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ABSTRACT. I apply Kooi and Tamminga’s (2012) idea of corre-
spondence analysis for many-valued logics to strong three-valued
logic (K3). First, I characterize each possible single entry in the
truth-table of a unary or a binary truth-functional operator that
could be added to K3 by a basic inference scheme. Second, I define
a class of natural deduction systems on the basis of these charac-
terizing basic inference schemes and a natural deduction system
for K3. Third, I show that each of the resulting natural deduc-
tion systems is sound and complete with respect to its particular
semantics. Among other things, I thus obtain a new proof system
for Lukasiewicz’s three-valued logic.

Keywords:  three-valued logic, correspondence analysis, proof
theory, natural deduction systems

1 Introduction

Strong three-valued logic (K3) [1] and Lukasiewicz’s three-valued
logic L3 [2] have much in common: their truth-tables for negation,
disjunction, and conjunction coincide, and they have the same con-
cept of validity. The two logics differ, however, in their treatment
of implication: whereas Kleene’s implication is definable in terms
of negation, disjunction, and conjunction, this does not hold true
for Lukasiewicz’s implication (£3 is therefore a truth-functional ex-
tension of K3). This fact seriously complicates the construction of
proof systems for Ls.

In this paper, I present a general method for finding natural de-
duction systems for truth-functional extensions of Kj3. To do so,
I use the correspondence analysis for many-valued logics that was
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presented recently by [3]. In their study of the logic of paradox
(LP) [4], they characterize every possible single entry in the truth-
table of a unary or a binary truth-functional operator by a basic
inference scheme. As a consequence, each unary and each binary
truth-functional operator is characterized by a set of basic inference
schemes. Kooi and Tamminga show that if we add the inference
schemes that characterize an operator to a natural deduction sys-
tem for LP, we immediately obtain a natural deduction system
that is sound and complete with respect to the logic that contains,
next to L P’s negation, disjunction, and conjunction, the additional
operator. In this paper, I show that the same thing can be done for
K.

The structure of my paper is as follows. First, I briefly present
K3. Second, I give a list of basic inference schemes that charac-
terize every possible single entry in the truth-table of a unary or a
binary truth-functional operator. Third, I define a class of natu-
ral deduction systems on the basis of these characterizing inference
schemes and a natural deduction system for K3. I show that each
of the resulting natural deduction systems is sound and complete
with respect to its particular semantics.

2 Strong three-valued logic (K3)

Strong three-valued logic (K3) provides an alternative way to eval-
uate formulas from a propositional language £ built from a set
P = {p,p/,...} of atomic formulas using negation (), disjunction
(V), and conjunction (A). K3 adds a third truth-value ‘none’ to the
classical pair ‘false’ and ‘true’. In K3, a valuation is a function v
from the set P of atomic formulas to the set {0, 4,1} of truth-values
‘false’, ‘none’, and ‘true’. A valuation v on P is extended recur-
sively to a valuation on £ by the following truth-tables for —, V,
and A:

f- fvl10 4 1 A0 4 1
011 010 ¢ 1 0]0 0 O
i |1 i |1 1 1 i 10 2 1
110 1]1 11 110 ¢ 1
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An argument from a set Il of premises to a conclusion ¢ is valid
(notation: II |= ¢) if and only if for each valuation v it holds that
if v(yp) =1 for all ¥ in II, then v(¢) = 1.

3 Correspondence Analysis for K3

Let £(),.(0), be the language built from the set P = {p,p’,...} of
atomic formulas using negation (), disjunction (V), conjunction
(A), m unary operators ~i, ..., ~,, and n binary operators oy,
.+, on. It is obvious that L(.), (0), 18 an extension of L. To
interpret this extended language, I use K3’s concept of validity, the

truth-tables f-, fy, and fa, but also the truth-tables f,, ..., f~,,
and the truth-tables f,,, ..., fo,. I refer to the resulting logic as
K3(~)m(0)n-

To construct a proof system for Ks(~)m(0),, I follow [3]. I
first characterize each possible single entry in the truth-table of
a unary or a binary operator by a basic inference scheme. To do
so, I need the following notion of single entry correspondence [3,
p. 722]:

DEFINITION 1 (SINGLE ENTRY CORRESPONDENCE). Let II C
L(Vm(o), and let ¢ € L) (o), Let z,y,2 € {0,4,1}. Let E be a
truth-table entry of the type fo(z) =y or fo(x,y) = z. Then the
truth-table entry F is characterized by an inference scheme II/¢, if

E ifand only if II = ¢.

Accordingly, each of the nine possible single entries in a truth-
table f. for a unary operator ~ and each of the twenty-seven possi-
ble entries in a truth-table f, for binary operator o is characterized
by an inference scheme (I do the binary operator case first):

THEOREM 1. Let ¢,¢, x € L(~),.(0),- Then

0 iff =AY (o)
fO(Ovo) = i Aff —o A, (¢0¢) Vﬁ(ﬁbolﬁ) ’:X
1 iff oA EPoY
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¢ WV )V a(doy)
—¢,(po)V(pot) Evpv i
¢ = (W V )V (porh)

o AP = =(poy)
o AP, (¢op)Va(pod) =X
“ONY | dorp

Y= (pV9)V(doy)
Y, (poh) Vo(pov) = oV o
W= (dV )V (o)

F (V=) V(¥V 1)V =(goy)
(o) Val(gop) = (oV o)V (YV—y)
F (Vo) V([ V-y)V(goy)

YE(@V—9)Va(goy)
¥, (@o)V(dpo) =0V o
YE(@V=9)V(poy)

¢ N = (pod)
P A=Y, (Poh) Va(pod) b= x
PN | dot

=WV —Y)V(porh)
¢, (Pop)Vo(podh) EyV -y
oWV Y)V(poy)

SN —(do1)
S AW, (Gow)V=(dov) X
SN E doy.

PROOF. Case f5(0,0) = 0. (=) Suppose that =¢ A =) F& —(po ).
Then there is a valuation v such that v(—¢ A =) = 1 and v(—(¢ o
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¥)) # 1. Then v(¢) =0, v(¢») = 0, and v(¢ o)) # 0. Therefore, it
must be that f,(0,0) # 0.

(«+) Suppose that ¢ A =¢p = =(¢ o). Then =pA—g = =(pog),
where p and ¢ are atomic formulas. Then for every valuation v it
holds that if v(=p A =¢) = 1, then v(—(po q)) = 1. Then for every
valuation v it holds that if v(p) = 0 and v(q) = 0, then v(pogq) = 0.
Therefore, it must be that f,(0,0) = 0.

Case fo(1,7) = i. (=) Suppose that ¢, (o)) V=(por)) = 1V —ip.
Then there is a valuation v such that v(¢) = 1, v((¢oyp)V—(¢or))) =
1 and v(yp V =) # 1. Then v(¢) = 1, v(¢) = 4, and v(¢p oY) # i.
Therefore, it must be that f,(1,4) # 1.

(«) Suppose that ¢, (po1)V—~(por)) E ¢V —th. Then p, (pogq)V
—(poq) = qV—q, where p and ¢q are atomic formulas. Then for every
valuation v it holds that if v(p) = 1 and v((poq) V = (poq)) = 1,
then v(q V —q) = 1. Then for every valuation v it holds that if
v(p) = 1 and v(q) = i, then v(po q) = i. Therefore, it must be that
fo(1,0) = i.

The other cases are proved similarly. |
THEOREM 2. Let ¢,¢ € L(),.(0),,- Then

0 iff ~dF-~0
J0) = S i iff b vV~ g)
L iff ¢~

0 iff F(oVap)V-r~o
f~(@) = i iff (MoVo~9)EOV e
Liff E(oV-9)Vr~o

0 iff b~
o) = i il b~ oV~ Y
iff ¢~ 0.

—_

PROOF. Adapt the proof of the previous theorem. |

As aresult, given K3’s concept of validity and its truth-tables f-,
fv, and fa, each unary operator ~j, (1 < k < m) is characterized by
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the set of three basic inference schemes that characterize the three
single entries in its truth-table f., and each binary operator o; (1 <
[ < n) is characterized by the set of nine basic inference schemes
that characterize the nine single entries in its truth-table f,,. The
inference schemes that characterize a truth-table are independent.

4 Natural deduction systems

I now use the characterizations of the previous section to construct
proof systems for truth-functional extensions of K3. First, I define
a natural deduction system ND g, which I later show to be sound
and complete with respect to K3 (this is a corollary of my main
theorem). Second, on the basis of NDg, and Theorems 1 and 2,
I define a natural deduction system for the logic K3(~) (o), as
follows: for each unary operator ~; (1 < k < m) I add its three
characterizing basic inference schemes as derivation rules to ND,
and for each binary operator o; (1 <[ < n) I add its nine char-
acterizing inference schemes as derivation rules to NDg,. Third,
I show, using a Henkin-style proof, that the resulting natural de-
duction system is sound and complete with respect to the logic
K3(~)m(0)n-

My proof-theoretical study of K3 closely follows Kooi and Tam-
minga’s (2012) proof-theoretical study of LP. In fact, to construct
natural deduction systems for extensions of K3 and to prove their
soundness and completeness, I only slightly adapt Kooi and Tam-
minga’s definitions, lemmas and theorems on extensions of LP.

Let me first define the natural deduction system ND g, .

DEFINITION 2. Derivations in the system NDg, are inductively
defined as follows:

Basis: The proof tree with a single occurrence of an assumption ¢
is a derivation.

Induction Step: Let D, D1, Dy, D3 be derivations. Then they can
be extended by the following rules (double lines indicate that the
rules work both ways):

'For the notational conventions, see [5].
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D1 Do
o ¢
—— FF
" Q
D1 Do D D
¢ Y PNY AP
srg M T M TR
[l [
D D D, Dy D
o) (0 PVY X X ww
vy b vy vh N vE
D D D
—(¢pV =(p A
_25 DN M DeM,, _m DeMn

On the basis of NDg,, I now define a natural deduction system
for the logic K3(~)m(0)n. The Theorems 1 and 2 tell me that each
truth-table f., is characterized by three basic inference schemes
and that each truth-table f,, is characterized by nine basic infer-
ence schemes. I obtain a new natural deduction system for the logic
Ks3(~)m(o), by adding to NDg, these characterizing basic infer-
ence schemes as derivation rules.

More specifically, for each basic inference scheme q,...,9;/¢
that characterizes an entry f.,(z) = vy in the truth-table f.,, I
add the derivation rule

Dy D;

e )

to the natural deduction system NDg,. Similarly, for each basic in-
ference scheme 91, ...,1;/¢ that characterizes an entry f,(z,y) =
z in the truth-table f,,, I add the derivation rule

D, D;

(O ¢ Y, R, (2,1, 2)

to the natural deduction system NDg..



262 A. Tamminga

For instance, assume that f,(0,0) = 0 is one of the truth-table
entries in f,. Then, because Theorem 1 tells me that f,(0,0) =0
is characterized by the basic inference scheme —¢ A =) /=(p o)), I
add the derivation rule

D
QN
~(¢ o)
to the natural deduction system NDg..

In this way, I define the system NDg, + ;1 {R~,(z,y) :
fon(@) =yt + Ue{Ro, (2, y, 2) : fo,(x,y) = 2}, which I refer to as
NDg,(~)m(o),- I now show that this natural deduction system is
sound and complete with respect to the logic Ks3(~),(0)n.

R,(0,0,0)

4.1 Soundness of NDK3(N)m(

o)n

A conclusion ¢ is derivable from a set II of premises (notation: II
¢) if and only if there is a derivation in the system ND g5~ ) (0)n
of ¢ from II.

The system’s local soundness is easy to establish:

LEMMA 1 (LOCAL SOUNDNESS). Let ITLII', 11" C L) (o), and let
o, € ﬁ(w)m(o)n. Then

(i) If ¢ € II, then IT = ¢
S

1

(i) IfII = ¢ and I = —¢, then I, 1T |= o

)

) IfII}= ¢ and IU = o, then IL I = ¢ A o)
iv) Il @AY, thenll = ¢
(v) IfIIE=E¢ A, then Il =1

) IfIl=¢, thenll =@V

) Ifll =, thenll =¢ Ve

) TV and IV, = x and I, |-y,
then IL 1T, 11" = x
(ix) II = ¢ if and only if IT = =—¢

(x) HE-(¢V)if and only if IT = =g A =)
(xi) IIE=—(¢pAe)if and only if IT = ¢ vV —).

THEOREM 3 (SOUNDNESS). Let 11 C L.
E(N)m(o)n. Then

and let ¢ €

m(o)n

If 11+ ¢, then I |= ¢.
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ProOF. By induction on the depth of derivations. The local sound-
ness of the rules of the basic natural deduction system NDg,
follows from the previous lemma. For each unary operator ~y
(1 < k < m) the local soundness of the three derivation rules in
{R~,(z,y) : fu,(z) = y} follows from Theorem 2. For each binary
operator o; (1 <[ < n) the local soundness of the nine derivation
rules in {Ro, (2,9, 2) : fo,(x,y) = 2z} follows from Theorem 1. O

4.2 Completeness of NDK3(~)m(o)n

In my completeness proof, consistent prime theories are the syntac-
tical counterparts of valuations:

DEFINITION 3. Let II C L.y (c),- Then Il is a consistent prime
theory (CPT), if

(1) O# Lioy(o)n (consistency)
(i) IfII+ ¢, then ¢ € II (closure)
(i) If ¢V ell, then p €M or ¢p € II (primeness).

The syntactical counterpart of the truth-value of a formula under
a valuation is a formula’s elementhood in a consistent prime theory:

DEFINITION 4. Let II C L.y, (o), and let ¢ € L), (0),- Then ¢’s
elementhood in I1 (notation: e(¢,1I)) is defined as follows:

), if p €Il and —¢ € II
0, if ¢ €1l and —¢p € 11
if ¢ 11 and —¢ & 11

(6. =1 |
1, if ¢ €Il and —¢ & II.

To ensure that in the presence of an operator the notion of ele-
menthood behaves in comformity with the operator’s truth-tables,
I need the following lemma:

LEMMA 2. Let II be a CPT and let ¢,9 € L(),,(0),- Then
(i) e(o,10) #0

(i) f=(e(o,10)) = e(=¢,10)

(iil)  fy(e(¢,1D),e(y, 1)) = e(¢ Vo, 1)

(IV) fA(e(gZ),H),e(@Z),H)) = 6(¢A¢,H)

(v)  fe(e(o,I0)) = e(~p o, I0) for 1 <k<m
(vi)  fo,(e(0, D), e(, 1)) = e(d oy, 1T) for 1 <1 <n.
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PROOF.
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(i) Suppose e(¢,1I) = (). Then ¢ € II and —¢ € II. Then IT - ¢
and II + —¢. By the rule EFQ, it must be that II - ¢ for all
¥ € L(),.(0),- By closure, ¢ € Il for all ¥ € L., (0),- Then

ﬁ(N)m(o)n. Contradiction.

(ii) Suppose e(¢,II) = 0. Then ¢ ¢ II and —¢ € II. By closure
and the rule DN, —¢ € II and ——¢ ¢ II. Hence, e(—¢,1I) =
1= f-(0) = f~(e(o,11)).

Suppose e(¢,1I) = i. Then ¢ € II and —¢ € II. By closure
and the rule DN, —¢ € IT and —=—¢ € II. Hence, e(—¢,II) =
i= f-(i) = f-(e(¢, D).
Suppose e(¢,I1) = 1. Then ¢ € II and —¢ & II. By closure
and the rule DN, —¢ ¢ II and —=—¢ € II. Hence, e(—¢,1I) =
0= f~(1) = f-(e(,1D)).

(iii) I prove the cases for (1) e(¢,II) = 0 and e(y,1I) = 0, (2)
e(¢,II) =i and e(y,IT) = 4, and (3) e(¢,II) = 1 and e(¢), IT) =

1. The other six cases are proved similarly.

(1)

Suppose e(¢p,II) = 0 and e(¢,II) = 0. Then ¢ ¢ II,
¥ ¢ 11, =¢ € 11, and = € 1I. By primeness, ¢ V ¢ & 11
By closure and the rules AI and DeMy, —(¢ V ¥) € 1L
Hence, e(¢ V9, II) = 0 = f,(0,0) = fy(e(¢,II), e(s, II)).
Suppose e(¢,II) = i and e(yp,II) = i. Then ¢ € II,
i € Il, =¢ € II, and —vp € II. By closure and the rule
VI, ¢ V1 € II. By closure and the rules Al and DeM,,
—(¢ Vo) € II. Hence, e(¢p V o, II) = i = fy(i,i) =
f\/(e((ba H)76(¢7H))

Suppose e(¢,II) = 1 and e(yp,II) = 4. Then ¢ € II,
v e 1l, m¢ ¢ II, and ¢ € II. By closure and the
rule VI1, ¢ V¢ € II. By closure and the rules AF; and
DeM., =(¢V) ¢ 11. Hence, e(pV),1I) =1 = f,(1,i) =
fv(e((ﬁ, H)’e(d}?H))

(iv) Analogous to (iii).
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(v) There are three cases for each ~j (1 < k < n). (For read-
ability, the subscript k£ is dropped in the remainder of this
proof.) I prove the case for e(¢,II) = 0. The other two cases
are proved similarly.

Suppose e(¢,II) = 0. Then ¢ ¢ II and —¢ € II. There are
three cases:

(1) Suppose R~(0,0) is one of the three rules for ~ in
NDg,(~)n(0),- Then fo(0) = 0. By closure and the
rule R(0,0), it must be that = ~ ¢ € II. By (i), it
must be that ~ ¢ ¢ II. Therefore, e(~ ¢,II) = 0 =
f~(0) = fo(e(o, 1))

(2) Suppose R.(0,7) is one of the three rules for ~ in
ND 7 p()n(o),- Then fo(0) = i. By closure, the fact
that II is a CPT, and the rule R.(0,7), it must be
that ~ ¢V = ~ ¢ & II. By closure and the rules
VI and VI, ~ ¢ ¢ Il and = ~ ¢ ¢ II. Therefore,
e(N ¢7H) =1= fO(O) = f~(€(¢,H))

(3) Suppose R-(0,1) is one of the three rules for ~ in
ND/p( . Analogous to (1).

'm(o)n
(vi) Analogous to (v).
O

LEMMA 3 (TruTH). Let II be a CPT. Let vry be the function that
assigns to each atomic formula p in P the elementhood of p in II:
vri(p) = e(p, 1) for all p in P. Then for all ¢ in L it holds
that

m(o)n

(@) = e(o, I0).

PRrROOF. By an easy structural induction on ¢. Use the previous
lemma. O

LEMMA 4 (LINDENBAUM). Let II C L(\),, (o), and let ¢ €
L(~)m(o)n- Suppose that It/ ¢. Then there is a set II* C £
such that

~)m(0)n
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(i) I
(i) "/ ¢
(iii) II* is a CPT.

PRrROOF. Suppose that It/ ¢. Let 11,19, ... be an enumeration of
L(~)m(o),- 1 define the sequence Ilg,IIy, ... of sets of formulas as
follows:

IIp = 1I

0. — I U{tpipa}, ifIL U {1} /@
il I1;, otherwise.

Take IT* = (J,,cn IIn. Standard proofs show that (i), (ii), and (iii)

hold. ]

THEOREM 4 (COMPLETENESS). Let IT C L.y (o), and let ¢ €
ﬁ(w)m(o)n. Then

If 11 = ¢, then I1 I ¢.

PROOF. By contraposition. Suppose II I/ ¢. By the Lindenbaum
lemma, there is a CPT IT* such that IT C IT* and II* I/ ¢. Let
v~ be the valuation introduced in the truth lemma. By the truth
lemma, it holds that vp«(¢) = 1 for all ¢ in II and v+ (¢) # 1.
Therefore, IT [~ ¢. O

COROLLARY 1. The system NDg, is sound and complete with re-
spect to Ks.

Proor. Consider the logic K3— that is obtained from K3 by adding
K3’s truth-table f- for negation to it. Evidently, K3— is K3. By
the soundness and completeness theorems, NDg., -, is sound and
complete with respect to Kz—. It is easy to see that the rules
R-(0,1), R-(i,i), and R-(1,0) are derived rules in NDg,. O
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5 Lukasiewicz’s three-valued logic (£3)

Let me illustrate this general method for finding natural deduction
systems for truth-functional extensions of K3 with Lukasiewicz’s
three-valued logic (£3). L3 evaluates arguments consisting of formu-
las from a propositional language £ built from a set P = {p,p’,...}
of atomic formulas using negation (—), disjunction (V), conjunction
(A), and implication (D). Ls has the same valuations as K3: in
L3, a valuation is a function v from the set P of atomic formulas
to the set {0,4, 1} of truth-values. A valuation v on P is extended
recursively to a valuation on £ by the truth-tables for —, Vv, and
A, and the truth-table for D:

S0 @ 1
01 1 1
i i 11
110 i 1

L3 has the same concept of validity as K3: an argument from a set
IT of premises to a conclusion ¢ is wvalid (notation: II = ¢) if and
only if for each valuation v it holds that if v(¢)) = 1 for all ¢ in II,
then v(¢) = 1.

Theorem 1 tells me that the truth-table f- is characterized by
the following nine basic inference schemes:

50,0 =1 iff =¢p A= =¢Dy

50,0) =1 iff =g = (V) V(oY)
50,1) =1 iff =pAY ¢ D9

[0,0)=i it =, (¢DY)V (DY) =PV e
fHlii) =1 iff =(oV )V (V) V(eDY)
1) =1 iff ¢i=(9V=9) V(o D)

51,00 =0 iff oA = =(d D)

HAi)=i it ¢ (¢DY)V(¢DY) EPpV -y
LA =1 iff oAy =D

From Theorems 3 and 4 it follows that the natural deduction
system NDp,~, obtained from adding these nine basic inference
schemes as derivation rules to the natural deduction system NDg,,
is sound and complete with respect to £3. The general method I
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presented in this paper, therefore, makes it easy to find natural
deduction systems for truth-functional extensions of Kj.

6 Conclusion

Next to Kooi and Tamminga’s (2012) proof-theoretical study of LP,
the present investigation of K3 is only a second step in the study of
many-valued logics using correspondence analysis. At the current
stage of research, the following questions seem pressing. Which
many-valued logics can be studied using correspondence analysis?
Which many-valued logics cannot? Are there some characteristics
a many-valued logic must have to be amenable to correspondence
analysis?
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