
   Introduction  

 Commentators claim that various features of clinical research – such as conventional 
choices in analytic measures, placebo run-in periods, and publication bias – contribute 
to overestimating the eff ectiveness of medical interventions. " ese suggestions are 
plausible, yet such speculative empirical claims could and should be tested. One way to 
test such hypotheses would be to have access to all patient-level data for particular 
interventions from all relevant trials, and then analyse the infl uence of these features of 
trials on estimates of intervention eff ectiveness. However, save some limited examples, 
access to such data is practically impossible; although some steps have been made 
toward improving data access, nobody has access to proprietary and confi dential 
patient-level data from all trials in a domain. Moreover, without knowing the real 
eff ectiveness of interventions, there is no way to estimate the eff ects of various features 
of trials on estimates of eff ectiveness. In real trials, scientists do not know the real 
eff ectiveness of the interventions they are studying – that is, of course, the entire point 
of performing the trials. And fi nally, real data does not allow considering counterfactual 
scenarios that can be valuable for investigating these speculative hypotheses. " erefore, 
real trial data is limited in its utility for evaluating various hypotheses about medical 
research. 

 To get around these problems, we simulate patient-level data from trials, based on 
higher-order characteristics of real trial data, such as published means and standard 
deviations of measured outcomes. " is approach solves the problem of data access. 
Moreover, our approach has a major advantage over real trial data: we can specify the 
true eff ectiveness of an intervention, and then vary features of the clinical research to 
quantify the infl uence of those features on estimates of eff ectiveness. For example, we 
can set the real eff ectiveness of a drug to zero, set the degree of publication bias to 
whatever we want, then estimate the eff ectiveness of the drug based on the published 
data and quantify the impact of publication bias on the estimate of eff ectiveness. And 
conversely, given an observed measure of eff ectiveness under certain biases we can 
estimate the real eff ectiveness. In the present paper we focus on the specifi c example of 
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research on antidepressants, though our research programme is extendable to other 
domains. 

 Experimental philosophy has allowed philosophers to test intuitions pertaining to 
a range of philosophical questions. " e approach has been experimental in the usual 
sense of the term. Yet some philosophers have used simulations to test intuitions about 
scientifi c research, such as the optimal degree of communication between scientists 
(Zollman 2007), or the optimal division of labour in a scientifi c community (Alexander, 
Himmelreich and " ompson 2015; " oma 2015; Weisberg and Muldoon 2009), or the 
conditions under which science can self-correct (Bruner and Holman 2019; Romero 
2016). In our approach we simulate scientifi c data to evaluate meta-scientifi c intuitions 
and off er insights into the nature of scientifi c and medical research. 

 Some recent work in philosophy of medicine has shown that much medical research 
is sensitive to arbitrary methodological choices. For example, Stegenga (2016) argues 
that randomized trials involve numerous methodological choices that render trials 
more sensitive to detecting putative benefi ts of medical interventions yet less sensitive 
to detecting harms of those interventions. We extend this concern about the infl uence 
of arbitrary methodological choices on estimates of eff ectiveness. Our fi rst target is the 
eff ect of arbitrary conventional choices in the defi nition of a particular outcome 
measure, the responder odds ratio ( OR ), which is defi ned as the ratio of the odds of 
being a ‘responder’ in the drug group of a trial ( O  d ) divided by the odds of being a 
responder in the placebo group of the trial ( O  p ). A responder is a trial subject (in either 
the drug or placebo group) whose symptom severity improves by more than a certain 
threshold  c . In trials and meta-analyses of antidepressants,  c  is conventionally set to 50 
percent. " is commonly used value for  c , however, is arbitrary. Some methodologists 
have criticized responder analyses in general because they involve a loss of information 
(Altman and Royston 2006; Collister et al. 2021). Our results extend this criticism by 
demonstrating that the choice of  c  = 0.5 can maximize estimates of drug eff ectiveness, 
and other values of  c  would give lower values for the responder OR – in short, the 
choice of  c  is an arbitrary methodological decision which has dramatic impact on 
estimates of eff ectiveness. " is is consistent with previous work which suggested the 
phenomenon of a ‘response rate illusion’, in which estimates of eff ectiveness are 
exaggerated when continuous data are transformed into responder odds ratios (Hadzi-
Pavlovic 2009; Kirsch and Moncrieff  2007). Our work demonstrates this phenomenon. 
Kirsch and Moncrieff  (2007) provide an analytic argument which is further expanded 
by (Hadzi-Pavlovic 2009). " eir approach provides a limited view of this eff ect. Our 
extensive simulation approach, however, shows the patterns of the eff ect of  c  on 
estimates of eff ectiveness under various conditions, and illustrates the details of the 
maximizing eff ect of  c   ≈  0.5. 

 Our results here are relevant to a recent debate among philosophers of medicine 
about the merits of diff erent families of outcome measures. Some have argued that so-
called ‘absolute’ outcome measures are superior to so-called ‘relative’ outcome measures 
(see, e.g., Stegenga (2015), Stegenga and Kenna (2017) and Sprenger and Stegenga 
(2017). Conversely, Hoefer and Krauss (2021) claim that relative measures are also 
informative and ought to be reported alongside absolute measures. " is debate has 
been based on outcome measures for binary properties (e.g. whether a patient is dead 
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or alive at the end of a trial). Our simulations involve more fi ne-grained measures on a 
presumably continuous property (severity of depression). A responder odds ratio is a 
relative measure, while a simple and informative absolute measure of continuous data 
is just the mean diff erence between groups. Our demonstration that the responder 
odds ratio is dramatically sensitive to the arbitrary choice of  c  adds to the extant 
arguments for the superiority of absolute over relative measures. 

 Our second target is the impact of publication bias on estimates of eff ectiveness. 
Publication bias is a ubiquitous phenomenon in medical research (Wieseler et al. 2013). 
It is plausible that publication bias exaggerates estimates of eff ectiveness, since 
publication bias is usually directional: evidence which suggests that interventions are 
eff ective is published more o$ en than evidence which suggests that interventions are 
ineff ective (for demonstration see Turner et al. (2008), and for discussion of the 
phenomenon in philosophical contexts see Biddle (2007), Jukola (2017) and Stegenga 
(2018)). We off er some confi rmation of this view about publication bias. More subtly, 
however, we show that publication bias has less impact on the apparent eff ectiveness of 
drugs that are truly eff ective, while it has more impact on the apparent eff ectiveness of 
drugs that have lower real eff ectiveness. " is confi rms similar fi ndings in Friese and 
Frankenbach (2020) and Nuijten et al. (2015), while illustrating the details of the 
pattern and the magnitude of the eff ect of publication bias in the particular case of 
estimates of antidepressants’ eff ectiveness. 

 Our third target is the impact of placebo run-in periods on estimates of eff ectiveness. 
A run-in period of a trial involves giving subjects a placebo prior to the formal data-
gathering phase of a trial, eliminating subjects who appear very responsive to placebo, 
and then distributing the remaining subjects between the placebo and the drug groups. 
Such run-in periods are performed in many RCTs of antidepressants (Posternak et al. 
2002). " e assumption behind this method is that the subjects that are placebo-
responsive during the run-in period would be the same subjects that would be placebo 
responsive in the main part of the study. In other words, placebo-responsiveness is 
assumed to be a constant character of subjects. We call this the  assumption of constancy . 
If this assumption holds, then run-in periods should eliminate highly placebo-
responsive subjects and thus reduce the placebo eff ect observed in the main study. 
Reduced placebo eff ect allows the detection of smaller real drug eff ects. 

 Despite its wide use, analysis of published RCTs shows that run-in periods do not 
seem to reduce the placebo eff ect (Greenberg, Fisher and Riter 1995; Lee et al. 2004; 
Posternak et al. 2002). We investigate the reasons behind this empirical observation 
and demonstrate that run-in periods require three conditions to reduce the placebo 
eff ect: high number of placebo-responsive subjects, constancy, and high real drug 
eff ectiveness. We conclude that the failure of run-in periods in practice indicates that 
one or more of these conditions fail to hold. 

 Our ambition in this paper is twofold. First, we aim to off er insights into the 
hypotheses about medical research noted above, in a manner that goes beyond mere 
intuition or limited empirical evidence. Second, and more generally, we aim to expand 
the relatively young literature that shows computer simulations can be fruitfully 
employed to address a wide range of second-order questions about scientifi c and 
medical research.  
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   Methods  

 Here we present an overview of our methods. " e appendix presents more technical 
details. 

   Simulating patient data  

 Symptom severity in antidepressant trials is measured with a scale called the Hamilton 
Depression Rating Scale (HAMD), a 50-point scale in which higher scores are said to 
represent greater severity of depression. We generated random HAMD values for the 
drug and the placebo groups, before and a$ er intervention, by a Gaussian random 
generator. We applied a lower value of HAMD = 19 as an inclusion criterion (Santen, 
Horrigan, et al. 2009), so that all patients had HAMD scores above this value before 
treatment. Randomly generated values were limited between 0 and 50. " e HAMD 
score of an individual subject a$ er treatment could be lower (better), higher (worse), 
or equal to the subject’s HAMD before treatment. 

 We set the distribution parameters for the random generator based on actual patient 
data. We calculated the parameters based on the most recent and probably the most 
comprehensive meta-analysis of antidepressant RCTs so far published (Cipriani et al. 
2018). Table 6.1 lists all the parameters used for simulations. 

 We repeated the simulations for a wide range of stipulated drug eff ectiveness, 
indicated by a$ er-treatment mean HAMD score in the drug group ( m  a  d ). We also 
repeated the simulations for various sizes of the placebo and drug groups ( n ). For each 
combination of values for  m  a  d  and  n , we repeated the simulation 5000 times (thereby 
generating simulated data for 5000 trials per combination, resulting in 315,000 trials 
total). 

 One measure of eff ectiveness for a trial was the responder   OR : a drug was declared 
eff ective in a trial with some level of statistical signifi cance if the lower confi dence 
interval of  OR  at that level of signifi cance was greater than one (in this study, we used 
95 per cent confi dence intervals). " e probability of fi nding a drug to be eff ective ( P  E ) 

   Table 6.1     Parameters used in simulations. © Jacob Stegenga and Hamed Tabatabaei 
Ghomi.  

  Parameter    Used for simulation  

 mean HAMD in placebo group before treatment,  m  b  p   24 
 mean HAMD in drug group before treatment,  m  b  d   24 
 mean HAMD in placebo group a$ er treatment,  m  a  p   14 
 mean HAMD in drug group a$ er treatment,  m  a  d   9,10,11,12,13,14,15 
 SD of HAMD in placebo group before treatment,  s  b  p   3.5 
 SD HAMD in drug group before treatment,  s  b  d   3.5 
 SD HAMD in placebo group a$ er treatment,  s  a  p   7.9 
 SD HAMD in drug group a$ er treatment,  s  a  d   7.4 
 Size of the placebo and drug groups,  n   50, 75, 100, 125, 150, 175, 200, 225, 250 
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under a certain combination of parameters was calculated by dividing the number of 
trials demonstrating eff ectiveness with that particular parameter set by the total 
number of trials with that parameter set. Another measure of eff ectiveness was the 
average diff erence in mean HAMD reduction between placebo and drug groups under 
a certain combination of parameters, which was calculated by averaging over all the 
trials with that combination of parameters.  

   Modelling responders: Odds ratio  

 Responder  OR  is defi ned as the ratio of the odds of being a ‘responder’ in the drug 
group ( O  d ) divided by the odds of being a responder in the placebo group ( O  p ). Odds 
of being a responder in each group is calculated by dividing the number of responders 
by the number of non-responders in that group. 

 where  R  g  is the set of all responders in group  g  (either the drug  d , or the placebo  p  
groups), and | R  g | and | g | are the sizes of  R  g  and  g  respectively. 

 A subject  i  in any of the drug or placebo groups ( g  =  d  (for drug group) or  g  =  p  (for 
placebo group)) is declared a  responder  ( i   ∈   R  g ) if their HAMD score a$ er treatment 
( HAMD  a  i ) was less than or equal to a certain fraction  c  of their HAMD before treatment 
( HAMD  b  i ): 

  

 To investigate the eff ect of  c  on the probability of fi nding a drug to be eff ective, we 
re-analysed data by varying c from 1% to 99%, with 1% increments 

  c   ∈  {1%, 2%, . . ., 99%}  

   Modelling publication bias  

 To model the eff ect of publication bias, we applied a probabilistic fi lter. A trial that 
found a drug to be eff ective (based on statistically signifi cant (t-test, p ≤ 0.05) diff erence 
between the average HAMD score of the placebo and drug groups) had a 100% chance 
of being published, but a trial that found a drug to be ineff ective had a  β  chance of 
being published (1 = no publication bias, 0.1 = severe publication bias). 

  β   ∈  {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 
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 Only published trials were used in the subsequent calculations of the average 
diff erence in mean HAMD reduction between placebo and drug groups.  

   Modelling run-in period  

 One way to model run-in periods would be to have a two-phase simulation, the fi rst for 
the run-in period and the second for the main trial, and follow the patients’ placebo 
responses through the two phases. " is method, however, faces some methodological 
problems. First, it would require assigning a value of placebo responsiveness for each 
individual patient, yet there are no empirical grounds for such values or its distribution 
in a population (to determine this would require patient-level data from the placebo 
groups of trials). Second, it is hard to model the way the property of placebo 
responsiveness changes over time and between the run-in period and the main study. 
To bypass these methodological problems, we mimicked the eff ect of a run-in period 
on a trial’s outcome in a one-step simulation as described below. 

 In short, we eliminate a number of patients from the main trial as would have been 
eliminated by a run-in period, re-analyse the data, and compare the outcome with the 
results of the full data set. " e number and the attributes of the eliminated patients are 
set in a way such that the elimination mimics the elimination that would have resulted 
from a real a run-in period. " e elimination is controlled by two variables,  ρ  and  χ , that 
are associated with two main assumptions behind run-in periods. " e fi rst assumption 
is that would-be placebo-responsive patients in fact exhibit enough placebo response 
during the run-in period such that they are eliminated. " e assumption is controlled 
by  χ , the fraction of excluded patients. Usually, when a run-in period is used in trials of 
antidepressants, a reduction of  ≥ 20% in a subject’s HAMD score during a run-in 
period results in excluding the subject from the main study (Landin et al., 2000; Lee et 
al., 2004). We set the fraction of the excluded patients ( χ ) based on reports in the 
literature: Quitkin et al. (1998) reported 9%, Heiligenstein et al. (1993) reported 5.5%, 
and Lydiard et al. (1997) reported 17%. We thus set: 

  χ   ∈  {0.05, 0.1, 0.17} 

 " e second assumption is the assumption of constancy, which holds if the patients 
who show high placebo response during the run-in period are the same patients that 
would have shown high placebo response had they entered the main trial. " is 
assumption can be controlled by  ρ , the fraction of eliminated patients that necessarily 
show  ≥ 20% reduction in HAMD score. Varying  ρ  allows investigating the eff ect of 
the assumption of constancy on the eff ectiveness of run-in periods. " e higher is  ρ , the 
stronger the assumption of constancy holds. If the assumption holds strongly, then a 
higher fraction of excluded patients are necessarily among those with a HAMD 
reduction  ≥ 20% in the main phase of trials, and vice versa. 

 We aimed to exclude a total of  χ  × | g | (where | g | is the size of the placebo or drug 
group) patients from each group of a trial. " e  constancy  values ( ρ ) shows the 
proportion of excluded subjects that necessarily had  ≥ 20% reduction in HAMD. We 
randomly picked  ρ  ×  χ  × | g | subjects from those with  ≥ 20% reduction in HAMD, and 
excluded them from the study. " en we picked the rest of the subjects for exclusion 
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(( 1  –  ρ ) ×  χ  × | g |) without any constraints on their HAMD reduction. We tested three 
strengths of the assumption of constancy: 

  ρ   ∈  {0, 0.5, 1}  

   So! ware  

 We ran the simulations and the following analysis by developing a Python 3.8 code. 
" e computations were distributed over many CPUs to be able to complete the large 
number of trial simulations in a reasonable time.   

   Results and discussion  

   Probability of ‘eff ective’ conclusion by varying values of  c   

 Figure 6.1 shows the probability of concluding that a drug is eff ective under various 
combinations of  n ,  m  a  d  , and  c . Naturally, as the eff ectiveness of the drug decreases from 
 m  a  d  = 9 to  m  a  d  = 15, the probability of fi nding a drug to be eff ective decreases. Also, the 
probability of fi nding a drug to be eff ective increases by increasing the number of 
participants because the power of RCTs increases by their size. But there are patterns 
in Figure 6.1 that depend on  c  and signify the importance of the choice of  c  that is 
conventionally set to 50% with no obvious reason. 

 Figure 6.1 shows a dome-shaped higher probability of deeming drugs to be eff ective, 
centring around  c  = 50%. " is pattern shows that the conventional practice of setting 

   Figure 6.1 " e probability of concluding that a drug is eff ective under various 
combinations of sample size ( n ), real drug eff ectiveness ( m  a  d ), and conventional threshold 
for defi nition of responder ( c ). © Jacob Stegenga and Hamed Tabatabaei Ghomi. " is 
fi gure is reproduced in colour in Tabatabaei Ghomi and Stegenga (2022).         
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 c  = 50% appears to almost maximize the probability that a drug will be deemed eff ective 
according to the responder odds ratio. In underpowered studies such as  n  = 50, it 
increases the chance of identifying a truly eff ective drug (e.g.  m  a  d  = 9). In larger studies 
(e.g.  n  = 200, 225), however, it increases the chance of declaring a weak drug ( m  a  d  = 12) 
to be eff ective. In a study that is large enough, this will result in a statistically signifi cant 
diff erence between placebo and drug where the real diff erence between the two is 
negligible (e.g.  m  a  d  = 13). " is statistical eff ectiveness can be clinically misleading as 
some have argued that a HAMD reduction of 3 points is undetectable in the clinic 
(Moncrieff  and Kirsch 2015).  

   Apparent eff ectiveness given publication bias  

 Figure 6.2 shows the diff erence in the mean HAMD reduction between the placebo 
and the drug group according to the published data with diff erent levels of publication 
bias (varying  β ,  β  = 0.1 being the most severe bias, and  β  = 1 being equivalent to no 
bias) for drugs of various strengths ( m  a  d ). As expected, the observed diff erence in mean 
HAMD reduction increases by stronger publication bias. With a strong publication 
bias (e.g.  β  = 0.1), the diff erence in mean HAMD reduction between the drug and the 
placebo groups may increase by 1 to 2 points, especially for smaller RCTs. " is increase 
is enough to suggest apparent eff ectiveness even for completely ineff ective drugs, and 
even for drugs that are less eff ective than placebo. " is is particularly worrying because 
our results show that the eff ect of publication bias is larger for weaker drugs. " is is in 
line with Friese and Frankenbach (2020) and Nuijten et al. (2015), who similarly show 
that publication bias is most impactful when the true eff ect is small. As we simulated 
patient-level data with realistic parameters, our results further show the magnitude of 
this eff ect in the case of antidepressants, under various conditions. 

 " e results also show that the size of RCTs is another factor aff ecting the impact of 
publication bias. Comparing the le$  side of Figure 6.2 with the right side of Figure 6.2 

   Figure 6.2 " e diff erence in mean HAMD reduction between the drug and the placebo 
groups, for various intensities of publication bias, at sample size n=50 (le$ ) and n=250 
(right). © Jacob Stegenga and Hamed Tabatabaei Ghomi.         
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suggests that the impact of publication bias on estimates of eff ectiveness is mitigated 
with larger sample sizes. 

 Although a publication bias of  β  = 0.1 might seem to be extreme, we believe that it 
is representative of actual publication practices in some domains of medical research. 
Turner et al. (2008) show that while almost all RCTs with positive results get published, 
RCTs with negative outcomes either do not get published, or get published in a way 
that coveys a positive outcome. For instance, according to FDA reports about 50% of 
RCTs of antidepressants have positive outcomes, yet 94% of the published RCTs report 
positive results.  1   In our method of modelling publication bias, going from a 50-50 
success-to-failure ratio to a 6-94 ratio corresponds to  β   ≃  0.06 (lower than even our 
most severe publication bias parameter of  β  = 0.1, calculations included in the 
appendix). Another study reported a publication bias of 23% ( β   ≃  0.2) (Wieseler et al. 
2013). 

 " ese realistic estimates of  β  allow us to compute a correction factor for analysing 
the results of real published RCTs. For example, suppose that we observe a reduction 
of two HAMD points in the drug group compared to the placebo group. As we see in 
Figure 6.2, in the absence of any publication bias, that value corresponds to an average 
HAMD score of 12 a$ er treatment with drugs. However, assuming we have publication 
bias of the amounts  β  = 0.1 or  β  = 0.2 we can correct the estimate of eff ectiveness in the 
following way: draw a horizontal line running across the graph from 2 on the y-axis 
and let that line intersect with the curve representing the publication bias parameter 
0.1 (the rightmost curve), then draw a vertical line down to intersect the x-axis; the 
value of that x-axis intersection is the inferred real eff ectiveness of the drug. " e 
conclusion would be that the estimated real HAMD score a$ er treatment is 
approximately 13.5, and since the observed HAMD score a$ er placebo was 14, this 
would entail that the estimated diff erence in HAMD reduction between drug and 
placebo groups was 0.5. " us, this method would amount to correcting the reduction 
in HAMD scores observed in trials from 2 to 0.5.  

   Run-in period  

 Figure 6.3 shows the eff ect of run-in periods by depicting the diff erence in the mean 
HAMD reduction between the drug and the placebo groups, under various  constancy  
values ( ρ ), and exclusion fractions ( χ ). " e small change in the diff erence in the mean 
HAMD reduction is in line with the previous metanalyses of run-in periods that show 
the method is ineff ective at increasing the observed diff erence between drug and 
placebo groups (Greenberg, Fisher and Riter 1995; Lee et al. 2004; Posternak et al. 
2002). 

 Figure 6.3 suggests three potential reasons for the ineff ectiveness of run-in periods. 
First, only a small fraction of subjects shows enough placebo eff ect during the short 
run-in periods to be excluded from the main phase of the RCT. As Figure 6.3 shows, 
when excluded subjects constitute only 5% or 10% of the subjects, the change in the 
diff erence in the mean HAMD reduction is very small for all constancy values and 
drug strength. Second, for low constancy values, run-in periods show no conspicuous 
eff ect, and this shows that run-in periods change the diff erence in mean HAMD 



Advances in Experimental Philosophy of Medicine120

reduction only if the assumption of constancy strongly holds ( ρ  = 1). " ird, even when 
17% of the subjects get excluded, and the assumption of constancy strongly holds, run-
in periods increase the diff erence in mean HAMD reduction only for drugs with 
strong real eff ects. Less eff ective drugs do not appear much more eff ective with run-in 
periods.   

   Discussion  

 Our results show that the conventional choice of  c  = 50% in the responder odds ratio 
almost maximizes estimates of eff ectiveness. " is can be benefi cial in underpowered 
small RCTs by increasing the chance of detecting eff ective drugs. On the other hand, 
in studies with large number of participants, this bias increases the chance of drugs 
with negligible real eff ects to appear eff ective. And in general, the strong dependence of 
the chance of fi nding a drug to be eff ective on the choice of  c  indicates the problem 
with an arbitrary choice for  c , and the need for substantiating the use of any value for 
this variable. 

 " ese results about responder analyses address two other recent debates in 
philosophy of medicine. First, some philosophers have argued that meta-analysis is 
not as reliable as it is o$ en made out to be (Stegenga 2011), while others defend 
meta-analysis (Holman 2019). Responder analyses, though not intrinsically part 
of the methodology of meta-analysis, are o$ en used in meta-analyses, because a 
responder analysis allows the pooling of trials that use diff erent measurement scales. In 
a domain of research in which multiple incommensurable measurement scales are 
used (such as research on antidepressants, in which there are multiple versions of 
the HAMD scale and other scales used in various trials), analysts must choose 
between either excluding many trials from a meta-analysis or including all trials and 

   Figure 6.3 " e diff erence in mean HAMD reduction between the drug and the placebo 
groups, under various constancy values ( ρ ) and exclusion proportions ( χ ), for n=50 (le$ ), 
and n=250 (right). © Jacob Stegenga and Hamed Tabatabaei Ghomi.         
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pooling their results using a standardized outcome measure such as responder  OR . 
Our results here show a problem with the latter choice, and since the former choice 
amounts to not including relevant evidence, this amounts to a dilemma for many 
meta-analyses: exclude evidence or use suspect outcome measures. Second, some 
philosophers have recently criticized so-called relative outcome measures, which 
include the responder  OR  (Sprenger and Stegenga 2017), while others defend the use 
and reporting of relative measures (Hoefer and Krauss 2021). We have identifi ed a 
salient problem with the responder  OR , lending some support to those critics of 
relative outcome measures. 

 Our results show that publication bias has less eff ect on the apparent effi  cacy of 
drugs with strong real eff ects. " is could be taken as pushback against the appeal to 
publication bias as one of several arguments for general scepticism about medical 
research and medical interventions in, for example, Stegenga (2018). On the other 
hand, we show that publication bias can spuriously increase the apparent effi  cacy of 
interventions with negligible real eff ects. 

 It is interesting to compare our results with Romero (2016). Although Romero used 
a diff erent approach, his simulations included some scenarios which are broadly 
comparable to ours. Romero modulated the real eff ect size, the sample size of 
experiments, and whether negative fi ndings were published, and then assessed the 
extent to which accumulated data tracked the real eff ect size (he also varied what he 
called ‘direction bias’, which is not relevant to our fi ndings here). An important 
diff erence between Romero’s method and ours is that each of his parameters could 
only take one of two values: eff ect size could be zero or medium, sample size 
could be ‘suffi  cient’ (e.g. large) or not, and publication bias either existed (negative 
fi ndings not published) or not. In contrast, our corresponding parameters can be 
tuned to a variety of levels. Nevertheless, comparing some of his fi ndings with our is 
illuminating. 

 In Romero’s medium eff ect size simulations with large sample sizes, publication 
bias had little impact on estimates (compare his S1 with S9), which is consistent with 
our results displayed in the right side of Figure 6.2 (a medium eff ect size would be a 
fi nal HAMD score of about 12, in the middle of the x-axis). In Romero’s medium eff ect 
size simulations with small sample size, publication bias contributed to a large 
overestimate of eff ectiveness (compare his S2 with S10), which is consistent with our 
results displayed on the le$  side of Figure 6.2. In Romero’s zero eff ect size simulations 
with large sample size, publication bias has no impact (compare his S5 with his S13), 
which is consistent with our results displayed in the right side of Figure 6.2, in the 
bottom-right region of the graph. " us, some of Romero’s fi ndings are replicated by 
our simulations. 

 However, other fi ndings in Romero (2016) are not replicated by our simulations. In 
Romero’s zero eff ect size simulations with small sample size, publication bias has little 
impact (compare his S6 with his S14), yet in our simulations publication bias had a 
large impact in similar conditions, as displayed by our results on the le$  side of Figure 
6.2 in the bottom-right region of the graph. In Romero’s medium eff ect size simulations 
with small sample size, the estimated eff ect size was exaggerated by publication bias, 
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while in the zero eff ect size simulations it was not exaggerated by publication bias 
(compare Romero’s S10 with S14). " is fi nding contradicts our simulations (and other 
work cited in the section titled, ‘Apparent Eff ectiveness Gven Publication Bias’), as seen 
in the le$  side of Figure 6.2, in which publication bias has a greater exaggerating impact 
on smaller real eff ect sizes. 

 We showed that run-in periods are not very eff ective in decreasing the placebo 
eff ect. We also showed three conditions that are necessary for run-in periods to be 
eff ective. " e assumption of constancy should strongly hold, a drug should have strong 
real eff ect, and a large fraction of subjects should show signifi cant placebo eff ect during 
the run-in period. " e empirical observation that run-in periods do not increase 
estimates of drug effi  cacy, therefore, shows that one, two, or all three of these conditions 
do not generally hold. 

 " ere have been previous simulations of antidepressant RCTs (Chevance et al. 
2019; Landin et al. 2000; Santen, Horrigan et al. 2009; Santen, Van Zwet et al. 2009), 
though the target questions of these studies and methods used to simulate trial data are 
diff erent from ours. " ese studies had scientifi c rather than meta-scientifi c concerns. 
Also, they did not investigate the conventional choices in analytic measures that we 
investigate, and do not model run-in periods. Although they touched on the issue of 
publication bias, they examined it from a diff erent angle. For example, one article 
suggested that publication bias increases the apparent eff ectiveness of antidepressants 
and this group modelled publication bias indirectly by correcting the eff ect sizes in 
their simulations (Chevance et al. 2019). From a methodological perspective, all of 
these studies simulated the time course of response to antidepressants and therefore 
needed to train a model on existing patient data. We do not need the exact time course 
of each subject for our purposes and thus can avoid model fi tting and its associated 
caveats, such as the bias imposed on the results by limited training data. 

 We used computational simulations to put some speculative hypotheses about 
clinical research to test. We not only verifi ed some speculations, but also showed the 
nuances and conditions of the eff ects of these biases. " e results of our study inform 
the specifi c case of research on antidepressants, yet they are extendable to RCTs in 
general. Our methods can serve as examples of possible ways to evaluate speculative 
hypotheses about research practices.  

   Appendix  

 Here we off er further technical details about our methods. 

   Random data generation  

   ! e overall process  

 We generated random HAMD values for the drug and the placebo groups, before and 
a$ er intervention, by a Gaussian random generator. By using a Gaussian random 
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generator we assume that distribution of HAMD values within each group is normal. 
" is is an assumption that can be further investigated in future work. " e parameters 
fed into the random generator were calculated based on real patient data so that the 
resulting distributions resembled actual patient data.  

   Calculating distribution parameters  

 We used one of the most recent and probably the most comprehensive meta-analysis 
of antidepressant RCTs so far published to calculate the parameter estimates (Cipriani 
et al. 2018). " e supplementary material of Cipriani et al. (ibid.) reports the mean and 
standard deviations of the drug and placebo groups before and a$ er treatment for 
several RCTs. " e parameters reported are for various drugs and diff erent versions of 
HAMD. We aggregated these values regardless of the drug. However, we limited our 
calculations only to values reported for HAMD-17 so that the scores used in the 
calculations were all on the same scale. HAMD-17 was the most frequently used scale 
in Cipriani et al. (ibid.), and 537 out of 1199 parameter values were included in the 
analysis. Out of these 537 values, 137 were for placebo and 400 were for various drugs. 
A$ er excluding reports with missing data, we ended up with 105 parameter values for 
placebo, and 337 values for various drugs. For cases where the mean HAMD a$ er 
treatment was reported as the change from the initial mean HAMD, the standard 
deviation was excluded from the calculations of standard deviation because the 
standard deviation in these cases was for the change and not the mean HAMD a$ er 
treatment. " e averages were weighted by the number of participants in each study, 
although this weighting had negligible impact. 

 Cipriani et al. (2018) report standard deviation only a$ er treatment. We obtained 
the standard deviations of the placebo and the drug groups before treatment from 
(Hieronymus et al., 2016). " e other parameters reported in Hieronymus et al. (2016) 
are close to values we calculated, thereby providing some cross-validation. 

 " e only parameter that is diff erent in our calculations from other references is the 
size of the placebo and the drug groups. We calculated sizes of 44 (placebo) and 62 
(drug), while Cipriani et al. (2009) reports average sizes of about 100 participants per 
group and Chevance et al. (2019) say that usually the group sizes are between 100–300 
participants and occasionally even more. " e diff erence between our calculation and 
previous reports is not as drastic as it appears because our estimates are from trial 
reports a$ er dropouts are deducted from the number of participants, while others 
report the sizes at the beginning of the study counting the dropouts in group sizes. 
Nevertheless, we repeated our simulation for 9 diff erent sample sizes ranging from 50 
to 250 to cover both the parameters obtained in our calculations and those in the 
previous reports. 

 On smaller values of  m  a  d  the unavoidable truncation of the normal distribution on 
the lower side (we cannot have HAMD scores less than zero) results in averages 
slightly higher than the assigned  m  a  d . As a result, on these values of  m  a  d , the diff erence in 
the mean HAMD reduction between the drug and placebo groups becomes slightly 
less than what is expected from the diff erence of  m  a  d  and  m  a  p .  
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   Responders based on odds ratio  

 Responder  OR  is defi ned as the ratio of the odds of being a ‘responder’ in the drug 
group ( O  d ) divided by the odds of being a responder in the placebo group ( O  p ). Odds 
of being a responder in each group is calculated by dividing the number of responders 
by the number of non-responders in that group. 

  

  

 where  R  g  is the set of all responders in group  g  (either the drug  d , or the placebo  p  
groups), and | R  g | and | g | are the sizes of  R  g  and  g  respectively. " e 95% confi dence 
interval of  OR  is calculated by the following formula: 

  

 To avoid zero division in eff ectiveness calculations, Haldane-Anscombe correction 
was applied by adding 0.5 to | R  p |  , | p | – | R  p | , | R  d |  , and | d | – | R  d | . 

 Average diff erence in mean HAMD reduction between placebo 
and drug groups 

 For each simulated RCT, we calculated the diff erence in the average reduction of 
mean HAMD score between the placebo and drug groups as follows: 

 Average HAMD reduction in the group  g  (placebo or drug): 

  

 " e diff erence in the average reduction of HAMD score between the placebo and 
drug groups of an RCT was calculated as: 

  

 We calculated the average diff erence in the reduction of HAMD score between the 
placebo and drug groups for a particular combination of parameter values by averaging 
[eqn_163b] of all RCT repeats with that specifi c parameter combination (number of 
repeats = 1000): 
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 For studying publication bias, only the trials that pass the publication bias fi lter 
enter the calculation of average diff erence in the mean HAMD reduction between the 
placebo and the drug groups (| published |: number of published studies). 

  

 We test a range of values for  β . But to have an estimate of the realistic value for  β , we 
can use the reports that show publication bias converts a 50-50 success-failure ratio to 
a 94-6 ratio. " is means: 

     

   Notes  

    1 A limitation of our discussion here is that the move from the FDA dataset to the 
published dataset may not be merely a matter of publication bias but may also be 
aff ected by p-hacking, multiple publication of positive studies, etc.     
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