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RESUMÉ 

Considérées mathématiquement, les infinitésimales de Leibniz étaient des fictions, des entités 

qui ont emprunté leur réalité à l'inexhaustabilité nécessaire de la division du continu. Reste 

que pour Leibniz toutes les entités géométriques ou mathématiques étaient dans tous les cas 

inactuelles, des produits de l'imagination. Cependant, dans son projet de dynamique, Leibniz 

a formulé une distinction entre les causes réelles et les effets imaginaires ou géométriques qui 

constituent les phénomènes de mouvement. En outre, il a donné, de cette cause réelle, une 

interprétation quantitative, mv
2
, produit de la masse et de la vitesse qui sont tous deux des 

quantités de nature extensive. Mais par crainte de confusion entre le réel et l'imaginaire, un 

nombre d'interprètes ont jugé problématique que l'écart du modèle mathématique leibnizien 

du mouvement soit comblé par la force et la nature quantitative qui lui est attribuée. Dans ce 

qui suit, je soutiens que la compréhension de la force comme cause du mouvement nous 

oblige non seulement à tenir compte du rôle irréductible joué par les quantités mathématiques 

dans la nature causale de la force, mais aussi que les mathématiques déployées pour déplier 

ce rôle causal de la force consistent précisément dans la méthode du calcul infinitésimal.  En 

tant que telles, bien que les quantités infinitésimales soient des fictions, elles jouent un rôle 

dans le rapport actuel entre la causalité fondamentale et systématique du mouvement et son 

effet phénoménal et extensionnel. 

 

 

I. Introduction 

 

Leibniz’s Specimen Dynamicum presents a basic interpretive challenge. Given that 

this text was a synthetic sample of his dynamics project, what it prominently features is an 

alternative to a purely “imaginary” that is, merely geometrical or mathematical approach to 

corporeal motion, by posing force as the systematic foundation or cause governing the 

phenomenon of motion. Yet despite the meta- or infra- phenomenal status of force as the 

substantial and inherent reality of bodies, this very notion of force, understood as cause, plays 

a direct role in Leibniz’s alternative mathematical account of the laws of motion starting with 

the estimation of vis viva as mv
2
. The problem is most telling when Leibniz uses infinitesimal 

quantities in his account and measure of dead forces. Given the fictional status of 

infinitesimals, we encounter not only a description of force in geometrical terms but also in 

fictional geometrical terms. The Specimen Dynamicum not only requires us to understand 

how forces are to be conceived through the quantities that they engender in physical laws but 

also how the use of infinitesimals is part and parcel to this conception.   

 In what follows I argue for the necessity of these fictional infinitesimal quantities in 

Leibniz’s account by demonstrating what it means to understand force as cause. First I briefly 

take up the seeming illegitimacy of using fictional infinitesimal quantities to describe the 

actuality of force. With the help of prominent commentators, we see that infinitesimal 

quantities are not any more problematic than other standard quantities in an account of 

corporeal motion through force. The reason is that if we isolate force as a foundation of 

corporeal motion with a metaphysical reality unto itself then any quantitative account would 

be heuristically adequate but ultimately insufficient. Secondly, given that Leibniz’s own 

conception of force is immediately correlated with the quantity mv
2
 as its measure, I argue 

that we cannot fully evade quantities by reductively separating the metaphysics of force from 
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its purported mathematical measure. By showing the inadequacy of Leibniz’s own 

measurement of force I argue that what remains is nonetheless a positive and irreducible 

quantitative aspect in his conception of force. Thirdly, I argue that although we might not 

attach a particular quantity to this measure of force, Leibniz does provide sufficient means, 

through the architectonic principles of the equipollence of entire effect and full cause and the 

equivalence of hypotheses, to understand the quantitative nature of force qua cause. This 

requires us to understand that the causal nature of force is not only efficient but also 

teleological. It is this teleological dimension that allows us to grasp why forces are 

irreducibly quantitative in its organization of phenomena. In turn, I argue, through the 

Leibnizian critique of the “disorder” or incoherency of the quantities involved in the 

Cartesian account of motion, that to understand the causal nature of force is precisely to 

understand the ordering of the quantities in phenomena. Finally, I argue that the use of 

infinitesimals is part and parcel of this very ordering of quantities, a consequence, through the 

principle of continuity, of force qua cause. Infinitesimals then, despite being fictional and 

imaginary, are nonetheless an essential feature of what it means for force to be causal. Hence 

I conclude that although geometrical and mathematical quantities, including fictional 

infinitesimals, are imaginary, they are nonetheless at work in the reality of the causal 

engendering of phenomena, an actual bridge between causes and effects. 

 

II. The imaginary quality of fictional quantities 

  

Leibniz, in the publication of the first part of the Specimen Dynamicum in the April 

1695 issue of the Acta Eruditorum, adds a clause that was not in the original manuscript. 

Immediately after having described the nisus or solicitation of vis mortua (dead force) as 

infinite parvum, Leibniz adds the caveat that: “quanquam non ideo velim haec Entia 

Mathematica reapse sic reperiri in natura, sed tantum ad accuratas aestimationes abstractione 

animi faciendas prodesse.”
1
 This apologetic addition may have been aimed at assuaging his 

contemporaries but its tardy entrance into the text draws our curiosity. Indeed such a 

statement, regardless of its explicit and straight-forward manner, does nothing more than to 

state that dead forces are not actually infinitely small magnitudes but does not give any clue 

to how or why these fictional quantities are nonetheless useful in making “accuratas 

aestimationes”. Of course Leibniz's apologetic qualification of the fictional status of 

infinitesimal magnitudes is not any different from what he says frequently and unequivocally 

elsewhere. As early as 1676, Leibniz had already used the notion of infinitesimals as 

“quantitates fictitiae” in a clear way.
2
 Years later in the early 1700's Leibniz would respond to 

debates raging in the French Royal Academy concerning the infinitesimal calculus again by 

                                                 
*I thank Amanda Hicks, John Bova and the anonymous reviewer for their patience in reading the drafts of this 

text and for their comments. Thanks to Marc Elmund for his generous help with the figures. I am also grateful 

for the advice of Prof. Eberhard Knobloch and his numerous criticisms of a previous draft.   

 

Outside of abbreviations standard to Studia Leibnitiana, abbreviations here follow convention: 

AG = G.W. Leibniz: Philosophical Essays, ed. Roger Ariew and Daniel Garber (Indianapolis: Hackett 

Publishing, 1980). 

L = G.W. Leibniz: Philosophical Papers and Letters, 2
nd

 Edition, ed. Leroy Loemker (Dordrecht: Kluwer 

Academic Publishers, 1989).   

LC = G..W. Leibniz, The Labyrinth of the Continuum, ed. Richard T.W. Arthur (New Haven and London: Yale 

University Press, 2001). 

 
1
 Specimen Dynamicum hereafter abbreviated as Specimen. GM VI 238; AG 121. 

2
 A VII 6, 537; G.W. Leibniz, Quadrature arithmétique du cercle, de l’ellipse et de l’hyperbole, ed. Eberhard 

Knobloch, trans. Marc Parmentier (Paris: Vrin, 2004), 71.  
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designating infinitesimals as “ideals and well-founded fictions”.
3
 

 Although infinitesimal quantities can be understood as fictional, this characterization 

does not do much to clarify their role in the Specimen. We see throughout the Specimen and 

in other dynamical writings that Leibniz engages deeply in the structure of his infinitesimal 

calculus to provide an account of the different aspects of force, their relations to motion and 

the relations between the quantities involved in motion in the Specimen. Leibniz's correlation 

of dead force with an infinitesimal magnitude is part of a systematic use of the infinitesimal 

calculus to describe extended motion. With regard to the nature of motion, Leibniz 

unequivocally states that,  

“Porro ut aestimatio motus per temporis tractum fit ex inanitis impetibus, ita vicissim impetus 

ipse (etsi res momentanea) fit ex infinitis gradibus successive eidem mobili impressis, 

habetque elementum quoddam, quo non nisi infinities replicato nasci potest.”
4
  

Leibniz had previously defined motus or extended motion as “change of place” and 

“instantaneous element of motion” as motio.
5
 Impetus had also been defined as the 

momentary quantity of motion or the product of velocity and mass. Impetus is then mv, what 

the Cartesians called “quantity of motion”.
6
 Leibniz explains that the quantity of a motion, 

understood as extended corporeal motion, is made up of the “sum over time” of infinite slices 

of momentaneous impetus, which are, in turn, the product of momentaneous velocity and 

mass.
7
 Leibniz further says that the impetus themselves are the result of an infinite number of 

impressions or solicitations (nisus). In modern terms, we might say that the impetus is the 

momentaneous “quantity of motion” and that the nisus, impressions or solicitations, are 

higher-order differentials that integrate into impetuses.
8
 This use of higher-ordered 

                                                 
3
 Leibniz letter to Varignon of 20 June 1702, GM IV 110. 

4
 GM VI 238; AG 121. 

5
 GM VI 237; AG 120. 

6
 GM VI 237; AG 120. 

7
 GM VI 237; AG 120. 

8
 In François Duchesneau’s treatment of these passages in the Specimen, echoing Martial Gueroult’s treatment of 

the same passages in Dynamique et Metaphysique Leibniziennes, he ventures to give a mathematical formulation 

of conatus, nisus and their resulting role in dead and living force. Duchesneau argues,  

Une transposition symbolique possible nous donnerait pour le conatus (compte tenu qu’il s’agit d’une quantité 

vectorielle):  

Conatus = dv = gdt  

Pour l’impetus réduit à la quantité de mouvement dans l’instant (=quantité de motion), par contraste avec m|v| 

pour Descartes:  

impetus= ∫ 𝑔𝑑𝑡 = 𝑚𝑣
𝑡

0
 

pour l’impetus dans son effet temporal:  

summation temporelle d’impetus= 𝑚∫ 𝑔𝑡𝑑𝑡 = 𝑚∫ 𝑣𝑑𝑡
𝑡

0

𝑡

0
 

pour la force morte:  

vis mortua=𝑚∫ 𝑔𝑑𝑡
𝑡

0
= 𝑚𝑣 

pour la force vive:  

vis viva=𝑚∫ 𝑔𝑡𝑑𝑡 = 𝑚∫ 𝑣𝑑𝑡
𝑡

0
= 𝑚𝑠 = 𝑚𝑣2

𝑡

0
  

Although the formalization here, especially the last line on “living force”, makes little mathematical sense, it is 

one of the possible ways of understanding of Leibniz’s explicit development in these passages of the Specimen. 

It is one possibility of rendering the degrees involved in integrating dead forces into the quantity of living 

forces. Duchesneau and Gueroult do make explicit both the mathematical intentions of Leibniz and the 
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differentials demonstrates a deep rather than superficial commitment to the methods of the 

infinitesimal calculus in this account since it is not only the question of arbitrarily defined 

heuristic metaphors for infinitely small quantities that are at stake here. Rather Leibniz is 

clear that the very structure put in place to account for these different orders of magnitudes in 

motion is none other than that of his infinitesimal calculus developed years before.  

 In view of Leibniz's warning that infinitesimal quantities do not exist in nature, we 

could safely say that Leibniz limits his use of the infinitesimal calculus in his dynamics to an 

imaginary setting. We can understand Leibniz’s use of imagination here through what Leibniz 

says in the Specimen when he remarks on the insufficiency of approaching corporeal motion 

by taking bodies as mere extended things, that is, in the abstraction of geometrical or 

mathematical features, “pure mathematica et imaginationi subjecta”.
9
 In fact this imaginary 

status of the infinitesimals is an essential feature of the Specimen. The Specimen constitutes 

one of the final and most synthetic texts in a project of articulating a dynamics, a “Nova 

Scientia Dynamica” as Leibniz called it, based on force, which roughly occupied Leibniz 

from around 1678 to the late 1690’s.
10

 The project commenced in the mid-1670’s as a critique 

of Cartesian mechanism and evolved through successive stages of Leibniz’s development of 

the notion of force as the cause of motion. The foundational status of force and the naming of 

dynamics as special science was first publically announced in De primae philosophiae 

emendatione et de notione substantiae published in 1694, a year before the Specimen but 

such a formulation was already expressed in a letter to Bodenhausen in 1689.
11

 The central 

idea guiding this development was the conviction, against the Cartesians, that mere attention 

to the extended or geometrical features of motion is insufficient to provide a coherent theory 

of corporeal motion including laws of collision and conservation principles. Following an 

ideal of scientific knowledge of quasi-Aristotelian inspiration, Leibniz held that to know 

motion is to know its cause. The identification of the cause of motion as force then not only 

constituted a new science but also brought Leibniz to render force a centerpiece of his 

conception of substance in the 1680’s and 1690’s. In De primae philosophiae emendatione 

and other texts of the 1690's Leibniz is insistent on rendering vis viva (living force) and vis 

mortua (dead force) the two sides (form and matter) of a hylomorphic notion of substance.
12

 

As such, the dynamics project was one that was staked on the premise that a proper account 

of motion depends on an extra-geometrical register that is nonetheless capable of providing 

the grounds for its geometrical or extended features. This extra-geometrical or metaphysical 

register thus mediates the application of imaginary geometrical terms to the geometrical 

features of motion since the latter is itself only an imaginary thing. As such we should go a 

bit further here in noting that what are imaginary are not only the infinitesimal terms but any 

use of mathematics and geometry. Thus it seems that Leibniz is far from any danger of 

confounding the use of fictional infinitesimals with their hypostatization as real entities or, as 

he puts it, entities found in nature.  

 Although Leibniz's declarations concerning the fictional nature of infinitesimals here 

and elsewhere are unequivocal, we nonetheless face a major interpretive problem. It seems 

that what allows Leibniz to safely apply mathematics to phenomena is the imaginary status of 

both of these domains. Yet, it seems that the purely imaginary interpretation of Leibniz’s use 

of mathematics in the dynamics would render this use inadequate. On the one hand, the use of 

                                                                                                                                                        
difficulties and multiple confusions therein. François Duchesneau, La dynamique de Leibniz, Paris: Vrin, 1994, 

223; Cf. Martial Gueroult, Dynamique et metaphysique Leibniziennes (Paris, Les Belles Lettres, 1934), 38-39. 

See also fn. 31 below.  
9
 GM VI 241; AG 125 

10
 GM VI 234; AG 118. 

11
 GP IV 469. 

12
 GP IV 470. 
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mathematics in analyzing the imaginary, that is, extended features of motion does not 

overstep the bounds of Leibniz’s fictional use of infinitesimal quantities. We use something 

imaginary to describe another imaginary thing. On the other hand, this separation profoundly 

draws the account of motion away from its cause, force, for which seemingly only a 

metaphysical account can be given. Hence if the mathematical account of corporeal motion in 

the Specimen and elsewhere in the dynamics project must remain on the extensional level of 

imagination, separated from the causal level of force, then it seems that Leibniz has not 

exactly fared better than the Cartesians against whom the project was first conceived. Even if 

Leibniz could provide a more robust foundation of physics, the account of motion would still 

remain essentially imaginary, that is, geometrical and extended. At the same time if we 

attempt to treat forces, and not merely motion, through the infinitesimal mathematical terms 

provided in the Specimen, we seem to face the problem of granting infinitesimal magnitudes, 

the measure of dead force, for example, a real and actual status. This was what Leibniz was 

careful to explicitly deny. 

 A number of commentators have recently responded to this interpretive problem. D. 

Garber has argued that Leibniz uses mathematics to represent forces, but in this we should 

not mistake this representation as actualizing the quantities, especially infinitesimal ones, 

involved.
13

 Garber argues that mathematical terms “represent” dynamical terms but does not 

offer much in the way of understanding why and how this representation is adequate to 

provide the link between force qua cause and the extended features of motion qua effect. F. 

Duchesneau, a thorough interpreter of Leibniz’s dynamics who has a number of articles and a 

book-length treatment on the subject, offers an epistemological reading by arguing that the 

mathematical aspects of the Specimen constitute the elements of an analysis of motion (as 

opposed to a synthesis) which does not fully attain the completed science of a dynamics.
14

 

Duchesneau’s position is that a completed (synthetic) science of the dynamics is one that 

would dispense with these quantities except heuristically and operate synthetically through 

essential or formal terms.
15

 The use of quantities, infinitesimal and otherwise, are thus the 

elements for the modelization of motion which remain fictional precisely in the sense that 

they are useful for the analysis of phenomenon but can be dispensed with once the analysis is 

completed.  

 My argument here is roughly in agreement with Duchesneau’s general interpretation 

but aims at critically extending this view to provide an account of the crucial role that 

infinitesimals play in how these quantitative terms would lead to a completed science of the 

dynamics. That is, we must see the role of infinitesimals not only instrumentally in the 

analysis of motion but how these very quantities are irreducible in understanding force as the 

cause of motion in Leibniz's dynamics project. 

 The danger of not clarifying this role of infinitesimals in bridging force and motion is 

to slip into a reductively imaginary interpretation of the role of infinitesimals. This very 

danger is reflected in D. Rutherford’s recent commentary. Rutherford explicitly shares our 

interpretive problem stated above. He points out that Leibniz’s argument commits us to the 

position that momentary forces (ie. dead force), like the infinitesimals that describe them, are 

mere fictions. “[I]f force is real, it cannot be an infinitesimal quantity; if it is an infinitesimal 

quantity, it cannot be real.”
16

 As such, Rutherford argues, we must reject the possibility of any 

                                                 
13

 Daniel Garber, “Dead Force Infinitesimals, and the Mathematicization of Nature”, in Infinitesimal 

Differences, edited by Ursula Goldenbaum and Douglas Jesseph (Berlin and New York: Walter de Gruyter, 

2008), 281-306.  
14

 François Duchesneau, La dynamique de Leibniz (Paris: Vrin, 1994); Cf. François Duchesneau, “Rule of 

Continuity and Infinitesimals in Leibniz’s Physics”, in Infinitesimal Differences, 235-253. 
15

 Duchesneau, La dynamique de Leibniz, 260-262. 
16

 Donald Rutherford, “Leibniz on Infinitesimals and the Reality of Force” in Infinitesimal Differences, 256; A 
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adequate representation of force through mathematical means and limit the use of 

mathematics in the dynamics only to the various configurations of extended motion. Force is 

then an essentially metaphysical notion, something that Leibniz describes as “praeter pure 

mathematica et imaginationi subjecta, collegi quaedam metaphysica solaque mente 

perceptibilia esse admittenda” in the Specimen.
17

 Here, Rutherford adds, the “momentary” 

feature ascribed to dead forces soliciting movement does not last “for” a moment or any finite 

or infinitesimal amount of time but rather “at” a moment. As such, the fact that forces 

constitute the cause of motions does not mean that it constitutes the “principle” of such 

motions. Given the constraints that constitute the dynamics project, that is, the critique of 

Cartesian mechanism and the separation of a causal level of force from an imaginary level of 

motions, Rutherford's interpretation attempts to strike a balance between the metaphysical 

and scientific desiderata of the Specimen. In this reading even an epistemologically 

instrumental interpretation of infinitesimal quantities is misleading. If Leibniz is to be 

consistent, Rutherford argues, the mathematical terms ascribed to forces must be treated as 

heuristic in the loosest sense since forces can only be coherently taken as constituting the 

metaphysical and “internal” changes of a substance and not correlated in any strict way to the 

nature of motion itself.
18

  

Rutherford's sequestering of the status of forces to a metaphysical level is overly 

reductive. We agree that Leibniz's development of the notion of force in the Specimen and 

elsewhere possess a deeply metaphysical character that must not be ignored. Indeed, in the 

Specimen Leibniz uses the distinction between primitive and derivative forces to underline 

the per se or metaphysical nature of corporeal substance, understood as constant action 

(primitive), against their situated motions in the phenomena limited by their collision with 

other bodies (derivative). The measurable sort of force could only be the derivative sort since 

primitive force understood as the constant and immanent action of corporeal substances is 

non-phenomenal and escape measurement. Yet the Specimen remains a text aimed at 

employing force to explicate motion in a way that would refute and replace competing 

Cartesian, Occasionalist and (Cambridge) Platonist theories. As such, Leibniz clearly states 

the inadequacy of providing merely a theory of primitive force as “ad generales causas 

pertinet, quae phaenomenis explicandis sufficere non possunt.”
19

 The metaphysical import of 

Leibniz’s dynamics should be asserted but not at the cost of reducing forces to its exclusively 

metaphysical status. Rather it is precisely through forces understood as both primitive and 

derivative that Leibniz articulated the importance of providing a coherent foundation for a 

science of dynamics.  

The foundational task of the dynamics was developed throughout the late 1670’s up to 

the 1690’s, the two decades leading up to the Specimen. Part and parcel of this evolution, 

with metaphysical as well as scientific implications, was Leibniz’s guiding notion, already 

active in his initial critiques of Descartes in the 1678 De Corporum Concursu, of a direct 

association of force with a quantity, what he would eventually call the conservation of vis 

viva or force as mv
2
. This conservation, to be clear, is what Leibniz calls the measurement or 

estimation of force.
20

 This is something that Leibniz adopts from his Dutch-Parisian mentor 

Christiaan Huygens's theory of elastic collision and a major aspect of his entry into a full-

                                                                                                                                                        
related interpretation, largely consonant with Rutherford’s position is that of Robert Sleigh Jr. but applied to §17 

of Discours de Métaphysique; Cf.  Robert Sleigh Jr., Leibniz and Arnauld: a commentary on their 

correspondence (New Haven: Yale University Press, 1990), 117.   
17

 GM VI 241; AG 125. 
18

 This understanding of causation is also consonant with Rutherford’s more systematic interpretation in Leibniz 

and the Rational Order of Nature (Cambridge: Cambridge University Press, 1995).  
19

 GM VI 236; AG 119. 
20

 GM VI 243; AG 127. 
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fledged critique of Cartesian mechanism.
21

 The identification of force with a quantity mv
2
 is, 

in short, Leibniz’s path from a mere critique of mechanics into the dynamics qua special 

science. 

The over-emphasis of the metaphysical characterization of force is dangerous because 

it obliges us to give up too much of what Leibniz attempted to do in the Specimen. The role 

of force in bridging a metaphysical and phenomenal level in the account of force qua cause 

and motion qua effect should be emphasized rather than set aside in favor of a metaphysical 

reduction. The reason why commentators like Rutherford find this reductive solution 

attractive is because it is difficult to see how Leibniz could use mathematical terms in the 

account except in an imaginary manner. In this view since we do not want to treat forces as 

imaginary, we must reject its correlation with (imaginary) mathematical terms. To overturn 

this reduction of mathematics to a pure imaginary status, we must see how Leibniz’s 

conservation of force through the quantity mv
2
 cannot be reduced to the metaphysical realm. 

By examining Leibniz’s use of quantity in the dynamics, we find that, together with Leibniz’s 

larger metaphysical concerns, the use of mathematics plays an irreducible role in the account 

of forces without thereby dissolving the actuality of force into mere imagination.   

 

III. Complications in the measure and conservation of vis viva 

 

 A comprehensive account of Leibniz’s use of mv
2
 is too complex to enter into here 

and we shall focus only on its role in the Specimen. Yet to slightly contextualize this quantity, 

we simply note that Leibniz had as early as 1669 noted the controversy over conservation 

principles of motion occurring through the British Royal Society’s Philosophical 

Transactions in 1668 wherein John Wallis, Christopher Wren and Christiaan Huygens 

published papers concerning the conservation of mv, m|v| and mv
2
.
22

 Leibniz’s serious 

engagement with the notion of mv
2
 as the quantity conserved in motion is an explicit aspect 

of his 1678 De Corporum Concursu. From 1678 onward, Leibniz would return again and 

again to this quantity and it is no surprise that we find it explicitly in the Specimen as a 

“measure of force”.
23

 

 What is surprising is that the guiding role played by the quantity mv
2
 in the evolution 

of Leibniz’s dynamics ends up being presented in the Specimen in a different way. His uses of 

mv
2
 in many of the texts leading up to the Specimen are associated with the laws of collision, 

close to the original Huygenian context. Located in the posthumously published second part 

of the Specimen, not only does the explicit discussion of the laws of collision proceed without 

the explicit use of mv
2
 but, in the first part, the quantity becomes attached to another example, 

that of the motion of a pendulum. In earlier dynamical works such as De Corporum 

Concursu, echoing the works of Edme Mariotte whom he explicitly mentions in the 

Specimen, Leibniz makes use of pendulum examples but as a case of collision between two 

pendulums at the base of descent.
24

  

                                                 
21

 Cf. Christiaan Huygens, “The motion of colliding bodies”, trans. Richard J. Blackwell, Isis, Vol. 68, No. 4 

(Dec., 1977), 574-597. 
22

 Eric J. Aiton, Leibniz: A Biography (Bristol and Boston: Hilger Alexander, 1985), 30; Cf. Philip Beeley, “A 

Philosophical Apprenticeship: Leibniz’s Correspondence with the Secretary of the Royal Society, Henry 

Oldenburg” in Leibniz and his Correspondents, edited by Paul Lodge (Cambridge: Cambridge University Press, 

2004) 47-73, 55. 
23

 GM VI 243; AG 127. 
24

 GM VI 240; AG 123; G.W. Leibniz, La réforme de la dynamique, ed. Michel Fichant (Paris: Vrin, 1994), 265;  

Edme Mariotte, Traité de la percussion ou du chocq des corps, Paris 1673, 8-22. 
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Figure 1

25
  

The case in the Specimen is different in that it attempts to measure force through the 

unconstrained motion of the pendulum. This association of mv
2
 with the unconstrained 

motion of the pendulum reveals an important aspect of Leibniz's argument in the Specimen. 

In taking a closer look, we examine the difficulties in establishing the conservation of vis viva 

through the quantity mv
2
.    

 In the passage that immediately follows his announcement for obtaining a “measure of 

force”, Leibniz appeals to a series of examples involving pendulums. The first and simplest 

case considers two pendulums, side by side, of equal mass, A and C. Referencing Galileo's 

law of falling bodies, Leibniz reasons that the pendulum A with a speed of 1 unit ascends to a 

height of 1 foot. In turn the pendulum C with the speed of 2 units ascends to the height of 4 

feet. This means that a pendulum with 2 units of speed has four times as much power, as 

Leibniz calls it, or work in modern mechanical terms, than a pendulum of the same mass 

moving at 1 unit of speed. Conversely this also means that the speed attained by the second 

pendulum C at the base of their descent will be twice that of the first pendulum A.  

 
Figure 2

26
 

Leibniz draws the conclusion from this demonstration that, “Eodemque modo 

generaliter colligitur, vires aequalium corporum esse ut quadrata celeritatum, et proinde vires 

corporum in universum esse in ratione composita ex corporum simplice et celeritatum 

duplicata.”
27

 The veracity of mv
2
, as opposed to 1/2mv

2
, for the conservation of energy is not 

our concern here. Indeed, Leibniz does not need to make explicit the gravitational constant or 

the factor of ½ since he constructs a suitably simple comparative case between the two bodies 

A and C (of equal mass). All that needs to be demonstrated is that the quadratic increase of 

speed (acceleration) drawn from his use of Galileo’s law of falling bodies means that the 

height (four times) attained by body C directly reflects the principle that the linear difference 

                                                 
25

 The sort of experiment Leibniz describes in De Corporum Concursu (section 6-2) models the motion of two 

pendulums A and B colliding at the base of descent; Cf. Leibniz, La réforme de la dynamique, 131. 
26

 Figure reconstructed from AG 128.  
27

 GM VI 245; AG 128. 
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of speed between the two masses is proportional to the quadratic difference of height and 

hence power [virtus]. Yet despite providing an adequate measure for the quantities in this sort 

of example, it has not attained the status of a conservation principle for vis viva. I follow 

Carolyn Iltis here is maintaining that although Leibniz has achieved a measurement for the 

conservation of potential and kinetic energy, it is far from clear that he has established a 

conservation for vis viva or its universal measure.
 28

    

Leibniz’s argument here, brilliant as it is, does not provide such a conservation. Iltis’ 

critical remarks on the earlier works like Brevis Demonstratio Erroris Memorabilis Cartesii 

et Aliorum Circa Legem Naturae and §17 of Discours de métaphysique, are equally 

applicable to the Specimen. The point is that although Leibniz has given a measurement of 

some quantity conserved in nature, namely energy-work, this measure is not generalizable to 

other cases and a demonstration of this generalization has not been provided here. In this 

example above, the conservation of vis viva is presumed rather than demonstrated. Iltis 

further remarks that in the eventual history of the conservation of energy, scientists like 

Mayer, Joule and Helmholtz were also similarly beholden to a “metaphysical certainty” of the 

general conservation of energy guiding their empirical work.
29

 Duchesneau has argued 

against Iltis in remarking that there can be no empirical principle adequate to providing such 

a demonstration of the conservation principle.  With respect to the conservation of vis viva, 

there are only, for Duchesneau, “regulative theoretical principles for the interpretation of 

facts.”
30

 As such, for Duchesneau, Iltis sets up an impossible criterion in criticizing Leibniz. 

In reading these interpretations synthetically, we can observe that what Duchsneau and Iltis 

agree on is that insofar there can be no empirical demonstration for a generalized 

conservation of vis viva without first supposing it, what this pendulum example demonstrates 

is still at a certain distance from a measure of vis viva as such. In this, Leibniz’s concept of 

force should then not be strictly identified with the conservation of mv
2
 but rather the very 

idea of some quantity conserved in the nature of motion.
 31

 We have further reason then not to 

separate the “metaphysics” of force from its “empirical” measurement in a radical separation 

of a non-quantitative primitive force from its quantitative or extended counterpart, derivative 

force. The notion of force is irreducibly quantitative even if it needs not be correlated to the 

specific quantity mv
2
.  

We will examine some aspects of the underlying methodology of measure in this 

example a little later. What is crucial for now is to show that these complications in 

establishing a measure of vis viva allow us to make clear the real stakes of his arguments 

here. Before entering into a more direct discussion of this, we should first see the immediate 

aims of this conservation principle. In the passages that immediately follow the simple 

pendulum example discussed above, Leibniz provides a more complex and critical analysis.  

Leibniz moves from his simple pendulum case to critique what he takes to be the main 

                                                 
28

 Carolyn Iltis, “Leibniz and the Vis Viva Controversy”, Isis, Vol. 62, No. 1 (1971), 21-35, 26. 
29
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30
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2
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flaw, among others, of Cartesian mechanism, the alleged conservation of the “quantity of 

motion” mv or impetus. Here Leibniz modifies his initial pendulum example to one that more 

resembles, but does not coincide, with his argument, mentioned above, in De Corporum 

Concursu.
32

 This time, body A will be 2 units in size and C will be 1 unit in size. Their 

maximum speeds at the base of descent remains the same as the previous, A will be traveling 

at 1 unit of speed and B will be traveling at 2 units. Now according to his construal of the 

Cartesian laws of motion, the “quantity of motion” (mv) conserved in both bodies will be the 

same. The quantity in A will be 2(=2·1) and the quantity in C is also 2(=1·2). In this case, 

Leibniz can show, drawing from the fact that the Galilean principle of the rate of fall is 

independent of mass, that since the speeds of the two pendulums are the same as the earlier 

example, they would behave in the same way. The body A would ascend to the height of 1 

foot and C would ascend 4 feet. The quantities of work in this example will be different from 

the earlier example but assuming that the Cartesian “quantity of motion” mv was conserved, 

we could substitute one body for the other at the base of the descent of A and the start of the 

ascent of C since the “quantity of motion” between the two bodies would be identical at this 

state. Here Leibniz points to the absurdity that the “quantity of motion” conserved in body A 

would be capable of raising body C to a height of 4 feet. Not only is this empirically 

inadequate but Leibniz argues that this would result in a perpetual motion machine, an a 

priori demonstration of absurdity.
33

 This is, in Leibniz's terms, an ad absurdum argument 

against the idea that the quantity conserved in motion is indeed mv.  

Although saddled with some of the similar problems in the previous example, this 

case shows more clearly the stakes involved. Its explicit taking aim at the Cartesians is 

obvious but in this Leibniz also reveals how he sought to put a theory of motion on the right 

footing. The conservation of mv is demonstrated as false since it leads to an absurdity but this 

demonstration does not sufficiently render the conservation of vis viva in alternative quantity 

mv
2
. We see that the argument only requires the hypothesis that some quantity is conserved in 

motion and with this it follows from the demonstration that the quantity conserved is not mv. 

Reading this back to the earlier example, we see that Leibniz can assert that some quantity is 

conserved in the motion of the pendulum between its height of ascent and its speed at the 

base of the descent. Yet without already positing such a quantity at the outset such a quantity 

conserved cannot be demonstrated except through unwarranted generalization. Yet Leibniz 

nonetheless provides evidence that some quantity is conserved in motion and that this 

quantity is not mv. This is not only a judicious critique of the Cartesians but more importantly 

shows the hypothetical status of Leibniz’s use of mv
2
 as the quantity conserved in this case of 

the motion of the pendulum.  

What we can draw from this analysis is that Leibniz's notion of force has a 

quantitative aspect and cannot be reduced to its metaphysical status. Indeed, Leibniz is 

committed to the idea that it is through the superiority of this quantitative measure that allows 

us, at least in part, to deem force the “cause” of motion. Earlier, we reasoned, with 

Rutherford, that mathematical terms could only be adequate to the extensional features of 

motion and not to the causal and actual reality underlying such phenomena. We also 

emphasized that the non-phenomenal nature of force was important to its conception and 

development precisely because it forms the core of his criticism of the purely mechanical and 

geometrical focus of Cartesian mechanics. Yet we also see that part and parcel to this 

                                                 
32
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conception of force is quantitative and the reduction of force to metaphysics would result in 

the independence of this quantitative aspect. We noted that the conservation of the quantity 

mv
2
 was developmentally central to the evolution of the notion of force since the mid 1670's. 

Despite the incompleteness of Leibniz's argument for this quantity in the Specimen, we see 

that the idea that there is some quantity conserved in motion is a different from the question 

of what this quantity is.  

 

IV. Stuctura systematis, architectonics and final cause 

 

Our general interpretive problem can now be posed differently. We have suggested 

that Leibniz's notion of force has an irreducible quantitative aspect but just as we are wary of 

reducing force to a metaphysical notion, we are just as wary of reducing it into purely 

extensional qualities. Moving forward, if we succeed in showing a non-phenomenal (non-

empirical) use of quantity in Leibniz's notion of force, we can strike a different kind of 

balance between the metaphysical and scientific desiderata of this notion in the Specimen.  

The key to unlocking this use of quantity is to look at the method behind Leibniz's 

measure of force. Recall that in the second pendulum example, critical of the Cartesians, 

Leibniz treats two pendulums, A with the mass of one unit and C with mass of two units. 

Under the Cartesian hypothesis, these two bodies possess the same amount of “power”, 

conserved as the quantity mv. As it occurs, body C will still attain a height of 4 feet and body 

A will attain 1 foot. In this way, Leibniz argues that the results are paralogistic and would, 

under appropriate arrangements of the pendulums, lead to a perpetual motion machine. 

Instead of directly arguing through the phenomenon of the work and the conservation of 

energy, Leibniz's ad absurdum argument here relies on the more general principle of what he 

calls the equipollence of cause and effect. In the Specimen, Leibniz defines this principle by 

remarking that, “naturam nunqua sibi viribus inaequalia substituere, sed effectum integrum 

semper causae plenae aequalem esse.”
34

 By effect here Leibniz means the entire phenomenon 

of motion understood as the entire range of the extended or geometrical features (size, shape 

and speed) in a motion. In turn, cause is to be understood as what engenders this range of 

quantities in a motion. In the terms of cause and effect, Leibniz's demonstration of a 

paralogism is in fact the argument that the “cause” proposed by the Cartesians cannot be 

adequate to the entire series of effects rendered quantitatively. 

Our aim here is to stick as close as we can to the Specimen but we cannot ignore the 

immense accumulation of work that led to such a synthetic text. In brief we can underline the 

importance that the principle of the equipollence of entire effect and full cause played in the 

conception and development of the entire dynamics project.
 35

 Already noted by Leibniz in 

the 1676 Elementa philosophiae arcanae, he designates this principle as the primary axiom 

notion governing physics or physical things.
36

 Following commentators like Gueroult and 

Duchesneau, we see how the deployment of the principle allowed Leibniz to move from an a 

posteriori method of analyzing motion in his earlier dynamical writings to an a priori method 

of analysis in the matured view starting around the 1689 Phoranomus seu de potentia et 

legibus naturae and Dynamica de potentia et legibus naturae corporeae.
37

  The problem that 
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Leibniz faced in his earlier dynamical work in the late 1670’s was that although his 

arguments were sufficient to show that the Cartesian laws of nature were erroneous and 

already contained arguments for the superiority of the conservation of mv
2
, not only was this 

insufficient to understand this quantity conserved as the conservation of force but it was also 

far from establishing force as the immanent cause of motion inherent in corporeal substances. 

What marks Leibniz’s maturation was the use of the equipollence of cause and effect to 

develop a formal understanding of cause and effect. Developed in the Dynamica, the a priori 

determination of formal effect is understood as the power to act and the formal cause 

understood as the cause of this power, that is, force. This methodological shift accounts for 

why examples concerning unconstrained motions, say a pendulum, play a central role in his 

estimation of vis viva. These are examples where formal effects are shown through the 

exhaustion of motion attaining rest, what Leibniz calls “violent” effects since in such motions 

power is measured by the “consumption” of power resulting in rest. As we have seen, this 

form of measurement is precisely the sort that Leibniz uses in the Specimen. This shift also 

accounts for why these measurements of forces can only be the result of comparison. A 

collision of bodies preserves the power to act redistributed between the colliding bodies. As 

such force is more directly measured by comparing the exhaustion of different motions or, in 

modern terms, the transfer of kinetic into potential energy. 

We follow Gueroult and Duchesneau in pointing out that the development of a formal 

treatment of the equipollence of cause and effect constitute the aim of such an a priori turn in 

the dynamics.
38

  This move to a formal understanding of cause and effect is what allows 

Leibniz to definitively move away from the insufficiencies of his earlier empirically driven 

reform of what remained essentially a “Cartesian” mechanics. Leibniz could, through this 

turn, impute formal cause and effect to the inherent nature of bodies themselves and hence 

remove himself from a range of possible kinematic (Cartesian, occasionalist or otherwise 

mechanistic) interpretations of his reformed mechanics. In his separate correspondences to 

Papin in 14 April 1698 and to De Volder in 23 March/3 April 1699 (a few years after the 

Specimen), Leibniz could even make a syllogistic argument to define the capacity to act 

through the measurement of the exhaustion of a motion according to a ratio of the square of 

velocity and time.
39

 Such an argument leads to issues beyond our scope here but these 

developments contextualize the Specimen insofar as we can better appreciate how the 

metaphysical understanding of force goes hand in hand with a shift in the manner in which 

Leibniz conceived of the problem of measuring force. In brief, the developmental 

conceptualization of force as the cause of motion coincides with a formalization of the 

quantities in motion, the means through which measurements are put into meaningful 

correspondence. Rather than a separation of the quantitative aspects of motion from their 

metaphysics, the methodological separation of phenomena and metaphysics was precisely 

what Leibniz had to reject and overcome in order to lend credence to the metaphysical reality 

of forces via its determining causal role in ordering the phenomenon of motion.   

We avoid directly imputing such a developmental discussion into the Specimen 

because this text is not one relies on the formalization of cause and effect, something left 

aside for a more condensed explication. However this condensation also reveals how Leibniz 

understood the architectonic principles such as the formal treatment of the equipollence of 

cause and effect, in relation to the dynamics in general. That is, the argument that Leibniz 

pursues in deploying this architectonic principle is a teleological one. Hence in understanding 

what it means for effect to be equipollent to cause in the Specimen, we must emphasize that 
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cause is, at least in his argument here, to be understood teleologically.  

In the Specimen and other texts of the dynamics project, Leibniz emphasizes a double 

sense of causation in understanding motion. The world is governed through two 

interpenetrating but non-conflicting kingdoms, the kingdom of power, that of efficient 

causality and the kingdom of wisdom, that of final causality. Final causality is not however 

solely concerned with the determination of normative values, as one might imagine, 

separating a realm of facts from one of norms. Final causes, as Leibniz argues, have scientific 

importance and do not reduce metaphysically. After all, the idea that from the wisdom and 

providence of God the creator follows the best of all possible worlds is a notion that, for 

Leibniz, plays an ampliative role in many domains. In this vein, Leibniz argues in the 1696 

Tentamen Anagogicum, around the same period as the Specimen, that the inadequacy of 

geometry for demonstrating the laws of motion is due to the fact that it can only rely on 

deductive necessity whereas the demonstrations of actuality require appeal to the degree of 

harmony or perfection in the principles, that is, as Leibniz calls them, « des principes plus 

sublimes, qui marquent la sagesse de l’auteur dans l’ordre et dans la perfection de 

l’ouvrage. »
 40

 In his separation of the governing principles of the two “kingdoms” in this 

text, this principle of harmony and perfection, or final causality, Leibniz argues, correspond 

to the determination of architectonic principles. 
41

 

Architectonic principles understood as teleological causes are scientifically important 

precisely because geometrical reasoning is too deductively strict to provide a sufficient 

account of phenomena. Hence, on the one hand, laws of motion cannot be deduced 

geometrically and on the other hand, the geometrical features of motion are not sufficient 

reason for their actuality but only their possibility. The specific case Leibniz aimed to address 

in the Tentamen Anagogicum was the controversy over reflection (catoptric) and refraction 

(dioptric) principles in optics. In brief, the Snell-Descartes law, argued by Descartes in his 

1637 Discours de la méthode, had caused a controversy that pitted Fermat against the 

Cartesians. Leibniz was well-read on this topic and also noted Huygens' and Molyneux's 

contributions to the controversy. The controversy was essentially about the principle that 

governed the motion of light in reflection on a surface and refraction through a medium. On 

the question of refraction, the Cartesians, sticking with a mechanistic explanation, argued that 

light would move through the shortest path through the medium and Fermat argued 

teleologically that light would travel with the fastest speed through the medium. The problem 

was that it turned out that both Descartes and Fermat provided calculations that were 

adequate to observation. From the mere description of the geometrical features of the motion 

of light we could not judge between the appropriate principles that governed this very 

motion. 

 Leibniz’s contribution to this debate was that both these opposing positions were in 

some sense right but that neither could grasp the harmony between the efficient and 

teleological causes. Leibniz reasoned that both approaches could be harmonized not only to 

give a single explanation that combined efficient and teleological understanding but also give 

a single principle for reflection and refraction. Leaving out the details here we simply note 

that Leibniz argues that only an architectonic principle, what he calls the principle of the 

“effect of the greatest ease” or “most determined path”, can allow us a maximally explanatory 

but unique principle for determining the actual path of light.
42

  

In the direct context of the Specimen, Leibniz cites, for the sake of authority, that his 

work on the optics published in the Acta Eruditorum of 1682 Unicum Opticae, Catoptricae, 

et Dioptricae Principium had already been commended by Molyneux. The principle of 
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“effect of greatest ease” discussed in the Tentamen Anagogicum refers back to this 1682 

article for which Molyneux gave a partial translation.
43

 Although the problems from the 

domain of optics play a minor role here in the Specimen, the question of this convergence 

between efficient and final causes is significant. As part of the same discussion in the 

Specimen, Leibniz underlines his previous mistakes in understanding efficient cause. Here, 

Leibniz recounts the “materialism” of his youth. Leaving out explicit mention of Hobbes, 

who was no small influence in his youth, he notes the Democritean, Gassendian and 

Cartesian inspiration of his earlier work like the Hypothesis Physica Nova. In recounting his 

youthful follies, he emphasizes the mistake of thinking that, “omne incurrens suum conatuum 

dare excipienti seu directe obstanti qua tali.”
44

 Here Leibniz makes clear that the development 

of the concept of force allowed him to understand efficient causality without any commitment 

to this model of the transfer of conatus or influxus physicus.
45

 That is to say, the efficient 

causality involved in collision is not the transfer of geometrical quantities from one body to 

another. Rather, motion is the result of the immanent action of force within a substance. The 

most obvious implication here is that a body at rest does not simply “receive” the conatus of 

the body striking it. The quantities of conatus and the effects that result from collision are part 

of a systematic organization of forces that reflect immanent rather than external causes. This 

is what Leibniz means when he argues in the Specimen that the concept of force is meant to 

provide a “structura systematis” that allows us to avoid “quae per se ex nudis motus legibus a 

pura Geometria repetitis consequerentur.”
46

 As such this systematic structure is one where the 

usual sense of an “efficient cause” is understood as metaphysically and architectonically 

convergent or harmonious with teleological causation.   

What the development of force, through a stuctura systematis, adds to the account of 

motion, regardless of whether we are considering the collision of bodies or the path of light is 

precisely that efficient cause is to be understood as part and parcel with teleological cause. 

Efficient cause cannot be understood by itself since it would have to rely on the inadequate 

resources of geometry. Force qua cause allows us to understand how cause engenders effects 

qua motions in a manner “structura systematis”. Efficient cause is not then a question of 

transferring quantities such as energy from one body to another. Efficient cause allows us to 

calculate motion and predict its behavior through principles and quantities both of which are 

governed and ordered teleologically. As such, force is cause insofar as it is the systematic 

ordering of motion and motion is in turn nothing but the quantitative or geometric values 

expressed in the change of place. The causal nature of force is thus the systematic ordering of 

the quantitative values involved in motion.  

A further point to draw Leibnizian efficient causality away from intuitive notions of 

the “transfer” or “influx” of a quantity in one body to another in collision is that the force or 

“power” qua potentia involved in Leibnizian dynamics is not an Aristotelian “potential” that 

comes to be actualized. For Leibniz, force is in constant action, the immanent reality, qua 

actio, of corporeal substances. In the narration of his youthful errors, Leibniz underlines his 

ignorance of this notion. Indeed, his maturation through the evolution of the concept of force 

results in the constant activity of force even in a body considered to be at rest. The idea is that 

no body is per se at rest and that relative rest can only be hypothesized for the purposes of 

modeling motion. As such the constant action of force in a body, force per se, is present even 

in the body considered at rest qua resistance. In this we see that the causality of force in 

motion can neither be intuitively understood mechanically as the efficient “transfer” between 

potential energy and kinetic energy nor through Aristotle as the actualization of a potential. 
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The conservation of vis viva is thus nothing but the ordering of the quantities in motion.  

We cannot pretend to have given a complete analysis of such a notoriously difficult 

problem as Leibnizian causality here. Regardless of its complexity, we can nonetheless 

establish that, for the purposes of dynamics, final causes play a determining (and 

harmonizing) role in efficient cause.
47

 As such, Leibniz remarks in the Specimen that once the 

architectonic or “general and distant” principles have been established, “quoties postea de 

rerum naturalium causis efficientibus propinquis et specialibus tractatur, animabus aut 

Entelecheiis locum non damus, non magis quam otiosis facultatibus aut inexplicabilibus 

sympathiis.”
48

 That is, once established, the deeper principles for determining efficient causes 

need not be evoked in using these very causes for purposes of measurement.  

 As such, how does the conservation of force in motion, as mv
2
 or some other quantity, 

measure force itself? In view of the analysis above, we can only say that this “measure” is a 

feature of the comparability of the systematic arrangement of phenomena. The 

epistemological necessity of force as Leibniz emphasizes again and again is due to the 

inadequacy of geometry to furnish a coherent theory of motion. The architectonic principle 

behind this is the equipollence of cause and effect. In strictest sense one cannot say that the 

speed of a pendulum at the base causes it to reach a certain height any more than the speed 

and mass of a certain ball causes the speed of a ball that it collides with. We understand these 

quantities as effects, the entire range of motions and the arrangement of the quantities 

involved therein. As such, the entire range of motions in a pendulum swing is the effect 

caused by force understood architectonically. What it means to measure force then is to 

provide a framework for the comparison of effects through the principle of the equipollence 

of cause and effect.  

The quantities involved in this framework aimed at comparing effects in order to 

compare causes are, as we have argued, relative. Of course, within the account in the 

Specimen, such an organization is given through the conservation of mv
2
. We see that this 

“measure” of force is given architectonically or systematically, that is, by comparison across 

different cases. There is no direct “measure” of force but rather a relative measure through 

comparison. Once such a “measure” is architectonically given, we can directly treat 

individual cases through a notion of efficient cause. Yet even in this move from the 

systematic to the particular cases of efficient cause, the use of quantity remains relative. In 

the pendulum examples, Leibniz “measures” force by taking the effects exhibited in one case 

in comparison with the effects exhibited by another. Sticking with the equipollence of effect 

and cause, the quantitative differences of effects, registered in terms of mass  and velocity, 

imply a difference of force . The role played by the conservation of force mv
2
 is thus that of 

providing a capacity to compare forces through comparing motions or effects. Since force 

qua cause is non-phenomenal only effects can be compared. In understanding the way in 

which this comparison occurs, it is important to bear in mind that the quantity conserved in 

motion is distinct from the idea that some quantity is conserved. The idea that some quantity 

is conserved provides the condition and framework for the comparability of effects. This 

means that an essential feature of force is the organization of the effects that it engenders. As 

such, the comparability of effects, through the quantitative means governed by the 

equipollence of cause and effect, is part and parcel of what it means for force to cause 

motion.   
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This analysis leads us to understand the relationship between force and the quantities 

implied in the phenomenon of motion, qua effects, in a different way. Force is cause in the 

sense that it arranges the phenomenon of motion in a way that God could bring about the best 

of all possible worlds. As such, force is a structurally causal principle that governs the 

organization of phenomena. This organization is none other than the organization of the 

phenomenon of motion which is itself, in turn, none other than geometrical or extensional 

displacement (change of place). The explicit way in which this organization occurs is through 

the conserved quantity mv
2
 but this is only hypothetical in Leibniz’s understanding and a 

revisable feature of the relation of force and motion (cause and effect). Hence if we step back 

from the particular hypothesis of the conservation of mv
2
, we find that what is essential in 

Leibniz’s argumentation is the equipollence of cause and effect. This is the architectonic 

principle responsible for understanding why force is irreducibly quantitative but not 

essentially tied to particular quantities such as the conservation of mv
2
.  

 What is then the irreducible quantitative nature of force? It is clear that the relation of 

force to motion is quantitative only in the comparison between effects. This comparability is 

however not possible without the governing role of force over its motion, as cause and effect. 

This governing role is however the organization of the relation between quantities, not the 

quantities themselves. The quantitative feature of force then is not its association with this or 

that quantity strictly speaking but rather the structural organization of quantities. The 

structuring of relative quantities is what is irreducible in Leibniz’s understanding of force, a 

quantitative feature that is irreducible to metaphysics.  

 

V. Equipollence, equivalence and continuity 

 

 We are now in a position to return to the problem of infinitesimal quantities in the 

Specimen. Infinitesimal quantities like any other quantity in the Specimen are relative to each 

other. We have discussed Leibniz’s framework for comparing non-quantitative forces through 

the quantities available in motion through the equipollence of cause and effect immediately 

above. To push this framework of comparability a step further, we turn to a more 

sophisticated framework of the comparison of quantities given through the architectonic 

principle of the equivalence of hypotheses. Leibniz’s use of the equivalence of hypotheses is 

most known from his correspondence with Clarke, and indirectly Newton, over the relativity 

of motion in the controversy over Newtonian space-time. The term itself is drawn from larger 

contemporaneous discussions, from the geocentric-heliocentric debates, about how the same 

a posteriori predictive models for the movement of the celestial bodies can roughly be 

equivalent despite the contradictory theoretical hypotheses that grounded these models. 

Although questions of just what kind of space-time position Leibniz held and how Leibniz 

understood the relation between his affirmation of the equivalence of hypotheses and 

astronomy are currently debated questions, we shall stick solely to his use of the principle in 

the Specimen.  

In the second and posthumously published part of the Specimen
49

, Leibniz invokes the 

principle of the equivalence of hypotheses in a rather minimal way. He notes, in criticism of 

Descartes’ laws of motion that,  

“aequivalentiam Hypothesium nec per corporum inter se concursus mutari, adeoque tales 

motuum regulas esse assignandas, ut natura motus respective maneat salva nec ex eventu post 

concursum divinari possit per phaenomena, ubi ante concursum fuerit quies aut determinatus 

motus absolutus.”
50
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Echoing earlier geocentric-heliocentric debates, the basic case of the equivalence of 

hypotheses is the case of the relation of a moving body with a stationary one. The principle 

states that the organization of quantities results in the same effect regardless of which body 

we take to be moving and which one stationary. Since Leibniz holds that no body is actually 

stationary, the principle can be generalized to allow that all degrees of motion are relative 

within a motion. As such, the quantities organized through force qua cause not only require 

comparability but that this very comparability is also understood as relative.   

The relativity of the quantities given through the comparison of motion governed by 

the equivalence of hypotheses entail that the quantities in the phenomena of motion, ranging 

from rest to accelerated motion, are relative to each other. This relativity is usually taken by 

commentators to treat problems in Leibniz’s relativity of space-time through the lens of 

Galilean invariance but in the context of the Specimen refer directly to questions of 

continuity. Here however Leibniz uses the equivalence of hypotheses in the Specimen to treat 

the imaginary nature of continuous motion. To clarify this, we start with how the quantities 

involved in motion can be taken as infinitesimal. Leibniz argues that infinitesimal quantities 

are taken to be infinitesimal relative to other quantities taken to be finite. In this, Leibniz 

aimed to make use of Galileo’s position by improving on it. Concerning the problem of 

infinitesimal solicitations or nisus described through the use of dead force that we considered 

at the start of our investigation, Leibniz remarks that, “Et hoc est quod Galilaeus voluit, cum 

aenigmatica loquendi ratione percussionis vim infinitam dixit, scilicet si cum simplice 

gravitatis nisu comparetur.”
51

 Here Leibniz sees himself as improving on this “enigmatic” 

notion in Galileo by providing a more thorough-going interpretation of the comparison 

between nisus, understood as dead force, and the force of an extended motion, understood as 

living force. It is neither that dead force is infinitesimal and living force finite nor that dead 

force is finite and living force infinite. Seen through the lens of the equivalence of 

hypotheses, insofar as the immobility of dead force is only assumed in the equivalence of 

hypotheses, it is only a comparison of the effects of these causes qua force in extensional 

terms that these quantities (finite and infinite) arise. Of course, it is in the comparability of 

forces, according to the equipollence of cause and effect that requires such a distinction of 

between orders of infinite, finite and infinitesimal quantities. In this Leibniz obeys the 

“compendia ratiocinandi” that he had already formulated, through the development of his 

infinitesimal calculus for the relation between the finite and the infinite, and the finite and the 

infinitesimal.
52

 Here, finite, infinite and infinitesimal are not absolute determinations but 

rather relative to each other. In Breger’s recent explanation of this reasoning per compendia 

ratiocinandi, he explains that, “second-order differentials are infinitely small compared with 

first-order differentials […] If first-order differentials have absorbed a logical quantifier, 

second-order differentials have absorbed two logical quantifiers.”
53

 For our purposes it is 

through the same kind of relativity of quantitative order that Leibniz takes up the problem of 

accurate measurements [accuratae aestimationes] in motion.  

It seems then that we have a satisfying solution here to how infinitesimals can remain 

fictional but must nonetheless be strictly and irreducibly involved in Leibniz’s dynamics. Any 

quantity, infinite, finite or infinitesimal, is relative to each other and their measurements are 

only relative to the comparison of the effects of the causes of motion. This allows us to 

dissolve any problem regarding his use of infinitesimal quantities in the Specimen. From this 

we are in a position to understand just how such a commitment to the infinitesimal calculus 

becomes essential to his account of motion in the Specimen.  

 Leibniz’s infinitesimal calculus provides the capacity to treat continuity through non-
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continuous terms. A major intuitive starting place for Leibniz’s work on the infinitesimal 

calculus through the quadrature of the circle is the idea of treating a circle, fictionally, as an 

infinitely sided polygon.
54

 This comparability, a notion cautiously borrowed from Galileo’s 

discussion of the “Aristotelian wheel” on the first day of the Discourses and Mathematical 

Demonstrations Concerning the Two New Sciences, was already given its demonstrative 

limits in Leibniz’s 1676 work on the quadrature.
55

 In the same vein, Leibniz explains to 

Varignon in the same 1702 letter cited above, that this comparability does not mean that a 

circle is a polygon. Nonetheless Leibniz argues,  

« Et quoyque ces terminaisons soyent exclusives, c’est-à-dire non-comprises à la rigueur dans 

les varietés qu’elles bornent, neantmoins elles en ont les proprietiés, comme si elles y estoient 

comprises… qui prend le cercle, par exemple, pour un polygone regulier dont le nombre des 

costés est infini. Autrement la loy de la continuité seroit violée, c’est à dire puisqu’on passe 

des polygones au cercle, par un changement continuel et sans faire de saut, il faut aussi qu’il 

ne se fasse point de saut dans le passage des affections des polygones à celle du cercle. »
56

  

The law or principle of continuity is the larger architectonic principle governing the 

capacity of using discrete terms to treat continuity with falling into the error of taking 

continuity as discrete. In this, the use of discrete terms to treat the continuous always results 

in some degree of error. Yet as Leibniz famously relates to De Volder in a 1706 letter, this 

error nonetheless “semper sit minor quavis assignabili data”.
57

  

This notion of comparability governed by the principle of continuity is directly salient 

to the problem of cause and effect in our examination of the dynamics. Recall that force is not 

a quantity such that we could locate within a motion. Force is something that is constantly 

active and systematically governs the entire range of quantities involved in a motion. As such, 

we have motion, something continuous and hence imaginary, and on the other hand, 

something that is measured (estimated) to the least error, the measure of force as equivalent 

to the quantity of effects (motion). This equipollence of cause and effect provide a mapping 

of effects to causes in a continuous way. It is obvious that if we hold the equipollence of 

cause and effect, the slightest change in effect implies a proportional change in cause. Since 

changes in motion, measured in terms of extension and time, are measured in continuous 

mathematical terms, they imply that the forces equipollent to these effects are also to be 

continuous. Yet the measurement of forces cannot be reduced to their particular effects and 

the continuity in particular motions does not directly result from the causal nature of forces. 

Hence, the continuity of a motion is not what is invoked here. A differential comparison of 

forces can only occur across different motions and thus the difference between forces at work 

in different motions can only be registered through a comparison of effects across different 

cases. To grasp this systematic organization of the continuous quantities of motion and their 

relation to non-continuous forces, we should momentarily step out of the Specimen to look at 

another important work within the dynamics project. In looking at this example, we not only 

reiterate Leibniz’s commitment to the method of the infinitesimal calculus in the dynamics 

but clarify its necessary role in understanding what constitutes force as cause.   

 

VI. The principle of continuity and the structure of quantities 
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 Up to this point, we have seen why the causal nature of force cannot be divorced from 

its quantitative aspect, its organization of the quantities registered through the comparison of 

the phenomena of motion. We have argued that this comparability of effects and the relative 

nature of quantity within the dynamics can be distinguished from the particular quantities 

used by Leibniz. In this, the particular way in which Leibniz used the infinitesimal calculus to 

describe, for example, dead and living force, thus also seems on par with other hypothetical 

uses of quantities. We have thus argued that the use of infinitesimal quantities in the 

dynamics are relative notions and employed fictionally in such a way that reflects the 

capacity of the infinitesimal calculus to compare discrete and continuous things. What we 

have yet to argue is the necessity of such a quantitative structure, despite the fictionality of 

such quantities themselves, within the dynamics. This necessity is important to clarify 

because the assumption of commentators like Rutherford is that since forces get reduced to 

metaphysics, any mathematics could heuristically play the role of representing motion. As 

such Rutherford, appealing to Levey, argues for the possibility of “modeling the structure of 

matter/force through some form of discrete mathematics.”
58

  

To show the necessary role played by infinitesimals in the dynamics, we turn to an 

example that Leibniz only eludes to in Specimen but which constitutes a milestone within his 

development of the Dynamics project. This example is from Leibniz’s 1692 Animadversiones 

in partem generalem Principiorum Cartesianorum, a lengthy study and close critical reading 

of Descartes’ Principia philosophiae.
59

 In his commentary on the 53
rd

 article of the 2
nd

 part of 

the Principia, Leibniz provides a refutation of Descartes’ laws of motion, outlined in 

Descartes’ 52
nd

 article according to a peculiar criterion.
60

 Leibniz considers, as Descartes 

does, the situation of two bodies of equal mass and equal speeds striking each other as a case 

of rectilinear elastic collision. To demonstrate his difference with Descartes and show the 

latter’s errors, he showed what happens when we reiterate this scenario with different 

velocity values assigned to the second body.
61

  

We can first imagine what will result from the collision of two bodies, b and c, with 

equal mass and opposing velocities (±4 m/s). From Descartes’ first rule, the bodies, b (-4m/s) 

and c (+4m/s), will simply exchange velocities after collision, rebounding each other in a 

perfect elastic collision. But what happens when the speeds are different? Imagine then the 

body b as having the value of (-4m/s) as before and then a second body c as having the values 

of (3m/s). According to Descartes’ analysis of such a scenario according to his third and 

seventh rule, the resulting velocities will be the same for both bodies since the more rapid 

body will carry the other off. The resulting velocities will result from first taking the half of 

the difference of the speeds and then subtracting the speed of the more rapid and adding to 

the speed of the less rapid. In such a case if b is traveling at velocity -4 (more rapid) and c 

traveling at velocity 3 (less rapid), then the half of the difference ((4-3)/2=)0.5 is the quantity 

that will be subtracted from the speed of b resulting in a final velocity of ((-4+0.5)=)-3.5. In 

turn, this same quantity will be added to the speed of body c and it will achieve a final 

velocity of ((-3-0.5)=)-3.5. For clarity’s sake, we take another case where b is traveling at 

velocity -4 and c at -3, moving in the same direction, the more rapid body b will at some 
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point also impact c and carry c off. The quantity in exchange between this different 

configuration would be ((4-3)/2)=)0.5 and this would result in the first body b having the 

resulting speed at (-4+(0.5)=)-3.5 and the body c moving at (-3-(0.5)=)-3.5. The resulting 

velocity will, like the previous example, be -3.5 for both bodies.  

Leibniz understood as we do, retrospectively, that Descartes’ rules are contrary to 

phenomena. Using the results of Huygen’s theory of elastic collision, Leibniz argues that 

bodies of equal mass will simply exchange their velocities after collision regardless of their 

differences in speed. But here Leibniz deploys a kind of reductio ad absurdum argument.  

Leibniz argues by first demonstrating the Cartesian laws of motion. Assuming both 

elastic collision and that the velocity of body b remains constant at -4, we reiterate the 

collisions by varying the speed of body c. As such, c will take on the values of -4, -3, -1, 0, 1, 

etc. We first note that when both bodies are initially traveling at -4, there is no collision. We 

note that in the case of body b at -4 and body c at 0, Descartes holds that the bodies rebound 

and this collision is not governed by the same law as that of the collision of a faster and 

slower body since one body is at rest.   

 
Figure 3

62
 

As shown in the graph above, Leibniz argues that Descartes’ laws of collision leads to 

significant gaps especially around the case of the body c at rest and around the case of the 

equal speed of b and c. Indeed, we know that the major error of Descartes that Leibniz 

wished to point out was the former’s hypothesis that a faster body, regardless of how small 

this additional speed was, could carry the other body off and that the two bodies would then 

travel at half the difference of their quantity. This is the reason for the major gap in the 

correlation of the variation of the initial velocities of c (since the initial velocity of b remains 

constant throughout the cases) with the final velocity of b after collision.  

In Leibniz’s alternative to Descartes, employing Huygens’ laws of elastic collision, 

bodies of equal mass simply exchange velocities after collision. As such, if the initial velocity 

of b is -4 and c is 3, the final velocity after collision would result in b traveling at 3 and c at -

4. The resulting graph, using the same reiteration of cases as above, charts out a continuous 

line. Every variation in the initial velocity of c produces the same value for the final velocity 

of b.  
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Figure 4

63
 

The results here are also more apt than Descartes’ in the description of phenomena. Yet this 

empirical inadequacy is not what Leibniz emphasizes here. Leibniz argues instead that the 

graph of Descartes’ laws of collision presents a delineatio monstrosa while the graph of his 

position presents a delineatio concinna.
64

 This argument has the sort of teleological import 

consonant with his argument concerning dioptrics and catoptrics. Leibniz treats the 

“monstrous” character of the plotting of Descartes’ result as a sort of demonstratio ad 

absurdum. In turn Leibniz’s continuous graph is more harmonious than Descartes’ monstrous 

one. We might perhaps call this a demonstratio ad monstrosum.    

 There were a few explicit conclusions that Leibniz wished to draw from this 

demonstration. Two of these points, the inadequacy of Descartes’ collision principles to 

phenomena and that corporeal collision show bodies to be more solid than liquid are 

explicitly emphasized by Leibniz after this criticism of Descartes. But both of these points 

could be argued without this demonstratio ad monstrosum. It was simply sufficient to 

demonstrate the inadequacy of Descartes’ law of motion from its inaccurate empirical 

predictions in order to move toward the different measurements concerning the solidity 

bodies and elasticity of collision. In adding this layer of explanation involving the 

comparison between the Descartes’ laws and his Huygenian alternative, Leibniz wished to 

make a different epistemological point. There is a higher principle that governs the quantities 

manifested at the level of motion. The architectonic principle of continuity is represented in 

his more “continuous” graph than the leaps exhibited in Descartes’ graph. But this is not the 

usual sense of continuity. When the problem of “saltus” in nature is raised in works like 

Pacidius Philalethi, it concerns the question of leaps in a particular extended motion.
65

 Yet 

here we encounter continuity in the sense of a distribution, one that is perhaps more 

consonant with the generation of animal species evoked in the New Essays on Human 

Understanding than, say, the path of a certain extended motion. 
66

 

 Indeed, natura non saltum facit. A full account of the principle of continuity at work 

in this example will take us far afield but we should underline how this example reveals 

Leibniz’s mature thinking about the essential role of continuity in physical phenomena. The 

principle of continuity is argued as an architectonic principle operative in taking a whole 
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series of quantities that reveal the systematically ordering of phenomena. The variation of the 

values of body c in the example is the means by which this continuity can be systematically 

represented. In turn, discontinuity registered on the level of quantities constitutes then, for 

Leibniz, an error. The nature of this error is first argued on the level of principles and then 

only subsequently a misrepresentation of phenomena in the usual sense. As such, the 

principle of continuity is at work in the demonstration of what constitutes a coherent 

phenomenon by taking continuity as the means by which to determine the cause of an entire 

range of the quantities distributed in motion.  

 This use of the principle of continuity is part and parcel of the principle of 

equipollence of cause and effect. Causality is here understood in the same way as we have 

analyzed above. Cause is understood through the organization and comparability of a range 

of quantities in motion and not simply as efficient causality understood as the relation of 

moments within a motion. However continuity allows us to understand how the equipollence 

operates quantitatively. Any variation of the quantity of body c is continuously correlated 

with the variation of the quantity of body b after collision. Continuity hence provides the 

means to render effects, that is, motions, comparable precisely by creating the framework 

where the distributed quantities reflect this equipollence of cause and effect. At the same 

time, this same principle of continuity is also part and parcel with the principle of the 

equivalence of hypotheses in the narrow sense invoked above. It is continuity that allows us 

to relativize the set of quantities involved in motion. All the quantities in the example above 

can be modified without changing the result: the final graph demonstrating the Leibnizian 

result would still be a continuous line albeit with a different slope.    

 This example of how Leibniz employs quantities in his dynamics reaffirms their 

fictional status. Quantitative aspects of motion are only relative to each other and our interest 

in them, for the purposes of the dynamics, is aimed at demonstrating, through their 

comparison, the principles of the ordering of these quantities. Continuity then is a principle 

responsible for the organization of phenomenon. When continuity of the phenomenon is 

demonstrated to be lacking, as in the case of his refutation of Descartes, something of a 

reductio ad monstrosum is revealed. As such, the principle of continuity applies regardless of 

the particular quantities measured or estimated, it provides, like the principle of the 

equipollence of cause and effect and the principle of the equivalence of hypotheses, the 

general architectonic principles of the dynamics. This example demonstrates not only that the 

relation between cause and effect in motion relies on the comparability of the quantities 

registered as effects but that this comparability or this role played by force qua cause in the 

ordering of motion qua effects, is governed by the principle of continuity.  

 The concept of continuity at work here casts a different light on why infinitesimals are 

used in the Specimen. We have already established that the infinitesimal, finite and infinite 

quantities involved in motion are not to be taken per se but are relative to each other. By 

examining the principle of continuity, we demonstrate why the use of these orders of 

quantities is necessary in his dynamics. The ordering and hence comparability of quantities in 

motion imply continuity and with this Leibniz needs to draw from the resources of his 

infinitesimal calculus. This of course does not imply the hypostasization of these fictional 

quantities any more than it implies the hypostasization of any quantity whatsoever. This use 

of quantity, finite, infinite or infinitesimal remains within the realm of the comparison of the 

motive effects of force. Yet what remains is that this feature of continuity is a part of the 

organization of quantities and hence an irreducible causal feature of the relation between 

force and its effects.  

Although it is easy for Leibniz to step back from his use of infinite and infinitesimal 

quantities by the addition of a caveat of their fictionality, the reason why these sorts of 

quantities are part and parcel to the account in the dynamics is not reducible to their 
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fictionality. In order to understand how force causes motion, this compatibility of forces 

through phenomena, or the quantities of motion, relies on the continuity of these quantities. 

That is, the ordering of quantities such that they form a coherent motion requires the principle 

of continuity. Logically then insofar as the causal nature of force is the ordering of 

phenomenon and this ordering requires the principle of continuity, we must conclude that the 

principle of continuity is an irreducible feature of what constitutes force as cause. Hence 

although particular quantities can be abstracted from the account of force, the causal nature of 

force necessitates their quantitative expression through architectonic principles like the 

principle of continuity along with the principle of equipollence of cause and effect and the 

principle of the equivalence of hypotheses. This necessity follows structurally from what it 

means for force to be causal, the structural determination of the relation of quantities even 

when particular quantities are abstracted away.  

 This argument leads us to assert that the necessity of the methods of the infinitesimal 

calculus in the dynamics as a necessary feature of the architectonic principles that governs it. 

What is implied here is nonetheless that the particular uses of infinitesimal, finite and infinite 

terms in measurement refer to fictional entities. Yet, just as particular quantities such as mv
2
 

can be set aside or rejected without rejecting the idea that some quantity is conserved in 

motion to preserve the comparability between the relative quantities in motion, we can 

maintain that specific infinitesimal quantities can be set aside or rejected without rejecting the 

infinitesimal structure necessary for understanding how forces cause motion. This is a 

consequence of understanding that the way in which forces cause motions is indirect in the 

sense that forces are not themselves quantitative.  

Forces cause motion through a number of principles which allow them to be 

comparable through their quantitative effects in motion. There is thus something irreducibly 

quantitative about forces. Insofar as the causal nature of force is to be found in the ordering of 

the phenomena of motion, this very ordering is essentially structured through the 

mathematics of continuity opened up by the infinitesimal calculus that Leibniz had developed 

years before.   

 

VII. Conclusion 

 

What our argument above does not contest is the rejection that forces can be directly 

correlated with quantities of either the infinitesimal, finite or infinite sort. In this, not only do 

we reaffirm this partial agreement with commentators like Rutherford, but give additional 

reasons for this fundamental agreement. Yet our argument here also shows that this rejection 

of real infinitesimal quantities must also entail the rejection of a mere reduction of forces to a 

metaphysical level. Although Leibniz used forces to articulate his ideas about hylomorphic 

substance in an explicit and central way throughout the 1690’s, the very notion was 

developed to provide a causal explanation for the realm of physical phenomenon. This very 

causal nature of force is one that provides consistency and order to physical phenomena. 

Although counter-intuitive in certain respects, the causal nature of force engenders its effects 

systematically through the harmony, or convergence, of teleological and efficient causation. 

As we have shown, the way in which non-geometric or non-extended forces could cause 

geometric and extended motions can only be understood in this way. That is, dynamical 

causation is structural. Forces cause motions structurally and indirectly by the organization of 

their extended, geometrical and quantitative features.  

As such the crucial disagreement with commentators like Rutherford is in our 

divergent understanding of the relation between quantity and force. Rutherford argues, as I 

have noted above, that if forces cannot be represented by a quantity then these forces must be 

reduced radically to the metaphysical level. This is due to the understanding that since forces 
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are real and motions (qua geometrical) imaginary, a separation must be made in order that, 

unlike the Cartesian position, forces are not allowed to slip into the geometrical realm. Of 

course Rutherford’s position also entails that since forces are not essentially tied to the 

quantities of motion, understood as mere imagination, alternative ways of representing these 

quantities such as with the exclusive use of discrete entities can also be plausible. We have 

argued that there is another way to understand the role of quantity in Leibniz’s treatment of 

forces. Although Leibniz appears to correlate infinitesimal quantities with moments of (dead) 

force in the Specimen, if we understand that these measurements, as Leibniz calls them, are 

only the results of an interpretation of quantities made structurally or systematically, we find 

that quantities play an actual and not merely imaginary role in articulating the causal nature 

of force. As such forces are not themselves quantitative but play the crucial role of providing 

the structure of these very quantitative features. When all imagination qua quantities are 

abstracted away, we see that systematic or architectonic features of the relation of force qua 

cause and motion qua effect entail explicit architectonic principles, like the principle of 

continuity, through which this causation occurs. In short, Leibniz presents another way of 

understanding the role of quantity. With the emergence of the concept of force, something 

that kept Leibniz busy for two long decades, the conceptualization of the geometrical features 

of motion supersede the merely imaginary mechanistic picture. What arises is the use of 

quantities in expressing just how causality is to be identified and harmonically synthesized 

through architectonic principles. 

The post-Galilean project of mathematizing nature would have been futile if the aim 

was merely to make a mere correspondence between mathematics and nature. In this, Leibniz 

was not the only one in his time to understand that any account of physical motion cannot 

succeed without being mediated by theory-laden interpretations of how the extensional 

features are to be made comparable. Leibniz’s own solution, one that still conservatively 

wished to place quasi-Aristotelian causality as the terms through which such an interpretation 

can be given, nonetheless required a deep commitment to the structure afforded by the 

mathematical innovations of his infinitesimal calculus. This means, above all, that insofar as 

there is no direct correspondence between quantities and their underlying real causes, 

empirical measurements in terms of size, shape and magnitude are relevant in the account of 

phenomena only through a higher level of theoretization that renders these quantities 

systematically coherent. As such, when Leibniz measures dead force with an infinitesimal 

quantity, we should not take this as a correspondence between real forces and imaginary 

quantities. In this regard even the idea of force as being representable by quantity, 

infinitesimal or finite, is misleading. Yet forces are however irreducibly quantitative and this 

quantitative aspect requires a deep commitment to the notion of continuity made available 

through the infinitesimal calculus. In short, at least for Leibniz, force without its quantitative 

aspect is empty and quantity without its causal organization is blind. Fictions are thus not 

blind in the Specimen but work precisely because they are guided by the concept of force.  

 


