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Formalizing commonsense knowledge for reasoning about time has long been a central
issue in Al It has been recognized that the existing formalisms do not provide satisfactory
solutions to some fundamental problems, viz. the frame problem. Moreover, it has turned out
that the inferences drawn do not always coincide with those one had intended when one wrote
the axioms. These issues call for a well-defined formalism and useful computational utilities
for reasoning about time and change. Yoav Shoham of Stanford University introduced in his
1986 Yale doctoral thesis an appealing temporal nonmonotonic logic and identified a class of
theories, causal theories, which have computationally simple model-theoretic properties. This
paper is a study towards building upon Shoham’s work on causal theories. We concentrate on
improving computational aspects of causal theories while preserving their model-theoretic
properties.

Keywords: Causation, causal theories, the frame problem, modal logics, nonmonotonic
logics, temporal logics.

1. INTRODUCTION

Reasoning about the commonsense notions of time and change is important in various
areas of Al. There have been attempts towards formalizing common sense and various
logics have been devised. It has been recognized that reasoning about change requires
temporal and nonmonotonic reasoning devices. In this direction, Shoham introduced, in
his doctoral dissertation,'? a temporal nonmonotonic logic that he called the logic of
Chronological Ignorance (CI). Shoham also identified a class of theories, causal theories,
which have computationally simple model-theoretic properties in CI. Other contributions
of Shoham to temporal reasoning and nonmonotonic reasoning include Refs. 3-11;
as witnessed by Refs. 12—25 these generated considerable interest.

In this paper, after an examination of the preliminary notions of CI and causal theories,
it is shown that computing with causal theories is time-dependent. This contradicts with
the way human beings reason about consequences of actions and come to conclusions in
everyday life. To remove this deficiency, a new class of causal theories containing axiom
schemata is introduced and computational aspects of causal theories in this class are
investigated. Furthermore, an approach to remove one of the technical limitations
imposed by Shoham on causal theories is proposed.

In Sec. 2, our notation and terminology are presented. Section 3 introduces the Yale
Shooting Problem (YSP). The weakness of causal theories in representing scenarios
similar to YSP and their inefficiency in computing the consequences of these theories are
demonstrated. To remove those deficiencies, a new class of causal theories, YSP-like
causal theories with axiom schemata, is proposed. Here it should be remarked that the
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essential property of YSP-like causal theories will not be that they allow for axiom
schemata (which is only a technical point) but that they have to contain persistence
axioms.

Shoham did not permit simultaneous occurrence of cause and effect in his account of
causation: he restricted causal theories to have causes strictly precede their effects in time.
In Sec. 4, various related ideas from philosophy are mentioned. A modified definition of
causal theories that permits simultaneity is given and an algorithm to compute the
consequences of such theories is proposed. Section 5 contains the concluding remarks.
The Appendix includes the omitted proofs.

2. ESSENTIAL NOTIONS AND TERMINOLOGY

2.1. Notational Conventions

Unless otherwise stated, we follow Shoham’s terminology and definitions verbatim.
Lower-case letters such as p and p, denote propositional symbols; ¢ is used to express
a time point variable, and a time point constant when indexed (as in #, or t,).

The symbols —, A, D, = are used as the standard logical connectives. V denotes
the universal quantifier. {J and & are modal operators described in the following
section. M is used to denote Q.E.D.

2.2. The Logic of Chronological Ignorance

Nonmonotonic logics can be defined by means of a preference criterion on the
interpretations of a standard logic, i.e. (classical or modal) propositional logic or
first-order predicate logic. The preference criterion forms a preference relation over the
models of the standard logic. CI is a nonmonotonic logic obtained in this way (cf.
Def. 2.9). The standard monotonic logic on which CI is based is called the logic of
Temporal Knowledge (TK). The syntax and semantics of TK are given below.

We assume the existence of the following:

P: a set of primitive propositions,

TV: a set of temporal variables,

TC: Z (integers) (this characterizes the structure of time),
U: TCUTV.

Well-formed formulae (wff or formula in short) are defined as follows (¢, and ¢, are
used to denote elements of TC whereas u, and u, are meta-variables for elements
of U):

1. If u,, u, € U, then u; = u, and u, = u, are wiff.

2. If u;, u, € U and p € P, then TRUE(u,, u», p) is a wif.

3. If ¢, and ¢, are wff, then so are ¢ A @2, —1¢,, and O¢,. Qe reads as
known.”” O = e

4. If ¢ is a wff and v € TV, then Vuve is also a wff.

¢

‘g is
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Some abbreviations for wff are used; [ATRUE(s, t,, p) is replaced by
O, &2, p), QTRUE(,, 12, p) by 0ty 12, 7p), OTRUE(G, 12, p) by
(e, ta, p), and O TRUE(, 1, p) by O(ty, t2, —p). TRUE(¢;, p) is used as
an abbreviation for TRUE(¢,, ¢, p).

Definition 2.1. A sentence is a wff containing no free variables.

Definition 2.2. A Kripke interpretation (KI) is a pair (W, M) where W is a
nonempty universe of possible worlds, and M is a meaning function such that M:
P— 2W><Z XZ.

Definition 2.3. A variable assignment is a function VA: TV — Z.

Definition 2.4. A valuation function VAL is such that VAL(u) = VA(u) if u € TV
and VAL(u) = u if u € TC.

A KI = (W, M) and a world w € W satisfy a formula ¢ under VA (written KI,
w E @[VA]) if the following hold:

KI, w = u; = u,[VA] iff VAL(u,) = VAL(u»).

KI, w = u; =< u,[VA] iff VAL(u,) = VAL(u,).

KI, w = TRUE(u,, u,, p)[VA] iff {(w, VAL(u,), VAL(u,)) € M(p).

KI, w = ¢ A @[ VA] iff KI, w = ¢,[VA] and KI, w = ¢,[VA].

KI, w = —¢[VA] iff KI, w & ¢@[VA]

KI, w E Vop[VA] iff KI, w = ¢[VA'], VYVA’ that agree with VA everywhere
except possibly on v.

7. KI, w = Qe[ VA] iff KI, w’ &= ¢[VA], VW' € W.

S o

A KI =(W, M) and a world w € W are a model for a formula ¢ (written KI,
w E @) if KI, w = ¢[VA] for any variable assignment VA. A wif is satisfiable if it
has a model, and valid if its negation has no model. ¢, entails ¢, (written ¢; = ¢,)
iff ¢, is satisfied by all models of ¢,. It should be noted that if ¢ is true
(respectively, is not true) in w € W, this is written KI, w = ¢ (respectively, KI,
w H ).

Definition 2.5. Base formulae are those wff containing no occurrence of the modal
operators.

Definition 2.6. The latest time point (Itp) of a base sentence is the latest time point
mentioned in it:

The Itp of TRUE(¢y, 15, p) = t5.

The Itp of @, A @2 = max(ltp of ¢,, ltp of ¢,).

The Itp of —1¢ = the Itp of ¢.

The Itp of Voe is the minimum among the ltps of all ¢’ which result from
substituting in ¢ a time point symbol for all free occurrences of v, or —o if there
is no such earliest Itp.

el i\ S
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Definition 2.7. A KI M, is chronologically more ignorant than a KI M, (written
M, C M,) if there exists ¢, such that

1. For any base sentence ¢ with ltp < ¢, if M, = Q¢ then also M, & Qe.
2. There exists a base sentence ¢ with lItp ¢y such that M, = Q¢ but M, ¥ Q.

Definition 2.8. M is said to be a chronologically maximally ignorant (cmi) model of
¢ if M= ¢, ie. if M= ¢ and there is no other M’ such that M’ = ¢ and
MCuM'.

Definition 2.9. The logic of chronological ignorance CI is the nonmonotonic logic
TK -

2.3. Causal Theories

Definition 2.10. Formulae in CI are those base formulae augmented by the modal
operators.

Definition 2.11. A rheory in CI is a collection of sentences in CI.

Definition 2.12. Base sentences in Cl are those sentences not containing any
occurrence of the modal operators.

Definition 2.13. Atomic base sentences are either of the form TRUE(¢,, ¢,, p) or
the form — TRUE(t,, t5, p).

Definition 2.14. A causal theory ¥ is a theory in CI, in which all sentences have
the form ® A ® D [J¢ where (in the following [—1] means that the negation sign
may or may not appear)

1. ¢ = TRUE(¢,, t,, []p)-

2. 9= /\ DOe;, where ¢; is an atomic base sentence with ltp ¢; such that ¢; < ¢,.
i=1

=
m

3.0 = /\()qo,-, where @; is an atomic base sentence with Itp ¢; such that 1; <z7,.
j=i

4. ® or O® (or both) may be empty. A sentence in which ® is empty is called a
boundary condition. Other sentences are called causal rules.

5. There is a time point ¢y (global for the theory) such that if ® D [(t,, t,, [1p)
is a boundary condition, then 7y < t,.

6. There do not exist two sentences in ¥ such that one contains (., ¢, p) oOn its
Lh.s. and the other contains (., t,, —p) on its Lh.s.

7. If &, A @, DOy, t,, p) and &, A O, D (¢, t,, —Ip) are two sentences in
V¥, then &, A O, AP, A O, is inconsistent. (Inconsistent means *‘implies
pATIPT)

Definition 2.15. The soundness conditions of ¥ are the set of sentences
Oy, ty, p) O TRUE(Y,, t,, p) such that (i, 1, p) appears on the Lh.s. of
some sentence in W. Soundness conditions are implicitly part of the causal theories.
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Theorem 2.1. If ¥ is a causal theory, then

1. ¥ has a cmi model.
2. If M, and M, are cmi models of ¥, and ¢ is any atomic base sentence, then

Proof. See Ref. 2, pp. 112-113. u

Definition 2.16. A time-bounded Kripke interpretation M/t is a structure which can
be viewed as an incomplete Kripke interpretation. Like a Kripke interpretation it
assigns a truth value to atomic propositions, but only to those whose Itp =< ¢. The truth
value of an arbitrary sentence whose ltp < ¢ is also determined in M/, according to
the usual compositional rules. If a sentence ¢ with Itp < ¢ is satisfied by M/t, this is
denoted M/t = ¢.

Definition 2.17. M/1 partially satisfies a theory W if M/t satisfies all sentences of ¥
whose Itp = 1.

3. COMPUTING THE SENTENCES KNOWN IN THE CMI MODELS

Various nonmonotonic formal systems have been proposed to facilitate common-
sense reasoning (e.g. Reiter’s default logic?® and McCarthy’s circumscription®’).
Situation calculus®® has initially been used to reason about the effects of actions. In
the framework of situation calculus, Hanks and McDermott? describe what they call
temporal projection as follows. Given a description of the current situation, the effects
of possible actions, and a sequence of actions to be performed, how do we predict the
properties of the world in the resulting situation?

Noticing that this is not a by-product of situation calculus, but is independent of the
logic used, they redefine it (in Ref. 16, p. 385)

““[Gliven an initial description of the world (some facts that are true), the
occurrence of some events, and some notion of causality (that an event can
cause a fact to become true), what facts are true once all the events have
occurred?

Hanks and McDermott'® applied some of the existing logics (e.g. default logic) to
scenarios to see whether the expected results are indeed produced. It turned out that
these logics have some flaws (Ref. 16, p. 379):

‘“‘Upon examining the resulting nonmonotonic theories, however, we find
that the inferences permitted by the logics are not those we had intended
when we wrote the axioms, and in fact are much weaker.”’

The Yale Shooting Problem (YSP) was posed by them?® as a paradigm to show how
the temporal projection problem arises. At some point in time, a person (Fred) is
alive. A loaded gun, after waiting for a while, is fired at Fred. What are the results of
this action? One expects that Fred would die and the gun would be unloaded. But
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they'® demonstrate, in the framework of circumscription,® that unintended minimal
models are obtained; the gun gets unloaded during the waiting stage and firing it does
not kill Fred.

After Hanks and McDermott showed how existing logics fail to produce the
expected results for YSP, researchers proposing new formalisms applied their methods
to the YSP and other similar scenarios (e.g. McCarthy’s blocks world>®) to show how
they succeed in avoiding the unintended models.

Hanks and McDermott argue that a solution to the temporal projection problem
relies on an answer to two questions (Ref. 16, p. 409):

‘(1) Given a logical theory that admits more than one model, what are the
preferred models of that theory (that is, what is the performance criterion)
and (2) given a theory and a preference criterion, how do we find the
theorems that are true in all ‘most preferred” models?”’

As they noted, Shoham’s'! preference criterion (see Defs. 2.7—8) provides a
satisfactory answer to the first question. Moreover, he gives an algorithm to compute
the true sentences in the models preferred under this preference criterion, thus
answering the second question.

In this chapter, we argue that Shoham’s computational account is not very efficient.
Furthermore, since his solution, as Hanks and McDermott also point out (Ref. 16,
p. 410) is ‘‘very specific to the problem of temporal projection,”” we demonstrate how
its time-dependent nature can be overcome. We also show that causal theories may
yield unintended models.

3.1. Time Dependency in Causal Computations

The causal theories of Shoham contain axioms to reason about the effects of actions.
Proceeding in time, knowledge about the future is obtained from what is known (and
what is not known) about the past. This forms the core of the causal inference
mechanism. For example, if you know that a match is struck at time ¢, and do not
know that it is wet at 7, then you infer that the match lights at # + 1. Causal theories
have a nice property: all cmi models agree on what is known (see Theorem 2.1). That
is, in all cmi models of a causal theory the same atomic base sentences are known.

Consider the following variant of YSP. A gun, loaded at some point in time, is
fired at a later time. We would like to reason about the effect of firing. Shoham
(Ref. 2, p. 106) gives a possible axiomatization in which the gun is loaded at time 1
and fired at 5:

[

. Ad, loaded).
. 3G, fired).
. A, loaded) A O(t, —ifired) A O(t, —emptied-manually)
D [t + 1, loaded), Vt.
. (¢, loaded) A (s, fired) A O(¢, air)
A (¢, firing-pin)
A O(t, no-marshmallow-bullets)

w N

S
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A ... A< other mundane conditions
D @ + 1, noise), V.

Axioms 1 and 2 are the boundary conditions. The third one is an axiom schema
needed for persistence. It says that the gun remains loaded unless certain conditions
are obtained. The last one is again an axiom schema. It is a causal rule stating that
firing a loaded gun causes a noise unless certain conditions are obtained. In fact,
causal theories can only contain axioms, not axiom schemata with time variables (see
Def. 2.14). Shoham (personal communication, November 1989) explains:

‘I do assume that all boundary conditions and all causal rules contain only
ground atomic sentences. If variables appear it means that this is a schema,
standing for all its ground instances. I believe this restriction can be lifted,
but I did impose it.”’

Therefore, the axiom schemata 3 and 4 above must be replicated by replacing the
meta-variable ¢ by time points from 1 to 5. This actually corresponds to the finite
causal theory below (some <>-conditions of schema 4 are omitted to save space):

Q(1, loaded).

(1, loaded) A &O(1, —fired) A O(1, —emptied-manually) D (2, loaded).
[2(1, loaded) A (1, fired) A (1, air) A (1, firing-pin) D (2, noise).
(2, loaded) A &2, —fired) A (2, —emptied-manually) O (3, loaded).
(2, loaded) A (2, fired) A (2, air) A (2, firing-pin) D (3, noise).
@3, loaded) A (3, —ifired) A <O(3, —emptied-manually) O (4, loaded).
A3, loaded) A I3, fired) A (3, air) A (3, firing-pin) D (4, noise).
@, loaded) A (4, —ifired) A (4, —emptied-manually) D (5, loaded).
(4, loaded) A A4, fired) A O(4, air) A (4, firing-pin) D (5, noise).

RN h =

10. (5, fired).
11. (S, loaded) A (5, —ifired) A (5, —emptied-manually) D [J(6, loaded).
12. [3(5, loaded) A LI(5, fired) A (5, air) A (5, firing-pin) D [J(6, noise).

The first axiom says that ‘it is known that the gun is loaded at 1.”” The second one
says that ‘‘if it is known that the gun is loaded at 1, and it is not known that it is fired
at 1 and that it is emptied manually at 1, then it is known that the gun is loaded at 2.’
The third one says that ““if it is known that the gun is loaded at 1 and that it is fired at
1, and it is not known that there is no air and that the gun has no firing pin at 1, then
it is known that noise is heard at 2.”’ The remaining axioms are analogous. Shoham’s
algorithm steps through each axiom and computes the base sentences known in all cmi
models of this causal theory. It produces the expected atomic base sentences:
TRUE(1, loaded), TRUE(2, loaded), . . . , TRUE(S5, loaded), TRUE(S, fired), and
TRUEC(6, noise).

This cmi model is computed by stepping over each axiom of the causal theory in
ordered form, and checking whether the 1.h.s. of the axioms are satisfied. Shoham
(Ref. 2, pp. 113—114) suggested improving the efficiency of the algorithm by
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““focus[ing] the attention on the interesting time points, those that are potentially ltps
of known atomic base sentences.’’ In other words, ‘‘in constructing the cmi model,
one can skip the time points which are not the ltp of the r.h.s. in any sentence of the
causal theory: at those points no atomic base sentences are known’’ (Ref. 2, p. 114).

Measuring the size of causal theory in terms of the number of base sentences in the
axioms, the size of the causal theory above turns out to be 47. (There exist two
boundary conditions. Schema 3 contains four base sentences and schema 4 contains
five base sentences. Axiom schemata 3 and 4 are replicated for all time points from 1
to 5, resulting in 45 base sentences.)

Now assume that the gun is loaded at time 1, and instead of at 5 it is fired at 5000.
The size of the causal theory describing this scenario is 45 002. Consequently, the
later the gun is fired, the larger the size of the corresponding causal theory becomes.
Hence, more computation time and space are needed to reason about the effect of
firing the gun.

Again to measure the size of a causal theory in terms of the number of base
sentences in it, assume that the size of a causal theory with axiom schemata is n. Then
the size of the corresponding finite causal theory must be Tmax n, where Tmax
denotes the number of time points (5 in this example) between the time points of the
boundary conditions having the earliest ([J(1, loaded)) and the latest time points
(35, fired)), respectively. Shoham computes the atomic base sentences known in ail
cmi models of a finite causal theory. Assuming that this finite causal theory
corresponds to the one with axiom schemata shown above, the time complexity of his
algorithm becomes O(Tmax n log(Tmax n)).

3.2. YSP-like Causal Theories

In temporal projection scenarios, there exist two types of axiom schemata. The first
takes care of the persistence of facts, permitting inferences about what remains
unchanged. This corresponds to axiom schema 3 in our shooting scenario. Such axiom
schemata will be called persistence axiom schemata.

The second type of axiom schemata represent what changes occur in the environ-
ment. They will be called causal axiom schemata. More specifically, these schemata
allow one to infer what changes actions bring about. In the shooting scenario,
number 4 is a causal axiom schema.

It will be assumed in the sequel that scenarios are formalized with a persistence
axiom schema and a causal axiom schema, along with two boundary conditions. The
boundary condition having the greatest Itp generally represents an action whose
consequences are to be determined.

Definition 3.1. A YSP-like causal theory { is a theory in CI containing
Qe;.

D(Pf.
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Qe, A0, D Q¢,, V.
®.A0O.D0Ne,, V.

where

1. Qe is the initial boundary condition where ¢, is of the form TRUE(t,, []p).

2. Qey is the final boundary condition where ¢y is of the form TRUE(z;, []p),
<ty

3. Ue¢, A O, D e, is a persistence axiom schema where
(i) ¢, is of the form TRUE(z, [1]p) (on the Lh.s.) or TRUE( + 1, [T1]p) (on
the r.h.s.). (There is a slight abuse of notation here.)

(ii) ®, is a (possibly empty) conjunction of sentences ¢, where ¢; is of the
form TRUE(z, [1]q).

4. &, A O, D e, is a causal axiom schema where
(i) @, has two conjuncts one of which must be Ug,.

(i) O, is a (possibly empty) conjunction of sentences gy, where ¢ is of the
form TRUE(¢, [1]q).
(iii) ¢. is of the form TRUE(: + 1, [1]r).

5. I O(1, p) (respectively (2, —p)) is a conjunct of @, then ©. does not contain
O(t, —p) (respectively (1, p)).

6. If ¢, and @, are of the forms TRUE(z + 1, p) (respectively TRUE(z + 1, —p))
and TRUE(z + 1, —p) (respectively TRUE(z + 1, p)) then g, A O, A ®. A O,
is inconsistent.

7. If @ (¢ is of the form TRUE(z,, p) (respectively TRUE(z,, —p)) and ¢, is of
the form TRUE(s + 1, —p) (respectively TRUE(z + 1, p)) then e, A O, is
inconsistent.

8. If ¢, (¢p) is of the form TRUE(¢,, p) (respectively TRUE(z,, —1p)) and ¢, is of
the form TRUE(: + 1, —p) (respectively TRUE(z + 1, p)) then ®. A O, is
inconsistent.

Theorem 3.1. If { is a YSP-like causal theory, then ¢ has cmi models and in all of
these cmi models the same atomic base sentences are known.

Proof. The proof is similar to the proof of Theorem 2.1 and is omitted here; cf.
Ref. 31, pp. 59-61. |

Proposition 3.1. Any YSP-like causal theory { corresponds to a finite causal theory
W if each time variable ¢ in axiom schemata in { is replaced by the time constants in
the range ¢, to t,, where ¢, and ¢, are the time points mentioned in the initial and final
boundary conditions of ¢, respectively.

Proof. The causal theory obtained in this way will contain the following sentences
ordered with respect to their Itps. (‘‘Rewriting’’ a formula at ¢ = ¢; means replacing all
occurrences of ¢ in that formula with ¢;.)
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Oe, .

O, A ©, D g, (rewritten for t = ¢, until 1 =1, — 1) .
D, A O, D e, (rewrite for ¢t = ¢, until t = ¢, — 1) .
Oes .

O, A O, D Oe, (rewrite at ¢t = 1) .

DA B, D e, (rewrite at t = ;) .

The resulting theory is actually a finite causal theory of type ¥ (see Def. 2.14).
]

Theorem 3.2. If { is a YSP-like causal theory of size n, then the unique set of
atomic base sentences known in any cmi model of ¢ can be computed in time O(n).

Proof. Appendix. [ |

Consider the causal theory with axiom schemata given in Sec. 3.1. It is a YSP-like
causal theory since it contains an initial boundary condition (axiom 1), a final
boundary condition (axiom 2), a persistence axiom schema (schema 3) and a causal
axiom schema (schema 4). Given this YSP-like causal theory (some mundane
conditions are omitted), the algorithm produces the sentences: TRUE(1, loaded),
TRUE(Z2, loaded), ..., TRUE(S, loaded), TRUE(S, fired), and TRUE(6, noise).
These are exactly the sentences Shoham’s algorithm yields.

Now the final boundary condition is replaced by [J(10'°, fired). Both algorithms
produce  TRUE(l, loaded), TRUE(2, loaded), ..., TRUE(10'°, loaded),
TRUE(10'°, fired), and TRUE(10'* + 1, noise). Since Shoham’s algorithm must step
through each time point between 1 and 10'0, it takes too long for it to jump to the
conclusion that the gun will be loaded at 10'°, and then infer that there will be a loud
noise at 10" + 1. However, if one knows that the gun is loaded and that nothing has
happened until the time of reasoning about the effect of firing the gun, one will
immediately conclude that the gun is still loaded. Then, one will reason about the
effect of firing the gun with this knowledge. In fact, this is what the O(n) algorithm
does; knowing that the gun is loaded at 1, and that nothing interferes with the gun’s
being loaded, it concludes that the gun will remain loaded until it is fired at 10'°.

Now let the scenario change. The gun is loaded at 1 but is emptied manually at 9.
Shoham’s algorithm and the O(n) algorithm both produce TRUE(l, loaded),
TRUE(2, loaded), . . . , TRUE(9, loaded), and TRUE(9, emptied-manually).

3.3. Multi-agents and a Broader Class of YSP-like Causal Theories

Restricting theories so that they contain a persistence axiom schema and a causal
axiom schema does not provide the full power to represent realistic scenarios.
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Consider the YSP. Fred’s being alive and the gun’s being loaded at time 1 form the
initial description. Furthermore, assume that the gun is fired at 10.

a1, alive).
(1, loaded).
a0, fired).
Az, alive) A (e, —fired) A O(, air) D (2 + 1, alive), Ve.
(t, loaded) A QA (t, fired) A O(¢, firing-pin)

A O(t, no-marshmallow-bullets) D (7 + 1, dead), V.
6. (¢, loaded) A O(t, —fired) A O(t, T1emptied-manually)

O Ot + 1, loaded), Vr.

7. (¢, loaded) A (2, fired) A (2, air) A (¢, firing-pin)
A (t, no-marshmallow-bullets) D (¢ + 1, noise), Vr.

kW=

Axioms 1 and 2 describe the initial state. Axiom 3 indicates the occurrence of the
firing action. Axiom schema 4 says that Fred remains alive unless the gun is fired or
there is no air (and hence he suffocates). Axiom schema 5 says that firing a loaded
gun causes Fred’s death provided that some conditions are satisfied. Axiom
schemata 6 and 7 are used in the usual sense. This theory is not a YSP-like causal
theory, because a YSP-like causal theory must contain exactly one persistence schema
and one causal axiom schema. Moreover, one initial boundary condition and one final
boundary condition are allowed. The theory above however contains two persistence
and two causal axiom schemta, two initial boundary conditions, and one final
boundary condition. Therefore, scenarios similar to this call for a broader class of
YSP-like causal theories which will be introduced in the sequel. Before doing this,
Shoham’s causal theories will be examined to see whether they succeed in computing
the intended models when concurrent actions are introduced.

Causal theories allow concurrent actions. Consider the following blocks world.
There is a block initially located at a position (denoted by ‘‘at-center’’) on the table.
There are two operations ‘‘push-left’” and ‘‘push-right”’. Executing *‘push-left’” moves
the block to a location (denoted by ‘‘at-left’’). Executing ‘‘push-right’” causes the
block to move to another position (denoted by ‘‘at-right’’). It is assumed that the
forces applied on the block are of equal magnitude when these operations are
performed concurrently. Now, assume that the block is at ‘“‘at-center’” at time 1, and
“‘push-left’” and ‘‘push-right”” are simultaneously executed at 1.

(1, at-center).

(1, push-left).

(1, push-right).

(1, at-center) A (1, —push-left) A O(1, —push-right) D [1(2, at-center).
(1, at-center) A (1, push-left) A O(1, —push-right) O [1(2, at-left).
(1, at-center) A (1, push-right) A (1, —push-left) D (2, at-right).

AU S ol

Shoham’s algorithm computes TRUE(], at-center), TRUE(1, push-left), TRUE(1,
push-right). No other base sentence is known in the cmi models of this causal theory.
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This is strange. Since ‘‘push-left”’ and ‘‘push-right’” are executed concurrently, the
block should remain at the center of the table. That is, the sentence TRUE(2, at-
center) must be obtained.

This problem can be resolved by introducing additional axioms such as “‘if it is
known that the block is at the center of the table, and that push-right and push-left are
simultaneously performed, then it is known that the block remains at the center” and
*“if it is known that the block is at the center of the table, and that no push-right or
push-left operations are performed, then it is known that the block remains at the
center”’. Unfortunately, in more complex domains, the number of such axioms can
grow quickly.®® There must be a way of resolving this problem with a persistence
axiom.

Definition 3.2. The ser of counteractions is the set of actions that prevent each other
from being operative when performed concurrently (cf. Sec. 4.3).

Definition 3.3. Let I1 = {O(¢,, p)|1 =<i=<n, for some t,} where p;’s are
counteractions. Letting M be the unique cmi model of a causal theory W, let us write

MEeITl iff M = <>(ta, pi), V<>(ta,p[) € H, or M ¥ O(ta’ p,'), V<>(ta, p,) e Il.
Otherwise, let us write M  II.

As an illustration, the fourth axiom in the blocks world example above is replaced
with the axiom below, where I1 = {{(1, —push-left), <(1, —push-right)}.

(1, at-center) A I1 D (2, at-center) .
Abusing the notation, Il will be used as if it were a function over its members:
(1, at-center) A II(C(1, —push-left), (1, —push-right) O [3(2, at-center) .
Under the interpretation of II, in all cmi models of the causal theory for the
blocks world example, TRUE(1, at-center), TRUE(1, push-left), TRUE(1, push-right),
TRUE(2, at-center) are known.
Now a new class of causal theories with axiom schemata will be defined. It can be

looked upon as a broader class of YSP-like causal theories. For this reason, any theory
in this class will be called a YSP-like causal theory.

Definition 3.4. A YSP'-like causal theory { is a theory in CI containing
He,,i=1,...,n.
Qe j=1,...,m.

and axiom schemata in one of the following forms

Qe, A D, A0, D Qe,, Vi .
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®.A0O.D 0., V.

where

1.

10.

Qes,’s form the (nonempty) set of initial boundary conditions where each g, is
of the form TRUE(¢,, []p).

. Qey’s form the (nonempty) set of final boundary conditions where each ¢y is of

the form TRUE(¢,, []p), t. < tp.

. Any sentence of the form Og, A &, A 0, D O, is a persistence axiom schema

where

() ¢, is of the form TRUE(¢, []p) (on the L.h.s.) and TRUE(: + 1, []p)
(on the r.h.s.).

(i) J, is a (possibly empty) conjunction of II;, where II; is a set of sentences
O@; such that @; is of the form TRUE(¢, []q).

(iii) ®, is a (possibly empty) conjunction of {>¢,, where ¢ is of the form
TRUE(¢, [—lg).

. Any sentence of the form ®. A O, D e, is a causal axiom schema where

(i) @, is a nonempty conjunction of sentences [l¢;, where ¢; is of the form
TRUE(z, [1]p). P, must contain at least one sentence of the form
TRUE(z, [—1]p) which does not appear on the r.h.s. of any (persistence or
causal) axiom schema (as TRUE(s + 1, [—]p)).

(i) O, is a (possibly empty) conjunction of sentences >¢;, where ¢; is of the
form TRUE(t, [—1]q).

(iii) ¢, is of the form TRUE(z + 1, []r).

TRUE(¢t,, p) and TRUE(t,, —p) do not appear among the initial boundary

conditions together.

. TRUE(¢,, ¢) and TRUE(t,, —1¢g) do not appear among the final boundary

conditions together.

. Let Qe, NG, A0, D e, and . A O, D e, be two schemata in {’. If

O(t, p) (respectively (¢, —ip)) is a conjunct of &, N 0,, then O, does not
contain (¢, —p) (respectively (¢, p)) as a conjunct.

. Let D, "N, A"0,D ¢, and ®. A O, D e, be two schemata in

. If ¢, and ¢@. are of the forms TRUE(s + 1, p) (respectively
TRUE(z + 1, —p)) and TRUE(: + 1, —p) (respectively TRUE(z + 1, p))
then Qe, A J, A O, A P, A O, is inconsistent.

. Let De;, (respectively [¢y) be an initial (respectively final) boundary condition

and Qe, A J, A O, D Oe, be a persistence axiom schema. If ¢, (respectively
®r) is of the form TRUE(¢,, p) (respectively TRUE(¢,, —p)) and ¢, is of the
form TRUE(z + 1, —p) (respectively TRUE(¢ + 1, p)) then e, A J, A O, is
inconsistent.

Let Llg;, (respectively l:kpfj) be an initial (respectively final) boundary condition
and ®. A O, D e, be a causal axiom schema. If ¢, (respectively ®r) is of the
form TRUE(¢,, p) (respectively TRUE(t,, —p)) and ¢. is of the form
TRUE(¢ + 1, —1p) (respectively TRUE(r + 1, p)) then &, A O, is inconsistent.
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Proposition 3.2. Any YSP'-like causal theory {’ corresponds to a finite causal theory
W if each ¢ in all axiom schemata in ¢’ is replaced by constants in the range ¢, to 1,,
where ¢, and ¢, are the time points mentioned in the initial and final boundary
condition of {’, respectively.

Proof. Replacing ¢ in axiom schemata with constants gives a finite set of axioms.
These axioms, together with the initial and final boundary conditions, form ¥. W

Theorem 3.3. If {’ is a YSP’-like causal theory, then ¢’ has cmi models and in all
of these cmi models the same atomic base sentences are known.

Proof. Appendix. L]

Theorem 3.4. If { is a YSP-like causal theory, then ¢ is also a YSP'-like causal
theory.

Proof. Consider the initial and final boundary conditions of { as the unique members
of the sets of initial and final boundary conditions of a YSP’-like causal theory {’
respectively. The causal axiom schema of /, being the only causal axiom schema in
{', and the persistence axiom schema of ¢ (with an empty set of <-conditions for the
set of counteractions), being the only persistence axiom schema of ¢’, form a
YSP'-like causal theory {'. ]

Theorem 3.5. If ¢’ is a YSP'-like causal theory of size n, then the unique set of
atomic base sentences known in any cmi model of {' can be computed in time
O(n logn).

Proof. The steps of the construction procedure given in the proof of Theorem 3.3
are followed. The proof is easy but at the same time messy. The reader can
refer to Ref. 31, (pp. 66—69) for the algorithm proposed and its time complexity
analysis. |

Let the following YSP'-like causal theory represent the blocks world scenario at the

beginning of this section. But now assume that ‘‘push-left’’ and ‘‘push-right’’ are
executed concurrently at 10.

1. (1, at-center).
2. [J(10, push-left).
3. (10, push-right).
4. (¢, at-center) A II(O (¢, —push-left), (¢, —push-right))
D (¢ + 1, at-center), Vi.
5. A, at-center) A (¢, push-left) A O(r, —push-right) D Q(r + 1, at-left), V.
6. [J(z, at-center) A (¢, push-right) A (¢, —push-left) D (s + 1, at-right), V:.

The O(n logn) program first computes the set of base sentences that will be known
at 2 from what is known (and what is not known) at 1. It finds out that
TRUE(2, at-center) is known by the axiom schema 4. Then, it performs one more
iteration to see what is known at 3. Again by axiom schema 4, it is seen that only
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TRUE(Q3, at-center) is known. Since the base sentences that are known at this step of
the iteration are only the persistence sentences, it generates the sentences TRUE(4, at-
center), TRUE(S, at-center), ..., TRUE(1O0, at-center). Finally, it computes the
sentences that are known at 11 from the atomic base sentences known at 10. Noticing
that ‘‘push-left”” and ‘‘push-right’” are counteractions executed simultaneously, it finds
out that the lL.h.s. of the axiom schema 4 is satisfied. It produces the sentence
TRUE(11, at-center). Since the l.h.s. of all other axiom schemata fail due to the
occurrence of counteractions at 10, the atomic base sentences that are known in the
cmi model of this YSP'-like causal theory are TRUE(1, at-center), TRUE(2, at-
center), . . . , TRUE(10, at-center), TRUE(10, push-right), TRUE(10, push-left), and
TRUEC(11, at-center).

To see the consequences of a more interesting YSP’-like causal theory, consider
the shooting scenario. Fred is alive and the gun is loaded at time 1. The gun is fired
at Fred at time 10. The theory given for this scenario contains axiom schemata
and boundary conditions. It is a typical YSP'-like causal theory. Given this theory,
our O(nlogn) algorithm produces the intended model. Shoham’s algorithm and
this algorithm produce the same sentences: TRUE(l, alive), TRUE(l, loaded),
TRUE(2, alive), TRUE(2, loaded), ..., TRUE(10, alive), TRUE(10, loaded),
TRUE(10, fired), TRUE(11, dead), and TRUE(11, noise).

3.4. When is Computation Time-Dependent?

In the previous sections, it has been shown that computing with causal theories is
inefficient in the sense that one must step through each axiom in the causal theory to
compute the results of some action. To remove this deficiency, new classes of causal
theories have been introduced. Restrictions have been imposed on sentences in these
classes. One may wonder whether the time-dependent nature of computations can be
removed without imposing these restrictions, but still allowing axiom schemata. The
answer is not in the affirmative.

For example, consider an electronic circuit which functions as a relay. The output of
the relay is directly connected to its input. The output can be either “‘on’” or “‘off”’
depending on the input. If the input is ‘‘on’’ (respectively ‘‘off’’) at some time, then
the output becomes ‘‘off’’ (respectively ‘‘on’’) at the next instant of time. One can
interrupt the system by the operation ‘‘interfere’’. When ‘‘interfere”’ is done, the
output of the circuit is delayed. Assume that the output of the circuit is given as ‘‘on’’
at time 1. If ““interfere’’ is executed at time 6, what are the consequences? Below, a
causal theory is given as a formalization of this scenario. (This is neither a YSP-like
nor a YSP'-like causal theory. For example, [J(, on) is the unique [J-condition of
the axiom schema 3, but it appears on the r.h.s. of the axiom schema 4.)

Q(, on).

(6, interfere).

Az, on) A O(¢, —interfere) D Qe + 1, off), Vi
(s, offy A O(t, —interfere) D J(r + 1, on), V.
(¢, on) A Q(¢, interfere) D [(z + 4, on), V.

Dk W -
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6. (¢, off) A (¢, interfere) O O(z + 4, off), Vi.

TRUE(], on), TRUE(Z, off), TRUE(3, on), TRUE(@4, off), TRUE(S, on),
TRUE(6, off), TRUE(6, interfere), and TRUE(10, off) are obtained as the atomic
base sentences known in all cmi models of the corresponding finite causal theory.

Obviously, such a scenario requires examination of each axiom schema in the theory
for all time points between 1 and 6. However, by determining regularities one can
jump to conclusions. Knowing that the output is initially ‘“‘on’” at time 1 and that the
relay produces a regular sequence of ‘“‘on’” and ‘‘off’’ unless ‘‘interfere’” is executed,
one can directly generate the sentences TRUE(2, off), TRUE(3, on), TRUE(4, off),
TRUEC(S, on), and TRUE(6, off).

4. SIMULTANEITY OF CAUSE AND EFFECT

4.1. Problems with Simultaneous Temporal Propositions

Among the commonly agreed properties of causation three are the touchstones for a
formal treatment of causation. These are its properties of being antisymmetric,
irreflexive, and transitive. For example, Bunge (Ref. 32, p. 244) proposes a relational
approach where a relation R is supposed to hold between the cause and its effect.

It is the irreflexivity property of causation that is absent in material implication.
Given any proposition p, it immediately implies itself (symbolically p = p). Hence
material implication cannot be regarded as a correct formalization of causal connec-
tion. The irreflexive characteristic of causation together with its transitivity property
forbids circular causation. Causal rules in causal theories are strongly related to
material implication. But causal rules are weaker in some respects and stronger in
others. Shoham discusses this issue in a related section on the properties of causation
(Ref. 2, p. 152 and p. 166). Bunge (Ref. 32, pp. 242-243) also addresses the relation
between causation and implication. The discussion is threefold. It centers around
causation and the kinds of implication: material, strict, and causal.

Causal theories have antisymmetry and irreflexivity properties by definition since
temporal precedence of causes over their effects is taken as the core principle of causal
connections expressed by causal sentences. However, the transitivity characteristic is
partly missing in causal theories. Temporally ordered sequences of causal relations are
permitted. But this does not give a full account of the transitivity relation. A sequence
of causes and effects (effects being also the causes of other effects) which are not
ordered temporally, but possibly causally, and occurring simultaneously also form a
transitive relation. For example, in an isolated environment an event A causes B,
which in turn causes C such that there is no time difference between their occurrences
and every cause is simultaneous with its effect. Then, it follows that A also
(indirectly) causes C since whenever A occurs, B must be thereby causally depending
on A, and whenever B occurs, C must be thereby causally depending on B.

It might sound confusing to talk about the conceptual inequality of the causal order
and temporal order of occurrences. There are situations in which two things may



Int. J. Patt. Recogn. Artif. Intell. 1992.06:699-730. Downloaded from www.worldscientific.com
by FLINDERS UNIVERSITY LIBRARY on 01/27/15. For personal use only.

COMPUTING WITH CAUSAL THEORIES 715

happen at the same time. There exists no temporal order between their occurrences.
None of them occurs after the other in time. However, the occurrence of one of them
can be identified as the cause of the other. In this case, it is said that there is a causal
order between them; the cause is causally before the caused one, the effect.

In causal theories, causal rules can represent causation such that the [J-conditions
on the L.h.s. of a causal rule denote causes while the r.h.s. denotes their effects.
Under this interpretation, having simultaneous temporal propositions on both sides
of causal sentences may result in circular causation (Ref. 2, p. 179): O, p) D
D(t,pi+l)a i=1,...,n—-1, Pn = P1-

Simply, the causal theory may include a sentence of the form (¢, p) O 0, p).
Then, we have self-causation. Our object to this is twofold. First, causation is
semantic rather than syntactic. But if circularity exists, relating causation to syntactic
forms only will not be fair. Instead, causation can take the form of a mere material
implication. Furthermore, sentences of the form [(z,, p) D Q(z,, p), where £, < 1,
are allowed in causal theories. Does this mean that p causes itself? There can be
sentences in the form (¢, p) D Q(t,, p), where 1; < t,. Is this rendered as ‘‘if
—p is not known at t,, then p is known at ¢, for no reason’’? Through soundness
conditions, one can write sentences like O(ty, p) O TRUE(¢;, p). Shoham (Ref. 2,
p. 118) says ‘‘we now assume that the soundness conditions are implicitly part of the
causal theory itself, and are omitted simply for reasons of economy of expression.”’
Moreover, the boundary between [J- and <>-conditions in Shoham’s account becomes
hazy if (d-conditions in a causal rule strictly denote the causes.

The second objection, closely connected to the first objection, is that one is not
supposed to look for the causes in the unique cmi model of a causal theory. If this
were the case, then there would be difficulties in identifying the causes and computing
possible explanans of the occurrences. Temporal precedence of causes over effects
already provides the necessary criterion to find out the causes of a given set of effects.
However, when simultaneous propositions are allowed on both sides of the causal
rules, the problem becomes more complex.

As an example for cause-effect distinction, reconsider Taylor’s illustration. Assume
that the causal theory contains the following:

(4, locomotive-moves) D [J(4, caboose-moves) .
(4, caboose-moves) D [1(4, locomotive-moves) .

Looking only at the syntactic forms of these rules, one can say that they permit
circular causation. But now add TRUE(4, locomotive-moves) to the causal theory.
Then, TRUE(4, locomotive-moves) and TRUE(4, caboose-moves) will be the only
sentences known in all cmi models of the causal theory. In this case, if one
investigates the cause of the motion of the locomotive and the caboose, one may
identify the motion of the locomotive as the cause of the motion of the caboose
although (4, caboose-moves) D [J(4, caboose-moves) implies self-causation.
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Permitting causal sentences of the form [(¢, p;) D (¢, pivy), i=1, ...,
n — 1, p, = p, introduces no peculiarity at all in constructing cmi models. This will
be studied in Sec. 4.4.

4.2. Self-Change
Shoham says (Ref. 2, p. 179):

“[O]ne might have a set of sentences [J(z,p;) D A(t, pity), i=1, ...,
n—1, p,=—p,. This would destroy the independence of the past
from the future in general, and the ‘unique’-model property in particular.
Or, as another example, one might have sentences of the form
O(t, p) D (2, —p), which would have a similarly detrimental effect on
the properties of causal and inertial theories.”’

However, by placing some restrictions on the sentences in the definition of causal
theories these problems can be eliminated. In the former case, it is possible to impose
some restrictions on the sentences similar to the one in the definition of the original
causal theories. Recall that consistency of the causal theories is maintained by the
following:

If ®, A©, D 0(,, t, p) and P, A O, D (1, t,, —p) are two sen-
tences in ¥, then @, A ©, A d, A O, is inconsistent.

To see what kind of situations yield inconsistency, two possibilities are examined
below.

(a) Causal connections can be unidirectional:
Qd, py) D AG, pa).
(&, p2) D U, pa).
D(t’ pn) 3 D(t’ ——lpl)
If there exists another sentence with (¢, p,) on its r.h.s., then this may result in
wrong inferences.

(b) The causal connections can be bidirectional:
Qd, py) O AG, p2).
A, pz) D O, py).
Q(, p2) D A, ps).
D(t9 p3) 2 D(ta Pz)
O(, p3) D O, —p,), where there exists at least one causal chain from
LG, py) to @, —py).
In this case, if the r.h.s. of any of these rules is satisfied, due to the existence of
causal chain the sentences TRUEC(z, p,) and TRUE(¢, —p,) will be obtained.

4.3. Should Simultaneity be Treated by Causal Theories?
Consider the following illustration (Ref. 33, p. 108; Ref. 34). There is a horizontally
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positioned pipe whose two ends are controlled with two valves. These are connected in
such a way that if one is opened at one time, then the other valve is closed at the same
time, and vice versa. The opening of one valve and closing of the other occur
simultaneously. The pipe also has a top-inlet continuously supplying high pressure water
into it. Hence, the pipe, with the valves directing water flow in only one direction at a
time, functions as a two-way watering system. Now let the state of the first valve’s being
open be represented by p while that of the second by ¢g. Then, at any time either p A —q
or —p A q. Additionally, let the flow of the water through the first (respectively second)
valve be represented by r (respectively s).

Obviously, the cause of r is p and the cause of s is g. Then, a causal theory will contain
the sentences:

Q@ p)AO, DAU + 1, r), Ve, where O, = /\ O, 2, @i) .
i=1

Q(t, g) A 0, D D + 1, 5), Ve, where @, = /\ Oy, 12, b)) -
j=1

Assume that the state of the valves are causally related to a common cause (e.g. if
there is a possibility for an agent which pushes only the first valve and closes it, this
action causes the first valve to close and the second valve to open). In this case, the
causal theory above might contain the following sentences where the pushing of the
first valve is represented by u:

Q@ u) A0; D 0OG¢ + 1, —p), Vi, where @5 = /\O(til, tin, a;) .

i=1
D(t, M) N @4 D) D(t + 1, q), Vt, where @4 = /\<>(tj1, tj2, bj) .
Jj=1

It is noted that if ®; = @4, one cause produces more than one effect. This suggests
that causal rules can represent multiple effects.

If the two changes have separate causes, the situation is easy. For example, let the
first valve be open and the second closed. If there is an agent pushing the first valve
to close it, there may be another agent pulling the second valve to open it. Then,
closing of the first valve can be attributed to the pushing of it, and opening of the
second valve to the pulling of it. Or, it may well be the case that one agent pushes the
first valve while another pushes the second valve. In this case, there are two causes,
namely pushing of the first and the second valves, that intervene with each other.
Although each cause separately has the efficacy to produce its effect(s), they now
prevent the changes that they will bring about. Since each one prevents the other
from being operative, these two can be termed counteracting causes, following
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von Wright (Ref. 34, pp. 75-77). These two causes must be involved in the
related causal sentences either in the form (¢, u) A O(r, —v) or in the form
@, v) A O, —u) where u and v denote pushing of the first and the second
valves, respectively.

So far, everything is on the side of the temporal precedence of causes over their effects.
But, what happens if there is no cause of these two changes? This is quite possible because
causal theories allow atomic sentences in the form of boundary conditions to be asserted
for no reason. In fact, either p (the first valve’s being open) or —¢ (the second valve’s
being closed) can be asserted at any time into the causal theory. Then, how does one
assure that, when only one of them is known, one will know the other occurred at the very
same time? A set of sentences in the following form might be helpful:

O, p) 2 3¢, —g), Ve .
Q(, —q) D (e, p), Ve

Note that they do not contain a {>-condition. This means that occurrence of p
(respectively —¢q) unconditionally necessitates occurrence of —1g (respectively p).
However, there may be cases in which some qualifications must hold for occurrences to
be simultaneous.

4.4. Causal Theories: An Extended Definition

Definition 4.1. An extended causal theory €} is a theory in CI, in which all sentences
have the form ® A @ D ¢, where

1. ¢ = TRUE(4,, tp, p).

n
2. & = /\ Oe¢;, where ¢; is an atomic base sentence with Itp z;, ¢; < ¢,.

i=]

m
3.0 = /\(}(pj, where ¢; is an atomic base sentence with ltp ¢;, 1; = ¢,.
Jj=1
4. ® or © (or both) may be empty.
5. It is assumed that there exists a global z, such that if ® D (¢, 1, p) is in §), then
to < t,.
6. There do not exist two sentences in £} such that one contains (2, £, p) oniits Lh.s.
while the other contains (¢4, ¢, —Ip) on its 1Lh.s.
7. If &, A0, D0, t,,p) and ®, A0, D, t,, —p) are in ), then
®, AN O,; AP,y A O, is inconsistent.
8. There do not exist sentences in € of the form ® A O(1,, tp, TP) A O D
Qs, te, p) or A, 1y, p) A O D Oy, 1o, TIP).

This definition says that causes can occur simultaneously with their effects (they can
only coincide at a time point where the cause ceases while its effect starts). If cause and
effect overlap for a period of time, the direction of prediction changes: either the past
determines the future or the future determines the past.
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Theorem 4.1. If () is an extended causal theory, then

1. €2 has a cmi model.
2. If M, and M, are both cmi models of €2, and ¢ is any atomic base sentence, then
M, ELeiff M, = De.

Proof. Appendix. |

Theorem 4.2. If ) is a finite extended causal theory of size n, then the set of the atomic
base sentences known in the cmi models of () has size O(n) and can be computed in time
o(n?).

Proof. Appendix. u

5. CONCLUSION

Shoham’s causal theories have computationally simple model-theoretic properties.
However, it turns out that computing with causal theories is not very efficient. Axiom
schemata are not directly allowed in causal theories. New classes of causal theories
have been introduced to capture generality with axiom schemata as well as to
efficiently compute the atomic base sentences known in all cmi models of causal
theories. It has been shown that computing with these causal theories is not
time-dependent. It turned out that causal theories, in general, call for a syntactic sugar
to obtain intended models. Such a syntactic sugar has been embedded in our YSP’-like
causal theories. A model construction procedure has been proposed to compute the
atomic base sentences in all cmi models of YSP'-like causal theories.

There are still some technical problems. One is prohibiting simultancity of cause
and effect. More generally, temporal propositions are not allowed on both sides of
sentences in causal theories. In the second part of the paper it has been emphasized
that permitting such propositions provides more expressive power and an extended
definition has been given. The intervals of the propositions on both sides of sentences
in these theorics are not allowed to overlap, but meet at certain points in time.
Provided that some assumptions hold, it has been shown that extended causal theories
have unique cmi models.
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APPENDIX. PROOFS

A.

1. Theorem 3.2

The algorithm below follows the construction in the proof of Theorem 3.1.

. Let KNOWN and CONS be two lists. KNOWN contains O¢,; and CONS is empty.

Find the axiom schema containing [d¢, as its unique [J-condition. If there exists
such an axiom schema, then let CONS contain the r.h.s. of this schema such that
the ltp of the r.h.s. becomes ¢; + 1 when ¢ is replaced by #,. Add this atomic base
sentence into KNOWN.

If CONS is empty, then go to 5.

If the atomic base sentence in CONS is a [J-condition in the persistence axiom
schema, then add the atomic base sentences into KNOWN such that these atomic
base sentences are obtained by replacing ¢ in the [J-condition by constants in the
range t; + 2 to t,. Then, first empty CONS, and let CONS contain only the
atomic base sentence with Itp = ¢, obtained from the [}-condition above.

Add Oy into CONS and KNOWN.

If CONS contains e,’ with Itp = ¢, and if Ogp is not a $-condition in @,
then add O¢, (by letting its itp be 7, + 1) into KNOWN.

. Let &' A O,/ D e, be obtained by replacing ¢ with ¢, in ®, A @, D Qe..

Check if each conjunct d(¢;, p) of ®. exists in CONS. If so, let the conjuncts of
0. be of the form (;, p) (respectively (¢;, —p)). If for each (1, p)
(respectively O(1;, —p)), [, —p) (respectively [A(¢;, p)) does not exist in
CONS, then add ¢, into KNOWN.

. The set of atomic base sentences known in the unique cmi model of the YSP-like

causal theory ¢ are the ones in KNOWN.
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Complexity:

Step 1: O(1) (initialization).

Step 2: O(n) (searching and matching).

Step 3: O(1) (testing).

Step 4: O(1) (matching two atomic base sentences).

Step 5: O(1) (add operation).

Step 6: O(n) (searching).

Step 7: O(n) (searching each condition of the sentence in a list of size at most 2).
Step 8: O(1) (reporting the set of atomic base sentences in KNOWN).

Consequently, the total time complexity of the algorithm is O(n). |

A.2. Theorem 3.3

Part I. To prove that ¢’ has a cmi model, a construction procedure is devised for a
model M for ¢'. The construction is built upon the time-bounded Kripke interpretation
M/t for a time point ¢ (see Def. 2.16). It starts with a time-bounded Kripke
interpretation at Itp ¢, of the initial boundary condition and it proceeds by augmenting
this interpretation. (Any primed base sentence ¢’ is obtained by replacing the variable
tin ¢ by a constant. ®’, @', &', and II," denote the conjunction of base sentences
obtained by replacing the variable ¢ in each conjunct by a constant.)

1. Let 1, be the Itp of the initial boundary conditions of {’. Let M /t. & Oes,,
i=1,...,n,For any other ¢ appearing on the 1.h.s. of the axiom schemata, let
M/, B DQe'.

2. Augment M/t, into M/t, + 1:

Cons, 41 = {Q(t, + 1,p): Q"G "0, D00+ 1,p)e ' such that
M/t, = Qg,’, M/t, = 0, and M/t, = II/VII{ in &, for 1t =1,
(Def. 3.3), or ®. A0, D¢+ 1,p)e ! and M/t, = D/ 1O/
fort = t,}.

Make the wff in Cons, 4, true and for any other ¢ whose Itp = ¢, + 1, make Q¢

false.

3. Cons, ., contains the base wff appearing either on the r.h.s. of the persistence
axiom schemata or on the r.h.s. of the causal axiom schemata. The sentences in the
latter can falsify the L.h.s. of the persistence axiom schemata in which the former
appear. Therefore, to find out what base sentences preserve their truth value for the
next time point, one more iteration is needed. Then, augmentation of M [Jta + 1
into M/t, + 2, t, + 2 <1,, is done by letting
Cons, 4, = {Q(t +2,p): D, "G, A0, D00+ 1,p)e€ ' such that

M/t,+ 1 EQe,’, M/t, + 1 = 0,', and M/t, + 1 F II/VII/ in
&, fort =1, + 1},
making the wff in Cons, ., true, and for any other ¢ whose ltp is t, + 2, making
Qe false.

4. Augmentation of M/t, + 2 into M/t, is specified first by letting M/t, = Doy,

j=1, ..., m (note that all final boundary conditions have Itp #,), and then
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letting M /1, & Q¢"Ve' € Cons, ., such that O¢" is obtained by replacing the
time constants in each [J¢' with the time constants in the range ¢, + 3 to ¢,, For
any other ¢ whose Itp is in the range ¢, + 3 to ¢,, make [J¢ false.

. Finally, M/t, is augmented into M/t, + 1 by letting

Cons, .1 = {A(t, + 1,p): Qe "D n 0, D0+ 1,p) e’ such that
M/t, = Qe,, M/t O, and M/t, = II/VIly in &, for
t=1t,, or ® . AO. D+ 1,p)e ¢ and M/t, = ©. A B for
t=1,},

making the wff in Cons,, ., true, and for any other ¢ whose Itp is 7, + 1,

making [le false.

Part II. It must be shown that if there exists another model M’ of ¢’ which
differs from M on the truth value of (¢ for some ¢, then M’ is not a cmi model
for {’. Assume that there exists such a model M'. There are two possibilities:

1. M & Q¢ while M’ = (¢ for a ¢ with Itp = 1,. By Def. 2.7, this means that

M D M.

2. M and M’ differ on the truth value of ¢ with Itp = ¢t. + 1, ¢, = t,,. There are

two possibilities:

(i) M= e while M’ # e. Let O¢ be of the form [A(¢, + 1, p):
First, if ¢, = t,, since M k= ¢, there exists either an axiom schema
Qe, ANSp A0, D20+ 1,p) e such that for r=tME g, A
J,' N ®, or an axiom schema ®. A O, D (¢t + 1,p) € such that
ME®’ A®, fort =1t.. Since M and M’ agree on the knowledge of all
base sentences with Itps =< z,, by the second construction step M’ = [d¢.
This is a contradiction.

If t,+1<1t.<t,, then by the third step of the construction pro-
cedure there exists a persistence axiom schema QOe¢, AT, A6, D
Q@+ 1,p)e ! such that M/t, + 1 =G + 1, p) for t =1¢,. Since
there exists no known atomic base sentence with Itp < z. other than ¢, it
will always be the case that M/t = D, NG, N6, 1, + 1 <t<t.
Then, M/t = [d(¢., p) and hence M/t. = [O¢. Since M and M’ agree on
the knowledge of all base sentences with Itps < t,, M'/t, + 1 = Q. But
by the discussion above, this implies that M'/¢. = . This contradicts the
assumption that M'/t. ¥ Q.

For t. =t,, M/t, + 1 = p. This is true iff one of the following
conditions hold: M/¢t, E Qe,' AN D, A0, fort=1t,or M/t, = O/ N O.
for t = t,. But it is known that M and M’ have the same atomic base
sentences whose ltps < 1,. Then, M'/t, + 1 = ¢, contradicting the
assumption that M'/t, + 1 ¥ De.

(i) M ¥ Qe while M’ = [e. Again by Def. 2.7, it follows that M’ D4 M.
n

A.3. Theorem 4.1

We first give some definitions which will be needed in the sequel.
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Definition A.3.1. The earliest time point (etp) of a base sentence is the earliest
time point mentioned in it.

The etp of TRUE(¢,, 1., p) = ¢,.

The etp of ¢, A ¢, = min{etp of ¢,, etp of @,}.

The etp of —¢ = the etp of ¢.

The etp of Vv is the minimum among the etps of all ¢’ which result from
substituting in ¢ a time point symbol for all free occurrences of v, or — if
there is no such minimum etp.

W N -

Definition A.3.2. The temporally meeting set of sentences at time t, TMS,, are
those sentences in the causal theory Q such that for any sentence, the etp and ltp of
the base sentence on its r.h.s. is the same and equal to ¢, and the ltp of at least one
of the base sentences on its 1.h.s. is equal to the etp (Itp) of the base sentence on
its r.h.s.

For example, if Q contains (¢, t,, p) A O, ty, g) D (L4, r) and
Q(t,, 14, u) D (s, w), then they are in TMS,, (assuming that 1, < 1, < t; and
e = td)‘

Definition A.3.3. The bounded set of sentences at time t, BS,, are those sentences
with ltp ¢.

It Q(ta, ty, p) N (e, ta, @) D DLy, tr, r) and (2., 1, u) D (2, w) are in
€}, then they are in BS,,. But note that only (., ty, u) D Q(t, w) is in T™S,,.
Then, a sentence in () is always in BS, for some time z. But it may or may not be in
any TMS.

Definition A.3.4. The temporally dependent set of sentences at time t, TDS,, are the
sentences in TMS, of Q such that if ¢ is on the r.h.s. of a sentence in TMS,, then it
should be the case that either Q¢ or 1@ appears on the 1.h.s. of other sentences in
TM™S,.

For example, let TMS, for an extended causal theory () be as follows:
™S, = (D, ty, p) N O, tp, @) D Oy, 1),
Qe r) D Ay, s),
Qta, ts, p) N Oltes 1y, w) D (e, )}

Then, TDS, = {QU., ts, p) A O, tp, @) D DUy, r), Oy, r) D A, 5)}.

A construction procedure will be needed to build a model M for the extended causal
theory ). This will be done by augmenting some time-bounded Kripke interpretation.
This augmentation, however, cannot be used in the construction of M. There exist
some technical defects that can destroy the unique-model property of extended causal
theories. Starting with Shoham’s augmentation and considering these technical prob-
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lems, a new augmentation will be specified. Then, it will be used to show that in all
cmi models of any extended causal theory the same atomic base sentences are known.

Shoham specifies an augmentation of a time-bounded Kripke interpretation M/t to
M/t + 1 as follows (Ref. 2, p. 112):

Cons, 4y = {QW,t+ 1,x):®AO DD, t+ 1, x) e Qand M/t = PN B} .

M/t + 1 is obtained by making all wif in Cons,,, and all their tautological conse-
quences true, and for any other ¢’ whose ltp is £ + 1, making (¢’ false.

Now, consider the following sentences in ). Note that they are all in TMS, , but
except the first one they are all in BS,, as well.

(., 15, ) D A, 1y, @) .

Q(t,, ty, 5) Ay, —r)y D Oy, v) .
d(ta, r) D Oy, u) .

O, te, p) A O, ta, 9) D Qg 1) -

Assume that M/t. = Oi(t,, tp,, s) and M/t. = [A(¢,, tp,, p). We would like to
augment M/t. to M/t,. Now, if all sentences are examined in the order they are
written, Cons,, will contain [J(z., t4, q) since M /t. &= Q(t,, tp, s). However,
none of the L.h.s. of the other sentences is satisfied since they contain base sentences
with Itp #,. Then, as a result of the augmentation only [J(¢., ¢4, ) is obtained.
But the Lh.s. of other sentences can also be satisfied. For example, for
Q,, ty, 5) Ay, —r) D Q(ty, v), M/t = Q(t,, v) it M/t = 0, ty, s)
and M/t, ¥ [O(t4, r). Therefore, in order to perform the augmentation successfully,
one must also consider the sentences in Cons,,. That is, a possible augmentation
might be:

Cons,,, = {0, t+ 1,x): PAOD (', ++ 1,x) €], but ¢ TMS,,, and
M/tEdAO, or PAODOGE,t+1,x) e Q and € TMS,,; such
that Ve € ®, Qg € Cons,, if Itp of ¢ is t + 1, M/t = Q¢ other-
wise, and VOo@ € ©®, OQ—p ¢ Cons,,, if Itp of @ is ¢t + 1, M/t ¥
—1¢ otherwise}.

M/t + 1 is obtained in the same way as in the first specification.
Returning to the example set of sentences above, the augmentation of M/t to M/t,
can be obtained:

1. For Q(t,, tp, s) D A, ts, q), Cons,, = {A(t., t4, q)} since M/t &=
Q.. t, ).

2. For Q(t,, ty, s) A O(tg, —r) D Q(t4, v), Cons,, = {A(,, ta, q), D14, v)}
since M/t. = [A(z,, t,, 5s) and (24, r) € Cons,,.
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3. For D(td’ r) ») D(td, u)y Constd = {D(tc’ ta, ‘I), D(td, U)} since D(td: r) '3
Cons,,.

4' For D(ta? tb’ p) A <>(tc, td’ (I) ) D(td, r), Constd = {D(tc’ tda q), D(tda U),
Q(tq, r)} since M/t = Q(t,, ty, p) and D, 14, —q) ¢ Cons, .

But Cons,, does not have the right sentences. Since Cons,, contains [J(¢,, r), it
will cause the 1.h.s. of the second sentence to fail and the 1.h.s. of the third sentence
to be satisfied. Hence, it must be the case that Cons,, = {Q(z, ta, q), D(14, ),
(¢4, r)}. Therefore, the augmentation specified above is incorrect.

Another technical problem has to do with the pluri-extensionality of the non-
monotonic systems. One of the properties of nonmonotonic systems is that they may
produce several sets of possible conclusions. For example, consider the following set
of premises where Unless(p) is true iff p cannot be inferred:3’

S = {p, p A Unless(q) D r, p A Unless(r) D q} .

Depending on the order in which inferences have been applied, one can obtain two
conclusions: {p, r} as a result of the subset {p, p A Unless(q) D r} and {p, q} as a
result of the subset {p, p A Unless(r) D ¢q}. However, these two conclusions cannot
be inferred conjointly; if r is inferred, then ¢ cannot be inferred, and vice versa. If one
is mainly interested in constructing only one of these possible sets, then the system is
inconsistent in a sense that the intended model may not be obtained.

This is the case with extended causal theories. To illustrate the situation consider the
following set of sentences that constitute TMS,, of an extended causal theory Q.

™S, = {Qa, p) ,
D(td’ p) A <>(td7 _—lq) D) D(td’ r) s
D(td’ P) A <>(td’ _|r) D D(td, ‘I)} .

Assuming that Cons,, contains only [J(¢;, p) and assuming that the sentences
in TMS,, are examined in the order they are written, one finds out that Cbns,d =
{Q(4, p), Q(ty4, r)}. If the order of the last two sentences in TMS,, is changed,
then Cons,, = {[(¢4, p), D(24, q)} is obtained. Thus, the order of these sentences is
important.

In the following proof, an augmentation which will not cause such problems will be
used.

Let there be two models M and M’ such that M’ D M and they differ on the truth
value of some sentence (.

1. By definition, there exists a fo such that it precedes the Itp of any ¢ where ¢
appears as in the r.h.s. of a boundary condition in ). Then, M/, = ¢ for any
¢ with Itp < ¢y, and M/ty ¥ Oe’ for any other ¢’ with ltp < ¢,.
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M /t, partially satisfies all the boundary conditions of () since their ltps are
greater than ty. Obviously, M/t also partially satisfies all the causal rules since
the truth values of sentences with Itp > ¢, depend on the sentences with ltp = 7o,
and the Lh.s. of causal rules with Itp = 1, are falsified.

. The construction progresses iteratively over time.

Cons,,, = {QA@',t+ 1, x): A0 DQAE, 1+ 1,x) € BS,,;, but ¢ TMS,,
and M/t = & A O},
Cons’,yy = {QA(',t+ 1,x): PAO DO, 1+ 1,x) € TDS,;,, such that
Ve € ®, D¢ € (Cons,.; U Cons’,y) if Itp of ¢ is ¢+ 1,
M/t = Q¢ otherwise, and YV Oe e ®, Q¢ ¢ (Cons,yy U
Cons’, ) if Itp of ¢ is £t + 1, M/t ¥ —[¢ otherwise},
Cons",,; = {A(, t + 1, x): A O DU, t+ 1, x) e TMS,;,, but
¢TDS,.; such that V¢ € ®, Q¢ € (Cons,y; U Cons’, U
Cons", ;) if Itp of ¢ is t + 1, M/t = (¢ otherwise, and VO €
O, O ¢ (Cons,; U Cons’,; U Cons", ) if ltpof ¢ is ¢t + 1,
M/t ¥ — e otherwise}.

It is assumed that the sentences of ) are examined in the order they are written. For

this reason, although one can obtain more than one possible set Cons’,;, a unique set
is constructed under this assumption. (It must be admitted that this is a very strong
assumption.)

M/t + 1 is obtained by first making all wff in Cons,,, true, then making all wff in

Cons',..; true, and finally making all wff in Cons”,,; true. For any other ¢ with ltp
t + 1, e is made false.

The last step in the proof of the theorem is to show that this M is chronologically

more ignorant than any M’ which differs on the truth value of (¢ for some ¢. There
are two cases:

1.

2.

It may be that M' = D¢ for some ¢ with ltp < 1. But this, by Def. 2.7, implies

that M Dy M.

It may be that there exists a time point ¢, ty <z, and that either M’ ¥ ¢ and

M E e, or M' = Qe and M ¥ e or for some ¢ with Itp = ¢ + 1. Now let

M E [J¢. Then two cases must be examined:

(a) There exists a sentence ® A ® D [ € ) such that the ltps of the base
sentences in ® and @ are <t, and M/t = D A O. It is known that M and M’
agree on the knowledge of all base sentences having Itp < ¢. Hence, it follows
that M’ = ¢ since M'/t = ® A O. But this contradicts M’ B .

(b) There is a sentence of the form ® A ® D ¢ € (2, such that the ltps of the
base sentences in @ and ® are <t + 1. Then, the etp of ¢ must be equal to its
Itp (+ + 1). This implies that M/t + 1 = & A O and it is known from case (a)
that for any ¢’ in @ A O withlitpt + 1, M = O¢’ and M’ = d¢'. Since M
and M’ agree on the knowledge of all base sentences with ltp =<¢ and they
agree on the knowledge of all base sentences in @ and @ with Itp < + 1, it
must be the case that M’ = Qe, contradicting M’ ¥ [le.
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Similarly, if M’ = D¢ and M ¥ Qe, in light of the discussion above, for any ¢
with itp = ¢ + 1, whenever M' = Qe, it must be the case that M = Qe.

Consequently, if there is a model M’ differing from the model M constructed for 2,
then M’ D4 M. L

A.4. Theorem 4.2

(The reader is referred to Sec. A.3 for some crucial definitions.) The algorithm
below organizes the sentences of €} in ascending order of their Itps. Then, each set of
sentences with the same ltp is reordered. This reordering is done by first dividing these
sentences into classes and then rearranging these classes among themselves. As a final
step, the sentences are examined to see if their l.h.s. are satisfied. If so, their r.h.s.
are marked accordingly.

1. Let T be the list of all sentences in ). Let S be a list.

2. Gather all atomic base sentences appearing in 7T into a list S by dropping negation
signs.

3. Sort T in ascending order by the Itp of the r.h.s. of the sentences in it. Also sort §
in ascending order by the Itp of the base sentences.

4. Remove all duplicates of any atomic base semtence in S. Mark all members
UNMARKED.

5. Gather all sentences in T into bounded sets of sentences, BS, such that if say
® A ® D QA., t, []r) is a sentence in T, then it must be in the bounded set of
sentences at time ¢, BS,/. At the end, BS contains the ordered sets BS,, for, say,
i=ay,...,a,.

6. For each BS, , divide it into two groups; the temporally meeting set of sentences at
t;, TMS, , and the set of other sentences, NMS, . Replace BS, with these two sets
such that NMS, appears before TMS,. That is, BS, = NMS, U TMS, . For
example, if

BS,, = {D(ta, 1, p) D D0, ta, @
Qta, w) A OAte, ta, ) D Oy, v)
Qta, p) A Oltes ta, @) O Qta, N},
then
NMS,, = {Q(,, t, p) D D, 14, 9},
and
T™S,, = {Qtq, w) A (e, tg, —r) D O(tg, ),

D(td’ P) N <>(tc’ td7 ‘I) D D(tda r)} .
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7. For each TMS,, divide it into two groups: the temporally dependent set of

sentences at 7;, TDS, and the set of other sentences, NDS, . Replace TMS, with
these two sets such that TDS, appears before NDS,. That is, TMS, =
TDS,, U NDS,,. For the above example,

TDStd = {D(td’ P) A <>(tca ta, Q) 2 D(td» r)} >

NDS,, = {Q(t4, ©) A O, ta, 7)) D A1y, )}
(Now BS contains the sets BS,’s such that BS, = NMS, U TDS, U NDS, for
some ¢ . All these sentences are still in increasing order of their Itps. From now on,

the names BS, , NMS, , TDS, , and NDS,, will not be used. Since the list BS has
all the sentences, each sentence in BS will be examined.)

8. If BS is empty, then halt. The atomic sentences that are known in all cmi models

of the extended causal theory are those sentences marked YES in S plus the
negation of those marked NO in S.

9. Remove the first sentence of BS, and let this sentence be ® A ® D

Q(t,, tp,[1p). For each conjunct (¢, t;2, [1]p;) of ® and each conjunct

(1, tiz, [T]p:) of O, determine how TRUE(Z;y, t;2, p;) is marked in S by

performing binary search on S. If one of the following conditions is true:

(@) (., tin, p;) is a conjunct of ® and TRUE(#,,, t;2, p;) is not marked YES
in S,

(b) A1, tiz, —py) is a conjunct of ® and TRUEC(s;,, t;2, p;) is not marked NO
in S,

(©) Ot tin, pi)) is a conjunct of ® and TRUE(t;,, 1, p;) is marked NO
in S,

(dy O(tas tiz, —p;) is a conjunct of @ and TRUE(#, 4, £, p;) is marked YES
in S,

then go to 8§,

else mark TRUE(¢,, t,, p) in S with YES if the r.h.s. is [(¢,, 15, p), and NO if
it is [A(z,, t,, —p). Go to 8.

Complexity:

Step 1: O(1) (initialization).

Step 2: O(n) (collection).

Step 3: O(n logn) (sorting).

Step 4: O(n) (removing duplicates and marking).

Step 5: O(n). Examining the ltp of the r.h.s. of each sentence in T suffices to classify
the sentences. Note that the sentences in T are currently sorted with respect to the Itp
of their r.h.s.

Step 6: O(n). This step requires determining the sentences that have r.h.s. with the
same etp and ltp such that at least one of the conjuncts on the Lh.s. has this etp (ltp)
as its Itp. For each class BS, , this can be done by examining the ltp of the Lh.s. of
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each sentence and comparing it to the etp and ltp of its r.h.s. Since this is done for all
sentences in every class BS, , this step requires all sentences to be examined at most
once.

Step 7: O(n?). The r.h.s. of each sentence in every class TMS,, must be on the Lh.s.
of all sentences in its corresponding class TMS, .

Step 8: O(1) (testing and reporting).

Step 9: O(n logn). Label checking can be done at most n times. Determination of the
label of each conjunct requires binary search. A new labeling can be done in time
O(n logn) since it also requires binary search. There can be at most n new labeling

operations during the execution of the algorithm.
Hence, the total time complexity of the algorithm is O(n?). ]
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