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Abstract  The applicability of Bayesian conditionalization in setting one’s posterior 
probability for a proposition, α, is limited to cases where the value of a corresponding 
prior probability, PPRI(α|∧E), is available, where ∧E represents one’s complete body of 
evidence. In order to extend probability updating to cases where the prior probabilities 
needed for Bayesian conditionalization are unavailable, I introduce an inference schema, 
defeasible conditionalization, which allows one to update one’s personal probability in a 
proposition by conditioning on a proposition that represents a proper subset of one’s 
complete body of evidence. While defeasible conditionalization has wider applicability 
than standard Bayesian conditionalization (since it may be used when the value of a 
relevant prior probability, PPRI(α|∧E), is unavailable), there are circumstances under 
which some instances of defeasible conditionalization are unreasonable. To address this 
difficulty, I outline the conditions under which instances of defeasible conditionalization 
are defeated. To conclude the article, I suggest that the prescriptions of direct inference 
and statistical induction can be encoded within the proposed system of probability 
updating, by the selection of intuitively reasonable prior probabilities. 
 
 
1 Introduction: Conditionalization and the Principle of Total Evidence 
 
Given a conjunction ∧E representing an agent’s complete body of evidence, and a prior 
probability function PPRI, standard Bayesian conditionalization prescribes that an agent 
form a posterior probability function PPOS, and set the values of PPOS according to the 
equation: PPOS(α) = PPRI(α|∧E), for all α. This approach to probability updating makes 
the idealizing assumption that rational agents always have access to a prior probability 
function that is appropriate as a basis for conditionalization (cf. Howson and Urbach 
2006). But, as a matter of psychological fact, an agent’s doxastic state rarely encodes all 
of the priors needed for Bayesian conditionalization, and agents are rarely in a position to 
fill in all of the needed priors in a way that is justifiable by appeal to acceptable epistemic 
norms.2 In order to extend probability updating to cases where the prior probabilities 
needed for Bayesian conditionalization are unavailable, I will propose a system for 
probability updating for agents whose prior probabilities are incomplete and/or imprecise. 
The system is thereby designed to accommodate approaches to rational credence 
formation that endorse probabilistic representations of uncertainty, but are not prepared to 

1 The final publication is available at Springer via http://link.springer.com/article/10.1007/s10992-012-
9263-1. 
2 It is assumed here that various ‘representation dependent’ approaches to selecting probability functions, 
such as those that apply the principle of indifference (Keynes 1921; Carnap 1963; Bacchus et al. 1996; 
Halpern 2003, ch. 11), or the principle of maximum entropy (Jaynes 1968; Paris and Vencovská 1990, 
1997; Williamson 2007) cannot be justified by appeal to acceptable epistemic norms. For standard 
criticisms of such approaches, see (Van Fraassen 1989) and (Howson and Urbach 2006). 
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accept the idea that we must invariably represent a rational agent’s doxastic state by a 
complete probability function.3 
    The Bayesian idea that one should update one’s probabilities by conditionalization on 
one’s complete body of evidence is closely related to Carnap’s principle of total evidence 
(Carnap 1962, 211). The principle of total evidence, as proposed by Carnap, prescribes 
that one take account of all one’s evidence in making judgments of probability, or, more 
generally, that one take account of all of one’s evidence that is relevant to a given 
proposition, in making a judgment about the probability of that proposition. While 
Carnap maintains that, strictly speaking, agents need only take account of all the relevant 
evidence, he also held that a proposition, β, is inclusive of an agent’s evidence that is 
relevant to another proposition, α, if and only if PPRI(α|β) = PPRI(α|∧E). Carnap thereby 
embraced the thesis that agents should update their probabilities by standard Bayesian 
conditionalization, setting PPOS(α) to PPRI(α|∧E), for all α. 
    Contrary to Carnap’s conception of evidential relevance, a little reflection confirms 
that the satisfaction of the condition that PPRI(α|β) = PPRI(α|∧E) is not sufficient for β 
being inclusive of an agent’s evidence bearing on α. Indeed, ∧E may encode much 
additional evidence, not encoded in β, that is relevant to α, where PPRI(α|β) = PPRI(α|∧E) 
holds by coincidence. For example, we may know that PPRI(α|β) = 0.9, PPRI(α|β∧χ) = 0.1, 
and PPRI(α|β∧χ∧δ) = 0.9, where ∧E = β∧χ∧δ, and where β, β∧χ, and β∧χ∧δ describe 
progressively larger samples that bear on the probability of α.4 It is also reasonable to 
deny that PPRI(α|β) = PPRI(α|∧E) is a necessary condition for β being inclusive of an 
agent’s evidence bearing on α, assuming that we consider agents whose prior 
probabilities are incomplete or imprecise. Indeed, once we extend our view to consider 
such agents, then it is possible to imagine cases where β is inclusive of an agent’s 
evidence bearing on α, where the value of PPRI(α|∧E) is not given, or the range of values 
given for PPRI(α|∧E) is imprecise (where the smallest set containing PPRI(α|∧E) is [0, 1], 
or the range of values that are given for PPRI(α|β) is a proper subset of the range of values 
given for PPRI(α|∧E)). In such cases, we may deny that PPRI(α|β) = PPRI(α|∧E) (or at least 
deny that it is given that PPRI(α|β) = PPRI(α|∧E)), while nevertheless accepting: (1) β is 
inclusive of a respective agent’s evidence bearing on α, and (2) it is correct to set PPOS(α) 
to PPRI(α|β).5 

3 Such approaches have been widely endorsed. See, for example, (Koopman 1940), (Smith 1961), (Kyburg  
1961), (Good 1962), (Levi 1974), (Kaplan 1983), (Van Fraassen 1990), (Walley 1991), (Maher 1993), and 
(Kaplan 2010). 
4 Although the condition that PPRI(α|β) = PPRI(α|∧E) is insufficient for β being inclusive of an agent’s 
evidence bearing on α, it appears that the satisfaction of the condition is sufficient ground for setting 
PPOS(α) to PPRI(α|β). For this reason, one should not exaggerate the significance of the fact that PPRI(α|β) = 
PPRI(α|∧E) is insufficient for β being inclusive of an agent’s evidence bearing on α. 
5 One could, of course, maintain the thesis that one is entitled to infer that PPRI(α|β) = PPRI(α|∧E), in cases 
where it is reasonable to accept that β is inclusive of one’s evidence bearing on α (cf. Schurz 1997). I 
regard this thesis as potentially suspect. Nevertheless, one could augment the system of probability 
updating that I propose, and adopt the conclusion that PPRI(α|∧E) = PPRI(α|β), whenever the proposed 
system permits the conclusion that PPOS(α)∈R via conditionalization on a prior PPRI(α|β)∈R. However, 
since the inference to PPRI(α|∧E) = PPRI(α|β), in such cases, is unnecessary and potentially suspect, the 
system of updating that I propose does not license such inferences. 
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    One point made in the preceding paragraph is that there are cases where PPRI(α|β) = 
PPRI(α|∧E), but β is not inclusive of one’s evidence bearing on α. In such cases, it is 
reasonable to set PPOS(α) to PPRI(α|β) (i.e., reasonable to update one’s probability for α to 
the value PPRI(α|β)), despite the fact that β is not inclusive of one’s evidence bearing on 
α. A second point is that there are cases where it is correct to set PPOS(α) to PPRI(α|β), 
even though it is not given that PPRI(α|β) is identical to PPRI(α|∧E). Having accepted these 
possibilities, I would also like to entertain the possibility that there are cases where it is 
reasonable to conclude that PPOS(α)∈R on the basis of PPRI(α|β)∈R, even though (1) β is 
not inclusive of one’s evidence bearing on α, and (2) it is not given that PPRI(α|β) = 
PPRI(α|∧E). For the moment, one need not accept the possibility of such cases. However, 
I wish to introduce a catch-all expression to describe the relationship between β and α, in 
cases where it is correct to set PPOS(α) to PPRI(α|β), or more generally when it is correct to 
conclude that PPOS(α)∈R on the basis of PPRI(α|β)∈R. In such cases, I will say that β is 
sufficiently inclusive of one’s evidence bearing on α. 
    The idea of conditioning on propositions that are sufficiently inclusive of one’s 
relevant evidence (as opposed to conditioning on propositions that encapsulate all of 
one’s evidence) is central to the approach to probability updating proposed in this article. 
The proposed system thus allows one to assign a posterior probability to a respective 
proposition α, in cases where the value of PPRI(α|∧E) is not given, but the value of 
another prior probability PPRI(α|β) is given, and it is reasonable to accept that β is 
sufficiently inclusive of one’s evidence bearing on α. The proposed system also 
accommodates the possibility of conditionalizing on imprecise conditional probability 
statements, thereby allowing one to judge that PPOS(α)∈R, when PPRI(α|β)∈R is given, 
and it is reasonable to accept that β is sufficiently inclusive of one’s evidence bearing on 
α. In cases where an agent has access to a complete prior probability function, the system 
that I propose prescribes posterior probabilities that are identical to the ones prescribed 
by the standard Bayesian approach. But in cases where an agent’s prior probabilities are 
incomplete or imprecise (and the standard Bayesian approach is not applicable), the 
system still recommends reasonable posterior probability judgments. 
    Despite some important differences, the system of probability updating that I will 
propose is a close relative of the standard Bayesian system. Like the standard Bayesian 
system, the proposed system is very general, promising to reduce the prescriptions of 
rational credence formation to the prescription that one update one’s personal 
probabilities by (a form of) conditionalization, and to prescriptions concerning the choice 
of prior probabilities.6 A common variety of the standard Bayesian framework prescribes 

6 The standard Bayesian approach usually assumes that the updating of personal probabilities proceeds 
iteratively, where subsequent to an initial update (by conditionalization by appeal to an initial prior 
probability function), further updates proceed by appeal to a prior probability function that was generated 
by conditionalization on evidence that was collected at an earlier time (so that non-initial priors encode 
some of the agent’s evidence). In contrast to this ‘iterative’ approach to probability updating, I assume that 
defeasible conditionalization always proceeds by conditionalization using the agent’s initial prior 
probability function. In the case of Bayesian conditionalization, the usual iterative approach to probability 
updating is equivalent to the approach where an agent always sets his posteriors by conditionalization on 
his complete body of evidence using his initial prior probability function.  This sort of equivalence does not 
hold for probability updating via defeasible conditionalization (absent some constraints on the set of 
possible prior probabilities). The equivalence between the two approaches to conditionalization also fails to 
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only that an agent’s priors be probabilistically coherent. Later in the article, I will sketch 
the advantage of accepting additional prescriptions on the choice of prior probabilities. 
The advantage lies in the possibility of encoding the prescriptions of direct inference and 
statistical induction within the proposed system via the choice of intuitively reasonable 
prior probabilities.  
 
 
2 Preliminaries 
 
I will use a, b, c, and d to represent atoms of a propositional language Φ (with the 
standard truth functional connectives), and use α and β as metalogical variables ranging 
over sentences of Φ. Given this simple language, I will proceed as if the input to the 
problem of probability updating is a ‘knowledge base’ K, consisting of a pair 〈EK, LK〉, 
where EK is a set of sentences of Φ, and LK is a set of prior conditional probability 
statements of the form PPRI(α|β)∈R, where α and β are sentences of Φ, and R is a rigid 
designator for a set of real numbers. I will also use ρ and σ as metalogical variables 
ranging over prior conditional probability statements of the form PPRI(α|β)∈R. And, as 
shorthand, I will occasionally use expressions of the form PPRI(α|β) = r in the place of 
PPRI(α|β)∈{r}, and expressions of the form PPRI(α|β) ≥ r in the place of PPRI(α|β)∈[r, 1]. 
For real life applications, it is clear that Φ would have to be replaced by a richer 
language. However, due to limitations in standard axiomatic approaches to probability 
theory, which treat probability as defined over a Boolean algebra or a propositional 
language, I will proceed by means of an appropriately simple language, and assume 
(especially in section 7) that the account can be generalized to apply to richer languages 
(cf. Pollock 1990). 
    Facts about the consistency or inconsistency of various sets will play a role in 
determining which conclusions should be inferred from a knowledge base. I will speak 
both of the inconsistency of sets of sentences of Φ, and of sets of probability statements. 
A set of sentences of Φ is inconsistent if and only if a∧¬a is a logical consequence of the 
set. A set of posterior probability statements, S, will be regarded as inconsistent if and 
only if there is no probability assignment, P, defined over Φ, such that ∀s∈S: s = 
PPOS(α)∈R ⇒ P(α) ∈ R.7 Similarly, a set of prior probability statements, S, will be 
regarded as inconsistent if and only if there is no probability assignment, P, defined over 
Φ, such that ∀s∈S: s = PPRI(α|β)∈R ⇒ P(α|β) ∈ R. 
    In addition to speaking of the logical consequences of sets of sentences of Φ, I will 
speak of the logical consequences of sets of probability statements. A probability 
statement, PPOS(α′)∈R′, will be described as a logical consequence of a set of posterior 
probability statements, S, if and only if for every probability assignment, P, defined over 

hold, in general, for Jeffrey Conditionalization (Jeffrey 1983). But see (Wagner 2002), where it is shown 
that Jeffrey’s rule does commute across order for identical learning inputs, provided that “identical 
learning” is appropriately construed and formalized (cf. Osherson 2002). 
7 P is a probability assignment defined over Φ if and only if P maps all of the formulas of Φ into the 
interval [0, 1], so that Kolmogorov’s Axioms are satisfied. That is: ∀α,β∈Φ: (1) P(α) ≥ 0, (2) if α is a 
tautology, then P(α) = 1, and (3) if { α, β } is inconsistent, then P(α∨β) = P(α)+P(β). P(α|β) is defined as 
equal to P(α∧β)/P(β), if P(β) ≠ 0 (otherwise P(α|β) is undefined). 
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Φ, if ∀s∈S: s = PPOS(α)∈R ⇒ P(α) ∈ R, then P(α′) ∈ R′. Similarly, a prior probability 
statement, PPRI(α′|β′)∈R′, will be described as a logical consequence of a set of prior 
probability statements, S, if and only if for every probability assignment, P, defined over 
Φ, if ∀s∈S: s = PPRI(α|β)∈R ⇒ P(α|β) ∈ R, then P(α′|β′) ∈ R′. 
    Unless otherwise stated, I will assume that EK and LK are consistent and closed under 
logical consequences (though the system also performs reasonably in the case where EK 
and/or LK are inconsistent). 
 
 
3 Defeasible Conditionalization 
 
In the case where one’s knowledge base is K, the principle of total evidence licenses the 
conclusion that PPOS(α) = r, when PPRI(α|β) = r ∈ LK, β ∈ EK, and β is sufficiently 
inclusive of one’s evidence bearing on α. Generalized to set-valued priors, the principle 
of total evidence licenses the conclusion that PPOS(α)∈R, in the case where PPRI(α|β)∈R 
∈ LK, β ∈ EK, and β is sufficiently inclusive of one’s evidence bearing on α. So 
generalized, we may regard any inference from premises of the form PPRI(α|β)∈R ∈ LK 
and β ∈ EK to a conclusion of the form PPOS(α)∈R as a defeasible inference, where the 
inference is defeated if and only if β is not sufficiently inclusive of one’s evidence 
bearing on α.8 The heart of this species of defeasible inference is encoded in the 
following schema. 
 
[d-cond] Defeasible Conditionalization: 
PPRI(α|β)∈R ∈ LK and β ∈ EK provides a defeasible justification (or reason) for inferring 
(and believing) PPOS(α)∈R (for an agent whose knowledge base is K). 
 
    A defeasible justification that is generated in accordance with [d-cond] is, of course, 
defeated in the case where β is not sufficiently inclusive of an agent’s evidence bearing 
on α. What we would like to know are the precise conditions under which an instance of   
[d-cond] is defeated, or, in effect, the conditions under which β is not sufficiently 
inclusive of an agent’s evidence bearing on α. To begin with, it is clear that a 
corresponding instance of [d-cond] is defeated, when there exists a proposition, β′, such 
that β′ is in EK, {β′} entails β, PPRI(α|β′)∈R′ is in LK, and R∩R′ = ∅. In other words: 
 
[s-spec] Simple Specificity Defeat: 
The justification for inferring PPOS(α)∈R from PPRI(α|β)∈R ∈ LK and β ∈ EK is defeated, 
if ∃β′,R′: β′ ∈ EK, {β′} entails β, PPRI(α|β′)∈R′ ∈ LK, and R∩R′ = ∅.9 

8 The notions of defeasible reason, defeasible justification, and defeasible inference were pioneered within 
academic philosophy by Hart (1948), Chisholm (1957), Toulmin (1958), Pollock (1967), and Rescher 
(1977). Similar ideas were independently developed by researchers in artificial intelligence, including 
(McCarthy 1980), (McDermott and Doyle 1980), and (Reiter 1980). 
9 Specificity rules are common in theories of default and defeasible reasoning (cf. Schurz 1997, 2005). In 
some systems such as Pollock’s (1990), defeasible inferences are modeled after direct inference, where 
specificity rules correspond to a preference for narrower reference classes in the selection of a statistical 
probability statement for use as a premise for a direct inference. Appeal to specificity rules in direct 
inference traces to Venn (1866), though the idea is also associated with Reichenbach (1935) and Hempel 
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     [s-spec] applies when a more inclusive survey of one’s evidence supports a conclusion 
that conflicts with the one supported by a proposed instance of [d-cond]. For example, 
suppose that LK is the deductive closure of { PPRI(a|b) = 0.1, PPRI(a|b∧c) = 0.9 }, and EK is 
the deductive closure of { b, c }. In this case [d-cond] provides a defeasible justification 
for inferring PPOS(a) = 0.1 (by appeal to PPRI(a|b) = 0.1 ∈ LK and b ∈ EK), and a 
defeasible justification for inferring PPOS(a) = 0.9 (by appeal to PPRI(a|b∧c) = 0.9 ∈ LK 
and b∧c ∈ EK). However, since b∧c entails b, [s-spec] prescribes the defeat of the 
inference to PPOS(a) = 0.1.  
     While [s-spec] expresses a sufficient condition for the defeat of corresponding 
instances of [d-cond], [s-spec] does not characterize the full range of cases under which 
instances of [d-cond] are defeated. Indeed, there are cases where [d-cond] provides a 
defeasible justification for each element of an inconsistent set, while [s-spec] fails to 
dictate the defeat of any of the inferences leading to the elements of the inconsistent set. 
For example, suppose that LK is the deductive closure of { PPRI(a|b) = 0.1, PPRI(a|c) = 0.9 
}, and EK is the deductive closure of { b, c }. In that case, [d-cond] provides a defeasible 
justification for inferring PPOS(a) = 0.1 (by appeal to PPRI(a|b) = 0.1 ∈ LK and b ∈ EK), 
and a defeasible justification for inferring PPOS(a) = 0.9 (by appeal to PPRI(a|c) = 0.9 ∈ LK 
and c ∈ EK). While the present knowledge base yields a defeasible justification for two 
mutually inconsistent conclusions (namely PPOS(a) = 0.1 and PPOS(a) = 0.9), [s-spec] fails 
to dictate the defeat of either of inferences that lead to the inconsistency, since the neither 
of the propositions that underwrite the two inferences (namely, b and c) entails the other.  
Since [s-spec] will not always dictate the defeat of at least one instance of [d-cond] in the 
case where inference by [d-cond] leads to an inconsistent set of conclusions, we know 
that additional defeat conditions are called for. 
 
 
4 Minimal Inconsistent Sets 
 
In cases where a set is inconsistent and has no inconsistent proper subsets, the set is said 
to be minimal inconsistent. As a prelude to proposing a fully general account of the 
conditions under which instances of [d-cond] are defeated, I begin by considering 
hypothetical cases where S = { PPOS(α1)∈R1, …, PPOS(αn)∈Rn } is the complete set of 
conclusions that are defeasibly justified via instances of [d-cond] from K, and S is 
minimal inconsistent. Such cases are impossible, on the assumption that EK and LK are 
closed under deductive consequences. Nevertheless, it is instructive to consider such 
cases, so in the present section I waive the assumption that EK and LK are deductively 
closed. 
    Let Scond = { PPRI(α1|β1)∈R1, …, PPRI(αn|βn)∈Rn } be the set of conditional probability 
statements that led to the elements of S via instances of [d-cond], and let Spre be the set    
{ β1, …, βn } of ‘preconditions’ for the elements of Scond. Although [s-spec] does not 
prescribe the defeat of any of the respective instances of [d-cond] that lead to S (so long 
as n is greater than two), we know that we must reject at least one element of S (and we 

(1968). The appeal to specificity proposed here is more in line with Carnap’s principle of total evidence, 
since the type of probabilities involved in defeasible conditionalization are not statistical. 

                                                                                                                                                 



 7 

know that at least one of the corresponding instances of [d-cond] is defeated).10 While          
[s-spec] is unhelpful in addressing such cases, it is still reasonable to consider which 
elements of Scond have more informative preconditions, in deciding which instances of  
[d-cond] are defeated. As a means to characterizing the relative informativeness of pairs 
of propositions, I will say: α strictly entails β if and only if {α} entails β, and {β} does 
not entail α. Then, to start with, the following principle is plausible: 
 
(i) If S is the complete set of conclusions defeasibly inferable from K via [d-cond], and S 
is minimal inconsistent, then the defeasible justification for inferring PPOS(α)∈R from 
PPRI(α|β)∈R ∈ LK and β ∈ EK is undefeated, if ∃βi∈Spre: β strictly entails βi. 
 
    Principle (i) tells us that an instance of [d-cond] is undefeated provided that its 
associated precondition is more specific than the precondition of at least one of its 
competitors. The principle is reasonable for the range of cases under consideration. In 
such cases, the only potential reason for rejecting the conclusion under consideration, 
PPOS(α)∈R, is that it is an element of a set of defeasible conclusions S, where S is 
minimal inconsistent. But then there is no good reason to reject the inference to 
PPOS(α)∈R in such cases, since one of the other elements of S (call the element “ϕ”) is 
obtained without consideration of some evidence upon which the inference to PPOS(α)∈R 
is based, while the conclusion that ϕ is not based on any evidence that is not also taken 
account of in the justification for PPOS(α)∈R. We may thus consider the inference to 
PPOS(α)∈R undefeated, since absent the inference to ϕ (which is based on strictly less 
evidence) there would be no problem with the inference to PPOS(α)∈R. 
    The guiding assumption that underlies (i) is that the only condition that may result in 
the defeat of an instance of [d-cond] is that its conclusion is inconsistent with the 
conclusions of other instances of [d-cond] supported by a respective knowledge base. 
This guiding assumption is reflected in the fact that (i) deems an instance of [d-cond] as 
undefeated provided there is some other instance of [d-cond] (based on a less inclusive 
survey of the available evidence) that can be isolated as the source of the trouble. Given 
its guiding assumption, one possible objection to (i) cites the phenomena of undercutting 
defeaters. An undercutting defeater for a defeasible inference is a defeater which defeats 
the defeasible inference without providing a reason for believing the negation of the 
conclusion of the defeated inference (cf. Pollock 1995). According to the proposed 
objection to (i), an instance of [d-cond] may be defeated for some reason other than that it 
is jointly responsible in generating an inconsistency.  
    The positing of the phenomena of undercutting defeaters is typically justified by appeal 
to examples. According to one example, something’s appearing to be red provides one 
with a defeasible reason for thinking that it is red. However, if one learns that an object is 
illuminated by red light, then this defeats, and supposedly undercuts, one’s reason for 
thinking that the object is red (assuming one knows that most objects appear red when 

10 If [s-spec] is applicable in defeating an instance of [d-cond] that is supported by a given knowledge base 
K, then there is a pair of posterior probabilities PPOS(α)∈R and PPOS(α)∈R′, where R∩R′ = ∅, and 
PPOS(α)∈R and PPOS(α)∈R′ are defeasibly justified via instances of [d-cond] from K. But { PPOS(α)∈R, 
PPOS(α)∈R′ } is minimal inconsistent. So if S is the complete set of conclusions that are defeasibly justified 
via instances of [d-cond] from K, S is minimal inconsistent, and |S| > 2, then [s-spec] does not prescribe the 
defeat of any of the respective instances of [d-cond] that led to S. 
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illuminated by red light). As described, the present example exemplifies the phenomena 
of undercutting defeat assuming: (1) knowing that an object is illuminated by red light 
defeats one’s reasons for thinking that the object is red, and (2) knowing that an object is 
illuminated by red light does not provide a reason for denying that the object is red. 
    As it turns out, the framework of defeasible inference proposed here is equipped to 
accommodate the sort of examples offered in favor of the phenomena of undercutting 
defeat. Crucially, such examples can be represented within the proposed framework as 
cases that do not involve undercutting defeat, thereby eliminating the justification for 
positing undercutting defeaters, and the plausibility of the proposed objection to (i). For 
example, we can represent the situation of an object illuminated by red light via a 
knowledge base containing the following priors: 
 
PPRI( φ is red | φ is an object ) ∈ [0.01, 0.02] 
PPRI( φ is red | φ is an object ∧ φ appears to be red ) ∈ [0.99, 0.995] 
PPRI( φ is red | φ is an object ∧ φ appears to be red ∧ φ is illuminated by red light ) ∈ [0.01, 0.02] 
 
    In the case where it is given that φ is an object (and it is not given that φ appears to be 
red), the preceding priors support the conclusion that φ is not red (or, more precisely, that 
the probability is very low that φ is red). In the situation where it is given that φ is an 
object and φ appears to be red (and it is not given that φ is illuminated by red light), the 
priors support the conclusion that φ is red (with high probability). On the other hand, the 
latter conclusion is defeated, in the situation where it is also given that φ is illuminated by 
red light. In the latter situation, we may assume that EK is the deductive closure of { φ is 
an object, φ appears to be red, φ is illuminated by red light }. In that case, the inference to 
PPOS( φ is red ) ∈ [0.01, 0.02] based on PPRI( φ is red | φ is an object ) ∈ [0.01, 0.02] is 
defeated via [s-spec] by appeal to PPRI( φ is red | φ is an object ∧ φ appears to be red ) ∈ 
[0.99, 0.995], and the inference to PPOS( φ is red ) ∈ [0.99, 0.995] based on PPRI( φ is red | 
φ is an object ∧ φ appears to be red ) ∈ [0.99, 0.995] is defeated via [s-spec] by appeal to 
PPRI( φ is red | φ is an object ∧ φ appears to be red ∧ φ is illuminated by red light ) ∈ 
[0.01, 0.02]. Thus, we are permitted to infer that PPOS( φ is red ) ∈ [0.01, 0.02] by appeal 
to PPRI( φ is red | φ is an object ∧ φ appears to be red ∧ φ is illuminated by red light ) ∈ 
[0.01, 0.02]. 
    The preceding reconstruction illustrates the manner in which the present framework 
accommodates the type of examples that motivate the positing of undercutting defeaters. 
The examples are accommodated via the expressive power of probability assignments 
and judgments about probabilities. The sort of example that the framework does not 
accommodate (as it stands) is one where an instance of [d-cond] is defeated in the 
absence of a prior probability that supports an instance of [d-cond] to a conflicting 
conclusion. But the demand to accommodate this kind of example has no intuitive 
purchase, since the proposed account of probability updating already accommodates the 
kinds of example that have been offered in favor of the phenomena of undercutting 
defeat.11 

11 Nevertheless, it would not be difficult to accommodate genuine instances of undercutting defeat. To do 
so, we would allow that LK include statements of a three place relation of the form ⊗(χ, α, β), which 
asserts that χ is an undercutting defeater for instances of [d-cond] based on priors of the form PPRI(α|β)∈R 
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    As it turns out, I think that (i) characterizes the full set of instances of [d-cond] that are 
undefeated, in the case where S is the complete set of conclusions defeasibly inferable 
from K via [d-cond], and S is minimal inconsistent. To see the reason, consider, in the 
abstract, the set of instances of [d-cond] that are not classified as undefeated by (i). It 
appears that there is no sound means by which we may exonerate any of these inferences. 
For this reason, it is advisable to conclude that each instance of [d-cond] that is not 
classified as undefeated by (i) is defeated. The present conclusion is encapsulated by the 
following principle: 
 
(ii) If S is the complete set of conclusions defeasibly inferable from K via [d-cond], and S 
is minimal inconsistent, then the defeasible justification for inferring PPOS(α)∈R from 
PPRI(α|β)∈R ∈ LK and β ∈ EK is defeated if and only if ∀βi∈Spre: β does not strictly 
entail βi. 
 
    It may be objected here that, among the inferences that are classified as defeated by 
(ii), there is an intuitive difference between those that are based on a prior, PPRI(α|β)∈R, 
for which there exists a βi in Spre such that βi strictly entails β, and those for which there 
exists no such βi. The former inferences have the shortcoming that their precondition is 
less inclusive of the available evidence than the precondition of another instance of       
[d-cond] that leads to an element of S. Despite this shortcoming of the former instances 
of [d-cond], there is little to be said in favor of the latter instances of [d-cond], and there 
is no positive argument of the sort that justified (i) that can be invoked in their favor. For 
this reason, I recommend a cautious approach in classifying instances of [d-cond] as 
undefeated, and assume that (ii) is correct for the range of cases under consideration.12  
    The principles (i) and (ii) are intended to apply to cases where S is the complete set of 
conclusions inferable from K via [d-cond], and S is minimal inconsistent. For such cases, 
the two principles are complete in the sense that they partition the set of inferences 
leading to the elements of S into those that are defeated, and those that are undefeated. 
For such cases, adherence to the two principles also guarantees that the use of defeasible 
conditionalization will not generate mutually inconsistent conclusions, since the two 

(cf. Pollock 1995). In the case where χ is in EK, instances of [d-cond] based on such priors, PPRI(α|β)∈R, 
would thereby be defeated, and removed from consideration prior to the application of the defeat conditions 
proposed in the body of this paper. The defeat of such priors would be handled by modifying the definition 
of Triggered(K) (in section 6) as follows: Triggered(K) = { PPRI(α|β)∈R | PPRI(α|β)∈R ∈ LK & β ∈ EK & 
PPRI(α|β)∈R ∉ Redundant(K) & ∀χ∈EK: ⊗(χ, α, β) ∉ LK }. 
12 A less cautious system of defeasible conditionalization (that accepts the importance of the distinction 
between the former and latter inferences) would accept the following defeat condition: If S is the complete 
set of conclusions defeasibly inferable from K via [d-cond], and S is minimal inconsistent, then the 
defeasible justification for inferring PPOS(α)∈R from PPRI(α|β)∈R ∈ LK and β ∈ EK is undefeated if and 
only if ∃βi∈Spre: β strictly entails βi, or (∀βi∈Spre: βi does not strictly entail β, and ∃βj,βk∈Spre: βj strictly 
entails βk). This less cautious approach to probability updating could then be generalized in a manner 
analogous to the cautious approach to probability updating proposed in section 6, so that ρ is preferred in Γ 
⇔ (∃σ: σ∈Γ & Precondition(ρ) strictly implies Precondition(σ)) or (∀σ∈Γ:Precondition(σ) does not strictly 
entail Precondition(ρ) & ∃σj,σk∈Γ: Precondition(σj) strictly entails Precondition(σk)). For all knowledge bases, 
the set of conclusions licensed by the presently described system of defeasible conditionalization is a 
superset of the set of conclusions licensed by the system of defeasible conditionalization described in the 
body of this article. 
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principles insure the defeat of at least one of the instances of [d-cond] leading to the 
elements of S. 
    Although principles (i) and (ii) do not appear among the general defeat conditions that 
I propose in section 6, the principles are instructive, since they capture some of the key 
intuitions that underlie the general defeat conditions. A central idea implemented within 
the general defeat conditions is that of evaluating the defeat and non-defeat of instances 
of [d-cond] relative to sets of priors that support inferences to minimal inconsistent sets 
of conclusions. In particular, the general defeat conditions treat an instance of [d-cond] as 
defeated if it is defeated in the manner of (ii) relative to any set of priors that support 
instances of [d-cond] to a minimal inconsistent set of conclusions. 
    Before proceeding to propose general defeat conditions for instances of [d-cond], the 
following section addresses two types of prior probability statement that require special 
treatment. 
 
 
5 Derivative and Partially Derivative Priors 
 
Notwithstanding the preceding discussion, the system of probability updating proposed in 
the present article assumes that EK and LK are deductively closed. This introduces some 
issues not faced by many standard systems of defeasible inference. Consider the 
following example: 
 
Example 1 
 
Let EK be the deductive closure of { a, b }, and  
let LK be the deductive closure of { PPRI(c|a) ≥ 0.9, PPRI(d|b) ≥ 0.9, PPRI(¬c|a∧b) = 1 }. 
 
In the present case, the set of conclusions (defeasibly) licensed via [d-cond] includes: 
PPOS(c) ≥ 0.9, PPOS(d) ≥ 0.9, and PPOS(¬c) = 1. The conclusion that PPOS(c) ≥ 0.9 is 
inconsistent with the conclusion that PPOS(¬c) = 1, and for this reason it is clear that we 
should regard the inference to PPOS(c) ≥ 0.9 as defeated (since the inference to PPOS(¬c) = 
1 is based on the broadest possible survey of the available evidence). On the other hand, 
the inference to PPOS(d) ≥ 0.9 is unproblematic. So K appears to provide an undefeated 
justification for inferring PPOS(d) ≥ 0.9. But there is a difficulty here, arising from the 
assumption that LK is closed under logical consequences. The difficulty derives from the 
fact that, for all α, LK entails PPRI(α∨c|a) ≥ 0.9. On the basis of such priors, and in the 
absence of special provisions, [d-cond] would license inference to conclusions of the 
form PPOS(α∨c) ≥ 0.9, for all α. And if such inferences are licensed, K would thereby 
generate a defeasible justification for inferring PPOS(α) ≥ 0.9, for all α (since K also 
licenses acceptance of PPOS(¬c) = 1). It is plausible to think that the chains of inference 
leading to conclusions of the form PPOS(α) ≥ 0.9 (for the respective α) are mutually 
defeating. But absent some special measures, the inference to the conclusion that   
PPOS(d) ≥ 0.9 would also be defeated, since the inference to PPOS(d) ≥ 0.9 would be in 
conflict with a host of conclusions inferable from various instances of PPRI(α∨c|a) ≥ 0.9 
(such as the instance PPRI(¬d∨c|a) ≥ 0.9, for example). 
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    Inference to the conclusion that PPOS(α∨c) ≥ 0.9, for varied α, in Example 1, proceeds 
from the prior PPRI(α∨c|a) ≥ 0.9. But the conclusion also indirectly derives from the prior 
PPRI(c|a) ≥ 0.9. In this case, I propose that the deductive connection between         
PPRI(c|a) ≥ 0.9 and PPRI(α∨c|a) ≥ 0.9 vitiates [d-cond] based on the latter prior, since [d-
cond] based on the former prior is defeated. And, in general, I propose that an instance of 
[d-cond] is defeated when (1) the prior from which it proceeds is ‘derivative’ of another 
prior, and (2) the instance of [d-cond] proceeding from the latter prior is defeated. The 
following definition specifies when one prior counts as derivative of another:  
 
Definition: PPRI(α|β)∈R is derivative of PPRI(α′|β)∈R′ if and only if  
(1) α′ strictly implies α, and R = R′, or (2) α′ is α, and R′ ⊂ R. 
 
    The application of condition (1), of the preceding definition, is used in handling the 
sort of problem generated by Example 1. The application of condition (2) yields the result 
that instances of [d-cond] based on priors of the form PPRI(α|β)∈R are defeated, when 
another instance of [d-cond] based on a prior PPRI(α|β)∈R′ is defeated, and R′ ⊂ R. The 
latter policy is correct, since the defeat of an instance of [d-cond] based on a prior 
PPRI(α|β)∈R′, and evidence β, undermines all instances of [d-cond] to conclusions 
regarding α based on evidence β (assuming that correct instances of [d-cond] are meant 
to be underwritten by the principle of total evidence).13 
    Within the general defeat conditions proposed in section 6, I treat all instances of      
[d-cond] based on priors that are derivative of some other element of LK as void, where 
such void instances of [d-cond] are removed from consideration prior to considering 
what conclusions to draw on the basis of other instances of [d-cond] (thereby permitting 
the inference to PPOS(d) ≥ 0.9 to go through unmolested, in Example 1). The policy of 
treating all derivative priors as void is reasonable, since ‘voided’ priors are indirectly 
represented by the priors from which they are derivative, within the ‘normal’ procedure 
for determining which instances of [d-cond] are defeated. The set of priors that are 
derivative of some other element of LK (of a respective knowledge base K) are collected 
according to the following definition. 
 
Definition: Redundant(K) = { PPRI(α|β)∈R | PPRI(α|β)∈R is derivative of PPRI(α′|β)∈R′ & 
PPRI(α′|β)∈R′ ∈ LK }. 
 
    In addition to derivative priors, there are priors that I call “partially derivative”. 
Consider the following example: 
 
Example 2 
 
Let EK be the deductive closure of { a, b }, and  
let LK be the deductive closure of { PPRI(c|a) ≥ 0.8, PPRI(c∨d|a) ≥ 0.9, PPRI(¬c|a∧b) ≥ 0.8}. 
 

13 A significantly stronger system of defeasible conditionalization results, if we eliminate condition (2) of 
the proposed definition. While I believe that the resulting system is reasonable, I will not defend it here. 
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    In this case, the set of conclusions licensed by [d-cond] includes: PPOS(c) ≥ 0.8, 
PPOS(c∨d) ≥ 0.9, and PPOS(¬c) ≥ 0.8. While we should regard the inference to         
PPOS(c) ≥ 0.8 as defeated, and the inference to PPOS(¬c) ≥ 0.8 as undefeated, it is less 
clear what one should believe regarding the range of possible values for PPOS(c∨d). While 
PPRI(c∨d|a) ≥ 0.9 permits a defeasible inference to PPOS(c∨d) ≥ 0.9, and PPOS(c∨d) ≥ 0.9 is 
consistent with the conclusion that PPOS(¬c) ≥ 0.8, we know that the closely related 
inference to PPOS(c) ≥ 0.8 is defeated. In fact, had LK contained only PPRI(c∨d|a) ≥ 0.8 
(and not PPRI(c∨d|a) ≥ 0.9), we would have concluded that it was impossible to draw a 
justified conclusion regarding the range of possible values for PPOS(c∨d), save that 
PPOS(c∨d) ∈ [0, 1] (since PPRI(c∨d|a) ≥ 0.8 is derivative PPRI(c|a) ≥ 0.8, and our reason for 
accepting PPOS(c∨d) ≥ 0.8 should stand or fall with our reason for accepting PPOS(c) ≥ 
0.8). 
    I call priors such as PPRI(c∨d|a) ≥ 0.9, within Example 2, “partially derivative”, since 
their content is, in some sense, partially captured by some other prior (as the content of 
PPRI(c∨d|a) ≥ 0.9 is partly captured by the content of PPRI(c|a) ≥ 0.8). The following 
definition specifies when one prior counts as partially derivative of another: 
 
Definition: PPRI(α|β)∈R is partially derivative of PPRI(α′|β)∈R′ if and only if  
α′ strictly implies α, and R ⊂ R′. 
 
    In determining what may be inferred from a partially derivative prior, I propose that 
one assume as far as possible that the content of the partially derivative prior is 
derivative of the prior that partially captures its content. I thereby propose, in cases where 
[d-cond] based on a ‘partially deriving’ prior is defeated, that the greatest lower posterior 
probability bound that one accepts on the basis of a corresponding partially derivative 
prior be rL − sL, where rL is the greatest lower bound for the partially derivative prior (in 
LK), and sL is the greatest lower bound for the partially deriving prior (in LK). In Example 
2, this means that the conclusion that PPOS(c∨d) ≥ 0.1 is undefeated. Similarly, in cases 
where [d-cond] based on a ‘partially deriving’ prior is defeated, I propose that the least 
upper posterior probability bound that one accepts on the basis of a corresponding 
partially derivative prior be 1 − (sU − rU), where rU is the least upper bound for the 
partially derivative prior (in LK), and sU is the least upper bound for the partially deriving 
prior (in LK). 
    In the next section, I provide a full and precise treatment of derivative and partially 
derivative priors, while articulating general defeat conditions for instances of [d-cond]. 
 
 
6 General Defeat Conditions 
 
For the purpose of describing general defeat conditions for instances of [d-cond], it is 
convenient to have an adjective that describes those elements of LK that may serve as a 
premise to [d-cond], in a given situation. To fill the desired role, I will say that 
PPRI(α|β)∈R is “triggered” in K just in case PPRI(α|β)∈R ∈ LK, β ∈ EK, and PPRI(α|β)∈R 
∉ Redundant(K) (cf. Horty 2002, 2007). Note that by treating a prior as triggered only if 
that prior is not redundant, we thereby treat derivative priors as untriggered and as 
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inappropriate bases for instances of [d-cond]. For ease of reference, it is also convenient 
to have notation that refers to the set of conditional probability statements that are 
triggered (relative to a given K). 
 
Definition: Triggered(K) = { PPRI(α|β)∈R | PPRI(α|β)∈R ∈ LK & β ∈ EK &  
PPRI(α|β)∈R ∉ Redundant(K) }. 
 
    In assessing instances of [d-cond], in the remainder of this article, I will treat the 
triggered elements of LK as the bearers of praise and blame, i.e., as being undefeated or 
defeated. Use of this shorthand is possible, since a prior conditional probability 
statement, PPRI(α|β)∈R, that is used as a premise for an instance of [d-cond], encodes all 
of the features of that instance of [d-cond] (as the next two definitions illustrate). 
    In the case where a conditional probability, PPRI(α|β)∈R, is triggered, it is useful to 
have special notation to refer to the element of EK that is responsible for ‘triggering’ that 
conditional probability. 
 
Definition: Precondition(PPRI(α|β)∈R) = β. 
 
It is also useful to have notation for referring to the conclusion for which a triggered prior 
provides a defeasible reason. 
 
Definition: Conclusion(PPRI(α|β)∈R) = PPOS(α)∈R. 
 
The set of conclusions corresponding to a set, Γ, of prior conditional probabilities will be 
denoted as follows. 
 
Definition: Conclusions(Γ) = { PPOS(α)∈R | PPRI(α|β)∈R ∈ Γ }. 
 
Building on these definitions, I introduce notation in order to refer to the subsets of the 
set of triggered priors whose conclusions form minimal inconsistent sets. 
 
Definition: min-incon(K) = { Γ | Γ⊆Triggered(K) & Conclusions(Γ) is minimal inconsistent }. 
 
Note that (for all K) the defeat of at least one element of each element of min-incon(K) is 
both necessary and sufficient for insuring that the set of conclusions of undefeated 
instances of [d-cond], based on K, is consistent. 
    The defeat conditions that I will shortly propose reflect the idea that prior conditional 
probabilities with logically weaker preconditions receive priority when determining 
which instances of [d-cond] are defeated. The following notion of preference is central to 
the mechanism used for classifying instances of [d-cond] as defeated and undefeated. 
(Recall that ρ and σ are metalogical variables ranging over statements of the form 
PPRI(α|β)∈R.) 
 
Definition: ρ is preferred in Γ ⇔ ∃σ: σ∈Γ & Precondition(ρ) strictly implies Precondition(σ). 
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Definition: Preferred(Γ) = { ρ | ρ is preferred in Γ }. 
 
    Setting aside the treatment of partially derivative priors for the moment, a prior is 
deemed to be 1-defeated relative to an element of min-incon(K) according to the following 
definition, which generalizes the ideas of section 4 in the obvious way. 
 
Definition: ρ is 1-defeated relative to Γ ⇔ ρ ∈ Γ & ρ ∉ Preferred(Γ). 
 
    Generalizing ideas from section 5, the notion of 2-defeat is introduced in order to 
properly handle partially derivative priors. 
 
Definition: PPRI(α|β)∈R is 2-defeated relative to Γ ⇔ ∃ρ=PPRI(α′|β)∈R′:  
PPRI(α|β)∈R is partially derivative of ρ, ρ is 1-defeated in Γ, and 
R ⊂  [rL − sL, 1 − (sU − rU)], where 
rL = sup{ r | ∃S: PPRI(α|β)∈S ∈ LK & S∩[0, r] = ∅ },  
sL = sup{ s | ∃S: PPRI(α′|β)∈S ∈ LK & S∩[0, s] = ∅ }, 
rU = inf{ r | ∃S: PPRI(α|β)∈S ∈ LK & S∩[r, 1] = ∅ }, and 
sU = inf{ s | ∃S: PPRI(α′|β)∈S ∈ LK & S∩[s, 1] = ∅ }.14 
 
    By combining the definitions of 1-defeat and 2-defeat, we have the conditions under 
which a prior probability statement (understood as representing a corresponding instance 
of [d-cond]) is defeated relative to a knowledge base: 
 
Definition: ρ is defeated relative to K ⇔ ∃Γ∈min-incon(K): ρ is 1-defeated in Γ or ρ is 2-
defeated in Γ. 
 
The set of prior conditional probabilities that are not defeated in K is defined as follows. 
 
Definition: Undefeated(K) = { ρ | ρ∈Triggered(K) & ρ is not defeated in K }. 
 
    Among other virtues, it is guaranteed that the set of conclusions of instances of         
[d-cond] based on elements of Undefeated(K) is consistent. 
 
Theorem: ∀K: Conclusions(Undefeated(K)) is consistent. 
 
Proof: The preceding theorem follows immediately from the definition of 1-defeat. That 
definition guarantees (for all K) that at least one element of each element of min-incon(K) 
is 1-defeated (meaning that Conclusions(Undefeated(K)) has no minimal inconsistent subsets, 
and thus no inconsistent subsets). (Note that the present theorem holds even if EK and/or 
LK are inconsistent.) 
 

14 A stronger system of defeasible conditionalization (complementary to the suggestion made in footnote 
11), would restate the third conjunct of the proposed definiens as: R ⊂ [rL−sL+tL, 1−(sU−rU)−(1−tU)], where 
tL = sup{ t | ∃S: PPRI(α′|β)∈S is not 1-defeated in (Γ−{PPRI(α′|β)∈R})∪{PPRI(α′|β)∈S} & S∩[0, t] = ∅}, 
and tU = inf{ t | ∃S: PPRI(α′|β)∈S not 1-defeated in (Γ−{PPRI(α′|β)∈R})∪{PPRI(α′|β)∈S} & S∩[t, 1] = ∅}. 
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The following establishes that the proposed system assigns the correct posterior 
probabilities to the deductive consequences of EK. 
 
Theorem: ∀K,α: EK entails α ⇒ PPOS(α)∈{1} ∈ Conclusions(Undefeated(K))). 
 
Proof: It is sufficient to see that (for all α in EK) PPRI(α|∧EK)∈{1} ∈ LK (since LK is 
deductively closed), and PPRI(α|∧EK)∈{1} ∈ Undefeated(K) (assuming that EK and LK are 
consistent). 
 
More generally, it is clear that if PPRI is complete, then the system delivers the same 
posteriors as the standard Bayesian approach, for in such cases we have, for all α in Φ, 
that there exists some r such that PPRI(α|∧EK)∈{r} is LK, and that the instances of          
[d-cond] based on such priors are undefeated. 
    The set of logical consequences of Conclusions(Undefeated(K)) is also a superset of the set 
of conclusions licensed by what may be regarded as the most obvious generalization of 
the standard Bayesian approach (where the generalization is given for the purpose of 
updating on incomplete and/or imprecise priors). Given a knowledge base, K, the obvious 
generalization of the Bayesian approach proposes that an agent accept PPOS(α)∈R just in 
case PPRI(α|∧EK)∈R is entailed by LK. I will call this approach to probability updating 
“Simple Generalized Bayesianism”, and call the set of posterior probability statements 
licensed by Simple Generalized Bayesianism, for given a knowledge base K, SBayes(K).  
 
Definition: SBayes(K) = { PPOS(α)∈R | PPRI(α|∧EK)∈R is entailed by LK }. 
 
Theorem: ∀K: SBayes(K) ⊆ { PPOS(α)∈R | PPOS(α)∈R is a logical consequence of 
Conclusions(Undefeated(K)) }. 
 
Proof: It is sufficient to see, for all posteriors, PPOS(α)∈R, that are elements of 
SBayes(K), that PPRI(α|∧EK)∈R is in LK (since PPRI(α|∧EK)∈R is entailed by LK), and 
that instances of [d-cond] based on priors of the form PPRI(α|∧EK)∈R are always 
undefeated (assuming that EK and LK are consistent). 
 
    The system of probability updating proposed here consists in [d-cond], an inference 
schema, along with a specification of the conditions under which instances of [d-cond] 
are defeated. I propose that undefeated instances of [d-cond] provide undefeated reasons 
for belief for agents possessed of corresponding knowledge bases, and that agents with 
sufficient deductive abilities should believe the conclusions of instances of [d-cond] that 
are undefeated relative to their respective knowledge bases.15 
   The principle of total evidence prescribes that one take account of all one’s relevant 
evidence in making judgments of probability. Applied to the problem of arbitrating 

15 Defeated instances of [d-cond] do not provide undefeated reasons for belief for agents possessed of 
corresponding knowledge bases. But, in some cases, there may be distinct instances of [d-cond] supporting 
the same conclusion, and while one such instance may be defeated, another may be undefeated. So it is 
possible for an agent to have a defeated reason for accepting a posterior probability, while at the same time 
possessing an undefeated reason for accepting the very same posterior probability. 
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between conflicting reasons for belief, the proposed system of probability updating 
utilizes a principle that generalizes the principle of total evidence. The generalized 
principle prescribes that one favor defeasible inferences that take account of more of 
one’s available evidence. Armed with this ‘specificity principle’, the proposed system of 
probability updating represents a cautious approach to defeasible inference.16 The system 
licenses acceptance of a conclusion only if that conclusion is defeasibly justified, and no 
jointly conflicting conclusions of equal or greater status are defeasibly justified (where 
the status of such conclusions is determined by the specificity principle). While the 
proposed system represents a cautious approach to probability updating, the system also 
licenses inferences that are bolder than the ones licensed by Simple Generalized 
Bayesianism. The proposed system thereby represents an attractive approach to 
probability updating with incomplete priors.17 
 
 
7 Direct Inference and Statistical Induction 
 
In addition to representing an attractive approach to probability updating with incomplete 
priors, the proposed system of updating offers a promising framework for systematically 
representing the prescriptions of direct inference and statistical induction within a very 
general framework of rational credence formation. 
   An account of statistical induction codifies and explains the justificatory basis of 
inferences that move from a premise, describing the incidence of some characteristic 
among a sample, to a conclusion that states that the incidence of the chosen characteristic 
among a respective population (from which the sample was drawn) is likely to be very 
similar to its incidence among the sample. Schematically, such defeasible inferences may 
be represented as follows: 
 
From S⊆G and freq(F|S) = r infer that PPOS( freq(F|G) ≈ r ) is high. 
 
   An underappreciated fact about statistical induction is its ‘reducibility’ to so called 
“direct inference” (cf. Williams 1947; Kyburg 1956, 1961, 1974; Stove 1986; McGrew 
2001). A direct inference proceeds from a premise stating that the frequency18 with which 
members of a given reference class, F, are members of a respective target class, G, is r, 
and a premise stating that a given object, φ, is an element of F, and yields the conclusion 

16 I use the term “cautious” here, in order to avoid confusion. I would have liked to use the term 
“skeptical”, in order to make an explicit connection to the distinction between skeptical and credulous 
reasoners, as discussed in (Touretzky et al. 1987). 
17 I leave the possibility open that a suitably ideal agent (with a knowledge base K) might have reason to 
accept a proper superset of the set of logical consequences of Conclusions(Undefeated(K)). One possibility is 
that there are cases where an inference to PPOS(β)∈R is defeated, but it is still reasonable to accept that 
PPOS(β)∈R′, for some set of values of R′, where R ⊂ R′. 
18 While many, including Venn (1866), Reichenbach (1949), Kyburg (1974), and Kyburg and Teng (2001), 
have assumed that the major premises for direct inference are statements of frequency or limiting 
frequency, other proposals have been made, in (Pollock 1990), (Bacchus 1990), and (Thorn 2012). I here 
officially leave the question open, concerning what sorts of statistical statements may serve as major 
premises for direct inference. 
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that the probability that φ is a member of G is r. Schematically, this sort of defeasible 
inference may be represented as follows: 
 
From φ∈F and freq(G|F) = r infer that PPOS(φ∈G) = r. 
 
   The reduction of statistical induction to direct inference proceeds from a theorem that 
describes the propensity of subsets of a set to resemble the set regarding the incidence of 
any characteristic. 
 
Theorem: ∀F,G: ∀u,v>0: ∃n: |ω|>|F|>n ⇒ freq( freq(G|x) ≈u freq(G|F) | x⊆F ) > 1−v.19 
 
The present theorem is applicable in generating the major premises for direct inferences 
of the following sort. 
 
From S⊆F and freq( freq(G|x) ≈ freq(G|F) | x⊆F ) ≈ 1 infer that 
PPOS( freq(G|S) ≈ freq(G|F) ) ≈ 1. 
 
And from the conclusion that PPOS( freq(G|S) ≈ freq(G|F) ) ≈ 1, one may deduce that   
PPOS( freq(G|F) ≈ r ) ≈ 1, assuming that one knows that freq(G|S) = r (where S is one’s 
sample of observed Fs). If we suppress mention of the premise freq( freq(G|x) ≈ 
freq(G|F) | x⊆F ) ≈ 1, then the preceding yields the following form of statistical 
induction: 
 
From S⊆F and freq(G|S) = r infer that PPOS( freq(G|F) ≈ r ) ≈ 1. 
 
   So far I have described the manner in which statistical induction is, in some sense, 
reducible to direct inference. The next task is to show how and why the account of 
probability updating proposed in this article is apt for encoding the prescriptions of direct 
inference (and thereby the prescriptions of statistical induction). The proposal is to 
encode the prescriptions of direct inference via prior conditional probability statements 
that are akin to Lewis’s principal principle (Lewis 1980). In order to correctly express the 
content of such priors, I now proceed upon the assumption that the language, Φ, is rich 
enough to express relative frequencies, statements of set membership, and statements of 
set inclusion: 
 
(a) PPRI( φ∈G | φ∈F ∧ freq(G|F) = r ) = r. 
 
Assuming that the preceding prior is an element of LK, one may apply [d-cond] to infer 
that PPOS( φ∈G ) = r, in the case where EK contains φ∈F and freq(G|F) = r. Of course, 
such direct inferences are defeasible. Typically, accounts of direct inference prescribe 
that one judge the probability that a given object is an element of a respective target class 
by making a direct inference based on the narrowest relevant reference class for which 
one has reliable frequency information (cf. Venn 1866, Reichenbach 1935, Kyburg 1974, 

19 The present theorem is from (Pollock 1990, p. 71). Similar theorems that are also relevant to the 
reduction of statistical induction to direct inference are found in other sources, including (McGrew 2001). 
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Pollock 1990, Bacchus 1990, Kyburg and Teng 2001, Thorn 2012). This idea is easily 
represented within the proposed system, by the inclusion of priors of the following form: 
 
(b) PPRI( φ∈G | φ∈F′ ∧ F′⊂F ∧ freq(G|F) = r ∧ freq(G|F′) = s ) = s. 
 
In the case where LK contains (a) and (b), and EK contains φ∈F′, F′⊂F, freq(G|F) = r, and 
freq(G|F′) = s, the proposed system prescribes the defeat of [d-cond] based on (a), while 
permitting an inference, by appeal to (b), to the conclusion that PPOS( φ∈G ) = s. The 
proposed system also yields what is generally regarded as the correct prescription 
concerning cases where one has relevant statistics for two reference classes, and neither 
reference class is narrower than the other. Suppose, for example, that LK contains (a), 
along with the following prior: 
 
(c) PPRI( φ∈G | φ∈F′ ∧ freq(G|F′) = s  ) = s. 
 
Now in a case where EK contains φ∈F, φ∈F′, freq(G|F) = r, and freq(G|F′) = s, [d-cond] 
generates a defeasible reason for inferring PPOS( φ∈G ) = r, and a defeasible reason for 
inferring PPOS( φ∈G ) = s. But in the case where EK contains neither F′⊂F nor F⊂F′ (and  
r ≠ s), the inferences based on (a) and (c) are mutually defeating, and no informative 
conclusion about the value of PPOS( φ∈G ) is licensed by appeal to (a) or (c). 
   The preceding is intended as a sketch of how the prescriptions of direct inference could 
be encoded within the proposed system of probability updating.20 It is noteworthy that 
such an approach to direct inference is not possible within the standard Bayesian system 
of probability updating. Within that approach, conditionalization always proceeds from a 
prior, PPRI(α|β) = r, where β incorporates the agent’s complete body of evidence, thereby 
making it practically (if not in principle) impossible to represent the prescriptions of 
direct inference within the system. 
 
 
8 Conclusion 
 
In the present article, I proposed a generalization of the standard Bayesian approach to 
probability updating. Unlike the standard Bayesian approach, the proposed system is 
applicable in cases where an agent’s prior probabilities are incomplete or imprecise. The 
inferences licensed by the proposed system are justifiable by appeal to a modest 
elaboration of Carnap’s principle of total evidence. Like the standard Bayesian 
framework, the proposed framework is very general, promising to reduce the 
prescriptions of rational credence formation to the prescription that one update one’s 
personal probabilities by a form of conditionalization, and to prescriptions concerning the 
choice of prior probabilities. Because the proposed system permits conditionalization on 
propositions that do not encode an agent’s compete body of evidence, the proposed 

20 At present it would be a mistake to claim that anyone has succeeded in producing an adequate 
characterization of the correct principles of direct inference. While the problem of characterizing the 
correct principles of direct inference is unsolved (perhaps due to insufficient attention), I am optimistic that 
it is possible to articulate such principles. For recent work, see (Thorn 2011) and (Thorn 2012). 
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system allows for the possibility of encoding the prescriptions of direct inference and 
statistical induction by the selection of intuitively reasonable prior probabilities.21 
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