
Situations and Computation: AnOverview of Recent Research�Erkan T�n and Varol AkmanDepartment of Computer Engineering and Information ScienceFaculty of Engineering, Bilkent UniversityBilkent, 06533 Ankara, Turkeyftin,akmang@bilkent.edu.trAbstractSerious thinking about the computational aspects of situation theory isjust starting. There have been some recent proposals in this direction (viz.PROSIT and ASTL), with varying degrees of divergence from the ontologyof the theory. We believe that a programming environment incorporatingbona �de situation-theoretic constructs is needed and describe our veryrecent BABY-SIT implementation. A detailed critical account of PROSITand ASTL is also o�ered in order to compare our system with these pio-neering and in
uential frameworks.1 IntroductionSituation theory has been devised to develop a uni�ed mathematical theory ofmeaning and information content and to clarify and resolve various long-standingproblems in the study of language, information, logic, philosophy, and the mind.The original theory was due to Jon Barwise and John Perry [6]. The theory hasmatured over the last decade [12] and various versions of it have been applied toa number of linguistic issues, resulting in what is commonly known as situationsemantics [2, 3, 5, 11, 15, 16, 18, 25]. Situation semantics aims at the constructionof a mathematically rigorous theory of meaning, and the application of such atheory to natural language.The mathematical foundations of the theory are based on intuitions basicallycoming from set theory and logic [1, 3, 11, 12]. One of the distinguishing char-acteristics of situation theory vis-�a-vis another in
uential semantic theory in thelogical tradition [13] is that information content is context-dependent.�This work has been supported in part by a NATO Science for Stability Grant(TU-LANGUAGE) awarded to Bilkent University.79

While not much work has been done to construct a computational frameworkbased on situation theory, there have been some attempts to investigate this[8, 9, 16, 23]. These have incorporated only some of the original features of thetheory; the remaining features were omitted for the sake of achieving particulargoals. This has caused conceptual and philosophical divergence from the ontologyof the theory. Recent studies [26, 27, 28, 29] have tried to avoid this pitfallby simply sticking to the essentials of the theory and adopting the ontologicalfeatures which were �rst put forward by Barwise and Perry [6] and then re�nedby Devlin [12].In this paper, we review the existing approaches towards a computational ac-count of situation theory; this may serve as a guideline for researchers who aimat constructing programming systems permitting the use of situation-theoreticconstructs. We brie
y review situation theory and situation semantics in Sec-tions 2 and 3. In Section 4, we brie
y explain why situations should be used innatural language processing, and in knowledge representation for semantic inter-pretation and reasoning. The existing computational accounts based on situationtheory are examined in Section 5. Finally, we present our concluding remarks inSection 6.2 Situation TheoryIndividuals, properties, relations, spatio-temporal locations, and situations arebasic constructs of situation theory. The world is viewed as a collection of objects,sets of objects, properties, and relations. Individuals are conceived as invariants;having properties and standing in relations they persist in time and space. Allindividuals, including spatio-temporal locations, have properties.Infons [12] are discrete items of information and situations are �rst-class ob-jects which describe parts of the real world. Infons are denoted as � R, a1, : : : ,an, i� where R is an n-place relation, a1; : : : ; an are objects appropriate for therespective argument places of R, and i is the polarity (0 or 1). Situations areintensional objects. For this reason, abstract situations are proposed to be theircounterparts amenable to mathematical manipulation. An abstract situation isde�ned as a set-theoretic construct. Given a real situation s, the set f� j s j= �g,where � is an infon, is the corresponding abstract situation. Here, s is said tosupport � (denoted as s j= �) just in case � is true of s. Otherwise, s 6j= �. Incase of abstract situations, the supports relation reduces to set-inclusion.Suppose Alice was eating ice cream yesterday at home and she is also eatingice cream now at home. Both of these situations share the same constituentsequence �eats, Alice, ice cream�. These two events, occurring at the samelocation but at di�erent times, have the same situation type s. Situation typesare partial functions from relations and objects to 0 and 1. The situation type sin our example assigns 1 to the constituent sequence �eats, Alice, ice cream�.80

Situation types can be more general. For example, a situation type in whichsomeone is eating something at home `contains' the situation in which Alice iseating ice cream at home. Suppose Alice is not present in the room where thispaper is being written. Then, \Alice is eating ice cream" is not part of oursituation s and hence gets no truth value in s. Thus, situation theory allowspartiality [16].Situations in which a sequence is assigned both truth values are incoherent.For instance, a situation s is incoherent if �has, Alice, A~, 0� 2 s and �has,Alice, A~, 1� 2 s. This is a situation in which Alice has the A~ and she doesnot have the A~ in a card game. There cannot be a real situation s validatingthis. Nevertheless, the constituent sequence�has, Alice, A~� may be assignedthese truth values for spatio-temporally distinct situation types (say, s and s0).Allowing partiality has the advantage of distinguishing between logically equiv-alent statements. For example, the statements \Bob is angry" and \Bob is angryand Bob is shouting or Bob is not shouting" are logically equivalent in the clas-sical sense. In situation semantics, these two sentences will not have the sameinterpretation. A situation s describing the situation in which Bob is only angrywill not contain any sequence about Bob's shouting, i.e., s will be `silent' on Bob'sshouting. However, another situation s0 obtained as the union of two situations(Bob is angry and Bob is shouting; Bob is angry and Bob is not shouting) willcontain a sequence about Bob's shouting.A scheme of individuation, a way of carving the world into uniformities, is anessential aspect of situation theory. The notions of individual, relation, spatialand temporal location depend upon this schema of individuation. In other words,the basic constituents of the theory are determined by the agent's schema ofindividuation. Formal representation of these uniformities yields what is knownas types.Situation theory provides a collection of basic types that can be used forindividuating or discriminating uniformities of the real world. There are ninebasic types: temporal location (TIM), spatial location (LOC), individual (IND),n-place relation (RELn), situation (SIT), infon (INF), type (TYP), parameter(PAR), and polarity (POL).If R is an n-place relation and a1; :::; am (m � n) are objects appropri-ate for the argument places i1; :::; im of R, and if the �lling of these argumentplaces is su�cient to satisfy the minimality conditions for R, then for i 2 f0; 1g,�R; a1; :::; am; i� is a well-de�ned infon. Minimality conditions for a particularrelation are the collection of conditions that determine which particular groupsof argument roles need to be �lled in order to produce an infon. If m < n, theinfon is said to be unsaturated; if m = n it is saturated.Abstraction can be captured in a primitive level by allowing parameters in in-fons. Parameters are generalizations over classes of non-parametric objects (e.g.,individuals, spatial locations). Parameters of a parametric object can be associ-ated with objects which, if they were to replace the parameters, would yield one81

of the objects in the class that parametric object abstracts over. The parametricobjects actually de�ne types of objects in that class. Hence, allowing parame-ters in infons results in parametric infons. For example,�sees, _x, Alice, 1� and�sees, _x, _y, 1� are parametric infons where _x and _y stand for individuals. Theseinfons are said to be parametric on the �rst, and the �rst and second argumentroles of the relation sees, respectively.Anchoring (binding) parameters of an infon to real objects yields parameter-free infons. For example, in �goes, _x, Chicago, 1� if an anchoring functionf anchors _x to the individual John, we obtain the parameter-free infon �goes,John, Chicago, 1�.Parameters can be restricted so that they represent �ner uniformities. Givena parameter _x and a set of infons I, _x Î restricts the class of objects that canbe anchored to _x only to the ones for which I hold in the `world' situation. Thisprocess is known as parameter restriction.Complex object types can be de�ned over some intial situation. Given asituation s, a parameter _x, and a set of infons (involving _x) I, one can de�ne[_x j s j= I] to denote the type (class) of all objects for which the conditionsimposed by I hold in s. This process of obtaining a type from a parameter _x, asituation s, and a set I of infons, is referred to as type-abstraction. _x is calledthe abstraction parameter while s is called the grounding situation.A situation s0 is part-of another situation s (denoted by s0 � s) just in case(8�)[s0 j= �) s j= �]. The part-of relation between situations is anti-symmetric,re
exive, and transitive, and consequently provides a partial-ordering of the sit-uations.In situation theory, information
ow is made possible by a network of abstract`links' between high-order uniformities, viz. situation types. These links are calledconstraints. Barwise and Perry identify three forms of constraints [6]. Necessaryconstraints are those by which one can de�ne or name things, e.g., \Every dog isa mammal." Nomic constraints are patterns that are usually called natural laws,e.g., \Blocks fall if not supported." Conventional constraints are those arising outof explicit or implicit conventions that hold within a community of living beings,e.g., \The �rst day of the month is the pay day." They are neither nomic nornecessary, i.e., they can be violated. All types of constraints can be conditionaland unconditional. Conditional constraints can be applied to situations that ful�llsome condition while unconditional constraints can be applied to all situations.3 Situation SemanticsAccording to situation semantics, meanings of expressions reside in systematicrelations between di�erent types of situations. They can be identi�ed with re-lations on discourse situations d, (speaker) connections c, the utterance ' itself,and the described situation e. Some public facts about ' (such as its speaker and82

time of utterance) are determined by the discourse situations. The ties of themental states of the speaker and the hearer with the world constitute c. A dis-course situation involves the expression uttered, its speaker, the spatio-temporallocation of the utterance, and the addressee(s). Each of these de�nes a linguisticrole (the role of the speaker, the role of the addressee, and so on).The utterance of an expression ' `constrains' the world in a certain way, de-pending on how the roles for discourse situations, connections, and describedsituations are occupied. For example, \I am crying" describes a three-place re-lation [[I am crying]] on the utterance situation (the discourse situation and theconnections) u and the described situation e. This de�nes a meaning relation:d; c[[I am crying]]e.Given a discourse situation d, connections c, and a course of events e, thisrelation holds just in case there is a location ld and a speaker ad such that ad isspeaking at ld, and in e, ad is crying at ld.In interpreting the utterance of an expression ' in a context u (d, c), there is a
ow of information, partly from the linguistic form encoded in ' and partly fromcontextual factors provided by the utterance situation u. These are combined toform a set of constraints (not uniquely determined) on the described situation e:given u and an utterance of ' in u, there will be several situations e that satisfythe constraints imposed. While the meaning of an utterance of ' and henceits interpretation are in
uenced by other factors such as stress, modality, andintonation [16], the situation in which ' is uttered and the situation e describedby this utterance seem to play the most in
uential roles. For this reason, themeaning of an utterance is essentially taken to be a relation de�ned over ', u,and e. This approach towards identifying linguistic meaning is essentially whatBarwise and Perry call the Relation Theory of Meaning [6].Situation semantics makes simple assumptions about the way natural lan-guage works. Primary among them is the assumption that language is usedto convey information about the world (the so-called external signi�cance of lan-guage). Even when two sentences have the same interpretation, i.e., they describethe same situation, they can carry di�erent information.Classical approaches to semantics underestimate the role played by context-dependence; they ignore pragmatic factors such as intentions and circumstances ofthe individuals involved in the communicative process. But, indexicals, demon-stratives, tenses, and other linguistic devices rely heavily on context for theirinterpretation. Context-dependence is an essential hypothesis of situation se-mantics. A given sentence can be used over and over again in di�erent situationsto say di�erent things (the so-called e�ciency of language). Its interpretation,i.e., the class of situations described by the sentence, is therefore subordinateon the situation in which the sentence is used. This context-providing situation,discourse situation, is the speech situation, including the speaker, the addressee,the time and place of the utterance, and the expression uttered. Since speakers83

are always in di�erent situations, having di�erent causal connections to the worldand di�erent information, the information conveyed by an utterance will be rel-ative to its speaker and hearer (the so-called perspectival relativity of language)[6].Besides discourse situations, the interpretation of an utterance depends onthe speaker's connections with objects, properties, times and places, and on thespeaker's ability to exploit information about one situation to obtain informationabout another. Therefore, context supports not only facts about speakers, ad-dressees, etc. but also facts about the relations of discourse participants to othercontextually relevant situations such as resource situations. Resource situationsare contextually available and provide entities for reference and quanti�cation.According to situation semantics, we use meaningful expressions to conveyinformation not only about the external world but also about our minds (theso-called mental signi�cance of language). Situation semantics di�ers from otherapproaches in that we do not, in attitude reports, describe our mind directly(by referring to states of mind, ideas, senses, thoughts, etc.) but indirectly (byreferring to situations that are external).With these underlying assumptions and features, situation semantics providesa fundamental framework for a realistic model-theoretic semantics of natural lan-guage. The ideas emerging from research in situation semantics have been coa-lesced with well-developed linguistic theories such as lexical-functional grammarand led to rigorous formalisms [16]. On the other hand, situation semanticshas been compared to other in
uential mathematical approaches to the theoryof meaning, viz. Montague Grammar [10, 13, 24] and Discourse RepresentationTheory (DRT) [19].4 Why Compute with Situations?A computational formulation of situation theory may generate interest amongarti�cial intelligence and natural language processing researchers. The theoryclaims that its model theory is more amenable to a computationally tractableimplementation than standard model theory (of predicate calculus) or MontagueGrammar. This is due to the fact that situation theory emphasizes partialitywhereas standard model theory is clearly holistic.From a natural language processing point of view, situation theory is in-teresting and relevant simply because the linguistic account of the theory (viz.situation semantics) handles various linguistic phenomena with a
exibility thatsurpasses other proposals. It seems that indexicals, demonstratives, referentialuses of de�nite descriptions, pronouns, tense markers, names, etc. all have tech-nical treatments in situation semantics that reach beyond available theoreticalapparatuses. For example, the proposed mechanisms, as reported in [18], fordealing with quanti�cation and anaphoric connections in English sentences are84

all �rmly grounded in situation semantics. The insistence of situation semanticson contextual interpretation makes the theory more compatible with speech acttheory (and pragmatics in general) than other theories.15 Computational Frameworks5.1 PROSITPROSIT (PROgramming in SItuation Theory) is the pioneering work in thisdirection. PROSIT is a situation-theoretic programming language developed byNakashima et al. [23]. It has been implemented in Common Lisp.PROSIT is tailored more for knowledge representation in general than fornatural language processing. One can de�ne situations and assert knowledge inparticular situations. It is also possible to de�ne relations between situationsin the form of constraints. PROSIT's computational power is due to an abilityto draw inferences via rules of inference. There is an inference engine similarto a Prolog interpreter. PROSIT o�ers a treatment of partial objects, such assituations and parameters. It can also deal with self-referential expressions [5].One can assert facts that a situation will support. For example, if s1 supportsthe fact that Bob is a young person, this can be de�ned in the current situations as: s: (!= s1 (young Bob)).Note that the syntax is similar to that of Lisp and the fact is in the form ofa predicate. The supports relation, !=, is situated so that whether a situationsupports a fact depends on where the query is made.In PROSIT, there exists a tree hierarchy, with the situation top at the rootof the tree. top is the global situation and the `owner' of all the other situationsgenerated. One can traverse the `situation tree' using the predicates in and out.Although it is possible to make queries from a situation about any other situation,the result will depend on where the query is made. If a situation sit2 is de�nedin the current situation, say sit1, then sit1 is said to be the owner of sit2.The owner relation states that if (!= sit2 infon) holds in sit1, then infonholds in sit2, and conversely, if infon holds in sit2 then (!= sit2 infon)holds in sit1. So, in causes the interpreter to go to a speci�ed situation whichwill be a part of the `current situation' (the situation in which the predicate iscalled) and out causes the interpreter to go to the owner of the current situation.1Kamp's DRT may safely be considered as the only competition in this regard [19]. However,it should be noted that there are currently research e�orts towards providing an `integrated'account of situation semantics and DRT, as witnessed by Barwise and Cooper's recent work[4]. 85

Similar to the owner relation between situations there is the `subchunk' rela-tion. It is denoted as (c< sit1 sit2), where sit1 is a subchunk of sit2, andconversely, sit2 is a superchunk of sit1. When a situation, sit1, is assertedto be the subchunk of another situation, sit2, it means that sit1 is totally de-scribed by sit2. A superchunk is like an owner except that out will always causethe interpreter to go to the owner, not to a superchunk.PROSIT has two more relations that can be de�ned between situations. Theseare the `subtype' relation and the `subsituation' relation. When the subtyperelation (denoted by (-> sit1 sit2)) is asserted, it causes the current situationto describe that sit1 supports i for every infon i valid in sit2 and that sit1respects every constraint that is respected by sit2, i.e., sit2 becomes a subtypeof sit1. The subsituation relation is denoted as (s< sit1 sit2) and is the sameas (-> sit1 sit2) except that only infons, but no constraints, are inherited.Both relations are transitive.One can de�ne a `default inheritance' relation between two situations. Whena default inheritance relation (denoted by (d< sit1 sit2)) is asserted, sit1inherits an infon i to sit2 if and only if (no i) cannot be proved to hold insit2.The fact that PROSIT permits situations as arguments to infons makes itpossible to represent self-referential statements. Consider a card game wherethere are two players. John has the ace of spades and Mary has the queen ofspades. When both players display their cards the following infons will be true:(!= sit (has John ace-of-spades))(!= sit (has Mary queen-of-spades))(!= sit (sees John sit))(!= sit (sees Mary sit))There is no notion of situation type in PROSIT. For this reason, one cannotrepresent abstractions over situations and specify relations between them withouthaving to create situations and assert facts to them.It is possible to de�ne a relation as an abstraction over parameters of an infon.A PROSIT expression of the form[par1 : : : parn j infon]describes an abstraction and it can be applied to arguments:([par1 : : : parn j infon] arg1 : : : argn)to yield infon0 where infon0 is the result of replacing each pari in infon with thecorresponding argi. Therefore, abstraction in PROSIT does not yield an objecttype or situation type in the situation-theoretic sense.PROSIT allows de�nition of a special kind of infon which is called restrictedinfon. An expression of the form(^ infon1 infon2) 86

de�nes an infon where infon2 is the restriction of infon1. For example,(^ (man P) (human P))puts a restriction on the parameter P of the infon (man P) such that P mustful�ll the relation human. Hence, a restriction speci�es what relations hold of theparameters of the infon. This approach does not provide a mechanism equivalentto parameter restriction; rather it seems to o�er a limited mechanism to specifyappropriateness conditions for a given relation and a speci�c parameter.PROSIT has a constraint mechanism. Constraints can be speci�ed usingeither of the three relations), (, and ,. Constraints speci�ed using) (re-spectively,() are forward (respectively, backward) chaining constraints; the onesusing , are both backward- and forward-chaining constraints. Backward chain-ing constraints are of the form ((head fact1 : : : factn). If all the facts aresupported by the situation, then the head fact is supported by the same situa-tion. Forward chaining constraints are of the form () fact tail1 : : : tailn). If fact isasserted to the situation, then all the tail facts are asserted to the same situation.Backward chaining constraints are activated at query-timewhile forward-chainingconstraints are activated at assertion-time. By default, all the tail facts of an ac-tivated forward-chaining constraint are asserted to the situation, which may inturn activate other forward-chaining constraints recursively.For a constraint to be applicable to a situation, the situation must be declaredto `respect' the constraint. This is done by using the special relation respect. Forexample, to state that every man is human, one would write:s: (resp s1 (<= (human *X) (man *X))).This states that s1 respects the stated constraint and is made with respect tos. (*X denotes a variable.) Since assertions are situated, a situation will or willnot respect a constraint depending on where the query is made. If we assert:s: (!= s1 (man Bob)),then PROSIT will a�rmatively answer the query:s? (!= s1 (human Bob)).Constraints in PROSIT are about local facts within a situation rather thanabout situation types. That is, the interpretation of constraints does not allowdirect speci�cation of constraints between situations, but only between infonswithin situations.Parameters, variables, and constants are used for representing entities inPROSIT. Variables, rather than parameters, are used to identify the indeter-minates in a constraint. Parameters might be used to refer to unknown objectsin a constraint. Variables have a limited scope; they are local to the constraint inwhich they appear. Parameters, on the other hand, have global scope. Variablesmatch any expression in the language and parameters be can equated to any87

constant or parameter.PROSIT has been used to show how problems involving cooperation of mul-tiple agents can be studied, especially by combining reasoning about situations.In [22], Nakashima et al. demonstrate how the Conway paradox [3, pp. 201{220]can be solved. The agents involved in this problem use the common knowledgeaccumulated in a shared situation. This situation functions as a communicationchannel containing all information known to be commonly accessible. One agent'sinternal model of the other is represented by situations. Individual knowledge sit-uation plus the shared situation help an agent to solve the problem; also cf. [14]for further work on similar epistemic puzzles.5.2 ASTLBlack's ASTL (A Situation Theoretic Language) is another programming lan-guage based on situation theory [8]. ASTL is aimed at natural language process-ing. One can de�ne in ASTL constraints and rules of inference over the situations.An interpreter, a basic version of which is implemented in Common Lisp, passesover ASTL de�nitions and answers queries about the set of constraints and basicsituations.ASTL allows individuals, relations, situations, parameters, and variables.These form the basic terms of the language. Complex terms are in the formof i-terms (to be de�ned shortly), situation types, and situations. Situations maycontain facts which have those situations as arguments. Sentences in ASTL areconstructed from terms and can be constraints, grammar rules, or word entries.The complex term i-term is simply an infon hrel; arg1; : : : ; argn; poli whererel is a relation of arity n, argi is a term, and pol is either 0 or 1. A situationtype is given in the form [par j cond1: : : condn] where condi has the form par j=i-term. If situation S1 supports the fact that Bob is a young person, this can bede�ned as:S1: [S j S j= hyoung,bob,1i].The single colon indicates that S1 supports the situation type on its right-handside. The supports relation in ASTL is global rather than situated. Consequently,query answering is independent of the situation in which the query is issued.Constraints are actually backward-chaining constraints. Each constraint is ofthe form sit0 : type0 (sit1 : type1; : : : ; sitn : typen, where siti is a situation ora variable, and typei is a situation type. If each siti, 1 � i � n, supports thecorresponding situation type, typei, then sit0 supports type0. For example, theconstraint that every man is a human being can be written as follows:*S: [S j S j= hhuman,*X,1i] (*S: [S j S j= hman,*X,1i].*S, *X are variables and S is a parameter. An interesting property of ASTL is88

that constraints are global. Thus, a new situation of the appropriate type neednot have a constraint explicitly added to it. Assume that S1, supporting the factthat Bob is a man, is asserted:S1: [S j S j= hman,bob,1i].This together with the constraint above would give:S1: [S j S j= hhuman,bob,1i].Grammar rules are another form of constraint. An example grammar ruledescribing the utterance of a sentence consisting of a noun phrase and verb phraseis *S: [S j S j= hcat,S,sentence,1i] !*NP: [S j S j= hcat,S,nounphrase,1i],*VP: [S j S j= hcat,S,verbphrase,1i]where cat denotes the category of the construct, and ! indicates that this is agrammar rule. The rule reads: \When there is a situation *NP of the given typeand situation *VP of the given type, there is also a situation *S of the given type."As in PROSIT, variables in ASTL have scope only within the constraint theyappear. They match any expression in the language unless they are declared tobe of some speci�c situation type in the constraint. Hence, it is not possibleto declare variables as well as parameters to be of other types such as individ-uals, relations, etc. Consequently, anchoring of parameters cannot be achievedappropriately in ASTL.The primary motivation underlying ASTL was to �gure out a framework inwhich semantic theories such as situation semantics [3] and DRT [19] can bedescribed and possibly compared. Such an attempt can be found in [7].5.3 Situation SchemataSituation schemata have been introduced by Fenstad et al. [16] as a theoreticaltool for extracting and displaying information relevant for semantic interpreta-tion from linguistic form. The boundaries of situation schemata are
exible anddepending on the underlying theory of grammar, are susceptible to amendment.A simple sentence ' has the situation schema shown in Figure 1(a). Here rcan be anchored to a relation, and a and b to objects; i 2 f0,1g gives the polarity.LOC is a function which anchors the described fact relative to a discourse situationd; c. LOC will have the general format in Figure 1(b). IND.� is an indeterminatefor a location, r denotes one of the basic structural relations on a relation set R,and loc0 is another location indeterminate. The notation []� indicates repeatedreference to the shared attribute value, IND.�. A partial function g anchors thelocation of SIT.', viz. SIT.'.LOC, in the discourse situation d; c if89

SIT.' (a)RELARG.1LOCPOLARG.2 -abrii CONDIND RELARG.1ARG.2 locdrIND.� []�iPOL(b)Figure 1: (a) A prototype situation schema, (b) the general format of LOC in(a).g(loc0) = locd andc(r), g(IND.�), locd; 1where locd is the discourse location and c(r) is the relation on R given by thespeaker's connection c. The situation schema corresponding to \Alice saw thecat" is given in Figure 2.Situation schemata can be adapted to various kinds of semantic interpretation.One could give some kind of operational interpretation in a suitable program-ming language, exploiting logical insights. But in their present form, situationschemata do not go further than being complex attribute-value structures. Sit-uations, locations, individuals, and relations constitute the basic domains of thestructure. Constraints are declarative descriptions of the relationships holdingbetween aspects of linguistic form and the semantic representation itself.Theoretical issues in natural language semantics have been implemented onpilot systems employing situation schemata. The grammar described in [16], forexample, has been fully implemented using a lexical-functional grammar system[17] and a fragment including prepositional phrases has been implemented usingDPATR.5.4 BABY-SITBABY-SIT is a computational medium based on situations, a prototype of whichis currently being developed in KEETM (Knowledge Engineering Environment)[20]. The implementation language is Common Lisp and the BABY-SIT desktopis based on X Windows running on a SPARCStation (cf. Figure 3). The primarymotivation underlying BABY-SIT is to facilitate the development and testing ofprograms in domains ranging from linguistics to arti�cial intelligence in a uni�edframework built upon situation-theoretic constructs [26, 27, 29]. An interactiveenvironment helps one to develop and test his program, observe its behavior90

COND ARG.1REL []2POL 1`cat'SPEC `the'INDLOC IND.3COND ARG.1 locdREL `<'[]3POL 1ARG.2
SIT.1 ARG.1RELARG.2

POL
IND `Alice'IND.2IND`see'
1Figure 2: Situation schema for \Alice saw the cat."vis-�a-vis extra (or missing) information, and issue queries [26].The computational model underlying the current version of BABY-SIT con-sists of nine primitives: individuals, times, places, relations, polarities, parame-ters, infons, situations, and types. Each primitive carries its own internal struc-ture. Individuals are unique atomic entities which correspond to real objectsin the world. Times are individuals of distinguished type, representing tem-poral locations and, similar to times, places are individuals which representspatial locations. A relation has argument roles which must be occupied byappropriate objects. Infons are the discrete items of information of the form� rel; arg1; : : : ; argn; pol �, where rel is a relation, argi, 1 � i � n, is anobject of the appropriate type for the ith argument role, and pol is the polarity.Parameters are `place holders' for objects in the model. They are used to referto arbitrary objects of a given type. Types, on the other hand, form higher-orderuniformities for individuating or discriminating other uniformities in the world.Situations are set-theoretic constructs, e.g., a set of parametric infons (com-prising relations, parameters, and polarities). A parametric infon is the basiccomputational unit. By de�ning a hierarchy between them, situations can beembedded via the special relation part-of. In this way, a situation s can have in-formation about another situation s0 which is part of s. A distinguished situation91

ENGINEERING

K

ENVIRONMENT

NOWLEDGE

BABY-SIT
(COMPUTATIONAL SITUATION THEORY)

X W
IN

DOW
S

COM
M

ON LISPFigure 3: The software structure of BABY-SIT.called background situation (denoted by w) contains infons which are inheritedby all situations, i.e., w is implicitly part of all situation structures in the en-vironment and its infons hold in all situations. However, situations other thanw may contain infons that vary from situation to situation. A situation can beeither (spatially and/or temporally) located or unlocated. Time and place for asituation can be declared by time-of and place-of relations, respectively.Anchoring of parameters is made possible by anchoring situations which allowparameters to be anchored to objects of appropriate types|individuals, situa-tions, parameters, etc. But a parameter must be anchored to a unique object inan anchoring situation, i.e., it is anchored once in a given anchoring situation. Onthe other hand, more than one parameter may be anchored to the same objectin an anchoring situation. Anchoring of a parameter can be done via the specialrelation anchor. Restrictions on parameters must be satis�ed by w.There are three modes of computation in BABY-SIT: assertion mode, con-straints, and query mode.5.4.1 Assertion ModeThis provides an interactive environment in which one can de�ne objects andtheir types. There are nine basic types corresponding to nine primitives: �IND(individuals), �TIM (times), �LOC (places), �REL (relations), �POL (polari-ties), �INF (infons), �PAR (parameters), �SIT (situations), and �TYP (types).For instance, if l is a place, then l is of type �LOC, and the infon �of-type, l,�LOC, 1� is a fact in w. Note that the type of all types is �TYP. For example,the infons �of-type, �LOC, �TYP, 1� and �of-type, �TYP, �TYP, 1� arefacts in w. The syntax of the assertion mode (cf. [26]) is similar to that in [12].The architecture of Assertion Mode is shown in Figure 4.Suppose bob is an individual, and sit1 is a situation. Then, these objectscan be declared as:I> bob:�IND 92

RULE SYSTEM

SITUATIONS

MENU-DRIVEN
OPERATIONS

HANDLER

KEE
FORWARD CHAINING

SYSTEM

ASSERTION

MODE KEE

SETUP

OBJECTS

BABY-SIT

TYPES

TIMES

INFONS

PLACES

SITUATIONS

PARAMETERS

INDIVIDUALS

POLARITIES

RELATIONS

ASSERTION MODE

SYNTACTIC PARSER

ASSERTION MODE

SEMANTIC PARSER

A

S

S

E

R

T

I

O

N

M

O

D

E

E

R

I

N

T

E

R

F

A

C

E

S

U

FORWARD CHAINER

FORWARD CHAINER

SYSTEM

ACTIVATOR

CONTROLLER

CONSISTENCY MAINTENANCE

OBJECT DEFINITION

Figure 4: The architecture of Assertion Mode.I> sit1:�SITThe de�nition of relations includes the appropriateness conditions for theirargument roles. Appropriateness conditions de�ne the domains to which argu-ments of a relation belong. Each argument can be declared to be from one ormore of the primitives above. If we want sees to have two arguments, the formerbeing of type individual and the latter being of type situation, we write:I> <sees j �IND, �SIT> [1]The number in square brackets indicates the minimum number of argumentsthat can be used with the relation. Hence, �sees,bob,1�, for example, isconsidered to be a valid (i.e., unsaturated) infon in the system and it is equivalentto �sees,bob,-,1� where \-" is a null object.In order for the parameters to be anchored to objects of the appropriate type,parameters must be declared to be from only one of the primitives. It is alsopossible to put restrictions on a parameter in the environment. Suppose we wantto have a parameter E denoting any individual that sees sit1. This can be doneby asserting:I> E = IND1 ^ �sees,IND1,sit1,1�IND1 is a default system parameter of type �IND. E is considered as an objectof type �PAR such that if it is anchored to an object, say obj1, then obj1 mustbe of type �IND and w must support �sees,obj1,sit1,1�.93

Anchoring situations are those that support infons having anchor as theirrelations. anchor has two argument roles: one for a parameter and another for anobject which serves as an anchor for the parameter, with the minimality condition2. For example, if it is the case for Bob that w j= �sees, bob, sit1,1�, thenan anchoring situation, say anchor1, can supply an anchoring which anchorsparameter E to bob:anchor1 j= �anchor,E,bob,1�.Given an anchoring situation, the anchoring de�ned by this situation can beapplied on the propositions asserted to the system in Assertion Mode. Anchoringis performed by replacing each occurrence of an anchored parameter by its anchorde�ned in the anchoring situation. For example, giving anchor1 as the anchoringsituation and asserting the propositionsit1 j= �man,E,1�results in the proposition sit1 j= �man,bob,1� holding.Parametric types are also allowed in BABY-SIT. They are are of the form[P j s j= I]where P is a parameter, s is a situation (i.e., a grounding situation),and I is a set of infons. The type of all situations that Bob sees can be de�nedin BABY-SIT as follows:I> �SITALL = [SIT1 j w j= �sees,bob,SIT1,1�]Hence, �SITALL is seen as an object of type �TYP in BABY-SIT and canbe used as a type speci�er for declaration of new objects in the environment. Anobject of type �SITALL, say obj2, is an object of basic type �SIT such that wsupports the infon �sees,bob,obj2,1�.Naming infons enables one to easily refer to them in expressions. For instance,the infon �sees,bob,sit1,1� can be named infon1:I> infon1 = �sees,bob,sit1,1�In addition to de�ning situations, one can create hierarchies among situations.For example, the following sequence of assertions creates a situation sit2, de-�nes it as a subsituation of situation sit1, and at the same time adds the infon�blind,bob,0� into it:I> sit2:�SITI> sit2 j= f�make-part-of,sit2,sit1,1�, �blind,bob,0�gThis will force sit1 to support all the infons supported by sit2. As a result,it will be the case that sit1 j= �part-of,sit2,sit1,1�.Similar operations can be done via the situation browser as well. The situ-ation browser enables one to create situations, browse them graphically, add ordelete infons, and establish hierarchies among situations. Since all situations arerequired to cohere in BABY-SIT, assertion of propositions that will yield inco-herent situations are refused by the system both for assertions of propositions inAssertion Mode and for the ones asserted during chaining.94

Variables in BABY-SIT are solely used in constraints and query expressions,and have scope only within the constraint or the query expression they appear.A variable can match any object appropriate for the place or the argument roleit appears in. For example, given the relation above, variables ?S and ?X in theproposition ?Sj=�sees,?X,sit1,1� can only match objects of type �SIT and�IND, respectively.5.4.2 ConstraintsA BABY-SIT constraint is of the form:antecedent1, : : :, antecedentn f<=, =>, <=>gconsequent1, : : :, consequentm.Each antecedenti, 1 � i � n, and each consequentj, 1 � j � m, is of the formsit fj=, 6j=g �rel, arg1; : : : ; argl; pol� such that rel and each argk, 1 � k � l,can either be an object of the appropriate type or a variable.Each constraint has an identi�er associated with it and must belong to agroup of constraints (i.e., a perspectivity set). For example, the following is abackward-chaining constraint named HUMAN-BEINGS-012 under the constraintgroup SPECIES-PERSPECTIVE:SPECIES-PERSPECTIVE:HUMAN-BEINGS-012:?S j= �human,?X,1� <= ?S j= �man,?X,1�where ?S and ?X are variables. ?S can only be assigned an object of type �SITwhile ?X can have values of some type appropriate for the argument roles of thehuman and man relations. This constraint can apply in any situation. Constraintscan also be situated. For example,HUMAN-BEINGS-012 can be rewritten to applyonly in situation sit1:sit1 j= �human,?X,1� <= sit1 j= �man,?X,1�.Conditional constraints of BABY-SIT come with a set of background condi-tions which must be satis�ed for the constraint to apply. For example, to statethat blocks fall if not supported, one can write:NATURAL-LAW-PERSPECTIVE:FALLING-BLOCK:?S1 j= �block,?X,1�,?S1 j= �supported,?X,0� => ?S2 j= �falls,?X,1�UNDER-CONDITIONS:w:�exists,gravity,1�.Background conditions are assumptions which are required to hold for con-straints to be eligible for activation. FALLING-BLOCK can become a candidatefor activation only if it is the case that w 6j= �exists,gravity,0�, i.e., if theabsence of gravity is not known in the background situation.95

The forward-chaining mechanism of BABY-SIT is initiated either when theuser tells the system to do so or by assertion of a new object into the system.A candidate forward-chaining constraint is activated whenever its antecedent issatis�ed. All the consequences are asserted if they do not yield a contradiction inthe situation into which they are asserted. New assertions may in turn activateother forward-chaining constraints. Candidate backward-chaining constraints areactivated either when a query is entered explicitly or is issued by the forward-chaining mechanism. Antecedent parts of any constraint are, by default, provedby the backward-chaining constraints in the perspectivity set of that constraint.However, they may also be proved with respect to the backward-chaining con-straints in a given antecedent perspectivity set.5.4.3 Query ModeQuery mode enables one to issue queries about situations. There are severalpossible actions which can be controlled by the user:� Providing a perspectivity set to make the query mechanism prove the querywith respect to the backward chaining constraints in this set.� Providing an antecedent perspectivity set to make the query mechanismprove the antecedents of the backward chaining constraints with respect tothe backward chaining constraints in this set.� Searching for solutions by using a given group of constraints.� Replacing each parameter in the query expression by the corresponding in-dividual if there is a possible anchor, either partial or full, for that parameterprovided by the given anchoring situation.� Returning solutions. (Their number is determined by the user.)� Displaying a solution with its parameters replaced by the individuals towhich they are anchored by the given anchoring situation.� For each solution, displaying infons anchoring any parameter in the solutionto an individual in the given anchoring situation.� Displaying a trace of anchoring of parameters in each solution.The computation upon issuing a query is done either by direct queryingthrough situations or by the application of backward-chaining constraints. Asituation, s, supports an infon if the infon is either explicitly asserted to hold ins, or it is supported by a situation s0 which is part of s, or it can be proven tohold by application of backward-chaining constraints. Assume the following:sit1 j= f�sees,E,sit2,1�, �part-of,sit2,sit1,1�gsit2 j= �time-of,sit2,t2,1�w j= �sees,bob,sit1,1� 96

Given anchoring situation anchor1, a query and the system's response to itare as follows:Q> ?S j= f�sees,E,?Y,1�, �time-of,sit2,?Z,1�g,?S 6j= �blind,bob,1�Solution 1:sit1 j= f�sees,bob,sit2,1�, �time-of,sit2,t2,1�g,sit1 6j= �blind,bob,1�with the anchoring:anchor1 j= �anchor,E,bob,1�.5.5 Critique of PROSIT and ASTLA tableau comparison of PROSIT, ASTL, and BABY-SIT is given in Table 1.5.5.1 TypesAt the heart of situation theory lies a scheme of individuation. Situations, rela-tions, individuals, temporal locations, and spatial locations are the basic unifor-mities. The need for a mathematical representation of these uniformities resultedin what is known as types. Types are higher-order uniformities which cut acrossbasic uniformities. The ontology of situation theory has been extended further toinclude other uniformities such as infons, polarities, etc. In this respect, PROSITand ASTL do not allow their objects to be of some type. Only situations can bedeclared to have a situation type. Other objects in the system are left untyped.This approach has particular consequences on the conception of relations andparameters which are explained in the sequel.5.5.2 ParametersThe development of types necessitates devices, such as parameters, for makingreference to arbitrary objects of a given type. In ASTL, there is no specialtreatment of parameters which are just atomic objects in the model. Declaringsituations to be of some type allows abstraction over situations to some degree.But, the actual means of abstraction over objects in situation theory, viz. pa-rameters, does not carry much signi�cance in ASTL. Parameters are only used inidentifying situation types. Since there is no notion of types other than situationtypes in ASTL, a parameter can hold the place of any object. PROSIT treatsparameters in a way similar to its variables, except they can be equated to anyconstant or parameter. PROSIT has no mechanism to de�ne types. It cannotde�ne a situation-type explicitly. On the other hand PROSIT can query a certaintype of situation and put constraints between situation-types.97

Constraint Type PROSIT ASTL BABY-SITNomic p p pNecessary p p pConditional { { pSituated p { pGlobal { p pConstraint Class PROSIT ASTL BABY-SITSituation constraint { p pInfon constraint p p pArgument constraint { { pComputational Feature PROSIT ASTL BABY-SITUni�cation p p pType-theoretic { { pCoherence { { pForward-chaining p { pBackward-chaining p p pBidirectional-chaining p { pMiscellaneous Features PROSIT ASTL BABY-SITCircularity p p pPartiality p p pParameters ? ? pType Abstraction ? ? pParameter restriction { ? pAnchoring ? ? pInformation nesting p p pUnsaturated infons ? { pNonmonotonic reasoning { { pSet operations p { {Legend: p : exists, { : doesn't exist,? : partially/conceptually exists.Table 1: Tableau comparison of existing approaches.98

It is useful to have parameters that range over various classes rather than towork with parameters ranging over all objects. Such particularized parameterscan be obtained by parameter restriction. On the other hand, in situation theory,parameters are used to achieve abstraction at the level of almost all object types,i.e., situations, individuals, temporal locations, etc. by using type abstraction.In PROSIT some of these are hard to achieve. First of all, there is no typingin PROSIT. A variable can match any parameter or constant without due regardto types. Obtaining restricted parameters and type abstraction is not possiblesince there is no built-in mechanism in the system. But one can pose querieson restricted parameters. For example, all men kicking footballs can be queriedusing the following expression:(AND (kicking *a *b) (man *a) (football *b)).Although none of the variables are restricted, the expression queries a re-stricted class of individuals.In ASTL, abstraction is only at the level of situations. There is no directequivalent of properties in ASTL. Consider the abstraction for an individual hav-ing the property of being happy in some situation s:[X j s j= �happy, X, 1�].In ASTL, Black achieves this by allowing situation types with parametricinfons. But this is not an appropriate way to use abstractions since one cannotabstract over other objects such as individuals, temporal locations, etc. (cf.object type-abstraction and situation type-abstraction in [12]).5.5.3 Parameter AnchoringParameters are place holders for indeterminate objects in situation theory andyield a form of abstraction over objects. The ties of these abstractions with thereal world occur via a kind of assignment function called anchor. This functionchanges from one cognitive agent to another, and from one perspective to anotherof a single cognitive agent. Information content of an abstract object increaseswhen its parameters are anchored to objects in the real world by an anchor. Ananchor maps a parameter to a unique, appropriate object in the world. Tech-nically speaking, a parameter must be anchored to an object of the same typesince the parameter is a �ller for an object having speci�c properties. The issuesof anchoring to a unique object and anchoring to an object of the same typeintroduce technical di�culties in building a computational system.Some treatment of parameters is given in PROSIT with respect to anchoring.Given a parameter denoting an object of some type (individual, situation, etc.),an anchor is a function which assigns an object of the same type to the parameter[12, pp. 52{63]. Hence, parameters work by placing restrictions on anchors. But,there is no appropriate anchoring mechanism in PROSIT since its parameters areuntyped. 99

In the case of ASTL, there are several points worth mentioning. Black pro-poses to consider anchors as situations (anchoring situations) having infons ofthe form �anchor-to, label, term� and other related infons. Second, the cur-rent version of ASTL must be modi�ed to use anchoring situations. This cannotbe controlled by the user. The main reason is that whenever an anchoring occurs,the system must check whether the �rst argument of the relation anchor-to is alabel and the second one is a term. Moreover, the systemmust assure that the pa-rameter is anchored to only one object in that anchoring situation. Finally, typechecking for both of the arguments is required. The crux of all these problemslies in ASTL's not having type-theoretic objects and not employing parametersas they are intended in situation theory.5.5.4 InfonsThere are three characteristics of an infon in the existing systems which should beevaluated from the standpoint of situation theory: argument places, minimalityconditions, and argument roles.Each relation should have a limited number of argument places. Consider therelation walks. A reasonable assumption is that this relation has four argumentplaces: a walking agent, a direction/destination, the location of walking, and thetime of walking.To have a formally well-de�ned infon, there must be a lower bound as to thenumber of argument places to be �lled in an n-place relation. For example, atleast one argument place of the relation walks is to be �lled, namely the walkingagent. Otherwise, the infon �walks� would have zero information content.Minimality conditions are, then, necessary for a relation to provide an item ofinformation. All argument places of a relation in ASTL are required to be �lled,and consequently all infons are saturated. As for the infons in PROSIT, there isno restriction as to the number of argument roles of a relation to be �lled.Any object appearing as an argument of a relation must be appropriate forthe argument role imposed by that argument place. Hence, appropriateness con-ditions must be de�ned for each possible argument place of a relation. This isgenerally done by forming a set of infons for an argument place which are sup-posed to be supported by the world situation for a given object. At the primarylevel, each argument role requires the appropriate object to be of some basictype. That is, each argument role is associated with a certain type, the type ofthe object that may legitimately �ll that argument role. In a technical sense,appropriate conditions for an argument role are complex types having possiblythe world situation as their grounding situation.PROSIT and ASTL do not allow de�nition of appropriateness conditions forarguments of relations, mainly because objects are not typed in these systems.However, one can de�ne restrictions on the parameters of infons by using re-stricted infons in PROSIT. The relation walks, for example, might require its100

walking agent role to be �lled by an animate object. Such a restriction can bede�ned only by using constraints in PROSIT and ASTL. However, this requireswriting the restriction each time a new constraint about walks is to be added.Having appropriateness conditions as a built-in feature would be better.5.5.5 Hierarchy of SituationsBeing in a larger situation gives one the ability of having information about itssubsituations. Although there is no mention of hierarchy in situation theory, thepart-of relation can be used to build such a structure (i.e., information nesting)among abstract situations. ASTL does not have a mechanism to relate two situ-ations so that one will directly support all the facts that the other does. Whilethis might be achieved via constraints in ASTL, there is no built-in structurebetween situations.PROSIT has a tree structure among situations established by the use of ownerand subchunk relations. In fact, this hierarchy of PROSIT turns out to be usefulin problems regarding knowledge and belief.The other two PROSIT relations (subtype and subsituation) should be ex-amined carefully. At �rst glance, it seems that there is a similarity betweenthese relations and the concept of inheritance in object-oriented programming.However, in PROSIT the supersituation inherits all the infons from the subsitua-tion, whereas in object-oriented programming it is the subclass that inherits theproperties and methods from the superclass.Another question may come as to where one can use these relations. Theexample given in the PROSIT manual uses these relations to classify the airplanesof type DC (DC{9, DC{10, and so on). But from the situation-theoretic pointof view, it is not correct to consider airplanes of type DC as a situation. Anagent does not individuate DC type of airplanes as a situation and DC{9s as asubsituation of that situation. These can only be considered as a class and itssubclass. This example is surely well suited to object-oriented programming, butnot to situation theory.5.5.6 Coherence of SituationsASTL does not provide a mechanism, such as truth maintenance, to preservecoherence within situations. This is left to the user's control and can be achievedby specifying some special constraints in the ASTL descriptions. A constraint ofthe form*S: [S j S j= hactual,S,0i] -> *S: [S j S j= h*R,*A,1i],*S: [S j S j= h*R,*A,0i]is given by Black as an example. However, this is not a solution to the problemof having incoherent situations. Moreover, this approach may be quite expensive101

for the user since maintaining coherence is a complicated task and when left tothe user, a large number of constraints must be written. What is worse is thatconsequences of allowing incoherent situations and reasoning over them may bedrastic, e.g., it may lead to unintended models during computation. It seems thatcoherence, as a built-in notion, can hardly be embedded in an extension of theexisting version of ASTL since it is not a syntactical matter and requires metalevel control over the whole system.Similar to ASTL, PROSIT cares little about coherence within situations. Thisis left to the user's control.5.5.7 ConstraintsPROSIT supports the concept of constraints, but handles them in a di�erentfashion. These come in three
avors in PROSIT: forward-chaining constraints,backward-chaining constraints, and forward- and backward-chaining constraints(bidirectional-chaining constraints). In fact, both methods (forward or backward)result in the same answers to queries. However, forward-chaining incurs a highcost at assertion-time, and backward-chaining incurs a high cost at query-time.ASTL constraints are all in the form of backward-chaining constraints. Theuser can only issue queries. However, an intelligent agent has the ability tonot only acquire information about situations and obtain new information aboutthem by being attuned to assorted constraints, but also act accordingly to alter itsenvironment. Thus, having forward-chaining constraints as well would be better.In this way, new situations would be created, new infons would be inserted intosituations, and consequences of new infons would be observed.PROSIT's constraints are situated infon constraints, i.e., they are about localfacts within a situation rather than about situation-types. Still, it is possible tosimulate constraints that are not local to one situation (but are global). This canbe achieved by introducing a situation which is global to all other situations andthen asserting the constraint in this global situation. Because all other situationswill be in this global situation, any constraint that is asserted here will apply toall situations. For example,(!= (resp topsit(<= (!= *Sit1 (touching *X *Y))(!= *Sit1 (kissing *X *Y)))))states that if, in situation topsit, there is a situation that supports a fact withthe relation kissing, then that situation also supports a fact with the relationtouching on the same arguments.Situated constraints o�er an elegant solution to the treatment of conditionalconstraints which apply in situations that obey some condition. For example,when Alice throws a basketball, she knows it will come down|a constraint towhich she is attuned, but which would fail if she tried to play basketball in a102

space shuttle. This is actually achieved in PROSIT since information is speci�edin the constraint itself. Situating a constraint means that it may only apply toappropriate situations. This is a good strategy to achieve background conditions.However, it might be required that conditions set not only within the same sit-uation, but also between various types of situations. Because constraints haveto be situated in PROSIT, not all situations of the appropriate type will have aconstraint to apply.Although one can de�ne constraints between situations in ASTL, the notionof background conditions for constraints is not available. This means that condi-tional constraints are not available. However, this can be achieved by writing aset of conditions which must be satis�ed for the constraint to qualify as an appli-cable one. These conditions will obviously be placed on the consequent part ofeach ASTL constraint since all ASTL constraints are used for backward-chaining.Black identi�es three classes of constraints in [8]:� Situation constraints: Constraints between situation types.� Infon constraints: Constraints between infons (of a situation).� Argument constraints: Constraints on argument roles (of an infon).Only PROSIT cannot model situation constraints since it does not have sit-uation types. De�ning infon constraints is possible in all systems. However,argument constraints are a built-in feature only in BABY-SIT since they directlycorrespond to having appropriateness conditions for argument roles of relationsin infons.5.5.8 NonmonotonicityA typical user studying situation theory will not only want to investigate if aninfon is supported by a situation, but also want to see if an infon is not supportedby that situation. In other words, he would like to know if a situation is not of acertain type and then use this knowledge. This calls for negation in both querystatements and constraints. A straightforward way to do this is by having theappropriate syntax and semantics for the negation of supports relation, i.e., byletting \ 6j=" be used in these statements. Consider the BABY-SIT constraint:?S j= �paid-little,?W,?S,1�,?S 6j= �has-other-income,?W,?S,1� <= ?S j= �poor,?W,1�which expresses the rule of reasoning \a worker is poor if he is paid little, underthe assumption that he has no other income."Having such a construct in the constraint mechanism, and hence in the querymechanism, allows nonmonotonic reasoning. Unfortunately, neither PROSIT norASTL have an equivalent construct. 103

5.5.9 Some Formal PropertiesBlack shows that ASTL is sound, but he leaves its completeness formally un-proved. Similar arguments are valid for PROSIT as well. Although it has notbeen proved explicitly, PROSIT can be said to be a sound system. BABY-SITis, on the other hand, a sound and complete system. BABY-SIT is based onthe constructs and the inference mechanism of KEE. The situation structures aredeveloped upon the KEE's world system based on Morris and Nado's work [21].The inference mechanism of the BABY-SIT is the same as that of KEE, exceptfor the chaining control mechanism, and BABY-SIT constraints form a subset ofthe action rules that can be de�ned in KEE.5.5.10 Domains of ApplicationThe main group of problems that PROSIT can handle is that of individual knowl-edge and belief in multi-agent systems, and common knowledge (mutual informa-tion). There are three main properties that enable PROSIT to simulate human-like reasoning. The �rst one is situated programming, i.e., infons and constraintsare local to situations. The second is PROSIT's situation tree structure, whichone can use to represent nested knowledge/belief. The third is the use of incon-sistencies to generate new information. Self-referential expressions and situationsas arguments of infons are two powerful features. These features can e�cientlybe used in representing knowledge and belief. The owner relation and the super-chunk relation are useful in modeling epistemic puzzles [14].ASTL has been developed with natural language processing in mind. Still, it ispossible to use it as a general knowledge representation language. The advantagesof employing declarative or procedural approaches in knowledge-based systemsare still being debated. Both have been justi�ed from perspectives of cognitivescience and philosophy. For the time being, the declarative approach �ts bestfor a situation-theoretic computational language, but one can also bene�t fromprocedural knowledge. PROSIT is a candidate for a uni�ed framework since it ispossible to use Lisp statements as part of the language.BABY-SIT is being developed as a general-purpose programming environ-ment, speci�cally adopting the ontological features of situation theory and puttingthem into the comfortable reach of the user. Its interactive nature and facilitiesto organize and keep track of information quali�es it as a general knowledge rep-resentation system. The
exibility of situation semantics as a powerful linguisticaccount to handle various linguistic phenomena has led to the initiation of a pre-liminary study towards employing BABY-SIT in the resolution of pronominalanaphora [30, 31]. 104

5.5.11 User InterfacesPROSIT and ASTL provide simple user interfaces. The user writes de�nitionsinto a �le which can be loaded in a Common Lisp environment. Other thanquerying what situations support, the user has the opportunity to view somesystem features. ASTL is not an interactive language in the sense that a staticde�nition is input to the system and the user can only observe what can beinferred from these de�nitions. Moreover, one cannot assert propositions to thesystem; new propositions must �rst be added to the static description and thenthe system must be reloaded. This prevents the user from directly seeing theconsequences of his propositions.6 Concluding RemarksSerious thinking about the computational aspects of situation theory is juststarting. There have been some proposals [8, 9, 16, 26] in this direction, withvarying degrees of divergence from the ontology of situation theory. ASTL [8]and PROSIT [9] mainly o�er a Prolog- or Lisp-like programming language whileBABY-SIT [26, 32] provides a programming environment incorporating situation-theoretic constructs.We believe that computational aspects of situation theory call for deeper in-vestigation. Although the current attempts are in their infancy, they alreadyhave some applicability in arti�cial intelligence and natural language processing.However, their use should be further demonstrated to show why situation theoryprovides a challenging arena for studying various phenomena in these �elds.AcknowledgmentsWe gratefully acknowledge Erhard W. Hinrichs and Tsuneko Nakazawa, the or-ganizers of the Workshop on \Grammar Formalisms for Natural Language Pro-cessing," for providing the funding for the presentation of this paper in the SixthEuropean Summer School on Logic, Language and Information, Copenhagen,Denmark, August 1994.We are also indebted to John Gri�th for his strong initiative to publish thistechnical report.References[1] P. Aczel. Non-Well-Founded Sets, CSLI Lecture Notes Number 14, Centerfor the Study of Language and Information, Stanford, CA, 1988.105

[2] J. Barwise. \Noun Phrases, Generalized Quanti�ers, and Anaphora," in P.G�ardenfors, editor, Generalized Quanti�ers, Dordrecht, Holland: Reidel,1987, pp. 1{29.[3] J. Barwise. The Situation in Logic, CSLI Lecture Notes Number 17, Centerfor the Study of Language and Information, Stanford, CA, 1989.[4] J. Barwise and R. Cooper. Extended Kamp Notation: A Graphical Notationfor Situation Theory, Research Paper No. HCRC/RP{38, Human Commu-nication Research Center, University of Edinburgh, Edinburgh, U.K., 1992.[5] J. Barwise and J. Etchemendy.The Liar: An Essay on Truth and Circularity,New York, N.Y.: Oxford University Press, 1987.[6] J. Barwise and J. Perry. Situations and Attitudes, Cambridge, MA: MITPress, 1983.[7] A. W. Black. \Embedding DRT in a Situation-Theoretic Framework," inProceedings of the Fifteenth International Conference on ComputationalLinguistics, Nantes, France, 1992, pp. 1116{1120.[8] A. W. Black. A Situation-Theoretic Approach to Computational Semantics,Ph.D. Thesis, Department of Arti�cial Intelligence, University of Edinburgh,Edinburgh, U.K., 1993.[9] J. Borota et al. \The PROSIT Language v1.0," Manuscript, Center for theStudy of Language and Information, Stanford, CA, 1994.[10] R. Cooper. \Meaning Representation in Montague Grammar and SituationSemantics," in B. G. T. Lowden, editor, Proceedings of the Alvey SponsoredWorkshop on Formal Semantics in Natural Language Processing, 1987.[11] R. Cooper, K. Mukai, and J. Perry, editors. Situation Theory and Its Appli-cations, Volume 1, CSLI Lecture Notes Number 22, Center for the Study ofLanguage and Information, Stanford, CA, 1990.[12] K. Devlin. Logic and Information, Cambridge, U.K.: Cambridge UniversityPress, 1991.[13] D. Dowty, R. Wall, and S. Peters. Introduction to Montague Semantics,Dordrecht, Holland: Reidel, 1981.[14] M. Ersan and V. Akman. \Situated Modeling of Epistemic Puzzles," IGPLBulletin, 3(1): 51{76, 1995.[15] D. A. Evans. \A Situation Semantics Approach to the Analysis of SpeechActs," in Proceedings of the Nineteenth Annual Meeting of the Associationfor Computational Linguistics, 1981.106

[16] J. E. Fenstad, P.-K. Halvorsen, T. Langholm, and J. van Benthem. Situa-tions, Language, and Logic, Dordrecht, Holland: Reidel, 1987.[17] J. E. Fenstad. \Natural Language Systems," in R. T. Nossum, editor, Ad-vanced Topics in Arti�cial Intelligence: 2nd Advanced Course, Lecture Notesin Arti�cial Intelligence, Volume 345, Berlin, Germany: Springer-Verlag,1987, pp. 189{233.[18] J. M. Gawron and S. Peters. Anaphora and Quanti�cation in Situation Se-mantics, CSLI Lecture Notes Number 19, Center for the Study of Languageand Information, Stanford, CA, 1990.[19] H. Kamp and U. Reyle. From Discourse to Logic (Introduction to Model-Theoretic Semantics of Natural Language, Formal Logic, and Discourse Rep-resentation Theory), Parts I and II, Studies in Logic and Philosophy, Volume42, Dordrecht, Holland: Kluwer, 1993.[20] KEETM (Knowledge Engineering Environment) Software Development Sys-tem, Version 4.1, IntelliCorp, Inc., Mountain View, CA, 1993.[21] P. H. Morris and R. A. Nado. \Representing Actions with an Assumption-Based Truth Maintenance System," in Proceedings of the Fifth InternationalConference on Arti�cial Intelligence, Philadelphia, PA, 1986, pp. 13{17.[22] H. Nakashima, S. Peters, and H. Sch�utze. \Communication and Inferencethrough Situations," in Proceedings of the Third Conference on Arti�cialIntelligence Applications, Washington, D.C.: IEEE Computer Society Press,1987, pp. 76{81.[23] H. Nakashima, H. Suzuki, P.-K. Halvorsen, and S. Peters. \Towards a Com-putational Interpretation of Situation Theory," in Proceedings of the Inter-national Conference on Fifth Generation Computer Systems, Institute forNew Generation Computer Technology, Tokyo, Japan, 1988, pp. 489{498.[24] M. Rooth. Noun Phrase Interpretation in Montague Grammar, File ChangeSemantics, and Situation Semantics, Report No. CSLI{86{51, Center for theStudy of Language and Information, Stanford, CA, 1986.[25] S. Stucky. \The Situated Processing of Situated Language," Linguistics andPhilosophy, 12: 347{357, 1989.[26] E. T�n and V. Akman. \BABY-SIT: A Computational Medium Based onSituations," in P. Dekker and M. Stokhof, editors, Proceedings of the 9thAmsterdam Colloquium, Part III, University of Amsterdam, Amsterdam,Holland: Institute for Logic, Language, and Computation, 1993, pp. 665{681. 107

[27] E. T�n and V. Akman. \BABY-SIT: Towards a Situation-Theoretic Compu-tational Environment," in C. Mart��n-Vide, editor, Current Issues in Math-ematical Linguistics, North-Holland Linguistic Series, Volume 56, Amster-dam, Holland: North-Holland, 1994, pp. 299{308.[28] E. T�n and V. Akman. \Information-Oriented Computation with BABY-SIT," in Conference on Information-Oriented Approaches to Logic, Lan-guage, and Computation (4th Conference on Situation Theory and its Ap-plications), Saint Mary's College of California, Moraga, CA, 1994 (to bepublished by CSLI).[29] E. T�n and V. Akman. \Computational Situation Theory," ACM Sigart Bul-letin, 5(4): 4{17, 1994.[30] E. T�n and V. Akman. \Situated Processing of Pronominal Anaphora," inH. Trost, editor, KONVENS '94, 2. Konferenz, Verarbeitung nat�urlicherSprache, Informatik Xpress Series, Volume 6, Berlin, Germany: SpringerProduktions-Gesellschaft, 1994, pp. 369{378.[31] E. T�n and V. Akman. \Situated Analysis of Anaphora in Turkish," Paperread at the Seventh International Conference on Turkish Linguistics, Mainz,Germany, 1994 (to be published by Harrassowitz).[32] E. T�n, V. Akman, and M. Ersan. \Towards Situation-Oriented Program-ming Languages," ACM Sigplan Notices, 30(1): 27{36, 1995.

108

