
Received 14 September 2024, accepted 4 October 2024, date of publication 8 October 2024, date of current version 17 October 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3476164

Enhancing Malicious Code Detection With
Boosted N-Gram Analysis and Efficient Feature
Selection
NASTOOH TAHERI JAVAN 1, (Senior Member, IEEE),
MAJID MOHAMMADPOUR 2, AND SEYEDAKBAR MOSTAFAVI 2
1Computer Engineering Department, Imam Khomeini International University, Qazvin 34148-96818, Iran
2Department of Computer Engineering, Yazd University, Yazd 8915818411, Iran

Corresponding authors: Nastooh Taheri Javan (nastooh@eng.ikiu.ac.ir) and Seyedakbar Mostafavi (a.mostafavi@yazd.ac.ir)

ABSTRACT A fundamental challenge in virology research lies in effectively detecting malicious code. N-
gram analysis has become a cornerstone technique, but selecting the most informative features, especially for
longer n-grams, remains crucial for efficient detection. This paper addresses this challenge by introducing
a novel feature extraction method that leverages both adjacent and non-adjacent bi-grams, providing a
richer set of information for malicious code identification. Additionally, we propose a computationally
efficient feature selection approach that utilizes a genetic algorithm combined with Boosting principles.
Our experimental results show that this detection system significantly outperforms existing methods in
virus detection accuracy. The system improves detection accuracy by 15% and reduces false positives by
20% compared to traditional n-gram techniques. Additionally, it cuts computational overhead by about
30%, making it suitable for real-time applications. These advancements demonstrate the effectiveness and
practicality of our approach. Future research will focus on applying our methods to polymorphic viruses and
other malware to further enhance their robustness and applicability.

INDEX TERMS Boosting, classifier ensemble, feature selection, genetic algorithms, malicious code, N-
gram analysis.

I. INTRODUCTION
The ever-escalating arms race against cyber threats sees
malicious code constantly evolving, posing a persistent chal-
lenge to traditional virus detection methods that rely heavily
on pre-defined virus definitions [1]. These signature-based
approaches struggle to identify novel and sophisticated
threats, leaving critical security gaps that cybercriminals can
exploit [1]. To address this critical challenge, this paper
explores the application of machine learning for robust virus
detection. This approach utilizes diverse features, such as
binary formatting, string sequences, and behavior-based anal-
ysis, to train machine learning models that can effectively
identify both known and unknown malicious code [2], [3].
Machine learning, a branch of artificial intelligence, aims to
identify patterns in training data to enhance task efficiency

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang .

across various fields, including attack detection and virus
detection [4], [5], [6], [7], [8].

N-gram analysis is a fundamental technique widely used in
fields like natural language processing and document search,
particularly for extracting features [9], [10], [11]. In mali-
cious code detection, it’s adapted to analyze binary code
effectively. Here, consecutive sequences of n bytes within
the code are treated as n-grams, representing unique com-
binations of bytes. The frequency of these n-grams in the
code provides a quantitative measure of their significance.
By examining overlapping sequences of bytes, n-grams can
be systematically computed, facilitating the identification of
patterns and dependencies within the code. This approach
enhances the ability to detect and understand malicious
code structures. Certain n-grams may exhibit distinctive
characteristics or behaviors associated with malicious code,
making their presence or frequency valuable for detection
and classification purposes. By employing machine learning

147400

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6928-3545
https://orcid.org/0000-0001-6897-7924
https://orcid.org/0000-0003-3530-2642
https://orcid.org/0000-0003-3124-9901

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

or statistical techniques, models can be trained to automat-
ically discern and categorize malicious code based on the
byte-level patterns captured by extracted n-gram features.
This approach offers an efficient and automated method for
detecting malicious code across various contexts, ultimately
improving overall computer system security and protection.

Feature selection becomes critical when dealing with a
large number of generated n-grams during the extraction
process [12], [13], [14]. Techniques such as information gain
and frequency of hierarchical documents have been proposed
for selecting informative n-gram features. Information gain
evaluates the relevance of a feature by measuring its contri-
bution to classification, aiding in identifying discriminative
n-grams for distinguishing between different classes of mali-
cious code. Frequency of hierarchical documents analyzes the
distribution of n-grams across a hierarchy of documents or
code samples, pinpointing n-grams with significant discrim-
inatory power. These techniques, among others, address the
challenge of high dimensionality by selecting relevant n-gram
features, thereby enhancing the efficiency and effectiveness
of malicious code detection systems [12], [13], [14].

Within behavior-based virus detection, system call
sequences serve as a cornerstone for uncovering malicious
activity. Researchers leverage two primary approaches to
extract these sequences: static and dynamic methods [9].
Static analysis relies on predefined patterns to identify suspi-
cious behaviors within the code itself. Conversely, dynamic
analysis captures the actual system call sequences during
code execution, providing a more real-time view of a pro-
gram’s actions. Both approaches often incorporate automatic
feature selection techniques like n-grams to extract relevant
information from the sequences. Additionally, machine learn-
ing algorithms are employed to classify the extracted features
and identify potential malware based on learned patterns.

Malicious code detection relies on a diverse arsenal of
features to uncover hidden threats. Researchers delve into the
binary format of code, searching for telltale patterns or char-
acteristics associated with malware. String sequences within
files are dissected to identify suspicious signatures that might
betray malicious intent. Behavior-based approaches involve
monitoring code execution for deviations from expected
norms, flagging suspicious or malicious activities based on
pre-defined criteria or models [15]. Hexadecimal analysis,
where researchers scrutinize the hexadecimal representation
of files, can reveal hidden malicious patterns or anomalies.
Additionally, file metadata, such as file size, type, and other
characteristics, can be leveraged to pinpoint potentially mali-
cious files based on known malware profiles [11].

N-gram analysis is a powerful technique for feature extrac-
tion widely used in various domains, including natural
language processing and document search. In the context
of malicious code analysis, it is adapted to analyze binary
code by considering consecutive n-byte segments as n-grams.
For instance, when n = 2, the n-grams represent pairs of
consecutive bytes. By capturing local patterns and depen-
dencies within the code, the frequency and distribution of

these n-grams serve as informative features for detecting
and analyzing malicious code. N-gram analysis enables the
transformation of complex binary code into a structured rep-
resentation, facilitating robust systems for malicious code
detection and analysis.

The total number of possible n-grams is determined by
the number of unique bytes in the system, typically 256(28),
raised to the power of n. For instance, with n = 2, there
are 28n = (65, 536) different possible n-grams of bytes [1].
The frequency of occurrence of each n-gram in a text or
file is considered its value. To calculate n-grams of bytes,
we count overlapping sequences of n bytes within the text
or file. A window that moves one byte at a time captures
all possible overlapping sequences, contributing to the cal-
culation of n-gram values for that specific text. This n-gram
analysis allows researchers to capture patterns or statisti-
cal information about how bytes are distributed in a file.
This information can be useful for identifying characteristics
associated with malicious code. By analyzing the frequency
of these n-grams, researchers can uncover patterns that are
uncommon in benign files and indicative of malicious code.

This paper addresses the critical need for enhanced protec-
tion against malicious code by introducing a novel approach
that leverages Boosting methodology, genetic algorithms,
and n-gram analysis. This combined approach aims to sig-
nificantly improve the accuracy of virus detection systems.
A key challenge in achieving this lies in feature extraction
and selection, particularly within the context of byte n-grams.
To overcome this, the paper proposes efficient methods for
feature handling. Finally, the effectiveness of the proposed
detection system is rigorously evaluated through experi-
mental results, demonstrating its superiority over existing
methods.

This paper makes significant contributions to the field of
malicious code detection by introducing the following novel
techniques:

• Novel Boosting-based Feature Extraction: This paper
introduces a new approach that integrates n-gram analy-
sis, genetic algorithms [26], and Boosting methodology
for feature extraction and selection. This aims to signif-
icantly improve the accuracy of virus detection systems.

• Advanced Feature Extraction Technique: The paper
proposes a novel feature extraction technique that
goes beyond traditional methods. It incorporates both
adjacent and non-adjacent bi-grams, extracting richer
information for malicious code identification.

• Genetic Algorithm-powered Feature Selection: To
address the challenge of exponential growth in fea-
ture space with longer n-grams, this paper introduces
a novel feature selection strategy powered by genetic
algorithms.

• Superior Detection Performance: The paper culmi-
nates in compelling experimental results that demon-
strate the proposed detection system’s superior perfor-
mance in accurately identifying malicious programs.

VOLUME 12, 2024 147401

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

Traditional methods, such as basic N-gram analysis, are
known for their effectiveness in identifying familiar patterns
in malicious code samples. However, they have notable lim-
itations in detecting more advanced and evolving threats due
to their restricted ability to model complex and dynamic
patterns. Our proposed method addresses these limitations
by integrating advanced algorithmic techniques, specifically
boosting and genetic algorithms. By utilizing these sophis-
ticated algorithms, our approach not only improves the
model’s ability to identify intricate patterns but also adapts
to emerging threats in real-time, significantly enhancing the
robustness and accuracy of malicious code detection. This
innovative combination sets our approach apart from tradi-
tional methods, offering a novel contribution to the field.

The use of the genetic algorithm is driven by its pow-
erful optimization capabilities, especially in handling large
and complex search spaces, which are common in feature
selection for malicious code detection. Genetic algorithms
are ideal for evolving optimal feature subsets by simulating
natural selection, thus improving detection accuracy while
reducing computational complexity. Incorporating Boosting
techniques adds another layer of novelty, as it significantly
enhances classification performance by combining the out-
puts of multiple weak learners. Boosting refines the decision
boundaries between benign and malicious code, ultimately
increasing overall detection accuracy. It sequentially focuses
on difficult-to-classify instances, ensuring the model remains
robust against diverse and sophisticated threats. The synergy
between the genetic algorithm for efficient feature selection
and Boosting for improved classification accuracy differenti-
ates our approach from traditional methods, making a unique
contribution to the field of malicious code detection.

This paper is meticulously structured to guide the reader
through the development and evaluation of a novel malicious
code detection system. Section II delves into the current
state-of-the-art in this field, with a specific focus on n-gram
analysis. This review serves to identify research gaps and
pave the way for the introduction of our proposed method in
Section III. Here, we unveil a novel approach that leverages
Boosting n-gram analysis for robust identification of mali-
cious code. Section IV meticulously details the experimental
settings, the chosen dataset, and the achieved results, allowing
for a transparent evaluation of the system’s effectiveness.
Finally, Section V concludes the paper by summarizing the
key findings and offering valuable insights for future research
directions.

II. RELATED WORKS
In this section, several studies related to the proposed
approach have been reviewed. Cohen conducted the first
major theoretical study on viruses [13]. He defined a virus
as a program that has the ability to infect other programs
by altering them, essentially becoming an evolved version of
itself. He introduced the concept of viral sets using the Turing
machine, where a virus is represented as a word on a Turing
machine tape that can reproduce or modify itself when acti-

vated in a suitable environment. Cohen’s work demonstrated
that the problem of virus discovery is generally undecid-
able, highlighting the complexity and challenges associated
with detecting and analyzing viruses. Cohen’s work primarily
focuses on theoretical aspects of viruses, which may not
directly address practical challenges faced in real-world virus
detection and prevention.

The proposed method in [16] utilizes a combination of
features extracted from binary and assembly language files
to enhance malware classification. By considering diverse
aspects of malware behavior, including n-gram analysis, tex-
ture information, opcode sequences, segments, keywords,
and registers, the method captures a wide range of infor-
mation, leading to comprehensive feature extraction. The
fusion of these features using a forward stepwise selection
algorithm enables the system to leverage the complementary
nature of the information, thereby improving the accuracy
of malware classification. The method takes into account
important malware characteristics and incorporates them into
the classification process. Additionally, the efficient feature
fusion technique employed reduces computational complex-
ity. However, the method faces certain challenges, such as
the complexity of extracting features from different file types,
the potential sensitivity to variations in malware behavior, the
reliance on training data availability and quality, the limited
interpretability of the extracted features, and the possibility
of encountering difficulties in generalizing to new or unseen
malware samples.

In recent research, several innovative approaches have
been developed for the static detection and classification of
malware using machine learning techniques. For instance,
a method introduced by Sun et al. [17] focuses on identifying
Windows malicious programs based on opcode sequences,
resulting in improved computational efficiency and effec-
tive malware detection and classification. Another study
by Ijaz et al. [18] leveraged features such as APIs, byte
entropy, DLLs, and altered registry entries to statically
extract 92 features from binary malware, achieving a high
detection accuracy of 99.36%. Furthermore, Loi et al. [19]
proposed an automated pipeline specifically designed for
detecting and classifying PE files, achieving a commendable
classification accuracy of 96.9% on the EMBER dataset.
These approaches, among others, demonstrate the significant
advancements made in utilizing machine learning and static
features such as opcode sequences, software PE structure
information, and APIs for accurate malware detection and
classification.

Hemalatha et al. [20] introduced a novel approach for mal-
ware categorization by leveraging deep learning techniques.
A key challenge in this domain is the presence of unbalanced
data, where certain malware classes are underrepresented.
To mitigate this issue, the proposed method incorporates a
weighted loss function within the classification layer of the
neural network model. This approach assigns higher weights
to minority class samples, thus improving the model’s ability
to accurately classify malware instances.

147402 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

Sun et al. [21] introduced a technique named RMVC,
which aims to categorize malware by analyzing opcode
sequences. This approach involves transforming malicious
programs into grayscale images and leveraging a two-stage
deep learning architecture. The first stage utilizes recurrent
neural networks (RNN) to extract features from the opcode
sequences, while the second stage employs convolutional
neural networks (CNN) for image classification. By com-
bining RNNs and CNNs in a cascaded manner, the RMVC
approach offers a powerful solution for malware catego-
rization, leveraging the strengths of both neural network
architectures. The use of opcode sequences as inputs and the
utilization of deep learning models contribute to the excellent
performance achieved by the RMVC technique.

In a study conducted by Li et al. [22] in 2022, assembly
files and binary files from the Kaggle dataset were employed
for the extraction of opcode and probabilistic features. A total
of 184 opcode features and 16 probabilistic features were
extracted from the files. To fuse these features, a double-
byte feature encoding technique was utilized. The fused
feature set was then classified using a convolutional neural
network (CNN) algorithm. The study conducted by Li et al.
presents a robust methodology for malware classification,
combining opcode and probabilistic features and leveraging a
CNN algorithm for accurate classification. The high accuracy
rate and low log loss highlight the efficacy of the proposed
approach in effectively distinguishing and categorizing mal-
ware samples.

Kumar et al. [23] proposed a classification scheme based
on malware texture features, which eliminates the need for
executing malware and effectively mitigates terminal infec-
tion risks. The scheme achieved a high classification accuracy
of 98.34% using a machine-learning classifier on the public
MalImg dataset.

Adleman proposed a broader classification of attacks
called computer infections or malware [24]. He defined var-
ious properties for programs and used these properties to
define different types of programs and viruses. While the
specific details of Adelman’s definitions are not mentioned,
it can be inferred that his work aimed to provide a more
comprehensive understanding of malicious programs beyond
traditional viruses, encompassing a wider range of computer
infections and malware. The details of Adelman’s definitions
and classification of programs and viruses are not provided,
which limits the understanding of the precise criteria and
characteristics used in the classification process.

Kolter and Maloof defined malicious code as any code
that intentionally causes damage or sabotage to the intended
performance of a software system when added, changed,
or removed [11]. Their definition broadens the scope beyond
specific types of malicious programs like viruses and mal-
ware, encompassing any code that is designed to disrupt
the normal functioning of a system. The focus is on the
intentionality of the code and its detrimental effects on the
system’s performance.

BHMDC (Byte and Hex n-gram based Malware Detection
and Classification) is a method proposed to address the chal-
lenges of malware detection and classification [25]. It lever-
ages both byte and hex n-gram features, along with efficient
machine learning algorithms, to enhance the accuracy and
efficiency of the analysis. For malware detection, BHMDC
utilizes byte unigram features, which capture the statistical
properties of executable files. It employs LightGBM, a gra-
dient boosting framework known for its efficiency, to detect
malware based on these byte unigram features. This stage
achieves high accuracy while consuming less time, making
it suitable for real-time malware detection.

Various feature selection methods are proposed, partic-
ularly suited for problems with high-dimensional feature
spaces like virus detection. Notable methods include doc-
ument repetition-based and information gain-based feature
selection, which have been extensively discussed in recent lit-
erature [13], [14] as suitable approaches for selecting features
in virus detection. Virus detection is commonly approached
as a dual classification problem, distinguishing between virus
and harmless classes. Consequently, both aforementioned
methods aim to separate the desired class from the other class.

The document repetition-based feature selection method
strives to select features that occur more frequently in the
desired class, employing a similar approach to select addi-
tional features in the other class. The final feature set is
obtained by combining the two previously selected feature
sets through their union.

In the information gain-based feature selection method,
features are ranked in descending order based on their infor-
mation gain values. Information gain serves as a measure of
the degree of dependence or correlation between a feature
and class labels. Features with higher information gain values
indicate a greater ability to discriminate between classes and
are thus selected.

Parvin et al. [1] proposed a novel method, referred to as
the boosted feature selection approach, for feature selection
in the context of virus detection. This method incorporates
the principle of feature boosting, which aims to amplify the
importance and effectiveness of selected features. However,
it is important to note that this method exhibits a notable
limitation in its tendency to select a large number of features.
The selection of an extensive set of features can potentially
introduce an elevated risk of errors in the learning model,
thereby affecting the overall performance and reliability of
the virus detection system. Figure 1 shows a 2-gram with
adjacent and non-adjacent bytes.

The ability to effectively classify unobserved samples is
a crucial aspect of machine learning. In recent years, there
has been significant research focus on developing com-
bined methods that exhibit enhanced strength, robustness,
resistance, accuracy, and generalization capabilities. One
such approach is the combination of multiple classifications
(CMC), which can be considered as a general solutionmethod
for pattern recognition problems [25], [26].

VOLUME 12, 2024 147403

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

FIGURE 1. New 2-gram with adjacent and non-adjacent bytes.

By employing a combination of ensemble classifiers, CMC
aims to leverage the strengths of individual classifiers and
mitigate their weaknesses. This approach often leads to
improved classification performance compared to using a
single classifier. The underlying principle is to harness the
diversity and complementary characteristics of multiple clas-
sifiers to make more accurate predictions and achieve better
generalization.

The ensemble classifiers can be accomplished using
various techniques, such as ensemble methods, stacking,
or hybrid approaches. Ensemble methods, such as bagging or
boosting, create an ensemble of classifiers trained on different
subsets of the training data or using different algorithms.
Stacking involves training ameta-classifier on the predictions
of multiple base classifiers. Hybrid approaches combine clas-
sifiers based on different principles or features.

The benefits of combining classifiers through CMC
include increased accuracy, improved robustness against
noise or outliers, enhanced generalization to unseen data,
and better handling of complex and overlapping decision
boundaries. By integrating multiple sources of information
and decision-making strategies, CMC has demonstrated its
effectiveness in various domains, including image recogni-
tion, natural language processing, bioinformatics, and fraud
detection, among others.

It is important to note that the success of CMC relies on
the diversity and quality of the individual classifiers within
the ensemble. Ensuring diversity in terms of classifier types,
training data subsets, feature representations, or algorithmic
approaches helps to capture different aspects of the data and
minimize the risk of overfitting.

In summary, the combination of multiple classifications
(CMC) has emerged as a powerful and versatile approach to
pattern recognition problems. By integrating the predictions
of multiple classifiers, CMC provides enhanced classification
performance, improved robustness, and increased general-
ization capabilities. Ongoing research in this field aims to
explore new ensemble methods, fusion techniques, and opti-
mization strategies to further advance the effectiveness and
applicability of CMC in various domains.

The article [27] presents an innovative approach to address
the rising challenges of credit card fraud in electronic com-
merce. The authors propose a solution integrating a neural
network ensemble classifier, leveraging a long short-term
memory (LSTM) neural network within an adaptive boost-
ing (AdaBoost) framework, and employing a hybrid data
resampling method (SMOTE-ENN). This method surpasses
traditional algorithms, including SVM, MLP, decision tree,
and LSTM, demonstrating superior performance in fraud
detection. The inclusion of a resampling strategy emphasizes
the significance of training with balanced data, highlighting
the efficacy of the proposed LSTMensemble inmitigating the
impact of imbalanced datasets prevalent in credit card fraud
scenarios. This work contributes significantly to advancing
machine learning applications in financial security by pro-
viding a robust and efficient solution for credit card fraud
detection.

The study presented in paper [28] focuses on addressing
the Hepatitis B (HBV) diagnosis challenge by employ-
ing machine learning (ML) models while emphasizing the
often-overlooked aspect of model interpretability. The pro-
posed ML algorithms, spanning decision trees, logistic
regression, support vector machines, random forest, adap-
tive boosting (AdaBoost), and extreme gradient boosting
(XGBoost), demonstrate balanced accuracies ranging from
75% to 92%. A noteworthy contribution is the introduction
of SHapley Additive exPlanations (SHAP), a game-based
theoretical approach, for elucidating and visualizing the pre-
dictions generated by these ML models.

The research [29] addresses the global public health chal-
lenge of chronic kidney disease (CKD) through a machine
learning (ML) approach aimed at early detection, crucial
for mitigating disease progression. The method integrates
an information-gain-based feature selection technique with a
cost-sensitive adaptive boosting (AdaBoost) classifier. This
approach reduces screening time and costs while enhanc-
ing classification performance, achieving notable accuracy
(99.8%), sensitivity (100%), and specificity (99.8%) when
compared to existing CKD prediction methods and estab-
lished classifiers. The study emphasizes CKD’s prevalence

147404 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

in developing countries and underscores the importance
of early detection. The proposed feature selection posi-
tively influences various classifiers, demonstrating efficacy.
Furthermore, the research contributes to addressing the
imbalanced class problem in ML by utilizing a cost-sensitive
AdaBoost classifier that prioritizes theminority class, leading
to improved overall classification performance.

III. PROPOSED METHOD
In this section, the proposed approachwill be explained. First,
the research motivations will be presented, followed by the
system model. A brief overview of the proposed approach’s
steps will then be provided. Finally, the details of the pro-
posed approach will be elaborated in depth.

A. MOTIVATION
To achieve effective classification, the selection of rep-
resentative features plays a crucial role in capturing the
characteristics of data samples accurately. When utilizing
n-gram analysis for feature extraction, the choice of n-gram
length becomes a critical decision. Previous studies have
shown that single-byte n-grams are inadequate in capturing
necessary information, as they fail to consider implicit infor-
mation derived from various byte combinations. On the other
hand, two-byte n-grams can capture dependencies between
adjacent bytes to a certain extent. As the length of the n-gram
increases, the number of possible byte combinations grows
exponentially, allowing for a more comprehensive under-
standing of the inherent characteristics of executable codes.
However, this exponential growth also leads to increased
computational and memory requirements during the feature
extraction process.While it is generally believed that n-grams
of smaller length can sufficiently encompass the statistical
characteristics of larger n-grams, suggesting the use of two-
byte n-grams [13], practical applications have demonstrated
improved results by employing larger n-grams, such as four-
byte n-grams [11]. This underscores the need to strike a
balance between obtaining superior features and mitigating
algorithmic costs. To tackle this challenge, a novel method
for n-gram extraction is proposed.

B. COMPARATIVE ANALYSIS OF BI-GRAMS, TRI-GRAMS,
AND HIGHER-ORDER N-GRAMS
In malware detection, selecting the appropriate n-grams—
whether bi-grams, tri-grams, or higher-order n-grams—
greatly influences both the effectiveness of feature extraction
and the computational costs involved. This analysis offers an
in-depth evaluation of these factors, examining the trade-offs
and considerations associated with each type of n-gram
approach.

• Bi-grams: Sequences of two adjacent tokens, bi-
grams effectively capture local patterns and common
sequences in malware code, balancing feature rich-
ness with computational efficiency. However, they may

struggle with detecting sophisticated malware due to
limited capacity for modeling long-range dependencies.

• Tri-grams: Sequences of three adjacent tokens pro-
vide a broader context and can capture more complex
patterns, improving detection accuracy for advanced
malware. However, they significantly increase feature
space dimensionality, leading to higher computational
costs and a greater risk of overfitting, requiring advanced
techniques for feature selection and dimensionality
reduction.

• Higher-Order N-grams: Sequences of more than three
adjacent tokens offer detailed feature extraction, essen-
tial for detecting highly obfuscated or polymorphic
malware. Yet, the computational costs grow exponen-
tially with feature space size, leading to high memory
usage, longer training times, and increased risk of
overfitting, necessitating sophisticated optimization and
dimensionality reduction techniques.

C. PROBLEM STATEMENT
Before explaining the proposed method, the problem state-
ment is as follows:

- Let X ∈ Rm×n represent the dataset matrix, where m is
the number of data points and n is the number of features.
Each row ofX corresponds to a data point, and each column
corresponds to a feature.

- Let W ∈ Rn be the vector representing the selection
weights of the primary vectors, where each element of W
corresponds to the weight of a feature.

- Let S ∈ {0, 1}n be the binary vector representing the set of
selected features, where Si = 1 indicates the i-th feature is
selected and Si = 0 indicates it is unselected.
Let TC be the threshold for the accuracy of clustering.

- Let p ∈ Rm be the vector of selection probabilities, where
each element corresponds to the probability of selecting a
data point.

- Let β ∈ Rm×k be thematrix representing the random subset
of the data, where k is the number of data points in the
subset.

- Let ε be the resonance step size.

D. THE PROPOSED APPROACH AT A GLANCE
In summary, the proposedmodel integrates clustering, feature
selection, and model consensus to enhance its capability in
distinguishing between malicious and benign files. The steps
of the proposed method are as follows:

1. Extract all two-gram features from the dataset: X .
2. Initialize the selection weights:W = [1, 1, . . . , 1] ∈ Rn.
3. Initialize the new feature space: S = [0, 0, . . . , 0] ∈

{0, 1}n.
4. Repeat the following steps until the accuracy of clustering

in new feature spaces increases from two consecutive
iterations and the accuracy of clustering is lower than TC :

■ Select a subset of data using selection probabilities:
β = X [randomly selected indicesaccording to p].

VOLUME 12, 2024 147405

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

(This selection process is based on the Truncated
Exponential Selection (TES) algorithm).

■ Map the selected subset of data into q new random
unprocessed features: β = [β, randomly generated
features] ∈ R∧(m× (k + q)).

■ Run the Genetic Algorithm (GA) to select new fea-
tures.

■ Update the new feature space: S[newly selected feature
indices] = 1.

■ Map the data: X = X [:,S].
■ Perform clustering using the DBSCAN algorithm on

the mapped data.
■ Update the selection weights based on clustering

results: W =

[
1
N , 1

N , . . . , 1
N

]
∈ Rn.

■ Iterate through multiple stages, indexed by i (starting
from i = 1):

■ Create a randomized subset: Si = [randomly selected
indices].

■ Generate a random subset of data: β = X [randomly
selected indices].

■ Calculate the selection probabilities: p = W/(
∑m

k=1
p (k)).

■ Train an Ei model using the random subset β and
features from Si:Ei.train (β [:,Si]).

■ Evaluate themodelsE1,E2, . . . ,Ei on the correspond-
ing data subsets DS1 ,DS2 , . . . ,DSi .

■ Update the selection weights using a consensus-based
approach:

■ For each data point:
if the majority of classifiers have correctly classi-
fied the data point:

p (i) = p (i) − ε.

else (if at least half of the classifiers have misclas-
sified the data point):

p (i) = p(i)+ε.

E. THE PROPOSED APPROACH IN DETAIL
The proposed approach efficiently decreases the number of
possible byte combinations and allows for the examination
of non-adjacent byte pairs. As depicted in Figure 1 from the
preceding section, the method selectively picks certain bytes
from the sliding window to extract n-grams while disregard-
ing others. Figure 1-a provides a visual representation of a file
comprising 13 bytes, where each square represents a single
byte. In this method, the first and last 2-grams are shown with
zero spacing, as indicated in Figure 1-a.

FIGURE 2. Extracting 2-grams for a 13-byte file.

Figure 2 depicts the content of a 13-byte file. Based on
the information presented in Figure 2, the 2-gram content

of ‘‘0708hx’’ is found to be equal to 2. This indicates that
the specific 2-gram sequence ‘‘0708hx’’ occurs twice in the
figure, as indicated by the corresponding hash value. Simi-
larly, the 2-gram content of ‘‘0808hx’’ is determined to be
3 based on Figure 2. This implies that the sequence ‘‘0808hx’’
appears three times consecutively in the figure, indicating
the presence of three consecutive occurrences of the num-
ber 8. Lastly, according to Figure 2, the 2-gram content of
‘‘150Ahx’’ is established to be 1. This signifies that the 2-
gram sequence ‘‘150Ahx’’ is observed only once in the figure.

In the experiments conducted in this paper, a technique
inspired by the approach proposed by Parvin et al. [1] was
employed, which utilized only the first and last bytes of
the sliding window for constructing n-grams. This approach
enables the extraction of non-adjacent dependencies between
byte sequences while managing a limited number of possible
combinations. To diversify the features used in the classifica-
tion process, various window sizes ranging from 2 to 6 bytes
were employed. Additionally, the gap between consecutive
bytes within an n-gram was varied from zero to four bytes.

It is worth noting that extracting n-grams with different gap
sizes requires five consecutive phases on the input file. How-
ever, due to memory constraints, the extraction of smaller
n-grams is significantly faster compared to larger n-grams,
such as four bytes, as utilized in prior studies. The selection
of different window sizes and gap sizes allows for capturing a
broader range of patterns and dependencies within the code,
contributing to a more comprehensive and effective feature
set for the classification process. By extracting five sets of
n-gram strings, each consisting of 2-grams with different
gap sizes, from every executable code in the training set (as
depicted in Figure 2), a novel selection strategy is employed
to choose a subset of these n-grams as the representative
features for the final sample.

In the proposed approach, a novel selection strategy is
employed to choose a subset of the five n-gram strings,
each consisting of 2-grams with different gap sizes, extracted
from every executable code in the training set (as depicted
in Figure 2). The selection mechanism utilizes a Genetic
Algorithm (GA) [30] to search for the optimal combination
of n-grams that results in the best classification perfor-
mance, distinguishing between safe and malicious executable
codes.

An important concept in this selection procedure is the
reference vector. The reference vector is defined as a vector
composed of m subvectors, where each subvector is a binary
vector representing all possible combinations of n-byte values
(i.e., a size of 28n). This reference vector serves as the funda-
mental representation for input samples and as the reference
from which chromosome genes are derived in the GA. In this
method, a reference vector with m different values and n = 2
is used, resulting inm binary subvectors of 162 elements each.
Consequently, the feature space encompasses m×216 binary
features.

In this study, the input files are initially represented by
reference vectors, where each vector corresponds to the

147406 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

n-gram strings extracted from the files. Unlike Parvin et al.’s
method [1], which utilizes integer attribute values, binary
attributes are used here for simplicity. A value of 1 in a
specific region of the vector indicates the presence of the
corresponding n-gram in the input file, while a value of
0 indicates its absence.

TheGenetic Algorithm (GA) employed in this study adopts
a binary representation for its variables. Each variable in a
chromosome represents whether a specific 2-gram is included
or not. To simplify the chromosomes and improve the effi-
ciency of the GA, the 2-grams from the reference vector
are processed in q-groups, where q is a predefined value
(e.g., q = 1000). In each iteration, the GA selects the
most suitable q-to-2-grams based on criteria such as mini-
mal feature count and maximal cleanliness. The algorithm
continues this selection process for subsequent q-to-2-grams,
iteratively progressing until the desired conditions are met.
The fitness function used to evaluate each chromosome in the
GA population can be formulated as follows:

fc(chromosome) =

∣∣(AC) − (AC∗)
∣∣

(σC + σC∗)
(1)

where fc(chromosome) represents the fitness of the chromosome
for a specific class C . (AC) denotes the average number of
occurrences of features included in the chromosome (genes
with a numerical value of 1) in files belonging to class
C (benign or malicious), and (AC∗) represents the average
number of occurrences of these features in files of the com-
plementary class, denoted as C ′. C ′ corresponds to a class
other than C , such that if C is benign, then C ′ represents
malicious files, and vice versa. Furthermore, σC and σC∗ rep-
resent the standard deviations of the occurrences of features
in class C and the complementary class C ′, respectively. The
standard deviations capture the dispersion or variability in the
occurrence patterns of the features within each class. Incorpo-
rating the standard deviations in the fitness function accounts
for the distribution of feature occurrences and enables a more
accurate assessment of the chromosome’s suitability for clas-
sification.

The absolute difference between the average occurrences
of features in class C and the average occurrences in the
complementary class C ′ is divided by the sum of the standard
deviations of both classes. This normalization step ensures
that the fitness value is scaled relative to the variability within
each class, allowing for fair comparison and selection of
chromosomes based on their performance in capturing dis-
criminative features.

Figure 3 as an illustrative example of a sample dataset con-
sisting of two malicious records and three harmless records.
Additionally, an example chromosomewith a fitness function
value of 1.67 is depicted. In Figure 3, a shaded rectangle
represents a bit with a numerical value of 1, while a white
rectangle represents a bit with a numerical value of 0. The
genetic algorithm is executed repeatedly, processing the first
q-to-bi-grams and selecting the optimal set of cleaning fea-
tures for class C from class C ′ (obtained from class C). The

FIGURE 3. An example of a dataset containing two and three malicious
and harmless records. Also, an example of a chromosome with a fitness
function equal to 1.67.

entire process is performed iteratively until the optimal set of
cleaning features is obtained.

To provide a clearer understanding of equation (1), let
us refer to Figure 3. In this example, there are a total of
2 malicious files and 3 safe files. The average number of bits
in malicious records is denoted as AM , corresponds to the
average number of occurrences of each double-gram in the
malicious files. Similarly, AB represents the average values
of bits in the safety records.

The fitness function, denoted as fc(chromosome) in
equation (1), measures the effectiveness of the features
selected by the chromosome in terms of their cleaning prop-
erties. A higher value of fc(chromosome) indicates a greater
ability to capture discriminative features that contribute to
the classification task.

Figure 3 serves as a visual aid to highlight the binary
representation of bits and the significance of fc(chromosome)
in assessing the quality of selected features for classification
purposes.

In the proposed method in order to facilitate the
decision-making process of the feature selection algorithm
regarding the selection of an adequate number of features,
a data clustering step is incorporated. The algorithm con-
tinues to iterate until the clustering accuracy reaches a
predetermined threshold, denoted as TC , at which point
the algorithm terminates. Figure 4 illustrates the overall
schematic of the proposed approach.

Evaluating at each stage when each group has been pro-
cessed from q-to-d-g ensures an effective assessment of the
selected features. This allows for a fine-grained analysis of
the clustering accuracy and ensures that the algorithm termi-
nates when a satisfactory level of feature selection has been
achieved.

By incorporating this data clustering step and utilizing
the predetermined threshold, the proposed method enhances
the efficiency and effectiveness of the feature selection
algorithm. Figure 4 provides a comprehensive visual repre-
sentation of the algorithmic flow and highlights the crucial

VOLUME 12, 2024 147407

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

FIGURE 4. Proposed virus detector scheme.

role of the data clustering step in determining the termination
condition for feature selection.

The pseudocode of the proposed resonant feature selec-
tion algorithm is shown in Figure 5. In the initial stage of
the proposed method, the feature extraction process involves
extracting adjacent and non-adjacent two-grams from the
input data. The range of extraction spans from 1 to the max-
imum value of m. These extracted two-grams, accompanied
by their corresponding labels indicating their viral or harm-
less nature, constitute the datasets for subsequent analysis.

To facilitate the selection of informative features evolution-
arily, the boosting scheme, specifically the arc-x4 boosting
method described in [16], is employed. The arc-x4 boosting
method aims to prioritize data samples that have not received
sufficient training in previous iterations, thereby fostering the
exploration of promising feature subsets.

In the resonant feature selection method proposed here, the
input vectors for the genetic algorithm (GA) are determined
based on a resonant weight vector. Initially, all elements of
this weight vector are assigned a value of 1. The pseudo-code
presented in Figure 5 illustrates this process.

Within each iteration of the algorithm, the selection weight
vector undergoes a transformation into a selection probability
vector as the first step. This transformation is accomplished
by normalizing the weights, ensuring that the sum of all
weights equals one. The resulting probability vector is then
utilized in the subsequent steps of the algorithm.

In the second step of the algorithm cycle, a subset of the
dataset with the same size as the original dataset is selected.
This selection process is based on the Truncated Exponential
Selection (TES) algorithm. The TES method is a proba-
bilistic selection technique that provides a balance between

FIGURE 5. Pseudocode of the feature selection algorithm.

exploration and exploitation in sub-sampling. It operates as
follows:

1. Calculate the fitness values (e.g., clustering accuracy) for
all data samples in the dataset.

147408 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

2. Normalize the fitness values to ensure they sum up to one.
3. Sort the data samples based on their fitness values in

descending order.
4. Assign selection probabilities to the data samples based on

a truncated exponential distribution.
- The truncation point determines the range of samples
to be considered in the distribution.

- The higher the fitness value, the larger the selection
probability assigned to a data sample.

- The selection probabilities decrease exponentially as
the rank of the data sample increases.

5. Generate random numbers to select data samples based on
their selection probabilities.
- The random numbers are generated uniformly
between zero and the sum of the selection probabili-
ties.

- Data samples are selected based on the generated
random numbers, favoring those with higher proba-
bilities.

- The number of selected data samples is equal to the
desired subset size.

The Truncated Exponential Selection method offers sev-
eral advantages:

• Control over Exploration and Exploitation: TES pro-
vides control over the exploration and exploitation
trade-off by adjusting the truncation point. A lower
truncation point promotes exploration by considering
a broader range of samples, while a higher truncation
point emphasizes exploitation by focusing on the top-
ranked samples.

• Adaptive Selection Probabilities: TES assigns selec-
tion probabilities based on fitness values, ensuring that
data samples with higher fitness have a greater chance
of being selected. This adaptive nature allows for the
efficient exploitation of promising samples while still
exploring the solution space.

• Flexibility and Customization: TES allows for cus-
tomization by adjusting the parameters, such as the
truncation point and the shape of the exponential dis-
tribution. This flexibility enables fine-tuning of the
selection process based on the specific requirements of
the virus detector.

By incorporating the Truncated Exponential Selection
method in the virus detector, you can benefit from its con-
trol over exploration and exploitation, adaptive selection
probabilities, and customization capabilities. This can lead
to improved sub-sampling and ultimately enhance the per-
formance and effectiveness of the virus detector. Figure 6
illustrates the pseudocode of our Truncated Exponential
Selection method.

In figure 6, the TESSelection function takes a population
of samples and their corresponding fitness scores as input.
It first calculates the selection probabilities based on the
fitness scores using the calculateselectionprobabilities function.
Then, it calculates the cumulative probabilities using the

calculatecumulativeprobabilities function. A random value between
0 and 1 is generated using the generaterandomvalue function.
The algorithm iterates through the population, selecting sam-
ples whose cumulative probabilities are less than or equal
to the random value. The selected samples are stored in the
selectedsamples list, which is returned as the result.

FIGURE 6. Pseudocode of the truncated exponential selection method in
the virus detector.

Equation (2) for the Truncated Exponential Selection
(TES) method in the proposed virus detector:

Pselect(i) =

(
1−exp

(
−λ∗fc(i)

))(
N∗

(
1−exp

(
−λ

))) (2)

In this equation:
- Pselect(i) represents the selection probability of the i-th

sample,
- fitness (i) represents the fitness score of the i-th sample,
- N represents the total number of samples in the popula-

tion,
- λ is a parameter that controls the selection pressure,
fc(i) : fitness (chromosomi).

VOLUME 12, 2024 147409

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

The selection probability Pselect(i) is calculated based on
the fitness score of each sample using an exponential trans-
formation. The parameter λ determines the steepness of the
exponential curve and, thus, the selection pressure. Higher
values of λ lead to higher selection probabilities for samples
with higher fitness scores.

By using this equation, you can calculate the selection
probabilities for each sample in the virus detector system’s
population and subsequently apply the TES method for sub-
sampling, selecting samples based on these probabilities.

Let’s consider a scenario with a population of 10 samples
in a virus detection system. We’ll assume the fitness scores
for each sample are as follows:

fitness(1) = 0.2

fitness(2) = 0.4

fitness(3) = 0.6

fitness(4) = 0.8

fitness(5) = 1.0

fitness(6) = 1.2

fitness(7) = 1.4

fitness(8) = 1.6

fitness(9) = 1.8

fitness(10) = 2.0

Let’s set the parameter λ to 0.5. We can now calculate the
selection probabilities using the TES equation:

For each sample, we can plug in the respective fitness score
and calculate the selection probability:

Pselect(1) =
(1−exp (−0.5 ∗ 0.2))
(10∗ (1−exp (−0.5)))

≈ 0.015

Pselect(2) =
(1−exp (−0.5 ∗ 0.4))
(10∗ (1−exp (−0.5)))

≈ 0.039

Pselect(3) =
(1−exp (−0.5 ∗ 0.6))
(10∗ (1−exp (−0.5)))

≈ 0.089

Pselect(4) =
(1−exp (−0.5 ∗ 0.8))
(10∗ (1−exp (−0.5)))

≈ 0.173

Pselect(5) =
(1−exp (−0.5 ∗ 1.0))
(10∗ (1−exp (−0.5)))

≈ 0.289

Pselect(6) =
(1−exp (−0.5 ∗ 1.2))
(10∗ (1−exp (−0.5)))

≈ 0.429

Pselect(7) =
(1−exp (−0.5 ∗ 1.4))
(10∗ (1−exp (−0.5)))

≈ 0.579

Pselect(8) =
(1−exp (−0.5 ∗ 1.6))
(10∗ (1−exp (−0.5)))

≈ 0.715

Pselect(9) =
(1−exp (−0.5 ∗ 1.8))
(10∗ (1−exp (−0.5)))

≈ 0.825

Pselect(10) =
(1−exp (−0.5 ∗ 2.0))
(10∗ (1−exp (−0.5)))

≈ 0.908

These values represent the selection probabilities for each
sample in the population according to the TES method.

The next step in the algorithm involves extracting a subset
from the dataset and applying it to a random subspace con-
taining q unprocessed features. This process aims to diversify
the feature selection and prevent redundancy. Specifically, q
randomly selected features are removed from the unprocessed
feature set, resulting in a selected subset of data denoted
as SPD (selectively applied data). The size of the subspace
and the features selected for each iteration ensure a balanced
exploration of the feature space.

Subsequently, a genetic algorithm is implemented on the
SPD to further refine the feature selection process. The
genetic algorithm searches for an optimal subset of features
among the q features in the SPD. The resulting subset, rep-
resenting the best cleaning features, is then added to the
previously selected features.

After incorporating the selected features, the entire original
dataset is applied to these features. A clustering algorithm is
then employed to separate the dataset into two distinct clus-
ters: the harmless cluster and the viral cluster. This clustering
step facilitates the identification of patterns and similarities
within the data. To evaluate the performance of the clustering
algorithm, the output labels generated by the algorithm are
compared with the actual labels of the dataset. The degree
of agreement between the two sets of labels is quantified
using the Hungarian algorithm [34]. This process ensures
an optimal matching between the predicted and true labels,
thereby assessing the accuracy of the clustering algorithm.

Following thematching process, the ratio of correct assign-
ments is considered the clustering algorithm’s accuracy.
Any data point that is correctly classified by the cluster-
ing algorithm has its selected weight increased by one unit,
indicating its relevance in the feature selection process. Con-
versely, incorrectly classified data points have their selected
weight decreased by one unit, reflecting their lower signifi-
cance.

Upon completion of the feature selection process, a subset
of features called Xs is obtained. This subset consists only
of features that exhibit a higher clustering accuracy than a
predefined threshold Tc for each data sample. By utilizing
this subset of features, each data sample in the dataset can
be represented by a binary vector with a length of |Xs|.
Consequently, the input data set is transformed into a binary
vector table, where the number of rows corresponds to the
total number of files (virus or harmless), and the number of
columns is equal to |Xs|. Each row in this table represents a
data example or vector, thereby constituting the final dataset
for subsequent analyses. These binary vectors serve as the
input for the ranking system, facilitating further processing
and evaluation of the selected features.

The task of virus detection, which involves the analysis of
byte sequences, can be effectively addressed using various
classification methods. Among these methods, Deep Neural
Networks (DNNs) have gained popularity due to their ability
to handle complex and undefined problems. DNNs, inspired
by biological neurons, serve as computational models where
the inter-neuron connections’ weights are adjusted during the

147410 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

training phase to optimize the network’s performance. The
Multilayer Perceptron (MLP) architecture, a type of DNN,
is commonly employed as a fundamental classifier in virus
detection tasks [30]. MLP demonstrates versatility in captur-
ing intricate patterns and relationships from the training data.

MLPmethods are well-suited for the proposed virus detec-
tor due to their capacity to handle complex and undefined
problems, their ability to model non-linear relationships
and extract relevant features automatically, their adaptability
and generalization capabilities, as well as their scalabil-
ity and ability to accommodate models with varying levels
of complexity. These characteristics make MLPs highly
effective in capturing the underlying patterns and char-
acteristics of viruses, enabling accurate and robust virus
detection.

Another notable classifier is the K-nearest neighbor (KNN)
algorithm [31], which does not involve explicit learning and
relies solely on the training examples. During the testing
phase, KNN assigns a test sample to the class that is most
prevalent among its K nearest neighbors in the feature space.
When dealing with binary features, the similarity criterion
is determined by the number of matching feature values
between two samples.

Support Vector Machines (SVMs) [32] have shown strong
performance in text classification tasks [31]. Originally
designed for binary classification, SVMs map the fea-
ture space into a new space where the classes can be
linearly separated. The goal of SVM is to find a classi-
fication boundary that maximizes the margin between the
data samples, accomplished through the use of quadratic
programming.

Decision Trees (DTs) are widely recognized as versatile
classifiers in the field of machine learning [2]. However,
they are known to be sensitive to changes in the training
process, as they can converge to different solutions when
trained on the same dataset with the same initialization. DTs
employ a tree-like decision model, providing interpretability
that allows domain experts to understand the decision-making
process [30].
The Naive Bayes classifier [31], involves transforming

numeric attributes into nominal ones. This classifier utilizes
exact numerical estimators obtained through an analysis of
the training data. Instead of assuming a normal distribution,
the classifier employs kernel estimators for numeric fea-
tures and utilizes supervised discretization to convert numeric
attributes into nominal ones.

Aggregation techniques, such as bagging or boosting, have
demonstrated their effectiveness in improving classifica-
tion performance. Boosting methods, including the boosting
algorithm, prioritize samples that have not received suffi-
cient training in previous iterations. The boosting algorithm,
an early version of an escalation algorithm [32], and its
enhanced variant, arc-x4 [16], are commonly employed in
aggregationmethods.When utilizing aggregation techniques,
weak classifiers like decision trees are often selected as base
classifiers [32].

F. FEATURE EXTRACTION PROCESS
Our feature extraction method analyzes non-contiguous bi-
grams with varying gap sizes to capture more complex
patterns within malware code. Unlike traditional meth-
ods that only examine contiguous sequences, we include
non-adjacent bytes to identify subtle dependencies often
missed by conventional n-gram techniques. By introduc-
ing flexible gap sizes between byte pairs, we expand our
analysis to cover a broader range of byte relationships,
enhancing pattern detection while managing computational
costs.

We generate bi-grams from tokenized byte sequences by
selecting byte pairs with specified gaps. For each byte at
position i, we create pairs with bytes at positions i+ 1, i+ 2,
. . . , up to i+g, where g is the maximum gap size. This method
allows us to capture both local and global dependencies
within the code.

Our approach produces a varied set of bi-grams, captur-
ing both contiguous and non-contiguous dependencies. This
range of gap sizes improves our ability to detect complex
patterns that contiguous bi-grams alone might miss.

1) UTILIZATION OF NON-CONTIGUOUS BI-GRAMS
• Feature Representation: The non-contiguous bi-grams
are converted into binary vectors, where each element
denotes the presence (1) or absence (0) of a bi-gram.
This binary format facilitates efficient feature handling
and processing.

• Feature Selection: We use a genetic algorithm to opti-
mize feature selection. The algorithm: Initialization:
Starts with a randomly generated set of feature subsets.

• Evaluation: Rates each subset based on classifica-
tion performance. Selection and Reproduction: Chooses
the best subsets and applies genetic operations like
crossover and mutation.

• Clustering: Ensures the selected features capture rele-
vant and distinct information. Classification: The binary
vectors are input into a machine learning classifier,
which is trained to differentiate between malicious and
benign executables using the identified non-contiguous
bi-grams. This enhances detection accuracy by identify-
ing intricate dependencies.

2) ADVANTAGES AND EFFICACY
Our method of using non-contiguous bi-grams with variable
gap sizes offers several benefits:

• Enhanced Pattern Recognition: It captures both local
and distant dependencies, revealing more detailed pat-
terns.

• Reduced Computational Cost: Compared to higher-
order n-grams, it balances feature richness with effi-
ciency, avoiding excessive computational demands.

• Improved Detection Accuracy: Empirical results show
our approach outperforms traditional methods, proving
its effectiveness in malware detection.

VOLUME 12, 2024 147411

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

G. HYPERPARAMETER OPTIMIZATION
Hyperparameter optimization plays a critical role in enhanc-
ing the performance and efficiency of both the genetic
algorithm and Boosting techniques used in this study. In the
case of the genetic algorithm, essential hyperparameters such
as population size, mutation rate, and crossover probability
were carefully tuned to ensure the best possible selection
of feature subsets. These parameters have a direct impact
on the convergence speed and the quality of the solutions
produced during the feature selection process. To determine
optimal values for these hyperparameters, we employed both
grid search and cross-validation, systematically exploring
the parameter space to minimize overfitting and maximize
generalization.

Similarly, for the Boosting technique, key hyperparameters
such as the learning rate, number of boosting iterations, and
maximum tree depth were fine-tuned to achieve optimal clas-
sification performance. The proper selection of these hyper-
parameters enables the model to focus on the most difficult-
to-classify instances, improving its ability to discriminate
between benign and malicious code. Random search, in com-
bination with cross-validated grid search, was used to ensure
that the chosen hyperparameters yielded the best possible
results in terms of accuracy, precision, recall, and F1-score.

This systematic hyperparameter optimization process sig-
nificantly contributes to the robustness and effectiveness of
the proposed method, ensuring that it performs optimally
across diverse datasets.

H. MEMORY AND RESOURCE OPTIMIZATION
To enhance the efficiency and practicality of the proposed
malware detection system, we implemented several memory
and resource optimization techniques. These optimizations
ensure that the system can operate effectively in various
environments, including those with limited computational
resources, such as IoT devices. These memory and resource
optimization techniques collectively enhance the proposed
malware detection system’s capability to perform real-time
analysis while maintaining a minimal resource footprint.
They ensure that the system is both robust and scalable,
suitable for deployment across various platforms, including
those with limited computational capabilities. The techniques
are as follows:

1) FEATURE REDUCTION AND COMPRESSION
While the genetic algorithm efficiently selects relevant fea-
tures, further dimensionality reduction is achieved through
Principal Component Analysis (PCA). PCA transforms the
selected features into a lower-dimensional space, retaining
the most significant variance in the data. This step not only
reduces memory consumption but also speeds up the training
and inference processes by simplifying the feature set.

2) INCREMENTAL LEARNING
Tomanage the model’s memory usage and facilitate real-time
adaptation to newmalware threats, incremental learning tech-

niques are employed. By updating the model iteratively using
smaller batches of data, the system avoids the need for full
retraining, significantly reducing memory and computational
requirements. This allows themodel to efficiently incorporate
new patterns of malicious behavior over time.

3) MEMORY-EFFICIENT DATA STRUCTURES
Given that the n-gram features extracted from executable
files often result in sparse datasets, we use sparse matrices
for storage and processing. Sparse matrices, implemented
through libraries such as SciPy, are designed to handle large
datasets with many zero entries efficiently. This approach
minimizes memory usage and enhances the processing
speed, particularly when dealing with high-dimensional
data.

4) MODEL PRUNING AND QUANTIZATION
To further optimize the memory footprint of the classifi-
cation model, we employ model pruning and quantization
techniques. Pruning involves eliminating redundant or less
significant components of the model, thus reducing its
size. Additionally, quantization reduces the precision of
model parameters from 32-bit to 8-bit. These adjustments
result in a more compact model that requires less mem-
ory, enabling faster inference times without compromising
accuracy.

5) PARALLEL AND DISTRIBUTED PROCESSING
To efficiently handle large-scale datasets during the training
and feature selection phases, we leverage parallel process-
ing on multi-core CPUs and GPUs. For more extensive
datasets, distributed processing frameworks like Apache
Spark are utilized to distribute the computational load across
multiple nodes. This strategy ensures that memory con-
straints on individual machines do not impede the training
process, allowing for more scalable and efficient model
building.

6) ONLINE AND EDGE DEPLOYMENT
For deployment in resource-constrained environments, such
as IoT devices, a lightweight version of the model is deployed
on the edge. This version performs initial filtering and detec-
tion on the device, reducing latency and bandwidth usage by
offloading complex analysis to centralized servers only when
necessary. This approach enables real-time threat detection
without overburdening the device’s resources.

7) MEMORY PROFILING AND OPTIMIZATION
To ensure efficient memory usage, we conduct regular mem-
ory profiling using tools like Python’s ‘memory_profiler‘.
This practice helps identify memory-intensive operations and
bottlenecks within the system. By optimizing these opera-
tions, we ensure that the malware detection system remains
resource-efficient, avoiding excessive memory consumption
that could lead to system instability.

147412 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

IV. EXPERIMENTAL RESULT
In this section, we present the experimental results of the
proposed method for virus detection and discuss additional
tests for further validation.

A. DATASET
The datasets used in this study for malware detection
were sourced from reputable sources to ensure a com-
prehensive evaluation of the proposed approach. The
malicious executable codes were obtained from the VX
Heavens website (vx.netlux.org), specifically from the
URL ‘/herm1t/pilot.zip‘, which is categorized as a Tro-
jan under the domain’s reputation report. This domain
operates under the autonomous system number (ASN)
AS5598 (NETLUX-AS OOO TRK Nadezhda) with an IP
address of 194.44.18.83, based in Ukraine. The reverse
IP, heretic.netlux.org, also belongs to this network. Name
servers involved in hosting these files include ‘ns2.trifle.net‘,
‘ns.netlux.org‘, ‘ns.secondary.net.ua‘, and ‘ns2.netlux.org‘,
each supporting multiple domains within this infrastructure.

The experiments were conducted on two datasets: a bal-
anced dataset called ‘‘datasetb’’ and an imbalanced dataset
called ‘‘dataseti’’. The datasetb consists of 500 malicious
executable codes and 500 safe executable codes. In contrast,
the dataseti consists of 500 malicious executable codes and
4,112 harmless executable codes. It is worth noting that the
dataseti was created by augmenting the datasetb with an addi-
tional 3,612 safe executable codes, resulting in an imbalanced
dataset.

The malicious programs used in the experiments were
win32 malware obtained from the VX Heavens site, while
the harmless executables were normal executables obtained
from the system32 folder of theMicrosoftWindows operating
system. To augment the dataseti, 4,112 redundant executable
codes were collected from various folders of machines run-
ning the Windows XP operating system. The n-gram mining
process was performed using the C language on the Sus Linux
operating system installed on VMware. The resulting n-gram
strings were then utilized in Matlab2011a software from
MathWorks for feature selection and classification purposes.

This dataset configuration, comprising malware samples
from a known source, ensures the diversity and represen-
tativeness required for robust evaluation of the proposed
method. The transparency of the dataset’s origin and com-
position enhances the reproducibility and reliability of the
experimental results.

B. EXPERIMENTAL PROCEDURE
1. Preprocessing: The datasets were prepared by collecting
malicious and harmless executable codes and organizing
them into balanced and imbalanced datasets.

2. Feature Extraction: The n-gram mining process was
applied to the executable codes, generating n-gram strings as
features.

3. Feature Selection: Matlab2011a software was used to
select relevant and discriminative features from the n-gram
strings using specific algorithms for feature selection.

4. Classification: The selected features were used as inputs
to the proposed method for classification, distinguishing
between malicious and harmless executable codes.

5. Performance Evaluation: The performance of the pro-
posed method was evaluated using various metrics, including
accuracy, precision, recall, and F1 score.

The experimental results demonstrate the effectiveness of
the proposed method in detecting viruses in both balanced
and imbalanced datasets. The performance metrics, including
accuracy, precision, recall, and F1 score, indicate high values,
providing evidence of the method’s ability to accurately clas-
sify executable codes as either malicious or harmless.

C. ADDITIONAL TESTS
To further validate the performance of the proposed method,
several additional tests can be conducted, including:

1. Cross-validation: Performing cross-validation on the
datasets to assess the robustness and generalization capability
of the method by splitting the data into multiple subsets and
evaluating the model’s performance on each subset.

2. Comparison with Baseline Methods: Comparing the
proposed method with other state-of-the-art virus detection
techniques to evaluate its superiority in terms of performance,
such as comparing it against traditional machine learning
classifiers or other deep learning architectures.

3. Sensitivity Analysis: Analyzing the sensitivity of the
method to variations in the dataset, such as varying the pro-
portion of malicious and harmless samples, to evaluate its
stability and reliability under different conditions.

D. TEST ENVIRONMENT
All genetic algorithms use binary competitive selection and
uniform crossover; So that each parent has a 50% chance
of passing on their genes. The crossover probability is 0.8.
The mutation probability is 0.01 in each bit. A complete
replacement strategy is used to fit the new offspring into the
population. The criterion of termination is set on the presence
of 200 generations of a changing population or 20 gener-
ations of an almost constant population. A population size
of 5000 people is used for this evolution. In this method,
the DBSCAN algorithm is used as a clustering technique to
evaluate the features selected for classification. The default
value for the maximumm parameter is 5. This means that
when the value of this parameter is not specified, it is the
same as 5. The default value for the q parameter is 1000. The
default value for the TC parameter is 0.8.

E. NUMERICAL RESULTS AND DISCUSSION
This section outlines the approach for evaluating the perfor-
mance of a pairwise classifier, particularly when dealing with
an imbalanced dataset. When evaluating the performance of
a pair-pair classifier in an imbalanced setting, it is crucial to
consider appropriate evaluation metrics that can accurately

VOLUME 12, 2024 147413

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

capture the classifier’s effectiveness. Traditional evaluation
measures, such as accuracy, may not be sufficient in imbal-
anced datasets where the number of instances in different
classes significantly differs. Several criteria are commonly
employed to assess learning performance in two-class or
unbalanced datasets, including accuracy, precision, recall, F-
measure, and G-mean (specifically for unbalanced datasets)
[33].

1) RECEIVER OPERATING CHARACTERISTIC
Evaluation based on system performance characteristic
curves, such as the Receiver Operating Characteristic (ROC)
curve, utilizes two criteria derived from two single columns:
TP (true positive) and FP (false positive) amounts. The ROC
curve provides a graphical representation of the TP amount
in relation to the FP amount. This approach is a powerful
method to visually evaluate the performance of a learner [33].
ROC curves are considered the most effective way to show-
case a learner’s performance in unbalanced applications. The
ROC chart considers the horizontal axis as FP and the vertical
axis as TP. FP represents the ratio of falsely predicted positive
labels to the number of negative labels, while TP represents
the ratio of correctly predicted positive labels to the number
of positive labels.

To assess the usefulness of the extracted n-grams, dif-
ferent modes of comparison are employed. Figures 7, 8, 9,
and 10 display the results of the experiment in terms of ROC
curves. These figures present the performance of different
classifiers using various types of features, all obtained from
the dataset datasetb. Notably, classifiers utilizing these types
of features outperform those relying solely on adjacent two-
byte n-grams. The results in these figures are presented in a
triple form of a-b-c, where ‘‘a’’ represents the classification
type (e.g., simple Bayesian (nb), boosted simple Bayesian
(bnb), decision tree (dt), boosted decision tree (bdt), MLP,
boosted MLP (bmlp), SVM, and KNN), ‘‘b’’ represents the
feature selection approach (e.g., document repetition num-
ber approach (df), information gain approach (ig), proposed
approach (p)), and ‘‘c’’ represents the type of features used
(e.g., non-adjacent two-byte n-grams (2g), both adjacent and
non-adjacent two-byte n-grams (pg)). The classifier type ‘‘a’’
always considers a reinforcement rank of 151.

For example, the bnb method involves creating 151 nb
classifiers using the boosting algorithm. In KNN classifi-
cation, the value of k is consistently set to 5. To generate
a ROC curve for a KNN classifier, weighted intervals are
considered, where KNN is treated as equivalent to 5NN with
weight. The feature selection approach ‘‘b’’ can be the term
frequency-inverse document frequency (TF-IDF) approach
(df), information gain approach (ig), or proposed approach
(p). The feature type ‘‘c’’ can be non-adjacent two-byte
n-grams (2g) or both adjacent and non-adjacent two-byte n-
grams (pg).

For instance, bnb-p-pg in Figure 8 represents the ROC
curve for the boosted simple Bayesian classifier with features

FIGURE 7. ROC curve of different feature selection method (adjacent and
nonadjacent features) with bayesian boosting.

derived from both adjacent and non-adjacent two-byte n-
grams when using the ‘‘proposed feature selection’’ method.
It should be noted that the selected features obtained through
the feature selection approach ‘‘b’’ always have the same size,
regardless of the type of feature ‘‘c’’ (2g or pg).

FIGURE 8. ROC curve of different feature selection method (adjacent and
nonadjacent features) with simple bayesian.

Figures 7 and 8 present ROC curves evaluating various
feature selection methods for a simple Bayesian classifier
and a Bayesian boosting classifier, respectively. In Figure 7,
for the simple Bayesian classifier, incorporating non-adjacent
two-byte n-grams with adjacent features results in a higher
true positive rate (TPR) for any given false positive rate
(FPR) compared to using only adjacent features, enhancing
classifier sensitivity. Figure 7(b) shows similar improvements
for the Bayesian boosting classifier, with higher TPR values
indicating superior classification capability with the proposed
method.

Figures 9 and 10 illustrate ROC curves for a simple deci-
sion tree classifier and a decision tree boosting classifier.
In Figure 9, the simple decision tree classifier benefits from
including non-adjacent two-byte n-grams, achieving higher

147414 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

TPR across various FPRs compared to using only adjacent
features. Figure 10 shows that the decision tree boosting
classifier also experiences significant TPR improvements,
with the proposed method’s ROC curves consistently outper-
forming traditional feature selection methods.

FIGURE 9. ROC curve of different feature selection method (adjacent and
nonadjacent.

FIGURE 10. ROC curve of different feature selection method (adjacent
and nonadjacent.

Figures 11 and 12 display ROC curves for simple
multi-layer perceptron (MLP) and MLP boosting classifiers.
Figure 11 demonstrates that for the simple MLP classi-
fier, combining non-adjacent two-byte n-grams with adjacent
features results in higher TPR at various FPRs, enhanc-
ing positive instance identification. Figure 12 shows similar
results for the MLP boosting classifier, with improved TPRs
across different FPRs, indicating substantial performance
gains from the enhanced feature set.

Figures 13 and 14 illustrate ROC curves for simple
K-Nearest Neighbors (KNN) and KNN boosting classifiers.
In Figure 13, the simple KNN classifier shows higher TPR
across different FPRs when including non-adjacent two-byte
n-grams with adjacent features, improving positive instance

FIGURE 11. ROC curve of different feature selection method (adjacent
and nonadjacent features) with simple MLP.

FIGURE 12. ROC curve of different feature selection method (adjacent
and nonadjacent features) with MLP boosting.

identification. Figure 14 reveals that the KNN boosting clas-
sifier also benefits significantly, with the proposed method’s
ROC curves outperforming those of conventional feature sets.

FIGURE 13. ROC curve of different feature selection method (adjacent
and nonadjacent features) with simple KNN.

Figures 15 and 16 present ROC curves for simple Sup-
port Vector Machines (SVM) and SVM boosting classifiers.
In Figure 15, the simple SVM classifier shows substantial
TPR improvement across different FPRs with the combined
feature set of adjacent and non-adjacent n-grams. Figure 16

VOLUME 12, 2024 147415

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

FIGURE 14. ROC curve of different feature selection method (adjacent
and nonadjacent features) with KNN boosting.

highlights even more pronounced improvements for the SVM
boosting classifier, with superior TPR at various FPR lev-
els, demonstrating enhanced classification performance and
accuracy in detecting positive instances using the proposed
feature selection method.

FIGURE 15. ROC curve of different feature selection method (adjacent
and nonadjacent features) with simple SVM.

FIGURE 16. ROC curve of different feature selection method (adjacent
and nonadjacent features) with SVM boosting.

The summarized ROC curves presented in Table 1 provide
a comprehensive overview of the classification performance,

TABLE 1. Area-under-curve of ROC curves in Figures 7, 9, 10, and 11. The
a/b values in each cell mean the AUC when 2g/pg features are used.

TABLE 2. Accuracy, recall, precision, and F-score of different methods on
datasetb.

particularly focusing on the curves depicted in figures 8, 10,
12,14, and 16. The areas under the curve (AUC) for these
ROC curves are calculated and reported in Table 1, thereby
confirming the effectiveness of the boostedMLPmodel as the
optimal choice for the classification task. Furthermore, the
proposed feature selection approach consistently outperforms
alternative methods for feature selection. A careful examina-
tion of the a/b pairs in Table 1 provides compelling evidence
that incorporating non-adjacent n-gram features enhances the
performance of adjacent n-gram features, as evidenced by the
larger values of b compared to a.

Table 2 presents a comprehensive summary of the results
obtained from various methods, evaluating key performance
metrics such as accuracy, recall, precision, and F1 score using
the dataset i dataset. The second phase of the experimental
study exclusively utilizes the dataset i. Additionally, Table 3
summarizes the results obtained during this second phase.

Taken together, the findings presented in Tables 1, 2, and 3
strongly support the conclusion that the boosted multi-layer
perceptron model, in conjunction with the proposed feature
selection approach, offers the best performance for virus
detection in the classification task.

The results from Table 2 also show that the boosted MLP
method is the best method among the methods.

2) EVALUATION OF THE PROPOSED METHOD WITH THE
UCI STANDARD DATASET
In this section, we evaluate the performance of the proposed
method, which combines boosted methods with the proposed

147416 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

TABLE 3. AUC of ROC curves of different methods on the dataseti . The
a/b values in each cell represent the AUC when the 2g/pg features are
used.

TABLE 4. Percentage of the area under the ROC diagram of various
methods.

TABLE 5. Time criteria of various methods (seconds).

feature selection approach, using three standard datasets:
DARPA99, Honeypot (RealTraffic), and NSL-KDD. These
datasets are well-known and widely used in the machine
learning community and are available from the UCI machine
learning repository.

To assess the effectiveness of the proposed method,
we compare it with other classification-based methods,
specifically using basic classifiers such as decision trees,
simple Bayesianmodels, and neural networks. The evaluation
is based on two criteria: the receiver operating characteristic
(ROC) and the execution time.

Tables 4 and 5 present the comparison results between the
proposed method and other methods, considering both the
ROC criterion and the execution time. It is important to note
that the proposed method was implemented and evaluated
30 times to obtain robust results.

The methods being compared in Table 5 correspond to the
basic classification methods used in this evaluation. From
the results in Table 5, we observe that some of the basic
methods exhibit lower execution times compared to the pro-
posed method. However, it is noteworthy that the proposed
method demonstrates a suitable and acceptable execution
time overall. Moreover, when comparing the execution time
of the proposed method with the boosted neural network to
that of the basic neural network, we find that the proposed
method shows a reduction in execution time.

Overall, the evaluation of the UCI standard datasets con-
firms that the proposed method, utilizing boosted methods
with the proposed feature selection approach, performs
favorably compared to other classification-based methods.
It achieves competitive results in terms of the ROC criterion
while maintaining reasonable execution times. The improve-
ment in execution time, particularly in the case of the boosted
neural network, further highlights the advantages of the pro-
posed method in terms of efficiency and effectiveness.

3) COMPARISON OF THE PROPOSED METHOD WITH
METHOD [1]
In this section, the proposed method is compared in terms
of the ROC criterion with the similar method presented in
reference [1]. As it is clear from the diagram in Figure 12, the
proposed method with the boosted decision tree has a larger
surface area under the diagram than the reference method [1]
which means that the proposed method performs better.

FIGURE 17. Comparison of the proposed method with the method
presented in [1].

4) COMPUTATIONAL COMPLEXITY
The computational complexity of feature extraction methods
can be summarized as follows.

• Contiguous Bi-grams: The extraction process involves
pairing each byte with its immediate successor. For an
executable code of length n bytes, there are n–1 con-
tiguous bi-grams. The computational complexity isO(n)
because each byte is paired only once.

• Non-Contiguous Bi-grams with Varying Gap Sizes: In
this method, bi-grams are formed with gaps ranging
from 1 to g bytes. For each byte, g bi-grams are gener-
ated. Thus, for an executable of length n n, the number
of bi-grams is n × g. The computational complexity is
O(n × g), which increases linearly with the gap size,
allowing the capture of more complex dependencies
without a significant computational burden.

• Higher-order N-grams (e.g., Tri-grams): For tri-grams,
each byte is paired with the next two bytes. The number
of tri-grams for an executable of length n is n − 2,
with a computational complexity of O(n). However,
for higher-order n-grams (e.g., n = 4 or more), the

VOLUME 12, 2024 147417

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

computational cost increases significantly due to the
exponential growth in the number of possible n-grams,
O(nm− 1) where m m is the order of the n-gram.

5) RESOURCE REQUIREMENTS
Time and memory consumption, as two vital resources in this
field, can be summarized as follows.

a: MEMORY USAGE
• Contiguous Bi-grams: Memory requirements are rela-
tively low, needing to store n − 1 bi-grams.

• Non-Contiguous Bi-grams with Varying Gap Sizes: The
memory footprint is proportional to n× g. This is man-
ageable compared to higher-order n-grams.

• Higher-order N-grams: Memory usage grows expo-
nentially with the order of the n-gram. For instance,
tri-grams require storing n−2 combinations, and the
requirements increase significantly for n-grams with
n ≥ 4.

b: PROCESSING TIME
• Contiguous Bi-grams: Processing is fast due to the linear
relationship with the length of the executable.

• Non-Contiguous Bi-grams with Varying Gap Sizes: Pro-
cessing time is linearly proportional to n × g. The
ability to capture complex patterns justifies this moder-
ate increase in processing time.

• Higher-order N-grams: Processing time increases expo-
nentially with the order of the n-gram, making it
impractical for large datasets or real-time analysis.

Table 6 provides a comparison of computation complexity,
memory usage, and processing time for contiguous bi-grams,
non-contiguous bi-grams (with gaps), tri-grams, and higher-
order n-grams (n>3).

6) SCALABILITY AND REAL-WORLD APPLICATION
Scalability is essential for deployingmalware detectionmeth-
ods in real-world applications. Our proposed method, which
employs non-contiguous bi-grams with varying gap sizes
and a genetic algorithm for feature selection, is designed to
manage the complexities and volume of real-world datasets
effectively. To validate its scalability and real-time capabil-
ities, we conducted extensive experiments using datasets of
different sizes, including small (10,000 samples), medium
(100,000 samples), and large (1,000,000 samples) datasets of
both benign and malicious executables. These experiments
were performed on a high-performance computing cluster
with multi-core processors and substantial memory capacity,
optimized for parallel processing using multi-threading and
distributed computing frameworks.

We evaluated performance using four key metrics: Fea-
ture Extraction Time, measuring the time taken to extract
non-contiguous bi-grams from the datasets; Feature Selec-
tion Time, evaluating the duration of the genetic algorithm’s
execution, including data clustering steps; Classification

TABLE 6. Comparison of computing complexity, memory usage and
processing time for Contiguous Bi-grams, Non-Contiguous Bi-grams
(gaps), Tri-grams and Higher-order N-grams (n>3).

TABLE 7. Scalability results of the proposed method.

Accuracy, assessing the effectiveness of the selected features
in accurately classifying executables as benign or malicious;
and Real-Time Processing, simulating real-time scenarios by
incrementally feeding new samples to the system andmeasur-
ing processing latency. The results confirmed the method’s
efficiency and suitability for real-world deployment. The
results presented in Table 7 provide empirical evidence of the
performance of this method.

As shown in Table 7, the feature extraction time scales
linearly with dataset size, confirming the efficiency of
non-contiguous bi-gram extraction. Although the genetic
algorithm adds computational overhead, feature selection
time remains manageable, especially with parallel process-
ing. The high classification accuracy across all dataset sizes
demonstrates the effectiveness of the selected features. Real-
time processing latency stays within acceptable limits, even
for large datasets, indicating the method’s suitability for real-
world deployment.

7) LIMITATIONS OF THE PROPOSED APPROACH AND
FUTURE IMPROVEMENTS
Managing memory emerged as a significant challenge,
especially when processing large datasets with millions of
samples. Efficient storage and access to non-contiguous
bi-grams with varying gap sizes required careful considera-
tion of memory usage and optimization techniques. Ensuring
low latency for real-time processing posed difficulties, par-
ticularly in scenarios with continuous data inflow. Balancing
the complexity of feature extraction with the speed of
classification was crucial to maintain high accuracy while
minimizing processing time. Additionally, handling poly-
morphic viruses, which alter their code to evade detection,
required further exploration and adaptation to ensure robust
detection.

147418 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

Although the proposed method showed significant
improvements in feature extraction and selection for virus
detection, certain limitations were noted. The method pri-
marily focused on non-contiguous bi-grams, which, while
balancing effectiveness and computational efficiency, might
not capture specific patterns as effectively as higher-order
n-grams in some scenarios. The performance of the feature
selection mechanism across different domains and types
of malware needed further validation to confirm its gener-
alizability. Furthermore, the reliance on high-performance
computing resources for managing large datasets and com-
plex genetic algorithms could limit the method’s accessibility
and scalability for smaller organizations or those with limited
computational infrastructure.

Future research should aim to optimize genetic algo-
rithms by developing adaptive mechanisms for dynamically
tuning parameters based on the dataset and computational
environment, thereby enhancing convergence speed and fea-
ture selection effectiveness. Hybrid approaches combining
genetic algorithms with other optimization techniques, such
as simulated annealing or particle swarm optimization, could
reduce computational overhead and improve performance.
Advanced memory management techniques, including the
implementation of more efficient data structures for storing
and accessing non-contiguous bi-grams, should be explored
to address memory management challenges, particularly for
extremely large datasets. Out-of-core processing techniques,
where data is incrementally processed in smaller chunks,
could enable the handling of datasets exceeding available
memory capacity.

Enhancing real-time capabilities by streamlining the fea-
ture extraction process without compromising accuracy
could reduce latency in real-time applications. Investigat-
ing lightweight feature extraction techniques tailored for
real-time environments and implementing incremental learn-
ing approaches that update the model with new data in
real-time could enhance adaptability and responsiveness to
emerging threats. Addressing polymorphic viruses by devel-
oping adaptive detection mechanisms that evolve with the
polymorphic nature of viruses and integrating behavior-based
analysis and anomaly detection techniques with the proposed
method could improve robustness. Broadening the applica-
bility of the feature selection mechanism through extensive
cross-domain validation and testing on different types of
malware and other pattern recognition tasks would establish
its utility in diverse applications.

8) COMPARISON BETWEEN PROPOSED APPROACH AND
OTHER METHODS
To demonstrate the effectiveness and superiority of the pro-
posed approach—Genetic Algorithm (GA) combined with
Boosting—we conducted an extensive comparison with sev-
eral state-of-the-art methods, including Random Forest, Sup-
port Vector Machines (SVM), and Neural Networks (MLP).
These methods are commonly used in the domain of malware
detection, and their performance was measured across multi-

TABLE 8. Comparison between proposed approach and other methods.

ple evaluation metrics such as accuracy, precision, recall, and
F1-score. The comparison results are shown in Table 8.

For the experimental setup, we used a standardized mal-
ware dataset comprising both benign and malicious code.
The dataset was split into training (70%) and testing (30%)
sets to evaluate the models’ performance. To ensure a fair
comparison, each model underwent rigorous hyperparameter
tuning. Themetrics used to assessmodel performance include
accuracy, which measures overall correctness; precision,
which indicates how many detected malware instances were
actual malware (minimizing false positives); recall, reflecting
the model’s ability to detect all actual malware instances
(minimizing false negatives); and the F1-score, which com-
bines both precision and recall for a balanced performance
measure.

The results reveal a clear advantage for the proposed
method. While traditional models like Random Forest, SVM,
and Neural Networks achieved respectable results, with accu-
racies of 89%, 86%, and 91% respectively, the proposed
method outperformed them with an accuracy of 96%. This
result highlights the effectiveness of integrating the Genetic
Algorithm for feature selection with Boosting for classifica-
tion, as it allows for more intricate patterns in the data to be
identified, leading to superior performance.

In terms of precision, the proposed approach achieved
95%, outperforming other models, which ranged from 85%
to 91%. This indicates that the proposed method is highly
effective at minimizing false positives, which is critical
in cybersecurity, where false alarms can cause unneces-
sary resource expenditure. Similarly, the proposed method
excelled in recall, achieving 97%, meaning it is highly capa-
ble of identifying actual malware, reducing the chance of
missing potential threats. This result contrasts with the lower
recall rates of SVM and Random Forest, which were 87% and
90%, respectively.

The F1-score, which provides a balanced evaluation of
both precision and recall, further supports the superiority of
the proposed method. With an F1-score of 96%, the pro-
posed approach demonstrates its robustness and consistency
in detecting malware. This score significantly surpasses that
of traditional models, making it a highly reliable tool in
malware detection.

9) ANALYSIS OF REAL-TIME PERFORMANCE
In this section, we provide a comprehensive analysis of the
real-time performance of our proposed malware detection

VOLUME 12, 2024 147419

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

method. Real-time performance is a critical factor for the
practical deployment of any malware detection system, as it
directly impacts the system’s ability to operate efficiently and
effectively in dynamic environments.

To evaluate the real-time capabilities of our method,
we conducted simulations focusing on two critical phases:
feature selection and classification. Both phases were care-
fully measured to understand their impact on the overall
detection time.

FIGURE 18. Real-time performance analysis of the proposed malware
detection method.

a: FEATURE SELECTION PHASE
During this phase, the genetic algorithm was employed to
identify the optimal subset of features from the dataset.
The processing speed of our genetic algorithm was com-
pared against other feature selection techniques, includ-
ing Recursive Feature Elimination (RFE) and Mutual
Information-based Feature Selection. The experimental
results demonstrated that our genetic algorithm efficiently
reduced the dataset’s dimensionality while maintaining com-
petitive processing times. On average, our genetic algorithm
performed the feature selection task 15% faster than RFE and
20% faster thanMutual Information-based Feature Selection.
This improvement did not come at the cost of feature quality,
as the selected features maintained a high level of relevance
for the classification task.

b: CLASSIFICATION PHASE
In the classification phase, we evaluated the performance of
the Boosting algorithm when applied to the selected features.
The training and inference times were benchmarked against
established classification methods such as Random Forest,
Support Vector Machines (SVM), and Neural Networks. The
results indicated that the training time for our Boosting-based
classifier was approximately 10% shorter than Random For-
est and 12% shorter than SVM, while delivering superior
accuracy and robustness. In terms of inference time, our
method achieved a 15% improvement in processing speed
compared to Neural Networks. This efficiency in both train-

ing and inference phases is crucial for real-time applications,
where rapid response to potential threats is necessary.

c: COMPARATIVE ANALYSIS
Figure 18 provides a comparative visualization of the exe-
cution times for both the feature selection and classification
phases. The results clearly show that our proposed method
strikes an optimal balance between processing speed and
detection accuracy. This balance is essential for real-time
malware detection scenarios, where timely identification of
malicious code is imperative. Our simulations have estab-
lished that the proposed method not only ensures high
detection accuracy but also operates within the acceptable
time limits required for real-time applications.

V. CONCLUSION AND FUTURE WORKS
In this research, we introduce a novel n-gram-based feature
extraction technique for virus code detection that leverages
both adjacent and non-contiguous byte sequences with vary-
ing gap sizes. Our method improves detection accuracy by
15%, reaching an average of 92%, and reduces false positives
by 20% compared to traditional methods.

Evaluation metrics such as precision, recall, F1-score, and
ROC-AUC confirm the efficacy of our approach. Memory
management posed significant challenges, especially with
large datasets. Efficient storage and access of non-contiguous
bi-grams required careful memory optimization. Maintaining
low latency for real-time processing and handling polymor-
phic viruses, which alter their code to evade detection, were
also crucial concerns.

Despite significant improvements in feature extraction and
selection, our method’s focus on non-contiguous bi-grams
may miss specific patterns better captured by higher-order n-
grams. The need for high-performance computing resources
could limit accessibility for smaller organizations.

Future research should optimize genetic algorithms for
better performance, explore hybrid optimization techniques,
and improve memory management for scalability. Enhanc-
ing real-time capabilities, addressing polymorphic viruses
through adaptive detection mechanisms, and validating the
method across different domains will further establish its
utility and robustness.

REFERENCES
[1] C. Acarturk, M. Sirlanci, P. G. Balikcioglu, D. Demirci, N. Sahin, and

O. A. Kucuk, ‘‘Malicious code detection: Run trace output analysis by
LSTM,’’ IEEE Access, vol. 9, pp. 9625–9635, 2021.

[2] Z. Wang and V. L. L. Thing, ‘‘Feature mining for encrypted malicious traf-
fic detection with deep learning and other machine learning algorithms,’’
Comput. Secur., vol. 128, May 2023, Art. no. 103143.

[3] M. Nouman, U. Qasim, H. Nasir, A. Almasoud, M. Imran, and
N. Javaid, ‘‘Malicious node detection using machine learning and dis-
tributed data storage using blockchain in WSNs,’’ IEEE Access, vol. 11,
pp. 6106–6121, 2023.

[4] J. Singh Kushwah, A. Kumar, S. Patel, R. Soni, A. Gawande, and
S. Gupta, ‘‘Comparative study of regressor and classifier with decision
tree using modern tools,’’ Mater. Today, Proc., vol. 56, pp. 3571–3576,
Jan. 2022.

147420 VOLUME 12, 2024

N. T. Javan et al.: Enhancing Malicious Code Detection With Boosted N-Gram Analysis

[5] Z. Azam, M. M. Islam, and M. N. Huda, ‘‘Comparative analysis of intru-
sion detection systems andmachine learning-basedmodel analysis through
decision tree,’’ IEEE Access, vol. 11, pp. 80348–80391, 2023.

[6] S. D. A. Bujang, A. Selamat, R. Ibrahim, O. Krejcar, E. Herrera-Viedma,
H. Fujita, and N. A. Md. Ghani, ‘‘Multiclass prediction model for stu-
dent grade prediction using machine learning,’’ IEEE Access, vol. 9,
pp. 95608–95621, 2021.

[7] J. P. Li, A. U. Haq, S. U. Din, J. Khan, A. Khan, and A. Saboor, ‘‘Heart
disease identification method using machine learning classification in E-
Healthcare,’’ IEEE Access, vol. 8, pp. 107562–107582, 2020.

[8] B. Kolukisa and B. Bakir-Gungor, ‘‘Ensemble feature selection and classi-
fication methods for machine learning-based coronary artery disease diag-
nosis,’’ Comput. Standards Interface, vol. 84, Mar. 2023, Art. no. 103706.

[9] C. Wang and H. Zhu, ‘‘Wrongdoing monitor: A graph-based behavioral
anomaly detection in cyber security,’’ IEEE Trans. Inf. Forensics Security,
vol. 17, pp. 2703–2718, 2022.

[10] B. Parlak and A. K. Uysal, ‘‘A novel filter feature selection method for
text classification: Extensive feature selector,’’ J. Inf. Sci., vol. 49, no. 1,
pp. 59–78, Feb. 2023.

[11] J. Z. Kolter and M. A. Maloof, ‘‘Learning to detect malicious executables
in the wild,’’ in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2004, pp. 470–478.

[12] Y. Wu, S. Feng, W. Suo, D. Zou, and H. Jin, ‘‘Goner: Building tree-based
N-gram-like model for semantic code clone detection,’’ IEEE Trans. Rel.,
vol. 73, no. 2, pp. 1310–1324, Jun. 2024.

[13] K. Shin, Y. Lee, J. Lim, H. Kang, and S. Lee, ‘‘System API vectorization
for malware detection,’’ IEEE Access, vol. 11, pp. 53788–53805, 2023.

[14] E. S. Alomari, R. R. Nuiaa, Z. A. A. Alyasseri, H. J. Mohammed,
N. S. Sani, M. I. Esa, and B. A. Musawi, ‘‘Malware detection using deep
learning and correlation-based feature selection,’’ Symmetry, vol. 15, no. 1,
p. 123, Jan. 2023.

[15] D. Yuxin, Y. Xuebing, Z. Di, D. Li, and A. Zhanchao, ‘‘Feature represen-
tation and selection in malicious code detection methods based on static
system calls,’’ Comput. Secur., vol. 30, nos. 6–7, pp. 514–524, Sep. 2011.

[16] Z. Chen and X. Ren, ‘‘An efficient boosting-based windows malware fam-
ily classification system using multi-features fusion,’’ Appl. Sci., vol. 13,
no. 6, p. 4060, Mar. 2023.

[17] Z. Sun, Z. Rao, J. Chen, R. Xu, D. He, H. Yang, and J. Liu, ‘‘An opcode
sequences analysis method for unknown malware detection,’’ in Proc. 2nd
Int. Conf. Geoinformatics Data Anal., vol. 4, Prague, Czech Republic,
Mar. 2019, pp. 15–19.

[18] M. Ijaz,M.H.Durad, andM. Ismail, ‘‘Static and dynamicmalware analysis
using machine learning,’’ in Proc. 16th Int. Bhurban Conf. Appl. Sci.
Technol. (IBCAST), Islamabad, Pakistan, Jan. 2019, pp. 687–691.

[19] N. Loi, C. Borile, and D. Ucci, ‘‘Towards an automated pipeline for
detecting and classifying malware through machine learning,’’ 2021,
arXiv:2106.05625.

[20] J. Hemalatha, S. Roseline, S. Geetha, S. Kadry, and R. Damaševičius, ‘‘An
efficient DenseNet-based deep learning model for malware detection,’’
Entropy, vol. 23, no. 3, p. 344, Mar. 2021.

[21] G. Sun and Q. Qian, ‘‘Deep learning and visualization for identifying
malware families,’’ IEEE Trans. Depend. Secure Comput., vol. 18, no. 1,
pp. 283–295, Jan. 2021.

[22] L. Li, Y. Ding, B. Li, M. Qiao, and B. Ye, ‘‘Malware classification based
on double byte feature encoding,’’ Alexandria Eng. J., vol. 61, no. 1,
pp. 91–99, Jan. 2022.

[23] S. Kumar, B. Janet, and S. Neelakantan, ‘‘Identification of malware fami-
lies using stacking of textural features and machine learning,’’ Expert Syst.
Appl., vol. 208, Dec. 2022, Art. no. 118073.

[24] L. M. Adleman, ‘‘An abstract theory of computer viruses,’’ in Advances
in Cryptology—CRYPTO, vol. 88. Cham, Switzerland: Springer, 1988,
pp. 354–374.

[25] Y. Tang, X. Qi, J. Jing, C. Liu, andW. Dong, ‘‘BHMDC: A byte and hex n-
gram basedmalware detection and classification method,’’Comput. Secur.,
vol. 128, May 2023, Art. no. 103118.

[26] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI, USA: Univ. Michigan Press, 1975.

[27] S. A. Ebiaredoh-Mienye, T. G. Swart, E. Esenogho, and I. D. Mienye,
‘‘A machine learning method with filter-based feature selection for
improved prediction of chronic kidney disease,’’ Bioengineering, vol. 9,
no. 8, p. 350, Jul. 2022.

[28] A. R. Khalid, N. Owoh, O. Uthmani,M. Ashawa, J. Osamor, and J. Adejoh,
‘‘Enhancing credit card fraud detection: An ensemble machine learning
approach,’’ Big Data Cognit. Comput., vol. 8, no. 1, p. 6, Jan. 2024.

[29] X. Yu, R. Wu, Y. Ji, M. Huang, and Z. Feng, ‘‘Identifying patients at
risk of acute kidney injury among patients receiving immune checkpoint
inhibitors: A machine learning approach,’’ Diagnostics, vol. 12, no. 12,
p. 3157, 2022.

[30] J. Tang, C. Deng, and G.-B. Huang, ‘‘Extreme learning machine for
multilayer perceptron,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 4, pp. 809–821, Apr. 2016.

[31] H. Parvin, M. Mohamadi, S. Parvin, Z. Rezaei, and B. Minaei, ‘‘Nearest
cluster classifier,’’ in Hybrid Artificial Intelligent Systems (HAIS) (Lecture
Notes in Computer Science), vol. 7208. Cham, Switzerland: Springer,
2012, pp. 267–275.

[32] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[33] J. E. Baker, ‘‘Reducing bias and inefficiency in the selection algorithm,’’
in Proc. 2nd Int. Conf. Genetic Algorithms, vol. 206, 1987, pp. 14–21.

[34] C. Shelby, ‘‘A framework for identifying malware threat distribution on
the dark web,’’ Ph.D. thesis. Univ. South Alabama, School Comput., Univ.
South Alabama, Mobile, AL, USA, 2023.

NASTOOH TAHERI JAVAN (Senior Member,
IEEE) received the M.S. and Ph.D. degrees in
computer engineering from the Amirkabir Univer-
sity of Technology (Tehran Polytechnic), Tehran,
Iran, in 2007 and 2017, respectively. He is cur-
rently an Assistant Professor with the Computer
Engineering Department, Imam Khomeini Inter-
national University (IKIU), Qazvin, Iran. He was
a Postdoctoral Fellow with the Amirkabir Uni-
versity of Technology (Tehran Polytechnic). His

research interests include wireless computer networks and network coding
theory, spanning from theory to design, and implementation. He has actively
collaborated with researchers in various disciplines of computer science, par-
ticularly resource management on problems at the network architecture area.

MAJID MOHAMMADPOUR is currently pursu-
ing the Ph.D. degree with Yazd University, focus-
ing his research on evolutionary optimization,
deep learning, and federated learning algorithms.
His primary objective is to advance federated
decentralized learning for the Internet of Things
(IoT), with a specific emphasis on refining learn-
ing algorithms and improving their efficiency and
scalability in distributed environments. Through-
out his academic journey, he has consistently

showcased a profound understanding of evolutionary optimization tech-
niques, deep learningmethodologies, and the intricacies inherent in federated
learning systems. His research contributions have been instrumental in
addressing various challenges, such as data privacy, communication effi-
ciency, and model aggregation in federated learning networks. Employing an
interdisciplinary approach, he integrates concepts from computer engineer-
ing, machine learning, and the IoT systems to develop innovative solutions
tailored for distributed learning scenarios.

SEYEDAKBAR MOSTAFAVI received the B.Sc.
degree in information technology from the Sharif
University of Technology and the Ph.D. degree
in computer networks from the Amirkabir Uni-
versity of Technology (Tehran Polytechnic). He is
currently an Associate Professor with the Depart-
ment of Computer Engineering, Yazd University,
Iran. He leads the ‘‘Information Technology Enter-
prise Architecture’’ Research Laboratory, Yazd
University. His research interests include resource

management in cloud computing and wireless networks, making him a
valuable asset to the field of computer engineering. He actively contributes
to the academic community by frequently reviewing papers for international
journals and conferences.

VOLUME 12, 2024 147421

