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Abstract

The aim of this article is to show that, just like in recent years Co-

breros, Egré, Ripley and van Rooij provided a non-transitive coun-

terpart of classical logic (meaning by this that all classically accept-

able inferences are valid, but Cut and other metainferences are not)

the same can be done for every Tarskian logic, with full general-

ity. In order to establish this fact, we take a semantic approach, by

showing that appropriate structures can be devised to characterize a

non-transitive counterpart of every Tarskian logic, starting from the

logical matrices that are usually taken to render them.

1. Background and aim

In recent years, scholars have extensively discussed a presentation of clas-

sical logic (CL, for short) exhibiting non-transitivity as its central trait. This

presentation, due to Cobreros, Egré, Ripley, and van Rooij, was dubbed

ST.1 By this, it’s meant that ST has the same inferential validities that the

usual two-valued Boolean presentation of CL, despite invalidating transi-
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1For reference, the reader may consult some works of its original advocates in [4, 5, 20].
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tivity in a specific way, to be discussed shortly. Our contribution in this ar-

ticle lies in showing that similar non-transitive counterpart systems can be

introduced for any Tarskian logic whatsoever, presenting the same infer-

ential validities but invalidating transitivity. For future reference, letting

φ be a formula and Γ, ∆ be sets of formulas, a logic L (or, more accurately,

its consequence relation) ⊢ is Tarskian if and only if it satisfies Reflexivity

(φ ⊢ φ), Monotonicity (if Γ ⊢ φ, then Γ, ∆ ⊢ φ), and Transitivity—to be

discussed shortly.

The manner in which ST violates the transitivity aspect of the other-

wise general notion of logical consequence is understood (when speaking

about the sole logical system and not the naive semantic theories that may

be built on top of it) in two equivalent technical ways. Thus, inasmuch as

it’s presented semantically and proof-theoretically, via a sequent calculus,

the metainference appearing below (acting as the surrogate for the rather

abstract idea of transitivity for logical consequence), usually referred to as

Cut, has to be invalid according to both of these standards.2

Γ, φ ⇒ ∆ Γ ⇒ φ, ∆
Γ ⇒ ∆ Cut

For past and future reference, just like an inference is an argument

relating formulas, a metainference is an argument relating inferences. More

formally, an inference Γ ⇒ ∆ of a propositional language L is a pair ⟨Γ, ∆⟩

where Γ and ∆ are collections of formulas of L, whereas a metainference

is a pair ⟨S, s⟩ where the elements of S, and s itself, are inferences of L.

In these regards, semantically speaking, in ST Cut is locally invalid,

whereas proof-theoretically speaking it’s not a derivable rule. On the one

hand, local validity, taking into account a certain notion of logical conse-

2For more on the non-transitivity of the logic ST see, e.g., [1, 2, 6, 7].
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quence X over a certain set of valuations V, stands for the preservation

of satisfaction by a valuation v from the premises of the metainference in

question, to the conclusion of the metainference in question—see [14].3 In

other words, if a valuation isn’t a counterexample to any of the premises

according to the definition X of logical validity, it must not be a coun-

terexample to the conclusion. Derivability, on the other hand, stands for

the provability in a calculus G of the conclusion of the metainference in

question, whenever the premises of said metainference are supplementar-

ily added as axioms to the calculus—see [7]. That is, whenever it’s possible

to prove the conclusion of the metainference in question in the system re-

sulting from expanding G with the premises of the metainference.

Going back to our previously discussed non-transitive presentation of

classical logic, both according to the semantics for ST and to its calculus,

all the inferences valid in the two-valued Boolean presentation of CL are

deemed as valid or provable, respectively. However, some metainferences—

prime among them Cut—that are valid in the two-valued Boolean presen-

tation of CL are not valid in ST. That is to say, not locally valid according

to its semantics and not derivable according to its sequent calculus, on

which more below.

How does ST achieve this? From the point of view of the proof the-

ory, one we won’t be delving too much into on this occasion, ST is pre-

sented via a Cut-free (notational variant) of the propositional fragment of

Gentzen’s sequent calculus for classical logic LK, introduced in [13]. More

crucial to our goals is ST’s semantic apparatus which consists of consider-

3 A valuation is a function assigning each formula of the language a given truth-value
from a carrier set. For example, strong Kleene valuations for the propositional language
counting with ¬ (negation), ∧ (conjunction) and ∨ (disjunction), to be discussed below are
functions onto {1, .5, 0} satisfying that v(¬φ) = 1 − v(φ), v(φ ∧ ψ) = min(v(φ), v(ψ)) and
v(φ ∨ ψ) = max(v(φ), v(ψ)).
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ing the set of three-valued strong Kleene valuations from [15] and endow-

ing it with the main ingredient, the so-called strict-tolerant notion of logical

consequence discussed, e.g., in [4]. According to this, we may say that an

inference Γ ⇒ ∆ is strict-tolerant valid over the set of strong Kleene valu-

ations if and only if there’s no valuation v of this kind such that v(γ) = 1,

for all γ ∈ Γ, and also v(δ) = 0, for all δ ∈ ∆. More informally, the

notion of validity characteristic of ST is just the absence of counterexam-

ples where all the premises are true and all the conclusions are false—an

approach dear to CL that here has different metainferential implications,

because the valuations taken into account are of the three-valued strong

Kleene kind instead of the two-valued Boolean ones.

Many interesting discussions have sprung from the literature revolving

around ST and the present article intends to insert itself into that list. One

of these debates, perhaps worth discussing, is Barrio, Pailos, and Szmuc’s

intention in [2] to generalize the result incarnated in ST—that it’s possible to

have a system with the same inferential but different metainferential va-

lidities as classical logic—by showing that it’s possible to build an infinite

sequence of systems that are incrementally closer to classical logic, in validat-

ing the same inferences, metainferences, metametainferences, and so on...

although they are always different at some point of the so-called metain-

ferential hierarchy of arguments.

A very intriguing philosophical takeaway that the authors extract from

their results is that logical systems may not be characterized by the set of infer-

ences that are valid in them. Briefly put, just like decades ago the character-

ization of logics with sets of theorems became outdated, as discussed in

[9], we might now be in need of abandoning the inference-based approach

in favor of taking also metainferences (and maybe metameta...inferences)
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into account. Be that as it may, one could be tempted to disregard these

remarks given the fact that the necessity to come up with an identity cri-

terion for logical systems that is sensible and fine-grained enough was

elicited only by the presentation of a single case (that of classical logic)

where we have a logical system and a non-transitive lookalike. It could

be wise to stick to the old ways if this phenomenon isn’t widespread and

many, if not all of the other logical systems, are safe from exhibiting it too.

This is why it’s important for us to mention another work whose ob-

jective is closer to ours, due to Melvin Fitting in [10]. In his work, the

question is posed as to whether it’s possible to provide non-transitive ver-

sions of other logical systems. This enigma is shown to have a definite

answer, in giving semantics for non-transitive versions of the non-classical

logics K3 of Kleene [15], LP of Priest [19], and E f de of Belnap and Dunn

[3, 8]. Our goal in this article is to show that the phenomenon characteris-

tic of ST is indeed pervasive and that every Tarskian logical system is bound to

be affected by it. For this purpose, we’ll establish that every logical system

L of a Tarskian kind has at least one non-transitive counterpart, under-

standing by this a logical system Lnt having the same valid inferences that

L although different valid metainferences, with Cut being salient among

them. To guarantee these results we’ll be taking an exclusively semantic

approach, leaving proof-theoretic approximations for another occasion.

2. From Tarskian logics to their counterparts

Although some level of technical machinery will be necessary to establish

our results below, the underlying phenomenon is simple to grasp once the

pieces are on the table. Thus, let us comprehend first what these pieces

are and what are we supposed to do with them.
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Now, if we are to meddle with Tarskian logics from a semantic point

of view, we should be aware of how to obtain them semantically. In this

respect, there’s a key result for the semantical understanding of logical

systems due to Wójcicki. It was proven by him in [22] that every Tarskian

logical system can be characterized by a collection of logical matrices. Essentially,

a logical matrix consists of a collection of truth values together with a set

of truth functions for the connectives in the language (so, an algebra of the

same similarity type as the language in question), together with a certain

notion of logical consequence understood in terms of the preservation of

certain designated truth values from premises to conclusion.

Interestingly enough, some logics may not need a multiplicity of log-

ical matrices to arrive at its resident notion of logical consequence, but

rather a single one featuring only finitely many truth values—see [17]. In

some other cases, we may need a multiplicity, perhaps even an infinity,

of logical matrices. What we are going to show is that given a certain

Tarskian logic, characterized by a collection of logical matrices, it’s pos-

sible to take that collection and extend each of its members in a certain

way so as to keep the same inferences being considered valid according

to the extended structure—despite the fact that the resulting logic will

be non-transitive in the way mentioned above, thanks to working with p-

consequence relations, to be detailed below. More importantly, in a certain

way our manner of extending the target logical matrix is innocuous, for

the newly added truth values will not be participating in the generation of

any counterexamples that were not constructible with the pieces available

in the original matrices. In doing this, we’ll deal with infectious logics in

connection with the ST phenomenon—see [21] and [18].

Definition 1. A logical matrix M for a language L is a pair ⟨A, D⟩ where
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A is an algebra of the same similarity-type that L with universe A, and

D ⊆ A. Let FOR(L) be the algebra of formulas of L, then a M-valuation

v is a homomorphism from FOR(L) to A. Finally, a logical matrix M for

L induces a Tarskian consequence relation ⊨M as follows:

Γ ⊨M ∆ if and only if ¬∃v : v(γ) ∈ D for all γ ∈ Γ and v(δ) /∈ D for all δ ∈ ∆

When we have a class M of logical matrices for a language L, the Tarskian

consequence relation ⊨M is understood as
⋂{⊨M| M ∈ M}.

Theorem 2 (Wójcicki [22], Theorems 3.1.5, 3.1.6). For every Tarskian logic

L formulated over the language L, there’s a (possibly infinite) class M of logical

matrices for L such that ⊢L = ⊨M.

For our result, now, we need to introduce structures that relate to log-

ics where transitivity may be locally invalid, just like logical matrices are

related to Tarskian logics. This role is played by logical p-matrices, intro-

duced by Frankowski in [11], that are actually a generalization of regular

logical matrices—in a way that will be clear in the following definition.

This kind of matrices induce p-consequence relations, as defined in [11],

which are generalizations of Tarskian consequence relations where both

Reflexivity and Monotonicity are valid, but Cut isn’t necessarily so.

Definition 3. A logical p-matrix M for a language L is a structure ⟨A, Dp, Dc⟩,
where A is an algebra of the same similarity-type as L with universe A

and Dp, Dc ⊆ A, where also Dp ⊆ Dc. When Dp = Dc, then M is a

regular logical matrix. Let FOR(L) be the algebra of formulas of L, then

a M-valuation v is a homomorphism from FOR(L) to A. A p-matrix M
induces a so-called p-consequence relation ⊨M as follows:

Γ ⊨M ∆ if and only if ¬∃v : v(γ) ∈ Dp for all γ ∈ Γ and v(δ) /∈ Dc for all δ ∈ ∆

7



When we have a class M of logical p-matrices for a language L, the p-

consequence relation ⊨M is understood as
⋂{⊨M| M ∈ M}.

For a further piece of notation, consider a logical p-matrix M =

⟨A, Dp, Dc⟩. We say that an M-valuation v satisfies the inference or se-

quent Γ ⊨ ∆ if it is not a counterexample to it, and we symbolize it as

v ⊨M Γ ⇒ ∆.

Definition 4. Given an algebra A, its infectious extension with an element

e /∈ A is the algebra A[e], where for all n-ary operations ¶ of A[e] and

all {a1, . . . , an} ⊆ A ∪ {e}: ¶A[e](a1, . . . , an) = e if e ∈ {a1, . . . , an}, and

¶A[e](a1, . . . , an) = ¶A(a1, . . . , an) otherwise.

The construction above was first introduced in [16]. Furthermore, a

version of following result can also be found in [12].

Theorem 5. For every consequence relation ⊨M induced by a logical matrix

M = ⟨A, D⟩ there’s a corresponding logical p-matrix M[e] = ⟨A[e], D, D ∪

{e}⟩ such that ⊨M[e] has the same inferential validities as ⊨M.

Proof. First, to prove that Γ ⊨M[e] ∆ implies Γ ⊨M ∆ we assume that Γ ⊭M

∆. Thus, there’s an M-valuation v witnessing that v(γ) ∈ D for all γ ∈ Γ

and also v(δ) /∈ D for all δ ∈ ∆. But, it’s straightforward to notice, that

every M-valuation is also a M[e]-valuation, and therefore v is also such

that v(γ) ∈ D for all γ ∈ Γ and also v(δ) /∈ D ∪ {e} for all δ ∈ ∆. Whence,

Γ ⊭M[e] ∆. Secondly, to prove that Γ ⊨M ∆ implies Γ ⊨M[e] ∆, assume that

Γ ⊭M[e] ∆. This implies there’s a M[e]-valuation such that v(γ) ∈ D for all

γ ∈ Γ and also v(δ) /∈ D ∪ {e} for all δ ∈ ∆. By the infectiousness of e, this

further allows us to infer that for all propositional variables p appearing

in Γ and ∆, v(p) ̸= e. Thus, for all intents and purposes, restricted to Γ
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and ∆, v is a M-valuation witnessing that v(γ) ∈ D for all γ ∈ Γ and also

v(δ) /∈ D for all δ ∈ ∆. Whence, Γ ⊭M ∆.

Lemma 6. For every consequence relation ⊨M induced by a class M of regular

logical matrices {⟨A1, D1⟩, . . . , ⟨An, Dn⟩, . . . } there’s a corresponding class M[⃗e]

of logical p-matrices {⟨A1[e1], D1, D1 ∪{e1}⟩, . . . , ⟨An[en], Dn, Dn ∪{en}⟩, . . . }

such that ⊨M[e] has the same inferential validities as ⊨M.

Proof. By Theorem 5, for every Mi ∈ M and each corresponding Mi[ei] ∈

M[⃗e], we have that ⊨Mi = ⊨Mi [ei ]. From this, the result easily ensues.

Corollary 7. Every Tarskian logic L has a non-transitive counterpart Lnt.

Proof. Let L be a Tarskian logic. We know by Wójcicki’s result (Theorem 2

above) there’s a class of logical matrices M such that, without loss of gen-

erality, ⊨M = ⊢L. By Theorem 5 and Lemma 6, we know there’s a class

of logical p-matrices M[⃗e] extending M appropriately with infectious ele-

ments such that ⊨M = ⊨M[⃗e]. Let Lnt be the p-logic such that ⊢Lnt = ⊨M[⃗e].

Then, we have that ⊢L = ⊢Lnt . Now, to witness the non-transitivity

of Lnt, we appeal to the notation introduced after Definition 3. Con-

sider a Mi[ei]-valuation v such that v(p) ∈ Di, v(q) /∈ Di ∪ {ei} and

v(r) = ei. There, we have that v ⊨Mi [ei ] p ⇒ r, v ⊨Mi [ei ] r ⇒ q, and

yet v ⊭Mi [ei ] p ⇒ q. From this, it follows that the class M[⃗e] provides

semantics for a non-transitive counterpart Lnt of the Tarskian logic L.

3. Final thoughts

Having proved that the ST phenomenon is in fact as widespread as it

can be amongst logics, one may be tempted to wonder what conceptual

conclusions are to be drawn from this.
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For starters, we may say that if the existence of a non-transitive counter-

part to CL pushed for a more fine-grained identity criterion for this logic,

our results show that indeed this isn’t only required because of what is

affecting CL, but because of what is affecting every Tarskian logical sys-

tem. However, some could say the complications elicited by the presence

of non-transitive counterparts should be resolved by the identification of

a logic with a set of valid inferences together with a set of valid metain-

ferences. Nevertheless, the results above point to the fact that it’s quite

straightforward to mimic the argumentative move by Barrio, Pailos and

Szmuc in [2]—where a sequence of systems that were incrementally closer

to CL is presented, with the systems coinciding with it with respect to

more and more metameta. . . inferences. For the purpose of this further

generalization, certain non-reflexive systems associated to any Tarskian

logic will need to be presented, in order to define such a hierarchy of log-

ics that would be similar to the original logic in question. The details of

the construction of such a hierarchy can be easily obtained by the con-

struction in [2], adapting them to the present cases. Thus, this could all

be used to support the idea that the philosophical reflections on the need for

refined identity criteria for logics are not only backed by what pertains to CL, but

rather to what affects any Tarskian logic, with full generality.

Finally, one could also ask for a complete characterization of the non-

transitive counterparts of any Tarskian logic. Admittedly, the counterparts

that we presented here were explicitly motivated by the addition of infec-

tious values to the original structures rendering the logic in question. It

may also be possible, though, to arrive at other non-transitive counterparts

via some other considerations, be they semantic or proof-theoretic. An ex-
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amination of these and other issues will have to wait for further research.4
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