Correspondence analysis for strong three-valued logic

A. Tamminga

ABSTRACT. I apply Kooi and Tamminga's (2012) idea of correspondence analysis for many-valued logics to strong three-valued logic (K_3) . First, I characterize each possible single entry in the truth-table of a unary or a binary truth-functional operator that could be added to K_3 by a basic inference scheme. Second, I define a class of natural deduction systems on the basis of these characterizing basic inference schemes and a natural deduction system for K_3 . Third, I show that each of the resulting natural deduction systems is sound and complete with respect to its particular semantics. Among other things, I thus obtain a new proof system for Lukasiewicz's three-valued logic.

Keywords: three-valued logic, correspondence analysis, proof theory, natural deduction systems

1 Introduction

Strong three-valued logic (K_3) [1] and Łukasiewicz's three-valued logic L_3 [2] have much in common: their truth-tables for negation, disjunction, and conjunction coincide, and they have the same concept of validity. The two logics differ, however, in their treatment of implication: whereas Kleene's implication is definable in terms of negation, disjunction, and conjunction, this does not hold true for Łukasiewicz's implication (L_3 is therefore a truth-functional extension of K_3). This fact seriously complicates the construction of proof systems for L_3 .

In this paper, I present a general method for finding natural deduction systems for truth-functional extensions of K_3 . To do so, I use the correspondence analysis for many-valued logics that was

presented recently by [3]. In their study of the logic of paradox (LP) [4], they characterize every possible single entry in the truth-table of a unary or a binary truth-functional operator by a basic inference scheme. As a consequence, each unary and each binary truth-functional operator is characterized by a set of basic inference schemes. Kooi and Tamminga show that if we add the inference schemes that characterize an operator to a natural deduction system for LP, we immediately obtain a natural deduction system that is sound and complete with respect to the logic that contains, next to LP's negation, disjunction, and conjunction, the additional operator. In this paper, I show that the same thing can be done for K_3 .

The structure of my paper is as follows. First, I briefly present K_3 . Second, I give a list of basic inference schemes that characterize every possible single entry in the truth-table of a unary or a binary truth-functional operator. Third, I define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for K_3 . I show that each of the resulting natural deduction systems is sound and complete with respect to its particular semantics.

2 Strong three-valued logic (K_3)

Strong three-valued logic (K_3) provides an alternative way to evaluate formulas from a propositional language \mathcal{L} built from a set $\mathcal{P} = \{p, p', \ldots\}$ of atomic formulas using negation (\neg) , disjunction (\vee) , and conjunction (\wedge) . K_3 adds a third truth-value 'none' to the classical pair 'false' and 'true'. In K_3 , a valuation is a function v from the set \mathcal{P} of atomic formulas to the set $\{0, i, 1\}$ of truth-values 'false', 'none', and 'true'. A valuation v on \mathcal{P} is extended recursively to a valuation on \mathcal{L} by the following truth-tables for \neg , \vee , and \wedge :

f_{\neg}	
0	1
i	i
1	0

f_{\lor}	0	i	1
0	0	i	1
i	i	i	1
1	1	1	1

f_{\wedge}	0	i	1
0	0	0	0
i	0	i	i
1	0	i	1

An argument from a set Π of premises to a conclusion ϕ is valid (notation: $\Pi \models \phi$) if and only if for each valuation v it holds that if $v(\psi) = 1$ for all ψ in Π , then $v(\phi) = 1$.

3 Correspondence Analysis for K_3

Let $\mathcal{L}_{(\sim)_m(\circ)_n}$ be the language built from the set $\mathcal{P} = \{p, p', \ldots\}$ of atomic formulas using negation (\neg) , disjunction (\lor) , conjunction (\land) , m unary operators \sim_1, \ldots, \sim_m , and n binary operators \circ_1, \ldots, \circ_n . It is obvious that $\mathcal{L}_{(\sim)_m(\circ)_n}$ is an extension of \mathcal{L} . To interpret this extended language, I use K_3 's concept of validity, the truth-tables f_{\neg} , f_{\lor} , and f_{\land} , but also the truth-tables $f_{\sim_1}, \ldots, f_{\sim_m}$ and the truth-tables $f_{\circ_1}, \ldots, f_{\circ_n}$. I refer to the resulting logic as $K_3(\sim)_m(\circ)_n$.

To construct a proof system for $K_3(\sim)_m(\circ)_n$, I follow [3]. I first characterize each possible single entry in the truth-table of a unary or a binary operator by a basic inference scheme. To do so, I need the following notion of single entry correspondence [3, p. 722]:

DEFINITION 1 (SINGLE ENTRY CORRESPONDENCE). Let $\Pi \subseteq \mathcal{L}_{(\sim)_m(\circ)_n}$ and let $\phi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Let $x, y, z \in \{0, i, 1\}$. Let E be a truth-table entry of the type $f_{\sim}(x) = y$ or $f_{\circ}(x, y) = z$. Then the truth-table entry E is characterized by an inference scheme Π/ϕ , if

$$E$$
 if and only if $\Pi \models \phi$.

Accordingly, each of the nine possible single entries in a truthtable f_{\sim} for a unary operator \sim and each of the twenty-seven possible entries in a truth-table f_{\circ} for binary operator \circ is characterized by an inference scheme (I do the binary operator case first):

THEOREM 1. Let $\phi, \psi, \chi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Then

$$f_{\circ}(0,0) = \begin{cases} 0 & iff & \neg \phi \land \neg \psi \models \neg(\phi \circ \psi) \\ i & iff & \neg \phi \land \neg \psi, (\phi \circ \psi) \lor \neg(\phi \circ \psi) \models \chi \\ 1 & iff & \neg \phi \land \neg \psi \models \phi \circ \psi \end{cases}$$

$$f_{\circ}(0,i) = \begin{cases} 0 & iff \quad \neg \phi \models (\psi \lor \neg \psi) \lor \neg (\phi \circ \psi) \\ i & iff \quad \neg \phi, (\phi \circ \psi) \lor \neg (\phi \circ \psi) \models \psi \lor \neg \psi \\ 1 & iff \quad \neg \phi \models (\psi \lor \neg \psi) \lor (\phi \circ \psi) \end{cases}$$

$$f_{\circ}(0,1) = \begin{cases} 0 & iff & \neg \phi \wedge \psi \models \neg(\phi \circ \psi) \\ i & iff & \neg \phi \wedge \psi, (\phi \circ \psi) \vee \neg(\phi \circ \psi) \models \chi \\ 1 & iff & \neg \phi \wedge \psi \models \phi \circ \psi \end{cases}$$

$$f_{\circ}(i,0) = \begin{cases} 0 & iff \quad \neg \psi \models (\phi \lor \neg \phi) \lor \neg (\phi \circ \psi) \\ i & iff \quad \neg \psi, (\phi \circ \psi) \lor \neg (\phi \circ \psi) \models \phi \lor \neg \phi \\ 1 & iff \quad \neg \psi \models (\phi \lor \neg \phi) \lor (\phi \circ \psi) \end{cases}$$

$$f_{\circ}(i,i) = \begin{cases} 0 & iff \models (\phi \lor \neg \phi) \lor (\psi \lor \neg \psi) \lor \neg (\phi \circ \psi) \\ i & iff \quad (\phi \circ \psi) \lor \neg (\phi \circ \psi) \models (\phi \lor \neg \phi) \lor (\psi \lor \neg \psi) \\ 1 & iff \models (\phi \lor \neg \phi) \lor (\psi \lor \neg \psi) \lor (\phi \circ \psi) \end{cases}$$

$$f_{\circ}(i,1) = \begin{cases} 0 & iff \quad \psi \models (\phi \lor \neg \phi) \lor \neg(\phi \circ \psi) \\ i & iff \quad \psi, (\phi \circ \psi) \lor \neg(\phi \circ \psi) \models \phi \lor \neg \phi \\ 1 & iff \quad \psi \models (\phi \lor \neg \phi) \lor (\phi \circ \psi) \end{cases}$$

$$f_{\circ}(1,0) = \begin{cases} 0 & iff \quad \phi \land \neg \psi \models \neg(\phi \circ \psi) \\ i & iff \quad \phi \land \neg \psi, (\phi \circ \psi) \lor \neg(\phi \circ \psi) \models \chi \\ 1 & iff \quad \phi \land \neg \psi \models \phi \circ \psi \end{cases}$$

$$f_{\circ}(1,i) = \begin{cases} 0 & iff & \phi \models (\psi \lor \neg \psi) \lor \neg(\phi \circ \psi) \\ i & iff & \phi, (\phi \circ \psi) \lor \neg(\phi \circ \psi) \models \psi \lor \neg \psi \\ 1 & iff & \phi \models (\psi \lor \neg \psi) \lor (\phi \circ \psi) \end{cases}$$

$$f_{\circ}(1,1) = \begin{cases} 0 & iff \quad \phi \wedge \psi \models \neg(\phi \circ \psi) \\ i & iff \quad \phi \wedge \psi, (\phi \circ \psi) \vee \neg(\phi \circ \psi) \models \chi \\ 1 & iff \quad \phi \wedge \psi \models \phi \circ \psi. \end{cases}$$

PROOF. Case $f_{\circ}(0,0) = 0$. (\Rightarrow) Suppose that $\neg \phi \land \neg \psi \not\models \neg (\phi \circ \psi)$. Then there is a valuation v such that $v(\neg \phi \land \neg \psi) = 1$ and $v(\neg (\phi \circ \psi)) = 0$.

- ψ)) \neq 1. Then $v(\phi) = 0$, $v(\psi) = 0$, and $v(\phi \circ \psi) \neq 0$. Therefore, it must be that $f_{\circ}(0,0) \neq 0$.
- (\Leftarrow) Suppose that $\neg \phi \land \neg \psi \models \neg (\phi \circ \psi)$. Then $\neg p \land \neg q \models \neg (p \circ q)$, where p and q are atomic formulas. Then for every valuation v it holds that if $v(\neg p \land \neg q) = 1$, then $v(\neg (p \circ q)) = 1$. Then for every valuation v it holds that if v(p) = 0 and v(q) = 0, then $v(p \circ q) = 0$. Therefore, it must be that $f_{\circ}(0,0) = 0$.

Case $f_{\circ}(1,i) = i$. (\Rightarrow) Suppose that $\phi, (\phi \circ \psi) \vee \neg (\phi \circ \psi) \not\models \psi \vee \neg \psi$. Then there is a valuation v such that $v(\phi) = 1$, $v((\phi \circ \psi) \vee \neg (\phi \circ \psi)) = 1$ and $v(\psi \vee \neg \psi) \neq 1$. Then $v(\phi) = 1$, $v(\psi) = i$, and $v(\phi \circ \psi) \neq i$. Therefore, it must be that $f_{\circ}(1,i) \neq i$.

(\Leftarrow) Suppose that ϕ , $(\phi \circ \psi) \vee \neg (\phi \circ \psi) \models \psi \vee \neg \psi$. Then p, $(p \circ q) \vee \neg (p \circ q) \models q \vee \neg q$, where p and q are atomic formulas. Then for every valuation v it holds that if v(p) = 1 and $v((p \circ q) \vee \neg (p \circ q)) = 1$, then $v(q \vee \neg q) = 1$. Then for every valuation v it holds that if v(p) = 1 and v(q) = i, then $v(p \circ q) = i$. Therefore, it must be that v(q) = i.

The other cases are proved similarly.

THEOREM 2. Let $\phi, \psi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Then

$$f_{\sim}(0) = \begin{cases} 0 & iff \quad \neg \phi \models \neg \sim \phi \\ i & iff \quad \neg \phi, (\sim \phi \lor \neg \sim \phi) \models \psi \\ 1 & iff \quad \neg \phi \models \sim \phi \end{cases}$$

$$f_{\sim}(i) = \begin{cases} 0 & iff \models (\phi \lor \neg \phi) \lor \neg \sim \phi \\ i & iff (\sim \phi \lor \neg \sim \phi) \models \phi \lor \neg \phi \\ 1 & iff \models (\phi \lor \neg \phi) \lor \sim \phi \end{cases}$$

$$f_{\sim}(1) = \begin{cases} 0 & iff & \phi \models \neg \sim \phi \\ i & iff & \phi, (\sim \phi \lor \neg \sim \phi) \models \psi \\ 1 & iff & \phi \models \sim \phi. \end{cases}$$

PROOF. Adapt the proof of the previous theorem.

As a result, given K_3 's concept of validity and its truth-tables f_{\neg} , f_{\lor} , and f_{\land} , each unary operator $\sim_k (1 \le k \le m)$ is characterized by

the set of three basic inference schemes that characterize the three single entries in its truth-table f_{\sim_k} and each binary operator \circ_l $(1 \le l \le n)$ is characterized by the set of nine basic inference schemes that characterize the nine single entries in its truth-table f_{\circ_l} . The inference schemes that characterize a truth-table are independent.

4 Natural deduction systems

I now use the characterizations of the previous section to construct proof systems for truth-functional extensions of K_3 . First, I define a natural deduction system \mathbf{ND}_{K_3} which I later show to be sound and complete with respect to K_3 (this is a corollary of my main theorem). Second, on the basis of \mathbf{ND}_{K_3} and Theorems 1 and 2, I define a natural deduction system for the logic $K_3(\sim)_m(\circ)_n$ as follows: for each unary operator $\sim_k (1 \le k \le m)$ I add its three characterizing basic inference schemes as derivation rules to \mathbf{ND}_{K_3} and for each binary operator $\circ_l (1 \le l \le n)$ I add its nine characterizing inference schemes as derivation rules to \mathbf{ND}_{K_3} . Third, I show, using a Henkin-style proof, that the resulting natural deduction system is sound and complete with respect to the logic $K_3(\sim)_m(\circ)_n$.

My proof-theoretical study of K_3 closely follows Kooi and Tamminga's (2012) proof-theoretical study of LP. In fact, to construct natural deduction systems for extensions of K_3 and to prove their soundness and completeness, I only slightly adapt Kooi and Tamminga's definitions, lemmas and theorems on extensions of LP.

Let me first define the natural deduction system $ND_{K_3}^{-1}$.

DEFINITION 2. Derivations in the system \mathbf{ND}_{K_3} are inductively defined as follows:

Basis: The proof tree with a single occurrence of an assumption ϕ is a derivation.

Induction Step: Let \mathcal{D} , \mathcal{D}_1 , \mathcal{D}_2 , \mathcal{D}_3 be derivations. Then they can be extended by the following rules (double lines indicate that the rules work both ways):

¹For the notational conventions, see [5].

$$\frac{\mathcal{D}_{1} \quad \mathcal{D}_{2}}{\psi} \quad \mathcal{D}_{FQ}$$

$$\frac{\mathcal{D}_{1} \quad \mathcal{D}_{2}}{\phi \wedge \psi} \wedge I \quad \frac{\mathcal{D}}{\phi \wedge \psi} \wedge E_{1} \quad \frac{\mathcal{D}}{\psi} \wedge E_{2}$$

$$\frac{\mathcal{D}_{1} \quad \mathcal{D}_{2}}{\phi \wedge \psi} \wedge I \quad \frac{\mathcal{D}_{1} \quad \mathcal{D}_{2}}{\phi} \wedge E_{2}$$

$$\frac{\mathcal{D}_{1} \quad \mathcal{D}_{2}}{\phi \vee \psi} \wedge I_{1} \quad \frac{\mathcal{D}_{1}}{\phi \vee \psi} \vee I_{2} \quad \frac{\mathcal{D}_{1}}{\psi} \quad \mathcal{D}_{2} \quad \mathcal{D}_{3}$$

$$\frac{\mathcal{D}_{1} \quad \mathcal{D}_{2} \quad \mathcal{D}_{3}}{\chi} \vee E^{u,v}$$

$$\frac{\mathcal{D}_{1} \quad$$

On the basis of \mathbf{ND}_{K_3} , I now define a natural deduction system for the logic $K_3(\sim)_m(\circ)_n$. The Theorems 1 and 2 tell me that each truth-table f_{\sim_k} is characterized by three basic inference schemes and that each truth-table f_{\circ_l} is characterized by nine basic inference schemes. I obtain a new natural deduction system for the logic $K_3(\sim)_m(\circ)_n$ by adding to \mathbf{ND}_{K_3} these characterizing basic inference schemes as derivation rules.

More specifically, for each basic inference scheme $\psi_1, \ldots, \psi_j/\phi$ that characterizes an entry $f_{\sim_k}(x) = y$ in the truth-table f_{\sim_k} , I add the derivation rule

$$\begin{array}{ccc}
\mathcal{D}_1 & \mathcal{D}_j \\
\frac{\psi_1 & \cdots & \psi_j}{\phi} & R_{\sim_k}(x,y)
\end{array}$$

to the natural deduction system \mathbf{ND}_{K_3} . Similarly, for each basic inference scheme $\psi_1, \ldots, \psi_j/\phi$ that characterizes an entry $f_{\circ_l}(x, y) = z$ in the truth-table f_{\circ_l} , I add the derivation rule

$$\begin{array}{ccc}
\mathcal{D}_1 & \mathcal{D}_j \\
\psi_1 & \cdots & \psi_j \\
\hline
\phi & & R_{\circ l}(x, y, z)
\end{array}$$

to the natural deduction system ND_{K_3} .

For instance, assume that $f_{\circ}(0,0) = 0$ is one of the truth-table entries in f_{\circ} . Then, because Theorem 1 tells me that $f_{\circ}(0,0) = 0$ is characterized by the basic inference scheme $\neg \phi \wedge \neg \psi / \neg (\phi \circ \psi)$, I add the derivation rule

$$\frac{\mathcal{D}}{\neg \phi \wedge \neg \psi} R_{\circ}(0,0,0)$$

to the natural deduction system \mathbf{ND}_{K_3} .

In this way, I define the system $\mathbf{ND}_{K_3} + \bigcup_{k=1}^m \{R_{\sim_k}(x,y) : f_{\sim_k}(x) = y\} + \bigcup_{l=1}^n \{R_{\circ_l}(x,y,z) : f_{\circ_l}(x,y) = z\}$, which I refer to as $\mathbf{ND}_{K_3(\sim)_m(\circ)_n}$. I now show that this natural deduction system is sound and complete with respect to the logic $K_3(\sim)_m(\circ)_n$.

4.1 Soundness of $ND_{K_3(\sim)_m(\circ)_n}$

A conclusion ϕ is *derivable* from a set Π of premises (notation: $\Pi \vdash \phi$) if and only if there is a derivation in the system $\mathbf{ND}_{K_3(\sim)_m(\circ)_n}$ of ϕ from Π .

The system's local soundness is easy to establish:

LEMMA 1 (LOCAL SOUNDNESS). Let $\Pi, \Pi', \Pi'' \subseteq \mathcal{L}_{(\sim)_m(\circ)_n}$ and let $\phi, \psi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Then

- (i) If $\phi \in \Pi$, then $\Pi \models \phi$
- (ii) If $\Pi \models \phi$ and $\Pi' \models \neg \phi$, then $\Pi, \Pi' \models \psi$
- (iii) If $\Pi \models \phi$ and $\Pi' \models \psi$, then $\Pi, \Pi' \models \phi \land \psi$
- (iv) If $\Pi \models \phi \land \psi$, then $\Pi \models \phi$
- (v) If $\Pi \models \phi \land \psi$, then $\Pi \models \psi$
- (vi) If $\Pi \models \phi$, then $\Pi \models \phi \lor \psi$
- (vii) If $\Pi \models \psi$, then $\Pi \models \phi \lor \psi$
- (viii) If $\Pi \models \phi \lor \psi$ and $\Pi', \phi \models \chi$ and $\Pi'', \psi \models \chi$, then $\Pi, \Pi', \Pi'' \models \chi$
- (ix) $\Pi \models \phi$ if and only if $\Pi \models \neg \neg \phi$
- (x) $\Pi \models \neg(\phi \lor \psi)$ if and only if $\Pi \models \neg\phi \land \neg\psi$
- (xi) $\Pi \models \neg(\phi \land \psi)$ if and only if $\Pi \models \neg \phi \lor \neg \psi$.

THEOREM 3 (SOUNDNESS). Let $\Pi \subseteq \mathcal{L}_{(\sim)_m(\circ)_n}$ and let $\phi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Then

If
$$\Pi \vdash \phi$$
, then $\Pi \models \phi$.

PROOF. By induction on the depth of derivations. The local soundness of the rules of the basic natural deduction system ND_{K_3} follows from the previous lemma. For each unary operator \sim_k $(1 \le k \le m)$ the local soundness of the three derivation rules in $\{R_{\sim_k}(x,y):f_{\sim_k}(x)=y\}$ follows from Theorem 2. For each binary operator $\circ_l \ (1 \leq l \leq n)$ the local soundness of the nine derivation rules in $\{R_{o_l}(x, y, z) : f_{o_l}(x, y) = z\}$ follows from Theorem 1.

Completeness of $\mathrm{ND}_{K_3(\sim)_m(\circ)_n}$

In my completeness proof, consistent prime theories are the syntactical counterparts of valuations:

DEFINITION 3. Let $\Pi \subseteq \mathcal{L}_{(\sim)_m(\circ)_n}$. Then Π is a consistent prime theory (CPT), if

- (i) $\Pi \neq \mathcal{L}_{(\sim)_m(\circ)_n}$ (consistency)
- (ii) If $\Pi \vdash \phi$, then $\phi \in \Pi$ (closure)
- If $\phi \lor \psi \in \Pi$, then $\phi \in \Pi$ or $\psi \in \Pi$ (primeness).

The syntactical counterpart of the truth-value of a formula under a valuation is a formula's elementhood in a consistent prime theory:

DEFINITION 4. Let $\Pi \subseteq \mathcal{L}_{(\sim)_m(\circ)_n}$ and let $\phi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Then ϕ 's elementhood in Π (notation: $e(\phi, \Pi)$) is defined as follows:

$$e(\phi,\Pi) = \left\{ \begin{array}{l} \emptyset, & \text{if } \phi \in \Pi \text{ and } \neg \phi \in \Pi \\ 0, & \text{if } \phi \not \in \Pi \text{ and } \neg \phi \in \Pi \\ i, & \text{if } \phi \not \in \Pi \text{ and } \neg \phi \not \in \Pi \\ 1, & \text{if } \phi \in \Pi \text{ and } \neg \phi \not \in \Pi. \end{array} \right.$$

To ensure that in the presence of an operator the notion of elementhood behaves in comformity with the operator's truth-tables, I need the following lemma:

LEMMA 2. Let Π be a CPT and let $\phi, \psi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Then

- (i) $e(\phi, \Pi) \neq \emptyset$
- (ii) $f_{\neg}(e(\phi,\Pi))$ $= e(\neg \phi, \Pi)$
- (iii) $f_{\vee}(e(\phi,\Pi), e(\psi,\Pi)) = e(\phi \vee \psi, \Pi)$ (iv) $f_{\wedge}(e(\phi,\Pi), e(\psi,\Pi)) = e(\phi \wedge \psi, \Pi)$

- $\begin{array}{lll} \text{(v)} & f_{\sim_k}(e(\phi,\Pi)) & = & e(\sim_k \phi,\Pi) \text{ for } 1 \leq k \leq m \\ \text{(vi)} & f_{\circ_l}(e(\phi,\Pi),e(\psi,\Pi)) & = & e(\phi \circ_l \psi,\Pi) \text{ for } 1 \leq l \leq n. \end{array}$

Proof.

- (i) Suppose $e(\phi, \Pi) = \emptyset$. Then $\phi \in \Pi$ and $\neg \phi \in \Pi$. Then $\Pi \vdash \phi$ and $\Pi \vdash \neg \phi$. By the rule EFQ, it must be that $\Pi \vdash \psi$ for all $\psi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. By closure, $\psi \in \Pi$ for all $\psi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Then $\Pi = \mathcal{L}_{(\sim)_m(\circ)_n}$. Contradiction.
- (ii) Suppose $e(\phi, \Pi) = 0$. Then $\phi \notin \Pi$ and $\neg \phi \in \Pi$. By closure and the rule DN, $\neg \phi \in \Pi$ and $\neg \neg \phi \notin \Pi$. Hence, $e(\neg \phi, \Pi) = 1 = f_{\neg}(0) = f_{\neg}(e(\phi, \Pi))$.

Suppose $e(\phi, \Pi) = i$. Then $\phi \in \Pi$ and $\neg \phi \in \Pi$. By closure and the rule DN, $\neg \phi \in \Pi$ and $\neg \neg \phi \in \Pi$. Hence, $e(\neg \phi, \Pi) = i = f_{\neg}(i) = f_{\neg}(e(\phi, \Pi))$.

Suppose $e(\phi, \Pi) = 1$. Then $\phi \in \Pi$ and $\neg \phi \notin \Pi$. By closure and the rule DN, $\neg \phi \notin \Pi$ and $\neg \neg \phi \in \Pi$. Hence, $e(\neg \phi, \Pi) = 0 = f_{\neg}(1) = f_{\neg}(e(\phi, \Pi))$.

- (iii) I prove the cases for (1) $e(\phi,\Pi) = 0$ and $e(\psi,\Pi) = 0$, (2) $e(\phi,\Pi) = i$ and $e(\psi,\Pi) = i$, and (3) $e(\phi,\Pi) = 1$ and $e(\psi,\Pi) = i$. The other six cases are proved similarly.
 - (1) Suppose $e(\phi, \Pi) = 0$ and $e(\psi, \Pi) = 0$. Then $\phi \notin \Pi$, $\psi \notin \Pi$, $\neg \phi \in \Pi$, and $\neg \psi \in \Pi$. By primeness, $\phi \lor \psi \notin \Pi$. By closure and the rules $\land I$ and DeM_{\lor} , $\neg(\phi \lor \psi) \in \Pi$. Hence, $e(\phi \lor \psi, \Pi) = 0 = f_{\lor}(0, 0) = f_{\lor}(e(\phi, \Pi), e(\psi, \Pi))$.
 - (2) Suppose $e(\phi,\Pi) = i$ and $e(\psi,\Pi) = i$. Then $\phi \in \Pi$, $\psi \in \Pi$, $\neg \phi \in \Pi$, and $\neg \psi \in \Pi$. By closure and the rule $\forall I_1, \phi \lor \psi \in \Pi$. By closure and the rules $\land I$ and DeM_{\lor} , $\neg(\phi \lor \psi) \in \Pi$. Hence, $e(\phi \lor \psi,\Pi) = i = f_{\lor}(i,i) = f_{\lor}(e(\phi,\Pi),e(\psi,\Pi))$.
 - (3) Suppose $e(\phi,\Pi) = 1$ and $e(\psi,\Pi) = i$. Then $\phi \in \Pi$, $\psi \in \Pi$, $\neg \phi \notin \Pi$, and $\neg \psi \in \Pi$. By closure and the rule $\lor I_1$, $\phi \lor \psi \in \Pi$. By closure and the rules $\land E_1$ and DeM_{\lor} , $\neg(\phi \lor \psi) \notin \Pi$. Hence, $e(\phi \lor \psi,\Pi) = 1 = f_{\lor}(1,i) = f_{\lor}(e(\phi,\Pi),e(\psi,\Pi))$.
- (iv) Analogous to (iii).

(v) There are three cases for each \sim_k $(1 \le k \le n)$. (For readability, the subscript k is dropped in the remainder of this proof.) I prove the case for $e(\phi,\Pi)=0$. The other two cases are proved similarly.

Suppose $e(\phi,\Pi)=0$. Then $\phi \notin \Pi$ and $\neg \phi \in \Pi$. There are three cases:

- (1) Suppose $R_{\sim}(0,0)$ is one of the three rules for \sim in $\mathbf{ND}_{K_3(\sim)_m(\circ)_n}$. Then $f_{\sim}(0)=0$. By closure and the rule $R_{\sim}(0,0)$, it must be that $\neg \sim \phi \in \Pi$. By (i), it must be that $\sim \phi \notin \Pi$. Therefore, $e(\sim \phi,\Pi)=0=f_{\sim}(0)=f_{\sim}(e(\phi,\Pi))$.
- (2) Suppose $R_{\sim}(0,i)$ is one of the three rules for \sim in $\mathbf{ND}_{LP(\sim)_m(\circ)_n}$. Then $f_{\sim}(0)=i$. By closure, the fact that Π is a CPT, and the rule $R_{\sim}(0,i)$, it must be that $\sim \phi \vee \neg \sim \phi \notin \Pi$. By closure and the rules $\vee I_1$ and $\vee I_2$, $\sim \phi \notin \Pi$ and $\neg \sim \phi \notin \Pi$. Therefore, $e(\sim \phi, \Pi) = i = f_{\circ}(0) = f_{\sim}(e(\phi, \Pi))$.
- (3) Suppose $R_{\sim}(0,1)$ is one of the three rules for \sim in $\mathbf{ND}_{LP(\sim)_m(\circ)_n}$. Analogous to (1).
- (vi) Analogous to (v).

LEMMA 3 (TRUTH). Let Π be a CPT. Let v_{Π} be the function that assigns to each atomic formula p in \mathcal{P} the elementhood of p in Π : $v_{\Pi}(p) = e(p, \Pi)$ for all p in \mathcal{P} . Then for all ϕ in $\mathcal{L}_{(\sim)_m(\circ)_n}$ it holds that

$$v_{\Pi}(\phi) = e(\phi, \Pi).$$

PROOF. By an easy structural induction on ϕ . Use the previous lemma. \Box

LEMMA 4 (LINDENBAUM). Let $\Pi \subseteq \mathcal{L}_{(\sim)_m(\circ)_n}$ and let $\phi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Suppose that $\Pi \not\vdash \phi$. Then there is a set $\Pi^* \subseteq \mathcal{L}_{(\sim)_m(\circ)_n}$ such that

- (i) $\Pi \subseteq \Pi^*$
- (ii) $\Pi^* \not\vdash \phi$
- (iii) Π^* is a CPT.

PROOF. Suppose that $\Pi \not\vdash \phi$. Let ψ_1, ψ_2, \ldots be an enumeration of $\mathcal{L}_{(\sim)_m(\circ)_n}$. I define the sequence Π_0, Π_1, \ldots of sets of formulas as follows:

$$\Pi_{0} = \Pi$$

$$\Pi_{i+1} = \begin{cases} \Pi_{i} \cup \{\psi_{i+1}\}, & \text{if } \Pi_{i} \cup \{\psi_{i+1}\} \not\vdash \phi \\ \Pi_{i}, & \text{otherwise.} \end{cases}$$

Take $\Pi^* = \bigcup_{n \in \mathbb{N}} \Pi_n$. Standard proofs show that (i), (ii), and (iii) hold.

THEOREM 4 (COMPLETENESS). Let $\Pi \subseteq \mathcal{L}_{(\sim)_m(\circ)_n}$ and let $\phi \in \mathcal{L}_{(\sim)_m(\circ)_n}$. Then

If
$$\Pi \models \phi$$
, then $\Pi \vdash \phi$.

PROOF. By contraposition. Suppose $\Pi \not\vdash \phi$. By the Lindenbaum lemma, there is a CPT Π^* such that $\Pi \subseteq \Pi^*$ and $\Pi^* \not\vdash \phi$. Let v_{Π^*} be the valuation introduced in the truth lemma. By the truth lemma, it holds that $v_{\Pi^*}(\psi) = 1$ for all ψ in Π and $v_{\Pi^*}(\phi) \neq 1$. Therefore, $\Pi \not\models \phi$.

COROLLARY 1. The system \mathbf{ND}_{K_3} is sound and complete with respect to K_3 .

PROOF. Consider the logic $K_3 \neg$ that is obtained from K_3 by adding K_3 's truth-table f_{\neg} for negation to it. Evidently, $K_3 \neg$ is K_3 . By the soundness and completeness theorems, $\mathbf{ND}_{K_3 \neg}$ is sound and complete with respect to $K_3 \neg$. It is easy to see that the rules $R_{\neg}(0,1)$, $R_{\neg}(i,i)$, and $R_{\neg}(1,0)$ are derived rules in \mathbf{ND}_{K_3} .

5 Lukasiewicz's three-valued logic (L_3)

Let me illustrate this general method for finding natural deduction systems for truth-functional extensions of K_3 with Łukasiewicz's three-valued logic (L_3) . L_3 evaluates arguments consisting of formulas from a propositional language \mathcal{L}_{\supset} built from a set $\mathcal{P} = \{p, p', \ldots\}$ of atomic formulas using negation (\neg) , disjunction (\lor) , conjunction (\land) , and implication (\supset) . L_3 has the same valuations as K_3 : in L_3 , a valuation is a function v from the set \mathcal{P} of atomic formulas to the set $\{0, i, 1\}$ of truth-values. A valuation v on \mathcal{P} is extended recursively to a valuation on \mathcal{L}_{\supset} by the truth-tables for \neg , \lor , and \land , and the truth-table for \supset :

f_{\supset}	0	i	1
0	1	1	1
i	i	1	1
1	0	i	1

 L_3 has the same concept of validity as K_3 : an argument from a set Π of premises to a conclusion ϕ is valid (notation: $\Pi \models \phi$) if and only if for each valuation v it holds that if $v(\psi) = 1$ for all ψ in Π , then $v(\phi) = 1$.

Theorem 1 tells me that the truth-table f_{\supset} is characterized by the following nine basic inference schemes:

```
\begin{split} f_{\supset}(0,0) &= 1 & \text{iff} & \neg \phi \land \neg \psi \models \phi \supset \psi \\ f_{\supset}(0,i) &= 1 & \text{iff} & \neg \phi \models (\psi \lor \neg \psi) \lor (\phi \supset \psi) \\ f_{\supset}(0,1) &= 1 & \text{iff} & \neg \phi \land \psi \models \phi \supset \psi \\ f_{\supset}(i,0) &= i & \text{iff} & \neg \psi, (\phi \supset \psi) \lor \neg (\phi \supset \psi) \models \phi \lor \neg \phi \\ f_{\supset}(i,i) &= 1 & \text{iff} & \models (\phi \lor \neg \phi) \lor (\psi \lor \neg \psi) \lor (\phi \supset \psi) \\ f_{\supset}(i,1) &= 1 & \text{iff} & \psi \models (\phi \lor \neg \phi) \lor (\phi \supset \psi) \\ f_{\supset}(1,0) &= 0 & \text{iff} & \phi \land \neg \psi \models \neg (\phi \supset \psi) \\ f_{\supset}(1,i) &= i & \text{iff} & \phi, (\phi \supset \psi) \lor \neg (\phi \supset \psi) \models \psi \lor \neg \psi \\ f_{\supset}(1,1) &= 1 & \text{iff} & \phi \land \psi \models \phi \supset \psi. \end{split}
```

From Theorems 3 and 4 it follows that the natural deduction system $\mathbf{ND}_{K_3\supset}$, obtained from adding these nine basic inference schemes as derivation rules to the natural deduction system \mathbf{ND}_{K_3} , is sound and complete with respect to L_3 . The general method I

presented in this paper, therefore, makes it easy to find natural deduction systems for truth-functional extensions of K_3 .

6 Conclusion

Next to Kooi and Tamminga's (2012) proof-theoretical study of LP, the present investigation of K_3 is only a second step in the study of many-valued logics using correspondence analysis. At the current stage of research, the following questions seem pressing. Which many-valued logics can be studied using correspondence analysis? Which many-valued logics cannot? Are there some characteristics a many-valued logic must have to be amenable to correspondence analysis?

References

- [1] Kleene S. C. On notation for ordinal numbers // Journal of Symbolic Logic. 1938. Vol. 3. P. 150–155.
- [2] Lukasiewicz J. O logice trójwartościowej // Ruch Filozoficzny. 1920. Vol. 5. P. 170–171. (Translated as: On three-valued logic // Jan Łukasiewicz: Selected Works / Ed. Borkowski L. Amsterdam: North-Holland Publishing Company, 1970. P. 87–88).
- [3] Kooi B., Tamminga A. Completeness via correspondence for extensions of the logic of paradox // The Review of Philosophical Logic. 2012. Vol. 5. P. 720–730.
- [4] $Priest\ G$. The logic of paradox // Journal of Philosophical Logic. 1979. Vol. 8. P. 219–241.
- [5] Troelstra A. S., Schwichtenberg H. Basic Proof Theory. Cambridge: Cambridge University Press, 1996.