(D⊤) < ℵ0 we use the simplified proofs outlined
in Remark D.1.

E Strong Reassurance for other orderings

So far we have discussed strong reassurance for the order ≺=c,l
Φ for some Φ =

{αi(x1, . . . , xai
) | i ∈ P}. We will now consider the other cases. In Table 7 we

give an overview of the results. We first consider the case of ≺≥,l
Φ .

Lemma E.1. Let M ∈ M=λ
PL , Mκ,M

′ ∈ M=κ
PL and λ ≥ κ. Then M ′ ⊑ M and

M ≺ Mκ implies M ′ ≺ Mκ.

Proof. Since M ′ ⊑ M and λ ≥ κ, by Lemma 8.1, for all i ∈ P, card(Abi(M ′)) ≤
card(Abi(M)).

Let first † = p. Since M ≺ Mκ, for all i ∈ P, card(Abi(M)) ≤ card(Abi(Mκ))
and there is a k ∈ P for which card(Abk(M)) < card(Abk(Mκ)). So, for all
i ∈ P, card(Abi(M

′)) ≤ card(Abi(Mκ)) and where i = k, card(Abi(M
′)) <

card(Abi(Mκ)). This suffices to show that M ′ ≺ Mκ. The proof for † = l is
analogous.

Let † = g. Then, card(AbΦ(M)) < card(AbΦ(Mκ)) since M ≺ Mκ. Also,
card(AbΦ(M

′)) ≤ card(AbΦ(M)) and so card(AbΦ(M
′)) < card(AbPhi(Mκ))

which suffices to show that M ′ ≺ Mκ.

Proposition E.1. nmPL = ⟨PL,≺≥,l
Φ ⟩ satisfies Strong Reassurance.

Proof. Let ≺ = ≺≥,l
Φ . Suppose M⊤ = ⟨D⊤, v⊤⟩ ∈ M(Σ) \ min≺(M(Σ)). We

consider the case where κ = card(D⊤) ≥ ℵ0. The case κ = card(D⊤) < ℵ0 is a

simple variation of the proof below (see also Remark D.1). Where ≺′ = ≺=c,l
Φ ,
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by Proposition D.1, there is a M⊥ = ⟨D⊥, v⊥⟩ ∈ min≺′(M(Σ)) for which M⊥ ≺′

M⊤.
Assume for a contradiction that there is an M ′ ∈ M(Σ) for which M ′ ≺

M⊥. Thus, card(D′) > card(D⊥). By Theorem 8.3 there is a M ′′ = ⟨D′′, v′′⟩
with card(D′′) = card(D⊥) for which M ′′ ⊑ M ′. By Lemma E.1, M ′ ≺′ M⊥
which is a contradiction since M ′′ ∈ M(Σ) and M⊥ ∈ min≺′(M(Σ)). Thus,
M⊥ ∈ min≺(Σ).

We now consider the case of ≺π,g
Φ where π ∈ {f ,=,=c,≥,⊇}.

Proposition E.2. Where π ∈ {f ,=,=c,≥,⊇}, nmPL = ⟨PL,≺π,g
Φ ⟩ satisfies

Strong Reassurance.

Proof. Let ≺ = ≺π,g
Φ and M⊤ ∈ MPL(Σ) \ min≺ (MPL(Σ)). Assume for a

contradiction that there is no model M⊥ ∈ min≺ (MPL(Σ)) for which M⊥ ≺
M⊤. Thus, there is an infinitely descending chain M⊤ = M1 ≻ M2 ≻ . . . ≻
Mn ≻ . . . of better and better models (so: Mi+1 ≺ Mi for all i ≥ 1). Thus,
card(Ab(Mi+1)) < card(Ab(Mi)). But then we get an infinitely descending se-
quence of smaller and smaller cardinals which is impossible (given the Axiom
of Choice).

We now consider ≺π,p
⋆ where π ∈ {=c,≥}. The following lemma will be

useful for several results below.

Lemma E.2. Where π ∈ {f ,=,=c,≥,⊇}, min≺π,l
Φ

(MPL(Σ)) ⊆ min≺π,p
Φ

(MPL(Σ)).

Proof. Suppose M ∈ min≺π,l
Φ

(MPL(Σ)). Assume for a contradiction that there

is a M ′ ∈ MPL(Σ) for which M ′ ≺π,p
Φ M . Thus, for all i ∈ P, card(Abi(M ′)) ≤

card(Abi(M)) and there is a j ∈ P for which card(Abj(M
′)) < card(Abj(M)).

Thus, there is a minimal i ∈ P for which card(Abi′(M
′)) = card(Abi′(M)) for

all i′ < i and card(Abi(M
′)) < card(Abi(M)). Thus, M ′ ≺π,l

Φ M which is a
contradiction.

Proposition E.3. Where π ∈ {=c,≥}, nmPL = ⟨PL,≺π,p
Φ ⟩ satisfies Strong

Reassurance.

Proof. This follows in view of Propositions D.1, E.1, and Lemma E.2.

We now move to the case ≺ = ≺⊇,⋆
Φ where ⋆ ∈ {p, l}.

Proposition E.4. Where ⋆ ∈ {p, l}, ≺ = ≺⊇,⋆
Φ , nmPL = ⟨PL,≺⟩ satisfies

Strong Reassurance.

Proof. Suppose (1) M⊤ = ⟨D⊤, v⟩ ∈ MPL(Σ) \ min≺(MPL(Σ)). Assume for
a contradiction that (2) M⊤ ∈ min≺≥,⋆

Φ
(MPL(Σ)). By (1) there is a M ′ =

⟨D′, v′⟩ ∈ MPL(Σ) for which M ′ ≺ M⊤. Thus, D′ ⊇ D⊤. Without loss of
generality we assume D′ ∩ D⊤ = ∅. By (2), card(D′) < card(D⊤) which is a
contradiction.
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So, M⊤ /∈ min≺≥
⋆
(MPL(Σ)). By Proposition E.1, there is an M ′ = ⟨D′, v′⟩ ∈

min≺≥
⋆
(MPL(Σ)) for which M ′ ≺≥

⋆ M⊤ and so card(D′) ≥ card(D⊤). That

means there is an injective function g : D⊤ → D′. Let η : D′ → D⊤∪(D′\Im(g))
be defined by

d 7→

{
d d ∈ D′ \ Im(g)

g−1(d) else.

Note that η is bijective. Let M ′′ = ⟨D⊤ ∪ (D′ \ Im(g)), v′′⟩ where v′′ is defined
as follows:

• v′′(c) = η(v′(c)) and

• v′′
(
Pi, (d1, . . . , di)) = v′(Pi, (η

−1(d1), . . . , η
−1(di))

)
.

Clearly, vM ′(A) = vM ′′(A) for all sentences A in L. Thus, M ′′ ∈ MPL(Σ) and
M ′′ ≺ M⊤ since D′′ ⊇ D⊤. Since for all i ∈ P, card(Abi(M

′)) = card(Abi(M
′′))

and card(D′′) = card(D′), M ′′ ∈ min≺≥,⋆
Φ

(MPL(Σ)).

We now show that M ′′ ∈ min≺(MPL(Σ)). Assume for a contradiction that
there is a M⋆ = ⟨D⋆, v⋆⟩ ∈ MPL(Σ) for which M⋆ ≺ M ′′ and thus D⋆ ⊇ D′′. So,

card(D⋆) ≥ card(D′′) = card(D′) and so M⋆ ≺≥,⋆
Φ M ′′ which is a contradiction.

This completes our proof.

Proposition E.5. Where ⋆ ∈ {p, l}, ≺ = ≺=,⋆
Φ , nmPL = ⟨PL,≺⟩ satisfies

Strong Reassurance.

Proof. Suppose M⊤ = ⟨D⊤, v⊤⟩ ∈ MPL(Σ) \min≺(MPL(Σ)). Thus, there is a
M ′ = ⟨D, v′⟩ ∈ MPL(Σ) such that M ′ ≺ M⊤. Clearly, M ′ ≺=c,⋆

Φ M⊤ and so
M⊤ ∈ MPL(Σ) \ min≺=c,⋆

Φ
(MPL(Σ)). By Proposition D.1, there is an M ′′ ∈

min≺=c,⋆
Φ

(MPL(Σ)) for which M ′′ = ⟨D′′, v′′⟩ ≺=c,⋆
Φ M⊤. Hence, card(D′′) =

card(D⊤). Thus, there is a bijective function g : D⊤ → D′′. Let M⋆ = ⟨D⊤, v
⋆⟩

where v⋆ is defined as follows:

• v⋆(c) = g−1(v′′(c)) and

• v⋆(Pi, (d1, . . . , di)) = v′′(Pi, (g(d1), . . . , g(di))).

So, for each i ∈ P, card(Abi(M⋆)) = card(Abi(M
′′)) and hence M⋆ ≺ M .

To show that M⋆ ∈ min≺(MPL(Σ)) assume for a contradiction that there is
an M† = ⟨D, v†⟩ ∈ MPL(Σ) for which M† ≺ M⋆. But then also M† ≺=c,⋆

Φ M⋆

which is a contradiction. This concludes our proof.

Proposition E.6. Where ⋆ ∈ {p, l}, ≺ = ≺f ,⋆
Φ , nmPL = ⟨PL,≺⟩ satisfies Strong

Reassurance.

Proof. We consider the case ⋆ = l. The case ⋆ = p then again follows in view of
Lemma E.2.

We proceed in a similar way as in Remark D.1. Where T = {(∅, A,D) | A ∈
Σ} we let T⋆ be T enriched by ∃≤l

i and ∃≥l
i for all (i, l) ∈ Pfin (see Def. 29). We

show that T⋆ is satisfiable, and build a term-model M⊥ of T⋆ in Lh. For this
model we have:
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• for all (i, l) ∈ Pfin, card(Abi(M⊥)) = l, and

• for all i ∈ P for which there is no l such that (i, l) ∈ Pfin, card(Abi(M⊥)) =
ℵ∅.

As such we can show that M⊥ ∈ M1+i for each i ≥ 0 (similar as in Lemma
D.6) and so M⊥ ∈

⋂
i≥1 Mi. By Lemma D.2, M⊥ ∈ min≺(M↓) and so M⊥ ∈

min≺(M(Σ)). Since M⊥ ≺ M⊤ this concludes our proof.

F Proof of Theorem 5.2

Theorem 5.2. Where PL is A-separable and based on L and L′ is a sub-
language of L without identity and non-identity (but possibly with a congruence

≈), ⋆ ∈ {g, p, l}, and † ∈ {≥,⊇}, nmPL = ⟨PL,≺†,⋆
Φ ⟩ satisfies recapture for L′.

Proof. In the following we suppose that PL is A-separable and L′ is a fragment
of L without identity and without non-identity. Let Σ be a set of L′-sentences
that is PLP\A-satisfiable. We have to show that MnmPL(Σ) = MPLP\A(Σ). We
show the theorem for † = ≥. The proof for ⊇ is very similar and left to the
reader.

(⊇) This is Fact 5.4. (⊆) Suppose M ′′ = ⟨D′′, v′′⟩ ∈ MnmPL(Σ). Assume for
a contradiction that M ′′ /∈ MPLV\A(Σ). Let M = ⟨D, v⟩ ∈ MPLV\A(Σ). Since
M ′′ /∈ MPLV\A , Abi(M

′′) ̸= ∅ for some i ∈ P. So, card(D) < card(D′′) since
otherwise M ≺ M ′′ which is impossible since M ′′ ∈ MnmPL(Σ).

Let N be a set of points for which N ∩D = ∅ and card(D ∪N ) = card(D′′).
We now define a model M ′ = ⟨D ∪ N , v′⟩ as follows: First we fix an arbitrary
d ∈ D. We also fix an arbitrary v+ ∈ D \ A and v− ∈ V \ D.

1. for all constants c we let v′(c) = v(c);

2. for all P = Pi we let v′(P, (d1, . . . , di)) = v(P, (d1, . . . , di)[N/d]),
where (d1, . . . , di)[N/d] denotes the result of replacing all elements dk ∈ N
by d;

3. if there is a non-identity ̸= in L, we let

v′( ̸=, (d1, d2)) =


v( ̸=, (d1, d2)) d1, d2 ∈ D
v+, if d1 ̸= d2 and {d1, d2} ̸⊆ D
v−, if d1 = d2 and {d1, d2} ̸⊆ D

;

4. if there is an identity = in L, we let

v′(=, (d1, d2)) =


v(=, (d1, d2)) d1, d2 ∈ D
v+, if d1 = d2 and {d1, d2} ̸⊆ D
v−, if d1 ̸= d2 and {d1, d2} ̸⊆ D
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5. if there is a congruence ≈ in L, we let v′(≈, (d1, d2)) = v(≈, (d1, d2)[N/d]).

We now show the following:

Lemma F.1. For all A ∈ L′[D ∪N ], vM ′(A) = vM (A[N/d]) where A[N/d] is
the result of replacing for all d ∈ N each d occurring in A with d.

Proof. We show this by induction over the length of A.

Base. This follows directly by Items 1, 2 and 5 of the definition of v′. (Note
that = and ̸= are not part of L′.)

Inductive Step.

• Let π be an n-ary connective. vM ′(π(A1, . . . , An)) = fπ(vM ′(A1), . . . , vM ′(An))
and vM (π(A1, . . . , An)[N/d]) = fπ(vM (A1[N/d]), . . . , vM (An[N/d])). By
the inductive hypothesis, for each 1 ≤ i ≤ n, vM ′(Ai) = vM (Ai[N/d]).
Thus, vM ′(π(A1, . . . , An)) = vM (π(A1, . . . , An)[N/d]).

• Let µ be a quantifier. We have: vM ′(µxA) = fµ({vM ′(A(d)) | d ∈ D ∪
N}) and vM (µxA) = fµ({vM (A(d)) | d ∈ D}). Since by the inductive
hypothesis, if d ∈ N , vM ′(A(d)) = vM (A(d)), {vM ′(A(d)) | d ∈ D ∪N} =
{vM (A(d)) | d ∈ D} and so vM ′(µxA) = vM (µxA).

By Lemma F.1, M ′ ∈ MPLV\A(Σ). But then M ′ ≺ M ′′ since for all Pi, which
is a contradiction.

G Proof of Lemma 7.1

We start with a fact about quotient models.

Fact G.1. Where M = ⟨D, v⟩ ∈ M,

1. M≈ is id-normal, i.e., M≈ ∈ Mid,

2. vM (A(d1, . . . , dn)) = vM≈(A([d1]≈), . . . , [dn]≈) for all A(d1, . . . , dn) ∈ L[D],

3. vM (A) = vM≈(A) for all A ∈ L.

Proof. Ad 1. Suppose v≈(≈, ([d]≈, [d
′]≈)) ∈ D. Thus, v(≈, (d, d′)) ∈ D. Thus,

[d]≈ = [d′]≈. The other direction of Eq follows with (Ref).
Ad 2. This is shown inductively. For atomic formulas the claim follows in

view of Def. 13. Note that v≈(P, ([d1]≈, . . . , [dn]≈)) = v(P, (d1, . . . , dn)) is well-
defined: it is independent of the representative of the respective [·]-class due
to requirement (Str) in (Cong). Similar for the other cases. Consider, for the
inductive step, an n-ary connective ◦. Then, in view of the inductive hypothesis,
vM≈(◦(A1, . . . , An)) = f◦(vM≈(A1), . . . , vM≈(An)) = f◦(vM (A1), . . . , vM (An)) =
vM (◦(A1, . . . , An)).

Consider now a quantifier µ. Then, in view of the inductive hypothesis,
vM≈(µxA(x)) = fµ({vM≈(A([d])) | d ∈ D}) = fµ({vM (A(d)) | d ∈ D}) =
vM (µxA(x)).

Ad 3. This follows directly with Item 2.
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Lemma 7.1. Where the underlying comparison is qualitative, ≺ = ≺†,π
Φ ,

† ∈ {=,⊇,≥,=c, f}, and π ∈ {g, p, l}, if M ∈ min≺(M(Γ)) then M≈ ∈
min≺(M(Γ)) ∩minid≺(M(Γ)).

Proof. We paradigmatically give the proof for † = ⊇ and π ∈ {p, l}.
Suppose M = ⟨D, v⟩ ∈ min≺(M(Σ)). Let M≈ = ⟨D≈, v≈⟩ be the quotient

model of M . Assume for a contradiction that there is a M ′ = ⟨D′, v′⟩ ∈ M(Σ)
for which M ′ ≺ M≈ (and so D′ ⊇ D≈). We define a new model M⋆ = ⟨D⋆, v⋆⟩
where

• D⋆ = (D′ \ D≈) ∪ D,44

• v⋆(c) = γ(v′(c)) for all constants c ∈ Const(L), where

γ : D′ → D⋆, d 7→

{
d d ∈ D′ \ D≈

d′′ d = [d′]≈ ∈ D≈ and d′′ ∈ [d′]≈ arbitrary.

• v⋆(Pi, (d1, . . . , di)) = v′(Pi, (µ(d1), . . . , µ(di))) where

µ : D⋆ → D′, d 7→

{
d d ∈ D′ \ D≈

[d] d ∈ D
,

• v⋆(≈, (d, d′)) = v′(≈, (µ(d), µ(d′))).

We now show inductively that for all (d1, . . . , dn) ∈ D⋆n, and allA(x1, . . . , xn)
in L,

vM⋆(A(d1, . . . , dn)) = vM ′(A(µ(d1), . . . , µ(dn))).

In view of this, M⋆ ∈ M(Σ).
The base step follows directly with the definition of v⋆. For the inductive

step we consider a quantifier δ and a formula δxA(x, d1, . . . , dn). We have:

vM⋆(δxA(x, d1, . . . , dn)) = fδ({vM⋆(A(d, d1, . . . , dn)) | d ∈ D⋆})

and

vM ′(δxA(x, µ(d1), . . . , µ(dn))) =

fδ({vM ′(A, (d, µ(d1), . . . , µ(dn))) | d ∈ D′}) =

fδ({vM ′(A(d, µ(d1), . . . , µ(dn))) | d ∈ D′ \ D≈} ∪

{vM ′(A([d]≈, µ(d1), . . . , µ(dn))) | [d]≈ ∈ D≈}).

By the inductive hypothesis,

{vM ′(A, (d, µ(d1), . . . , µ(dn))) | d ∈ D′ \ D≈} =

{vM⋆(A(d, d1, . . . , dn)) | d ∈ D′ \ D≈}
44We assume for simplicity that D′ ∩ D = ∅.
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and (since for all d ∈ D, µ(d) = [d]≈)

{vM ′(A([d]≈, µ(d1), . . . , µ(dn))) | [d]≈ ∈ D≈} = {vM⋆(A(d, d1, . . . , dn)) | d ∈ D}.

Since

{vM⋆(A(d, d1, . . . , dn)) | d ∈ D′ \ D≈} ∪ {vM⋆(A(d, d1, . . . , dn)) | d ∈ D} =

{vM⋆(A(d, d1, . . . , dn)) | d ∈ D⋆},

and

{vM ′(A(d, d1, . . . , dn)) | d ∈ D′ \ D≈} ∪ {vM ′(A([d]≈, d1, . . . , dn)) | d ∈ D} =

{vM ′(A(d, d1, . . . , dn)) | d ∈ D′},

we have

fδ({vM⋆(A(d, d1, . . . , dn)) | d ∈ D⋆}) =

fδ({vM ′(A, (d, µ(d1), . . . , µ(dn))) | d ∈ D′})

and so vM⋆(δxA(x, d1, . . . , dn)) = vM ′(δxA(x, µ(d1), . . . , µ(dn))). For our truth-
functional connectives the case is shown similar and left to the reader.

We now show thatM⋆ ≺ M which is a contradiction to our main supposition.
Since M ′ ≺ M≈ there is an i ∈ P for which

1. Abi(M
′) ⊂ Abi(M≈) and

2. for all j ≥ 1, Abj(M
′) ⊆ Abj(M≈) (for π = p), resp., for all i′ < i,

Abi′(M
′) = Abi′(M≈) (for π = l).

We will now show that M⋆ ≺ M by showing that:

1. Abi(M
⋆) ⊂ Abi(M) and

2. for all j ≥ 1, Abj(M
⋆) ⊆ Abj(M) (for π = p), resp., for all i′ < i,

Abi′(M
⋆) = Abi′(M) (for π = l).

Let π = p. (The case for π = l is analogous.) For Item 2, consider some
j ≥ 1. Suppose vM⋆(αj(d1, . . . , daj

)) ∈ A. So, vM ′(αj(µ(d1), . . . , µ(daj
))) ∈ A.

SinceM ′ ≺ M≈, vM≈(αj(µ(d1), . . . , µ(daj ))) ∈ A and therefore µ(d1), . . . , µ(daj ) ∈
D≈. So, for each 1 ≤ k ≤ aj , dk ∈ µ(dk). So, vM (αj(d1, . . . , daj )) ∈ A. Thus,
item 2 holds.

For Item 1 suppose that vM ′(αi([d1]≈, . . . , [dai
]≈)) /∈ A, while vM≈(αi([d1]≈,

. . . , [dai
]≈)) ∈ A. By the latter vM (αi(d1, . . . , dn)) ∈ A. By the former and

since for each 1 ≤ k ≤ ai we have µ(dk) = [dk]≈, vM⋆(αi(d1, . . . , dn)) /∈ A. This
suffices to establish Item 1.
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Figure 2: Orderings of models in Example H.1. To the left: ≺π,g
Pred-ordering

(where π ∈ {=,=c,⊇,≥}), to the right: ≺≥,l
Pred-ordering.

H Counterexample to Disjunctive Rationality for
≺π,⋆

Φ , ⋆ ∈ {g, l}, π ̸= f

Example H.1. We consider a language with two unary predicate symbols Q
and S, a binary predicate symbol P , a congruence ≈ and two constants c and
c′. Let

Σ =
{(

∀x(c ≈ x)∧ !P (c, c)
)
∨
(
¬(c ≈ c′)∧ !Qc∧ !Qc′

)
, !P (c, c)∨ Sc, !Qc∨ Sc

}
We consider the models in the following table.

M = ⟨D, v⟩ #(AbP (M)) #(AbQ(M)) #(Ab≈(M)) #(D) M |= Sc
M1

1 1 0 0 1 ✓
M2

1 1 1 0 1
M3

1 0 1 1 1 ✓
M4

1 1 0 1 1 ✓
M1

2 0 2 0 2 ✓
M2

2 1 2 0 2
M3

2 0 1 1 2 ✓
M4

2 1 1 1 2

We discuss the quantitative approach. Given the order ≺ = ≺π,g
Pred∪{≈} where

π ∈ {=,=c,⊇,≥}, we have the relations between the models depicted in Figure 2

(left). Similarly, for ≺ = ≺≥,l
Pred we have the ordering depicted in Figure 2 (right).

(where ≈ is listed before Q which is listed before P .).
Let us first consider ≺π,g

Pred. Note that models in min≺(M(Σ∪{!P (c, c)∨!Qc}))
with domains of sizes 1 and 2 are of the type M1

1 , M
1
2 and M3

2 . We have Σ ∪
{!P (c, c)∨!Qc} ⊨nmLP Sc. The models in min≺(M(Σ∪{!P (c, c)})) with domains
of sizes 1 and 2 are of the type M1

1 , M
2
2 and M4

2 . Thus, Σ∪{!P (c, c)} ⊭nmLP Sc.
Similarly, the models in min≺(M(Σ∪{!Qc})) are of the type M2

1 , M
3
1 , M

1
2 , and

M3
2 . Again, Σ ∪ {!Qc} ⊭nmLP Sc.

The situation is similar for ≺π,l
Pred. While M1

1 and M1
2 are minimal models in

MnmPL(Σ∪{!P (c, c)∨!Qc}), M1
1 and M2

2 are minimal in MnmPL(Σ∪{!P (c, c)}),
and M2

1 and M1
2 are minimal in MnmPL(Σ ∪ {!Qc}). Again, we have Σ ∪

{!P (c, c)∨ !Qc} ⊨nmPL Sc while Σ∪{!P (c, c)} ⊭nmPL Sc and Σ∪{!Qc} ⊭nmPL Sc.
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I Difficulties in turning the linguistic approach
non-pragmatic

When pointing out the linguistic non-robustness and pragmatic nature of the
linguistic approach in Section 6, we have only considered the standard way of
defining abnormalities in the linguistic approach. An open question is whether
some of these potentially counter-intuitive results can be avoided by defining
the abnormal parts of models differently. In the following we shortly focus on
two such variants:45

Ab1ling(M) =


n∧

i=1

!Pci ∧
∧

1≤i<j≤n

ci ̸= cj | M |=
n∧

i=1

!Pci ∧
∧

1≤i<j≤n

ci ̸= cj


and Ab2ling(M) = { [!Pc]∼M

| M |= !Pc } , where !Pci ∼M !Pcj iff M |= ci = cj .

We illustrate the basic idea behind approach 1 with the following example.
Let M ≺1

ling M ′ iff Ab1ling(M) ⊆ Ab1ling(M
′). Now consider Σ1 = {!Pc1, !Pc2}

and the models M1 = ⟨D, v1⟩ and M2 = ⟨D, v2⟩ with the following abnormal
parts:

1. Ab1ling(M1) = {!Pc1, !Pc2} and

2. Ab1ling(M2) = {!Pc1, !Pc2, !Pc1 ∧ !Pc2 ∧ c1 ̸= c2}.

According to approach 1 model M1 is better than model M2, as expected,
since it identifies c1 and c2 (i.e., v1(c1) = v1(c2) while v2(c1) ̸= v2(c2)). In this
example, approach 1 thus mirrors the extensional approach in that it considers
models worse with more (extensionally) different abnormalities.

According to approach 2 we get:

1. Ab2ling(M1) =
{
[c1]∼M1

}
and

2. Ab2ling(M2) =
{
[c1]∼M2

, [c2]∼M2

}
.

Note, however, that the two models are still incomparable if we naively
compare them according to subset-comparisons, for [c1]∼M1

= {c1, c2} and

[c1]∼M2
= {c1}. We can refine the comparison by defining M ≺2

ling M
′ iff

1. for all ∆ ∈ Ab2ling(M) there is a ∆′ ∈ Ab2ling(M
′) such that ∆′ ⊆ ∆, and

2. there is a ∆′ ∈ Ab2ling(M
′) for which there is no ∆ ∈ Ab2ling(M) such that

∆ ⊆ ∆′.

Now we have: M1 ≺2
ling M2, as expected.

45We simplify things slightly by supposing (i) that all predicates are unary and (ii) that in
case of Ab1ling a non-identy ̸= is available. An analogous treatment can be achieved by using
a classical negation and an identity.
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However, both approaches are neither linguistically robust nor non-pragmatic.
First, both approaches are not linguistically robust, as our Example 6.1 shows.
Second, if we complicate the picture slightly we can also see that the two pro-
posals don’t deliver expected outcomes. For this we consider again our Exam-
ple 6.2. According to the first approach we have Ab1ling(M

2
a ) = {!Pc1, !Pc2},

while Ab1ling(M
2
b ) = {!Pc1}, and so still M2

b ≺1
ling M2

a . Similarly, according to

the second approach, we have Ab2ling(M
2
a ) = {{c1, c2}} and Ab2ling(M

2
b ) = {{c1}},

thus M2
b ≺2

ling M2
a . Both approaches are thus pragmatic according to Def. 11.

Altogether our discussion shows that it is difficult to alter the linguistic ap-
proach so that it doesn’t run into the pragmatic oddities pointed out in our
examples above.
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