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Abstract 

Experimental balance is usually understood as the control for the value of the 

conditions, other than the one under study, which are liable to affect the result 

of a test. We will discuss three different approaches to balance. ‘Millean 

balance’ requires to identify and equalize ex ante the value of these conditions 

in order to conduct solid causal inferences. ‘Fisherian balance’ measures ex post 

the influence of uncontrolled conditions through the analysis of variance. In 

‘efficiency balance’ the value of the antecedent conditions is decided ex ante 

according to the efficiency they yield in the estimation of the treatment 

outcome. Against some old arguments by John Worrall, we will show that in 

both Fisherian and efficiency balance there are good reasons to randomize the 

allocation of treatments, in particular when there is no agreement among 

experimenters as to the antecedent conditions to be controlled for. 
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1 Why There Was No Cause to Randomize 

It is almost 20 years since John Worrall published ‘What evidence in evidence-based 

medicine?’ (Worrall, 2002), the first in a series of papers contesting the purported 

epistemic superiority of randomized clinical trials (RCTs) (Worrall [2007a], [2007b], 

[2008]). Hierarchies of evidence in medicine usually placed RCTs near the top of the 

pyramid, under the widely shared assumption that randomized tests provided the best 
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evidence about the safety and efficacy of medical treatments, since they controlled 

better for biases than any other approach. Worrall challenged this assumption, with a 

battery of arguments arguing that randomization did not control better for balance than 

carefully controlled non-randomized experiments.  

Worrall’s assessment of randomization is now a mainstream view among 

philosophers of medicine -see, for instance, (Solomon, Simon, & Kincaid [2017]). Yet, in 

the last two decades, trust in randomized experiments seems to have grown both in the 

social and biomedical sciences. Very prominent voices in both fields have recently 

defended the power of randomization. For instance, in 2016, the US Congress passed 

the 21st Century Cures Act, a bill reforming biomedical research with the goal of bringing 

new cures more quickly to patients. The Act invited the US Food and Drug Administration 

to use new trial designs to accelerate the testing process. Among these, pragmatic trials 

are designed incorporating elements of real-world clinical practice (Ford & Norrie 

[2016]), like administering treatments in primary healthcare centres, without many of 

the standard controls that guarantee like with like comparison in conventional RCTs such 

as blinding. For Robert Califf, then commissioner of the US Food and Drug 

Administration, randomization provided all the bias control required to guarantee the 

reliability of pragmatic trials (NAS  [2017]). As for economics, the 2019 Nobel Prize was 

awarded to A. Banerjee, E. Duflo and M. Kremer ‘for their experimental approach to 

alleviating global poverty", and their experimental approach is crucially based on 

randomized field trials. Our Nobelists claim, for instance: ‘In terms of establishing causal 

claims, it is generally accepted within the discipline that randomized controlled trials are 

particularly credible from the point of view of internal validity.’ (Banerjee et al., [2017b], 

p. 2).  

Of course, we are not taking these claims at face value. As we are going to see, 

the methodological debate on RCTs is still lively both among economists and 

biostatisticians. Using Worrall’s arguments as a thread, we want to explore again when 

and how randomization can be justified in scientific practice. Our claim is that, in 

standard statistical practice, balance and control are just instrumental concepts for 

justifying some forms of statistical inference on experimental data.  There is no over-

arching concept of balance and control, but, as we are going to show next, there are at 

least three different traditions, not necessarily consistent between themselves. Worrall 



3 
 

argued that randomization was not necessary to achieve what we will call Millean 

balance. We will show, on the one hand, that Millean balance is not necessary for solid 

statistical inferences on experimental data. And that randomization is still necessary for 

achieving other forms of balance which are still desirable in some widespread statistical 

approaches to experimental design.1 

Let us begin with a brief reminder of Worrall’s arguments.2 According to Worrall 

([2002]) biomedical researchers have been persuaded by the claim that randomization 

‘controls for all variables, known and unknown.’ RCTs are comparative experiments in 

which, at least, two groups of participants receive different treatments. In order to make 

sure that any difference between the observed effects in the two groups originates in 

the treatments, the groups should be as similar as possible with respect to prognostic 

factors (balanced). Otherwise, a confounding factor differentially distributed in the two 

groups may cause the difference between outcomes.3 It is a widespread view among 

experimenters that randomization would control for all such confounders, known or 

unknown. According to some prominent supporters of randomization – cited by (Worrall 

[2002], pp. 222-223), the strongest argument for this claim would be that a randomized 

allocation of treatments makes improbable that the distribution of confounders 

between the two groups ‘is very skewed compared to the distribution in the population 

as a whole’, at least if the experiment was repeated for long enough. Worrall objects 

though that experiments are often run just once, and randomization may just generate 

a skewed distribution of confounders between the two groups. If the confounders are 

unknown, there is no way for the experimenters to realize they have been unlucky. 

Hence randomization does not control for lack of balance.  

 
1 Just to avoid any misunderstanding, we will not argue that randomization is necessary for any form of 
causal inference on experimental data.  
2 Worrall ([2002]) considers four different arguments for randomization: significance testing, control of 
confounders, control for selection-bias, inferiority of observational studies. In addition, Worrall ([2007b]) 
discusses arguments for randomization in the works of Papineau, Cartwright and Pearl. In our view, 
Worrall’s strongest arguments hinge on the analysis of confounders, and we will take it as the thread for 
our discussion, introducing his other arguments at different points.  
3 In the literature, there are different ways to name the causal factors other than the intervention 
influencing the outcome of the experiment. In this paper we will use mainly three: ‘antecedent factors’ 
(following J. Stuart Mill), ‘confounders’ (a common term in the philosophical discussion on causality), and 
‘covariates’ (a standard term among statisticians and trialists). Unless we explicitly signal a nuance, they 
will be interchangeable.  
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As we are going to argue next, Worrall’s argument seems to presuppose a 

Millean conception of experimental balance: for causal inference in a comparative 

experiment to be sound, all the antecedent causal factors (covariates) have a similar 

value in both groups, so that the intervention is the sole explanans of any difference in 

the outcome.4 Following the biostatistician Stephen Senn, we are going to argue that 

Ronald Fisher’s original argument for randomization parted ways with Mill, focusing 

instead on the analysis of variance. Randomization, for Fisher, did not control for 

unknown factors guaranteeing a balanced distribution. Instead, it allowed the 

statistician to measure how big the effect of the intervention was as compared to the 

effects of all the uncontrolled factors in a given test. The crucial difference is that, for 

Fisher, the analysis of variance allowed solid causal conclusions even if there was no 

Millean balance between covariates.  

Fisher’s approach is, of course, based on a frequentist view of probability and, as 

Worrall, ([2002], p. 321) contends, no Bayesian will be “persuaded of the need for 

randomisation, even if it had been convincingly shown that the justification for a 

significance test presupposes randomization”. Drawing again on a recent debate among 

economists on randomization in field trials, we will argue that, on the one hand, Mill’s 

conception of experimental balance may be inefficient for a Bayesian. Instead of keeping 

every factor balanced à la Mill, a Bayesian experimenter may choose a treatment 

allocation according to her prior knowledge about potential causes and confounders in 

order to obtain a better estimate of the treatment effect. The problem is then how to 

persuade someone who did not share that prior about the convenience of the treatment 

allocation. In both cases, randomization plays a significant epistemic role, again not as a 

warrant of Millean balance, but rather in justifying that the treatment allocation process 

is efficient enough to deliver a good estimate. 

The upshot of our analysis is that Worrall is right in showing that randomization does 

not provide a good warrant of experimental balance in Mill’s sense. But for both 

 
4 Worrall seems to assume that in comparative experiments, randomized or not, it is necessary to control 

for unbalanced allocations of known factors (Worrall [2002], p. 329; [2007b], p. 486) – see also (Solomon 
et al. [2017], pp. 202-203). He does not explain how to measure the actual balance achieved, which, in 
our view, is the crux of the matter. However, our argument is independent of Worrall’s position. Since he 
only targets Millean balance in his arguments, we will show that randomization can be instrumentally 
defended if the experimenter adopts a different approach, like Fisherian or efficiency balance, about 
which Worrall remained silent. 
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frequentist and Bayesian statisticians such understanding of balance is not necessary for 

causal inference, while randomization is not so easy to dispense with. 

In the following three sections, we will introduce three different notions of 

balance. In section 2, we will present Millean and Fisherian balance: the former is about 

equal covariate value with ex ante control, the latter is about measuring ex post the 

influence of uncontrolled covariates through the analysis of variance. Then, in sections 

3 and 4 we will discuss two versions of efficiency balance: the allocation procedure will 

be assessed according to its contribution to the optimal estimation of the treatment 

effect. In section 5, we will discuss why scientific progress must presuppose 

disagreement among experimenters, and this provides a good enough reason for 

experimenters of all statistical persuasions to keep randomizing. 

 

 

2 Balance: Mill versus Fisher  

John Stuart Mill paradigmatically articulated the concept of experimental balance in his 

analysis of the Method of Difference. According to Mill, this was the method of ‘artificial 

experiments’: the experimenter compares two sets of ‘ascertained circumstances’, 

‘resembling one another in every other respect, but differing in the presence or absence 

of the phenomenon we wish to study’ (Mill [1974], p. 386). Those ‘ascertained 

circumstances’ are the antecedents of the phenomenon under study: the comparison 

should show which of them is its proper cause, the factor that suffices to produce the 

effect when present, and whose absence makes it disappear. The rest of antecedents 

would just be mere conditions.  

For Mill, an experimental comparison is balanced if the sets of antecedent 

circumstances, other than the putative cause, are exactly alike. He was, of course, aware 

of the difficulties. Assessing the effects of a medical treatment in an experiment is 

difficult because there are so many antecedent causes contributing to the effect that 

the experimenter will rarely succeed in separating them from the actual intervention. 

Unknown confounders can only be ruled out if the experiment is carried out under so 

many different circumstances that it becomes unlikely that a given set of unknown 

confounders is at work in all the comparisons. Even known confounders are difficult to 

control for if they interact with the intervention under study to produce the effect. For 
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Mill, comparative experiments in medicine are only conclusive if the intervention is 

‘more potent than any counteracting causes’ (Mill [1974], p. 451), so that they succeed 

in restoring health in a large number of cases. But such powerful interventions are rare 

and for regular treatments medical experiments usually fail to establish causality for lack 

of balance (Mill [1974], p. 451). 

Although Mill’s approach has been extensively criticized, his notion of 

experimental balance is still widespread in philosophy of science. As Hofmann & 

Baumgartner ([2011]) put it, ‘the standard opinion in the literature, from Mill to 

Woodward, has been that under homogeneous experimental conditions, i.e. when 

possible confounders of an investigated deterministic structure are controlled, a single 

positive difference-test result is sufficient for a causal inference.’ Along different lines, 

Hofmann & Baumgartner ([2011]) and Scholl ([2015]) have argued that balancing 

potential confounders does not suffice to support causal inference through Mill’s 

method of difference –see also (Fuller [2019]).  

Following Stephen Senn ([2013]), we are going to argue next that Ronald Fisher, 

one of the founders of modern statistical inference, took a different approach to 

experimental balance in causal inference. For Fisher, Millean balance is not even 

necessary for causal inference. Like Mill, Fisher argued that ‘it would be impossible to 

present an exhaustive list of such possible differences appropriate to any one kind of 

experiment, because the uncontrolled causes which may influence the result are always 

strictly innumerable.’ (Fisher [1971], p. 18) This endless list of confounders was, for 

Fisher, a source of error in the estimate of the effects of a treatment. Unlike Mill, Fisher 

used comparative experiments to quantify the contribution of this error to the observed 

effect (Hall [2007]).  

Fisher saw how the uncontrolled causes would introduce variation in each arm 

of the experiment: a bigger or smaller range of values of the outcome variable 

measuring the effects of a treatment. Fisher’s insight was to compare the amount of 

variation within each treatment group and the amount of variation between groups (the 

difference between the average treatment effects in each of them).  If the difference 

was statistically significant, then the experimenter could conclude that the intervention 

is “more potent than any counteracting causes”. Unlike Mill, Fisher’s analysis of variance 

did not try to control for the ex ante value of each possible confounder, but for their 
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aggregate effect ex post. Causal inference in well-designed experiments did not depend 

on Millean balance, but on the proper statistical interpretation of the outcome. 

In Fisher’s approach, randomization does not contribute to balance, but rather 

to assess the statistical significance of the observed difference between treatments. 

Comparative experiments are conducted under the (null) hypothesis that there is no 

difference between treatments, and that if any difference is observed it will be due to 

uncontrolled factors. Randomizing the allocation of treatments allowed Fisher to 

quantify the statistical significance of each observed difference between treatments. 

Under the null hypothesis, between- and within- group variance would, on average, be 

identical. Since the probability of each randomized allocation was known, Fisher could 

calculate how likely it was to observe a given range of differences between treatments, 

including the observed value. And then decide whether this observed value meant that 

something unusual has happened, or rather that the null hypothesis is false (there is an 

actual difference between the treatments).5 

For Mill balance was, almost always, a prerequisite for causal inference in 

experiments. If the experimenter had not enough control of known and unknown 

confounders to achieve it, causal inference was only possible when the intervention was 

powerful enough to counteract them. For Fisher, randomization gave the experimenter 

control on all the unknown confounders.  For controlling the known confounders, Fisher 

advised gathering them into blocks and then randomizing the treatment within blocks.6 

But blocking only increased the precision of the estimate: lack of balance between 

known confounders did not make the estimation less valid, only less precise. Let us 

illustrate it with Senn’s ([2020]) own example. 

Let us compare two trials with different degrees of Millean balance. On the one 

hand, there is Trial A, a cross-over trial in which each patient sequentially receives just 

 
5 Significance tests, on their own, provide just evidence of correlation, not causation. The experimenter’s 
causal knowledge informs the design of the test: defining the intervention, blocking known confounders 
etc. Significance tests just provide a device to interpret the outcome. But we are not comparing Mill’s 
versus Fisher’s inference methods, but rather the role balance plays in their experimental designs. 
6 Now, what if randomization generates a Millean imbalanced allocation, where, to the naked eye, one of 

the antecedent factors is unevenly distributed? According to the witness testimony of William Cochran 
(Rubin  [2008]), if the experiment had not started, Fisher would rerandomize. Fisher never justified 
rerandomization in print, and, as we will see below, there are different options to do so –see (Savage 
[1976], p. 464) for further historical details on Fisher. The point is, against (Urbach, 1985), that 
rerandomizing for Millean balance is not necessary to conduct the analysis of variance, but rather to 
achieve a more precise estimate of the treatment effect –see section 3 below. 



8 
 

one treatment in order to compare their effects. Even if the order of treatment 

administration is randomized, this trial achieves a high degree of Millean balance, since 

the relevant antecedent factors such as genes are the same for each patient. On the 

other hand, the same two treatments are tested in a randomized parallel design in which 

each patient only receives one of them. This is Trial B, and here there is no control for 

Millean balance: the relevant covariates may have different average values.7  

In Trial A there are 71 patients, yielding 142 observations. In Trial B, there are 37 

patients, yielding 74 observations. Trial A is much more precise than Trial B: the 95% 

confidence interval of the former for the variable estimating the treatment outcome is 

[0.1, 0.23]. whereas the latter is [0.02, 0.74]. The higher precision of Trial A is due to 

both sample size and, crucially, to Millean balance (each patient being her own control). 

But Trial B is nonetheless statistically valid, only less precise: there are just different 

degrees of uncertainty to the conclusion, broader or narrower confidence intervals. In 

both cases, randomization allows Fisherians to compare the effects of both treatments 

and draw a solid conclusion, provided that they use the appropriate test for the degree 

of balance in each trial – a matched pair t-test for Trial A and a two sample t-test for 

Trial B. 

Therefore, in a Fisherian approach, randomization does not contribute to attaining 

Millean balance in RCTs: blocking does. As Stephen Senn ([2013]) forcefully argued, 

against Worrall, statistical significance can be assessed in any single RCT without 

assuming any long run view about the balancing effects of randomization. Indeed, 

randomization guarantees that, averaged over an infinite number of replications of the 

test, the error in estimating the treatment effect will be zero.  But in any single run of 

the experiment, randomization allows the statistician to calculate the probability of 

outcomes as big or more than the actually observed result, under the assumption that 

there is no difference between treatments  -any variation will have arisen from 

uncontrolled factors derived from treatment allocations (Basu [1980]). For Fisher, the 

experimenter should decide whether a statistically significant event implies that the null 

 
7 In economics, designs of the type of trial B are more abundant than Trial A, because the interventions 
often require many months to observe medium-run effects – think of means-tested transfer programs 
such as the Earned Income Tax Credit (Nichols & Rothstein [2015]), or of various configurations of a Basic 
Income experiment (Hoynes & Rothstein [2019]). 
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hypothesis is false (there is an actual difference between treatments) or, rather, that 

there are confounders at work and the experiment should be repeated. If the 

statistically significant outcome vanishes in further replications, this second option will 

be justified For Fisher, the experimenter only had a ‘real phenomenon’ under control 

when she could repeat the experiment time and again and rarely fail to obtain a 

statistically significant outcome (Spanos & Mayo [2015]). 

This is, of course, a fallible decision, and Fisherian p-values have been extensively 

criticized as decision criteria (Sprenger [2016]). But we are not trying to vindicate p-value 

here, we just want to clarify how Fisher’s approach to experimental balance in causal 

inference is different from Mill’s. In our view, Worrall is criticizing standard RCTs as if 

their method presupposed something like Millean balance, when it does not. Still, 

Worrall pushes forward and contends that balance can be attained from a Bayesian 

perspective in which randomization is not necessary. This is the claim that we are going 

to target next: 

Once you have made sure that there is no positive reason to think the 

two groups are unbalanced (and this automatically means checking for 

imbalance in factors you know about), then whether or not the 

division was produced by following some table of random numbers or 

tossing a fair coin, or just by happenstance, can be of no epistemic 

account. This is what the Bayesian is saying, and it seems to me entirely 

convincing. (Worrall [2007b], p. 466) 

3 Balance in a Bayesian Perspective: Efficiency Balance 

From a Bayesian perspective, randomization is not a pre-requisite for interpreting the 

outcome of any comparative experiment (like clinical trials). A Bayesian design will set 

some prior probabilities about the outcome, run the test and update those priors in the 

light of the actual outcome. For this updating process, a Bayesian does not need to know 

the probability (p-value) of observing the actual (or a more extreme) outcome, so 

randomization, in this regard, becomes dispensable.  

Bayesian experimenters may have other reasons to randomize, and some of 

them have been discussed decades ago: for instance, Kadane & Seidenfeld ([1990]) or 
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Berry & Kadane ([1997]) show that an experimenter should randomize in order to make 

the test outcome credible for third parties: e.g., if the person running the experiment is 

different from the person conducting the statistical analysis of the outcome and the 

latter doesn’t trust the former. Randomization would guarantee the neutrality of the 

allocation regarding the interests of the experimenter- we will return to this point later. 

We are now going to analyse the different notions of balance at stake in a recent 

methodological debate among economists, and the role randomization plays in 

articulating these notions. As we interpret it, the upshot of this debate is that, from a 

Bayesian perspective, randomization might be necessary to achieve experimental 

balance. Except that now balance will be interpreted in terms of efficiency in the 

estimation of the treatment outcome. Let’s call this notion efficiency balance and let us 

show how it is different from Fisherian and Millean balance.  

An experimental design is efficient depending on the sample size required to 

estimate the effect of a treatment. This estimation is usually assessed in terms of bias 

and precision. Randomization provides a warrant of unbiasedness (average difference 

between the estimator and the true value): in the long run, the error term in the 

estimate of the treatment effect (the sum of the net average balance of other causes 

across the two groups in a trial) will be zero. However, randomization may have an 

impact on precision (how close to the truth is the estimator on average): in any single 

run of the experiment, a randomized allocation of treatments may generate an 

imbalanced distribution of covariates, shifting away the estimator from the true 

treatment effect. As Deaton & Cartwright ([2018], p. 5) put it, Fisherian balance is only 

acceptable if the experimenter is willing to sacrifice truth for the sake of unbiasedness.8 

An efficient experimental balance is achieved through an allocation that controls 

for covariates in a way that minimize bias and maximizes the precision of the point 

estimate. The efficiency of Fisherian balance can be improved through blocking. In 

clinical trials, restricted forms of randomization (such as stratification or minimization) 

are well-known strategies to control ex ante for baseline covariate imbalance (Senn 

 
8 However, Deaton and Cartwright ([2018], p. 6) acknowledge that the virtue of randomization in a 
Fisherian approach, is ‘getting the standard error and associated significance statements right’. As a 
reviewer observes, for Fisher, the quality of a statistical analysis does not lie in the precision of the point 
estimate alone (‘truth’), but on how the probability of error in such estimate is quantified via significance 
statements etc. For the latter, randomization is still necessary. 
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[2007]). But they are often difficult to implement, leaving unrestricted randomization as 

the default procedure (Ciolino et al. [2019]).  

The situation is different in field trials testing in economics. Again, these are 

comparative experiments in which, at least, two policy interventions are tested to see 

which one is more effective in bringing about the desired policy outcome. Whereas in 

most clinical trials patients are enrolled in the test sequentially (e.g., with the onset of 

their symptoms), in economic experiments it is possible to randomize and study 

potential imbalances before the actual start of the experiment. The experimenters 

should agree on a list of relevant covariates that is necessary to control for. After 

randomizing, they should then check whether these covariates have, on average, a 

similar enough value.9  In field trials in economics, there are different ex post rules of 

thumb to assess the significance of certain imbalances in an experiment (Bruhn & 

McKenzie [2009]). For instance, trialists take a random draw from the randomly 

allocated treatments, and then check the difference in means for some key covariates. 

If the difference looks too large, then the standard fix is to re-randomize the allocation.  

As Imbens and Rubin ([2015], p. 81) put it, in most situations ‘researchers are not 

solely interested in obtaining p-values for sharp null hypotheses. Simply being confident 

that there is some effect of the treatment for some units is not sufficient to inform policy 

decisions.’ Therefore, economists rely on regression-based approaches on balanced 

samples trying to capture the widespread effect of the treatment on the target 

population. Balance here is understood in a quasi-Millean fashion: the relevant 

covariates in the two groups should not be too different, on average Mill did not think 

of equality between factors in probabilistic terms. But this quasi-Millean balance is not 

a prerequisite for causal inference via regression analysis, while randomization is. 

Randomization guarantees that the treatment variable is statistically independent of 

unknown confounders that could affect the outcome directly or through the treatment 

variable. Thus, Fisherian balance is all regression analysis needs to reach solid causal 

conclusions. Quasi-Millean balance is just a desirable feature to have for two reasons. 

First, as Imbens and Rubin ([2015], p. 114) claim, ‘if the covariates are predictive of the 

 
9 As a reviewer observes, ‘this procedure would not be regarded as valid by Fisher and his followers. 
Ignoring covariates if they look sufficiently balanced does not lead to valid inference. Calculation of 
standard errors will not be correct.’ See (Senn [2008]) for some examples and discussion. 
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potential outcomes, their inclusion in the regression model can result in causal 

inferences that are more precise than differences in observed means [. . .] although in 

practice the gains are often modest’.10 Second, it provides a justification for 

extrapolating the test outcome to the target population outside the experiment. 

However, a Bayesian experimenter can entirely dispense with randomization, 

and therefore with Fisherian balance, focusing entirely on efficiency. Kasy [2016]) 

provides a paradigm for this approach. For Kasy, balance as equal distribution of 

covariates is too demanding an ideal: such distribution is rarely identical between the 

treatment and control groups. The experimenter needs to trade off balance across the 

various dimensions of the joint distribution of covariates and the question is how to 

justify this trade-off in a systematic manner.  

From a purely Bayesian perspective, this becomes a decision problem for the 

experimenter. She should design the trial, choosing a treatment allocation procedure 

and the estimator, in the light of the covariate distribution in the sample. For Kasy, the 

experimenter should minimize the conditional expected loss function of an estimator, 

representing the risk of a difference between estimated and true values.11 A treatment 

allocation will be then balanced to the extent that minimizes that loss function. This is 

efficiency balance. 

For Kasy, adopting a prior over the potential data-generation processes and a 

tractable loss function (the mean squared error, MSE), it is possible to construct an 

optimal allocation procedure solving the experimenter’s decision-theoretic problem.12 

Briefly, Kasy suggests to randomize the allocation a pre-established number of times, 

picking up the assignment that minimizes most the loss function. Randomization plays 

here no inferential role: it is just an impartial device for choosing the assignment. 

 
10 Conversely, see (Senn et al. [2010]) for a discussion of efficiency in medical trials, showing that 
randomization does not significantly diminishes efficiency. 
11 Since the decision about the estimator is made before observing the actual outcomes of the experiment, 
the choice should hinge on its expected loss. 
12 Bias and variance are the two components of the MSE: for bias = 0, the MSE is the variance. But Kasy 
correctly observes that experimental design proceeds without knowledge of the underlying data 
generating process. Hence, Kasy suggests to use the expected MSE, averaging the MSE over possible data 
generating processes. He uses a nonparametric Bayesian prior over those processes to construct his 
allocation procedure, which is to randomize k times the allocation of treatments, picking the one with the 
best MSE –assuming that prior. 
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For Kasy, randomization is otherwise dispensable. A randomized allocation is just 

a random pick from the set of all possible treatment allocations. Each one of these 

allocations will exhibit a particular distribution of covariates, generating a particular 

value for the experiment’s loss function (the MSE). The risk of a randomized allocation 

is just the weighted average of the mean squared error across all the treatment 

assignments it averages over. A deterministic allocation rule that picks up a particular 

treatment assignment among all those that make the mean squared error minimum will 

dominate any randomization scheme, because the estimator will have a lower risk.  

Since finding the allocation providing the minimal value for the loss function 

generally is an intractable task, Kasy suggests as a shortcut his randomized procedure. 

Under certain assumptions, equality between covariate means may minimize a given 

loss function, but this is just a particular implementation of efficiency balance. An 

experiment with a Millean imbalanced allocation may, nonetheless, yield a good 

estimate and have efficiency balance.  

Defining balance in terms of efficiency provides a more systematic justification of a 

particular covariate distribution that Fisher’s blocks or Mill’s equality between factors. 

However, as we are going to see next, this justification comes at a price: it is 

unpersuasive if experimenters disagree on their priors. 

 

4 Agreeing on Covariates 

We have discussed so far three notions of balance. Millean balance is a pre-statistical 

notion targeting the single run experiment in which all confounding factors are kept at 

the same value. Fisherian and efficiency balance are statistical concepts. In the former, 

control of imbalances is achieved comparatively and ex post through the analysis of 

variance, with optional ex ante control via blocking. In the latter, control of imbalances 

is achieved ex ante, with the experimenter drawing on her prior knowledge of the 

relevant covariates to minimize a loss function. 

The choice between these three competing notions of balance depends, 

crucially, on how the experimenter understands causal and statistical inference. When 

John Stuart Mill articulated his concept of balance, he was mostly unpersuaded by 

statistical approaches; in all likelihood, frequentists and Bayesians will fail to agree on 

the concept of balance due to their more fundamental differences. But leaving aside 
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those principled disagreements, there is one fundamental question about which 

experimenters must agree, whatever their concept of balance: which factors 

(covariates, known confounders) should they control for balance?  

Sometimes theories dictate which are the relevant factors to control for in an 

experiment. It is indeed an ongoing controversy in economics whether field trials can 

identify causal structures independently of any theory.13 But even when such theories 

exist and identify the causally relevant variables, experimenters often need to rely on 

their informal knowledge of potential confounders present in the field but not covered 

by the theory that should be, nonetheless, controlled for. This is what an economist as 

a plumber should do, as Duflo ([2017]) puts it. The division of labour is as follows. First, 

the economist as scientist defines the broad program design structure according to the 

relevant scientific evidence and theories. Then, the economist should wear a plumber’s 

hat and ask which specific details of the context where the program is implemented 

could affect the program effectiveness in the field context of interest. If necessary, she 

should reshape the design of the interventions accordingly. In any case, such contextual 

details will matter in ruling out potential confounders.  

For example, Duflo ([2017]) discusses programs that are funded centrally but 

implemented at the local level, such as the Raskin Indonesian rice distribution scheme. 

Building on a literature that emphasizes the leakages occur in foreign aid and 

governmentally supported programs, Banerjee and his co-authors ([2015]) want to test 

to what extent transparency diminishes those leakages. They design their experiments 

around interventions in which citizens are exposed to different degrees of information 

about the rice distribution program. The authors then used local knowledge, acquired 

in the field, to tailor the details of the program to the Indonesian context. For example, 

they partner with the central government rather than with the local administration for 

the implementation, after having observed the degree of discretion that local officers 

had in deciding the amounts of rice to distribute. The experimenters even quantified by 

how much the details mattered in program effectiveness.  

 
13 There is an ongoing controversy in economics as to whether field trials should be theory-free or they 
should instead draw some causal assumptions from structural models, but we will leave it aside here –
see (Banerjee & Duflo [2010])  or (Boumans [2016]) for further discussion. 
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The epistemic question is how the experimenters should agree on which 

covariates to balance, when there is no consensus on their relevance. In a Bayesian 

approach like Kasy’s, this question amounts to whether a particular prior about these 

covariates will persuade other experimenters who do not share it. Picking up this thread, 

Banerjee and co-authors defend the use of randomization as a balancing device for its 

ability to persuade audiences, whatever their view of probability.  This is what they call 

adversarial experimentation: the experimenters in a community have different priors 

about the relevant covariates to control for. 

Adopting again a decision-theoretic perspective, Banerjee and co-authors 

([2017]) analyse field experiments testing policy interventions. The experimenter should 

choose an experimental design and a decision rule about the policy to implement, in the 

light of the outcome. The experimenter should maximize here a payoff function with 

two components. On the one hand, there is the expected subjective utility of a decision 

rule, given the experimenter’s own prior. On the other hand, there is the minimal value 

that the same expected utility function for all other priors in the community. In order to 

maximize the payoff function, the experimenter should trade off her own persuasion 

with the minimal amount of persuasion her choice would generate in other members of 

the community. Banerjee and co-authors show that randomization is dispensable if the 

experimenter cares most about her own persuasion, but not if she cares most about 

convincing the community.  

Banerjee and co-authors’ proof hinges crucially on the assumption that, in 

adversarial experiments, there is always one prior such that, for any non-random 

treatment allocation, the experimenter holding that prior won’t be completely 

persuaded about the correct policy choice (Banerjee et al. [2020]). Whereas Kasy 

([2016]) uses a single standardized prior to construct a deterministic allocation rule 

minimizing the loss function, expecting that the community of experimenters will agree 

on the convenience of this particular prior. Banerjee and co-authors assume instead an 

actual diversity of priors in the communities of experimenters. If the allocation rule is 

predictable, an experimenter unwilling to accept the outcome can always construct her 

prior in a way that she will remain unpersuaded. Randomizing the allocation prevents 

such strategic choice of priors. 
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Moreover, Banerjee and co-authors challenge Kasy’s approach to efficiency in 

terms of persuasion. Different treatment allocation rules may achieve different degrees 

of efficiency measured as deviations from the first best decision, which is the 

experimenter’s own payoff function, disregarding the audience). Banerjee and co-

authors prove that there is an upper bound to the efficiency loss of the optimal 

experiment as compared to the first best: experimenters’ do not lose much precision if 

they opt for randomizing. At the same time, Banerjee and co-authors. show that no 

deterministic rule is optimal (although they may be a first best for an experimenter). 

In other words, efficiency balance à la Kasy is only persuasive if there is a 

consensus on the prior for relevant covariates. Where does this leave us? 

 

5 Randomization and the Progress of Experiment  

There are, at least, two different approaches to balance in which there are reasons to 

randomize. Those who side with Fisher, seek balance blocking for known confounders 

and measuring the interferences of unknown confounders through the analysis of 

variance, for which randomization is necessary. Bayesians can codify in their priors what 

they know about potential covariates and justify their treatment allocations in terms of 

the efficiency of their estimates. But if there are different priors about those covariates, 

a randomized allocation will yield a consensual and efficient enough estimate. 

In both cases, randomization and balance are instrumental concepts. In the 

Fisherian approach, the balance achieved through randomization is a tool for obtaining 

a reliable estimate of the imprecision arising from a potentially endless list of covariates. 

In the efficiency approach, the balance achieved through randomization (either for the 

single experimenter à la Kasy, or for the community) justifies that the covariates 

included in the model are the relevant ones for an efficient estimation of the treatment 

effect.  

As a reviewer observed, the upshot of this analysis is that, from the standpoint 

of the statistical design of experiments, balance is, in fact, a red herring. The 

experimenter should focus on the relevant statistical indexes tracking the quality of the 

data analysis (standard errors, efficiency). As we have seen, depending on the 

experimenter’s view of the data analysis, she will adopt derivatively one or another 
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concept of balance. We remain agnostic here about the ultimate goals the data analyst 

should pursue. We are just showing how randomization contributes to achieving them. 

Worrall’s objections against randomization as a warrant of balance seem to be 

based on a purely Millean approach, the only one targeted in his arguments. This Millean 

approach seems just rough: equalizing covariates between groups in trials is often hard 

and, on its own, does not contribute crucially to the statistical estimation of the 

treatment effect. Worrall will surely acknowledge that there can be solid causal 

inference, in both a frequentist and a Bayesian approach, without anything like Millean 

balance. The price the experimenter pays for not having it is, at most, lack of precision 

in the estimate of the treatment outcome. We have argued that lack of precision is a 

reasonable price to pay in adversarial experimentation, if randomization brings about 

consensus among experimenters.  

Of course, trading off precision and consensus depends on our take on scientific 

progress. If adversarial experimentation were more the exception than the rule in 

science, randomization might be, in the end, dispensable. Deaton and Cartwright had 

pushed this point in their recent paper: ‘The systematic refusal to use prior knowledge 

and the associated preference for RCTs are recipes for preventing cumulative scientific 

progress’ (Deaton & Cartwright [2018], p. 7). Although they acknowledge that 

randomization is the lesser evil when experimenters disagree about priors, it should not 

be the default mode for the advancement of experiments. 

In our view, this is a misleading claim. On the one hand, prior knowledge may be 

incorporated into both frequentist trials (via blocking) and into Banerjee’s approach via 

Bayesian priors. On the other hand, we should not assume that cumulative scientific 

progress presupposes agreement among experimenters on the relevant covariates. This 

may be the case in normal science, but eventually they will bump into Kuhnian 

anomalies prompting them to disagree on their controls. Historians and sociologists of 

experimentation have shown how the elimination of background confounders is a key 

part of the process leading to a renewed agreement on experimental phenomena, and 

bias control is a central ingredient of this discussion –e.g., (Collins [1981]; Galison [1987]; 

Teira [2013]). When experimenters disagree their conflicts of interest might not be 

motivated by the sort of financial concerns that pervade regulatory trials in medicine, 

but they are no less real. As the replication crisis in psychology has illustrated, the simple 
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desire for professional promotion or public recognition is enough for researchers to 

fiddle with experimental designs. 

Still, it may be argued that even if adversarial experimentation is frequent in 

science, randomization is not the best control for such biases. Worrall ([2002]) granted 

that randomization was an effective control for one major source of experimental 

fiddling: selection bias, the experimenter influencing the trial outcome through an 

intentional allocation of treatments. But he downplayed its epistemic value as follows: 

Notice however that randomization as a way of controlling for 

selection bias is very much a means to an end, rather than an end in 

itself. It is blinding (of the clinician) that does the real methodological 

work—randomization is simply one method of achieving this. (Worrall 

[2002], p.325) 

It is open to discussion whether blinding can really work without randomization (Senn, 

[2013]), but the problem in deciding what covariates to control for and how to do it is 

that it cannot be done in the blind. As we already saw in sections 3-4, selection bias can 

affect the trial outcome through covariate selection just as much as through treatment 

assignment. When there is no solid scientific consensus about which covariates should 

be balanced and how should this balance be achieved, the experimenters are still better 

off randomizing, for lack of a better alternative. 

Summing up, as Fisher himself once put it, ‘whatever degree of care and 

experimental skill is expended in equalising the conditions, other than the one under 

test, which are liable to affect the result, this equalisation must always be to a greater 

or less extent incomplete’ (Fisher [1971], p. 19). We have tried to show in this paper that 

there are at least three competing notions of covariate balance in scientific 

experimentation. Worrall’s arguments targeted a Millean conception of balance. For, 

practising scientists, like Fisher or Kasy, complete balance is unattainable, and it is 

necessary for experimenters to agree on which forms of imbalance are acceptable in 

their tests. As we have tried to argue here, achieving this consensus on balance still 

provides a good enough reason to randomize. 
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