
ZD-AOMDV: A New Routing Algorithm for Mobile Ad-Hoc Networks

Nastooh Taheri Javan
Computer Engineering Department

Amirkabir University of Technology
Tehran, Iran

nastooh@aut.ac.ir

Bahram Hakhamaneshi
Computer Engineering Department

California State University
Sacramento, USA

hakhamab@ecs.csus.edu

Reza Kiaeifar
Azad University

Branch of Dezfoul
Dezfoul, Iran

kiaeefar@gmail.com

Mehdi Dehghan
Computer Engineering Department

Amirkabir University of Technology
Tehran, Iran

dehghan@aut.ac.ir

Abstract— A common characteristic of all popular multi-path
routing algorithms in Mobile Ad-hoc networks, such as
AOMDV, is that the end to end delay is reduced by utilization
of parallel paths. The competition between the neighboring
nodes for obtaining a common channel in those parallel paths
is the reason for end to end delay increment. In fact, due to
medium access mechanism in wireless networks, such as
CSMA/CA, data transmissions even through two Node-
Disjoint paths are not completely independent and each path
will affect the other one. In this paper we have modified the
AODV protocol which results in selection of zone-disjoint
paths, to the extent feasible, and as a result we achieve less end
to end delay. The efficiency of the proposed protocol has been
evaluated on different scenarios and there has been a
noticeable improvement in the packet delivery ratio and also in
the reduction of end-to-end delay comparing to AOMDV.

Keywords- MANET; Multi-path Routing Algorithms; Zone-
disjoint Paths, End-to-end delay.

I. INTRODUCTION

In ad-hoc networks, lack of any infrastructure requires
the nodes to perform routing and transferring of data all by
themselves [1]. Mobility of nodes and ambiguity of topology
adds to the complexity of routing in such networks [2].

There are many common routing algorithms used in Ad-
hoc networks but AODV1 [3, 4] and DSR2 [5], which both
are on-demand algorithms, are the most popular ones. In on-
demand algorithms, the Route Discovery procedure is
carried out only when there is a packet to be transferred and
there exists no valid path. Multi-path on-demand routing
algorithms discover several paths instead of one, once the
routing is performed [6]. This eliminates the need for further
routing when there is a broken link in the path, reducing the
average number of Route Discovery for each node and
achieving higher fault tolerance for the Mobile Ad-hoc
networks.

1 Ad hoc On-demand Distance Vector
2 Dynamic Source Routing

In some multi-path algorithms once different paths are
discovered, they are all stored but only one of them is used
for transferring the data. The other stored paths will become
useful once the current one is broken. There are also other
multi-path algorithms that transfer data over all discovered
paths concurrently which reduces end to end delay and
increases end to end bandwidth.

One important factor in latter kind of algorithms is to
choose the best paths for load balancing data transfer. In this
case, set of paths that have no common node among
themselves will achieve highest fault tolerance, since a
broken node will only affect one path. This type of paths are
knows as Node Disjoint.

In wireless networks CSMA/CA [7] protocol is used for
acquiring channel access and to prevent Hidden and Exposed
Terminal problems. In this protocol, RTS3 and CTS4 packets
sent forth and back between nodes force some nodes to wait
until they can take part in next competition round for
acquiring the channel. This will increase overall end to end
delay in node-disjoint paths.

As an example, figure1 shows a hypothetical wireless
network which is consisted of 10 nodes. In this figure the
wireless transmission range of each node is shown. Also,
nodes that are within transmission range of each other are
connected through links.

In this figure, there are two Node Disjoint paths between
nodes S and D which are S-I1-I2-I3-I4-D and S-I5-I6-I7-I8-
D. Transmission of data over these paths is not independent
of each other. The end-to-end delay of each path is actually
dependant on the traffic volume on the other path and this is
due to the RTS and CTS messages which are used by nodes
in the network to prevent collision and Hidden and Exposed
Terminal problems. As a result a node in either of those two
paths might have to delay its data transmission due to
receiving a CTS message from a node on the other path.

3 Request To Send
4 Clear To Send

2009 Eigth IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-3641-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIS.2009.178

852

2009 Eigth IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-3641-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIS.2009.178

852

Authorized licensed use limited to: National United University. Downloaded on September 2, 2009 at 00:25 from IEEE Xplore. Restrictions apply.

I4 I3

D

I8

I2

I7 I6

I1

I5

S

Figure 1. Node Disjoint Paths.

In this paper we propose an on-demand multi-path
routing algorithm based on AODV, which utilizes common
omni-directional antennas, unlike other solutions which
require unidirectional antennas for each node in the network
[8, 9].

The rest of this paper is organized as follows. The
following section deals with the related works. Section III
describes the proposed protocol mechanism in detail.
Performance evaluation by simulation is presented in section
IV and concluding remarks are made in section V.

II. RELATED WORKS

Most of multi-path routing algorithms such as AOMDV5

[10] have their basis in a single-path algorithm due to their
efficiency. One drawback with multi-path algorithms is that
they send more routing request packets, comparing to single-
path algorithms and this makes them more complicated.

 AOMDV is a simple, yet high efficient multi-path
algorithm which tries to find Link-Disjoint paths. In this
algorithm the source broadcasts routing request packet to all
its neighbors. Once neighbors of the source node receive the
RREQ packet, they add their own address to the packet;
announcing themselves as the founder of a path, and
broadcast it.

Every intermediate node by receiving a request packet
will check to see if it has already received a same request and
if not, then it reconstructs and broadcasts the request packet.
If the same request was processed previously the following
conditions will be investigated and if met, the packet would
be accepted and will be inserted in the route table; otherwise
the packet will be ignored. These conditions are:

1. Whether the request packet is received from a
new neighbor node6.

2. Whether the request packet is received from a
new path founder node.

3. Whether the number of hops in the request
packet is less than the existing ones.

The destination node will send as many responses as
number of request packets it has received and hereby informs
the source node of the paths.

To ensure zone-disjoint paths, [8] has utilized directional
antennas. In this method each node stores signal power and

5 Ad-hoc On-Demand Multi-path Distance Vector.
6 source neighbor nodes.

signal angle of their neighbors in a table. While node-disjoint
paths are being discovered, the information in that table will
be used by each node to select zone-disjoint paths. One of
the drawbacks of this method as mentioned in [9] is the need
for directional antennas while in most ad-hoc network Omni-
directional antennas are used.

III. PROPOSED ALGORITHM

Our proposed algorithm, called ZD-AOMDV7, is an on-
demand multi-path routing protocol based on AODV. In the
proposed algorithm the concept of “Active Neighbor” is
introduced. Active neighbors are the neighbor nodes which
have already received and replied to the Route Request
packet (RREQ) and it’s probable that they exist on other
paths for the same source and destination, so even though
they are located on two disjoint paths they will still affect
each other in simultaneous data transfer. As mentioned in the
abstract, our proposed algorithm tries to find zone-disjoint
paths between source and destination. The nodes in zone-
disjoint paths have almost no neighbor in the other path, to
the feasible extent.

In brief, our proposed algorithm counts the number of
active neighbors for each path from source to destination and
eventually will choose paths that have the lowest total
number of active neighbor nodes.

A. AODV Modifications

In almost all the implementations of AODV algorithm,
the intermediate nodes in a path will use a “Route Cache”
table where they store the discovered paths. As a result, if a
node receives a RREQ packet for which there exists a known
path in the Route Cache table, the node will send a RREP
message to the sender.

In ZD-AOMDV, there is no need for the intermediate
nodes to have Route Cache tables and as a result the
destination will receive all the path-request messages from
different paths.

Also in the proposed algorithm, each node should save
the RREQ messages it receives from other nodes in
RREQ_Seen table, so that it can respond to the queries it
receives from its neighbors. Also, there is an additional field
in RREQ_Seen table of each node, called
After_Active_Neighbor_Count (After_A_N_C), which will
be used to count the number of active neighbors identified
after sending the RREQ message.

In order to let the subsequent nodes to know the total
number of active neighbors of the traversed nodes along a
path, a new field called ActiveNeighborCount is added to the
headers of both RREQ and RREP messages.

Also two new messages, RREQ_Query and
RREQ_Query_Reply, are added to the route discovery
process.

B. Proposed algorithm procedure

Once a node intends to send data to a certain destination
and doesn’t find a valid path in its route table, it starts the
route discovery process with broadcasting a RREQ packet to

7 Zone-Disjoint Ad-hoc On-demand Multi-path Distance Vector.

853853

Authorized licensed use limited to: National United University. Downloaded on September 2, 2009 at 00:25 from IEEE Xplore. Restrictions apply.

its neighbors and the ActiveNeighborCount field in the
RREQ packet is set to zero.

Same as AOMDV, each neighbor upon receiving the
RREQ packet will insert its name into the RREQ packet as
the founder of one of probable paths and then will store the
information of the packet in its reverse path table.

In the next step each path founder will send a
RREQ_Query to its own neighbors asking them if they have
already received the same RREQ packet before. Then each
path founder will wait for neighbor’s answer for a certain
amount of time. Then each path founder will increase the
ActiveNeighborCount field in the RREQ packet based on the
number of positive responses it has received from its
neighbors, and broadcast it.

At the same time, upon receiving the RREQ_Query
message, each neighbor should search in the RREQ_Seen
table and check if it has received the same RREQ message
before or not and respond to this question with the
RREQ_Query_Reply message. If this is the first time that it
is receiving this RREQ, then the RREQ is also stored in the
RREQ_Seen table along with the asking neighbor
information.

Since in ZD-AOMDV the redundant RREQ messages are
not thrown away, some nodes will receive the same RREQ
message again and as a result they perform the query once
more. So we should make sure that only the new neighbors
will respond to this query. As a result, if a node receives a
query message (RREQ_Query) for an existing RREQ in its
RREQ_Seen table, it will respond with RREQ_Query_Reply
message only if it has received the query from a new
neighbor node, otherwise it will ignore the query.

Also it is possible that a node receives a query message
from a new neighbor node corresponding to an existing
RREQ which a query had already been performed for it
before, and had already broadcasted that RREQ message.
Since this new neighbor has not been considered in active
node calculations, a new field called After_A_N_C is added
to the RREQ_Seen table in each node. This field will be
incremented once a node receives a query for an existing
RREQ message from a new neighbor which had already
been broadcasted. (Note that the receiving node will respond
with the RREQ_Query_Reply in this case)

Each node will add the content of this field to the
ActiveNeighborCount filed in the RREP message, once it
receives the RREP message sent from destination to the
source. This will ensure that the source upon receiving the
RREP messages from destination can find out the exact
number of active neighbors of each path.

Once the source node receives the first RREP packet, it
will wait for a certain amount of time for other RREP
packets to arrive from different paths. Then, it chooses the
paths with least number of active neighbors for load-
balanced transferring of data.

In AOMDV, as soon as the source has received the first
RREP packet it begins transferring of data to the destination,
which means that the path with least hops is used for data
transfer. While in ZD-AOMDV, data transfer is postponed
until several RREP packets are received. This helps the

source node to choose the paths that are far from each other
(zone disjoint paths).

C. Pseudo code of ZD-AOMDV

The steps taken by source node, destination node and
intermediate nodes are listed in figures 2, 3 and 4
respectively.

1. If there is data to be sent to a certain destination and there is
no valid path for that destination, broadcast the RREQ packet.

2. Wait for first RREP packet to arrive.
3. After receiving the first RREP packet, wait for a certain

amount of time, then from received paths choose those ones
that have the least active neighbors and starts load balancing
data transfer on these paths.

Figure 2. Pseudo code for the source node in ZD-AOMDV.

1. Send back a RREP packet to all the nodes from which a
RREQ packet is received.

Figure 3. Pseudo code for the destination node in ZD-AOMDV.

1. Once a RREQ message is received and is acceptable (based
on three aforesaid conditions in the Related Works section)
perform the following steps:

i. Save this message in the RREQ_Seen table
ii. Construct the RREQ_Query packet

iii. Send the RREQ_Query packet to the neighbors asking
them if they have already seen the same RREQ
message before

iv. Wait for a certain amount of time for
RREQ_Query_Reply messages from neighbors

v. Increase the ActiveNeighborCount field based on the
positive responses that are received

vi. Broadcast the RREQ message with the new
ActiveNeighborCount value.

2. Once a RREQ_Query message is received one of the
following steps are performed:

i. If based on the RREQ_Seen table this is a new RREQ
message, store the RREQ in the RREQ_Seen table

ii. If based on the RREQ_Seen table the same RREQ has
been received from the same node, ignore the query.

iii. If the RREQ is an existing one in the RREQ_Seen
table and it has been received from a new neighbor but
the same RREQ had not been broadcasted before, then
only respond with sending back the positive
RREQ_Query_Reply.

iv. If the RREQ is an existing one in the RREQ_Seen
table and it has been received from a new neighbor
and the same RREQ had already been broadcasted,
then respond with sending back the positive
RREQ_Query_Reply and also increment the
After_A_N_C field of the corresponding RREQ in the
RREQ_Seen table.

3. Once the RREP message is received add the content of the
corresponding After_A_N_C to the ActiveNeighborCount
field of the RREP and send the RREP.

Figure 4. Pseudo code for the intermediate node in ZD-AOMDV

854854

Authorized licensed use limited to: National United University. Downloaded on September 2, 2009 at 00:25 from IEEE Xplore. Restrictions apply.

To better understand our proposed algorithm a
hypothetical network is presented in figure 5-a as an
example.

In figure 5-a, node S intends to transfer data to node D
and it finds that there is no path in its routing table to the
destination. It will initiate the route discovery process by
broadcasting the RREQ packet to all its neighbors.

Nodes A, B, and C upon receiving the RREQ will insert
their address into it as the founder of a path and will save the
RREQ message in their RREQ_Seen table. Also they will
reset the corresponding After_A_N_C value to zero in the
RREQ_Seen table. Then each of them will broadcast
RREQ_Query packet. After performing the queries, nodes A
and C will each recognize node B as their active neighbor
and will increment the ActiveNeighborCount in their RREQ
message by one. Node B will recognize both A and C as
active neighbors and will increment its
ActiveNeighborCount by two. After that each of the nodes
A, B and C will broadcast their RREQ packet.

 The first RREQ message arrives to destination through
node B. Up to this point the active neighbor value of this
path (S-B-D) is two. Also nodes E and F will receive the
RREQ message at his point and will initiate the query
process, through which they recognize node B as their active
neighbor and will increment the ActiveNeighborCount in
their RREQ message. Also since node B has already
broadcasted the same RREQ message before; it will respond
to node’s E and F query with positive RREQ_Query_Reply
and at the same time will increment the After_A_N_C field
of this RREQ in its RREQ_Seen table by one for each of
those queries.

As shown in figure 5-b all the RREQ messages which
arrive at destination will have the same
ActiveNeighborCount value equal to two. In this figure the
ActiveNeighborCount value (Left Number) of each RREQ at
each node just before broadcasting the RREQ is shown along
with the ActiveNeighborCount value (Right Number) of the
RREQ at each node. As shown for node B, the value of
After_A_N_C is equal to 2 for this RREQ.

The destination will respond back to its neighbors with a
RREP message for each RREQ that it receives and will also
update the ActiveNeighborCount value of RREP message
with the same value in the RREQ. Each intermediate node on
the path will add its After_A_N_C value to the
ActiveNeighborCount value in the RREP message it
receives. As shown in Figure 5-c, only node B will end up
changing the ActiveNeighborCount value in the RREP and
will increment it by two. Eventually the RREP messages will
arrive at source.

After the source node receives the first RREP the source
will allocate a certain time for other RREP messages to
arrive. After the timer is expired the source will choose the
paths which have lower ActiveNeighborCount values and
will start sending data to destination through these zone-
disjoint paths. In out example the source will choose the two
paths shown in Figure 5-d which are S-A-E-D AND S-C-F-
D for transferring data.

IV. PERFORMANCE EVALUATION

In order to evaluate ZD-AOMDV, we have compared its
performance to AOMDV with regards to several
performance metrics.

Figure 5. An example for proposed routing algorithm

855855

Authorized licensed use limited to: National United University. Downloaded on September 2, 2009 at 00:25 from IEEE Xplore. Restrictions apply.

A. Simulation Environment

 We have used GloMoSim [11] as the simulation
environment. In our scenario both algorithms use three paths
for load-balanced transferring of data. Also, the area in
which the nodes are spread is 1000×1000 meters and there
are 100 nodes which can move in a range of 250 meters in
random direction. The traffic model used for each node is
CBR. Also in our simulation scenario each node uses the
IEEE802.11 protocol in its MAC layer and for the purpose of
sending or receiving data the standard RADIO-ACCNOISE
model is used. In the random movement model chosen in this
scenario, each node selects an arbitrary destination point and
will remain still for a period of one second after it reaches
destination. The total simulation time is 300 seconds and the
results are the average of 25 times of simulation.

B. Performance Metrics

Three important performance metrics were evaluated in
our simulation: (i) Average End-to-End Delay of packets –
this includes all possible delays caused by buffering during
route discovery phase, queuing at the interface queue,
retransmission at the MAC layer, propagation and transfer
delays – (ii) Packet Delivery Ratio, (iii) Control Overhead
Ratio – the number of routing control packets in simulation
time.

C. Simulation Results

1) Packet Delivery Ratio

By increasing each node’s maximum speed, the packet
delivery rate decreases in both algorithms, but the simulation
result shown in figure 6 shows that ZD-AOMDV achieves
higher rate of packet delivery compared to AOMDV. This is
due to selection of zone-disjoint paths which decreases the
collisions at the MAC layer.

70%

75%

80%

85%

90%

95%

100%

10 15 20 25 30 35 40

Max. Speed (m/sec)

P
ac

ke
t

D
el

iv
er

y
R

at
io

AO MDV ZD-AO MDV

Figure 6. The packet delivery ratio with varying speed.

2) Routing overhead

In this section, the two algorithms are compared in terms
of routing overhead. The maximum speed of each node is

considered 25 meter per second. As shown in figure 7 the
overhead of routing in ZD-AOMDV algorithm increases
rapidly as the number of nodes increase. This is due to the
increase in the number of query and query-reply packets sent
between neighbors in the route discovery process.

7000

7500

8000

8500

9000

9500

10000

10500

11000

10 15 20 25 30 35 40

Max. Speed (m/sec)

R
ou

ti
ng

 O
ve

rh
ea

d
 (

P
kt

.)

AO MDV ZD-AO MDV

Figure 7. The routing overhead with varying speed.

3) Average end to end delay

Figure 8 illustrates simulation results for average end-to-
end delay of our proposed algorithm based on nodes
maximum speed compared to AOMDV. ZD-AOMDV
achieves less average end to end packet delivery delay than
AOMDV.

0.01

0.015

0.02

0.025

0.03

0.035

10 15 20 25 30 35 40

Max. Speed (m/sec)

E
nd

-t
o-

E
nd

 D
el

ay
 (

se
c)

AO MDV ZD-AO MDV

Figure 8. The average end-to-end delay with varying speed.

Although the Route Discovery phase of our proposed
algorithm takes more time comparing to AOMDV but in data
transfer phase ZD-AOMDV overtakes AOMDV and leads to
less average end-to-end delay. This is due to selection of
zone-disjoint paths.

V. CONCLUSION

Multi-path routing algorithms in ad-hoc networks tend to
use load balancing in order to transfer data between source
and destination. This leads to less end-to-end delay since
data is simultaneously transferred through several paths to

856856

Authorized licensed use limited to: National United University. Downloaded on September 2, 2009 at 00:25 from IEEE Xplore. Restrictions apply.

destination. Although selecting node-disjoint paths for load
balancing seems to be a good choice, but the nodes on these
paths can still affect each other in the data transferring phase.
This is because CSMA/CA protocol is used for acquiring
channel access in wireless networks. To eliminate this
problem we can utilize each node with directional antennas.

In this paper we proposed a multi-path protocol based on
AODV which utilizes common omni-directional antennas,
rather than directional ones and transfers data trough
multiple zone disjoint paths simultaneously. For discovering
zone-disjoint paths, the number of active neighbors in each
path is calculated during the route discovery process. The
total number of active neighbors for each path is the main
parameter for selecting zone-disjoint paths. Finally, for
evaluating our suggested protocol we compared it with
AOMDV and achieved lower end-to-end delay and also
increase in the packet delivery ratio.

REFERENCES

[1] S. Sesay, Z. Yang, J. He, "A Survey on Mobile Ad Hoc Wireless
Network," Information Technology Journal, vol. 2, pp. 168-175,
2004.

[2] E. Royer, C. Toh, "A Review of Current Routing Protocols for
Ad-hoc Mobile Wireless Networks," IEEE Personal
Communication Magazine, pp. 46-55, 1999.

[3] C. E. Perkins, E. M. Belding-Royer, and S. Das, "Ad hoc On-
Demand Distance Vector (AODV) Routing," RFC 3561, July 2003.

[4] C. E. Perkins and E. M. Royer, "The Ad hoc On-Demand Distance
Vector Protocol," In C. E. Perkins, editor, Ad hoc Networking, pp.
173-219. Addison-Wesley, 2000.

[5] B. Johnson, D. A. Maltz. "Dynamic Source Routing in Ad-Hoc
Wireless Networks," Mobile Computing, vol.353, pp. 153-81, 1996.

[6] S. Mueller, R. Tsang, D. Ghosal, "Multipath Routing in Mobile Ad
Hoc Networks: Issues and Challenges," Lecture Notes in Computer
Science (LNCS 2965), pp. 209-234, 2004.

[7] Colvin, "CSMA with Collision Avoidance," Computer
Communication, Vol. 6, pp. 227-235, 1983.

[8] N. Taheri Javan, M. Dehghan, "Reducing End-to-End Delay in
Multi-path Routing Algorithms for Mobile Ad Hoc Networks," in
proceedings of MSN 2007: Third International Conference on Mobile
Ad-hoc and Sensor Networks, LNCS 4864, pp. 715-724, Beijing,
China, 2007.

[9] S. Roy, D. Saha, S. Bandyopadhyay, Tetsuro Ueda, S. Tanaka,
"Improving End-to-End Delay through Load Balancing with
Multipath Routing in Ad Hoc Wireless Networks using
Directional Antenna," in proceedings of IWDC 2003: 5th
International Workshop, LNCS, pp. 225-234, 2003.

[10] S. Bandyopadhyay, S. Roy, T. Ueda, k. hasuike, "Multipath
Routing in Ad hoc Wireless Networks with Directional Antenna,"
Personal Wireless Communication, vol. 234, pp. 45-52, 2002.

[11] L. Bajaj, M. takai, R. Ahuja, R. Bagrodia, M. Gerla, "Glomosim: a
Scalable Network Simulation Environment," Technical Report
990027, Computer Science Department, UCLA, 1999.

857857

Authorized licensed use limited to: National United University. Downloaded on September 2, 2009 at 00:25 from IEEE Xplore. Restrictions apply.

