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Abstract 
 

While scientific inquiry crucially relies on the extraction of patterns from data, we still have a                

very imperfect understanding of the metaphysics of patterns—and, in particular, of what it is              

that makes a pattern real. In this paper we derive a criterion of real-patternhood from the                

notion of conditional Kolmogorov complexity. The resulting account belongs in the           

philosophical tradition, initiated by Dennett (1991), that links real-patternhood to data           

compressibility, but is simpler and formally more perspicuous than other proposals defended            

heretofore in the literature. It also successfully enforces a non-redundancy principle,           

suggested by Ladyman and Ross (2007), that aims at excluding as real those patterns that               

can be ignored without loss of information about the target dataset, and which their own               

account fails to enforce. 
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1 Introduction 
 
Scientific inquiry often depends on the extraction of patterns from data. The huge datasets              

and corpora typical of many contemporary scientific projects have only made this            

dependence more obvious and central. Genomics (Barrett et al. 2013), connectomics           

(Sporns, Tononi, & Kötter 2005), and astronomy (Feigelson and Babu 2012) are obvious             

examples, but the trend is quite general. Philosophers of science have been paying             

increasing attention to patterns, so as to keep up with the trend, but also in the hope that                  

these entities will fruitfully supplement other entities, such as natural kinds, in the             

metaphysics of science (Andersen 2017; Ladyman and Ross 2007; Martínez 2015, Martínez            

2017; McAllister 2003b, 2003a, 2011; Petersen 2013). 

 

On the other hand, as is often the case when a new theoretical tool starts gaining                

prominence, we still have a very imperfect understanding of the notion of pattern itself. In               

this paper we propose a way to spell it out that builds upon Ladyman and Ross's theory of                  

real patterns ​[RP henceforth], the most sophisticated account currently on offer. RP            

substantially extends and refines the idea (first put forward in Dennett (1991) and prefigured,              

more or less explicitly, by Bogen & Woodward (1988), and Rissanen (1998), among many              

others) that there are patterns present in a dataset D insofar as one can describe a                

computer program that outputs D while being shorter than D—a program, that is, that              

compresses ​D. The underlying insight is that patterns correspond to redundancies in the             

dataset, and it is these redundancies that are exploited by the algorithm implemented by the               

program. 

 

A further question is what, precisely, is a pattern. The “underlying insight” just mentioned              

does not take a stand on this: we are invited to conclude that there are patterns present in D                   

if D is compressible, but we have been given no guidance, for any entity P, as to whether it                   

is warranted to claim that P is a pattern in D. This is the question that Don Ross and James                    

Ladyman take up in a series of papers culminating with their 2007 book, and which result in                 

their RP account of real patterns. While RP represents substantial progress toward the             

development of a metaphysics of patterns, somewhat surprisingly its concrete formulation           

has not been closely scrutinized in the literature—perhaps, we speculate, because it builds             

on a computer-theoretic toolbox that is comparatively alien to many metaphysicians of            
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science. 

 

Close scrutiny shows that RP is not without problems: one of the goals of the theory is to                  

provide a criterion of ​non-redundancy ​[also, interchangeably, ​indispensability​] for         

patterns—the idea, roughly, being that one should count as real all and only those patterns               

such that ignoring them results in an incomplete description of the world. We will show that                

RP does not successfully provide such a criterion. We will also offer an alternative definition               

of real pattern, simpler and more formally perspicuous than RP, that provides a workable              

criterion of indispensability. 

 

Before getting on to this, though, it is important to clarify the scope of the discussion in this                  

paper. In the literature we are dialoguing with, 'real' is taken with a grain of salt: e.g., Dennett                  

refuses to answer the question whether his account of real patterns is «a sort of               

instrumentalism or a sort of realism» (1991, p. 51), and Ladyman and Ross [also L&R               

henceforth] explicitly endorse «a version of instrumentalism about all propositions referring           

to self-subsistent individual objects, chairs and electrons alike» but also «realism about the             

domain of scientific description» (2007, p. 198). For our current purposes, this is the sort of                

realism that matters. We are currently interested in developing a coherent notion of real              

pattern, in the comparatively soft understanding of realism typical of the literature on real              

patterns: we are after a principled way to ground the claim that some patterns are, but some                 

other patterns are not, present in a certain dataset. Whether the criterion for             

real-patternhood to be developed here is also able to underpin stronger versions of scientific              

realism (having to do, for example, with the existence of certain objects or kinds of objects)                

is an extremely interesting topic that will have to be taken up on another occasion. 

 

A point on terminology: L&R use “pattern” to refer to arbitrary ​strings of symbols,              

independently of whether they can be used to compress a dataset or not (see fn. 6). We will                  

use “string” for this purpose. In this paper we reserve “pattern” for the Dennettian notion of                

an aspect of a dataset that makes it compressible. Finally, we will follow L&R in using “real                 

pattern” to refer to non-redundant (Dennettian) patterns, where non-redundancy is          

understood as above.  
1

 

In ​section 2 we introduce Dennett's original insight, and the computer-theoretic notions on             

which it builds. In section 3 we explain why current approaches to model selection in               

algorithmic information theory don’t tell the whole story about patterns. In section 4 we              

summarize Ladyman and Ross’s RP account, and then, in section 5, we present an              

1  The above informal characterization of non-redundancy will be sharpened in section 4. 
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important shortcoming of RP: we describe a model that shows that it does not abide by their                 

own indispensability principle—sketched above, and more fully in section 4. Finally, in            

section 6 we put forward a better definition of real pattern, based on the notion of conditional                 

Kolmogorov complexity, that successfully incorporates an indispensability principle. Section         

7 offers some concluding remarks. 

2 Algorithmic Complexity and Patterns 
 
Philosophical inquiry into the role and nature of patterns in science kicks off with Daniel               

Dennett's seminal ‘Real Patterns’ (1991). Dennett's main insight is that patternhood is linked             

to ​algorithmic compression. This is just the compression contemporary everyday life has            

made us familiar with: FLAC sound files or TIFF image files are ​compressed​, in the sense                

that these files are shorter than the uncompressed wav or bitmap originals. Speech             

transmitted wirelessly through cell phone networks is also heavily compressed (Rappaport           

1996). What all instances of algorithmic compression have in common, regardless of their             

medium or the object of compression, is the fact that a target object is faithfully reproduced                

by something shorter than a full bit by bit description.  
2

 

For a more explicit example, consider the following two objects: the first object is a list of                 

results in a series of one million tosses of a fair coin (1 encodes heads, and 0 tails):                  

0100011011...; the second object is the following list of one million binary digits: 010101...              

...010101. Since we are dealing with a fair coin, the first object is a random string of 0s and                   

1s. The second string, however, involves an obvious pattern: it's a repetition of '01' half a                

million times. In order to describe the first string there are no substantial shortcuts to writing,                

digit by digit, the results of each coin toss. On the other hand, the second string can be fully                   

reproduced via an algorithmic description that is much shorter than the full string: (roughly)              

"print '01' half a million times". The first, ​random string is incompressible. The second,              

patterned​ one incorporates redundancies that can be exploited by a compression algorithm. 

 

Chaitin (1966), Kolmogorov (1965) and Solomonoff (1964a, 1964b), the founders of           

algorithmic information theory, suggested independently that a sequence should be          

considered random if and only if it is incompressible. Dennett conjoined this thesis with the               

2  Speech compression is an instance of ​lossy​ compression, where faithfulness of compression is judged by a certain 
distortion measure, or loss function (Cover & Thomas, 2006, ch. 10; Shannon, 1959). The main notion of compression we rely 
on in what follows, on the other hand, is ​lossless​ compression, in which the original file and the decoded version thereof are 
identical. TIFF, FLAC and others such as DEFLATE, typically used in zip files, are widely popular lossless algorithms. 
 

We note that the very existence of lossless compression algorithms appears to be in some tension with McAllister's 

(2003a) claim that empirical datasets are incompressible​—​insofar, e.g., as empirical datasets can contain photographs or 
audio recordings. We won't pursue this topic here. 
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idea that a string has patterns to the extent that it is not purely random: "a [string] is not                   

random – has a pattern -- if and only if there is some more efficient way of describing it"                   

(1991, p. 32). In a nutshell, ​a pattern in a dataset is any aspect in the dataset that allows for                    

it to be compressible. 

 

As we explained above, compressibility in a string is to be thought of as affording the                

existence of comparatively short programs that can output the string in question. For some              
3

strings there will be multiple programs of different lengths that can output them, but we will                

be interested only in the shortest such program. The ​maximum achievable algorithmic            

compression​, or ​Kolmogorov Complexity​, ​K(S), of a given string, S, is ​the length of the               

shortest program that outputs S​. The Kolmogorov complexity of strings will be widely             

appealed to in what follows. 

 

A related notion is the ​complexity of a string, ​S​, conditional on another string, ​T​, or                

conditional Kolmogorov complexity ​K(S|T). This is the length of the shortest program that             

outputs S, if it is allowed to use T as an input. Suppose, for example, that we have to                   

compress a string, S, that encodes a recording of a spoken conversation. The length of the                

shortest program that outputs S (i.e., the program that represents the best possible             

compression of S) gives K(S). But suppose as well that we have a computer library, T, that                 

encodes certain speech statistics typical of recordings such as S. This will often mean that               

we can write a shorter program that prints S, if we rely on T as an additional input to the                    

program. The shortest such program gives K(S|T). 

 

Finally, one can quantify the amount of information an object x carries about another object               

y—the ​mutual information between x and y—as a measure of the reduction in the amount of                

descriptive effort one has to make to describe y after knowing x. More formally, if S and T                  

are strings, the algorithmic mutual information between them, I(S:T), is: 

 

I(S:T) = K(S) – K(S|T). (Li & Vitányi 2008, definition 3.9.2) 
 

 

3  In formal presentations of Kolmogorov complexity (e.g., Li & Vitányi, 2008, p. 107), the programs we have been 
alluding to are inputs to a reference universal Turing machine [UTM] . For the purposes of this paper, we can just think of the 

reference UTM as implementing one of the very many popular Turing-complete programming languages​—​say, Python, or 
Javascript. 
 

Petersen, (2018, p. 2) discusses whether the choice of UTM introduces a bias in the resulting account of patterns (for 
example, by making any arbitrary dataset, however big and random, compressible and hence patterned) and concludes, with Li 
& Vitányi, (2008, p. 112), that a small enough UTM will make any such potential bias negligible. 
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3 Model Selection is not Pattern Individuation 
 

We claimed above that Dennett's foundational insight was that a pattern in some dataset is               

any aspect in it that allows for it to be compressible. ​"Any aspect" is, of course, rather                 

unspecific. A full theory of patterns, if it is to help us to recognize and individuate patterns,                 

needs to spell out in more detail what these compression-enabling aspects of datasets             

amount to. In the following section we discuss Ladyman and Ross's attempt to provide this               

detail (2007; Ross 2000). Before, in this section, we briefly discuss an approach in              

algorithmic information theory to a related question, and explain why this approach does not              

deliver an account of patterns, at least given the way metaphysicians of science employ this               

notion. 

 

Figure 1. Denoising based on structure functions (from Vereshchagin and Vitanyi 2010) 
 
Consider a noisy image; e.g., the right cross in figure 1 (reproduced from Vereshchagin &               

Vitanyi 2010, p. 3446). We can intuitively analyze this object into two components: first «the               

information accounting for the useful regularity present in the object» (Vitányi 2006, p. 4617),              

that captures the noiseless cross to its left; and a meaningless one, «the information              

accounting for the remaining accidental information» (​ibid​.), that captures the noise. 

 

The way algorithmic information theory approaches this analysis (following suggestions          

made by Kolmogorov in the early 70s and in his 1965) is by devising ways to encode the                  

object in which the relevant code has two parts: the first part captures the meaningful               
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information of the object (i.e., provides a ​model of the object); the second part, the noisy                

remainder. In the foundational, «structure functions» version of this idea (Vereshchagin &            

Vitányi 2004, 2010), this two-part code is implemented in the following way. To encode a               

string x, we first identify a set S such that x is a ​typical member of it. Being a typical member                     

of a set simply means that, in order to pick out x among other members of S, there’s no                   

shorter procedure than giving its position in an arbitrary enumeration of S’s members. A              

two-part code, then, can be constructed that first reconstructs S (this takes K(S) bits, by the                

definition of Kolmogorov complexity), and then gives x’s position in S (this takes log|S| bits,               

where |S| is S’s size). S corresponds to the best model of the data; x’s position in S, to the                    

noisy remainder. 

 

It can be shown (Vereshchagin & Vitányi, 2004, p. 3269) that for each string x there are                 

optimal sets for which the sum K(Soptimal) + log|Soptimal| is equal to K(x). That is,               

somewhat surprisingly, the K(Soptimal) term (which captures the meaningful information in x            

by identifying the simplest set in which x is a typical member) together with the log|Soptimal|                

term (which captures the noisy remainder by picking out x in a brute enumeration) add up to                 

the Kolmogorov complexity of the original string (up to an additive constant). The best              

meaning-plus-noise code for x is as good as the best possible code for x.  
4

 

While algorithmic model selection is designed to help us set apart meaningful from             

meaningless in a dataset, there are at least two respects in which it does not provide a                 

solution to the problem real-pattern theorists are interested in. First, the two-part code idea              

aims at reconstructing the original string x ​in its entirety​. In our case, x would correspond to                 

an empirical dataset and applying the procedure just sketched would leave us with a              

specification of ​all meaningful regularities in the dataset together with the remaining noise.             

But t​he virtual totality of patterns identified in actual scientific practice correspond to ​partial              

regularities in the target dataset. For one example among very many, take ​CpG islands,              

areas of DNA with high concentration of the CpG dinucleotide. The abundance of CpG in a                

certain stretch of DNA is a clear pattern, widely studied in epigenetics (Bird 1986; Larsen,               

Gundersen, Lopez, & Prydz 1992). Yet, of course, full knowledge of where CpG islands are,               

on its own, does not allow us to reconstruct a full genome. In general, ​patterns in a dataset                  

illuminate important aspects of it, without fully describing it. Model selection in the algorithmic              

information-theoretic tradition, as described above, offers no guidance as to how to uncover             

or describe patterns in this sense. 

 

4  The foregoing few paragraphs only scratch the surface of the algorithmic approach to model selection. This is the 
aim of so-called ​algorithmic statistics​. We point the interested reader to Gács, Tromp, & Vitányi (2001), Vereshchagin & Shen, 
(2017) and references therein for in-depth discussion and alternatives to the structure-functions two-part code. 
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The first problem we have mentioned with the model selection approach is that it offers a 

way to identify ​all​ meaningful information in a dataset, in one go, but not a way to identify 

partial, incomplete portions of this information, which is what patterns are.  The second 
5

respect in which model selection is not the right tool for pattern discovery stems from the fact 

that many of the patterns identified by scientists are partially constituted by what, arguably, is 

noise by model-selection lights. Again, for one example among many, the DNA of the ​C. 

elegans​ worm contains non-coding regions of 10-base pair periodic adenine [A] / thymine 

[T]-clusters (or PATCs). These are regions of non-coding DNA in which stretches of a few 

consecutive As and stretches of a few consecutive Ts happen more or less every ten bases, 

and they make up approximately 10% of the C. elegans genome (Frøkjær-Jensen et al., 

2016).  PATCs have been described as important patterns in the ​C. elegans​ genome, as 

they appear to play a role in allowing germline expression of transgenes, in regions the 

expression of which is otherwise silenced (​ibid.​). The fact that the clusters in PATCs happen 

every 10 bases (and not 20 or 40), and that the bases involved are A and T (and not C or G) 

is likely to be random happenstance to a certain degree—that is, noise, in model-selection 

parlance. But it is PATCs themselves, their noisy ingredients included, and not just the 

«meaningful» core identified by structure functions, that are relevant to ​C. elegans ​genetics. 

 

An account that accommodates partial patterns (such as CpG islands), and noise-including            

patterns (such as PATCs) is thus in order. Before presenting our own, we turn now to                

describing the most developed, if ultimately unsuccessful, such account. 

 

4 Ladyman and Ross' Real Patterns Theory  6

 

L&R’s main idea is that the «aspects» of datasets that enable compression can be captured               

by identifying strings that partially encode the original dataset—these strings will be the             

patterns in the dataset. We will be presently more precise than this; but we can already note                 

that there can be many different strings that partially encode a dataset—indeed, there can              

be sets of ​mutually redundant ​strings, in the sense that each of them informs us of the very                  

same aspects of the target dataset. 

 

L&R contend that the right theory of ​real patterns should provide guidance in the process of                

5  To be clear: this is a problem insofar as we want to use model selection as a method to identify patterns. Model 
selection is a perfectly clear goal in algorithmic statistics, and the structure-function approach has much to recommend it, for its 
intended purpose. 
6  We are greatly indebted to an anonymous referee for very generous and detailed input that has much improved this 
section. 
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choosing which members to recognize as real patterns, out of those possible sets of              

mutually redundant strings. That is, a theory of patterns must help us distinguish between              

potentially useful but ultimately dispensable patterns, which one can ignore without any            

ontological loss, and patterns such that ignoring them results in an incomplete description of              

the target dataset (​cf. ​Ladyman and Ross 2007, p. 231): 

 

Non-redundancy principle​: Include in your ontology all and only those patterns that            

are ​required​ for a full (lossless) reconstruction of the target dataset. 

 

L&R define real patterns as follows:  

 

A pattern  P is real iff 
7

(i) it is projectible; and 

(ii) it has a model that carries information about at least one pattern D in an encoding                 

that has logical depth less than the bit-map encoding of D, and where D is not                

projectible by a physically possible device computing information about another real           

pattern of lower logical depth than P (Ladyman and Ross 2007, p. 233)  
8

 

This definition uses a number of comparatively uncommon technical terms. Our first aim in              

this section will be to present a version of L&R’s theory of real patterns that captures the                 

main gist of their original definition but is both simpler and more continuous with the rest of                 

the literature on patterns. We will now discuss each of the technical terms in turn. 

 

Projectibility 
Projectibility is used twice in the definition. L&R say that an ​entity x projects an entity y                 

(notated x→y) iff it is possible to calculate y from x (​ibid​., p. 224). Take, for example, a                  

system of physical bodies moving about in space. We might want to predict future positions               

and velocities of one particular object given data about the current positions and velocities of               

a range of objects. Let x be a specification of the position and velocity of those objects at                  

time t; and let y be a specification of the position and velocity of our target object at a later                    

point in time. If it is possible to effect a computation x→y which outputs y when input x (by,                   

say, solving differential equations that correspond to some deterministic theory of gravity) we             

7  Keep in mind that patterns ​simpliciter​ for L&R are just what we have called “strings”. This is what fn. 51 in Ladyman 
and Ross (2007) amounts to: “A mere pattern is a locatable address associated with no projectible or non-redundant object.” 
(​ibid.​, p. 231). See also ​ibid., ​p. 229: “From the ontological point of view, a non-projectible pattern exactly resembles the 
traditional philosophical individual.”. For the meaning of ​locator​ and cognates in L&R's system, see ​ibid., ​p. 121ff. For the 
related notion of “perspective” see ​ibid.​, p. 224. 
8  We have changed variable names to align them with the ones we use in this paper. 
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say that x projects y. If an object x projects an object y, x doesn’t merely carry some amount                   

of information about y: it carries ​all the information necessary to specify y without residue​. In                

algorithmic complexity terms: for any strings x and y, x projects y iff K(y|x) = 0, up to an                   

additive constant independent of x and y. 

 

According to L&R, a pattern (e.g., a differential equation as in the example above) that               

makes possible a projection, x→y, in the sense explained, is ​projectible---​as in clause (i)              

above---in case it affords projecting ys for multiple unobserved input xs. As L&R point out,               

this condition aims to «avoid trivialization of projectibility by reference to [a computer] that              

simply implements the one-step inference rule ‘Given input [x], output [y]’» (​ibid​.). Yet it could               

be argued that the appeal to multiple unobserved inputs doesn’t avoid trivialization:            

projecting multiple ys for multiple xs is computationally equivalent to projecting a single,             

bigger y (say, an array of the original ys) from a single, bigger x (an array of the original xs).                    

Again here, there is a Turing machine that calculates the bigger y from the bigger x by                 

(paraphrasing L&R) “simply implementing the one-step inference rule ‘Given input [bigger x],            

output [bigger y]”. 

 

In our paper we are, in effect, taking «y is projectible from x» to mean «a trivial (very short,                   

etc.) universal Turing machine running x as its program outputs y». This seems to capture               

what L&R want projectibility to do, while avoiding triviality. In a Kolmogorov complexity             

setting these constraints on universal Turing machines are standard (see fn. 2). 

 

Models 
L&R’s definition also makes reference to ​models of patterns. This has two functions in L&R’s               

construction: first, it helps make explicit that, in order to apply algorithmic complexity theory              

to real-world phenomena, we need to translate them to strings. Second, it makes the              

definition applicable to cases in which we ​«​may have access only to a model of the pattern                 

in question​» (e.g., when the pattern is the interior of the Sun, ​ibid. p. 233). The                

counterexample to RP that we will be considering in the sequel is formulated directly in               

terms of strings. This will allow us to sidestep these complications. 

 

Encodings 

As we saw above, there are patterns in datasets iff the latter can be compressed. The                

uncompressed, raw version of a dataset (for example, the raw lists of numbers and text that                

result from research) is what L&R call its ​bit-map encoding (see ​ibid.​, p. 232). This is the                 
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string we are calling “D” in this paper. Other, more sophisticated encodings of the dataset               

might provide more economical (shorter) representations of it, if it is compressible. 

Logical depth 

Finally, the logical depth of a string is the number of steps necessary to output it from its                  

minimal program (Bennett 1995). John Collier, co-author with Ladyman and Ross of the             

main chapter on real patterns in Ladyman and Ross (2007), has given reasons to opt for                

logical depth when discussing physical complexity in (Collier 2001; Collier & Hooker, 1999).             

In our context, this is a relatively idiosyncratic choice: it is universally understood that the               

main measure of algorithmic complexity is Kolmogorov complexity (Grünwald and Vitanyi           

2008) and this is also the notion used in most other papers in the philosophical literature on                 

real patterns (Dennett 1991; McAllister 2003b; Petersen 2013, 2018). We will opt for a              

Kolmogorov-complexity version of L&R’s definition of real patterns. In any event, the            

examples we will be using to make our points in this paper are, in Bennett’s sense, ​logically                 

shallow​. That is, for them Kolmogorov complexity equals logical depth (and, indeed, mostly             

equals length). Still, if one wishes to stick to logical depth, this is perfectly doable. Where we                 

say “Kolmogorov complexity” one should read “logical depth”, and where we say “conditional             

Kolmogorov complexity” one should read “relative logical depth” (Bennett 1995, definition           

1.1). 

 

With these clarifications in mind we can present a succinct version of L&R’s definition: 

 

RP:​ A pattern P is a real iff there is a dataset D such that 

(i) I(D:P) > 0; and 

(ii) there is no Q such that K(D|Q) = 0 and K(Q) < K(P). 

 

The definition is, first, saying that for a string P to be a real pattern it has to carry information                    

about some dataset D—this in turn means that a program that has P as input and outputs D                  

can be shorter than a program that outputs D and has no inputs. This captures the                

Dennettian compressibility condition on patternhood. Second, the definition is saying that if P             

is a real pattern, then no pattern shorter than P has all the information needed to specify D                  

without residue. This attempts to enforce the non-redundancy principle above: if there was a              

pattern that losslessly compressed D as a whole, while being shorter than P, P would indeed                

be superfluous for the purposes of describing D. 

 

There is an asymmetry in the way this definition handles the Dennettian and the              

non-redundancy ingredients: on the one hand it deems it enough that P ​carry some, not all,                
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information about D; yet, on the other hand, redundancy is averted by appealing to              

projectibility​—which, recall, requires for a pattern that it be ​fully informative about D, if it is to                 

make P redundant. This combination is an understandable theoretical choice. First,           

non-redundancy cannot be implemented in terms of information carrying: if the second part             

of the definition merely read 

 

(ii)* there is no Q such that K(D|Q) < K(D) and K(Q) < K(P) 

 

the unreasonable consequence would be that patterns less complex than P that carried ​less              

information about D than P would make P redundant. Second, and conversel​y, for the sort of                

reasons we saw in the previous section, the Dennettian insight cannot be implemented in              

terms of projection: it is unreasonable to ​rule that the only real patterns in a dataset are                 

those patterns that ​fully​ reconstruct the dataset (recall CpG islands). 

 

This combination is an understandable theoretical choice, but it is the wrong one: as we               

show in the following section, the interplay between projectibility and information-carrying in            

clause (ii) of RP doesn’t quite behave in the manner intended, and this can be used to                 

smuggle in very noisy patterns, and have them qualified as real. 

 

5. The Problem 
 

In RP, putatively real patterns are tested by how well they explain a dataset D. We present a                  

toy model in which D is a string constructed in the following way: we first take three 200MB                  
9

random binary strings, A1, A2, A3. The concatenation of these three strings we call A.               

Second, we construct D as the concatenation of two exact copies of A. The size of D, thus,                  

is (200 × 3) × 2 = 1200MB (see Fig. 2). Alongside D, we will construct another pattern, Q, as                    

the concatenation of A1 and an extra 200MB of random binary digits—A1 plus a lot of                

superfluous noise, that is.  
10

 

9  A megabyte (MB) is one million bytes. 
10  For ease of discussion, we have designed our example so that redundancies in the dataset are readily apparent. Of 
course, in more realistic examples, sophisticated coding might be needed in order to squeeze the redundant material out of our 
target string. The kind of argument we develop here applies to the more realistic cases as well. 
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Figure 2. Constructing D 

 

 

 

Now, A is a real pattern in D: it is repeated twice, verbatim, in the dataset. This is borne out                    

by RP: first, A carries a great deal of information about D; and second, D is not projectible by                   

any program computing information of a pattern that is shorter than A. 

 

To see that the first condition is met (that A carries information about D) we simply show that                  

K(D|A) << K(D), which, as per the definition of mutual information, entails that I(D:A)>>0: D is                

made up of a repeated 600MB random (hence, incompressible) string, so K(D) must be              

larger (but not at all much larger) than 600MB. Now, on the other hand, if we are to write a                    

program that outputs D, and we can use A as an extra input (as per the definition of                  

conditional Kolmogorov complexity, see above) the program can be as simple as            

concatenating two copies of A. Listing 1 is a function that does exactly that.  
11

11  In what follows we will give our example algorithms in pseudocode​—​i.e., a dialect that does not correspond to any 
concrete programming language, but can be readily translated to many of them and is tailored to maximize readability for 
humans. It may have occurred to some readers that the choice of coding scheme or programming language used to describe 
an object can condition the minimum achievable length for describing it and thus, seemingly, that different languages will 
introduce different Ks for the same object. This is correct, but the apparent relativity thus introduced does not affect the 
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reconstruct_D(A): 

return concatenate(A, A)  

 

Listing 1 

 

This program has a size of 54 bytes, approximately. This is, then, an upper bound for                
12

K(D|A), and it is much smaller than K(D) ∼ 600MB. A, as expected, is highly informative                

about D: I(D:A) = K(D) − K(D|A) ~ 600MB. 

 

The second condition for A to be a real pattern is that D not be projectible by any program                   

shorter than A—i.e., shorter than 600MB—and, as we have already seen, it is not: A is a                 

random, and therefore incompressible, component of D. It is impossible for any program             

shorter than A to produce a copy of A and, ​a fortiori​, impossible for any program shorter than                  

A to produce a copy of D. 

 

Now, it is also intuitively compelling that long substrings in A are real patterns in the D                 

dataset. Suppose, for example, that D-researchers haven’t yet found out about the full             

pattern A, but have discovered that A1 is repeated twice in D. Uncovering this fact about D                 

would be very valuable in making sense of its structure—plausibly, the situation in genomics              

is analogous to this toy example in the relevant respects. Again here, RP agrees with this                

intuitive assessment: A1 is a real pattern in the RP sense. The program that reconstructs D                

given A1 as an extra input has to concatenate it with A2 and A3, concatenate the resulting                 

string, A, with itself, then output it. A pseudocode function that does this is given in Listing 2.                 

 
13

 

reconstruct_D_from_A1(A1): 

A2 ← "10011001..." # The whole 200MB A2 string would be here 

A3 ← "11110010..." # And again for A3 

A ← concatenate(A1, A2, A3) # concatenates all three 

substrings... 

return concatenate(A, A) # ... and everything follows as 

before 

Listing 2 

 

This program will be just over 400MB long, the definitions of substrings A2 and A3, each                

objectivity of K as a measure of compressibility: K is equal for every programming language up to an additive constant that is 
independent of the string to be compressed itself (Grünwald 2007, p. 10). 
12  At least in our laptop. The exact number will vary slightly from platform to platform. 
13  In fact, if, as we said, scientists have not yet learned that A2 and A3 are repeated in D, these two strings should be 
twice​ in listing 2, once for each repetition. This does not interfere with our point, and we have avoided it so as not to complicate 
the structure of the example. 
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200MB long, taking by far the biggest chunk of this space. 400MB is therefore a good                

estimate for K(D|A1), about two thirds of K(D). Again here, 400MB is not enough to               

reconstruct D, which needs at least the 600MB of A, so A1 comes out as a real pattern in D                    

according to RP. 

 

The problem comes with the Q pattern. This, recall, is just A1 with an extra 200MB of noise,                  

so it’s very clearly redundant in favor of A1 for the purposes of describing D. Yet, it too                  

passes muster as a real pattern according to RP. First, it carries as much information about                

D as A1 does: the program that reconstructs D from Q will simply keep the first 200MB of Q,                   

that is, A1, and then proceed as before: 

 

reconstruct_D_from_Q(Q): 

A1 ← first_half(Q) # A1 is the first half of Q 

A2 ← "10011001..." # The whole 200MB A2 string would be here 

A3 ← "11110010..." # And again for A3 

A ← concatenate(A1, A2, A3) # ... and everything follows as 

     # before 

return concatenate(A, A) 

Listing 3 

 

This program has a very similar length to the one in Listing 2. That is, K(D|A1) ∼ K(D|Q). And                   

again here, while Q is double the size of A1, it is, at 400MB, still much smaller than                  

K(D)—and, as we have explained, no string shorter than K(D) will be able to reproduce               

(project) D. So Q meets the RP definition of a real pattern. 

 

In general, any string that both carries information about D and is smaller than K(D) will                

count as a real pattern according to RP. This, as Q shows, is an unwelcome result given the                  

goal expressed in the non-redundancy principle: ​it is trivial to multiply the redundant patterns              

that pass the RP test by taking a real pattern and adding to it any amount of noise such that                    

the total length is less than the Kolmogorov complexity of the original dataset. 

 

 

6. A Solution 
 

How should we fix this? In the model we have developed in the previous section, the                

redundant pattern Q is longer than the non-redundant one A1. A quick—but obviously             

wrong—fix could perhaps be to rule that between any two strings, say L and S, that carry                 

information about a target dataset, D, the longer, L, should be discarded in favor of the                
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shorter, S. This would discard Q in favor of A1 as desired. The problem, of course, is that the                   

“quick fix” doesn’t comment on which ​particular chunks of information the two contending             

strings carry about D. For example, it could be that L is identical to A1 and S to the first half                     

of A2. In that case it would make no sense to deem L superfluous simply because it is longer                   

than S, because both L and S make complementary contributions to our understanding of D. 

 

What we need, if we are to decide whether one putative real pattern is redundant in favor of                  

another, is a way of capturing when two patterns carry, not just the same ​amount of                

information, but the same ​specific items of information about an object. The general question              

of how to express this desideratum is an open problem in information theory, explored in the                

partial information decomposition framework (Griffith, Chong, James, Ellison, & Crutchfield          

2014; Williams & Beer 2010) and, as far as we are aware, it has been less discussed in                  

algorithmic information theory. Fortunately, conditional Kolmogorov complexity allows us to          

sneak up on the relevant notion of pattern redundancy without having to solve the general               

problem of partial information decomposition. We first define D-dispensability: 

 

D-dispensability​: A pattern Q that carries information about a dataset D is            

D-dispensable iff there is another pattern P such that: 

i) K(D|P,Q) = K(D|P) 

ii) K(P) < K(Q) 

 

Clause (i) captures the idea that the information Q carries about D is ​part of the information                 

P carries about D. This is not a claim about information quantities, but about the actual items                 

of information carried by these strings: if having Q as an extra input does not allow us to                  

shave even a few bits off the length of the program that calculates D using P as input, it                   

means that all Q has to say about D, P says it too. 

 

Notice that if we only had clause (i), it would be possible for Q to be D-dispensable in favor                   

of P, and P be D-dispensable in favor of Q at the same time. In keeping with the                  

non-redundancy principle discussed above, clause (ii) deems dispensable whichever of the           

contending patterns is more complex. 

 

We will say that a pattern is ​strictly D-indispensable iff it carries information about D and it is                  

not D-dispensable. Strict D-indispensability is, we suggest, the notion that Ladyman and            

Ross were after in their definition of real pattern. A better definition is, thus, as simple as                 

follows: 
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Real Pattern: A pattern P is real iff there is at least one dataset D such that ​P is                   

strictly D-indispensable. 

 

We offer this definition as a drop-in replacement for RP, only simpler, and without the               

defects presented in the previous section. 

 

 

7. Concluding Remarks 
 

We have shown that the theoretical desideratum captured in the non-redundancy           

principle—​include in your ontology all and only those patterns that are required for a full               

reconstruction of the target dataset.—​is not successfully enforced in RP. The interplay            

between information carrying and projection in this definition entails the reality of any string              

that is informative about D while being less complex than D. 

 

We have proposed to define real patterns directly in terms of their contribution to reducing               

the conditional Kolmogorov complexity of a dataset. This captures the main insights in RP,              

while being simpler, and offering a better non-redundancy criterion. A further question is             
14

whether it is sensible to tie reality to non-redundancy, as L&R and we are doing. This                

decision is outside the scope of this paper: we have provided clear criteria for deeming a                

string a ​pattern in a dataset (this is tied to compressibility), and also for deeming it a ​real                  

pattern (this is tied to compressibility and non-redundancy). Ascertaining which one, if any,             

of the two notions should take priority in the metaphysics of science is matter for another                

work. 

 

Our definition, as L&R's, relies on the existence of an object (a dataset in our definition, a                 

“pattern”, in theirs) which putative real patterns are more or less able to explain. It is                

probably possible to construe artificial datasets that would make any desired pattern real,             

according to any definition in the Dennettian tradition. Take any random string P. Now, we               

just create a “dataset” D made of two concatenated copies of P and ​hey presto! D makes P                  

come out real. The lesson is that definitions of real patterns along Dennettian lines, such as                

L&R’s or ours, are only interesting if the datasets appealed to are ​bona fide​, in the sense of                  

coming from the world---from actual empirical research. A more explicit characterization of            

what should count as a ​bona fide dataset is a central question for any broadly Dennettian                

account of patterns, but one that should be discussed elsewhere. 

14  Put to us by an anonymous referee. 
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