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Abstract 

How reliable are causal inferences in complex empirical scenarios? For example, a 
physician prescribes a drug to a patient, and then the patient undergoes various changes 
to their symptoms. They then increase their confidence that it is the drug that causes 
such changes. Are such inferences reliable guides to the causal relation in question, 
particularly when the physician can gain a large volume of such clinical experience by 
treating many patients? The evidence-based medicine movement says no, while some 
physicians and philosophers support such appeals to first-person experience. We 
develop a formal model and simulate causal inference based on clinical experience. We 
conclude that in very particular clinical scenarios such inference can be reliable, while 
in many other routine clinical scenarios such inferences are not reliable. 

 

 

1. Introduction 

Maria does not feel well, so she visits her doctor, who diagnoses a disease and prescribes 
a drug. Maria returns home and starts taking the drug. Time passes, and Maria’s 
symptoms change. Maria then returns to her doctor, who determines that either Maria 
has improved or she has not improved, and the doctor’s confidence in the drug 
accordingly increases or decreases. We want to know how reliable such inferences are 
when deployed across a series of such interactions, representing the putative knowledge 
that the physician might gain from their clinical experience. 

Specifically, we want to know if (and if so, under what conditions) first-person 
clinical experience is a reliable basis for inferences about the general effectiveness of 
interventions. The so-called evidence-based medicine movement says that such 
inferences are not reliable, because of phenomena such as the placebo effect and 
expectation bias that influence both a patient’s experience and a physician’s evaluation 
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of that experience. Instead, says the evidence-based medicine movement, we need to 
test such causal relations using methods such as randomised trials that minimise the 
effect of such biases (Howick 2011). Historically, inferences about the effectiveness of 
interventions based on clinical experience have led us astray, claims the evidence-based 
medicine movement. This is part of the rationale for maintaining randomized trials and 
meta-analyses of such trials at the top of so-called evidence hierarchies, and relegating 
physician expertise and judgement to the bottom of such evidence hierarchies. 
Standard guidance from evidence-based medicine methodologists is to assess the 
effectiveness of interventions only with randomized trials, with explicit guidance that 
evidence from any other study design, including case reports, can be ignored (Blunt 
2015). The view that clinical experience is an unreliable guide for inferring the general 
effectiveness of interventions has been widely asserted for decades (e.g. Meehl 1986; 
Guyatt et al. 1992; Choudhry, Fletcher, and Soumerai 2005). 

On the other hand, many physicians and patients routinely make such inferences, 
and some physicians and philosophers have argued that appeals to first-person clinical 
experience can be reliable evidence for making inferences about the effects of 
interventions. Tonelli and Shapiro, for example, argue that clinical experience provides 
what they call experiential knowledge, and such knowledge is important for treatment 
decisions and assessing the response of treatments—they claim that expertise developed 
through first-person clinical experience can inform physicians how to “deploy 
therapeutic decisions in an optimal and individualized manner” (Tonelli and Shapiro 
2020, p. 76). They also claim that “assessing the effect of an intervention is also highly 
dependent upon the experiential knowledge of the clinician” (p. 76). Similarly, Healy 
(2011) argues that physicians routinely can make reliable single-case causal inferences 
about the effects of interventions based on clinical experience. This view is reflected in 
some large surveys of physicians’ attitudes to clinical experience (Dewitt et al. 2021). 
And Cartwright (2017) has articulated a variety of kinds of evidence that can be used 
to warrant single-case causal inferences.  

Sometimes the appeal to causal inferences based on clinical experience is made in 
the context of responding to sceptical arguments about medicine; for example, 
Stegenga ( 2018) offered such a sceptical argument by appealing to small effect sizes 
from randomised trials and biases in those trials, and Healy (2020) responded by 
explicitly asserting that physicians can reliably observe the effects of drugs based on 
clinical experience. Healy claims that “(e)verything we have in medicine is built on 
professional and patient anecdotes. Every discovery of a benefit or other effects of drugs 
comes from this. Other evaluative techniques, and especially randomized controlled 
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trials (RCTs), are less accurate and less objective” (2020, p.1). Yet that view clashes with 
the position of evidence-based medicine, aptly summarized by Howick, who claims that 
clinicians are routinely led astray when assessing the effectiveness of interventions based 
on clinical experience “due to the natural course of illness and the placebo effect” (2011 
p. 164). The aim of this paper is to offer some insight on this polarized debate, and to 
suggest, albeit in preliminary terms, a path through the debate which respects the 
concerns of both sides, while ultimately offering a partial but not full vindication of the 
evidence-based medicine view regarding causal inference from clinical experience.  

Assessing the reliability of causal inference based on clinical experience by 
empirical evidence is of limited value, because precisely what is in question is the 
reliability of one mode of evidence (first-person experience) compared to others 
(randomised trials, for example). Moreover, empirical evidence about clinical 
experience is limited to the range of events that one can observe in actual clinical 
practice, which would be limited in scope for various contingent reasons about the 
practice one observed. In this paper, instead, we develop a formal model of causal 
inference from clinical experience. We then use a computer simulation to generate data 
based on this model, with the aim of providing insight into the reliability of causal 
inference from clinical experience in a range of clinical scenarios. We use simulations 
in line with Mayo-Wilson and Zollman (2021), as alternatives to thought experiments; 
thought experiments are fine, but simulations can serve a similar function while 
exploring a great range of counterfactual possibilities with precision. As far as we know 
the reliability of causal inference from clinical experience has not been evaluated using 
simulation, though simulations have been used to address many questions in the 
philosophy of science and social epistemology (for some excellent recent examples see 
Heesen 2018; Zollman 2015; Rubin 2022).  

After Maria returns home from her doctor and begins taking the drug, there are 
several possible causes of changes to her symptom profile. One is whatever 
physiological effects the drug elicits. Another is the familiar placebo effect. Giving a 
clear account of what placebo is, which permits a clear distinction between the 
physiological effects of the drug and the placebo effects, has been a challenge for some 
philosophers (Grünbaum 1986, 1981; Howick 2017). For our purposes it is enough to 
say that placebo effects are any effects of any kind of intervention that operate through 
expectation effects, regardless of whether that intervention also has other physical 
effects. Finally, the mere passage of time, in the absence of any physiological effect or 
placebo effect, can involve a myriad of other causes to changes in Maria’s symptom 
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profile—all those other causes, from her body healing itself to Maria eating a little better 
and sleeping a little more, we call ‘the natural course of disease’.  

So, there are three possible causes (or sets of causes, if you prefer) to Maria’s change 
in symptom profile over time: the physiological effects of the intervention, the placebo 
effect, and the natural course of disease. The strength of each of these three causes 
depends on a multitude of contextual features, and particularly depends on what disease 
Maria has. If she has the common cold, then the natural course of disease will rapidly 
lead to improvement, within a week say, and even the most effective interventions will 
have barely any causal impact on her symptoms, as will the placebo effect. If she has 
depression, then the natural course of disease will likely contribute to a gradual 
improvement, the placebo effect will cause a strong mitigation of her symptoms, and 
the physiological effects of the best interventions will likely be very modest to non-
existent (see Cuijpers, Stringaris, and Wolpert 2020). If she has an especially bad 
bacterial infection which is sensitive to antibiotic treatment, then that treatment will 
have a strong mitigation of symptoms, though the placebo effect and natural course of 
disease will have very modest effects.  

For many diseases there are a range of possible interventions to choose from. For 
example, in the United Kingdom there are eight serotonin reuptake inhibitors available 
for prescription, five statins, and six fluoroquinolones – and these are each just one kind 
of intervention in a broader category, as for instance antibiotics include not only 
fluoroquinolones but also penicillins, cephalosporins, tetracyclines, and others. In our 
model a physician must choose from ten possible drugs. When Maria returns to the 
clinic after using one of these drugs, the physician’s confidence in the effectiveness of 
that drug increases or decreases, depending on whether Maria has improved or not. 
Then the next patient with the same disease visits the physician, and the physician must 
again choose among the drugs. We repeat this for many patient visits, thereby 
modelling a physician’s career of experience about this class of drugs. The primary 
question we ask is how close are physicians’ estimates of the effectiveness of drugs to the 
stipulated effectiveness of the drugs in various clinical scenarios. We also ask how many 
prescriptions are required before patients improve in the different clinical scenarios.   

The model we develop here is idealized in various ways, and our plan for future 
research is to develop the model to make it more realistic, by, for example, modelling 
the effect of confirmation bias and prior knowledge on the strength of placebo and 
natural course of improvement. Our results here, though they should be interpreted 
with caution, are striking: we show that if a disease is somewhat placebo-responsive or 
has some degree of natural course of improvement, then physicians overestimate the 
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effectiveness of interventions after gathering clinical experience, but when a disease has 
little to no placebo responsiveness and natural course of improvement, such inferences 
can be reliable. Thus, our results vindicate both the critics of clinical expertise in some 
kinds of scenarios and the proponents of clinical expertise in other kinds of scenarios.  

 

 

2. Modelling Causal Inference from Clinical Experience 

In our model, a patient with a particular disease visits a physician, and the physician 
prescribes one of 𝑘	possible drugs (in the simulations here we set 𝑘 = 10). If, after using 
the drug, the patient improves, this provides the physician some first-person evidence 
that the drug is effective. Accordingly, the probability that the physician will choose 
that drug in the future increases. On the other hand, if, after that drug, the patient 
doesn’t improve, the physician gains some first-person evidence that the drug is 
ineffective, and so the probability of choosing that drug for subsequent patients 
decreases. If such first-person inferences are reliable, a seasoned physician would 
develop reliable judgments about the effectiveness of the drugs. 

We model the physician’s choice as an instance of the so-called ‘multi-armed 
bandit problem’. Suppose you are in a casino with many slot machines, each with an 
unknown probability of giving you a fixed reward. In each round, you try one of the 
machines, and you either get a reward or not, and this provides you with some evidence 
from which you can infer the reward probability of each of the machines. The multi-
armed bandit problem asks what the best strategy in choosing different slot machines is 
so that you maximise your reward over time. If you knew the reward probability of the 
slot machines from the outset, the best strategy would be obvious: always choose the 
slot machine with the highest reward probability. But you do not know these 
probabilities; at the beginning you know little about those probabilities and as you try 
out various slot machines you learn a little more about those probabilities. This adds 
another dimension to your decision of the slot machine you want to try. You need to 
balance two factors in your choice of slot machines: exploiting the information you have 
attained from your choices thus far to get rewards and exploring other machines so that 
you come up with a more accurate estimate of reward probabilities and to minimize 
the chance of missing a better slot machine.  

The multi-armed bandit problem has many variations, applications, and solutions 
(Kuleshov and Precup 2014; Bouneffouf, Rish, and Aggarwal 2020). For example, it 
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has been used in designing clinical trials and allocating patients to treatments (Lai 1987; 
Villar, Bowden, and Wason 2015). Examples of earlier application of bandit problems 
in philosophy of science are Zollman 2007 (see also Šešelja 2022 for discussion), 
Holman and Bruner 2015, and Weatherall and O’Connor 2021. Reviewing these 
applications and solutions is beyond the scope of this paper. Here we use Thompson 
Sampling, a well-established and widely used Bayesian solution to the multi-armed 
bandit problem. Besides its computational merits as a solution to the multi-armed 
bandit problem, we choose this solution because we think it is a good model to represent 
the way that an ideal Bayesian physician would perform her clinical inferences. 

 

Thompson Sampling 

Thompson sampling is a general solution to the multi-armed bandit problem. In our 
specific case, we set and run it as follows. The physician starts by an initial guess about 
the probability of the patient improving by any of the 𝑘 number of drugs. This is the 
physician’s initial prior subjective probability and can be informed by factors such as 
the medical literature about the drugs, the physician’s education, or other experience 
with the drugs. In the simulations presented here, at the beginning of each ‘career’, 
each physician starts with a uniform distribution for probability of improvement across 
all the drugs (this can be varied in future work). The only new source of information 
that subsequently informs the physician’s judgement about the effectiveness of the drugs 
is the physician’s clinical experience in using the drugs on a series of patients.  

The prior distributions associated with each drug is set as a Beta distribution, 
which is a probability distribution defined on the interval between 0 (no chance of 
improvement) and 1 (certain improvement), and has two parameters 𝛼  and 𝛽  that 
determine its shape. Initially, these parameters are set to 𝛼 = 1, and 𝛽 = 1 and that 
results in a uniform distribution on the range of 0 and 1.  

𝐵𝑒𝑡𝑎(𝛼 = 1, 𝛽 = 1) 

Next, the physician draws one sample from the improvement probability 
distributions that she has associated with each of the drugs, and among the resulting 
hypothetical improvement probabilities, she chooses the drug with the highest 
hypothetical chance of causing improvement and prescribes that drug for the patient. 

After trying the drug, the patient either shows improvement (𝑋 = 1) or does not 
(𝑋 = 0) (for simplicity, in our model improvement is binary). The physician adjusts her 
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prior probability that this drug is effective based on this observation. The posterior 
probability after the tried drug is:  

𝐵𝑒𝑡𝑎(𝛼 = 1 + 𝑋, 𝛽 = 1 + 1 − 𝑋) 

If the patient shows improvement, the physician stops the treatment, and moves 
to the next patient. If the patient does not show improvement, that drug is taken out of 
the set of possible drugs to prescribe, and the physician repeats this process at most ten 
times, and then moves to the next patient. The physician gradually forms her expert 
opinion on the effectiveness of each of the drugs. In short, with respect to the formal 
aspects of inference, the physician is an ideal reasoner.  

The algorithm can be summarized as follows: 

1. Assume prior distributions of the probability of improvement for each of the 
drugs. 

2. Draw a random number from each of those distributions. 
3. Choose the drug that gave the highest perceived probability of improvement 

(highest value among the random draws in the previous step). 
4. Prescribe that drug. 
5. Update the probability distribution of effectiveness of that drug based on the 

observation of improvement or no improvement (get posterior distributions of 
the probability of improvement). 

6. If the patient has not shown improvement, and if you have tried less than ten 
prescriptions for this patient, go to step 2. 

7. Start treating the next patient by going to step 2. 

 

Complicating Causes 

As described above, the effectiveness of the drug is not the only cause that can result in 
patient improvement. There are at least two other causes, namely, the placebo effect 
and the natural course of disease. We will sometimes refer to the placebo effect and the 
natural course of disease as ‘complicating causes.’ The significance of these 
complicating causes depends on the nature of the disease and varies in different 
scenarios. When they can play a considerable role, these complicating causes interfere 
with the ability to draw correct inferences about the effectiveness of a drug. Returning 
to the example of slot machines, suppose that every time you try one of the machines, 
someone secretly puts some coins in the coin hopper (the container where the payout 
coins are delivered). This would mislead your inference about the true reward 



8 
 

 
 

probability of the slot machines and misguide you to wrongly favour one of the 
machines that in fact might not be better than others.   

This is similar for clinical experience. After the physician prescribes a drug for the 
patient, the patient might show improvement not because of the effectiveness of the 
drug, but because of placebo effect or the natural course of disease. The physician, 
however, might attribute the improvement to the drug and therefore overestimate the 
effectiveness of the drugs and wrongly favour some the dugs over others (Figure 1). 
Unlike the formal aspect of the physician’s inference, the physician’s insensitivity to the 
two complicating causes is non-ideal. 

 

 

Figure 1: Depiction of our model of causal inference based on clinical experience. 

 

 

Each time that the physician chooses a drug for a patient, the patient might 
subsequently show improvement because of three independent causes, represented by 
three random draws in the simulation: the placebo effect ( 𝐿 ), the physiological 
effectiveness of drug 𝑖  (𝑃! ), and the natural course of disease (𝐶 ). The probabilities 
associated with each of these random draws are parameters that we set in the 
simulations and vary from one scenario to the next.  

The probability of improvement by the natural course of disease is initially set to 
𝐶,  and it increases by 𝐶  increments per prescription up to 𝐶"#$  over consecutive 
prescriptions for each patient. It then gets reset to the value of 𝐶 for the next patient. 

 

Simulations 

We simulate causal inferences about effectiveness of drugs over the course of 
treating 100 consecutive patients. Our model physicians follow the Thompson 



9 
 

 
 

sampling process. At the end of the simulation, we compare each physician’s subjective 
probability of each drug’s effectiveness with their actual probability of effectiveness. 
This allows us to observe if physicians wrongly favour or disfavour any drugs. 

We also count how many times each drug is prescribed over the course of a 
physician seeing 100 patients. This shows the practical manifestation of the physician’s 
inference. Further, for each patient in each scenario, we count the number of visits to 
her physician (or number of prescriptions) that are required until the patient shows 
improvement. 

We run simulations under eight scenarios, each with its own set of four parameters: 
physiological effectiveness of each drug 𝑖  (𝑃! ), the placebo effect (𝐿 ), chance of 
improvement over the natural course of disease (𝐶), and a maximum for the chance of 
improvement by the natural course of disease (𝐶"#$). We fix the number of drugs to 
choose from to ten and repeat each simulation for twenty physicians. Each of 𝑃!, 𝐿, and 
𝐶  are probabilities that a patient would improve due to the respective cause 
(physiological effectiveness, placebo, and natural course) over a defined temporal 
period. The temporal period is arbitrary for Scenarios 1 and 2, and for Scenarios 3-8 
the temporal period is based on empirical considerations or other background 
knowledge of the various scenarios that allow us to inform, as realistically as possible, 
the values of 𝑃!, 𝐿, and 𝐶.  

The two first two scenarios are primarily for evaluating whether, in the absence of 
complicating causes, Thompson sampling is a good process for inferring the 
effectiveness of the drugs. In scenarios three to eight, we add the complicating causes 
and change the parameters to reflect different types of diseases and treatments. Our 
eight scenarios are as follows (summarized in Table 1). 

 

Scenario 1: Ten drugs with different effectiveness, no complicating causes 

In Scenario 1, the placebo effect (𝐿) and the chance of improvement over the natural 
course of disease (𝐶 ) are set to zero, and the ten drugs have actual effectiveness of 
{0, 0.1,0.2, … ,0.9}. The aim of this simulation was to determine if, in the absence of 
complicating causes, causal inference based on clinical experience can identify the most 
effective of a class of drugs. 

 

Scenario 2: Ten drugs with equal effectiveness, no complicating causes 
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In Scenario 2, the placebo effect (𝐿) and improvement over the natural course of disease 
(𝐶) are set to zero, as they were in Scenario 1, but in this scenario all ten drugs have 
equal actual effectiveness of 0.5. The aim of this simulation was to determine if, in the 
absence of complicating causes, causal inference based on clinical experience can 
approximately discern that a class of equivalently effective drugs are indeed equivalent, 
and to determine if causal inferences based on clinical experience in the absence of 
complicating causes can approximate the actual effectiveness of the drugs. 

 

Scenario 3: Antibiotics for bacterial infection 

Scenario 3 simulates the treatment of a disease with a class of highly effective drugs, in 
which the disease is completely not placebo-responsive—think of the treatment of an 
antibiotic sensitive bacterial infection with a strong antibiotic. The defined temporal 
period is, say, one week: it is a bad bacterial infection and the probability of improving 
due to the natural course of disease is 5% during that week, though proper 
administration of antibiotics would cure the infection within the week 90% of the time. 
Thus, the placebo effect (𝐿) is set to zero, and improvement due to the natural course 
of disease (𝐶) is set to 0.05 and the maximum improvement due to the natural course 
of disease (𝐶!"#) is also set to 0.05, and all the drugs have an equal effectiveness of 0.9. 

 

Scenario 4: Antidepressants, champion’s view 

Scenarios 4 and 5 simulate the treatment of depression with antidepressants from two 
perspectives on the effectiveness of antidepressants. Whether antidepressants have 
clinically relevant physiological effects is debated (Moncrieff and Kirsch 2015; 
Munkholm, Paludan-Müller, and Boesen 2019). The basis for this debate is how to 
interpret the small but non-zero effect sizes observed in meta-analyses of 
antidepressants (Cipriani et al. 2018). The perspective we call the “champion’s view” 
holds that we should interpret the small but non-zero effect sizes on their face, thereby 
maintaining that antidepressants indeed have a small but positive average effectiveness. 
The perspective we call the “sceptic’s view” holds that those small non-zero effect sizes 
can be best explained by biases in the relevant trials; one bias in particular that some 
sceptics note is ‘blind-breaking’, which is the empircally substantiated phenomenon 
whereby subjects in the drug group of trials on antidepressants accurately guess which 
group they are in based on their experience of side effects, thereby exaggerating the 
placebo effect in that group (Gøtzsche 2014). 
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Scenario 4 simulates the case from the champion’s perspective. The temporal 
period is around six weeks, roughly the duration of a typical trial of antidepressants. In 
meta-analyses of these trials a notion of ‘responder’ is often used; a responder is a 
subject whose depression severity score goes down by at least 50% compared with their 
pre-trial depression severity. The parameters for the chance of being a responder due 
to the drugs or placebo are based on data reported in (Cuijpers, Stringaris, and Wolpert 
2020), in which roughly 60% of subjects in the drug group are responders and roughly 
40% of subjects in the placebo group are responders (see Tabatabaei Ghomi and 
Stegenga, 2022 for further discussion and critique of the use of such responder 
analyses). Moreover, some empirical evidence suggests that if left untreated, on average 
about 50% of depressed patients will improve over the course of one year, or roughly 
5% of patients will improve every six weeks (see Cuijpers, Stringaris, and Wolpert 2020; 
Posternak and Miller 2001). Thus, the placebo effect (𝐿) is set to 0.4, improvement due 
to the natural course of disease (𝐶) is set to 0.05, maximum improvement due to the 
natural course of disease (𝐶!"#) is to 0.5, and all the drugs have an equal effectiveness 
of 0.2. 

 

Scenario 5: Antidepressants, sceptic’s view 

Scenario 5 simulates antidepressants from the sceptic’s perspective, who holds that the 
improvements observed in trials of antidepressants are not due to the physiological 
effectiveness of the drug but are merely due to placebo effects and methodological 
biases. In this simulation the chance of observing improvement due to the effects of the 
drugs is set to zero, and the rest of the parameters are the same as in Scenario 4. This 
scenario can also represent the use of many treatments in complementary and 
alternative medicine, in which the treatments are probably ineffective but there is a 
high chance that the peculiar practices of complementary and alternative medicine 
result in significant placebo effects. All of the parameters in Scenario 5 are that of 
Scenario 4, except for the drug effectiveness, which is set to 0. 

 

Scenario 6: Treatment of the common cold 

Scenario 6 simulates a disease such as the common cold, for which we do not have a 
highly effective drug, yet the patient rapidly gets well by the natural course of disease. 
The temporal period in this scenario is one day. Here we are supposing that common 
colds clear up in around five days, and that a patient tries a new treatment every day.  
The probability that a patient would improve in any given day increases by 0.2 every 
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day (𝐶 = 0.2, 𝐶!"# = 1). We also suppose that any intervention would be nearly useless, 
though there may be some interventions with very modest effectiveness, and placebo 
response is also minimal. Thus, the physiological effectiveness (𝑃!) and placebo effect 
(𝐿) are both set to 0.05.  

 

Scenario 7: Antibiotic-resistant infection 

Scenario 7 simulates a disease such as treatment of an antibiotic-resistant infection, 
which are particularly difficult to treat, and for which there is little chance that the 
patient gets better by placebo effects or the natural course of disease. Accordingly, the 
physiological effectiveness (𝑃! ) and placebo effect ( 𝐿 ), as well as the chance of 
improvement by the natural course of diseases (𝐶) and the maximum natural course of 
improvement (𝐶!"#) are all set to 0.05.  

 

Scenario 8: Context-sensitive treatments 

Scenario 8 has a slightly different approach compared to other scenarios. Here we set 
𝐿  and 𝐶  to zero, assuming no placebo effect or improvement by natural course of 
disease. The value for the physiological effectiveness of each drug 𝑖 (𝑃!) is randomly 
picked at the time of each prescription from a uniform distribution over 0.2 and 0.8. 
So, in each prescription, the same drug might be very effective (𝑃! close to 0.8), only 
mildly effective (𝑃! close to 0.2), or somewhere in between. Nonetheless, the average 
value of 𝑃! for all drugs is 0.5. The scenario simulates context-sensitive drugs. Examples 
are drugs that are sensitive to the genetic background of patients, have high interactions 
with food or other drugs, or some cases of alternative medicine where the effect is 
claimed to depend on many factors besides the drug itself. 
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Parameter Scenario 1 

Variable 
effectiveness, no 
complicating 
causes 

Scenario 2 
Same 
effectiveness, no 
complicating 
causes 

Scenario 3 
Antibiotics for 
bacterial 
infection 

Scenario 4 
Antidepressants: 
champion’s view  

Scenario 5 
Antidepressants: 
skeptic’s view  

Scenario 6 
Treatment of the 
common cold 

Scenario 7 
Antibiotic-
resistant 
infection 

Scenario 8 
Context-
sensitive drugs 

effectiveness of 
drug 𝑖 (𝑃$) 

{0, 0.1, 0.2, …, 
0.9} 

0.5 0.9 0.2 0.0 0.05 0.05 [0.2, 0.8] 

placebo effect (𝐿) 0 0 0 0.4 0.4 0.05 0.05 0 
course of disease 
(𝐶) 

0 0 0.05 0.05 0.05 0.2  0.05 0 

course max 
(𝐶!"#) 

0 0 0.05 0.5 0.5 1 0.05 0 

Table 1: Summary of parameter values for our eight clinical scenarios. 
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3. Results and discussion 

Figure 2 summarises the results of the simulations for each of the simulated scenarios, 
for a single randomly chosen physician. Each of the sub-figures shows the probability 
density function representing the physician’s confidence that each drug is effective after 
her ‘career’ of treating 100 patients. Vertical dotted lines show the actual probability of 
effectiveness of the drugs (𝑃$). Figure 3 displays the proportion of times this randomly 
chosen physician chose the ten drugs, over the duration of their career. The patterns 
depicted in Figures 2 and 3 are from one random physician in each scenario, but the 
general observations were robust over the careers of all twenty physicians under all 
scenarios and those results are provided in supplementary material available online. 
Thus, Figure 2 depicts the inference stage of our model while Figure 3 depicts the drug 
choice stage of our model. Also, we have created animations of the proportion of times 
all twenty physicians have chosen each drug, at every point in the career of each 
physician, for all eight scenarios (these can be provided on request and made available 
as supplementary online material). Figure 4 visually displays the minimum, maximum, 
and average number of prescriptions that are required for a patient to show 
improvement, for each physician in each scenario, while Table 2 shows the average 
number of prescriptions per patient in each scenario.  
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Table 2. Average number of prescriptions per patient  

Scenario 
Prescriptions 
per patient 

1 1.3 
2 2.0 
3 1.1 
4 1.8 
5 2.2 
6 3.1 
7 5.6 
8 1.9 

 

 

 

Scenario 1: Ten drugs with different physiological effectiveness, no complicating causes 

The results of Scenario 1 shows that in the absence of a placebo effect or natural course 
of disease, causal inference based on clinical experience can identify the most effective 
drug among ten drugs of differing effectiveness. As shown in Figure 2, the physician 
correctly identifies the most effective drug, and is very certain about its effectiveness 
(narrow distribution). She has less accurate inferences about the effectiveness of the 
other drugs, but because she has reliably found the most effective drug, ascertaining the 
effectiveness of the other drugs is of little clinical value for the physician or her patients. 
As shown in Figure 3, the physician quickly identifies the most effective drug and 
prescribes that drug for most patients. All patients improve in this scenario and patients 
need only an average of 1.3 prescriptions to improve (Figure 4 & Table 2). 

 

Scenario 2: Ten drugs with equal physiological effectiveness, no complicating causes 

Scenario 2 shows that in the absence of complicating causes and working with 
equivalent drugs, a physician can make only modestly reliable causal inferences based 
on clinical experience. As Figure 2 shows, in this scenario the physician does not come 
to a confident and very accurate inferences about the effectiveness of all the drugs, and 
strongly favours some drugs over others (Figure 3). Nonetheless, she has an 
approximately correct inference about the effectiveness of many of the drugs. Nearly 
all patients improve in this scenario and patients need only an average of ~2.0 
prescriptions to improve (Figure 4 & Table 2). 
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In summary, the results of scenarios 1 and 2 show that in the absence of 
complicating causes, clinical experience can be a good guide to the actual effectiveness 
of the drugs, particularly if the drugs considerably differ in their actual effectiveness. 
Yet Figure 3 shows that the differences in physicians’ estimates of the effectiveness of 
the various drugs can be large enough such that in practice the physicians choose some 
of the drugs much more often compared to others (while Figure 3 shows the results for 
a single physician, this was a pattern observed across the group of physicians). 

 

Scenario 3: Antibiotics for bacterial infection 

As Figure 2 shows, causal inference based on clinical experience is quite reliable in this 
scenario. When the drugs are very effective, and the complicating causes are not strong, 
such inferences can be reliable. However, the physician has much greater confidence 
in their estimates of the effectiveness of some drugs, despite the fact that all the drugs in 
this scenario are equally effective, and in particular, physicians underestimated the 
effectiveness of some of the drugs. Physicians subsequently tended to prescribe some 
drugs in this scenario much more often than others, as shown in Figure 3. So, while 
inferences about effectiveness were relatively reliable in this scenario, there was 
nevertheless unwarranted favouring of some drugs over others. All patients improve in 
this scenario and patients need only an average of 1.1 prescriptions to improve (Figure 
4 & Table 2), which is of course intuitive given how uniformly effective the drugs are. 

 

Scenario 4: Antidepressants, champion’s view 

Figure 2 shows that the physician’s inferences about the effectiveness of the drugs can 
be as much as ~60% higher than the actual effectiveness of the drugs, when the drugs 
are moderately effective and the placebo effect is strong. The inference about the 
effectiveness of each particular drug has a relatively narrow distribution, meaning that 
the physician is confident about this inaccurate inference. Figure 2 also shows that the 
physician wrongly infers very different effectiveness of drugs that have completely 
equivalent effectiveness (for example, compare drug 4 to drug 7). Physicians also tended 
to prescribe some drugs in this scenario more often than others in this scenario, as seen 
in Figure 3. In short, this scenario displays two fallacies of inference being committed 
to a very large degree: overestimation of effectiveness and unwarranted favouring. All 
patients improve in this scenario and patients need only an average of 1.8 prescriptions 
to improve (Figure 4 & Table 2), which could be seen as surprising given the relatively 
low effectiveness, though this is explained by the strong placebo effects.  
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Physicians were able to roughly estimate the overall probability of improvement 
due to all causes, in this scenario and in Scenario 5, though they were unable to 
distinguish improvement due to physiological effects from placebo effects. In ongoing 
development of the model we are adding some capacity to discriminate between 
expected effects of the three causes.  

 

Scenario 5: Antidepressants, sceptic’s view 

The physician’s inferences in this scenario—that is, in which the drugs are ineffective 
but placebo effect is strong—are very inaccurate (Figure 2). The physician deems most 
of these completely ineffective drugs to be quite effective (up to ~60%). Also, just as in 
Scenario 4, the physician thinks that there are relatively large differences in the 
effectiveness of these drugs, despite the fact that they are all equally ineffective (for 
example, compare drugs 3 and 5). In this scenario physicians also had favourite drugs, 
tending to prescribe some drugs in this scenario much more often than others (Figure 
3). All patients improve in this scenario and patients need only an average of 2.2 
prescriptions to improve (Figure 4 & Table 2); this result is impressive given that the 
drugs in this scenario are completely ineffective, and again, this result is best explained 
by the strong placebo-responsiveness of the disease being treated in this scenario. 

 

Scenario 6: Treatment of the common cold 

The physician’s inferences in this scenario—namely, situations involving drugs of low 
effectiveness but a strong natural course of disease—are also very inaccurate (Figure 2). 
The physician wrongly deems most of these ineffective drugs to be effective (up to 
~40%). Also, as in scenario 5, the physician thinks that there are relatively large 
differences in the effectiveness of these drugs, despite the fact that they are all equally 
(and minimally) effective (for example, compare drugs 4 and 6). Like in other scenarios, 
this scenario saw physicians prescribing some drugs much more frequently than others, 
thereby displaying unwarranted favouring of some drugs (Figure 3). All patients 
improve in this scenario and patients need an average of 3.1 prescriptions to improve 
(Figure 4 & Table 2); this should not be very surprising, since virtually everyone can 
shake the common cold.  

 

Scenario 7: Antibiotic-resistant infection 
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Figure 2 shows that in this scenario, involving the treatment of relatively intractable 
diseases, the physician can reliably infer that the drugs have very low effectiveness. 
Nonetheless, the physician slightly overestimates the actual effectiveness of the drugs 
due to the complicating causes. Similar to the other scenarios, the differences in the 
inferred effectiveness of the drugs are large enough to make the physician favour some 
drugs over their equivalents. Many patients do not improve in this scenario, and on 
average patients require 4 to 5 prescriptions to improve (Figure 4). 

 

Scenario 8: Context-sensitive drugs 

Figure 2 shows that context-sensitivity of drugs can confuse the physician’s inference 
even in the absence of complicating causes. Similar to the results of Scenario 2, the 
physician infers different values for effectiveness of equivalent drugs and ends up 
strongly favouring some drugs over others (Figure 3), despite the fact that the average 
effectiveness of all the drugs is the same. Most patients get better when given enough 
prescriptions in this scenario (Figure 4), and on average patients needed ~2 
prescriptions to get better (Table 2). 

 

4. Conclusion 

In our model, when causes such as the placebo effect and improvement due to the 
natural course of disease play a significant role in patient improvement, or when drugs 
are context-sensitive, causal inference based on clinical experience is unreliable. These 
inferences are more reliable when the disease being treated is not placebo-responsive 
and has little or no natural course of improvement, especially when some drugs are 
significantly better than others, or when all of the drugs are highly effective. From a 
patient’s perspective making such inferences are equally challenging, since virtually all 
patients improve when given enough time or enough prescriptions, even when the 
drugs are completely ineffective.  

 Thus, the evidence-based medicine position, which doubts the reliability of 
physicians’ causal inferences based on clinical experience, is partially vindicated by our 
results. At least, for diseases with some natural course of improvement or some placebo-
responsiveness, such inferences are unreliable in our model. Yet, for other diseases 
which have little placebo-responsiveness and little natural course of improvement, such 
inferences can be relatively reliable.  
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 However, both sides of the debate regarding the reliability of such inferences will 
have reasons to assess our results cautiously. A defender of the evidence-based medicine 
position could note that one significant idealisation in our approach is that physicians 
in our model update their credences and choose among the available drugs as an ideal 
reasoner would, which is unrealistic, since we have good reasons to think that 
physicians, like the rest of us, are liable to various sorts of reasoning biases. It is those 
reasoning biases which motivate the methodological strictures of the evidence-based 
medicine movement in the first place: testing the effects of drugs with randomised trials 
rather than with reference to clinical experience is intended to block the impact of those 
reasoning biases. On the other hand, a defender of the use of clinical experience to test 
the effects of drugs could note that another significant idealisation in our approach is 
that physicians in our model are not able to modulate their inferences based on the 
extent to which they believe the disease being treated is placebo-responsive or has a 
natural course of improvement, and this too is unrealistic, since it is plausible to think 
that physicians do in fact modulate such inferences in that manner. Both such 
considerations are apt and warrant caution in interpreting our results. Yet one general 
remark in response to these considerations is to note that they pull in different 
directions. The champion of evidence-based medicine would be in effect claiming that 
our model does not sufficiently represent just how unreliable clinical inferences can be, 
while the champion of clinical experience would be in effect claiming that our model 
does not sufficiently represent just how reliable clinical inferences can be. The two kinds 
of idealisations that these two considerations appeal to would have opposing 
implications for how to interpret our results, and which of the considerations is 
weightier remains an open question.  

In future work we aim to address that question. We plan to model various 
reasoning biases, such as confirmation bias, novelty bias, and other reasoning patterns 
such as risk aversion. As noted, in the present model the physicians do not modulate 
their inferences based on prior beliefs about how placebo-responsive or naturally-
improving a disease is, and in future work we plan to add such complexity to our model. 
Moreover, the extent to which real physicians modulate their inferences based on prior 
beliefs about the placebo response and the natural course of improvement is itself an 
empirical question, and in current research we are collaborating with colleagues 
performing experimental work to illuminate that.  

Our model is of course focused solely on causal inference from clinical experience. 
Yet, clinical expertise is not merely about inferring the effects of drugs, but rather is 
about a much wider range of phenomena, including diagnosis, understanding relevant 
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details of particular patients, and the importance of practical know-how. Expertise is, 
of course, a complex and multidimension property, and our results are focused entirely 
on one angle, namely the reliability of causal inferences made by physicians based on 
their routine clinical experience.  

Moreover, the results presented here are a small sample of the range of possible 
results to be gleaned from our model. We simulated two theoretical scenarios as model 
checks and six scenarios that we take to be realistic depictions of routine clinical 
practice. Yet, our model permits the tuning of many combinations of parameters, and 
in future work we plan to more fully explore the parameter space, modelling other kinds 
of clinical scenarios. In the present model patient improvement is dichotomous, and we 
can instead operationalise patient outcomes as a continuous property (a graded 
measure of symptom severity, say). 

One might think that a champion of evidence-based medicine could respond to 
our results by noting that our method involves a physician seeing a population of 
patients, and so the physician’s evidence could approximate the population-level 
evidence that a randomised trial provides, in which case any scenario that suggests some 
reliability to causal inference from clinical experience (i.e. Scenario 7) can be explained 
by the population-level structure of the physician’s evidence. Yet, given that the set of 
evidence that a particular physician acquires in our model comes from a method which 
is non-randomised, unblinded, and uncontrolled, the evidence is very far from the gold-
standard that evidence-based medicine stipulates. Indeed, the evidence hierarchies of 
evidence-based medicine place expert opinion and clinical judgement at the bottom, 
and that is regardless of whether such judgement is a function of experience gleaned 
from a long sequence of patient interactions. The scenarios that suggest some reliability 
to causal inference from clinical experience are best explained by the absence of strong 
complicating causes such as placebo or natural course of improvement, rather than the 
fact that the experience of our simulated physicians is constituted by a population of 
patients. 

Despite the simplicity of the present model, the preliminary results are striking. We 
show that causal inference from clinical experience can be reliable under particular 
conditions, but in other conditions, exemplifying very common real clinical scenarios, 
physicians wildly overestimate drug effectiveness and wrongly favour some drugs over 
equivalent drugs. Given the noted limitations of our model, these results must be 
interpreted with caution, yet they are an initial step toward a deeper understanding of 
this ubiquitous mode of causal inference.  
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