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Abstract

This paper is a discussion note on Isaacs et al. 2022, who have claimed to offer a new
motivation for imprecise probabilities, based on the mathematical phenomenon of non-
measurability. In this note, I clarify some consequences of their proposal. In particular, I
show that if their proposal is applied to a bounded 3-dimensional space, then they have
to reject at least one of the following:

• If A is at most as probable as B and B is at most as probable as C, then A is at
most as probable as C.

• Let A ∩ C = B ∩ C = ∅. A is at most as probable as B iff (A ∪ C) is at most as
probable as (B ∪ C).

But rejecting either statement seems unattractive.

1 Introduction
Consider a spinner about to be spun around in a circle C. Following Isaacs et al., let’s ‘[s]uppose
that the probabilities for [such] a spinner are fair, in that any rotation of a given set of points
must have the same probability as that set of points’ (Isaacs et al. 2022, p. 895). More
precisely, for all subsets A ⊆ C, if A is assigned a probability, then τA is also assigned the
same probability for all rotations τ of A around C, where τA is the set of points derived by
applying rotation τ on A. Call this constraint rotational symmetry. Can every subset of C
be assigned a probability that’s rotationally symmetric? Orthodox probability theory answers
in the negative. There will inevitably be some subsets of C that are assigned no rotationally
symmetric probabilities, on pain of contradiction. An example of such a set is the Vitali set,
whose construction is due to Vitali 1905.1

While the primary example employed by Isaacs et al. is that of a spinner about to be
spun around C, the primary example employed in this note is that of a unit cube D, from
which a point is about to be randomly chosen. And in line with their supposition of rotational

1Due to space constraints, I’ll have to assume on the part of the reader knowledge of what the Vitali set is.
However, the reader is free to refer to Isaacs et al. 2022 for a simple exposition on the Vitali set.
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symmetry, let’s suppose that the probabilities for randomly choosing a point in D are fair, in
that any rigid motion of a given set of points in D must have the same probability as that set
of points, where translations, rotations, and reflections are all rigid motions. More precisely, let
P be a probability function2 representing this scenario. Then, as per our supposition of rigid-
motion symmetry, for all subsets A in the domain of P , P (A) = P (τA) for all rigid motions
τ of A in D. Can every subset of D be assigned a probability by P , i.e. can P be defined
on the powerset of D, denoted as ℘D? Orthodox probability theory answers in the negative
again. There will inevitably be some subsets of D that P assigns no probabilities to, on pain
of contradiction. Let’s call these subsets non-P -measurable sets. Because of the existence of
non-P -measurable sets, P cannot be defined on ℘D.3

To see why there are non-P -measurable sets, assume for reductio that P is defined on ℘D.
Let B ⊆ D be a ball (a sphere with a solid interior) such that two copies of B can fit nicely
within D, i.e. twice the volume of B is less than the volume of D, which is 1. Banach and
Tarski 1924 proved the following theorem:

Banach-Tarski Paradox. A ball B is such that B = A1 ∪ . . . ∪An ∪ C1 ∪ . . . ∪ Cm (for some
finite n and m where n + m ≥ 5), where all the sets here are pairwise disjoint, and where
there are rigid motions ρ1, . . . , ρn and τ1, . . . , τm such that B1 = ρ1A1 ∪ . . . ∪ ρnAn is a disjoint
decomposition of one copy of B while B2 = τ1C1 ∪ . . . ∪ τmCm is a disjoint decomposition of
another copy of B.4

Put simply, the Banach-Tarski Paradox states that a ball B can be decomposed into a
finite number of parts, which can then be translated, rotated, and reassembled into two exact
duplicates of the original ball B. Such a theorem has consequences for probability theory.

Since we have supposed for reductio that P is defined on ℘D, P (B) is defined. By the
Banach-Tarski Paradox, P (B) = P (A1) + . . .+ P (An) + P (C1) + . . .+ P (Cm). Now, recall
that we supposed that P is rigid-motion symmetric too. So, P (A1)+. . .+P (An)+P (C1)+. . .+
P (Cm) = P (ρ1A1)+ . . .+P (ρnAn)+P (τ1C1)+ . . .+P (τmCm). But since B1 = ρ1A1∪ . . .∪ρnAn

and B2 = τ1C1∪. . .∪τmCm, P (ρ1A1)+. . .+P (ρnAn)+P (τ1C1)+. . .+P (τmCm) = P (B1)+P (B2).
Therefore, P (B) = P (B1)+P (B2). Because B1 and B2 are exact duplicates of B and P is rigid-
motion symmetric, P (B) = P (B1) = P (B2). This means that P (B) = 2 · P (B), which in turn
implies that P (B) = 0. Let d ⊆ B be a cube of length 1

k
for some k ∈ N. Since d ⊆ B, P (d) = 0.

Note that any translation of d is assigned the same probability as d by P . Since d is a cube of
length 1

k
and D is a unit cube, k3 copies of d make up D. This means that P (D) = k3 ·P (d) = 0.

Contradiction, as P (D) = 1. Therefore, P cannot be defined on ℘D, i.e. there are some subsets
of D that are assigned no probabilities by P . These are the non-P -measurable sets.

Because of the existence of non-P -measurable sets, P can only be defined on a σ-algebra
F ⊊ ℘D.5 It is important that F leaves some subsets of D out, on pain of contradic-
tion. Some examples of subsets that F leaves out are the various decompositions of B, i.e.

2A function P is a probability function iff (i) P (A) ≥ 0 for all events A in the domain of P , (ii) P (Ω) = 1,
and (iii) P (

⋃∞
i=1 Ai) =

∑∞
i=1 P (Ai) if all the Ai’s are pairwise disjoint and P (Ai) is defined for all Ai’s.

3The phrase ‘non-P -measurable’ should make it clear that some subset A ⊆ D isn’t assigned a probability
by P . However, there still exists another probability function P

′
that assigns A a probability. Pick an arbitrary

member x ∈ A and define P
′
({x}) = 1. So, for all subsets B of D, if x ∈ B, then P

′
(B) = 1 and P

′
(B) = 0

otherwise. It is clear that P
′
(A) = 1. In fact, P

′
assigns every subset of D a probability. So, although A is

non-P -measurable, it is still P
′
-measurable.

4This statement of the Banach-Tarski Paradox is due to Pruss 2014. Also, note that, strictly speaking,
the word ‘paradox’ is a misnomer, as the Banach-Tarski Paradox is in fact a theorem. But because this
theorem is known as the Banach-Tarski Paradox in the literature, I’ll keep its name. The reason why this
theorem is called a paradox is because it strikes one as counter-intuitive and odd. How can a ball be decomposed
and then reassembled into two exact copies of itself?

5F is a σ-algebra iff (i) Ω ∈ F , (ii) if A ∈ F , then ¬A ∈ F , and (iii) if Ai ∈ F for all i ∈ N, then
⋃

i∈N Ai ∈ F .
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A1, . . . , An, C1, . . . , Cm. Furthermore, note that this proof of the existence of non-P -measurable
sets only requires Finite Additivity: if A ∩B = ∅, then P (A ∪B) = P (A) + P (B).6

Why care about non-P -measurable sets in the first place? Due to space constraints, I cannot
provide a detailed answer.7 But according to Isaacs et al., there are at least two main reasons.
First, not all non-P -measurable sets are created equal. There are important distinctions dif-
ferentiating non-P -measurable sets, which influence our decision-theoretic intuitions. These
distinctions are altogether lost if no probabilities whatsoever are assigned to non-P -measurable
sets. More about this in a while. Second, assuming that rational credences are probability
functions, an agent ‘should not be doomed to failure’ if she wants to assign a rational credence
to the proposition that the chosen point is in some non-P -measurable set (Isaacs et al. 2022,
p. 900).

So, for the two reasons given above, it should be at least possible to assign a probability
to a non-P -measurable set, while maintaining rigid-motion symmetry. But since no precise
probabilities can accomplish this task, only an imprecise probability (and consequently, an
imprecise credence) can be assigned to such a set. Isaacs et al. deem a combination of these
two reasons to be a new motivation and argument for allowing probabilities to be imprecise.
Hence, according to them, heterodox Bayesianism is right, according to which an agent may
have imprecise credences.

Up to now, all is good and fine. I agree with Isaacs et al. that there is motivation to assign
a probability to at least one non-P -measurable set while maintaining rigid-motion symmetry,
and since only an imprecise probability can accomplish this task, this in turn is a motivation for
allowing probabilities to be imprecise. If they were to stop here, then I wouldn’t have written
this note. But it seems that they want to go further. In fact, Isaacs et al. argue that ‘if
imprecise credences and imprecise chances are allowed, then no propositions need be left out ’
of the probability calculus (Isaacs et al. 2022, p. 895, emphasis added). That is, according to
them, every proposition can be assigned a probability (precise or imprecise). So, it is possible
to assign an imprecise probability to not just at least one non-P -measurable set, but to all of
them. Making this further claim is where things go awry.

In this note, I clarify the consequences of Isaacs et al.’s proposal. In particular, let A ⪯ B
represent the statement ‘A is at most as probable as B’, where A and B are events. I will show
that if their proposal is applied to a bounded 3-dimensional space, e.g. D, then they have to
reject at least one of the following:

• If A ⪯ B and B ⪯ C, then A ⪯ C.

• Let A ∩ C = B ∩ C = ∅. A ⪯ B iff A ∪ C ⪯ B ∪ C.

If Isaacs et al. wish to maintain both constraints, as well as rigid-motion symmetry, then,
contrary to their claim, there are some propositions bound to be left out of the probability
calculus, even if probabilities are allowed to be imprecise. That is, no probabilities (precise
or imprecise) can be assigned to these propositions. These claims will be proven in §3. But
before §3, §2 will be devoted to briefly spelling out their way of assigning non-P -measurable
sets imprecise probabilities.

6That only Finite Additivity is required to prove that non-P -measurable sets exist is philosophically
significant. This is because in order to prove that there are subsets of C that are not assigned any rotationally
symmetric probabilities, Countable Additivity is required instead: P (

⋃∞
i=1 Ai) =

∑∞
i=1 P (Ai) if all the Ai’s

are pairwise disjoint and P (Ai) is defined for all Ai’s. But Countable Additivity is controversial. See de
Finetti 1937 for discussion. Because of the controversy surrounding Countable Additivity, I decided to use
the scenario of a point about to be randomly chosen in a unit cube as my primary example, instead of Isaacs
et al.’s primary example of a spinner about to be spun around in a circle.

7However, the reader is free to refer to Isaacs et al. 2022 for a detailed answer.
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It is also noteworthy that Isaacs et al. reject the usual interpretation of imprecise probabil-
ities, according to which an imprecise probability is a supervaluation over a set of probability
functions. Now, the reader may think that at least one of the two constraints stated above has
to be rejected no matter what once probabilities are allowed to be imprecise. This is false, as I
will show in §4 that, under the usual interpretation of imprecise probabilities, both constraints
are implied. I will conclude in §5. All proofs are found in the Appendix.

2 Assigning imprecise probabilities
Not all non-P -measurable sets are created equal. To see why, note that every subset of D
has a P -outer measure and a P -inner measure. Hereafter, let P denote P -outer measure and
P denote P -inner measure. What is P (A) for an A ⊆ D then? Put simply, P (A) is the
greatest lower bound (G.L.B.) of the probabilities of A’s P -measurable supersets, i.e. P (A) =
inf{P (B) : (P (B) ∈ R) ∧ (A ⊆ B)}. Similarly, P (A) is the least upper bound (L.U.B.) of the
probabilities of A’s P -measurable subsets, i.e. P (A) = sup{P (B) : (P (B) ∈ R) ∧ (B ⊆ A)}.
The reader can understand P (A) as an approximation of A’s probability ‘from above’ and P (A)
as an approximation of A’s probability ‘from below’.

If P (A) = P (A), then A is P -measurable, with P (A) = P (A) = P (A). If, however,
P (A) ̸= P (A), then A is non-P -measurable, i.e. P (A) is undefined. At this point, the reader
should note that P and P are not probability functions, as both functions are not even finitely
additive. In fact, it is this failure of Finite Additivity that allows P and P to be defined
on ℘D. The reader should also note that while there are non-P -measurable sets A such that
P (A) = 0.75 and P (A) = 0.25, there are also non-P -measurable sets B such that P (B) = 0.0001
and P (B) = 0, etc. As alluded to in §1, these are the important distinctions differentiating non-
P -measurable sets. ‘These distinctions are lost if we regard [non-P -measurable sets] simply as
credence gaps, as orthodoxy would have it’ (Isaacs et al. 2022, p. 899). For all rigid motions τ ,
if τA ⊆ D, then P (A) = P (τA) and P (A) = P (τA), i.e. P and P are rigid-motion symmetric.

According to Isaacs et al., P and P provide natural bounds for assigning imprecise prob-
abilities. Hereafter, let Pim be an imprecise probability function, i.e. Pim assigns some sets
imprecise probabilities. In general, for all A ∈ ℘D,

Pim(A) =

{
P (A) if A is P -measurable.[

P (A), P (A)
]

if A is non-P -measurable. (1)

Since P and P are rigid-motion symmetric, Pim is rigid-motion symmetric too, i.e. for all
subsets A in the domain of Pim, Pim(A) = Pim(τA) for all rigid motions τ of A in D.

3 Qualitative probability: probability as an ordering
Hereafter, for any two events A and B, let A ⪯ B represent the statement ‘A is at most as
probable as B’. Then, A ⪰ B represents the statement ‘A is at least as probable as B’. Also,
let F(⪯) be the domain of ⪯. That is, if A ⪯ B or A ⪰ B, then A ∈ F(⪯) and B ∈ F(⪯). But
if either A /∈ F(⪯) or B /∈ F(⪯), then A ⪯̸ B and A ⪰̸ B. In order to denote the particular
ordering induced by Pim, as defined in the previous section, I’ll use the notation ‘⪯D’. It is
obvious that F(⪯D) ⊆ ℘D.

From ⪯, other relations can be defined. As usual in the literature, let Ω be a sample space
and F(⪯) be a σ-algebra on Ω.

Definition 1. Let A ∈ F(⪯) and B ∈ F(⪯).

1. A ∼ B := (A ⪯ B) ∧ (B ⪯ A). This represents the statement ‘A is equiprobable to B’.
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2. A ≺ B := (A ⪯ B)∧ (B ⪯̸ A). This represents the statement ‘A is less probable than B’.

The domain of Pim is ℘D. This function Pim induces a certain ordering of the events in ℘D.
Here’s what I mean. Consider any two arbitrary events A and B in ℘D. In general,

• If P (A) ≤ P (B), then A ⪯D B.

• If P (A) < P (B), then A ≺D B.

• If P (A) = P (B) and P (A) = P (B), i.e. Pim(A) = Pim(B), then A ∼D B.

At this point, it is important to note that ⪯D is not a total ordering; it is only a partial
ordering, i.e. there exist events A and B in F(⪯D) such that A ⪯̸D B and A ⪰̸D B. This is
because there are events A and B in ℘D such that Pim(A) ⊆ Pim(B), e.g. Pim(A) = [0.1, 0.3]
and Pim(B) = [0, 0.5], etc. There is no straightforward comparison between these two events.
So, even though it is true that if A ⪯D B or A ⪰D B, then A ∈ F(⪯D) and B ∈ F(⪯D), it is
false that if A ∈ F(⪯D) and B ∈ F(⪯D), then either A ⪯D B or A ⪰D B.

Call ⪯ a qualitative probability just in case ⪯ satisfies the following axioms. For all A,B,C ∈
F(⪯),

Non-Negativity. ∅ ⪯ A.

Non-Triviality. ∅ ≺ Ω.

Transitivity. If A ⪯ B and B ⪯ C, then A ⪯ C.

Qualitative Additivity. Let A ∩ C = B ∩ C = ∅. A ⪯ B iff A ∪ C ⪯ B ∪ C.

Call the triple ⟨Ω,F(⪯),⪯⟩ a qualitative probability space just in case (i) Ω is a set, (ii) F(⪯)
is a σ-algebra on Ω, and (iii) ⪯ is a qualitative probability. I hope that the axioms above are
intuitive enough for the reader to understand. So, I will not explain any of them in detail.

The reader should note that I did not assume the following as an axiom on qualitative
probabilities.

Totality. For all A and B in F(⪯), either A ⪯ B or A ⪰ B.

So, it is possible that there exist A and B in F(⪯) such that A ⪯̸ B and A ⪰̸ B. After all, ⪯D
is only a partial ordering.

Call a qualitative probability ⪯ rigid-motion symmetric just in case for all A ∈ F(⪯), A ∼
τA for all rigid motions τ of A in Ω. Then, since Pim is rigid-motion symmetric and ⪯D is the
particular ordering induced by Pim, ⪯D is rigid-motion symmetric too, i.e. for all A ∈ F(⪯D),
A ∼D τA for all rigid motions τ of A in D. Furthermore, since Pim(∅) = 0 and Pim(D) = 1,
∅ ≺D D, satisfying Non-Triviality. And because for all A ∈ ℘D, 0 = P (∅) ≤ P (A), ∅ ⪯D A,
satisfying Non-Negativity. The stage is now set and I can prove that ⪯D is not a rigid-motion
symmetric qualitative probability.

Theorem 1. F(⪯D) = ℘D.

Theorem 2. ⪯D is not a rigid-motion symmetric qualitative probability.

Why does Theorem 2 matter? After all, Isaacs et al. have already specified a way to
assign every subset of D probabilities (precise or imprecise), i.e. through Pim. Isn’t that
all that matters? Why care further about the ordering induced by Pim? Well, Theorem
2 matters because it highlights a tension in their project. As explained above, ⪯D is rigid-
motion symmetric and satisfies Non-Triviality and Non-Negativity. So, by Theorem
2, ⪯D must admit some violations of either Transitivity or Qualitative Additivity. But
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Transitivity and Qualitative Additivity seem to be natural axioms on any probabilistic
ordering of events. Indeed, these two axioms are common across all major axiomatizations of
qualitative probability, e.g. Keynes 1921, de Finetti 1937, Koopman 1940, Luce 1968, Domotor
1969, Krantz et al. 1971, Fine 1973, etc. Furthermore, Icard 2016 has provided qualitative
versions of Dutch-book arguments for either axiom.

Given how natural Transitivity and Qualitative Additivity are and the qualitative
Dutch-book arguments for them, Isaacs et al. should give a good reason for rejecting at least
one of these axioms. At the very least, a rejection of one of these axioms must be clearly flagged
and indicated. Hence, this note was written for the sake of clarifying the consequences of their
proposal. While their proposal is definitely interesting, any adequate consideration of their
proposal must take into account the seemingly unattractive consequence of allowing violations
of either Transitivity or Qualitative Additivity.

Before closing this section, I’ll clarify what follows if it is insisted that any probabilistic
ordering ⪯ of events concerning a point about to be randomly chosen in D be a rigid-motion
symmetric qualitative probability. Such an ordering ⪯ isn’t defined on ℘D, i.e. F(⪯) ⊊ ℘D.8
So, there is some subset A ⊆ D such that A /∈ F(⪯), which implies that A ⪯̸ A. This means
that no probability (precise or imprecise) that is rigid-motion symmetric can be assigned to A.
For if A were assigned any probability (precise or imprecise) that is rigid-motion symmetric at
all, then A ⪯ A. But A ⪯̸ A. Therefore, contrary to Isaacs et al.’s claim, some propositions are
bound to be left out of the probability calculus, e.g. the proposition that the randomly chosen
point is in A. In terms of credences, this means that an agent S is ‘doomed to failure’ if she
wants to assign a credence to the proposition that the randomly chosen point is in A (Isaacs
et al. 2022, p. 900). Allowing credences to be imprecise will not help here, contrary to their
claim.

4 The usual interpretation of imprecise probabilities
At this point, the reader may wonder whether it is even possible for an ordering ⪯ of events
induced by an arbitrary imprecise probability function Pim to be a qualitative probability in
the first place?9 After all, for all we know, as long as ⪯ is induced by Pim, it may be impossible
for ⪯ to be a qualitative probability. If so, then my critique of Isaacs et al.’s project is unfair.

In this section, I show that under the usual interpretation of imprecise probabilities, accord-
ing to which an imprecise probability is a supervaluation over a set of probability functions, it
is possible to define ⪯ such that ⪯ is a qualitative probability. Here’s such a definition. Let G
be a family of precise probability functions, the supervaluation over which Pim is derived from.

Definition 2. A ⪯ B iff for all probability functions P ∈ G, P (A) ≤ P (B).

Theorem 3. ⪯, as defined in Definition 2, is a qualitative probability.

So, it is possible, under the usual interpretation of imprecise probabilities, to define ⪯ such
that ⪯ is a qualitative probability. Therefore, it is noteworthy that Isaacs et al. reject the
usual interpretation of imprecise probabilities.

While our reasoning is friendly towards imprecise credences, it is unfriendly towards
the standard way of interpreting them. We reject the idea of a credal committee
. . . Precise probability functions—even en masse—can’t do what needs doing. The
imprecise credences we advocate are nothing like sets of precise probabilities. (Isaacs
et al. 2022, p. 905, emphasis added)

8The proof of this claim is similar to the proof of Theorem 2.
9Note that Pim here is an arbitrary imprecise probability function, and not just the function defined in §2.
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Their rejection of the usual interpretation of imprecise probabilities makes more salient my
demonstration that ⪯D must admit some violations of either Transitivity or Qualitative
Additivity. After all, their insistence that imprecise probabilities are nothing like sets of
precise probabilities may be what compels them to embrace violations of either axiom.

5 Conclusion
In this note, I showed that Isaacs et al. need to embrace violations of either Transitivity
or Qualitative Additivity, should they insist on their proposal to assign every subset of D
a probability (precise or imprecise), while maintaining rigid-motion symmetry. But rejecting
either axiom seems unattractive, given how natural they are as axioms on qualitative probabil-
ities and the qualitative Dutch-book arguments favouring them. Any careful consideration of
their proposal as it stands must take into account the consequence of rejecting either Transi-
tivity or Qualitative Additivity. If the reader is comfortable with rejecting at least one of
these axioms, then she can go ahead and embrace their proposal.10

10I’m grateful to Alan Hájek, Michael Nielsen, Nathaniel Gan, Yoaav Isaacs and an anonymous referee for
their invaluable comments on this note. This work was supported by an Australian Government Research
Training Program (RTP) Scholarship.
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6 Appendix
Proof of Theorem 1. It is obvious that F(⪯D) ⊆ ℘D. So, all that’s left to be proven is
℘D ⊆ F(⪯D). Let A be an arbitrary event in ℘D. Since Pim is defined on ℘D, Pim(A) is
defined, which implies that Pim(A) = Pim(A). Because ⪯D is an ordering induced by Pim and
Pim(A) = Pim(A), A ⪯D A. This means that A ∈ F(⪯D). Therefore, ℘D ⊆ F(⪯D). Combining
with the fact that F(⪯D) ⊆ ℘D, F(⪯D) = ℘D. □

Lemma 1. If A ⊆ B, then A ⪯ B.

Proof. By Non-Negativity, ∅ ⪯ B −A. Apply Qualitative Additivity to get A = ∅ ∪A ⪯
(B − A) ∪ A = B. □

Lemma 2. Let A ∩ C ∼ B ∩ C ∼ ∅. A ⪯ B iff A ∪ C ⪯ B ∪ C.

Proof. Assume that A ∩ C ∼ B ∩ C ∼ ∅. (⇒) Apply Qualitative Additivity to A ∩ C ∼ ∅
to get A = (A ∩ C) ∪ (A − C) ∼ ∅ ∪ (A − C) = A − C. Through similar steps, B ∼ B − C.
Since A − C ∼ A ⪯ B ∼ B − C, Transitivity can be applied to get A − C ⪯ B − C. Then,
apply Qualitative Additivity to get A ∪ C = (A− C) ∪ C ⪯ (B − C) ∪ C = B ∪ C.

(⇐) This direction of the lemma can be proven through similar steps. □

Lemma 3. Let A ∩B = C ∩D = ∅. If A ⪯ C and B ⪯ D, then A ∪B ⪯ C ∪D.

Proof. See Krantz et al. 1971, pp. 211-212 for the proof. □

Proof of Theorem 2. Assume for reductio that ⪯D is a rigid-motion symmetric qualitative
probability. By the Banach-Tarski Paradox, B = A1 ∪ . . . ∪ An ∪ C1 ∪ . . . ∪ Cm. Then,
since F(⪯D) = ℘D by Theorem 1, B ∼D A1 ∪ . . . ∪ An ∪ C1 ∪ . . . ∪ Cm. Because ⪯D is
rigid-motion symmetric, Lemma 3 can be applied to get A1 ∪ . . . ∪ An ∪ C1 ∪ . . . ∪ Cm ∼D
ρ1A1∪. . .∪ρnAn∪τ1C1∪. . .∪τmCm. But since B1 = ρ1A1∪. . .∪ρnAn and B2 = τ1C1∪. . .∪τmCm,
A1∪. . .∪An∪C1∪. . .∪Cm ∼D B1∪B2. Apply Transitivity to B ∼D A1∪. . .∪An∪C1∪. . .∪Cm

and A1 ∪ . . . ∪ An ∪ C1 ∪ . . . ∪ Cm ∼D B1 ∪ B2 to get B ∼D B1 ∪ B2. Because B1 and B2 are
exact duplicates of B and ⪯D is rigid-motion symmetric, B ∼D B1 ∼D B2. Apply Transitivity
to B1 ∼D B and B ∼D B1 ∪ B2 to get B1 ∼D B1 ∪ B2. Then, Qualitative Additivity can be
applied to get ∅ ∼D B2. Since B ∼D B1 ∼D B2 and B2 ∼D ∅, by Transitivity, B ∼D ∅. Let
d ⊆ B be a cube of length 1

k
for some k ∈ N. Because d ⊆ B and B ∼D ∅, d ∼D ∅, by Lemma

1. And because ⪯D is rigid-motion symmetric, any translation ϕ of d is equiprobable to d, i.e.
ϕd ∼D d. Apply Transitivity to ϕd ∼D d and d ∼D ∅ to get ϕd ∼D ∅. Note that because
ϕd ∼D ∅, ϕd ∩ d ∼D ∅ by Lemma 1 since ϕd ∩ d ⊆ ϕd. Since ϕd ∩ d ∼D ∅ and ∅ ∩ d ∼D ∅,
Lemma 2 can be applied to ϕd ∼D ∅ to get ϕd ∪ d ∼D ∅ ∪ d = d. Then, Transitivity can be
applied to ϕd∪d ∼D d and d ∼D ∅ to get ϕd∪d ∼D ∅. This step can be repeated multiple times
to get D ∼D ∅, as k3 copies of d make up D. Contradiction, as ∅ ≺D D, by Non-Triviality. □

Proof of Theorem 3. The proof of Theorem 3 is trivial but tedious. So, I will only prove
that ⪯ satisfies Transitivity, but leave it to the reader to verify that ⪯ satisfies the rest of
the axioms.

Assume that A ⪯ B and B ⪯ C. These mean that for any arbitrary probability function
P ∈ G, P (A) ≤ P (B) and P (B) ≤ P (C). This in turn implies that for any arbitrary probability
function P ∈ G, P (A) ≤ P (C). By Definition 2, A ⪯ C. □
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