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Abstract
Any properly designed network coding technique can result in increased throughput and reliability of multi-hop wireless

networks by taking advantage of the broadcast nature of wireless medium. In many inter-flow network coding schemes

nodes are encouraged to overhear neighbour’s traffic in order to improve coding opportunities at the transmitter nodes. A

study of these schemes reveal that some of the overheard packets are not useful for coding operation and thus this forced

overhearing increases energy consumption dramatically. In this paper, we formulate network coding aware sleep/wakeup

scheduling as a semi Markov decision process (SMDP) that leads to an optimal node operation. In the proposed solution for

SMDP, the network nodes learn when to switch off their transceiver in order to conserve energy and when to stay awake to

overhear some useful packets. One of the main challenges here is the delay in obtaining reward signals by nodes. We

employ a modified reinforcement learning method based on continuous-time Q-learning to overcome this challenge in the

learning process. Our simulation results confirm the optimality of the new methodology.

Keywords Wireless multi-hop networks � Network coding � Energy consumption � Coding gain � SMDP �
Q-learning

1 Introduction

The network coding fundamentals were proposed by

Ahlswede et al. [1] in order to efficiently utilize resources

of wired networks. With network coding, an intermediate

node sends multiple packets within a single coded packet,

so the most desirable feature of network coding is that it

achieves significantly higher throughput via reducing the

number of transmissions. Currently, opportunistic network

coding is being applied to wireless networks, such as

802.11-based multi-hop wireless networks with substantial

throughput improvements [2]. Network coding in the

wireless networks can be classified into two types: when

the coded packets are from different sessions, it is called

inter-flow coding [3, 4], and when they are from the same

session, it is called intra-flow network coding [5]. On the

other hand, some network coding schemes, such as COPE

[6], considered the two-hop coding frameworks (i.e. coded

packets are decoded at the next hop of the coder node),

whereas some others, such as DCAR [7] studied multi-hop

coding frameworks (i.e. coded packets are decoded at two

or more hops away from the coder node). In this paper, we

explore two-hop inter-flow network coding in multi-hop

wireless networks (similar to COPE).

Many network coding implementations in wireless net-

works encourage the nodes to overhear their neighbour

traffic in order to provide increased coding opportunities

and consequently reduce the number of transmissions.

COPE [6] and DCAR [7] are two examples that are based

on this idea. They demonstrate that overheard packets, in

the context of broadcast wireless channel, can be efficiently

used to assist network coding, resulting in transmission

reductions and throughput improvements. For example, in

COPE, the network nodes overhear the whole transmission
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traffic of their neighbors and keep these packets in their

memory for a short period of time, this phase is known as

opportunistic listening in the said scheme. In addition, in

order to choose the best coding pattern, the coder node

should be informed of the packets its neighboring nodes

keep in their memory. Collecting this overhearing infor-

mation at the coder node is possible through two approa-

ches: one is by explicitly acknowledging, and the other is

by statistical obtaining [6]. In the first method, a network

node sends a list of the all the packets in its memory to its

neighbors periodically as the reception reports, and in the

second method, the overhearing information is guessed by

the encoding node via using link quality advertisements

through periodic probing [8]. Comparisons of different

marking methods and their performance are beyond the

scope of this paper.

In order to understand the importance of overhearing in

network coding implementations, let us consider the sim-

plified example in Fig. 1. In this scenario, there are two

data flows, one from n1 to n2 (which includes packet pa)

and the other from n2 to n3 (which includes packet pb).

Suppose that in the first two transmissions, n1 and n2,

respectively, send pa and pb packets to R (as the interme-

diate node). Now R shall send packet pa to n2 and packet pb
to n3. Under this set up if n3 does not try overhearing when

pa is being sent by n1, node R has no coding opportunity for

these packets and they shall be sent to their destinations

through two separate transmissions. On the other hand, if

n3 does overhear pa, R can send the packets requested by n2
and n3 through coding pa and pb together, i.e. pa ? pb is

sent in one transmission. This means that it requires one

less transmission (3 rather than 4) to send pa and pb to their

respective destinations. In general, in multi-hop wireless

networks, if the network nodes overhear the neighbor’s

packets, they can improve coding gain (the ratio of the

number of transmissions required by the non-coding

approach to the number of transmissions used by a coding

scheme).

It is important to note that the entire packets overheard

by the nodes are not invariably useful for the coding

operations. In other words, not all overheard packets boost

coding opportunities. For example, overhearing packet pa
in Fig. 1 by the other neighbors of n1 (such as n4) may not

provide any coding opportunity at all, and therefore the

worthiness of all overheard packets is not necessarily the

same regarding coding gain.

On the other hand, wireless network nodes usually have

finite power resource and how to improve network energy

efficiency is still a main challenge. Wireless nodes have RF

module that consume a considerable amount of energy for

doing operations such as transmission, reception and idle

listening. So, in practice, reducing energy consumption is a

fundamental objective in wireless networks [9]. For

example, in IEEE 802.11 [10], network nodes try to con-

serve energy through switching off the transceiver. In IEEE

802.11, in order to identify the receiver and also the

transmission duration, the transmitter node broadcasts an

RTS packet toward its neighbors, and then sends a data

packet to the receiver node. The other nodes that have not

been identified as the receiver turn off their transceiver for

the transmission duration. We call these idle periods (i.e.

overhearing opportunity). As mentioned before, unlike

IEEE 802.11, in most network coding schemes network

nodes are forced to stay awake over idle periods to over-

hear more packets.

Given this background and since all overheard packets

are not always beneficial for coding operation, it is not

desirable and cost effective for network nodes to remain

awake all their idle periods in the hope of increased coding

opportunities. Since nodes consume less energy when they

switch to a sleep mode there is a trade-off between coding

gain and energy consumption.

Some past works have tried to decrease overhearing

overhead in wireless coded networks. For example, in [11],

the study eliminated overhearing redundant packets in

coded WSN through sending a new frame before each data

packet to announce redundant packet at the receiver node.

In [12] authors removed some of the overhearing slots by

rearranging retransmission slots because they gave rise to

some additional retransmission slots in their TDMA-based

MAC protocol. To the best of our knowledge, most of the

previous works have looked at the challenge and come up

with restricted scenarios, whereas we aim to take this to a

more general form in a COPE-like scenario in multi-hop

wireless networks.

In this paper, we address the following question: Given

the knowledge of received packets at the neighbors, how

does one design an efficient sleep/wakeup scheduling for

multi-hop wireless networks that can improve coding gain

and energy consumption? The answer is to formulate the

network coding aware sleep/wakeup scheduling as a semi

Markov decision process (SMDP) [13], which is the

approach adopted here which tries to predict the optimal

wakeup and sleep patterns and determine optimal policy of

the network nodes. We model the problem as SMDP rather

than as Markov decision process (MDP) [14] because the

time interval between two successive decision points is

R
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Fig. 1 The importance of overhearing in wireless network coding
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random. In discrete time MDP(s), the decision maker

selects actions only at fixed epochs, however, in many

practical problems, such as the one under study here, the

times between the decision pints are not constant but ran-

dom. In such scenarios an effective tool is SMDP which is

consisted of states and actions, and is specified by the

transitions probability and the sojourn time in each state

when an action is executed.

In proposed scheme, at each idle period, the node

decides to either: (1) ‘‘sleep,’’ i.e. turn off it’s transceiver to

save energy; or (2) ‘‘stay awake’’ and thus overhear more

packets. These idle periods can also be called decision

epochs. Our approach enables the nodes in the multi-hop

wireless networks to independently improve the overall

energy consumption as well as coding gain. Using this

SMDP formulation, we will investigate how nodes can

learn the network dynamics, based on their local knowl-

edge, and strive to find an optimal decision policy to

maximize the cumulative rewards in long term.

We can solve SMDP problems using the classical

method of dynamic programming (DP). However, DP

needs all the transition probabilities, transition rewards and

transition times to achieve results [14]. Instead, reinforce-

ment learning (RL) [15] provides a convenient approach to

solve decision-making problems for which optimal solu-

tions theoretically are arduous and effortful to find, such as

our case. What is important to note is that one of the main

challenges with our SMDP is that there is stochastic time

delay in the node’s reward determination. In our problem,

when a node decides to overhear a packet, usefulness or

non-usefulness of the overheard packet is not determined

immediately. Hence traditional reinforcement learning

methods, such as Q-learning [16], are not applicable and a

modified continuous-time Q-learning strategy for over-

coming delayed rewards is called for. The results under

simulation set up confirm that the proposed method pro-

vides a significant energy consumption improvement in

multi-hop wireless networks.

Let us now briefly discuss what contributions this paper

can make:

• We develop a foresighted decision making model to

combine the sleep/wakeup scheduling and network

coding frameworks. Because states of wireless net-

works change dynamically, foresighted nodes make

optimal decisions on a long term basis. To enable the

nodes to make suitable decisions to maximize long term

outcome, we model the sequential decision-making as

an SMDP at each independent node, so each node

determines its best policy according to its local

knowledge separately.

• We analyze trade-off between energy consumption and

network coding gain. To do this, we explicitly explore

the impact of sleep/wakeup scheduling on the network

coding gain in wireless multi-hop networks.

• We propose a modified continuous-time Q-learning

method for defeating the delayed reward problem in

nodes’ learning process.

• And finally, an optimal sleep/wakeup policy is derived

by considering these two main aspects: the energy

remaining in the node’s battery and the network coding

utility around the node.

The rest of the paper is organized as follows: Sect. 2

presents preliminary exploration of problem, Sect. 3 gives

an overview of related works and system model is repre-

sented in Sect. 4. Then an analytical model is described in

Sect. 5 before moving on to the next section to disclose our

simulation results. The paper concludes in Sect. 7 recap-

ping its main contributions.

2 Preliminary exploration and motivation

In order to understand the diversity of overheard packets in

network coding, we implemented the COPE idea through

NS2 simulator [17] employing one hundred nodes spread

randomly over a 200 9 200 m2. Each node had a 40

meters transmission range and each sent packet was 256

bytes in size and duration of each simulation was consid-

ered to be 300 s. During simulation, some CBR flows were

randomly established between nodes with 12 s duration

each, so that 14 flows on average were running in the

network at each moment of simulation. DSR [18] algorithm

and a modified slotted version of IEEE 802.11 were used

for routing and MAC mechanism, respectively.

Under these conditions, nodes kept their transceiver

switched on for overhearing during the entire period of

simulation (as suggested in COPE). Results indicate that,

on average, 38% of the packets overheard by the nodes

provided no help to increase coding opportunities in the

network. For example, Fig. 2 shows a total of 28 time slots

of lifetime of a randomly selected node.

As can be seen from Fig. 2, each time slot may have five

modes for each node:

1. Node is sending the packet (shown by white box

denoted by letter S).

2. Node is receiving the packet (shown by white box

denoted by letter R).

3. Node is overhearing a packet effective in coding

(shown by gray box denoted by OG letters).

4. Node is overhearing a packet ineffective in coding

(shown by hatched gray box denoted by OB letters).

5. Node is keeping the transceiver unit on, even though it

does not receive any packet, i.e., idle listening. (Shown

by hatched white box denoted by letter i).
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Briefly, the results of our simulation demonstrate that

during the entire time slots in which all the nodes kept their

transceiver ON in the hope of overhearing useful packets,

for 77% of the time the nodes overheard packets and for the

remaining 23% they received no packet at all (idle listen-

ing). Furthermore, among the entire overheard packets,

38% did not help with the coding process. In other words,

only during 48% of inactive periods the network nodes

overheard helpful packets for network coding process and

for the remaining 52%, during which the nodes deliberately

kept their transceiver ON, awakening were not helpful (and

this includes idle listening periods as well as receiving

useless packets) and therefore it would be better for the

nodes to turn OFF the transceiver over that periods.

To see what is involved in this process we ran our next

experiments where parameters were set exactly as before

and network topology and specifications of flows remained

unchanged. In this new simulation scenario, the network

nodes greedily tried to sleep, turning off their transceivers

in all but the activity (send/receive) slots. In fact, in this

case the nodes overheard no additional packet and tried to

save their energy. Two clear conclusions can be drawn

from these pair of investigations. Firstly, network energy

consumption dramatically decreased in the second scenario

resulting in 31% increase in its lifetime. (Here, network

lifetime means the time interval between the beginning of

simulation and the moment when the first node runs out of

energy and dies). Secondly, coding gain in the first scenario

is 22% higher (average coding gains in the first and second

scenarios were measured as 1.38 and 1.13, respectively).

There is a trade-off between energy consumption and

network coding gain in multi-hop wireless networks.

Accordingly, we use an SMDP model to develop a strategy

for the wireless node to decide its best course of action at

every idle period. In practice, multi-hop wireless networks

operate over stochastic environments with uncertainty and

when faced with a sequential decision-making problem, a

network node, as a decision maker, executes an action and

transits from the current state to the next which affects the

environment. Under these circumstances, some portion of

the node’s outcomes is random and some is under the

control of the node. One of the most useful theoretical

frameworks to configure these situations is SMDP which

monitors their progress in a continuous-time manner. In

Sect. 5.1 we will see how this problem can be formulated

as a SMDP model.

We have already stated that the overheard packets by a

node can help improve coding gain. After overhearing

different packets a node declares it is storing packets in its

memory to its neighbors and the neighbors may discover

new coding opportunities upon this declaration. It is after

these steps that usefulness or non-usefulness of an over-

heard packet for coding gain will be known at the moment

of receiving a coded packet in several time slots later.

Subsequently, whenever this node receives a coded packet

containing the overheard packet, usefulness of the over-

heard packet will be revealed. In other words, when a node

selects an action, the reward signals are not known

immediately and may reach the node out of order. In order

to overcome the delayed rewards challenge, we use a

modified continuous-time Q-learning method that is

described in Sect. 5.2.

3 Related works

Reducing energy consumption in wireless communications

has attracted increasing attention recently [9]. Many

researchers study this from different perspective. For

example, in [19] authors proposed energy efficient routing

protocol for wireless environments and in [20], researchers

strived to control energy usage through MAC techniques

renovations. In [21, 22] some techniques came up with

duty cycling approach and in [23], authors focused on

topology control techniques to improve network life time.

In alternative studies, some data driven techniques were

reported to overcome energy dissipation. For example,

authors in [24] argued that data aggregation could reduce

energy expenditure, while in [25] the proposed solution

demonstrated that nodes could improve network life time

through data compression strategy and in [26] authors

achieved this goal via a network coding scheme. Among

these techniques, network coding improves energy con-

sumption through decreasing the number of transmissions

in wireless networks. For example, Cui et al. [27] proposed

CORP by using a suboptimal scheduling algorithm that

exploited network coding opportunities, and thus achieved

a significant power saving over pure routing for multiple

unicast sessions. Also, a simple and low complexity
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subgraph selection method is revealed in [28] that reduces

energy consumption in coded wireless networks.

Efforts have also been made lately to reduce overhearing

in restricted scenarios (e.g., [11, 12]) and to exploit

incomplete overhearing (e.g., [30–32]) in wireless network

coding. In [11], authors eliminated overhearing redundant

broadcast packets in coded WSN by using a new small

frame, which they called digest info. They proposed that

digest info packet should be sent right before each broad-

cast data packet. The digest info packet has a field that

contains either a unique identifier, or a hash of the data

contained in the subsequent data packet. The node uses the

information in the digest info to identify the subsequent

data packet. If a node finds that the following data packet

has already been received, it can put its radio to sleep

mode. In [12] authors applied network coding in GinMAC

(a TDMA-based MAC protocol [29]). They managed to

eliminate some overhearing slots by rearranging retrans-

mission slots (in practice by adding more retransmission

slots!).

In [30] authors disclosed a network coding

scheme adapted to a two-way relay (reverse carpooling)

scenario with fading and noise corruption in which over-

hearing was often imperfect. They believed it was clearly

wasteful to ignore the whole overheard information, given

that only a few symbols in it were incorrect. So they

divided the overheard packet at the destinations into two

parts: one part with high probability to be correct (clean

overheard symbols); the other with high probability to be

incorrect (faulty overheard symbols). Eventually, at the

destination, the first attempt tries to recognize the inter-

ference via next packet and the second attempt tries to

reconstruct faulty signals by removing known interference.

In [31] a NC scheme was introduced which actively

exploited the overhearing channels by adapting the trans-

mission rate to both the direct-channel and overhearing-

channel conditions. In this scheme the opportunistic lis-

teners receives data at a lower rate. In addition, the receiver

can only overhear a part of the data-flow by rate splitting

technique at the sender node. So, in poor overhearing-

channel conditions the throughput can improve. In [32]

authors investigated how the coding node can be efficiently

informed of the content of the decoding buffers of the

receivers. They studied a deterministic system, where the

overhearing packets were announced to the coding node

via reports, or via stochastic system (where the coding node

makes decisions based on statistics without explicit

reports). Their work demonstrated that maximum

throughput can be achieved without explicit ACKs, i.e. by

utilizing scheduling algorithms that guessed, encoded and

then corrected the transmissions through feedback. In

particular, they concluded that when the overhearing

probability at the receiver was 1 (perfect overhearing) their

scheme had no loss of optimality and that for probability

values above 0.6 the loss of throughput in comparison to

the explicit ACKs was very small (i.e. less than 5%).

It is worth noting that a recent research has been

reported that improves the multi-hop network coding per-

formance through virtual overhearing [33]. This method

allows a node to obtain the packet sent by another node that

is multiple hops away for free. An important point to bear

in mind is that three conditions (regarding nodes and flows

[34]) must be satisfied in order to establish virtual over-

hearing. Once, virtual overhearing has been established it

enables a node to obtain the packets from another node and

thus they can be used to increase coding opportunities.

From solution perspective, the studies on incorporating

network coding and duty cycling also touch on our work at

the first glance, but they were proposed to achieve different

goals. For example, an efficient communication paradigm

was proposed in [35] that applied network coding to bot-

tleneck zone around the sink node in duty cycled WSN.

Authors believed the nodes in bottleneck zone consumed

more energy compared to other nodes due to heavy traffic.

They divided the sensor nodes in the bottleneck zone into

two groups: simple nodes and coder nodes and discovered

that energy efficiency of the bottleneck zone increased due

to coder nodes operation resulting in higher amount of data

(load) to be transmitted to the sink for equal number of

transmissions. Similarly, in [36] authors unveiled a com-

munication scheme which employed network coding and

duty cycling for bottleneck zone in multimedia WSN. In

[37, 38] DutyCode combines the idea of network coding

and duty cycle in the MAC layer only in flood-based WSN.

The main idea in this study is to exploit the redundancy in

flooding applications (which uses network coding), and to

put the node to sleep mode when a redundant transmission

takes place. In particular, DutyCode tries to put a node in

sleep mode when this node has already received and suc-

cessfully decoded a sequence of coded packets. In [39]

GreenCode was put forward as an energy efficient network

coding aware MAC protocol which employed bi-direc-

tional transmission (i.e. reverse carpooling scenario).

4 System model

In this section system model is presented briefly. We

consider a stationary multi-hop wireless network [40],

supporting multiple unicast sessions. The wireless network

topology, given by the nodes and the links corresponding to

pairs of nodes within direct communication range, is as a

graph G = (N, H) with node set N and directed edge set

H. Each node in the network can be a source or destination

of traffic. Network nodes are uniformly and independently

distributed over a two-dimensional region and
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communicate only with other nodes within a neighbour-

hood of radius q. A homogenous setup is considered for

network nodes, i.e., we assume all nodes support the same

maximum transmission rate, say 11 Mbit/s, and that all

have omni-directional antennas. These wireless nodes

operate in half-duplex mode and communicate with each

other and share the common channel bandwidth. Each node

can overhear all the transmissions from its one-hop

neighbors. Additionally, our analysis assumes that all

packets have the same size, and that the required overhead

of transmitting coding coefficients is negligible.

Nodes have a transmission queue for pure packets to be

sent to the neighbors. The number of existing packets in this

queue is denoted as p. Nodes put the pure packets which

they have overheard opportunistically in a separate queue

called overhearing queue. The number of packets existing in

this queue is denoted as q. Overheard packets all have the

same finite life time that once it is over they will be omitted

through aging algorithm. In the analytical model, we assume

that there is no repeated packet in the network (since repe-

ated packets would be detected and omitted by other layers),

that each node is energised by a battery and a node dies once

its battery is flat. Since battery replacement is either

impossible or expensive in various applications for wireless

nodes [41], we assume that the network nodes can use one

of the energy harvesting methods [42]. Let’s also suppose

that a node consumes ET units of energy during each packet

transmission and ER units of energy when receives or

overhears a packet. In each time slot when a node does not

receive any packet (idle listening) it loses EI units of energy,

and finally that the amount of energy consumed in sleep

mode can be ignored.

We now focus on the inter-flow coding fashion similar

to the ones used in COPE [6]. In the XOR coding, a coding

node is one which encodes packets for several flows and

that coding flows are the flows that are transmitted via a

coding node and their packets have the opportunity to be

encoded. Any node that receives an encoded packet is able

to decode it using the unencoded, or native packets cap-

tured from the wireless channel. The summary of notations

is presented in Table 1.

5 Analytical models

In this section, we describe the analytical models in details.

Section 5.1 covers the SMDP formulation and learning

process is investigated in Sect. 5.2.

5.1 Semi Markov decision process model

In general, MDP provides an analytical structure to model

sequential decision-making problems in circumstances

where some portion of results is random and some is under

the control of a decision maker. A decision maker at every

iteration in discrete-time MDP selects an action which can

affect the stochastic system, i.e. both the next system state

and the reward are dependent on the executed action. In

these systems, the final goal of the decision maker is to

execute a chain of actions that maximizes cumulative

revenue at the end of a finite or an infinite horizon. Finding

an optimal sequence of actions is the solution of the MDP

problem [14]. To do this, the decision maker considers the

future states and correlated rewards in action selection

process at the current state.

Instead of discrete-time MDP, time is considered as a

continuous parameter in SMDP. In SMDP, the decisions

can be selected at the instant when any random event

happens, so SMDPs allow time spent in a particular state to

follow an arbitrary probability distribution [13]. In this

model, the system state may change several times between

decision epochs, unlike MDPs where state changes are only

due to actions. An SMDP is defined as a five tuple (S, A, P,

R, F), where S is a finite set of states, A is a set of actions,

P is a set of transition probabilities, R is the reward func-

tion, and F is a function giving expected sojourn times for

each state-action pair [13].

We formulate our problem as SMDP in which the time

interval between two successive decision epochs is con-

tinuous random variable. The goal is to develop a strategy

for the wireless node to select its best action at every idle

period and optimize the total discounted reward. In the

proposed model, the network nodes (as decision makers)

make an effort to learn when to stay awake and when to

sleep in their idle periods independently. Detailed formu-

lation of the system will be described in the following

sections.

5.1.1 Decision epochs

Decision epochs are a sequence of time points {d0, d1,

d2, …, dt, …} at which an action is selected and state

transition may happen. In our problem the decision epochs

are the arrival instances of the idle periods (i.e. opportunity

of overhearing). During the node life cycle, the arrival

instances of the idle periods are random and the arrival

instance can be viewed as a random sequence of epochs

along time. Thus, at each available overhearing opportu-

nity, the node decides to either overhear or sleep. These

available overhearing opportunities can also be called

decision epochs. The distribution of the inter-arrival time

of the decision epochs could be arbitrary and depending on

the neighbors’ topology and local traffic.
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5.1.2 State space

We denote the set of possible node states by S in which S is

a finite set. Let st[S denote the state of the node at time t.

The system state st at time t is given by:

st ¼ et; gtð Þ ð1Þ

where et is residual node’s energy and gt indicates the

estimated value of the network coding utility in the node’s

neighbourhood in time t, both et and gt should be quantized

into discrete intervals. Each node initially starts with a full

battery capacity of E, we denote e[E = {1, 2, …, E} as the

residual energy state space. Also, the node estimates gt by a

simple algorithm that calculates the average coding degree

(the number of packets combined in one encoded packet)

of the last c received packets. The higher values of gt
means that much coding operations has taken place in

recent past around the node. The c factor can be determined

during the implementation phase.

5.1.3 Actions

Depending on system state s, and in each decision epoch,

the network node determines to overhear or to sleep. Let

A(st) denote the set of all possible actions in state st and at
be the control action executed at time t. Each action in A

corresponds to the following values:

at ¼
0; overhear

1; sleep

�
ð2Þ

5.1.4 State dynamics

The state dynamics of the nodes can be determined by the

state transition probabilities, Pss0 að Þ, and the expected

sojourn time, Fs(a), for each state-action pair. Pss0 að Þ can
be defined as the probability that at the next decision epoch

the system will be in state s0 if action a is selected at the

present state s while Fs(a) is the expected time until the

next decision epoch after action a is chosen at the current

state s. Also, We defined Ydd0 as expected time between two

successive decision epochs d and d0. Ydd0 depends on dif-

ferent stochastic parameters, such as traffic pattern, local

topology and so on. Stated simply, Ydd0 is the time duration

until the next overhearing opportunity. On the other hand,

overhearing opportunities occurs for node n when its

neighbors transmit a packet to their neighbors except the

node n. Let us assume each node transmits packets to each

neighbor according to mutually independent Poisson pro-

cesses and let kij denote the intensity of transmission

packets from node i to node j. The cumulative overhearing

opportunity rate is the sum of the rates of all constituent

processes, and thus the expected Ydd0 for the node n is the

inverse of the event rate:

Ydd0 ¼
X
i2Kn

X
j2ðKi�nÞ

kij

2
4

3
5
�1

ð3Þ

where Kn is set of neighbors of node n. In Eq. (3), the

cumulative overhearing opportunity for the node n is cal-

culated by summation of the intensity of transmission

packets from all the n’s neighbors to their respective

Table 1 Summary of notations

A(s) Set of all possible actions in state s Q Q value entity

a* Most valuable action Q Transmission queue length

at Taken action in time t Q Transmission radius of each node

at?1 Next action st State in time t

a Usefulness deadline of an overheard packet s0, st?1 Next state

dt tth decision epoch T Time index

EI Idle listening energy consumption Tslot Duration of each packet transmission

ER Receiving energy consumption Wrc Transmission power

ET Transmission energy consumption Wtr Receiving power

et Residual energy in time t Ydd0 Expected time between decision epochs d and d’

Fs(a) Sojourn time in state s by action a B Learning rate

pct Received coded packet in time t C Discount factor in learning process

pot Overheard packet in time t hmax Maximum feasible value of h

gt Average coding degree of packets in time t ĥ Delay estimate

Kn Set of neighbors of node n ĥ� Most valuable delay estimate

p Overhearing queue length kij Intensity of transmission packet from i to j

Pxy Transition probability from state x to y w Usefulness factor of overheard packet
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neighbors except n, where kij indicates the intensity of

transmission packets from node i to node j.

5.1.5 Optimal policy

A policy p = {(s,a) | a[A, s[S} is a set of state-action pairs

for all states of an SMDP. An optimal policy is the one

maximizing the expected cumulative reward.

5.1.6 Reward function

The main goal of network coding in wireless networks is to

reduce the number of transmissions and consequently to

save energy. Without loss of generality, we define a node’s

revenue function based on the amount of energy conser-

vation on the whole of the network due to its action. In

particular, our aim is to design a sleep/wakeup scheduling

algorithm for a node’s idle periods that minimizes the total

network power expenditure for overhearing while main-

taining network coding gain. It is worth noting that the

main source of energy consumption in wireless network is

the transceiver unit due to activities such as data trans-

mission, data reception, overhearing and so on.

The energy consumed at the node n by the data trans-

mission operation for the duration of one time slot, Tslot is:

ET ¼ Wtr � Tslot ð4Þ

where Wtr is a constant amount of power when the node n

is in transmission mode. We assume that all Tslots have the

same duration which is long enough for transmitting one

packet, so each send or receive operation occurs in one

Tslot. Also, each network node consumes energy while

receiving the data packet transmitted by one of its neigh-

bors. We assume the transceiver at each node consumes a

constant amount of power Wrc when in receive mode.

Hence, the energy consumed for packet reception during

time slot Tslot is:

ER ¼ Wrc � Tslot ð5Þ

We assume also that the transceiver does not consume

any energy when the node is in sleep mode. As a matter of

fact and based on the above assumption, if the node sleeps

over one idle period it can save energy equal to ER.

The real-valued function r denotes the value of the

reward received at time t. The reward is referred to as

income or cost depending on whether or not r is positive or

negative, respectively. The node’s reward function can be

defined as:

r st; atð Þ ¼ Revenue st; atð Þ � Cost st; atð Þ ð6Þ

where:

Revenue st; atð Þ ¼
0; at ¼ 1

wEtr; at ¼ 0 and pot ¼ useful

0; at ¼ 0 and pot ¼ useless

8<
: ð7Þ

and

Cost st; atð Þ ¼ 0; at ¼ 1

Erc; at ¼ 0

�
ð8Þ

where w(0Bw) is usefulness factor of overheard packet (i.e.
frequency of participation of overheard packet in neigh-

bors’ coding operation) and pot is overheard packet in time

t, so we have:

pot ¼
useful; if pot is in p

c
k9pck; t� k� t þ a

useless; else

�
ð9Þ

where pck is the received coded packet in time k, t is the

time that packet pot was overheard and a is usefulness

deadline of pot (in other word, a is the duration that the node
keeps the overheard packet in its buffer(. Each useful

overheard packet participating in one coded packet reduces

exactly one transmission in the network. Of course, an

overhead packet may be used many times over in neigh-

bors’ coding operation, as result more than one transmis-

sion would be saved. When an overheard packet

participates in w coded packets, it reducesw transmissions

in the network. This means if an overheard packet is use-

less, the w factor for this packet is equal to zero. Intuitively,

the Revenue function’s value indicates the amount of saved

energy in the node’s neighbourhood.

Remark 1 We cannot assume that the agent will receive

rewards immediately after performing at = 0. In particular,

when a node chooses at = 0 action (i.e. overhears a packet)

in decision epoch dt, usefulness or non-usefulness of the

received packet is not known immediately because the

node has to send the reception report to all of its neighbors

and they may not use the overheard packets in their coding

operation. However, the overheard packet becomes useful

when neighbors use it in their coding operation and the

node will know of this when it receives a coded packet that

includes the overheard packet. Therefore, pure Q-learning

[16] is not applicable to our problem and what is needed is

a modified continuous-time Q-learning method to dominate

delayed rewards. We will discuss this in greater details in

the Sect. 5.2.

Figure 3 illustrates a schematic view of events in our

problem. As can be seen there are 5 decision epochs (dt-2

to dt?2) that runs for a given node. The node has chosen

action a = 0 in decision epochs dt-2, dt-1 and dt?1 and

received overheard packets pot�2, pot�1 and potþ1, respec-

tively. In fact, when the node received these overheard

packets, it didn’t know which packet was useful for

neighbors’ coding operation and which was useless. In
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addition, the node received some coded or native packets

from its neighbors (only coded packets are seen in Fig. 3 as

pcs). Suppose that after some time the node received pc3
from one of its neighbors which included pot�2 and found

the packet pot�2 was useful in coding operation for its

neighbor. Hence action a = 0 in decision epoch dt-2 was the

right choice. Now let us look at the destiny of pot�1 that was

overheard in dt�1. Unfortunately, after a times of dt�1, the
node received no coded packet that included pot�1, so the

node concluded that action a = 0 in time dt�1 was

unhelpful.

5.2 Learning model

There are several algorithms that offer optimal solutions

for an SMDP, such as policy iteration, value iteration and

linear programming [13], however, these model-based

solutions need past information of system, such as previous

state transitions and transition rewards. In many practical

scenarios, as in our case, the transition probability Pss0 að Þ
and sojourn time Fs(a) are either unknown or difficult to

express in close form which makes it hard to obtain an

optimal policy. Instead of these approaches, reinforcement

learning (RL) presents an appropriate algorithm for deci-

sion-making problems for which optimal solutions are

onerous to define theoretically. Q-learning [16] is a favorite

and well-known approach to learn from reinforcements. In

Q-learning, a decision maker tries to obtain an optimal

policy without any prior information about the transition

times and probabilities.

In discrete-time version of Q-learning, value function is

demonstrated by a two-dimensional table indexed by state-

action pairs. In particular, for each state s and action a, Q

value is defined as:

Q st; atð Þ ¼ R st; atð Þ þ c
X
stþ12S

Pststþ1 að ÞQ stþ1; atþ1ð Þ ð10Þ

where c is discount factor (0 B c\1). Intuitively, Q(s,a) is

the maximum discounted cumulative reward that can be

gained starting from state s and executing action a at the

first step. From above definition, Q* satisfies Bellman-style

optimality equation:

Q� st; atð Þ ¼ R st; atð Þ
þ c

X
stþ12S

Pststþ1 að Þ max
atþ12A stþ1ð Þ

Q� stþ1; atþ1ð Þ

ð11Þ

A decision maker updates Q-values during learning

process to estimate Q* by value iteration method based on

following rule:

Q st;atð Þ �update
Q st;atð Þþb

� R stþ1;atþ1ð Þþ c max
atþ12A stþ1ð Þ

Q stþ1;atþ1ð Þf g�Q st;atð Þ
� �

ð12Þ

where constant b controls the learning rate.

As mentioned before, SMDP is continuous-time gener-

alization of discrete-time MDP, and system progress is

modeled in continuous time fashion in SMDP, therefore a

continuous-time version of Q-learning [43, 44] should be

used for solving SMDP. In this case, we update Q-value at

decision epoch dt?1 according to the following equation:

Q st; atð Þ ¼Q st; atð Þ þ b

� R stþ1; atþ1ð Þ þ e�c dtþ1�dtð Þ
�

max
atþ12A stþ1ð Þ

Q stþ1; atþ1ð Þf g � Q st; atð Þ
� ð13Þ

In general applications, researchers assume that when a

decision maker selects an action, it receives reward (or

Fig. 3 Schematic depiction of

the decision model for

overhearing at a node
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cost) immediately. However, in some applications, such as

ours, it is possible that reception of rewards is delayed in

time. This kind of delay is due to many possible reasons,

e.g. it may be the result of unpredictable natural latency in

these applications.

In our case, when action at = 0 is selected and a packet

is overheard, reward is not known immediately and the

node has to wait until the effect of the overheard packet is

disclosed. The reason for this is that the node has to

propagate the reception report, including the list of over-

heard packets, to all its neighbors and then receive coded

packet as to whether or not the overheard packet was useful

in their coding operation. Only then does the node know if

choosing action at = 0 was beneficial and qualifies for

reward. This reward is proportionate to coding degree of

received coded packet. Based on these assumptions

rewards may reach the node out of order. (see Fig. 3 and

related description in Sect. 5.1).

Let us now examine the literature which has extensively

addressed the problems of constant and stochastic time

delays in rewards. For example, authors in [45] investi-

gated constant delays and reduced their problem to a MDP

through expanding state space and redefining cost function.

In [46] the study assumed that all reward signals arrived in

the correct order and they just moved in time unequal. In

fact, the authors assumed that the number of time steps

between rewards is a non-negative random variable. These

two studies demonstrated that if decision maker has accu-

rate knowledge about the delay, it can assign reward (and

cost) to correct state-action, and so its problem is reduced

to a normal MDP.

In [47] Campbell et al. made the assumption that each

reward is independently delayed by a non-negative random

variable in discrete-time MDPs. This meant that rewards

might reach the decision maker out of order. They further

assumed that the amount of delay was equal to a random

Poissonian variable with mean and variance h. They

extended discrete-time Q-learning to comprise a delay

dimension so that the algorithm could measure the value of

state-action-delay.

We were inspired by Campbell’s method [47] and on the

basis of their work we propose a continuous-time Q-

learning method. Let us assume that all reward values will

be delayed in time by a Poissonian random variable in

terms of decision epochs. In order to resolve the problem

arising from delayed rewards, we decided to introduce

delay into the learning process. This was done by adding a

new field to the Q-values which accounted for the delay

value elements. Each entry in the Q-table can be repre-

sented by Q(s, a, ĥ), where ĥ is a discreet variable which

indicates delay estimate according to decision epochs and

0 B ĥ B hmax, where hmax is the maximum possible value

of h and ĥ enumerates the decision epochs for delay esti-

mate. In this case, the Q-table space gets bigger because of

the acquired additional dimension h, but still due to small

space of both actions and states the extended version is

acceptable in practice. It is worth noting that the Poisson

distribution has no maximum limit theoretically but

because of implementation restrictions we have to limit it

to hmax in order to obtain an acceptable space for Q-table.

The delay is not expected to be greater than hmax in prac-

tice, however, if it exceeded hmax, the effect on perfor-

mance would still be unimportant.

Intuitively, in our learning method, the node should learn

about the delay. To do this, the node must store sufficient

number of its previous operations in its memory in order to

consider delayed rewards in learning process. In fact, the

node maintains multiple Q-values per each possible value of

time delay in terms of decision epoch instances. What is

important to note is that in each iteration all Q-values related

to current state-action pair should be updated concurrently

(for all values of ĥ). Themost valuable ĥ for each state-action
pair will tend to the true value of h in the long term, i.e.,

during learning process, the node tries to find the true value of

delay estimate. In other words, the node maintains all pos-

sible values of delay and tries to use the most useful delay

estimate in every decision epoch. It is predicted that some

estimates will get more credit than others.

In our learning framework, the new action space size is

equal to |A| 9 (hmax ? 1) for each state and the node

should select not only an action but also a delay estimate.

At each decision epoch, the node tries to operate according

to the best delay estimate, and so at first it select the most

valuable delay estimate ĥ� where:

ĥ� ¼ argmax
ĥ

Q s; a; ĥ
� �

ð14Þ

Then, on the assumption that this is an accurate estimate

the node selects the entire Q-values, with ĥ being equal to

ĥ�, and picks the most valuable action among these

selected Q-values according to:

a� ¼ arg max
a

Q s; a; ĥ�
� �

ð15Þ

Next, the node executes this action and then moves on to

state s0. At this point, the node selects the next estimate ĥ�

and the operation repeats itself until exploration of the

environment is completely exhausted. Figure 4 describes

this process schematically. In Fig. 4, the most valuable

delay estimate (h* in the figure) was selected and the node

should select the best action from the selected two-di-

mensional Q-table (the gray one).

Based on our assumptions, this node will receive the

reward belonging to this action after the random delay, but

Wireless Networks

123



instead, it may receive a reward related to past actions

during this time step. It is possible that the node earns two

(or more) rewards simultaneously which occurs when it

receives a coded packet that includes two (or more) over-

heard packets. Also, it may gain a reward according to a

specific action in two (or more) parts, when the overheard

packet participates in two (or more) codec packets (i.e.

w C 2 for this overheard packet). Actually, during learning

process, the node does not know the true value of the mean

delay, so it allocates credit to all the Q-values concurrently.

The node updates all the Q-value estimates in each round

and assigns the reward to each of them at all estimated

value of delay. To do this, it updates the Q-values for all

ĥ 2 Hj j based on the following expression:

Q s
t�ĥ; at�ĥ; ĥ

� �
 �update

Q s
t�ĥ; at�ĥ; ĥ

� �
þ b

� R st; atð Þ þ e
�c d

tþ1ð Þ�ĥ�dt�ĥ
� ��

max
atþ12A stþ1ð Þ;ĥ

Q s
tþ1ð Þ�ĥ; a tþ1ð Þ�ĥ; ĥ

� �n o
� Q s

t�ĥ; at�ĥ
� �!

ð16Þ

where ĥ is the ĥ th estimate of |H| total estimates.

In order to explain the updating method let us take an

example where a node tries to update Q(s, a, 3), it supposes

that the delay is equal to three decision epochs, which

means that all credit should be assigned to the state-action

pair three decision epochs earlier, because if the delay is

actually three decision epochs long, then this state-action

pair must have been the cause. In the same way, the node

updates the other Q-values and over time, some estimates

will get much more value than others. The details of the

learning algorithm are given in Algorithm 1.

This method can be viewed as a special case of

Q-learning and the convergence proofs for Q-learning [48]

can be extended to the case of this method [49].

6 Numerical results and discussion

In this section, our focus will be on simulation operation

that aims to evaluate the proposed scheme. In Sect. 6.1,

we explain the simulation setup and the various simula-

tion parameters and in Sect. 6.2, we present simulation

results.

6.1 Simulation environment

The experiments were performed using the NS2 [17] based

simulation framework which is common in wireless net-

work research. We implemented both COPE [6] and our

scheme in our evaluation process. We considered 200 static

nodes that were deployed in an 1100 9 1100 m2 square

field and signal attenuation was modeled by the two-ray

ground propagation model [50]. We implemented IEEE
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802.11 as MAC protocol and used a very simple geo-

graphic routing, so the routing protocol picked the neighbor

closest to the destination as the next hop.

Next, we employed UDP traffic, where the packet size

was set to 500B. UDP traffic enabled us to clearly

demonstrate the superiority of our network coding solution

at the MAC layer and so it was unnecessary to consider

TCP at the transport layer. We changed the network

offered load by manipulating the number of flows in the

network. Flows were established randomly between two

nodes as source and destination. Traffic load was generated

on all sources with the same intensity using exponential

distribution of inter-arrival times.

Also in this set up, we applied a power consumption

model similar to the model in [51], as shown in Table 4.

Nodes had a nominal transmission range of q = 200 m,

hence all the nodes within this range could receive the

transmission. We set learning rate b = 0.5, discount factor

c = 0.9 and hmax = 8 and results were obtained by taking

average over 250 runs, each of which ended after 500 s.

Moreover, in order to reduce the state space we quan-

tized et and gt into discrete intervals. In this way, we

considered et (i.e. node’s level of residual power at time t)

as a variable that could have discrete values from one to

eight and it was assumed the energy storage capacity of a

node to be 8 units. Similarly, the variable gt (i.e. average

coding degree of received packets) taking discrete values

ranging from one to ten. If the average coding degree of the

last 15 received packets (i.e. c was set to 15) was between 1

and 1.1, the value of gt was 1, if that was between 1.1 and

1.2, gt moved up to 2, and so on. Finally when coding

degree was between 1.9 to 2, gt stood at 10.

Three important performance metrics that were evalu-

ated included: (1) Average coding gain, (2) Average end-

to-end delay (3) Average energy consumption per bit, and

the parameters that were adjusted included: (1) The volume

of the offered load, which was varied by manipulating the

number of flows in the network. (2) The average node

degree d, which represented the density of the network was

set to 5, 9, 13 and 17 where 5 generated sparse networks

and 17 generated dense networks. Table 2 summarizes the

parameters that were used in simulations.

6.2 Simulation results

Here, we evaluate the performance by simulating the pro-

posed method in a multi-hop wireless network by con-

centrating on some of the more important plots (display in

Figs. 5, 6, 7, 8 and 9).

6.2.1 Convergence behavior

Our Q-learning algorithm, as any other learning scheme,

needs a learning phase to learn the optimal decision poli-

cies. In [48] it was shown Q-learning convergence time

was a polynomial function of the state and action size. To

examine the convergence curve, the average obtained

reward as a function of time is displayed in Fig. 5. The

average convergence time as can be seen is around 4000

learning iterations. In this scenario, the parameters were set

to: d = 5, as average node degree and offered network

load = 900 kbps.

Fig. 4 The valuable delay

selection

Wireless Networks

123



6.2.2 Average coding gain

We defined the coding gain as the ratio of the number of

transmissions required by the non-coding approach to the

minimum number of transmissions used by COPE or the

proposed scheme to deliver the same set of packets to the

next-hops successfully [52]. Figure 6 compares the pro-

posed coding gain against that of COPE under various

conditions. When the number of flows increases in the

network, the coding opportunities increases too. As can be

seen in Fig. 6, at lower load in the network, the coding gain

behavior in both algorithms is similar, but when the offered

load is increased, though the gain increases in both cases,

the COPE model outperforms (by about 2.5%) which is due

to some probable missed beneficial packets that node could

not overhear because of sleep decisions in proposed

scheme. In this setup, average node degree was set to 5.

6.2.3 Energy consumption

We computed the average energy consumption per bit by

dividing the total energy expenditure (over all the nodes in

the network) by the total number of bits that delivered by

final destinations. By increasing the offered load, the

Table 2 Some of simulation

parameters
Parameter Value Parameter Value

Transmission power 140 lw Transmission range (q) 200 m

Receive power 90 lw Packet size 500 B

Idle listening power 55 lw Number of nodes 200

Learning rate (b) 0.5 Traffic type UDP

Discount factor (c) 0.9 MAC protocol 802.11

Maximum feasible delay (hmax) 8 c 15

Fig. 5 Convergence curve

Fig. 6 Coding gain versus

offered load
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average energy consumed per bit increased smoothly. As

shown in Fig. 7, in the higher traffic load environment, the

average energy consumed per bit increased with higher rate

due to congestion and collisions. What is important to note

is that in the proposed scheme nodes sleep over through

some of idle periods, hence they save energy rather than

overhear irrelevant packets. In this scenario, d was set to 5,

as average node degree. In comparison, the consumption

per bit in the COPE scheme is higher due to non-stop

overhearing.

Fig. 7 Energy consumption

versus offered load

Fig. 8 Energy consumption

versus network density

Fig. 9 End-to-end delay versus

offered load
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Figure 8 illustrates the consumed energy per bit by the

proposed solution versus that of the COPE scheme for

changes in network densities, i.e. variation in the average

node degree d. Network density does not noticeably affect

consumption in the case of COPE, whereas it makes the

proposed approach undergo significant reduction. After a

detailed evaluation of the simulation results it can be

concluded that the proposed algorithm offers a more effi-

cient use of energy in more dense network environments

because of more reduction in transmissions. In this sce-

nario, offered load was set to 900 kbps.

6.2.4 End-to-end average delay

End-to-end delay includes all possible delays caused by

buffering, queuing at the interface queue, scheduling at the

MAC layer, propagation and transfer delays. It is the

average time between the first transmission of a packet and

the reception and successful decoding at the destination

node. When the number of flows is small, both coding

schemes perform similarly. But, as the number of flows

increases the network congestion and wireless collisions

increase with it and as a result end-to-end average delay

rises dramatically. Figure 9 shows delays in the proposed

scheme is little longer than that in COPE. In particular,

COPE operates better, which is due to better coding gain.

In this scenario, the average coding degree was set to 5.

7 Conclusion

In this paper, we considered adaptive sleep/wakeup

scheduling for network coded multi-hop wireless networks.

We know that there is a trade-off between energy con-

sumption and network coding gain because some of over-

heard packets are useless for coding operation. And so, to

determine our strategy for sleep/wakeup, we formulated

SMDP model to decide whether to overhear or sleep. Thus,

the node may turn off its transceiver during inactive peri-

ods in order to reduce energy consumption, or keep its

transceiver on and remain awake in order to overhear more

packets and consequently increase coding gain.

We proposed an on-line continuous-time learning

method based on Q-learning. This approach enables the

nodes to adapt their policies for the dynamic environment

based on their local information and limited feedback from

their neighboring nodes. In this proposal, a decision maker

has to try to solve the problem resulting from delayed

rewards. Simulation results show that our scheme improves

energy consumption in multi-hop wireless networks sig-

nificantly with negligible overhead in term of delay.
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