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Abstract 19 
 20 
Learning is fundamentally about action, enabling the successful navigation of a 21 
changing and uncertain environment. The experience of pain is central to this 22 
process, indicating the need for a change in action so as to mitigate potential threat 23 
to bodily integrity. This review considers the application of Bayesian models of 24 
learning in pain, which inherently accommodate uncertainty and action, which, we 25 
shall propose are essential in understanding learning in both acute and persistent 26 
cases of pain.   27 
 28 
 29 
Highlights 30 
 31 

• The experience of pain sits awkwardly in traditional stimulus-response paradigms 32 
• Accommodating uncertainty and action is imperative to learning models of pain 33 
• Bayesian models provide a normative, probabilistic account of learning in pain 34 
• Learning in pain is conceptualised as an ongoing prediction of the consequences of 35 

action  36 
 37 
 38 
 39 
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 45 
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 49 
 50 
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Introduction  55 
 56 
The process of learning is fundamentally about action. In order to successfully navigate our 57 
environment, we must continually learn about the ever-changing limits of our body and the 58 
constraints that it imposes upon our interaction with the world. The experience of pain is 59 
central to this process, indicating the point at which our bodily integrity is potentially 60 
compromised through action.  61 
 62 
The interaction between pain and learning can be better understood from an evolutionary 63 
perspective, by adopting the concept of the explore-exploit dilemma [1]. When our bodily 64 
integrity is threatened, we typically withdraw or rest (exploit) to allow sufficient recovery to 65 
within bodily limits, at which point we decide to interact (explore) within our niche. We learn 66 
over time when it is best to exploit and when to explore in order to promote adaptive 67 
behaviour [2,3]. 68 
 69 
Learning in pain, however, is not straightforward, owing to the complexity that comprises 70 
bodily integrity and worldly state. As a consequence, we find ourselves confronted with the 71 
reality that in some cases pain persists, seemingly decoupled from acute protection and 72 
adaptive behaviour. This necessarily goes beyond responding to and learning about a 73 
nociceptive signal, extending to an overall appraisal of the bodily and sociocultural 74 
environments in which we exist [4,5]. Adequately accounting for such a rich and diverse set 75 
of interactions is the challenge faced in establishing a learning model in pain.  76 
 77 
Current application of learning models in pain 78 
 79 
Over the last 40 years, associative learning models have come to dominate our conception 80 
of learning in pain [6]. These accounts are pervasive in different forms across the pain field, 81 
from Pavlovian (habitual) to Operant (instrumental) conditioning in behavioural psychology 82 
[7,8], extending to reinforcement learning and temporal difference models in computational 83 
neuroscience [9–12]. Operationalised through the Rescorla-Wagner model, the heart of 84 
associative learning models lies in the concept of an associative weight between stimulus 85 
and response, ranging from immediate, reflexive stimulus-response (model-free) to more 86 
complicated goal-directed actions, which alter proceeding stimuli (model-based) [13].  87 
 88 
Through the application of associative learning theory, it is posited that persistent pain 89 
reflects the generalisation of pain-related responses and maintained avoidance behaviour 90 
[8,17]. This conceptualisation has shaped our understanding of pain in the behavioural 91 
sciences, an influence seen from scientific investigation to clinical management. 92 
 93 
Yet, the experience of pain sits awkwardly in these traditional stimulus-response models 94 
[21,22]. In light of recent advances across neuroscience and behavioural domains, there is a 95 
growing consensus that perceptual experience is a predictive process, in which learners 96 
actively seek information to update their prediction of their internal and external environment 97 
[23,24]. This is problematic for traditional associative learning models in pain for several 98 
reasons. Firstly, pain is classically posited as a stimulus and conflated with nociception, 99 
which downplays the significance of pain as an experience and its explanatory role within 100 
theories of learning. Secondly, traditional associative learning models the state of the learner 101 
as a series of punctate values at any given time [26], which belies the learner’s uncertainty 102 
[25–28]. Finally, associative models do not adequately accommodate the active nature of 103 
the learner (i.e. being able to actively explore and intervene in their environment) [29]. It is 104 
proposed that these challenges for traditional learning models may be overcome by taking a 105 
Bayesian approach to learning in pain.  106 
 107 
The Bayesian Framework 108 
 109 
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Bayesian approaches to cognition comprise many distinct models and theories, used in a 110 
variety of domains, and spanning distinct levels of explanation. Often, these distinct 111 
approaches are grouped under the label 'Bayesian Brain hypothesis' [30,31], despite their 112 
many differences. This review will focus on the underlying Bayesian model that informs 113 
these approaches, specifying the Bayesian derivative where appropriate.  114 
 115 
To date, the application of Bayesian models in pain has been limited to the description of 116 
perceptual experience, presenting pain as part of a probabilistic inference process that is 117 
shaped through the optimal integration of informative cues [27]. These models propose a 118 
mechanism for determining the hidden (latent) causes of encountered sensory information, 119 
summarised in a generative model [32]. In Bayesian terms, this is achieved through the 120 
weighted integration of prior experience and current (potentially multisensory) information, 121 
represented using probability distributions that reflect the agent’s subjective uncertainty—the 122 
optimal integration of these probability distributions is given by Bayes’ rule [33] (Fig. 1). 123 
 124 

 125 

 126 
 127 
Fig. 1. Generative models: Prediction of bodily threat (i-iv.). A generative model 128 
provides the framework from which predictions of the hidden causes of sensory 129 
consequences are generated (posterior), these are continually informed by multisensory 130 
sensory cues (likelihood) and previous encounters (prior). The relative precision, reflected in 131 
the probability density of these elements, influences the prediction. The more precise 132 
(narrow probability distribution), the greater the influence on the prediction. Threat panels 133 
(Left: i-ii) demonstrate the relative contribution of either a relatively precise prior (i) or precise 134 
likelihood (ii), the resultant prediction of threat is drawn toward the more precise source of 135 
information. In these cases, the sensory cue (likelihood) is the same in both panels, yet the 136 
relative precision of the prior determines the overall prediction of threat. Safety Panels 137 
(Right: iii-iv) demonstrate how the same relative precision can influence the prediction of 138 
negative threat, or safety. A precise prior, even in the presence of objective threat-based 139 
sensory cues, can influence the overall prediction to reflect safety (placebo effect) (iii). In 140 
contrast, an imprecise prior has less influence on the posterior (negative threat/safety) (iv). 141 
These hypothetical generative models demonstrate the possible decoupling of objective 142 
sensory information from experience, by accounting for the precision of the prior, which 143 
reflects the ongoing learning of the individual in keeping with previous experiences, 144 
homeostatic bounds and sociocultural constraints.  145 
 146 
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Although not directly about learning, these accounts expose the fundamental elements of 147 
the Bayesian approach: a generative model, subjective uncertainty, and variable precision-148 
weighting. It is through the inherent encoding of the learner’s uncertainty that Bayesian 149 
models can shift away from specific associative weighting between variables towards a 150 
learning account that is both predictive and active. This is a significant theoretical 151 
development [26], which will form the basis of the proceeding review. 152 
 153 
Learning under uncertainty 154 
 155 
In Bayesian approaches, learners are assumed to have only indirect access to the state of 156 
their internal and external environment and must, therefore, infer their values on the basis of 157 
ambiguous and often incomplete information [34]. In contrast to associative learning models, 158 
Bayesian models encode uncertain beliefs about the world as probability distributions [35]. 159 
They assume that learners maintain multiple hypotheses (with differing degrees of belief) 160 
that reflect a range of candidate predictions about the state of the body and the world. This 161 
invokes the notion of a generative model (Fig.1), which can be used to generate the 162 
expected sensory consequences that may arise from hidden (latent) states of the 163 
environment, and in absence of external stimulation [36,37].  164 
 165 
According to Bayesian models, learning occurs through the adjustment of the prior 166 
distribution (e.g. estimated threat), according to Bayes rule, when new sensory cues are 167 
encountered. This asserts that over time a learner attempts to predict, with increasing 168 
finesse, the state of the world. Rather than veridical reflections, these predictions are an 169 
integration of probability distributions pertaining to the precision of the information.  170 
  171 
An emerging framework, derived from a Bayesian approach, known as predictive processing 172 
[23,38–40] casts the inferential process in probabilistic modelling as a matter of prediction-173 
error minimisation. According to this view, the learner’s generative model gives rise to 174 
multiple top-down predictions that are met by incoming sensory information (prediction 175 
error). This is a competitive process, where the prediction that best captures the incoming 176 
sensory information is selected, and perception arises as a result of successful prediction-177 
error minimisation1.  178 
 179 
The concept of prediction error here represents predictions and prediction-errors as 180 
probability distributions, thus retaining the inherent encoding of uncertainty of an agent’s 181 
beliefs that is common to Bayesian approaches. In predictive processing, specifically, this 182 
uncertainty is managed by precision-weighting mechanisms, which modulate the variance 183 
associated with the respective distributions, in order to contribute to the overall goal of 184 
minimising prediction error [41]. From this perspective, the learner’s principle motivation is to 185 
minimise the discrepancy between their prediction of the world and the sensory 186 
consequences of it (prediction error), in order to ensure they maintain an accurate model of 187 
their world (Fig.2). At a cortical level, it has been proposed that precision weighting of 188 
prediction errors is mediated by dopamine, with the potential to influence both accurate and 189 
aberrant learning [42–44]. 190 
 191 
As we shall explore, the learner can minimise prediction error in two ways: by updating the 192 
parameters of their generative model in order to better predict the future sensory 193 
consequences of action, or by holding the model fixed and altering their action within the 194 
world to sample information that better reflects their predictions. These mechanisms are 195 
described under the Active Inference framework [45].  196 
 197 
                                                
1 For a non-technical, conceptual introduction to the Predictive Processing framework see [23]. For for 
an overview of how the free-energy principle applies to the brain see [57].  
 



 5 

 198 
 199 
Fig.2. Hierarchical Predictive Processing: from safety to threat. Proposed within a 200 
neural hierarchy, generative models are shaped over time to reflect the precision weighting 201 
of information. There is a continual bidirectional flow of information at each level of the 202 
neural hierarchy involving top-down predictions, prediction error, and the precision-weighting 203 
of prediction error. Schematically represented over time, an initial generative model 204 
encompassing bodily safety entails the prediction of low bodily threat as a consequence of 205 
action. Over time, in the presence of prediction error (a deviation from predicted bodily 206 
safety or predicted bodily threat), the generative model is updated to reflect an alteration in 207 
action consequences, that of threat. It is suggested that the ability to flexibly update this 208 
prediction of threat, in the presence of new sensory evidence (e.g. safety cues), is 209 
imperative to the resolution of the need to experience pain.  210 
 211 
Active Learning 212 
 213 
The inherent uncertainty encoded in the agent’s probability distributions not only satisfies 214 
learning paradigms that are typically challenging for associative theories (e.g backward 215 
blocking; see [26]), it crucially affords the agent an active role in reducing uncertainty. Active 216 
learning under this formulation is not simply the provision of an adequate sample space 217 
(spatial and temporal), it rests on the crucial ability of the learner to intervene in their world, 218 
sculpting the sensory consequences of their actions according to what is deemed most 219 
salient. The consequences of the learner’s actions can either support or disconfirm the 220 
predictions of the consequences of action, offering multiple means by which to reduce 221 
uncertainty [46,47]. These considerations of active learning recognise ecological validity 222 
from the perspective of being in, and acting upon, the world, and where actions are taken 223 
based on the ongoing (motivational) homeostatic drives of the biological agent. 224 
 225 
Active Inference2—a component of the predictive processing framework—extends these 226 
basic commitments and transforms the role of the learner in pain, from a passive processor 227 
of information, to a dynamic predictor of the relationship between the external and internal 228 
world. A key claim of the active inference model is that embodied action occurs as a result of 229 

                                                
2 For a review of active inference, which casts it as a process of descending projections (predictions) 
from motor cortex, see [43]. Other accounts have implicated the dopaminergic system as playing a 
key role in active decision-making, while also casting this within the framework of ecological 
psychology [44]. And, more recently, the active inference framework has been extended to 
incorporate homeostatic control [40, 51].  For a less technical overview, including empirical and 
theoretical support, see chapter 4 of [23]. 
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an agent predicting (inferring) the outcomes of certain policies (e.g. reaching for a cup), 230 
along with their associated precision estimations. The process of predicting future 231 
consequences of actions (i.e. associated sensory information) leads to overt behaviour 232 
through the activation of classical reflex arcs by downwards projections from motor cortex 233 
[46]. An illustrative example would be a policy that controls an agent’s task of reaching for a 234 
cup. Prior to enacting the reaching behaviour, the predictions associated with grasping the 235 
cup will be unfulfilled, and therefore result in error signals. However, instead of updating the 236 
generative model, the agent can instead take actions that lead to the fulfilment of error 237 
signals by actually reaching to grab the cup. In cases where the agent predicts that a certain 238 
policy will also likely lead to the experience of pain (e.g. bending down to pick up a heavy 239 
box), the agent may be reluctant to enact the respective behaviour, or choose to avoid it 240 
altogether.  241 
 242 
Seth [48] and others [51] have extended the active inference framework to account for 243 
autonomic regulation, arguing that similar predictions generated by the AIC are sent to the 244 
autonomic system via smooth muscles to activate autonomic reflexes in a similar manner as 245 
earlier described in the case of proprioception. By focussing on the embodied nature of the 246 
agent, active inference creates an intuitive segue that unites learning about the state of 247 
external world (exteroception) with the state of the internal world (interoception). The same 248 
predictive mechanisms that are responsible for predicting sensory states of the external 249 
environment are also responsible for regulating the internal environment [48–50] and for 250 
providing additional sources of information related to motivational drives [51]. Although often 251 
separated in traditional theories, perception and action are entwined in active inference, due 252 
to their dual-role in minimising uncertainty [15].  253 
 254 
The proposition that a single underlying mechanism (i.e. precision-weighted prediction-error 255 
minimisation) underlies learning about the condition of the body, has provided instrumental 256 
guidance for describing the generation of aberrant bodily predictions and the development of 257 
persistent pathological conditions [42,43,52–54]. It is suggested that persistent pain can be 258 
formulated in such a way [55]. To illustrate this, the experience of pain is mapped onto the 259 
‘warning light’ scenario, proposed by Adams et al, 2013: 260 
 261 

Consider a circumstance in which you are experiencing knee pain, you predict, with high 262 
precision, that the consequences of your action in the world will compromise the integrity 263 
of your body. Minor fluctuations in your interoceptive sensory cues (prediction errors) are 264 
assigned high precision, which serve to confirm the prediction of potential threat and 265 
propagate your experience of pain. You decide to visit your doctor who is unable to 266 
determine a specific cause for your pain, they even present you with your x-ray that 267 
shows “no structural cause for your pain”. Your first thought is that your doctor has 268 
missed something, that there must be something else going on, or that the x-ray has 269 
been misinterpreted. From your perspective all of these are plausible hypotheses that 270 
accommodate the evidence that is available to you. However, from the doctor’s 271 
perspective, without the knowledge that informs your prediction of bodily threat, your 272 
suspicions seem irrational.  273 

 274 
This adapted account highlights the consequences of precision weighting of information in 275 
the experience of pain. What is suggested is a decoupling between sensory input and 276 
subjective experience, where the latter is dependent on the relative precisions afforded to 277 
predictions and prediction error (Fig.2). The learner in pain updates the precision weighting 278 
of information that reflects their generative model in a changing world, informing whether to 279 
exploit or explore3. This places experiences of the body, whether well-defined through 280 
                                                
3 Some have proposed that precision-weighting may also be responsible for the transient switching 
between online and offline control [41]—allowing an agent to deliberate about some future policy, 
prior to taking action within the world. Although generative models play a central role in guiding online 
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disease process or medically unexplained, on a continuum [55]. What distinguishes them is 281 
the accuracy with which they account for the underlying physiological condition of the body.  282 
 283 
Persistent pain, from this view, occurs as aconsequence of precision: either via a precise 284 
prediction of bodily threat (top-down) or through aberrant precision weighting of sensory 285 
information (bottom up). In both cases, the prediction of bodily threat persists, and so with it 286 
the experience of pain, detached from veridical evidence of tissue damage and 287 
unchallenged by information assigned less precision. Altering the experience of pain this lies 288 
in the ability to promote the flexible reassignment of precision weighting, which in turn alters 289 
the individual’s prediction about their body and the world. 290 
 291 
The description of learning in pain thus becomes one that concerns optimal precision 292 
weighting over time. Importantly, under normative models, optimality does not pertain to 293 
accuracy. As such, aberrant but precise predictions of bodily threat (e.g high precision-294 
weighting of noisy sensory signals), and an accompanying experience of pain, may persist in 295 
the absence of an objective reality of threat. No more or less real, all experiences of the 296 
body are a reflection of our evolutionary history, sociocultural present and action-oriented 297 
future. 298 
 299 
Discussion 300 
  301 
One core pursuit of learning models in pain is to adequately accommodate the phenomena 302 
of acute and persistent cases. That is, why do the majority of people experience pain as 303 
transitory—an experience that efficiently promotes acute withdrawal, mitigating further 304 
harm—while a significant minority continue to experience pain in a way that seemingly 305 
contravenes optimal behaviour?   306 
  307 
We have broadly considered Bayesian models and their relevance to learning in pain. It is 308 
proposed that in order to accommodate the ecological validity of the learner in pain, the 309 
concepts of uncertainty and active learning must be addressed. As such, derivatives of the 310 
Bayesian model have been presented, which attempt to re-conceptualise the learner as an 311 
action-oriented predictor of their environment. 312 
 313 
An advantage of this approach is that learning in pain is considered under a unifying 314 
framework. The experience of pain becomes a problem of precision-weighting, inherently 315 
contextualised in relation to previous experience and future endeavour; both the resolution 316 
and persistence of pain lies within one’s ability to continually update the predictions of bodily 317 
state. 318 
 319 
The approaches that are described are not wholly opposed to the concepts present in 320 
associative learning accounts (e.g. kalman filter and the Rescorla Wagner model) [26]. 321 
However, a probabilistic formulation of learning promotes an account that naturally extends 322 
to the body and action [56], and is highly relevant to learning in pain, whereby the active 323 
sampling of one’s environment is fundamentally altered.  324 
 325 
                                                
behaviour (i.e. active inference), by decoupling generative models from the incoming stream of 
sensory information (prediction errors), through the use of selective modulation of incoming prediction 
errors (precision-weighting), generative models may also guide deliberative processes such as 
planning and offline reasoning [41,51]. This flexible switching between offline and online control could 
be viewed as a type of arbitration mechanism for model-free and model-based forms of behavioural 
control, albeit one that may be best viewed as more of a continuum of cases, rather than a well-
delineated set of options [41]. 
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Bayesian formulations have proffered much, not least a unifying theory of mind [57]. Yet, 326 
with such promise comes inevitable pitfalls [58–60], a number of which require consideration 327 
here.  328 
  329 
This review has focussed predominantly on the implementation of such models at an 330 
instrumental level, describing the macro phenomena in pain-based learning, without delving 331 
into the underlying neural architecture that such probabilistic models aim to account for [61]. 332 
Although increasing evidence supports the role of such realist applications in perception, 333 
[39,42,62], including in pain [63,64], these are yet to mature into adequate models of 334 
complex learning scenarios. Initial investigations comparing models of learning in pain, 335 
including generic Bayesian models [65], suggest that there is work to be done to outperform 336 
temporal difference models in computational neuroscience paradigms [66]. Consequently, 337 
some have argued that the Bayesian Brain should be treated as an instrumental theory in 338 
lieu of more developed mechanistic explanations [67]. An important question for the future 339 
application of probabilistic models relates to the nature of our experimental paradigms in 340 
pain. Using a model, designed to reflect an active learner who minimises uncertainty over 341 
time, may demand an alteration in traditional stimulus-response protocols. 342 
 343 
Associative learning theories would be considered incomplete without accounting for value, 344 
reward or utility in relation to optimal behaviour. Bayesian generalisations of the Resorla-345 
Wagner model, embodied in the Kalman filter, assumes that the target of learning is the 346 
problem of predicting immediate reward [68]. However, full active inference accounts aim to 347 
replace the notions of reward, value or utility, by subsuming them all within the generative 348 
model [13,69]. Whether these concepts can therefore be considered redundant, while still 349 
accounting for the complexities of learning in pain and pleasure, is yet to be determined.  350 
 351 
Conclusion 352 
 353 
We have presented a broad overview of Bayesian models of learning in pain. From this 354 
view, the experience of pain involves the continual prediction of the consequences of action 355 
in relation to bodily threat. As such, learning in pain is both predictive and active. Although 356 
there still exist many challenges to the full implementation of such probabilistic accounts, we 357 
propose that at present, Bayesian derivatives (such as predictive processing and active 358 
inference) can provide important considerations for researchers and clinicians alike.  359 
 360 
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