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Abstract Biology seems to present local and transitory regularities rather than
immutable laws. To account for these historically constituted regularities and to dis-
tinguish them from mathematical invariants, Montévil and Mossio (Journal of Theo-
retical Biology 372:179-191, 2015) have proposed to speak of constraints. In this
article we analyse the causal power of these constraints in the evolution of biodi-
versity, i.e., their positivity, but also the modality of their action on the directions
taken by evolution. We argue that to fully account for the causal power of these
constraints on evolution, they must be thought of in terms of normativity. In this
way, we want to highlight two characteristics of the evolutionary constraints. The
first, already emphasised as reported by Gould (The structure of evolutionary theory,
Harvard University Press, 2002), is that these constraints are both produced by and
producing biological evolution and that this circular causation creates true novelties.
The second is that this specific causality, which generates unpredictability in evolu-
tion, stems not only from the historicity of biological constraints, but also from their
internalisation through the practices of living beings.
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1 Introduction

The evolution of biological forms and functions does not seem fully explained
by the laws that make physics intelligible (Longo et al., 2012). Evolution is less a
mechanical sequence based on efficient causality than a process whose entities are in
perpetual change (Dupré & Nicholson, 2018; Simons, 2018). It displays a continuity
of forms, but also a progress: the lineages evolve in certain directions, without the
space of the possible directions being predetermined. This does not mean that there
is no stability nor regularity in the evolutionary process. On the contrary, evolution
appears to be highly channelled. To account for biological regularities, Montévil and
Mossio have proposed a theory of constraints (2015). This concept aims to explain
how a certain entity can act, at a given moment, on processes. These entities are
constraints for specific processes: they are local. They are also transient because his-
torically constituted (Montévil, 2020). Through this concept, the authors manage to
explain the relative stability of biological systems as a closure of constraints that
channel biological processes. In this article, we will question the role of these con-
straints in evolution, beyond the scale of biological systems. Our aim is to account
for their emergence from evolutionary history and to understand how they explain,
and how they canalise the directions taken by evolution. We are therefore less inter-
ested in understanding how they stabilise biological systems than in identifying the
causality of these constraints, which makes them a real driving force in evolution
and generates biodiversity.

The argument of this article is that biological constraints should be thought of as
norms when trying to appreciate their causal role in the evolution of the biodiversity
structure. It has been argued (Longo et al., 2012) that constraints in evolution are
not necessitating their effects but enabling certain evolutionary directions. In this
article, we wish to take up this idea by analysing more precisely the causal force of
these constraints in terms of normativity, in order to give a concrete account of cau-
sation in evolution.

2 Trying to account for the regularities of evolution

Evolution appears to be a relatively determined and channelled process. It displays a
certain coherent stability: the evolution undergone by a species appears as linear and
progressive; we observe similarities between organs performing the same function
in different lineages. It also seems that not all transformations are possible; some
morphologies may be inaccessible to some species: as Fodor (2007) says, pigs will
probably never have wings. But although there is now a solid theory of evolution
based on Darwinism and genetics, it remains difficult to comprehensively account
for these regularities and to fully identify their sources.
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2.1 Telos in evolution?

In order to explain evolutionary regularities, attempts have sometimes been made to
use the Aristotelian concept of telos. Dennett for instance conceives of evolution as
the progressive actualisation of the different possible phenotypes within a pregiven
“Design Space”: “Design is Aristotle’s felos, an exploitation of Order for a purpose”
(1995, p. 64), the purpose of an organ adapted to a given ecological problem. What
would explain the regularity of evolution would be the limited number of available
solutions, i.e., of possible phenotypes. Beyond the shortcomings of such a teleologi-
cal approach of evolution (Grene, 1972), the main problem with this conception is
that it implies a form of fixism or essentialism, which would consist in thinking that
all the possible biological forms would be given a priori, from all eternity, evolu-
tion being just the history of their materialization. This leads us back to an idealistic
vision, of the same type that Darwin already refuted, which made the species a form
existing from all time. As Darwin showed, species is a naturalist’s abstraction, the
species being merely more pronounced varieties, the evolution of a lineage consist-
ing of the gradual transformation of an individual difference into a variety, then a
species (Darwin, 2001, p. 54; pp. 60—61). There are no pre-ordained forms, prior to
evolution.

2.2 The library of mendel

Another way of grasping the regularities in evolution (complementary to the first)
would be to assume that there would be rules preceding evolution, given by genet-
ics. This idea is present in Dennett (1995) who speaks of a “Library of Mendel” as
a genetic repertoire latently indicating the possible directions of evolution. It is true
that genes structure evolution insofar as they carry the information allowing the for-
mation of the organism, and a certain number of genes or groups of genes are found
in different lineages—such is the case of the Hox gene which direct the development
of the antero-posterior axis in vertebrates. But genetic sets change from one spe-
cies to another, and from one organism to another, and more importantly the genetic
processes themselves evolve over time. For instance, the presence of the Pax-6 gene
(which is also a development gene but structurally distinct from the Hox gene) in
several phyla (not only is it present in cephalopods and humans, but homologous
genes are found in drosophila and fish) seems to reveal a strong necessity in the
eye’s induction processes. But its functioning and expression are specific to each
species: it controls the action of other genes which are specific to different species
and whose effect is to result in eyes which are also specific. “[...T]he mechanism of
eye induction may be conserved across the animal kingdom. However, [there is a]
dramatic variation of eye structure not only between vertebrates and invertebrates,
but also within the vertebrate lineage” (Neumann & Niisslein-Volhard, 2000, pp.
2138-2139). The way in which genes are expressed is not preordained and depends
on the unique biological situation of the organism, which results from evolution
itself.
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2.3 Natural selection and the adaptation requirement

To account for evolutionary regularities, some have proposed to conceive of
natural selection as an algorithm that would sort through the genetic repertoire.
According to Dawkins (1996, pp. 46-50), this algorithm should be thought of as
follows. A text would be typed randomly and copied several times with a certain
degree of random errors. The computer would choose, among the descending
sentences of this first set of random letters, the one that would most resemble
a “target phrase” determined in advance: the closer the phrases would be to the
target, the more they would reproduce. The action of natural selection would be
comparable to that of this algorithm which eliminates the texts furthest from
the target; in evolution, the target would be adaptation. Even if it takes different
forms depending on the situation, adaptation would be maintained as the gen-
eral form of an imperative: that of survival and reproduction. Indeed, lineages
persist by virtue of the interactions that organisms have with the environment,
and these interactions are only maintained if they guarantee an adjustment of the
species to the ecosystem in which they evolve. Therefore, adaptation could be
considered as the consistent rule of evolution, explained by natural selection and
that would account for the directions taken by the evolutionary process. How-
ever, this rule appears to be more of an imperative of efficiency (an individual
who is not able to survive... does not survive), a minimal condition, than a real
principle of explanation of the form taken by biodiversity and morphological
evolution.

2.4 Failure of these proposals

All these attempts to account for the regularities in evolution derive from a
static, nomological view of evolution as resulting from immutable laws. This
is why they try to account for the observed stabilities in a monolithic way, even
if it means falling into a deflationary explanation that only gives a negative
account of the directions taken by evolution. Jointly, the entities under consid-
eration (organisms, species) are seen as ontologically preceding evolution. This
is a substantialist view of evolution, outdated since Darwin. Evolution is the
process by which species are generated and evolve (let us note that it is spe-
cies or populations that evolve, not individuals); from this point of view, both
species and organisms are secondary to evolution. They take their forms from
this process, and, above all, they are transient in respect of the process itself.
Biological evolution is indeed a process in the strong sense given by Dupré and
Nicholson (2018, pp. 11-14): it is extended in time, and this flow of time means
change. Change is thus ontologically primary with respect to the entities that
it produces. Thus, in biology, “entities” appear as “transient patterns of stabil-
ity” (Ibid., p. 13): organisms are constantly changing, species evolve, diverge,
become extinct, new species arise... They are not fixed entities, but processes
that are relatively stable (Miquel & Hwang, 2016), or, as Peter Simons puts it
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“precipitates of processes” (Simons, 2018, p. 55). What is fundamental in evolu-
tion is not the entities, which are always transitory, but the dynamic processes
that give rise to their relative stability (Soto et al., 2016a, 2016b).

Thus, in order to explain the regularities in evolution, it is necessary to move
away from a nomological and monolithic approach and to take into considera-
tion their historicity.

3 Evolutionary constraints and history
3.1 Historical constraints

Following Gould and Lewontin (1979), we do not deny either the necessity of adap-
tation nor the constraint of the genetic heritage but wish to demonstrate that these
conditions alone are not enough to explain the diversity of forms or the dynamics
of the process. Evolution towards adaptation is subject to multiple other conditions,
which, as Gould shows (2002, pp. 1027-1037), appear as constraints for a pan-adap-
tive explanation; since they are non-classical factors that act differently from what
orthodoxy predicts. But they are also real constraints since they canalise change,
whether they are structures inherited from the past or physical determinisms. These
constraints should not be understood in the sense of mere obstacles, but also in their
positivity. Gould posits two characteristics of constraint (2002, p. 1026):

(1) “Coherent set of causal factors that can promote evolutionary change”.!

(2) “The concept of constraint must include theoretically legitimate and factually
important positive meanings—i.e., constraints as directing causes of particular
evolutionary changes—rather than only the negative connotations of structural
limitations that prevent natural selection from crafting an alteration that would
otherwise be favored and achieved”.

Gould distinguishes three types of constraint, all of which are linked to the his-
tory of organisms and thus also of evolution. The first is the functional constraint,
which comes from natural selection, i.e., the necessity of adaptation, the terms of
which are set by the current conditions of the environment. It must be stressed that
even this constraint has a historical dimension insofar as the environment sorting
out the fitted variations is also shaped by the way organisms have lived in and thus
transformed this environment. In addition to this first “orthodox” constraint, there
is the structural one, which can come from the direct action of physical laws on the
plastic matter (an ahistorical phenomenon)—for instance, the fact that flying fish fall
back into the water because of their mass, is not only a physical necessity but a bio-
logical aptation (i.e., it is aptive, even though it is not an adaptation built by natural
selection) (2002, p. 1054). But it can also be the constraint of the architectural laws

! Insofar as he wants to distinguish these constraints from the “classical”, i.e., functionalist, causes of
Darwinism, he restricts his definition of constraints to morphological structuralism.
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Historical vertex

Functional vertex Structural vertex

Fig. 1 Aptive triangle redesigned from Gould, (2002, p. 1052). The three vertices correspond to the dif-
ferent influences on the formation of a trait (the trait will correspond to a point located inside the triangle
according to the respective influence of these three vertices). “Standard triangular diagrams for depicting
basic causes of form as functional (immediate adaptation to current circumstances), historical (inherited
by homology, whatever the basis of ancestral origin), and structural, or arising either as physical conse-
quence of other features or directly from the nature of physical forces acting on biological materials. All
vertices may yield aptive traits of great utility to the organism” (Gould, 2002, p. 1052)

determining the appearance of traits as non-adaptive corollaries of other structures,
which can then be co-opted. Gould gives as an example the correlation between the
presence of a second row of teeth and the abnormal hairiness of Julia Pastrana (/bid.,
p- 1055). This correlation is determined by homological constraints between hairi-
ness and dentition that originate in the phyletic singularity of mammalian develop-
ment. These constraints are born of the evolutionary history of organisms, but they
can also guide future evolution by canalizing evolutionary change. This is the case
of the fontanelles, constraints specific to vertebrates, due to the development of the
skeleton, and which subsequently became functional in mammals insofar as they
allow the skull to deform during the compression of parturition (Darwin, 2001, p.
180). Finally, there are the genealogical constraints: traits inherited from ancestral
forms, whether or not it has been shaped by natural selection, which constrain and
positively orient both the possibilities of immediate change and the settlement of the
morpho-space.

To account for the positive dimension of these constraints, Gould thinks of their
role in the formation of aptive traits. He proposes an “aptive triangle” based on the
model of the triangle used in petrology (Fig. 1). Each of the vertices corresponds
to one of the three constraints, understood as an influence canalizing evolution. To
explain the appearance of a trait, all the three vertices should be considered (the
trait will correspond to a point located inside the triangle according to the respec-
tive influence of these three idealised vertices). However, if the condition of evo-
lution is the adaptation of organisms, an adaptation subject to internal constraints,
what seems fundamental to understanding the respective role of these constraints in
the appearance of a trait and thus, more broadly, the directions taken by evolution,
is history. For it is history that explains the inhomogeneous distributions of organ-
isms across the potential morpho-space of good organic design. The occupation of
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Fig. 2 The entropy in evolution, redesigned from Brooks & Wiley, (1988, p. 40). The difference
between H,,,. (increasing entropy maximum) and H,,, (the observed entropy) is organization, while

max
the value of Hobs is a measure of the entropy of the system. If this scheme is applied to evolutionary

lineages (1988, p. 43), H,,, measures the historically realized diversity. The historical exclusion of the

expression of certain kinds of information is measured by the difference between H,,,, and H ;. The aera

above H,,,. corresponds to impossible combinations because no novelties exist (at the time observed).

max

But what is impossible at one moment may become possible at a later time period. It can also be applied
to represent the gap between the number of possible genotypes H,,,, and the distribution of observed
genotypes H,,, (1988, pp. 44-45)

obs

morpho-space is not explained by natural selection alone: it does not represent the
figure of the best possible solutions to functional problems, but depends on a bun-
dle of constraints, which are all ultimately explained by history (Gould, 2002, pp.
1055-1056).

3.2 The ever-changing space of possibilities

This conception makes it possible to account for the plurality of evolutionary con-
straints, as well as for their historicity. Nevertheless, their action is not only nega-
tive: they channel the future by opening its possibilities. If constraints were com-
pletely stable, the evolutionary process would only be entropic, and thus predictable:
as time progresses, organisms would occupy more and more possible places in
morpho-space; a decrease in organisation and an increase in disorder would be
achieved. Yet, what is observed is “a decisively non-random, occupation of a theo-
retical ‘design space’” (Gould, 2002, p. 1055), and even an increasing organisation
in the genealogies and in the organisms (based on the observation that living forms
become more diverse and complex, Bailly & Longo, 2009; McShea & Brandon,
2010) which is opposed to the idea of entropy itself. This problem is taken up by
Brooks and Wiley (1988). According to them, evolution is an entropic phenomenon
(because of the variability of organisms, the further time goes by, the more pos-
sible genotypes, i.e., possible microstates, are occupied by organisms), even though
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a growing organisation in biodiversity is observed, i.e., an increasing distance from
randomness, both within organisms and in the structuring of niches. To understand
this, the historical dimension of evolution and its constraints must be considered.

In biology, unlike in physics, history has a special efficacy in that it is not the
exploration of a pregiven space of possibilities (or phase space): the phase space is
constantly changing in ways that cannot be predicted. Brooks and Wiley conceive
this change in terms of growth: the more time goes by, the more microstates there
would be. Organisation would emerge from a difference in rhythm: the increase
in the phase space would be faster than the realised increase in entropy (Fig. 2).
Longo, Montévil and Kauffman show that in reality the change in phase space is
not quantitative. Since the relevant observables in biology are not invariants (they
are instead characterised by their variability, Longo et al. ) and since the constraints
that structure the phase space are themselves historical (Montévil, 2020), it is the
very structure of the phase space that changes over time, albeit with a coordinated
increase in entropy and organisation. This last point stems from the fact that the
phase space itself is historically constituted. It transforms while retaining something
of its past structure: the ontogenetic constraints, born of evolution, canalise the suc-
cessful realisation of genotypes, even if the genotypes not realised may be acces-
sible microstates; certain genotypic combinations are also made impossible by the
fact that speciation has distributed genetic information across different lineages over
time (lineages that do not reproduce each other).

Therefore, it is the historical dimension of constraints that gives them their posi-
tive dynamic. Constraints in evolution emerge from the evolutionary process and
orient it by redefining the space of possibilities. Not only do they canalise change as
they prevent biological systems from occupying all possible genetic configurations,
but they themselves evolve in such a way that the space of morphological phases
is constantly changing: they create new possibilities, which will become new con-
straints (Montévil, 2019). It is this creative dimension that must now be investigated.

4 Biological interactions and evolutionary norms

To understand how these constraints can emerge from evolution while canalising it,
it is necessary to grasp the very process of evolution in its concreteness. Dupré and
Nicholson define it, in the same way as rain, light or fermentation, as an unowned
process (2018, p. 12), because the entities of this process are not its substrates but
its precipitates. Yet, in evolution, the precipitates are at the same time the transi-
tory agents of this process, for evolution is the history of the interactions of living
beings. As Fisher writes, the motor of evolutionary change is “in the actual life of
living things; in their contacts and conflicts with their environments, with the outer
world as it is to them; in their unconscious efforts to grow, or their more conscious
efforts to move. Especially, in the vital drama of the success or failure of each of
their enterprises” (1950, p. 184). Thus, it could be said that since evolution belongs
to no one in particular, it belongs to everyone: it is a process knotted by interactions
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whose agents are in in(de)finite number, that is to say knotted by an indefinite num-
ber of processes (the agents being, as we have seen, stabilised processes).

4.1 Constraints and interactions

Indeed, if the horizon of evolution is the adaptation of organisms to their environ-
ment, this constraint is dynamic: it comes from a history and shapes this history.
It is not a constraint imposed unilaterally and externally by the environment but is
constituted by the history of the interactions of organisms with their environment,
as they also transform this environment. The causality is not unilinear. It cannot be
said that the niche causes the means of survival of the living being and its evolution,
since the niche is what allows the living being to survive (by definition, otherwise
it would not evolve in this precise environment). The phenotype of a living being,
and its niche are defined by each other; hence, no causal priority can be given to
one or the other (Fodor & Piattelli-Palmarini, 2011). Niches are not waiting to be
filled until the day when miraculously the right phenotype appears. The evolution
of the forms of living beings cannot be understood as responses to the constraints
set by the environment, since environment and its stakes are defined on the basis of
phenotypic traits that are supposed to be adaptations: “But that there are spiders,
who would have guessed how to spin webs to catch flies is an ecological problem?”
(Ibid., p. 140). Fodor and Piattelli-Palmarini denounce an inverted reasoning of the
type: locks exist for keys to open them, rather than keys are made to open locks.
They answer the question of this chapter “Did the dodo lose its ecological niche? Or
was it the other way around?”: “The extinction of the dodo was the very same event
as the extinction of the dodo’s way of making a living so neither can serve to explain
the other” (Ibid., p. 147). The constraint emerges from the horizon represented by
the niche: it is neither given by the environment unilaterally nor by organisms.

It is the history of the co-construction of the niche that supplies the conditions for
the survival of organisms and species, thereby channelling the evolutionary process
in certain directions that will produce the new constraints of the niche. Thus, these
constraints are the products of interactions, i.e., concrete, practical relations, which
involve agents: the living beings in relation with each other and with their envi-
ronment. Living beings are not (necessarily) cognitive agents, but they are agents
insofar as they actively take part, through their interactions, in evolutionary history.
“An updated account of evolution [...] should, at least, represent adaptive evolution
[...] as the interaction of agents and their affordances. It should take seriously the
Darwinian insight that evolution is the direct consequence of what organisms do”
(Walsh, 2015, p. 241). Hence, constraints in evolution should rather be thought of as
norms.

4.2 Normative interactions

This does not mean that it is the agents who directly behave normatively, but that
their interactions have a normative part. To capture this, Brooks and Wiley use the
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image of a playground (1988, p. 83). Organisms impose constraints which come
from their genealogy and define the conditions of their self-organisation. There is
also an “ecological hierarchy” which refers to the relationship between organisms
and their environment and which defines another type of constraint: boundary con-
ditions. The latter give the playing field, where the constraints of the organisms pro-
duce the rules of the game. Several games can be played on the same field, but only
one at a time. Biological systems therefore obey organisational rules, and their play-
ground is the boundaries defined by the planet. Evolution is the meeting of changes
in the rules of the game and of correlative changes in the dimensions of the play-
ing field, inasmuch as these changes are reflected in the biological interactions of
organisms.

So far, we have discussed the interaction of organisms with their environment,
but evolution depends on multiple interactions that go far beyond this bilateral rela-
tionship. As Darwin himself pointed out, it relies on the intensity of the struggle for
existence, which is not only a struggle with the environment, but a struggle between
individual agents for access to resources that can take very various forms. Although
we cannot exhaustively illustrate the complexity of the interactive processes at work
in evolution (which range from competition between cells in development to the
differentiated extinction of species in catastrophic upheavals), we will nevertheless
give an example: that of competition between species.

4.3 Interactions of wolbachia

One aspect of this competition is the relationship between the parasite and its host.
This relationship has a normative dimension in that it channels the evolution of the
two species involved, but this channelling is highly dependent on the way the bio-
logical agents interact in their unique biological situation. The interaction of the bac-
terium Wolbachia with different insects is a remarkable example. In the hymenopter
Asobara tabida, Wolbachia is indispensable for the ovogenesis of its host (Dedeine
et al., 2001). But in most other insects, Wolbachia is a reproduction parasite. In
Hypolimnas bolina, it kills males in the embryonic stage, conserving only females
(Dyson & Hurst, 2004). In the woodlouse Armadillidium vulgare, Wolbachia doesn’t
kill males but induces the development of woodlouse embryos into females, irre-
spective of the sex chromosomes carried by the embryos (Cordaux et al., 2011). In
Armadillidium vulgare, there is chromosomal sex determination based on female
ZW/ZZ heterogamety. But when genetically male embryos carry Wolbachia, they
develop into functional females. Wolbachia thus clearly increases its reproduction
since instead of being in a male which will not transmit it to any of its descendants,
it is in a female which will transmit it to almost all its descendants. In addition, Wol-
bachia can pass on its f genetical factor which feminises males (once fis passed on,
there is no need for Wolbachia to be present for feminisation). Some populations
of ZZ females can even be found without the presence of the Wolbachia bacterium
(Leclercq, et al., 2016). However, the nuclear genes carried by the majority sex in
the population are disadvantaged. The risk is that there will be no more male, and
therefore no further reproduction of the woodlouse. As a result, genetic resistances
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to feminisation have been observed in natural populations of Armadillidium vulgare:
mainly the M gene which is able to restore the male phenotype in the presence of f
(Rigaud & Juchault, 1993); but also, a polygenic system that has no direct impact
on the phenotype but limits the rate of transmission of Wolbachia to the offspring
(Rigaud & Juchault, 1992). Another form of resistance, also present in Hypolimnas
bolina (Charlat et al., 2007), is the development of a strong copulatory capacity in
woodlouse males (Moreau & Rigaud, 2003). Interactions with Wolbachia have very
different evolutionary consequences from one species to another, but also within
populations of the same species. It should also be underlined that the resistances are
passed on from one generation to the next. The interaction has therefore created new
constraints in the long term, through genetic changes. The constraint of adaptation
here translates into the fact that the woodlouse must evolve to survive (it is a good
example of the Red Queen hypothesis, Van Valen, 1973). The genetic constraint is
also involved: evolution depends on the genetic variability available. But what really
allows these constraints to orient evolution and transform the process from which
they emerge, is the normativity of the interaction itself, as it takes different forms
from one species to another, and from one population to another.

This normativity of interactions is crucial in medical biology to understand
diseases (see Méthot & Alizon, 2015). The virulence of a microbe, for instance,
depends on the specific interaction between the pathogen and its host: a microbe
is not intrinsically pathogenic, it is the relationship with its host that will define
whether it is pathogenic. In addition, some microbes, initially non-pathogenic on a
particular host, may subsequently evolve and become pathogenic to that host. This
property of pathogenic or not, which seems to be a normative property par excel-
lence ‘good’ or ‘bad’, depends on the host, the microbe, and their interaction. It is
by understanding this normative relationship that we can grasp the direction taken
by evolution. If the parasite is not pathogenic, then there can be co-evolution with
its host; if it is weakly pathogenic, there can be an ‘arms race’; if it is highly patho-
genic, this can lead to the extinction of the host species.

These interactions also define their own evolutionary norms in relation to their
environment. Let’s consider two species of birds from different lineages. The first,
due to its evolutionary history, can only feed on berries while the second can feed
on both berries and seeds. Suppose that the environment contains berries and seeds
in equal proportion: it can be assumed that the species that feeds on both berries
and seeds will feed on the seeds, so as not to compete with the other species. Here
there are evolutionary processes coming from speciation that meet and structure the
ecological space. In return, this patterning has a retroactive effect on the evolution of
these two species: the second species may come to lose its ability to ingest berries. It
is in the reciprocal influence of constrained processes that evolutionary normativity
emerges.

Thus, the role of biological constraints in the directions taken by evolution
depends on the diversity of organisms and their particular ecological situation. /¢
is these various concrete interactions that explain the creativity of constraints, and
which make it necessary to speak, in the case of evolution, of evolutionary norms.
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4.4 Evolutionary norms

The word norm is used in specific cases in biology: the normal versus the pathologi-
cal in medical biology (a polarity famously conceptualised by Canguilhem, 1966),
or in the established expression “norms of reaction” dealing with phenotypic plastic-
ity (West-Eberhard, 2003; Woltereck, 1909). We speak of norm in a broader sense,
since it is the very causality at work in evolution that we propose to think of as nor-
mative. In order to draw up an operational definition of the concept for evolutionary
biology, let us review its different meanings. Apart from the strictly mathematical
sense, we identify three main meanings, based on the definitions listed by Merriam-
Webster Dictionary and ATILF Lorraine (which relates to the French word, but is
more detailed):

a. A regular state in relation to an average.

b. A state of conformity in relation to an average, which then takes on the value of
an “ideal type”.

c. A standard to which one refers to judge, but also to act. Thus, in human produc-
tions, the norm takes on the meaning of a “rule, law in an artistic, scientific or
technical field; conditions that must be respected in an accomplishment; prescrip-
tion that must be followed in the study of a science, the practice of an activity, an
art” (ATILF—CNRS & Université de Lorraine, our translation). It is not a rule
only for judgment, but for practice. Another important characteristic is that it
depends on the socio-cultural context, which is itself changing; it emerges from
practices. This definition emphasises the dynamic dimension of the norm: it gives
directions to a practice, and it emerges from a particular context which comes
from the very history of this practice: it is therefore historical or evolutionary. The
norm has both a creative positivity (its power does not only consist in a limita-
tion but also in the fact that it constitutes opportunities) and emerges from and
structures the interactions and practices of agents who live these norms.

(a) and (b) are static definitions, and therefore are not adequate for thinking of evolu-
tion. It is from (c) that we think we should speak of norms in the evolutionary pro-
cess although leaving aside the cultural framework. These norms are:

(1) Transitory rules which are,

(2) Both produced by and producing a historical process, and

(3) Have a creative dimension (they do not only limit or constrain the process, but
transform the space of possibilities)

(4) Deriving from the fact that they are internalised in interactions, i.e., practices
giving them their power and normative meaning.

Grasping this normativity of biological constraints in evolution also allows us to
understand their causal modality, beyond traditional logic and a substantialist con-
ception of evolution. It is not just a matter of replacing one word with another: con-
straints in evolution do have a normative power.
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5 The normative power of evolutionary constraints
5.1 Their positive value

Biological constraints are not necessitating causes (Longo et al., 2012): they do not
cause a predetermined effect. Nor can they be said to actualise possibilities, since
as we have seen, the possible is not predefined in biology. They form opportunities
for evolution itself (see also Jacob, 1977 or Caporael et al., 2014), opportunities that
were not predicted, and which generate real novelties.

This is why Montévil speaks of constraints as possible innovations: “the con-
straint plays a role, and this role is performed in a specific manner by generating
other constraints” (Montévil, 2019, p. 4574). He takes the following example: “artic-
ulated jaws enabled teeth such as molars which can crush food. However, crushing
food with the mouth was and still is not an actual possibility at all for Chordates
without articulated jaws” (Ibid., p. 4575). The evolutionary novelty of articulated
jaws is part of the organisation of an organism in such a way that it becomes a struc-
tural constraint, but also widens the space of possibilities in the organism by offer-
ing the opportunity for a new function: crushing food. The emergence of the first
novelty (articulated jaws) is a necessary ingredient for the second novelty (teeth)
to be able to play a functional role (crushing food). Thus, new traits allow second-
ary novelties that could not have been foreseen before the appearance of these new
traits. And it is by this very fact that innovations acquire their constraining aspect
in the sense of a stabiliser: “a novelty may become deeply integrated into certain
biological organizations, making its complete disappearance unlikely to be viable”
(Ibid., p. 4576). Both a channelling force and a breeding ground for innovation, evo-
lutionary constraints have both aspects (1) and (2) of norms. We may add from the
example we have just studied that it also has a creative dimension (3).

5.2 The creative circularity of constraints

But to better appreciate (3), let us consider a more paradigmatic example found in
Gould, which highlights the creativity of constraints by revealing the diversity of
meanings they can take on in the course of history. This example follows on from
an excerpt of The Genealogy of Morals by Nietzsche on historical research, that
Gould (2002, p. 1216) uses to think of evolution: “‘Namely, that the origin or the
emergence of a thing and its ultimate usefulness, its practical application and incor-
poration into a system of ends, are tofo coelo [entirely, or literally ‘to the highest
heavens’] separate; that anything in existence, having somehow come about, is con-
tinually interpreted anew, requisitioned anew, transformed and directed to a new
purpose’”. Rather than simply referring to cases of exaptation (a change in function
of a structure in the course of evolution), Gould gives an example of what could
be called an “overloading” (Longo, 2018, pp. 457—458) which further reveals the
abundant and unpredictable creativity of evolutionary constraints. While Gould does
not embrace the full Nietzschean analysis, he “do[es] appreciate Nietzsche’s point,
which can be translated into evolutionary terms as the source of constraint” (Gould,
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Fig. 3 Reinterpretation of the aptive triangle from Gould, 2002, p. 1059. The arrows ------.-..... » reflect

the functionalist interpretation of the theory of evolution, which sees history and structure as constraints
imposed on the functional vertex. The arrows ~—a are added to highlight the causal circularity of con-
straints on each other. The arrows — — - indicate the various meanings that these constraints can take
on for the organism. They usually appear successively. They may be contemporary with each other (func-
tional overload), or on the contrary be mutually exclusive (exaptation). These different meanings are not
predictable because they arise from the causal circularity of the constraints which are themselves transi-
tory

2002, p. 1218). He adds: “The original reason does continue to exert a hold upon
history through the structural constraints that channel later usages. Once feathers
originate for thermoregulation, the form of any later utility for flight will be influ-
enced by features built for the original context” (Ibid.). This diversion through
Nietzsche underlines the fact that the historical constraints that have come to crystal-
lise in evolution also constitute reserves of potentialities. Gould refers to the remark-
able case of overloading found in the black heron Egretta Ardesiaca, which uses its
wings to shade the shallow water of its habitat, “thus providing a clear view of avail-
able prey” (Ibid., p. 1225). It is implausible that the wings originally evolved for the
sole purpose of shading so that the herons could better see their prey. On the other
hand, it is probable that wings evolved in the context of the advantage that flight pre-
sented for these animals, and that subsequently this structural adaptation may have
taken on another possible meaning: that of shading to find prey. But Gould goes
even further back: in fact, it is likely that “feathers were initially coopted for flight
in a much older functional shift, a defining transition in avian phylogeny from a dif-
ferent initial role, perhaps in thermoregulation” (he refers to Kingsolver & Koehl,
1985; Gould, 2002, p. 1226). This example enriches the aptive triangle by an excess
at the level of the functional vertex, which would come from the creative circularity
of the different constraint vertices (Fig. 3). The causality is thus less rectilinear than
circular. And there would be a sort of indefinite accumulation at the functional level,
an accumulation which is no longer so much structural (even if it is accompanied by
phenotypic changes) as semantic.
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5.3 A continual reinterpretation

There is a causal circularity coming from the perpetual reinterpretation of the con-
straints by the organisms which make them true evolutionary norms. From this
perspective, it should be underlined that some constraints did not emerge from the
functional vertex: there are some actual aptive features which were originally non-
aptations. Their evolutionary meaning changed in the course of history. This is the
case of the fontanelles we mentioned. This also the case of the repetitive DNA that
Gould and Vrba describe as “nonapted features, available for cooptation later, but
not serving any direct function at the moment. When coopted, they will be exapta-
tions in their new role (with secondary adaptive modification if altered)” (1982, p.
11). Another example provided by Gould (2002, pp. 1282—1284) which will enable
us to apprehend the evolutionary dynamics of these constraints, this time on an eco-
logical scale, is that of Linepithema humile. In Argentina, these ants split into colo-
nies of genetically closer individuals, colonies that compete with each other, with
the result that the entire species remains at relatively low population density lev-
els. This is not the case in California. The population of ancestors of the ants that
invaded California presented a genetic bottleneck (the population probably came
from a single indigenous colony in Argentina). Being all very close genetically, they
formed a single large colony of ants which quickly invaded California, their pop-
ulation not being regulated by inter-colonial conflicts. Their ecological success in
California paradoxically stems from the disappearance of an adaptation (colony rec-
ognition) induced by the loss of genetic diversity. Hence, the constraint represented
by the loss of diversity proved adaptive in this particular context and transformed
the Californian biotope. It should be added that this feature could also prove to be
“pathological” in the event of sudden environmental changes, since the lack of com-
petition could again lead to a genetic drift that would either lead to a situation like
that in Argentina, or to extinction.

These examples show the creativity of constraints (3) through their perpetual
reinterpretation. They reveal the way in which these reinterpretations emerge from
evolution itself, as a historical process (2), while at the same time channelling that
same process (1). But it is (4) that is crucial to understanding the modality of their
causal power. Gould often refers to constraints as forming “reservoirs of potential”
(2002, p. 49) and as generating evolvability (Ibid., pp. 1270-1295). He writes about
the genetic development pathways: “the constraints of these rules have provided
more flexibility in their fecund channels than limitations through their ’forbidden
places’” (Ibid., p. 1272). But how do these constraints orient evolution towards non-
determined possibilities? How do they induce evolutionary change? By what causal-
ity do they channel evolution? There are two indissociable questions here: what is
the exact modality of their causal power? And where do they get this causal power
from? This is where we think it is crucial to understand evolutionary constraints as
norms: these two questions are resolved if the power of these constraints is under-
stood as normative.
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5.4 Trying to think modality beyond Aristotelian categories

In Aristotle (2017, pp. 12, 21a35—13, 23b27), there are four fundamental modal-
ities. The possible (that which does not imply contradiction and can therefore be
true) is the contradiction of the impossible (that which implies contradiction, i.e.,
that which cannot be true); the necessary (that which cannot be otherwise than it is
and therefore cannot not be true) is the contradiction of the contingent (that which
could have been different from what it is; its contrary was also possible, i.e., it can
be false). These four modalities imply a pre-determined space of possibilities, and
hence appear insufficient for thinking of the causal force of evolutionary constraints,
and of their potential. Most physical laws entail a necessity: they indicate that, in a
given situation, if the conditions are met, the effect will occur. But biological con-
straints do not necessitate as physical laws do. Their historicity and the multiplicity
of singular processes that characterise the situations in which they are actualised
make them shifting norms that do not display a predictive uniformity. And yet, if
they widen the possibilities of evolution, they allow the organisation of biological
phenomena, in so far as evolution is not a process that would tend more and more
towards randomness. This is why their normative power cannot be considered as
part of the category of possibility either. They orient evolution in such a way that
it does not realise just any possibility, but some possibilities rather than others: the
most functional and relevant ones, the possibilities leading to an increasingly organ-
ised evolution.

Mumford and Anjum seek a third modal path between necessity (and its contra-
dictory: contingency) and possibility (and its contradictory: impossibility), because
these categories do not allow for an account of the canalising power of processes
(2018a, pp. 31-35) which they speak of in terms of tendency. Processes fend in cer-
tain directions, without these directions being necessitated, nor having the status of
mere possibilities. The modal status of the tendency would be irreducible to the tra-
ditional modalities and would lie somewhere between pure necessity and pure con-
tingency (Mumford & Anjum, 2011, p. viii). They call this modality dispositional
and ground it on a metaphysical conception of reality that conceives of all causality
in terms of process (Ibid., p. ix).? In Getting causes from powers, the dispositional
modality is described as follows: given a cause A, the effect B is not just one pos-
sibility among others; A fends to manifest B if nothing prevents it. However, this
formulation fails to really break out of the traditional logic because it could be con-
nected to a sense of contingency already present in Aristotle: ¢ &xi T0 mol0 (what
most often occurs, 2009, I 3, 25b14 and I 13, 32b7) and which is statistic. Mumford
and Anjum write that the dispositions are “disposed to happen in a non-negligible
probability” (2011, p. 181). Moreover, it seems that dispositional modality is not

2 1t should be stressed that the modality they propose is rooted in a metaphysics of powers that presup-
pose a non-necessitarian conception of causality in general, and not just for certain processes. We do
not wish to get into such a metaphysical consideration but use their model to consider the modality of
biological phenomena, insofar as it allows us to overcome Aristotelian logic by thinking causality in a
processual way.
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irreducible to necessity, since it could be described in terms of conditional neces-
sity (the expected effect occurs if other causes do not interfere). According to Sin-
clair (2019), in order to account for this sui generis modality, one would have to
go beyond external manifestation and say something about the internal force, inso-
far as it may not come to manifestation. This is what Mumford and Anjum propose
in What tends to be when they argue that a tendency is an internal force that may
produce an effect without requiring it but may also not come to its manifestation
even though there is nothing to prevent it (2018a, pp. 17-18). The force or power
in its manifestation is intrinsically a function of tendency rather than necessity. It is
the power of a causal process constituted by its temporal thickness: it takes time to
unfold, a time during which “some properties will be lost, and new properties and
new interactions might be introduced” (Ibid., p. 80). Sinclair (2019) tends to account
for this last point by calling on the internal experience of inclination that would
allow us to think concretely of dispositional modality by revealing the efficacy of
the very duration of the process. It is also this processual dimension that Mumford
and Anjum emphasise to conceive causality in biology, a realm characterised by
perpetual change and activity (2018b). They give the example of pregnancy: it can
be thought that it goes from cause (the sexual act) to effect (the birth of a child).
However, pregnancy is not a linear process going from reproduction to birth; many
other processes are at stake which interact with and even contribute to this primary
process: bodily, physiological, hormonal changes...

5.5 Normative modality and biological practices

But this approach seems insufficient for biological evolution, in two respects. On
the one hand, it does not account for the reconfiguration of the space of possibili-
ties specific to biological evolution. The authors conceive the dispositional modal-
ity as applying to any phenomenon. They underline that there are degrees of pos-
sibilities, which seem to be linked to probability. Yet, probability is a measure on
a given space of possibilities. Thus, they do not address the truly innovative nature
of the possibilities created during evolution. The authors investigate the causal link
between A and its typical manifestation B. But in evolution, B is not predetermined,
and is therefore not predictable no matter how much information is available about
A. It is no coincidence that the biological example given by Mumford and Anjum is
not borrowed from evolutionary biology. In evolution there are no typical manifesta-
tions, only special cases. As Longo puts it «biological events are rare [...] in view of
their biological specificity or historicity: each event is individually rare, even if this
type of events happens continually in evolution and contribute to the construction of
all phylogenetic paths” (2018, p. 469). On the other hand, the authors underline the
close link between the manifestation of the effect and the continuity of the process
that causes it, but do not account for the fact that, in evolution, the causality displays
a creative circularity: the evolutionary norms, are both produced by and producers
of the evolutionary process. They indicate that what accounts for dispositionality
in biology is the fact that life is made up of activities, but do not directly link these
activities with their conception of causality.
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We believe, on the contrary, that these activities must be at the centre of a con-
ception of causality in evolution, since it is they that account for the creativity of
evolutionary constraints as well as their specific causality. It is because constraints
arise from interactions that are woven by agents, and because, from this point of
view, they constitute real biological norms, that they have the power to canalise evo-
lution. To understand the causality of constraints in evolution, it is therefore neces-
sary to take into consideration the agency of living beings. For it is living beings that
internalise and manifest them through practices, i.e., activities that are embedded in
and transform their living conditions and thus the rest of evolution. This is why,
to envision this driving role of organisms in evolution, Walsh proposes an agent
theory. For ecological constraints, for example, to have a truly positive action, they
must form opportunities for organisms. Hence, the latter must be true agents, i.e.,
beings capable of experiencing these conditions as affordances and of responding
to them through practices likely to transform these very conditions (Walsh, 2015,
p- 163). The living themselves actively constitute the constraints to which they are
subject, through their agency (Ibid., p. 173). Thus, the power of the evolutionary
constraints comes from their normative part, from the way in which living beings
internalise them in activities that create new constraints that can transform evolu-
tionary history. If we look back at the example of the functional overloading of the
black heron’s wings, the morphological constraint (the feathers) resulting from the
adaptation of thermoregulation constituted a crucial opportunity since it enabled
the heron to fly. The practice of flight by the heron led to a selection such that the
proto-wings became real wings: this practice was actualised in a morphological con-
straint, underpinned by genetic processes. And in return, this constraint allowed the
emergence of a further new practice (and therefore also a new function) through the
use of the parasol wing. The creative circularity of evolutionary constraints becomes
illuminating when they are understood as norms whose multiple meanings arise
from the concrete practices of organisms conceived as biological agents. Similarly
for the diverse interactions of Wolbachia: it is within each interaction, in the way it
is concretely tied up by the agents involved, that evolvability is played out. Neither
the historical, morphological and ecological data nor the imperative of adaptation
determine the directions taken by evolution. Instead, these constraints act as norms
that living beings internalise into biological activities canalising future evolution.
Let us emphasise that internalisation here is not psychological nor subjective: liv-
ing beings are not necessarily cognitive agents, but they are agents insofar as they
experience these biological norms in the particularity of their situation and trans-
form them by their likewise particular practice. The changes in meaning of the black
heron’s wing, or of the interaction of host and parasite, do not require a passage
through conscious subjectivity, but only a passage through the activity of the living
as historical interactions that constantly transform the constraints they inherit into
new possibilities.

This leads us to the first point that the dispositional modality failed to account
for: the change in the space of possibilities, and thus the unpredictability of evolu-
tion. The various consequences of the presence of Wolbachia on the evolution of
its host reveal the importance of the internalisation of norms in interactions which
are always particular cases. The biological norm is always local and transitory, i.e.,
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specific to a time and place in evolutionary history. And it is within these “rare”
conditions—in the sense given by Longo (2018): specific, historical—that living
beings experience these norms through practices that are also rare. Therefore, it is
because evolutionary constraints constitute norms for living beings that they can be
truly innovative: they owe their power to the way organisms internalise them. They
arise from the evolutionary process as it is shaped by the activities and practices of
living beings, but they also channel this process, and even generate its future pos-
sibilities, through internalisation, i.e., the way in which living beings experience
these norms and actualise them through practices in the specificity of their unique
situation. It is precisely because these norms are internalised in the practices of par-
ticular agents in specific situations that evolution is truly unpredictable (the phase
space is perpetually changing).

The outcome B is not predictable from the norm A, because the very possibil-
ity of B emerges from the way particular agents internalise A through an equally
particular or rare practice C. It is from this internalisation that biological constraints
derive their power: they become norms for evolution.

6 Conclusion

Our aim was to clarify the causal power of biological constraints on the evolution of
biodiversity. We argued that this power became illuminating if thought of in terms
of normativity. We began with a critical moment aimed at identifying the inadequa-
cies of the explanations traditionally proposed to account for regularities in biol-
ogy. Moving away from these nomological, often monolithic, and in any case static
conceptions of evolution, we proposed an analysis of the multiple constraints that
canalise the forms taken by biodiversity. We highlighted that these constraints were
historical, and that this history was woven by the interactions of living beings. We
then studied these interactions to show that they had a normative dimension: they
may be vital or fatal for the survival of organisms, and they redefine their condi-
tions of existence. This led us to reconceptualise biological constraints in evolution
in terms of evolutionary norms, embracing four characteristics. They appear as bind-
ing conditions for biological evolution (1), deriving from the evolutionary process
itself, while channelling it and opening its future possibilities (2). These possibilities
are not predetermined in a predefined phase space (3) but emerge from the very way
in which living beings internalise these norms in practices specific to their particular
situation (4). Finally, we have shown that conceiving biological constraints in evolu-
tion as evolutionary norms allows us to shed light on the modality of their causal
power, inadequately captured by the categories of traditional logic inherited from
Aristotle, while accounting for the nature of the entities at stake: biological agents.
This concept of normativity is not intended to replace the existing work on con-
straints, nor the work on process biology, but it is meant to elucidate the role of con-
straints on the directions taken by biological evolution, bringing forward the agency
of living beings.
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