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A B S T R A C T

Over the last decade, AI models of language and word meaning have been dominated by what we might call
a statistics-of-occurrence, strategy: these models are deep neural net structures that have been trained on a
large amount of unlabeled text with the aim of producing a model that exploits statistical information about
word and phrase co-occurrence in order to generate behavior that is similar to what a human might produce,
or representations that can be probed to exhibit behavior similar to what a human might produce (meaning-
semblant behavior). Examples of what we can call Statistics-of-Occurrence Models (SOMs) include: Word2Vec
(CBOW and Skip-Gram), BERT, GPT-3, and, most recently, ChatGPT. Increasingly, there have been suggestions
that such systems have semantic understanding, or at least a proto-version of it. This paper argues against such
claims. I argue that a necessary condition for a system to possess semantic understanding is that it function
in ways that are causally explainable by appeal to its semantic properties. I then argue that SOMs do not
plausibly satisfy this Functioning Criterion. Rather, the best explanation of their meaning-semblant behavior is
what I call the Statistical Hypothesis: SOMs do not themselves function to represent or produce meaningful text;
they just reflect the semantic information that exists in the aggregate given strong correlations between word
placement and meaningful use. I consider and rebut three main responses to the claim that SOMs fail to meet
the Functioning Criterion. The result, I hope, is increased clarity about why and how one should make claims
about AI systems having semantic understanding.
0. Introduction

Over the last decade, AI models of language and word meaning
have been dominated by what we might call a statistics-of-occurrence
strategy: these models are deep neural net structures that have been
trained on a large amount of unlabeled text with the aim of producing
a model that exploits statistical information about word and phrase
co-occurrence in order to generate behavior that is similar to what a
human might produce, or representations that can be probed to exhibit
behavior similar to what a human might produce.1

Examples of what we can call Statistics-of-Occurrence Models
(SOMs) include: Word2Vec (CBOW and Skip-Gram), BERT, GPT-3, and,
most recently, ChatGPT. They also include multi-modal systems such
as DALL-E and DALL-E 2. This paper investigates whether SOMs such
as these can plausibly be understood to possess semantic understanding,
or what is often called grounded language understanding in the natural

E-mail address: lisa.titus@du.edu.
1 This work was generously supported by a Fellowship from the National Endowment for the Humanities (FEL-282501-22, Lisa Miracchi).
2 Many of the models under consideration in this paper are often called Large Language Models (LLMs). Since my objection to these models having semantic

understanding will not be due to their size (or the size of their training data) but rather to the focus on statistics-of-occurrence as proxy for semantic information, I
introduce the term ‘‘Statistics-of-Occurrence Model’’ here. This clarifies the scope of the objection, and also allows me to also include other semantic representations
that are not strictly speaking language models — specifically Vector Semantic Representations.

language processing (NLP) and inference (NLI) literatures. Do these sys-
tems possess understanding of the meanings of their natural language
inputs or outputs? Do their architectures serve as plausible grounds
for semantic understanding in humans and perhaps other intelligent
non-human animals?2

Inspired by the impressive results of this strategy, there has been
a recent proliferation of discussion on such questions. Such mod-
els have been argued to encode commonsense knowledge (Da et al.,
2021), linguistic knowledge (Tenney et al., 2019), and practical knowl-
edge (Huang et al., 2022), and to illuminate the mechanisms under-
lying our corresponding human capacities (Schrimpf et al., 2021).
Researchers have argued that SOMs may be able to replace tradi-
tional symbolic ‘‘knowledge’’ structures (or ‘‘knowledge bases’’) used
for NLP and NLI applications (Petroni et al., 2019). Increasingly, re-
searchers are questioning whether SOMs shed light on human language
understanding and capacities for inference (Bhatia, 2017).
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Moreover, more and more people, both inside and outside the
engineering world, are raising concerns that these systems may even
have become capable of understanding and communicating meaning-
fully themselves. The recent public discussion over whether Google’s
chatbot LAMDA is sentient, following a (now) former Google engi-
neer’s claims to that effect, are but one salient example (Tiku, 2022).
However, once taken to this extreme, many researchers balk at the
claim that language models understand and communicate similarly to
humans, pointing out important differences between SOMs and human
understanding (Delcid, 2022). Which position is right?

The increasing prevalence and salience of such discussions, both
within academia and the public sphere, make it important to provide a
more principled, theoretical understanding of the relationship between
SOM and human (or other intelligent) capacities. This paper attempts
to make progress toward such understanding.

I will argue that SOMs do not plausibly possess semantic under-
standing, nor are the mechanisms they use likely to be highly explana-
tory of semantic understanding in humans and intelligent non-human
animals. We should reject the Semantic Hypothesis, namely that some
form of semantic understanding or grounds thereof can be rightly at-
tributed to SOMs.3 This is because SOMs plausibly owe their behavioral
success merely to the existence of systematic correlations between word
co-occurrence statistics and semantic relationships, not to functioning
sensitively to semantic relationships in ways that could support claims
to genuine semantic understanding. As such, we should prefer what I
call the Statistical Hypothesis: The impressive, meaning-like behavior of
SOMs piggybacks on human capacities for meaningful language use but
does not replicate it. SOMs do not themselves function to represent or
produce meaningful text; they just reflect the semantic information that
exists in the aggregate given the correlations between word placement
and meaningful use.

In Section 1, I clarify and focus the discussion by narrowing in on a
plausible necessary condition for semantic understanding which I call
the Functioning Criterion: systems with semantic understanding function
n ways that respect the contents of their states and processes, such
hat their behavior is causally explainable by appeal to those contents.
provide some motivation for this criterion and discuss how it imposes
substantial but plausible and empirically tractable requirement on

ystems with semantic understanding.
In Section 2, I introduce one prominent kind of SOM that will serve

s an example for our discussion — Vector Space Models (VSMs) such
s Word2Vec. I explain why we should not directly infer semantic
nderstanding from their meaning-semblant behavior (i.e. behavior that
ooks meaningful), but rather acknowledge the potential gap between
eaning-semblant behavior and internal functioning that would meet

he Functioning Criterion.
The remainder of the paper considers three salient strategies for

stablishing the Semantic Hypothesis. The first argues that the best
xplanation of behavioral evidence is in fact that the SOM in question
atisfies the Functioning Criterion. Section 3 discusses and rebuts this
esponse by discussing case studies both of VSMs and another key
ategory of SOMs, transformer-based language models such as GPT-
. Although these architectures enable the building of much more
ophisticated and powerful models, because they are still optimized
or predictive accuracy based on statistics-of-occurrence information,
e should take the Statistical Hypothesis to be the more plausible
ypothesis.

The second strategy is to claim that all it is for a system to function
ensitively to semantic properties – and so to satisfy the Function-
ng Criterion – is for a system to function sensitively to statistics-of-
ccurrence properties. Section 4 rebuts this response by exploring the

3 I will not distinguish between various precisifications of this hypothesis
n what follows because the criticisms I will develop apply to all such
ariations. I will discuss the claim that ‘‘SOMs have semantic understand-
ng’’ interchangeably with endorsement of Semantic Hypothesis for ease of
xposition.
2

Distributional Hypothesis that motivates research into VSMs (and plau-
sibly the statistics-of-occurrence strategy more broadly) and discusses
the way in which the legitimate use of VSMs as meaning representations
can lead to problematic conflations in this domain. I explain why
this approach provides a problematic error theory for human semantic
understanding and should therefore be rejected.

The third, and most interesting, strategy is to claim that the way
some SOMs achieve their predictive power is to develop functional
sensitivity to semantic properties. In Section 5, I consider suggestions
by Potts (2022) to this effect. He advocates using Causal Abstraction
Analysis (CAA) to assess whether large neural networks function sensi-
tively to semantics. While I agree that this route is promising, I explore
a recent CAA of BERT to argue that it does not currently provide strong
evidence for the Semantic Hypothesis, and also to motivate further
refinement of the approach. Then, I discuss the recently released and
highly impressive ChatGPT. While ChatGPT has some features that
distinguish it from these other transformer-based language models, the
kind of fine-tuning ChatGPT received does not plausibly support claims
that its internal functioning has shifted in a way that would plausibly
meet the Functioning Criterion and so bolster a claim to Semantic
Understanding. Finally, I consider multi-modal systems such as DALL-
E and DALL-E 2 and argue that, with some care, all of the arguments
against the Semantic Hypothesis apply to these systems as well. The
problems raised for large language models such as ChatGPT are not
specific to text-based systems, then, but rather apply in virtue of the
statistics-of-occurrence strategy itself.

I conclude by summarizing the key arguments and conclusions of
the foregoing, discussing the scope of the argument, and raising some
prospects for future research. It is likely that by the time this paper
is published there will be even more advanced language models out
there. The arguments and lessons of this paper should still largely apply
to them. While the ensuing claims may be somewhat pessimistic, the
lessons I wish to take from them are not. By getting clearer about what
it would take for an AI system to have semantic understanding and for
us to detect it, we may hopefully make better progress toward that end.

Before moving on, it is important to clarify terminology. One re-
grettable aspect of literatures regarding AI generally and language
models in particular is that terms evocative of human intelligence such
as ‘‘attention’’, ‘‘knowledge’’ and ‘‘learning’’ are often used in quite
technical senses that are assumed to have some intimate connection
to genuine intelligent attention, knowledge, learning, etc. Since the
question of their relationship is precisely what is at issue in this paper,
any time one of these terms is used in a technical sense, I will add an
‘‘*’’ to the end of the term. Thus, so called ‘‘attention mechanisms’’ in
the literature will be marked as attention* mechanisms, to make salient
the concern that the connection between them and genuine attention
mechanisms remains an open question.

1. Conditions on semantic understanding

Before diving into the question of whether certain AI models have
semantic understanding, we should get some clarity on the question of
what semantic understanding involves. I will assume here that humans
(and many other animals) have semantic understanding, while many
artificial systems such as laptops and toasters, and biological systems
such as bacteria and trees, fail to have it. While semantic understanding
is a technical term, we can get at our question through commonsense
phrases such as: ‘‘Does the AI know what it’s saying?’’ ‘‘Does the AI un-
derstand what I’m saying?’’ ‘‘Is the AI actually talking with me?’’. Each
of these phrases gets at the idea that we are curious about whether the
AI system in question is interacting meaningfully with its interlocutors,
whether the interaction amounts to genuine communication where its
behavior is due to an understanding of a human’s words and intentions
and reflects an effort to respond in kind.

Centrally here, when we ask whether the AI has semantic under-
standing, at least part of what we are asking is whether its responses
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reflect a sensitivity to the meaning of the text it produces. When it writes
a poem, or summarizes a piece of text, are its textual outputs a result
of understanding the meanings of words and phrases? Or is it merely
producing text that looks meaningful?

We can refine this idea as follows:

Functioning Criterion. A system with semantic understanding
functions in ways that are causally explainable by appeal to the
semantic relationships among its states and processes with semantic
content, and this functioning typically drives the evolution of these
states and processes as well as the system’s overt behavior.

In other words, the Functioning Criterion says that systems with se-
antic understanding have covert functioning as well as overt behavior

hat is best explained as being driven by sensitivity to, or respect for,
emantic relationships. This is a criterion rather than a definition, for
omeone might argue that there are further conditions that must be met
or a system to have semantic understanding.4

However, it is very plausibly a necessary condition – a condition that
any system possessing semantic understanding must meet.5 It captures
he idea that semantic understanding is not idle; rather, an important
spect of what it is to have semantic understanding is to engage in
eaningful reasoning and behavior. It is hard to say that a system’s

unctioning or behavior is meaningful, or reflects understanding of its
emantic contents, if these contents do not feature prominently in an
xplanation of how and why the system behaves as it does.

In what follows, I will explain why SOMs fail to satisfy the Func-
ioning Criterion, even on very generous interpretations of what it
akes for the contents of a system’s states and processes to be causally
xplanatory of the system’s behavior. In particular, I will allow for
ur purposes here that systems can satisfy the Functioning Criterion
ven if, strictly speaking, only internal functional (i.e. formal) proper-
ies ultimately drive the system’s functioning and behavior.6 On this
nterpretation, a system satisfies the Functioning Criterion when the
uestion of why the system functions as it does is answered by appeal
o the semantic contents of its states and the way its transitions re-
pect semantic relationships among those states. This representational
pproach is central to the computational turn in cognitive science, and
dmits of a variety of interpretations of what it is for semantic contents
o explain a system’s functioning in ways that support claims to that
ystem ‘‘respecting’’ semantic relationships.7

4 For example, one might think that consciousness is required for genuine
emantic understanding, or that there are further criteria on understanding the
eanings of terms, such as some kind of embodied interaction with the most

asic contents of thought. This paper is neutral on these questions.
5 Semantic understanding is not just linguistic, but it is often manifested

inguistically. As cognitive agents, our thought processes and actions reflect
n understanding of the world around us, and efforts to interact meaningfully
ith that world. For example, when my daughter smiles back at me, she is

xpressing her delight at me smiling at her. Her smiling back at me reflects
ot only a certain kind of pleasure, but a recognition of me as her parent and
y action of smiling at her. Since we are concerned with language models and

epresentations in this paper, we are focusing on semantic understanding as
eflected in linguistic behavior. However it is important to acknowledge that
he phenomenon is broader, and at root has to do with reasoning and agency.

6 These formal properties are abstractions of physical properties of the system
hat are mathematically or otherwise functionally specified — 1s and 0s in the
ost basic case for a binary computer, but typically more abstract properties,

uch as neural network activation patterns or mathematical entities such as
ectors.

7 See Clark (2001), Ch. 1 for introduction of this idea and description of its
mportance in cognitive science. See Fodor (1987) for a canonical development
f this idea. See e.g. Shea (2018) for a recent theory. For reasons beyond the
cope of this paper, I endorse a more robust conception of functional sensitivity
o semantic relationships than the representationalist conception. Because of
he widespread acceptance of the representationalist conception and its being
eaker than the conception I prefer, I adopt it here.
3

f

While there is substantial debate about exactly how to cash out
these ideas, our discussion will not turn on the details. This is because,
by focusing on whether a system meets the Functioning Criterion, we
can prescind from detailed discussion about what constitutes genuine
representation in cognitive systems, and instead focus on a contrastive
problem. For our purposes we can count the Functioning Criterion
as satisfied if the system in question is best explained by attributing
natural language semantic properties to its vehicles in providing a causal
explanation of its functioning and behavior rather than other kinds
of properties. That is, is the system best understood as functioning
in ways that track semantic properties? Or, is it better understood as
functioning in ways that track non-semantic properties (if it tracks any
at all)? Without answering this contrastive question in favor of semantic
properties, it is hard to say that a system is sensitive to meaning in
the way required for semantic understanding, because its functioning
is best explained without reference to these properties. I will argue that
this is exactly the position we are in.

2. Why the inference from behavior is not straightforward

In exploring whether SOMs may have semantic understanding, it
is useful to begin with discussing predictive Vector Space Models
(VSMs).8 These models, though slightly older and not as impressive
as current SOMs, have also received a lot of attention regarding their
meaning-semblant behavior. VSMs are a kind of Distributional Se-
mantic Model, and as we will see below the oft-cited ‘‘Distributional
Hypothesis’’ underlying Distributional Semantic Models is sometimes
invoked to support claims about semantic understanding. Moreover,
one of the most careful and detailed arguments that an SOM has
semantic understanding was developed for predictive VSMs such as
Word2Vec, so investigating these models will help us to better see both
the pull of the Semantic Hypothesis and the challenge to it that I wish
to advance in this paper.

Predictive VSMs include Word2Vec (CBOW and Skip-gram,
Mikolov, Chen et al. (2013) and Mikolov, Sutskever et al. (2013)),
Eigenwords (Dhillon et al., 2015), and GloVe (Pennington et al., 2014),
among others. These models are trained on large corpuses of natu-
ral language data and optimized to predict nearby words in corpus
text. The strategy used to accomplish this task is to develop vector
representations of words.

These vector representations represent each word in the model’s
vocabulary as a vector in a multidimensional space. The model is
trained to predict the occurrence of nearby words and in the process
develops a latent dense vector representation (Mikolov, Chen et al.,
2013). Because these models are trained to predict the occurrence of
nearby words, the kind of similarity the model is optimized to represent
is word co-occurrence similarity – roughly, how likely the words are to
occur close to one another in text, and how likely the words are to occur
in what would otherwise be the same text stream (e.g. ‘‘The policeman
found the suspect’’ and ‘‘The man found the suspect’’).9 These similarity
relationships, then, are primarily similarity relationships of position-
ing in text. They are not directly semantic similarity relationships —
relationships of synonymy or other relationships of meaning.10

Generalizing, we can use the term statistics-of-occurrence properties
for properties such as the frequency of word co-occurrence in text, the
similarity of positioning of text in a word corpus, the probability that

8 For an overview of early VSMs and their importance in advancing our
bility to robustly computationally represent, see Turney and Pantel (2010).
or a more recent overview see Lenci et al. (2022).

9 Similarity measures are typically normalized so that ubiquitous words like
‘the’’ and ‘‘and’’ are not considered similar to other words just in virtue of their
ommonality. See Jurafsky and Martin (2023) for an overview.
10 It is an interesting empirical question what kinds of semantic information
ight be carried by the dimensions of a VSM. See Hollis and Westbury (2016)
or discussion.
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the next word in a string will be a certain word, or the probability
that an image or formally definable aspect of an image is correctly
associated with a certain caption. These are all formal properties that
relate to either frequency statistics or probabilities about text string
placement or image-text association. We can accordingly call any model
a Statistics-of-Occurrence Model (SOM) if it is either designed to repre-
ent statistics-of-occurrence information in text or multi-modal corpora,
r it is optimized for text prediction on the basis of data about such
lacement. These are the models of concern in this paper.

Thus, while I focus on predictive Vector Space Models (VSMs) such
s Word-2Vec in this section, VSMs as a class count as SOMs in virtue of
eing designed to represent (frequentist) statistics-of-occurrence prop-
rties.11 As we will see, Language Models (LMs) such as GPT-3 are also
ey examples of SOMs in virtue of being trained and optimized for text
rediction on the basis of data about word placement. In order to keep
he discussion streamlined, and to make the case against the Semantic
ypothesis at the level of detail required, I focus largely on text-only
OMs, which have recently generated a lot of discussion regarding
emantic understanding and for which we have a more developed
iterature related to assessing semantic understanding. I briefly discuss
ulti-modal systems such as DALL-E in Section 5.2 and argue that the

oncerns presented for text-only systems generalize.
Once a VSM is trained or constructed, researchers can probe the

odel to see if it carries information about semantic relationships.
his is typically done by performing vector algebra with the word
epresentations to try to detect hidden knowledge* within the system
see e.g. Mikolov, Yih et al. (2013)). So, for example, in order to get
he model to solve* for an analogy such as Switzerland is to Swiss as
ambodia is to [BLANK], one might compute:

𝑒𝑐(𝑆𝑤𝑖𝑡𝑧𝑒𝑟𝑙𝑎𝑛𝑑) − 𝑣𝑒𝑐(𝑆𝑤𝑖𝑠𝑠) = 𝑣𝑒𝑐(𝐶𝑎𝑚𝑏𝑜𝑑𝑖𝑎) − 𝑥

where the vector for ‘‘Switzerland’’ is vec(Switzerland), etc. Then one
solves for 𝑥 among vector representations of the model. If the closest
word vector is for ‘‘Cambodia’’ is ‘‘Cambodian’’ (typically measured
by Cosine similarity), then the analogy is considered to have been
correctly solved.12 The thinking behind these kinds of tasks is that the
distance between vec(Switzerland) and vec(Swiss) should be close to
the distance between vec(Cambodia) and vec(Cambodian), and indeed
that distance should be more similar than any from vec(Cambodia) to
any other word in the vocabulary.

Authors report impressive results. Language models can answer*
both syntactic analogy questions, like the nationality question above,
as well as more straightforwardly semantic questions, such as brother is
to sister as grandson is to [BLANK]. For example, Mikolov, Chen et al.
(2013) report that CBOW had an accuracy of 24% on the semantic test
set Mikolov et al. created, and 64% on the syntactic test set, while Skip-
gram had an accuracy of 55% on the semantic test and 59% on the
syntactic test set. These results are interesting in themselves, simply
because they show that language models can carry both syntactic and

11 Older VSMs that do not use a predictive training strategy, but rather
evelop vector representations by counting occurrences of words, therefore
lso fall within the scope of the argument. Such models include Hyperspace
nalog of Language (HSA, Lund and Burgess (1996)) and Latent Semantic
nalysis (LSA, Landauer and Dumais (1997)). See Gunther et al. (2019)
nd Lenci et al. (2022) for overviews. Thanks to an anonymous referee for
ncouraging clarification on this point and greater precision in my discussion
f VSMs and LMs.
12 See Jurafsky and Martin (2023), Ch. 6. See Linzen (2016) and Rogers et al.

2017) for critical assessment of this evaluation strategy. In particular, where
nswers are very similar to one another such as ‘‘Switzerland’’ and ‘‘Swiss’’
he method of finding the closest word vector to prescribed point by cosine
imilarity may just be the closest neighbor to the target word (in this case
‘Cambodia’’) and not reflect a sameness in structural relationships between
he two.
4

semantic information when optimized to do something else, namely
predict nearby words.13

It is important, however, to distinguish the sense in which VSMs
can be said unequivocally to carry information from claims to semantic
representation which might be taken to constitute, or help to underlie,
semantic understanding. As I will use the term in this paper, language
models carry semantic information just in case formal properties and
relationships internal to the system are sufficiently correlated with
semantic properties and relationships. So, in this case, we can say that
CBOW carries information about countries and nationalities because
vector algebra that exploits formal relationships between word vectors
reveals systematic correlations between these formal properties and se-
mantic properties such as country-nationality relationships. We can say
in such cases that the formal features internal to the system (sub-states
and processes), whose relationships correlate with semantic relation-
ships, carry that semantic information. So, the vector for ‘‘Cambodia’’
carries information about the country Cambodia, and the vector for
‘‘Cambodian’’ carries information about the nationality.

Carrying information, in this sense, is an important property, but
does not itself entail features that are often thought to be important
for a feature of a system to count as a representation of the sort that
would vindicate claims to semantic understanding. For example, it
does not entail that internal representations are appropriately causally
connected to the features they purportedly represent (Fodor, 1987; Ne-
ander, 2017; Stampe, 1977). In this paper, I focus on the gap between a
vehicle’s carrying information and its functioning within the system to
carry semantic information (see Dretske (1986), Millikan (1989) and
Shea (2018)). Crucially,

just because there are internal formal features that carry informa-
tion does not mean that the system is causally well-described in terms
of variables that represent that information, which can be manipulated
in order to alter the functioning of the system (Geiger et al., 2021). So,
while we can and should hold that VSMs carry semantic information
in the sense just specified, that does not yet settle the question of
whether SOMs satisfy the Functioning Criterion. We need to investi-
gate whether systems of this kind plausibly function in ways that are
causally explainable by appeal to their semantic properties.

Focus on the Functioning Criterion helps to bring into relief that
evidence of meaning-semblant behavior does not straightforwardly
support that a system satisfies the Functioning Criterion. A system
can exhibit meaning-semblant behavior and still lack semantic under-
standing, so we must investigate whether the best explanation of this
behavior, given what else we know about the system in question, involves
attributing semantics-sensitive functioning to it.

Acknowledging a gap between meaning-semblant behavior and se-
mantic understanding follows from general claims about complicated
or complex systems. There are multiple possible functional structures
that can instantiate any but the most simple stimulus-behavior pattern.
As such, context and other evidence about system functioning is crucial
for understanding system functioning and so for attributing semantic
understanding. Appreciation of this fact for semantic understanding
was one of the chief lessons of criticisms of behaviorism. It is gener-
ally impossible to attribute beliefs and other meaningful psychological
states to systems just on the basis of behavior alone, for our beliefs
interact in complex ways with our hopes, desires, background beliefs,
etc. (Chomsky, 1959).

We can acknowledge that there is a gap between meaning-semblant
behavior and semantic understanding without embracing skepticism
about other minds, animal cognition, or genuine artificial intelligence.14

13 While for the purposes of this paper I grant impressive meaning-semblant
behavior of these models, the extent of this performance and the best means
of assessing it are subjects of debate. See Church (2016), Linzen (2016) and
Rogers et al. (2017) for some representative criticisms.

14 Thanks to an anonymous referee for suggesting I discuss this question.
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We do not, outside of the philosophy classroom, seriously question
whether we have enough evidence about other people to attribute
mental qualities such as consciousness and semantic understanding to
them, and we regularly attribute these qualities to animals. Plausibly,
however, this has to do not just with a lowering of the evidential bar
from these contexts (where absolute certainty may be required) but
also with (1) a huge swath of behavioral evidence, (2) certain claims to
internal functionality being already supported by our own introspective
case, and (3) evidence of similarity in neural and biological functioning
among humans. Despite our diversity and difference, humans are quite
similar to one another in terms of both behavioral patterns and covert
neural and cognitive functioning. For only one human (namely the
subject of the skeptical question-asking) to be the only one to have
a mind is not the simplest or most parsimonious explanation. Instead,
the subject has no reason to think she is special. The best explanation
is overwhelmingly to attribute mentality to other humans.

This reasoning extends, with some nuance, to animals. Animal
ethology has gradually seen acknowledgment that the best explana-
tion of animal behavior typically involves attributing semantic under-
standing and in many cases complex cognition to animals. Simpler
explanatory paradigms will not do the trick (Graham, 2019). Psy-
chological paradigms where the Functioning Criterion is met seem to
be the most parsimonious and cohere best with our other scientific
and world knowledge. Moreover, we have evolutionary and neuro-
scientific evidence that the animals are built similarly to us, which
supports claims that such systems psychologically function similarly
(see Andrews (2020), Ch. 3 for an overview). To the extent that this is
attenuated (e.g. octopi), stronger behavioral or other evidence is often
required for the attribution of cognition or semantic understanding
(see Godrey-Smith (2016) for discussion).

In the case of artificial systems we take the same empirical and
non-skeptical approach; however, the evidential situation is different.
Our behavioral evidence is substantially restricted in comparison with
other humans and animals (in the case of SOMs typically to verbal or
pictorial interactions through a user interface), and we cannot assume
similarity in internal functioning due to shared evolutionary history and
pressures. Moreover, our tendencies to anthropomorphize may lead us
astray.

Work on anthropomorphism of AI systems over the last 50 years
strongly suggests that we have a tendency to over-attribute agency
and understanding to inanimate and unintelligent systems when they
merely exhibit some meaning-semblant behavior. Block (1981), for
example, importantly remarked on this tendency regarding the AI
program Eliza built by Weizenbaum (1966), a program which few
today, if any, would regard as having genuine semantic understanding,
but which elicited very strong intuitive reactions from interacting
subjects at the time. It is widely believed that attributions of agency
and explanations from the ‘‘intentional stance’’ (Dennett, 1987) are
a default and basic psychological process, helping to explain attri-
butions of animacy to natural entities (trees, mountains) and events
(rain, volcanoes) (Mitchell et al., 1997). Additionally, we know that
features that are not essentially indicative of intelligence can drive
our judgments about agency and semantic understanding. Morewedge
et al. (2007), for example, showed that behavior on a fast timescale
increases attributions of mind to robots. Epley et al. (2007) argue that
our tendency to anthropomorphize is increased by our own desire for
social contact and affiliation, which is independent of the capacities of
the AI system.

This all suggests that the interpretability of AI behavior as meaningful
s motivated by a variety of features which do not necessarily indicate
hat the behavior is indeed meaningful, but this interpretability itself
trongly motivates attributions of mentality, agency and understanding.
o, although merely behavioral criteria for intelligence have a distin-
uished history (Turing, 1950), given what we now know about proper
ttributions of mentality to humans, animals, and artificial systems, we
5

hould acknowledge that meaning-semblant behavior can come apart
from genuinely meaningful cognition and behavior and approach the
question of semantic understanding in a way that takes into account
our best understanding of system functioning.

The foregoing are general concerns about over-attributing seman-
tic understanding to AI systems, which serve as important context;
however, our focus here is on SOMs in particular. In their case, we
have special reason to doubt the inference from behavior to inter-
nal functioning, and so semantic understanding.15 This is because we
plausibly have a better explanation of SOMs’ meaning-semblant be-
havior. Because humans use language meaningfully and systemati-
cally, there are strong correlations between word co-occurrence statis-
tics and semantic relationships. A model trained to represent sta-
tistical co-occurrence information or optimized for word prediction
over a large text corpus will thus tend to carry semantic information
merely for these reasons. Thus even if its functioning is only driven
by sensitivity to word-co-occurrence statistics, it will still demonstrate
meaning-semblant behavior.

Because these facts are widely agreed to, even by proponents of the
Semantic Hypothesis, if it is plausible that merely attributing sensitivity
to word co-occurrence statistics is sufficient to explain SOMs’ produc-
tion of meaning-semblant behavior, then such an account is preferable,
because it is simpler and more parsimonious. I call this alternative
explanation the Statistical Hypothesis.16

3. Why exhibited meaning-semblant behavior is not enough

So far, I have argued that we should not straightforwardly infer
semantic understanding from the meaning-semblant behavior of SOMs.
Instead, we should aim to make an inference to the best explanation
based on what we know about semantic understanding (e.g. that it
requires satisfying the Functioning Criterion), the system’s behavior,
and what we can plausibly infer about system functioning. A natural
response at this point would be to maintain that the kind of meaning-
semblant behavior SOMs exhibit is indeed more plausibly explained
by a revision of our understanding of their internal functioning, so
that it satisfies the Functioning Criterion. This response disputes the
claim that the Statistical Hypothesis can better explain the exhibited
meaning-semblant behavior.

It is impossible in a paper-length treatment, let alone one that aims
to canvass other options for defending the Semantic Hypothesis, to
examine all the kinds of behavior that one might claim cannot be
explained by appeal to functioning that tracks statistics-of-occurrence
properties rather than semantic properties. Instead, I will provide two
illustrative examples that I hope will make it plausible that SOM
behavior can be so explained. Given the straightforward availability of
the Statistical Hypothesis, I hope that establishing the plausibility of
this claim will put the ball back in the court of the proponent of the
Semantic Hypothesis. Perhaps there is some meaning-semblant behav-
ior of SOMs that directly support claims to its meeting the Functioning
Criterion, but making this case is harder than one might think.

Let us then, explore our first example. Bhatia (2017) has provided,
to my knowledge, the most developed and rigorous behavioral defense
of an SOM’s claim to semantic understanding. He argues that the
way VSMs like Word2Vec exhibit certain patterns of behavior supports
the claim that they underlie our capacities for analogical, and more

15 Thanks to an anonymous referee for pushing me to clarify these points.
16 I am not the first person to claim that SOMs fail to have semantic under-

standing because the way they produce their responses fails to be sensitive
to meaning. See Bender et al. (2021), for example, who assess language
models as mere stochastic parrots given our understanding of how they are
trained and how they function. I also ignore in this paper the many behavioral
shortcomings of SOMs which the Statistical Hypothesis is also better poised to
explain. See Church (2016) for discussion of some behavioral shortcomings of
VSMs and Merrill et al. (2021) for discussion of some behavioral shortcomings
of transformer-based SOMs like GPT-3.
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generally, heuristic, reasoning. He showed that the profile of behavior
of VSMs is similar to the profile of behavior of humans performing
heuristic and other kinds of reasoning.17

Bhatia presented* VSMs with the famous and well-replicated
‘Linda’’ problem of Tversky and Kahneman (1983), which is widely
aken to reveal important features of human capacities for heuristic
easoning. Bhatia showed that VSMs produce similar results to humans
nd suggested on this basis that human heuristic judgments may be
xplained by underlying vector representations within human cognitive
ystems.

In the original experiment, human subjects are presented with a
escription of a woman named Linda:

Linda is thirty-one years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also participated in
antinuclear demonstrations (p. 297).

People tend to judge that it is more likely that Linda is a feminist
ank teller than that she is a bank teller. That is, however, impossible.
very feminist bank teller is a bank teller, and so it cannot be more
ikely that Linda is a feminist bank teller than that she is a bank teller.
nce the facts about probabilities are laid out, this is a simple logical

nference. However, people reliably give the impossible answer. Why
o they do this? On what basis are they making this inference?

While there is little agreement on the exact solution, many re-
earchers think that our answer to the Linda problem has to do with
aking being a feminist bank teller to be more representative of Linda
s described than being a bank teller. The heuristic people use to solve
he problem has thus been called the representativeness heuristic. What
lgorithms or processes might underlie this heuristic? It has long been
uggested that a more connectionist, or associative, process, may be
t play for the representativeness heuristic, while a more logical or
ymbolic process may be at play in finding the correct solution (Barbey
Sloman, 2007; Sloman, 1996). Perhaps, then, language models of this

ind could subserve heuristic reasoning such is at work in the Linda
ase.

Bhatia shows that three different VSMs (Word2Vec, Eigenwords,
nd GloVe) give the same answers* to the Linda Bank Teller problem
hat humans do. He uses vector averaging to come up with vectors
or the description of Linda, and he does the same for ‘‘bank teller’’

17 Another strategy based on behavioral evidence looks for tests or markers
f a particular aspect of our semantic capabilities, such as the capacity for
ompositionality in thought and language, and tries to assess whether AI
ystems pass these tests (see e.g. Baroni (2019) and Hupkes et al. (2020)).
hile this approach is important and generates many valuable insights, I take
different approach here which I think is under-explored and has its own

ubstantial benefits. By keeping the discussion focused on general claims to
emantic understanding and the more general issue of semantic functioning,
e can avoid debates about the relative importance or uniqueness of these

pecific capacities for semantic understanding, or the convincingness of various
ests. Moreover, and perhaps more interestingly, we can ask and answer
uestions about semantic understanding in a way that does justice to what
any perceive to be so powerful about these systems: that their size, and

he size of their training data, enable SOMs to transcend the limitations of
pecialized systems and exhibit domain-general capacities in a way that might
ave special claim to semantic understanding. Thus a focus on general claims
bout the behavior of these systems, and what their implications might be for
heir internal functioning, are worth considering. In light of these interests,
hatia’s work is especially interesting and pertinent, because the capacity
or analogical, or heuristic, reasoning does not have a specific content or
orm, and his motivations for attributing this capacity to SOMs do not rely
n specific grammar or content capabilities but rather with the kinds of
eneral capabilities we expect VSMs to have in virtue of their training and
unctioning. Thanks to an anonymous referee for urging me to address this
lternate approach to evidence for semantic understanding.
6

and ‘‘feminist bank teller’’. The answer vector that is closest (by cosine
similarity) to the description vector is taken to be the VSM’s answer.
So, if the vector for ‘‘feminist bank teller’’ is closer to the description
vector than that for ‘‘bank teller’’, the VSM is taken to have answered*
similarly to humans. And this is exactly what he finds for all three VSMs
studied.

Additionally, he finds that VSMs exhibit a lot of other behavior
similar to that of human subjects. For example, they do not find a
closer association between the Linda description and ‘‘feminist bank
teller’’ than they do between it and ‘‘feminist’’. Furthermore, VSMs
provide similar responses to similarly constructed problems. They tend
to give answers* compatible with base rate neglect similarly to humans.
Impressively, they perform well above chance on real-world question
and answer data sets, and correct performance by the VSM is predictive
of whether humans on average get the correct answer. This is important
because it is widely hypothesized that our judgments in the Linda case
are a result of more general reasoning processes that are reliable and
adaptive (see Kahneman (2011) for discussion).

This line of argument is importantly more detailed than standard
academic arguments in favor of the Semantic Hypothesis, which tend
to focus on SOMs exceeding a certain level of performance on bench-
mark tests (such as TriviaQ&A, Brown et al. (2020)). Bhatia has done
something much more nuanced here, which is to show that VSMs’
profile of behavior is similar to humans’ profile of behavior, in terms
of both correct and incorrect answers. For this reason, one might be
especially moved by Bhatia’s case that VSM architecture subserves
heuristic judgment in humans.

However, this behavior is well-explained by the Statistical Hypoth-
esis. Characterizations like Linda’s are more likely to co-occur with
‘‘feminist’’ than with ‘‘bank teller’’ or ‘‘feminist bank teller’’. Thus a
system that is merely sensitive to statistical co-occurrence properties
could provide the same pattern of behavior exhibited without function-
ing sensitively to semantic properties, such as judging the description to
be more representative of being a feminist than a bank teller. The same
goes for similarly constructed problems. We do not need to explain
the functioning of SOMs by appeal to anything like a sensitivity to
a representation of what it is to be a feminist. Quite impressively,
word co-occurrence relationships are enough. Thus the kind of evidence
Bhatia adduces does not give us special reason to think that the
Functioning Criterion has been met. The Statistical Hypothesis can still
straightforwardly explain this behavior.

Similar considerations apply to the kind of meaning-semblant be-
havior originally adduced in favor of the Semantic Hypothesis for VSMs
described above, namely their probe-ability for semantic information
using vector algebra. While this behavior is indeed impressive, it can
plausibly be explained without the system functioning sensitively to
semantic properties per se. Indeed, despite the excitement about VSMs
as semantic models, this is plausibly the straightforward interpretation
of the Distributional Hypothesis (Firth, 1957; Harris, 1954; Sahlgren,
2008) and its motivation of VSMs as representations of word meaning
in Machine Learning, NLP, and AI research. According to the Distri-
butional Hypothesis, words with similar positions in text corpora tend
to have similar meanings, and so representations of this information
can serve as proxies for word meaning. This is a hypothesis about a
correlation between positions in text corpora and word meaning that
researchers can exploit, because neural networks can be trained more
directly to track these statistical properties. So, the vector algebra
that mirrors analogical reasoning does so by exploiting abstract sim-
ilarities between the relationships in relative positioning between two
pairs of words, for example ‘‘Switzerland’’/ ‘‘Swiss’’ and ‘‘Cambodia’’/
‘‘Cambodian’’. This kind of similarity correlates highly with nationality
relationship but representing nationality per se is not a property that
needs to be invoked in explaining how the system functions to solve*
the analogy. The word co-occurrence properties do all the work.

The case that VSMs do function sensitively to semantic properties

per se has not, to my knowledge, been clearly argued for, though I
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will explore some complexities below. Once we lay out the Function-
ing Criterion as a plausible criterion of semantic understanding, and
articulate the Statistical Hypothesis as a distinct hypothesis, it seems
superfluous to advance the Semantic Hypothesis on the basis of this
kind of behavioral data.

3.1. GPT-3 to the rescue?

Perhaps, then, an example of more complex and impressive be-
havior such as that of GPT-3 will pose more of a challenge to the
Statistical Hypothesis. SOMs like GPT-3 use autoregressive generation to
roduce strings of text, where they produce the next word or sequence
ased on an assessment* of the highest probability word based on
he previous word sequence(s) (see Jurafsky and Martin (2023), Ch.
for an overview). Current machine translation, summarization*, and

uestion answering* systems all use autoregressive generation.
Where advanced VSMs like Word2Vec are optimized to predict

earby words, and in the process develop latent vector representations
f words, autoregressive language models like GPT-3 assign probabil-
ties to words in the vocabulary based on preceding text. They use

transformer architecture to dynamically assess* the probabilities of
ords, and so to provide appropriate responses to questions based

n part on examples (one- or few-shot learning). The details of the
rchitecture are unimportant for our purposes, except that they enable
he language model to autoregressively generate text based on the
ifferentially weighted influence of previous text.

While transformer-based architecture is significantly more sophis-
icated than predictive VSM architectures like Word2Vec, the most
traightforward interpretation of these systems is that they function in
ays that are sensitive to the statistics-of-occurrence properties of text,

ince those are the ones that are directly relevant to word prediction
n the basis of text string data. The transformer architecture plausibly
unctions to encode more fine-grained and contextualized information
f the same kind, not directly semantic information.18

Even important capacities such as text summarization*, that might
eem to train specifically for or require semantic understanding, do
ot plausibly do so upon further investigation. Language models that
erform text summarization are trained on pairs of full length articles
nd their summaries. They are still optimized for prediction (in this
ase of the summary text based on the full text) and can be made to
roduce summaries using autoregressive generation in the same way as
ther text generation.

One might object — but how could GPT-3 and similar models
uccessfully perform text summarization without having developed
unctional sensitivity to semantic properties? After all, the capacity to
ummarize seems to involve being able to convey the meaning of a
onger text in a shorter one, and so it seems like the model must some-
ow have developed sensitivity to semantic relationships.19 However, it
s not at all obvious that GPT-3 actually has this semantic capacity, per
e. Texts tend to include signposts or other cues about main ideas that
n SOM can pick up on, from the number of times a term is mentioned,
o explicit statements of what the text is about that might involve

18 It is an interesting question whether the incorporation of other strategies,
uch as so-called active learning* (e.g. along the lines of Mnih et al. (2014)),
ould substantially change the architecture of a language model so that its
unctioning more plausibly lays claim to semantic sensitivity. While this is
ntriguing, I doubt there will be any quick fixes here. For example, as long
s the models are optimized for text prediction and have as data information
bout text placement, functioning that preferentially selects certain inputs in
he learning process will not thereby lead to semantic sensitivity. That is not
o say that there cannot be other uses for active learning that might help a
ystem to meet the Functioning Criterion, but discussion of these possibilities
s beyond the scope of this paper.
19 Thanks to an anonymous referee for encouraging me to discuss this
uestion.
7

markers like ‘‘I will argue that’’ or ‘‘We’ll see that’’, to first sentences of
paragraphs including more pertinent and general information. An SOM
can pick up on all this correlated statistics-of-occurrence information.

Moreover, it is likely that such texts can represent statistics-of-
occurrence-based similarity relating shorter and longer text strings. To
the extent that a shorter text is similar to a longer text in the sense of
tending to occur in similar contexts, this might be a good proxy for
sameness of meaning, hence summarization. It is also often hard to
tell whether a text is entirely novel to the system, or whether it bears
close similarities with training samples. For more common texts and
summarization tasks, some of the success may be due to training on
very similar texts. (This is increasingly so as users interact with the
system, generating more data.) Finally, and perhaps most importantly,
the quality of many summaries is not great, especially for topics that
are rare and thus unlikely to be well-represented in the training data
(such as obscure philosophy papers).20

So, while GPT-3 is behaviorally quite impressive – it can perform
well on trivia (TriviaQA), unscramble words, do* arithmetic, success-
fully use* novel words in a sentence after only one example, and
generate synthetic – read fake – news articles that are difficult to
distinguish from human-produced ones –21 these behavioral capacities
do not challenge the basic point. Given the strong correlations between
statistical co-occurrence relationships and semantic relationships, a sys-
tem optimized for predictive accuracy can reliably produce behavioral
outputs that look meaningful without actually functioning in ways that
are sensitive to semantic information.

So, while these considerations are of course not comprehensive,
I hope they establish the Statistical Hypothesis as plausible enough
that the proponent of the Semantic Hypothesis must adduce additional
evidence than the kind of behavioral evidence so far presented. We
should look to more direct arguments about SOMs’ functioning that
supports their meeting the Functioning Criterion.

4. Are semantic properties really so distinct?

The second response in defense of the Semantic Hypothesis claims
that functioning sensitively to statistics-of-occurrence properties is ac-
tually sufficient for satisfying the Functioning Criterion. All it is to have
semantic understanding on this view (at least for a range of capacities
of interest) is to have an architecture that is optimized for statistical
accuracy. This idea is worth taking seriously in large part because it
is sometimes invoked by appealing to the Distributional Hypothesis,
described above.

Although the Distributional Hypothesis is a correlational thesis, one
might be interested in a stronger reading of it on which all it is for
a word to have meaning is for it to have a certain global pattern of
use in a language, so that a representation of statistics-of-occurrence
information is thereby a representation of word meaning. While there

20 Very unscientifically the author asked ChatGPT to summarize a draft
section of this paper. Here is an excerpt, ‘‘Furthermore, the text highlights the
need to establish that vector representations built on statistical co-occurrence
information represent the standard referents of words and not just carry
information about them. It suggests that proponents of semantic understanding
in Statistical Outcome Models (SOMs) should aim to show that these models
possess the features required for genuine semantic understanding’’. This sort
of looks like a summary of part of this section, until one looks more closely.
The term ‘‘representation’’ is focused on but is not particularly relevant. (We
are not concerned with representation per se but with the functional capacities
of systems.) It also uses the term ‘‘Statistical Outcome Models’’ which is used
nowhere in the paper. And it states generally that proponents of Semantic
Understanding should aim to show that these models possess the features
required for genuine semantic understanding which is true but much less
specific than the claim of that section, which is about satisfaction of the
Functioning Criterion.

21 Brown et al. (2020).
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may be some proponents of this claim, it is highly contentious, in
large part because it ignores the kinds of external relations to the
world that theorists tend to think are required for genuine content.
For example, in order to have a representation that means dog, it
is plausible that the representation must bear some relation to dogs
(see Gasparri and Marconi (2019) sect. 3.3 for discussion.) This is not
entailed by statistical co-occurrence information in text corpora.22

Instead, I think that a more nuanced and interesting idea is often
ehind the stronger reading of the Distributional Hypothesis, namely
hat meaning at least partially depends on statistics-of-occurrence infor-
ation, and that this is enough to make it the case that a model that

epresents (or is trained to represent) the latter can thereby represent
he former in the robust sense required for semantic understanding
see Lenci (2008) for discussion). So, interpreted as a defense that
OMs satisfy the Functioning Criterion, the claim would be that a
ystem that functions sensitively to statistics-of-occurrence properties
ould thereby function sensitively to meaning. This is an interesting
ypothesis, especially given the close correlations between these two
inds of properties.

The problem with this response is that it, despite the close correla-
ions, there are still important differences between functional sensitiv-
ty to one rather than the other. To see the distinction at issue here and
ow it can get elided, consider some supplementary motivation Bhatia
rovides for his view. Bhatia claims that work in cognitive science
upports his view, in particular Shafir et al. (1990)’s claim that what
rives the results in cases like Linda’s are typicality judgments. According

to Shafir et al. when one reads the Linda description and available
answers (e.g. feminist, bank teller, feminist bank teller), one judges
(unconsciously) the degree to which the answer is typical of a person
satisfying the description, and chooses the answer with the highest
degree of typicality. Bhatia claims that his results are coherent with
this work.

However, there is an important difference between Shafir et al.’s hy-
pothesis and Bhatia’s. Typicality judgments are importantly meaningful
– i.e. semantic. When we make typicality judgments, we are judging, of
people described in a certain way, whether it is typical that they would
have the property in question (feminist, bank teller, etc.). Typicality
judgments inherently involve predication – taking Linda to have the
roperty of being a feminist because she has the properties attributed to
er in the description. Functional sensitivity to predicative information
i.e. to being a feminist rather than a bank teller – requires sensitivity

o the conditions under which one would be a feminist or a bank teller,
hich goes beyond sensitivity to statistics of text corpora and into the
orld.

Moreover, one should not ignore the semantic understanding that
oes into identifying Linda, feminists, or bank tellers as such. This
bility to identify people or the instantiation of properties in the world
s required even where one is processing experiential co-occurrence
tatistical information. However, it is not required for processing co-
ccurrence information in text corpora. To be functionally sensitive to,
or example, the co-occurrence of tables and chairs, requires functional
ensitivity to tables and chairs themselves, not just the words ‘‘table’’
nd ‘‘chair’’ (or images of them). It pertains directly to referents, not
ords or phrases. Our typicality judgments generally involve this more
asic semantic understanding as well.

22 Wittgenstein (1953) is sometimes cited in defense of this stronger in-
erpretation of the Distributional Hypothesis, but his conception of use was
urposefully much more expansive. For Wittgenstein, the interpersonal social
ctivities we engage in when we use words are of the utmost importance,
s is the diversity of kinds of interaction. He resisted any unitary formal
perationalization of word meaning. See Biletzki and Matar (2021), also sect.
.3, for discussion. We must be careful, then, not to over-state the case for
8

his stronger view.
Proponents of this second response, by claiming the sufficiency
of functional sensitivity to statistics-of-occurrence properties for func-
tional sensitivity to semantic properties, in fact deny that we have much
of the functional sensitivity that is required for genuine semantic under-
standing. They therefore, perhaps accidentally, endorse an error theory
of our own semantic understanding. By claiming that our behavior is
in fact driven only by functional sensitivity to statistics-of-occurrence
properties in these cases, they are committed to the view that what
seems like actual sensitivity to the referents of our words in the world
is merely a much more proximal kind of sensitivity.

I take it that one should avoid error theories of our semantic capac-
ities if one can. Moreover, dialectically the position is precarious. The
big, interesting claim that we were meant to evaluate is that AI systems
can meaningfully interact with their environments just like humans and
many animals do (albeit in a restricted way, through text exchange),
not that humans and many animals in fact fail to meaningfully interact
with their environments in the way we normally attribute to them.
When we water down our conception of what semantic understanding
requires, we make it more likely that AIs can meet our criteria, but we
make a much less interesting and exciting claim.

Perhaps for this reason, most researchers who support the Semantic
Hypothesis do not take themselves to endorse a revisionary account or
error-theory of our semantic understanding. They do not, in general,
present themselves in this way. Instead they present themselves as
claiming something stronger and much more interesting, namely that
SOMs have understanding in the robust sense normally attributed to
humans. Let us, then, turn to the strongest strategy for attributing
semantic understanding to SOMs.

5. Might optimizing for predictive accuracy have created systems
with semantic functioning?

The third, and most interesting, response to the challenges I have so
far presented is to argue that the way advanced SOMs are so effectively
predictive is because they learn to pick up on semantic relationships,
and they use these in producing behavior. This response claims that
the development of functional sensitivity to semantic relationships is
a consequence of optimizing for prediction. If this is true, then per-
haps the Functioning Criterion is satisfied, and we might be justified
in attributing semantic understanding, or at least a proto-version of
semantic understanding to SOMs.

This is an interesting possibility, and one that deserves careful
attention. What reason do we have to think that SOMs function in ways
that are genuinely sensitive to semantic content? Chris Potts, in a recent
talk, for example, suggests that recent work on Causal Abstraction
Analysis, which aims to provide high-level functional analyses of deep
neural net systems, might provide us with the kind of justification we
need to vindicate claims to semantic understanding for SOMs like BERT
and GPT-3 (Potts, 2022).

Causal Abstraction Analysis (CAA) aims to accurately model the
high-level functioning of a deep neural net (DNN). According to this
approach, (1) one first specifies a candidate causal model that might
accurately explain the functioning of the neural network system. Then
(2) one identifies potential structures within the neural network that
correspond to the high-level variables specified by one’s model. Third,
(3) one performs ‘‘interventions’’ on the neural network system to test
whether changing certain variables has the effect predicted by one’s
model.

So, for example, one might (1) hypothesize that a DNN performs
addition and create a model of the relevant high-level variables re-
sponsible for the output. The next step (2) would be to search for
corresponding structures internal to the model. Step (3) would be to
perform interventions on those corresponding neural net structures to
see if they behave as the model predicts.

Potts suggests that, if CAA produced a model of an SOM on which

the SOM has representations with the kinds of contents the language
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model is supposed to represent, and it describes a causal structure
within the SOM on which it is prone to processes involving these
representations that respect their semantic properties, then such a
model could make claims to having semantic understanding. As we
have framed the issues here, such an analysis might help to justify the
claim that an SOM satisfies the Functioning Criterion because it would
identify semantic variables that are causally relevant to the SOM’s
functioning.

To my knowledge, no one has attempted to construct any CAA
models for GPT-3 or its descendants, such as ChatGPT. However, Geiger
et al. (2021) make some relevant claims for BERT (Bidirectional En-
coder Representations from Transformers, Devlin et al. (2018)). BERT
also uses transformer-based architecture, but it is bi-directional, so that
its transformers can make use not just of past information in a text
string, but subsequent information as well. The model learns to predict
masked tokens (such as ‘‘The cat [BLANK] on the mat’’) and also
subsequent sentences. BERT is thus clearly an SOM, and so if Geiger
et al. (2021)’s work supports the claim that BERT can satisfy the
Functioning Criterion, that would be important evidence in favor of
the Semantic Hypothesis.

Let us then see what evidence this work on BERT might provide
for a CAA justification of semantic understanding in SOMs generally,
including GPT-3. Geiger et al. (2021) evaluate a version of BERT that
is fine-tuned on the Multiply Quantified NLI datasets which consist
of templated English language examples, labeled according to their
linguistic tree structures. They develop a CAA as described above to
partially explain some of the results of this fine-tuned BERT. They
compare it to some other SOMs for which they cannot develop nearly
as robust a causal model.

While the kind of strategy Geiger et al. advocate is promising, there
are reasons to be concerned about whether (i) the strategy achieves
strong justification for an SOM satisfying the Functioning Criterion,
and (ii) whether the success they describe with this fine-tuned version
of BERT supports the more general claim that it is in virtue of being
trained to optimize statistics-of-occurrence properties that it picks up
on and functions sensitively to semantic properties.23

First, we must be careful in selecting which hypotheses to evaluate.
Even if such a model were to make accurate predictions about the
behavior an SOM under interventions, we would still need to rule out
other models that do not attribute inference-like behavior and may be
better fits. The important alternative to rule out, in this context, is that
the most accurate causal abstraction model is one whose causal vari-
ables primarily reflect processes driven by word co-occurrence statistics
rather than semantic relationships – i.e. a model that would support the
Statistical Hypothesis. Because these properties are so closely correlated
with each other, in order to support the Semantic Hypothesis, a CAA
analysis must show that we better understand the functioning of the
system by attributions of semantic content-respecting inferential roles
than word co-occurrence-regularity respecting causal roles. It is not
enough, then, to develop a causal model in line with the semantic
properties one hopes the system represents. One must show that this
model better explains the functioning of the system than one in line
with a motivated, more parsimonious interpretation.

The second concern, about the success of the case (Geiger et al.,
2021) describe extending to other SOMs, is important because the ver-
sion of BERT they assess was fine-tuned on hand-labeled data precisely
in order to train it to detect certain semantic structures. One would expect
that the functioning of the resultant system would pick up on some of
the features relevant for labeling these templated English sentences in

23 There are many specific questions we can ask here about whether the
nalysis they provide of this fine-tuned version of BERT is sufficient for
emantic understanding — how comprehensive of a model do they need,
or example? However, our concerns are much more general, and so we can
rescind from this more specialized discussion.
9

accordance with their linguistic trees. In contrast, VSMs and GPT-3 are
not fine-tuned in this way, and it would be impossible and defeat the
point to try to fine-tune an SOM on all semantically relevant properties
of interest. The interesting claim that we have been considering is
whether, merely in virtue of being optimized for predictive accuracy, these
SOMs develop internal functioning that validates claims to semantic
understanding. This is because claims that large language models have,
or are on their way to possessing, semantic understanding, are in part
based on their generality — their ability to chat and answer questions
about a wide variety of topics in ways that look meaningful. Claims
that they satisfy the Functioning Criterion would then have to come
from general features about their design and training, not fine-tuning
for specific semantic properties. Geiger et al.’s results do not directly
support such claims, as the BERT system they analyzed was fine-tuned
with supervised learning precisely to make it function to detect a
particular kind of semantic structure.24

To summarize, while I have not shown that SOMs definitively lack
the features required for semantic understanding, current research does
not give us strong reason to be optimistic. We do not have evidence
that optimizing for predictive accuracy in SOMs thereby trains systems
to function in ways that respect the semantic properties of the natural
language words they are trained on. In the absence of such justification,
we should continue to accept the Statistical Hypothesis.

5.1. But what about ChatGPT?

On November 30, 2022, OpenAI released ChatGPT, a chatbot AI
based on GPT-3.5, a development of GPT-3. The ability of ChatGPT
to produce extended, meaning-semblant text, on an expansive array of
topics, has shot the question of whether SOMs have semantic under-
standing into the public sphere in a way that it simply was not before
the release. Should we consider the Statistical Hypothesis to still be the
default hypothesis even given the behavior demonstrated by ChatGPT?

The argument of this paper has not depended on specific behavioral
capabilities of SOMs, but rather on the existence of an alternative
hypothesis for meaning-semblant behavior. So if ChatGPT poses a
distinctive challenge, it will need to be made on the basis of the way
ChatGPT was trained, or analysis of how it functions. As of the time of
submission of this paper, there has been no published causal analysis
of the internal functioning of ChatGPT. OpenAI has not published a
research paper on ChatGPT, but did publish a blog post describing how
ChatGPT was built (OpenAI, 2022). Researchers began with GPT-3.5,
a development of GPT-3, and then fine-tuned it using Reinforcement
Learning from Human Feedback (RLHF). Human trainers provided
model examples of human-AI chatbot conversations as data for super-
vised learning by ChatGPT. They also provided rankings of possible
responses to model human questions. This was used to train a reward
model, which ChatGPT was then trained to optimize. OpenAI describes
this process as similar to the one used for InstructGPT, which does have
a corresponding research paper (Ouyang et al., 2022).

Could this fine-tuning be sufficient to shift the internal functioning
of ChatGPT so that it plausibly has internal features that function
as semantic representations? If a good case can be made that the
kinds of methods used on InstructGPT modified its functioning so that
it is sensitive to semantic properties, then perhaps we should con-
sider InstructGPT and ChatGPT to be candidates for having Semantic
Understanding.

How might such a case be made? Human trainers on InstructGPT
were instructed to prefer responses that were truthful and harmless, and
secondarily to prefer helpful responses. Could this fine-tuning suffice
for adapting the functioning of the system so that it is sensitive to
semantic properties? After all, in order for a system to respond truthfully

24 So, does this fine-tuned BERT have understanding? Plausibly not, as it is
too specialized. But arguing for that is outside of the scope of this paper.
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as such, one plausibly has to act sensitively to the meanings of queries
and answers.25

At first, things look somewhat promising, as Ouyang et al. (2022)
eport a doubling of truthfulness of InstructGPT over GPT-3 (against

the TruthfulQA benchmark Lin et al. (2021)). However, nearly all of
this increase is due to InstructGPT producing uninformative answers
such as ‘‘I have no comment’’ when it would otherwise have provided
an incorrect answer (p. 13). This strongly suggests that fine-tuning
based on the truthfulness criterion, instead of significantly shifting the
functioning of InstructGPT to make it more inference-like, plays a more
isolable role that may be characterizable in non-semantic terms, such
as preventing outputs are not highly predicted by the input.

This assessment is also consistent with Open AI’s own description
of ChatGPT’s behavior:

ChatGPT sometimes writes plausible-sounding but incorrect or non-
sensical answers. Fixing this issue is challenging, as: (1) during RL
training, there is currently no source of truth; (2) training the model
to be more cautious causes it to decline questions that it can answer
correctly; and (3) supervised training misleads the model because
the ideal answer depends on what the model knows, rather than
what the human demonstrator knows.

OpenAI’s admission that there is no source of truth for ChatGPT
reinforces our assessment that the fine-tuning ChatGPT receives does
not significantly change the internal functioning of the system in the
way that would be required for it to actually be sensitive to the
meanings of natural language.

While the fine-tuning ChatGPT received makes it produce more
plausible-sounding responses and prevents it from producing some
harmful and untruthful responses, it does not plausibly make it function
to perform truth- or knowledge-producing inferences per se.

5.2. How far does this argument extend?

How far, exactly, does the argument of this paper extend? For
example, do DALL-E (Ramesh et al., 2021) and similar systems such
as CLIP (Radford et al., 2021), DALL-E 2 (Ramesh et al., 2022) and
GLIDE (Nichol et al., 2022), which use transformer architectures on
visual images and text, have a greater claim to semantic understanding?
Or should we also prefer the Statistical Hypothesis for these mul-
timodal systems?26 I have focused here mainly on text-based SOMs
because we have comparatively more rigorous performance tests for
these systems (such as benchmark tests for question sets such as Triv-
iaQ&A), and the application of the argument is simpler. While ex-
tending these arguments in detail to other modalities and multi-modal
systems is beyond the scope of this paper, the criticisms I have levied
here against exclusively text-based SOMs are largely applicable to
multi-modal transformer-based systems, and indeed any systems that
seek to produce meaning-semblant behavior primarily by exploiting
correlations between statistics-of-occurrence properties and semantic
properties of representations (text, images, etc.) in large data sets.

Recall that the proposed explanation that is preferable to the Se-
mantic Hypothesis – the Statistical Hypothesis – is that the meaning-
semblant behavior of SOMs is driven merely by sensitivity to statistics-
of-occurrence properties, rather than semantic properties. These prop-
erties are highly correlated with semantic properties (thus explaining
the meaning-semblant behavior), but distinct from them. Thus SOMs
fail to satisfy the Functioning Criterion and so fall short of semantic
understanding. In the case of image-and-text trained systems such as

25 While the twin aims of being helpful and harmless are also plausibly
emantic, it is even less likely that a system fine-tuned to improve on just
hose criteria could develop general semantic abilities.
26 Thanks to an anonymous referee for raising this question.
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DALL-E, our meaning-semblant behavior of interest is typically produc-
ing images that satisfy prompt requests such as ‘‘a group of animals
standing in the snow’’ (Ramesh et al., 2021). The analogous claim here
is that DALL-E’s ability to produce such images in response to caption
prompts is not caused by sensitivity to the meaning of the caption and
its component parts (such as animals and snow) but rather merely by
ensitivity to the statistical properties of images and their text captions.
ecause of the way humans meaningfully create images and associate
aptions, sensitivity to these statistical properties will suffice for the
eaning-semblant behavior exhibited.

Most of the arguments of the preceding straightforwardly apply
o these kinds of transformer-based models. We should not generally
onsider meaning-semblant behavior to be sufficient for semantic un-
erstanding, in particular for SOMs (Section 2), and the behavior so
ar exhibited is not so impressive as to motivate attributing seman-
ic understanding as the best explanation of this behavior without
onsidering other evidence or hypotheses (Section 3). In particular,
hese systems often face challenges with prompts designed to test
or compositionality. For example, Marcus et al. (2022) discuss the
ailure of DALL-E 2 (also called unCLIP) to successfully produce one
orrect image out of ten tries in response to the prompt: ‘‘a red ball
n top of a blue pyramid with the pyramid behind a car that is
bove a toaster’’ (see also Ramesh et al. (2022)). Moreover, while the
bility for these systems to produce compelling images in response
o caption prompts is striking, often the compelling ones need to be
icked from among multiple, less satisfactory, images (see Marcus
t al. (2022) for several examples). These mixed results suggest that
uch SOMs are not genuinely sensitive to semantic properties, but
re instead still driven by statistics-of-occurrence properties. Because
umans typically create, use, and store images that are meaningful to
s and caption them according to their semantic properties, sensitivity
o statistics-of-occurrence properties for images and captions can pro-
uce meaning-semblant behavior but also will tend to fall short when
he prompts are more complex and testing for specifically semantic
roperties, such as the one above designed to test compositionality.

Moreover, so far we do not have CAAs or other rigorous analyses of
he internal functioning of multi-modal transformer-based models that
im to directly evaluate whether these systems are in fact functioning
n ways that are sensitive to semantic properties (Section 5). So far,
hen, we should continue to adopt the most straightforward and par-
imonious hypothesis, namely that the functioning of these systems is
riven by sensitivity to statistics-of-occurrence properties.

One might, however, point out certain differences between images
nd texts that complicate the argument from Section 4. Unlike words
nd phrases, which are representations that typically bear an arbitrary
nd purely conventional relationship to what they represent, several
spects of images do not have such an arbitrary relationship. Images
hemselves, and their proper parts, may share some features with what
hey represent, such as shape, brightness, contrast, or color relation-
hips, and this is part of what makes them good candidates to be
epresentations of those properties. For example, an image of a dollar
ill may represent it as having 90-degree corners by having a proper
art of the image (the one recognizable as representing the dollar bill)
hat itself has 90-degree corners. Thus statistics-of-occurrence infor-
ation about captions involving ‘‘dollar bills’’ and 90-degree corners

n images may also be information about ‘‘dollar bills’’ and 90-degree
orners in dollar bills. Image-trained models may therefore have better
laim to having access to semantic information than purely text-based
odels. More generally, if sensitivity to statistics-of-occurrence prop-

rties can be sensitivity to semantic properties in certain multi-modal
ases, the defense of the Statistical Hypothesis in Section 4, which
nsists on distinguishing them, is on shakier ground for such systems.

However, the extent to which the overlap between statistics-of-
ccurrence and semantic properties can motivate claims to SOMs hav-
ng semantic understanding remains severely limited — because the

verlap itself is severely limited. First, there are many properties that
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are clearly distinct from even abstract properties of images of them —
such as being a cat or riding a skateboard. Because these properties are
istinct from any formal properties of images, they will still be distinct,
ven if highly correlated, with statistics-of-occurrence properties.

Second, images of dollar bills often do not have 90-degree corners.
epending on the perspective of the photograph or rendering, the

mage might be trapezoidal or some other shape. Indeed, the kinds
f shapes that might serve as images of dollar bills are quite varied,
specially when one takes into account stylistic or artistic expression.

dollar bill in the style of Salvador Dalí, for example, might have
o sharp corners at all. What makes an image recognizable as being
f a dollar bill is often quite complex and dependent on the larger
mage context. This means that the relationship between the shape of
he image and the shape of the represented object is typically much
ore tenuous than our initial example suggests. Similar considerations

pply to color and other properties that images might share with their
eferents.27

Because of this, we should expect SOMs to be tracking whatever
statistics-of-occurrence information there is relating images and the
words ‘‘dollar bill’’. This will of course include a tendency to have
certain parts of the images have pixel patterns that are recognizable
to us as dollar bills (or as 2, 5, 10 dollar bills, etc.), because those are
the images that are likely to be so captioned. But the system is actually
unlikely to be tracking 90-degree angles of images per se. (The ability
of large machine learning models generally to pick up on complex
properties of data that are not meaningful to us but relevant to our
interests is a main reason why they are so powerful and effective.) The
features of images that are most highly correlated to those words in a
caption are thus likely to be more complex and abstract properties of
images that are not also candidates for properties of dollar bills – or
other real-world items – themselves.

Lastly, it is likely that, even if it so happened that an SOM tracked
a statistics-of-occurrence property that properly coincided with a se-
mantic property, for the reasons given above it would be unlikely to
distinguish between cases where there is coincidence of the relevant
statistics-of-occurrence property and semantic property from cases of
divergence. If the model is always tracking the relevant statistics-of-
occurrence image property whether or not it coincides with a semantic
property, then the claim that the model is functionally sensitive to
semantic properties is more tenuous. The fact that the property is
possessed by what the image or caption represents makes no difference
to the functioning of the system.28

Let us take stock. Despite the initial plausibility of the idea that
OMs partially based on imagistic data might have greater claim
o semantic understanding, on reflection this is implausible because
he strategy of using statistics-of-occurrence information to generate
eaning-semblant behavior by developing a model that represents

nd/or predicts based on this statistics-of-occurrence information is not
tself a strategy that aims to produce a model that directly reflects or
nteracts with the features of the world the data represents. Because
f the gap between statistics of occurrence properties and semantic
roperties, a model optimized in relation to the former is unlikely to
utomatically develop functional sensitivity to the latter. We do not
lose this gap for free. Introducing different or multiple modalities does
ot solve this problem, because it does not introduce ways in which the
ystem can shift to function sensitively to semantic properties. It just
rovides new kinds of data that can provide new kinds of statistical
nformation and thereby improve and expand system performance.

27 See, e.g. Purves and Lotto (2002) for discussion of the complex features
f image context that affect color perception.
28 This is the sort of consideration that can lead us to distinguish carrying
information from representing that information as we did in Section 1.
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6. Conclusion

I have argued that meaning-semblant behavior is insufficient to
support claims to semantic understanding for SOMs because it is not
plausible that they meet the Functioning Criterion for semantic un-
derstanding. That is, it is unlikely that their internal functioning and
behavior are best explained by as driven by sensitivity to seman-
tic properties. Because in the case of SOMs statistics-of-occurrence
properties and semantic properties are highly correlated, there is a
simpler, and more parsimonious alternative, the Statistical Hypothesis,
on which meaning-semblant behavior is produced merely because of
these systematic correlations. SOMs do not plausibly function in ways
that warrant attributions of semantic understanding, even cutting-edge
ones such as ChatGPT. In the absence of further evidence that either
certain meaning-semblant behavior cannot plausibly be explained by
the Statistical Hypothesis or that the internal functioning of SOMs
actually involves sensitivity to semantic properties, we should conclude
that all existing SOMs, as well as future nearby developments of this
technology, lack semantic understanding despite being increasingly
able to produce meaning-semblant behavior.

In trying to specify a clear, empirically tractable criterion for se-
mantic understanding that SOMs plausibly fail to meet, I hope to have
contributed to increased understanding of why and how one should
make claims that AI systems have semantic understanding. Such claims
should be based on analyses of how the systems are trained and
function; they should compare properties of these systems to research
on mental representation and intentionality more generally; and they
should be careful to rule out less exciting but more straightforward and
parsimonious hypotheses. I hope to show that the kinds of criticisms
levied here are not a moving target. Instead they are an attempt to
synthesize what we know about genuine semantic understanding in
humans and animals with our understanding of the capabilities and
functioning of SOMs in order to make progress on a difficult and excit-
ing question. We should keep probing SOMs and other AI systems with
methods such as CAA to explore hypotheses about internal functioning,
and we should develop more rigorous methods for assessing inferences
from meaning-semblant behavior to internal functioning.

Moreover, none of the foregoing is intended to minimize the im-
pressive advance that this technology constitutes for AI applications.
I agree that with appropriate attention to the ethical dimensions the
possibilities for this technology are quite exciting. I also am hopeful
that these advances may provide some insight into the mechanisms
underlying our own increasingly well-documented predictive language
capabilities (see e.g. Pickering and Gambi (2018)). While these predic-
tive capabilities may ultimately be involved in an explanation for our
capacities for semantic understanding, if the arguments of this paper
are correct, the insights that we get from illuminating them will not on
their own take us very far in illuminating the neural or computational
basis of semantic understanding, which involves functional sensitivity
to importantly different properties. For this reason I hesitate to extend
even some notion of proto-understanding to SOMs, since understanding
how cognitive systems like ours may use information like statistics-
of-occurrence properties and other information processing in order to
constitute functional sensitivity to semantic relationships will require
novel insights and approaches that are not yet developed.

Rather than being the last word on this topic, my hope is that
this work spurs advocates on both sides of this debate to develop
clearer and more rigorous accounts of the kind of functioning that
is required for semantic understanding and how we could properly
assess whether a large neural network has such functioning. This could
perhaps contribute to the advancement of AI technology so that it
can properly be considered to have semantic understanding. In the
meantime, however, in light of the foregoing we should take care not
to overstate our technological accomplishments or get carried away by
the impressiveness of the meaning-semblant behavior of such systems.
Attributing semantic understanding to these systems when we are not
warranted in doing so could have serious social and ethical implications
related to anthropormorphizing these systems or over-trusting their

ability to produce meaningful or truthful responses.
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