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Abstract
Likelihoodism is the view that the degree of evidential support should be analysed and meas-
ured in terms of likelihoods alone. The paper considers and responds to a popular criticism that 
a likelihoodist framework is too restrictive to guide belief. First, I show that the most detailed 
and rigorous version of this criticism, as put forward by Gandenberger (2016), is unsuccessful. 
Second, I provide a positive argument that a broadly likelihoodist framework can accommo-
date guidance for comparative belief, even when objectively well-grounded prior probabilities 
are not available. As I show, the shift from non-relational to comparative probabilities opens 
up a new space for addressing the belief guidance problem for likelihoodism.

Keywords  Likelihoodism · Belief guidance · Non-relational and relational probabilities · 
Comparative belief · The problem of priors · The ratio form of Bayes’ Theorem

1  Introduction

Contemporary statistics is home to a couple of competing paradigms for interpreting sci-
entific data as evidence. For the past 60 years or so, the two most popular approaches to 
statistical inference have been the frequentist paradigm and the Bayesian paradigm.

A central procedure of frequentist statistics is the so-called Null Hypothesis Significance 
Testing (NHST). A significance test starts with a hypothesis, called the “null hypothesis”, 
which is examined against some relevant outcome or data. Simply put, NHST says that if a 
null hypothesis renders certain outcomes as highly improbable and if such an improbable 
outcome occurs, then the null hypothesis should be rejected.

While the guiding idea behind NHST seems plausible, many have found the method to 
be fundamentally defective.1 Moreover, in certain fields of science, primarily in the social, 
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1  An immediate problem with NHST is that it embodies a defective form of inductive reasoning; even if 
a hypothesis renders a certain observation as unlikely, the observation might still support the hypothesis; 
this is so because the observation might be even more improbable if the hypothesis is false. To demonstrate 
this, suppose two individuals share a copy of a rare allele; only 1 in 10 000 have it. As siblings share half of 
their alleles on average, P(rare allele|siblings) = 0.5 ∗ 0.0001 , which is a very small number. However, if 
the two individuals are unrelated the probability is much lower: P(rare allele|unrelated) = 0.0001 ∗ 0.0001 . 
Hence, the data supports the sibling hypothesis, even if the hypothesis renders the data quite unlikely. See 
Sober (2008, 48–58) for an accessible discussion.
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behavioural, and biomedical sciences, some of the important results that relied on NHST 
failed to be replicated.2 This new evidence showing the important lack of replication in 
these fields puts an additional strain on frequentism, so much so that there is an increasing 
call for some kind of statistical reform.

Many critics of frequentism see Bayesianism as providing superior methods of data-
analysis (Dienes 2011; Wetzels et  al. 2011; Kruschke 2013). The key characteristic of 
Bayesianism is the use of the so-called prior probabilities. Unlike frequentism, Bayesian 
theory requires a probability distribution over both the sample space and statistical hypoth-
eses.3 A probability distribution over statistical hypotheses is called prior distribution. A 
prior distribution encodes how likely the competing hypotheses are before the relevant evi-
dence comes in.

Certainly, the indispensability of priors in data analysis is the Achilles heel of Bayesian 
methods. The problem is that, in many contexts, there seems to be no objective, unconten-
tious way to fix priors. And due to this unmistakably subjectivist component in Bayesian 
methods, many are quite reluctant to give up on the traditional frequentist methods.4 While 
some Bayesians have proposed various theories for grounding “objective” prior probabili-
ties, none of these proposals has been generally accepted.5 Hence the problem of the sub-
jective priors continues to haunt Bayesian methods.

Likelihoodism can be seen as an attempt to overcome the frequentism-Bayesian con-
troversy by paving the way between “the illogic of the frequentists and the subjectivity of 
the Bayesians” (Royall 1997, XIV). The central principle of likelihoodism is the so-called 
Law of Likelihood according to which an outcome, E , is evidence for a hypothesis, A , over 
its competitor, B , when E is more likely if A is true than if B is true. Like frequentism (and 
unlike Bayesianism), likelihoodism requires only a probability distribution over the sample 
space and not over hypotheses themselves. And like Bayesianism (and unlike frequentism), 
likelihoodism holds that the impact of evidence on any two hypotheses is wholly deter-
mined by the likelihoods of these hypotheses.6 Hence, likelihoodism endorses some of the 
true-and-tried principles from both frequentism and Bayesianism, without relying on con-
troversial NHST or subjective priors.7

Certainly, there are several problems associated with likelihoodism. The problem that 
will preoccupy us in this paper is that, unlike frequentist and Bayesian approaches, like-
lihoodism remains silent on matters of belief. According to an orthodox likelihoodist 
position, strong evidential support does not licence either a categorical belief or a degree 
of belief in a proposition. This point can be illustrated by the following quick example. 

3  NHST only considers probability distribution over sample space (i.e., how likely an outcome is on the 
supposition of a statistical hypothesis) and not over statistical hypotheses themselves (i.e., how likely  the 
relevant statistical hypotheses are).
4  There have been some attempts to marrying the two paradigms together, in a unified frequentist-Bayesian 
theory. But so far, the most serious disputes between the two approaches are still raging. See Mayo (2018) 
for a lengthy discussion.
5  For a positive, systematic account of objective or impermissive Bayesianism see Williamson (2007; 
2010). For a critical discussion, see Meacham (2014).
6  This view on the impact of evidence is called the Likelihood Principle. Frequentism is in tension with 
the principle as it allows various non-likelihood related factors to influence the impact of evidence. For a 
detailed discussion of the Likelihood Principle see Berger and Wolpert (1988) and Gandenberger (2015).
7  For an influential statement of the likelihoodist program see Royall (1997). For a more philosophically 
rich discussion, see Sober (2008) and Bandyopadhyay et al. (2016).

2  For a general philosophical discussion of the replication crisis see Romero (2019). For an explanation/
diagnosis of the crisis see Bird (2021).
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Consider a TB test which is 99% reliable: the test would correctly report the presence of 
TB in 99% of cases and falsely report the presence of TB in 1%. Now suppose that the 
test indicates the presence of TB in a randomly chosen individual in the UK. According 
to the Law of Likelihood, the test result is strong evidence that the individual has TB. 
However, it is still highly unlikely that the individual has TB, as the incidence rate of 
TB is extremely low in the UK. It is overwhelmingly more likely that the test has given 
a false positive rather than true positive report. So, even if there is a strong piece of evi-
dence that the person has TB, this does not license the conclusion that the person prob-
ably has TB.

In the above example, the assumption about the prior probability of the disease was 
unproblematic. The incidence rate or frequency data of the disease fixes the priors in an 
objective, uncontentious manner. But, in many scientific settings, a prior distribution can-
not be fixed in the same way. Sometimes the relevant frequency data is unknown. And, 
in some cases, it seems incoherent to suppose that frequency data can provide a basis for 
assigning prior probabilities. For instance, what type of frequency information can ground 
a prior probability distribution to, say, the general theory of relativity or the anthropomor-
phic climate change hypothesis (more on this in Sect. 2.2)?

Now, likelihoodists eschew the use of prior probabilities when priors are not sup-
ported by empirical evidence (Edwards 1972; Royall 1997; Sober 2008). And given that 
empirically grounded priors are unavailable in many, and arguably, in most settings, 
likelihoodist methods seem to be practically useless for science (Gandenberger 2016, 
12).

While the lack of belief guidance has been identified as a problem for likelihoodism for 
some time, more recently, Gandenberger (2016) has articulated the worry in a detailed and 
rigorous way. As he has concluded, due to the lack of belief guidance, likelihoodism is not 
a viable alternative to either frequentism or Bayesianism.

This paper argues that, contrary to the received view, a likelihoodist framework can 
accommodate belief guidance. Like Gandenberger, I focus on comparative beliefs; that is, 
beliefs of the form “ A is more probable than B”.8 As I shall argue, when there is no objec-
tive basis for assigning prior probabilities to hypotheses, rational comparative beliefs can 
still be formed, without invoking Bayesian subjective priors. Following Salmon (1990), 
my main argumentative strategy is to move from non-relational probabilities of individual 
hypotheses to comparative evaluations of competing hypotheses. A non-relational prob-
ability of a hypothesis, A , is commonly represented by a point-valued probability: e.g. 
when A is assigned a probability of, say, 0.6 (I also allow non-relational probabilities to 
be represented by intervals or sets of probability distributions). By contrast, comparative 
evaluations of competing hypotheses A and B do not require us to assign any non-relational 
probabilities to them. For instance, scientists may not have an objective basis for assigning 

8  Also, like Gandenberger, I am concerned with belief guidance for simple rather than composite (or 
catchall) hypotheses. Composite hypotheses are disjunctions of mutually exclusive simple hypotheses. For 
instance, the hypothesis H

1
 : “the coin is fair” is simple while the hypothesis ¬H

1
 : “the coin is not fair”—is 

composite: as ¬H
1
 is the disjunction of all the specific alternatives to H

1
.

  The likelihoods of composite hypotheses are sensitive to prior probabilities. For this reason, such likeli-
hoods raise several issues for likelihoodism that go beyond the scope of this paper. See Bandyopadhyay 
et al. (2016, Appendix to Chapter 2) for a discussion and argument that the likelihoodist account of evi-
dence can deal with composite hypotheses.



	 T. Tokhadze 

1 3

non-relational probabilities to A and B , but they can still rationally judge that A and B are 
roughly equally plausible.

So, contrary to Gandenberger’s criticism, I will conclude that, even when there is no 
objective basis for assigning prior probabilities, it is feasible to guide comparative belief 
without collapsing into subjective Bayesianism.

The paper runs as follows. Section  2.1 gives a general, broad-brush overview of the 
main aspects of likelihoodism, and Sect. 2.2 gives a precise statement of the distinct prob-
lem that likelihoodism faces concerning belief guidance. Section 3 provides detailed analy-
ses and criticism of Gandenberger’s (2016) anti-likelihoodist argument. In Sect.  4, I put 
forward a positive, likelihoodist account of guidance for comparative beliefs. This account 
utilises the so-called ratio form of Bayes’ Theorem. I will illustrate both the applicability 
and limits of likelihoodist belief guidance by analysing two examples: one from cognitive 
neuroscience and one from philosophy. I conclude in Sect. 5 that likelihoodism can provide 
substantive guidance for comparative belief.

2 � Setting the Stage

2.1 � Two Tenets of Likelihoodism

The core of likelihoodism consists of (i) a comparative, relational conception of evidential 
support and (ii) the likelihood ratio measure of the degree of relational support. The first 
is qualitative and the second is a quantitative aspect of likelihoodism. In what follows, I 
will characterise and explicate each of these aspects, starting with the likelihoodist view of 
(evidential) support.

To explain the likelihoodist view of support, it is useful to contrast it with a more ortho-
dox, non-relational view. A theory of support is non-relational when it defines support for 
an individual hypothesis, without contrasting the hypothesis to its alternative, competitor 
hypothesis. For instance, consider the standard Bayesian view which I call Support-IP (IP 
for Increase in Probability):

Support-IP: For any hypothesis H , evidence E , and personal probability function P , 
E supports H relative to P iff P(H|E) > P(H).

Support-IP defines support in terms of the increase-in-probability relation (or confirma-
tion). And Support-IP is a non-relational view because support for a hypothesis is defined 
without appealing to any competitor hypothesis.

By contrast, the likelihoodist view of support is inherently relational, as it requires two 
competitor hypotheses to define the relation of evidential support. This view is expressed 
by the so-called Law of Likelihood (LL), which roughly says that for any two competitor 
hypotheses A and B , E supports A more strongly than B iff E is more likely on the supposi-
tion that A than on the supposition that B . More precisely:

LL: For any two competitor hypotheses A and B , E supports A over B iff A confers 
greater probability on E than B does: P(E|A) > P(E|B).

Why accept LL over its Bayesian competitors? The main strength of LL—according 
to its supporters—is that it provides an objective, inter-personally justifiable criterion for 
evidential support. LL defines support in terms of two likelihoods; i.e., the probabilities of 
the following form: P(Evidence|Hypothesis) . A likelihood encodes the empirical content 
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of a hypothesis; that is, what the hypothesis says about evidence. For instance, let h = 
“ 25% of philosophy undergraduates are introverts”, and let e = “randomly chosen phi-
losophy undergraduate is an introvert”. There is a certain logico-conceptual relationship 
between h and e that is articulated by likelihood P(e|h) . And even if we have no clue 
about the prior probability of h and e , the likelihood of P(e|h) is still objectively given: 
P(e|h) = 0.25.

The example illustrates what Hawthorne (2005, 278) has called the publicness of likeli-
hoods. So, even if two agents disagree about the prior probability of h , they can still agree 
on the value of the likelihood, P(e|h).9

Fixing likelihoods is not always as easy as in the above example. But even the so-called 
subjective Bayesians—that is, Bayesians who allow the multitude of coherent prior distri-
butions as rationally permissible—grant that likelihoods can be objectively well-grounded 
in many scientific contexts (Edwards et al. 1963).

In addition to LL, likelihoodists provide a measure of (comparative) evidential support, 
which quantifies the basic idea behind LL; so that the degree of evidential support between 
A and B is defined as the ratio of their respective likelihoods.

Relational Measure of Support: The degree to which evidence E supports a hypothe-
sis A over its competitor B equals the ratio of their respective likelihoods. In symbols:

Ratios of likelihoods ( RL , for short) has useful mathematical properties. Whenever the 
data is more likely on A than on B , the RL is always greater than 1.10 And the better E fits 
A over B , the greater the ratio. Following Royall (1997), it is common to postulate an arbi-
trary cut-off point for characterising weak and strong evidence. For instance, we can say 
that if 1 < RL < 8 , then E provides weak evidence for A . And if RL ≥ 8 , then E provides 
strong evidence for A.11

The combination of LL and the measure of relational support, RL , comprises the core of 
likelihoodism.

Many (e.g. Fitelson 2007; 2011; Mayo 1996; 2018) have criticised these core principles 
on various grounds. This paper will not address any potential difficulties with either LL or 
the likelihoodist measure of support. Rather, the focus is on the applicability of these prin-
ciples to the question of belief guidance.

The next section gives a detailed statement of the problem of belief guidance for 
likelihoodism.

P(E|A)

P(E|B)

9  By the standard definition of conditional probability, likelihoods are still mathematically related to pri-
ors: as P(E|H) = P(E andH)∕P(H) . But this mathematical connection between likelihoods and priors does 
not imply that we cannot make an independent sense of P(E|H) , without appealing to the prior probability 
of H . For one thing, there is an important logical asymmetry between P(E|H) and P(E and H) and P(H). 
Knowing the values of P(E and H) and P(H) fixes the value of P(E|H) . But not the other way around. So we 
can make an independent sense of P(E|H) without assuming that the prior probabilities are known or well-
defined. For a more detailed discussion see Sober (2008, 38–41).
10  Except when P(E|B) = 0.
11  The reader should not attach too much significance to the cut-off point 8. Certainly, whether evidence E 
provides strong evidence for A over B is a context-sensitive matter and depends on the evidence and hypoth-
eses in question (Bandyopadhyay et al. 2016, 24).
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2.2 � The Problem of Belief Guidance

It has long been recognised that likelihoodist methods for interpreting data as evidence do 
not, by itself, determine what one ought to believe. The point is well-illustrated by Royall 
(1997, 2–4) by distinguishing three types of questions regarding the analysis of evidence:

	(Q1)	 What does the present evidence support?
	(Q2)	 What should you believe in light of your present evidence?
	(Q3)	  What should you do in light of your present evidence?12

The core of likelihoodism only applies to the first question. By contrast, answering 
questions (Q2) and (Q3) require more than the information about the likelihoods. To illus-
trate this, consider a physician, “you”, who investigates whether a patient, “Eve”, has a skin 
disease. Eve has taken a test, and the result came up positive. The probability of a true-pos-
itive is quite high, 95%, and the probability of a false-positive is quite low, 5%. From this 
information, we can already answer Royall’s first question by using the Law of Likelihood 
(LL): the test result strongly supports the hypothesis that Eve has the skin condition over 
the hypothesis that she does not have it.13

But this information is insufficient to answer either question (Q2) or (Q3). To answer 
(Q2), you also need to know the prior probability of the disease. If the disease is quite rare 
and only 1 in 10 000 people have it, then the test result does not license the belief that Eve 
has the disease. So, to answer (Q2), you need to know both the relevant likelihoods and 
prior probabilities.

Regarding (Q3): whether you should give any medication to Eve, based on the test 
result, depends not only on your probabilities but on relevant utilities. If the common medi-
cation against the disease is harmless, then you can reasonably prescribe it to Eve, even 
without knowing the exact prior probability of the disease. And, if the medication can be 
harmful to a healthy person, you would prescribe it only when you are quite certain that 
Eve has the disease.

To sum up then: even if E strongly supports A over B this will not imply that E justifies 
either categorical belief in A or comparative belief in A over B (more on this in the next 
section). Hence, the core of likelihoodism only applies to question (1) and not to questions 
(2) or (3).

But how does a likelihoodist answer the belief question? As one of the motivating 
ideas of likelihoodism is to avoid the subjectivity of Bayesianism, likelihoodists cannot 
rely on subjective priors to guide beliefs. So, instead, they should rely on objectively 
well-grounded priors.

Generally speaking, there are two broad strategies for grounding objective priors: by 
appealing to (i) empirical information about frequencies or (ii) some a priori principle 
(e.g. the so-called Principle of Indifference). However, as I discuss next, both strategies 
are problematic for likelihoodists (Gandenberger 2016).

12  For a discussion about a broader significance of Royall’s three questions for the philosophy of statistics 
see Bandyopadhyay and Forster (2011, Sect. 2).
13  P( + result | Eve has the disease) = 0.95 and P( + result | Eve does not have the disease) = 0.05 . So, the 
likelihood ratio is 0.95∕0.05 = 19 . Hence, the positive test result provides strong evidence that Eve has the 
disease.



Likelihoodism and Guidance for Belief﻿	

1 3

Regarding the first strategy: it is widely accepted that frequency data can provide 
objective justification for fixing prior probabilities. Frequency information is often out 
there, independent of our knowledge, as when a certain disease has some objective 
incidence rate in the population. For instance, the incidence rate of TB in England is 
approximately 9.2 per 100,000. And we can estimate the prior probability of a randomly 
selected individual in England to have TB, based on this frequency data.

Using empirically informed priors to guide belief seems to meet the likelihood-
ist standard of objectivity. But what if such priors are unavailable? One popular like-
lihoodist position is that, when empirically well-grounded priors are unavailable, the 
only rational doxastic response is a suspension of judgment. Such a view about rational 
belief is well-summarised and endorsed by Sober (2008, 32):

When prior probabilities can be defended empirically, … you should be a Bayes-
ian. When priors and likelihoods do not have this feature, you should change the 
subject. In terms of Royall’s three questions …, you should shift from question 
(2), which concerns what your degree of belief should be, to question (1), which 
asks what the evidence says.

Unfortunately, though, Sober’s proposal is unsatisfactory. Sober himself points out that 
in many cases, empirically informed priors are simply unavailable. As he (2008, 26) 
articulates the point:

There is a world of difference between this quotidian case of medical diagnosis 
and the use of Bayes’ theorem in testing a deep and general scientific theory, 
such as Darwin’s theory of evolution or Einstein’s general theory of relativity. 
… When we assign prior probabilities to these theories, what evidence can we 
appeal to in justification? We have no frequency data as we do with respect to the 
question of whether S has tuberculosis. If God chose which theories to make true 
by drawing balls from an urn (each ball having a different theory written on it), 
the composition of the urn would provide an objective basis for assigning prior 
probabilities, if only we knew how the urn was composed. But we do not, and, in 
any event, no one thinks that these theories are made true or false by a process of 
this kind.

Sober’s view about the scarcity of frequency data is the majority view in the philosophy 
of science and statistics; as most would agree that a prior probability assignment cannot 
be defended empirically in many cases of interest. Hence, the proposal that the talk of 
belief is inappropriate in the absence of frequency data seems to lead to a sceptical view 
of science, where scientific theories and models are rarely useful for guiding belief.

So, can likelihoodists pursue an alternative strategy and appeal to some a priori 
principle(s) to ground objective prior probabilities? This strategy is also problematic for 
likelihoodists, as they are generally sceptical about the prospects of grounding priors on 
a priori principles.14

To illustrate this, let us consider the most prominent a priori rule for fixing priors, the 
so-called Principle of Indifference (PoI). PoI roughly says that if you have no reason to 
favour a proposition over its competitor, then you should assign equal probabilities to them. 
More generally and precisely:

14  See Sober (2008, 27–28).
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PoI: Let U be a finite set of all mutually exclusive and exhaustive hypotheses; if an 
agent has no evidence that favours any member of U over any other, then for all x in 
U,P(x) =

1

|U|
, where |U| is the cardinality of U.

Likelihoodists are sceptical towards PoI for two separate but interconnected reasons. First, 
it is a common practice for scientists to consider a handful of competitor hypotheses, at any 
given time. In most cases, no one thinks that the considered hypotheses exhaust the space 
of all serious possibilities. And scientists rarely know all members of the set of realistic 
hypotheses. But the application of PoI depends on such a set, whose members and car-
dinality are explicitly known. For instance, consider the contemporary theories of quan-
tum gravity. There are just a couple of well-articulated theories of gravity, and no work-
ing physicist would think that these hypotheses exhaust the space of all possible realistic 
hypotheses. Of course, one can negate the disjunction of the competing hypotheses, and 
hence fill the space of all possibilities. But this manoeuvre leads to a second problem. The 
problem is that there is more than one way to carve this logical space. For instance, assume 
that scientists focus on only three specific competitor theories of quantum gravity: Q1 , Q2 , 
and Q3 . So, in total, they must consider four competitor hypotheses: { Q1 , Q2 , Q3 , and ¬(Q1∨ 
Q2 , ∨Q3)} . Assuming that one is indifferent between these four hypotheses, PoI mandates 
to assign the probability of 1∕4 to each. But it is possible to carve the space of possibilities 
in a more coarse-grained or fine-grained manner (for instance, by introducing another spe-
cific theory of quantum gravity). Different carvings would have licensed different priors. 
PoI, in itself, does not settle which carvings should be favoured.15

All such a priori rules for deriving priors are relative to the set of competitor hypoth-
eses; hence the two problems I have mentioned are not restricted to PoI and apply to other 
a priori rules for deriving priors.

To wrap up the above: According to the standard likelihoodist position, frequency data, 
essentially, is the only admissible evidence for grounding priors for scientific hypotheses. 
And as such data is unavailable for most scientific hypotheses, the likelihoodist methods 
seem practically useless for science.

Of course, one can simply deny that the lack of belief guidance is a problem. To para-
phrase Sober, when empirically grounded priors are unavailable, one must simply change 
the subject and answer the evidence question instead of the belief question. This paper will 
not argue that such a response is illegitimate. But I do not expect that this response would 
convince the critics. Hence, I shall proceed by presupposing that belief guidance is a genu-
ine problem for likelihoodism.

In the remaining sections of the paper, I shall argue that this received view on the inap-
plicability of likelihoodist methods to the belief question is incorrect.

Before I defend my positive proposal, first, I need to address a general worry against the 
very possibility of likelihood-based guidance for belief. The worry has been articulated in 
a detailed, rigorous manner by Gandenberger (2016). The next section provides a detailed 
analysis and critique of Gandenberger’s argument.

15  While likelihoodists think that PoI is problematic even with discrete cases, there is also a well-known 
Bertrand’s paradox that poses problems for PoI with respect to continuous probabilities (where one cannot 
straightforwardly appeal to the “finest” partition of the space of possibilities). Some Bayesians (e.g. Wil-
liamson 2007; 2010) have provided novel, nuanced defences of PoI. It is beyond the scope of the paper to 
evaluate these defences as I am solely concerned with why likelihoodists think that PoI is wrong.
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3 � An Argument Against Likelihood‑based Belief Guidance

Gandenberger (2016) has articulated an argument against the possibility of deriving belief 
guidance from a likelihoodist framework. The argument identifies a principle that, as he 
claims, all likelihoodists should endorse. He calls this principle “minimal comparative pro-
portionalism” (MCP, for short). To quote Gandenberger (2016, 7):

This principle [MCP] says that there is a real number r > 1 such that for any pair of 
hypotheses A and B , a rational agent believes A over B either in an absolute sense or 
at least to some degree, if its total evidence favours A over B to degree r or greater.

Now, accepting MCP, as he demonstrates, leads to various epistemic paradoxes. Hence, he 
concludes that one cannot derive rules for belief from the likelihood framework alone.

A simple, but representative counterexample, similar to the one that Gandenberger puts 
forward, is as follows:

Example:  There is an urn colnsisting of 10 tickets, labelled T0,T1,… T9 , and a 
machine that selects tickets from the urn, without replacement. For each ticket, the 
machine will either select the ticket or not: so, it could select all 10 tickets, only some 
tickets, or no tickets at all. You want to know whether the machine selects the tickets 
randomly or deterministically. The machine may be selecting the tickets by following 
a random process, where each ticket has a 50% chance of being drawn. Alternatively, 
the machine may be following some deterministic rule and select the same set of 
tickets in each experiment. You do not know which process underlies the selection.

You have decided to switch the machine on and see which tickets it would select. In 
the first round, the machine has selected tickets 0, 4, 6, and 8; let us denote the data 
as d0468.
Now let hrandom be the hypothesis that the machine selects tickets randomly and let 
h0468 be the hypothesis that the tickets 0, 4, 6, and 8 were bound to be selected.

Should you believe hrandom over h0468?
Now, the likelihoods of the observed data, d0468 , on each competing hypothesis are as 

follows: P(d0468|hrandom) = 1∕1024 ; P
(
d0468|h0468

)
= 1.16 Thus, the degree of evidential 

support of h0468 over hrandom is 1024. The data seems to support h0468 quite strongly. So, if 
we let the threshold value, r , in MCP to be less than 1024, then you ought to believe h0468 
over hrandom.

But this is clearly absurd. The data does not make h0468 more believable than hrandom . We 
know from the outset that, for some deterministic hypothesis hx , the first trial would inevi-
tably favour hx over hrandom . Therefore, the first experiment cannot be interpreted as making 
any deterministic hypothesis more believable than hrandom.

Notice that the above-identified problem for MCP would remain intact if we had chosen 
a higher threshold value than 1024. For any finite value of r , a similar counterexample can 

16  On hrandom , each ticket is equally likely to be selected; hence each possible outcome is equally probable. 
As each of the 10 tickets is either selected or not, there are 210 or 1024 possible outcomes, the probability 
of d

0468
 , on the supposition of hrandom , is 1∕1024 . And, on the supposition of the deterministic hypothesis, 

h
0468

 , the probability of d
0468

 is 1.
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easily be devised (by increasing the number of tickets in the urn). Therefore, it is tempting 
to conclude that there are no reasonable likelihood-based rules for belief.17

As I show shortly, the above conclusion is premature.
One can tease out two readings from the original MCP, depending on the position of the 

“there is a real number r ” quantifier in relation to the universally quantified sentence “over 
pair of hypotheses A and B ”. These two readings are as follows:

MCPweak : For any pair of hypotheses A and B , there is a real number r such that a 
rational agent believes A over B if her total evidence favours A over B to degree r or 
greater.
MCPstrong : There is a real number r , such that for any pair of hypotheses A and B , a 
rational agent believes A over B if her total evidence favours A over B to degree r or 
greater.

Any likelihoodist account that endorses MCPstrong is susceptible to a type of counterexam-
ple identified by Gandenberger. But notice that accepting MCPweak alone does not give rise 
to the same problem. This is so because MCPweak allows threshold r to vary across contexts 
of reasoning. For instance, if we set threshold r to be equal to 1025 (instead of, say, 1023 ), 
then the first experiment would not settle the question of which hypothesis should be 
believed. Of course, the second experiment can go either of the two ways: (i) the machine 
can select the same set of tickets as in the first experiment or (ii) it can select a different set 
of tickets. If the second possibility is actualised, then the data would conclusively settle the 
issue in favour of hrandom . On the other hand, if the machine selects the same set of tickets, 
then this would provide overwhelming evidence for the deterministic selection process. 
The probability that the machine selected the same set of tickets in two trials, on the sup-
position of a random process is 1

1024
∗

1

1024
=
(

1

2

)20

 . Therefore, if we set the threshold 
value in Example to be greater than 1024 and less then 220 , we would have avoided the 
problem.18

I will discuss at the end of the next section, which aspects of an agent’s context deter-
mine the value of threshold r . But even at this point of argumentation, we have reached an 
important conclusion: once we dissect MCP into two principles, MCPstrong and MCPweak , 
it becomes evident that Example is only problematic for MCPstrong . Hence, Gandenberger 
overall argument is inapplicable to MCPweak.

Now, it is fairly uncontroversial that likelihoodists should accept MCPweak . After all, if 
there are normative principles that relate likelihood functions with belief, then there should 
be some value for the ratio of likelihoods that would make A more probable than B.19 But 

17  An anonymous  referee has pointed out that Gandenberger’s example has some similarities with How-
son’s (2013)  Santa example against the Law of Likelihood (LL). See  Bandyopadhyay et  al. (2017) 
and Howson (2017) for a debate on the Santa example (and related issues).
  I must emphasise that Gandenberger’s example is designed to be a counterexample against MCP and not 
against LL.
18  My strategy for blocking Gandenberger’s objection is similar to a recent defence of the so-called Lock-
ean thesis by Leitgeb (2017, Chapter 3), who allows the Lockean threshold to vary across contexts of rea-
soning.
19  More than that, assuming that A and B are mutually exclusive and have non-zero probabilities, it is a 
consequence of Bayes’ Theorem that there is some value for the ratio of likelihoods, P(E|A)∕P(E|B) , that 
would make A more probable than B . This is evident from the following theorem of probability calculus:
  For any mutually exclusive hypotheses A and B:

P(A|E)

P(B|E)
=

P(E|A)

P(E|B)
∗
P(A)

P(B)
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MCPweak does not entail MCPstrong . And it is not clear why likelihoodists should accept 
MCPstrong . After all, why believe that there is one unique threshold value that should fix 
beliefs in all reasoning contexts? Even bracketing its paradoxical consequences, the exist-
ence of such a unique threshold is rather implausible on its own; and I do not see how 
likelihoodists can be forced to accept such a principle. Hence the argument against a likeli-
hood-based account of belief is wanting.

Of course, my response here is solely negative, as MCPweak , on its own, is insufficient to 
derive any belief guidance. It remains to be seen whether a broadly likelihoodist account of 
belief guidance is tenable.

4 � The Case for Likelihood‑based Belief Guidance

As MCPweak , by itself, cannot guide belief, some other principle(s) is needed to connect 
likelihood functions with beliefs. Like Gandenberger, I also focus on belief guidance for 
comparative belief; that is, beliefs of the following form: “ A is more probable than B ”, 
where A and B are any two competitor propositions (hypotheses/theories).

There are two additional reasons for focusing on comparative belief. Firstly, as we have 
seen, likelihoodism endorses a comparative conception of evidential support. Hence, it is 
to be expected that likelihoodist methods would be better suited to accommodate compara-
tive belief rather than categorical belief.

Secondly, comparative judgements and evaluations are indispensable in science. Typi-
cal testing in science is contrastive, where rival hypotheses are assessed against relevant 
evidence. And scientists often do interpret comparative testing in doxastic terms; as, when 
biologists conclude that the change in allele frequencies in a population is probably due to 
genetic drift rather than due to selection. Such comparative judgements in science seem to 
be less problematic, from the epistemic point of view, than categorical or non-relational 
probabilistic judgements.

So, can likelihoodists provide guidance for belief without lapsing into subjective Bayes-
ianism? To answer this question, we need to be more clear about what “lapsing into sub-
jective Bayesianism” means. From Gandenberger remarks, it is clear that by “lapsing into 
subjective Bayesianism” he means accepting this core subjective Bayesian principle, which 
I call Subjectivity:

Subjectivity: When objective, empirically grounded priors are unavailable, scientists 
can rationally assign prior probabilities to hypotheses that reflect their subjective 
degrees of belief in the hypotheses.

Now, from Gandenberger remarks, it is clear that by “prior probabilities” he means pre-
cise or point-valued prior probabilities. But, to make Subjectivity more appealing, I do 
not assume that probabilities are always point-valued. Instead, in some cases, prior prob-
abilities may be represented with ranges or sets of probability functions. So, Subjectivity is 

  So, for any given value for the ratio of priors, there is some value for the ratio of likelihoods that would 
make P(A|E) > P(B|E) . Hence, MCPweak is not something that a Bayesian—or anyone who accepts the 
standard definition of conditional probability—can reject.
  The above theorem will play a crucial role for deriving guidance for comparative belief in the next section.

Footnote 19 (continued)
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assumed to be consistent with situations where scientists represent the probability of H by 
some range, say [0.1, 0.6].

Now, independent from whether we represent priors with points or ranges, the core of 
Subjectivity is the view that it is rational for scientists to assign priors to H based on their 
subjective degree of belief in H.

In what follows, I show how likelihoodists can accommodate belief guidance without 
accepting Subjectivity. By arguing this, I grant the main premise of Gandenberger’s criti-
cism: that scientists cannot appeal to objective, empirically grounded priors in many rel-
evant cases. However, even granted this, we can make sense of rational comparative belief. 
Let me explain how.

It has been pointed out by Wesley C. Salmon (1990), among others, that when the infor-
mation about prior probabilities is unavailable, rational comparative belief can be guided 
via the so-called ratio form of Bayes’ Theorem20:

If we let RPost be the ratio of posteriors, RL the ratio of likelihoods, and RPrior the ratio of 
priors, then the theorem can be summarised succinctly as:

Now, the ratio form of Bayes’ Theorem frees us from the need of knowing the exact, or 
even approximate prior probability of either A or B to determine whether A is more prob-
able than B . All we need to know is the value (or approximate value) of the ratio of priors, 
RPrior , and not the value of priors themselves. And fixing the approximate value of RPrior 
requires strictly less information than fixing the approximate value of priors. To explain 
this, we need to differentiate non-relational priors from relational priors.

Non-relational priors are priors of an individual hypothesis (or a set of hypotheses); 
when, for instance, we assign a prior of 0.6 to A , or a range of [0.1, 0.6] to A , we attribute 
a non-relational probability to A . By contrast, relational priors have to do with the relation-
ship between competing hypotheses, A and B . And we may be rational in believing that 
A and B do not differ significantly in their probabilities without knowing their non-rela-
tional probabilities. All we need to know is that the ratio of their priors is approximately 
1, P(A)∕P(B) ≈ 1 . This ratio can be approximated for many competing theories by appeal-
ing to such non-subjective characteristics as their overall predictive accuracy, simplicity, 
explanatory scope, fruitfulness, etc. So, we may have a good objective basis for concluding 
that hypotheses A and B are roughly equal in prior plausibility, without knowing their non-
relational probabilities. Again, I emphasise that such relational judgments do not require 
the assignment of non-relational probabilities to the hypotheses in question. Therefore, 
even when non-relational priors cannot be objectively well-grounded, we can still guide 
comparative belief in a way that meets the likelihoodists standard of objectivity.

Let us illustrate this with an example from cognitive neuroscience. It involves the 
famous Trolley Problem, which essentially is about whether it is morally permissible/
required to sacrifice one innocent life to save several.

P(A|E)

P(B|E)
=

P(E|A)

P(E|B)
∗
P(A)

P(B)

RPost = RL ∗ RPrior

20  It is interesting to note that Earman (1992, Chapter 7, Sect. 3) has criticised Salmon’s strategy as too 
restrictive for Bayesianism, for reasons similar to Gandenberger’s criticism of likelihoodism. This fact has 
been brought to my attention by an anonymous referee.
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First, we need to distinguish two types of Trolley cases: the impersonal cases (otherwise 
known as the bystander case), where one needs to hit a switch which diverts a runaway 
trolley that kills one person but saves five; and the personal cases (otherwise known as the 
footbridge case), where one needs to push someone from a bridge to stop a runaway trolley. 
It is well-known that people respond differently to the impersonal and personal versions of 
the Trolley Problem. When presented with the bystander case, people tend to answer that 
one should hit a switch and save five. By contrast, when presented with the footbridge case, 
most object to pushing someone to divert the trolley.

Greene et al. (2001) used brain scanning techniques to study which brain regions were 
“activated” when people engaged with the impersonal and personal Trolley problems. They 
were primarily concerned with the following two hypotheses (I borrow the formulation of 
these hypotheses from Machery 2014, 258):

H1  People respond differently to moral-personal and moral-impersonal dilemmas because 
the former elicit more emotional processing than the latter.

H2  People respond differently to moral-personal and moral-impersonal dilemmas because 
the single moral rule that is applied to both kinds of dilemmas (for example, the doctrine of 
double effect) yields different permissibility judgments.

Now, Greene et al. (2001) found that the personal cases elicited relatively greater activa-
tion of brain regions associated with automatic emotional responses; while the impersonal 
cases elicited relatively greater activation of brain regions associated with conscious rea-
soning. Let us denote this neuroimaging evidence as enew.

How should we interpret this neuroimaging evidence? One relatively uncontroversial 
inference is that the likelihood of enew is higher on the supposition of H1 than on the suppo-
sition of H2 . This is so because H2 , unlike H1 , cannot account for why the two cases elicit 
the activation of brain regions associated with two very different psychological processes. 
But, it is unclear whether we can make an informed estimate of the posterior probability of 
H1 (or H2 ) on this evidence. First, it is unclear how we should estimate the prior probabili-
ties for these hypotheses. And even if priors can be fixed in some non-arbitrary way, there 
may well be some alternative hypothesis that predicts the evidence far better than H1 . As 
Machery (2014, 256) puts it:

…in many cases, cognitive neuroscientists have no sense of the probability of obtain-
ing a particular pattern of brain activation if psychological process p is not recruited 
by experimental tasks and, as a result, they do not know whether the observed pat-
tern of activation gives them a reason to conclude that the psychological process of 
interest was involved during the task under consideration.

However, notice that even if we cannot estimate the posterior probability of H1 and H2 , we 
can still rationally conclude the evidence renders H1 more probable than H2 . By the ratio 
form of Bayes’ Theorem, to make this comparative inference, the only required informa-
tion is that the ratio of likelihoods, P

(
enew|H1

)
∕P(enew|H2) , is greater than the recipro-

cal of the ratio of priors, P
(
H1

)
∕P(H2) . And it is reasonable to think that the available 

evidence licenses us to accept this inequality. Therefore, even if we have no clue about the 
non-relational prior and posterior probabilities of H1 and H2 , we can still conclude that the 
former is more probable than the latter, on the relevant evidence.
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Of course, I grant that there are many cases where the ratio of priors cannot be esti-
mated in a non-subjective manner. In such cases, judging that say, hypothesis A is more 
probable than B may be problematically sensitive to some subjective factors. As an exam-
ple, consider a hotly debated topic of cosmological fine-tuning. Some background would 
be required to explain this.

According to contemporary physics, the fact that life exists in our universe depends 
on the very precise values that the so-called fundamental constants of physics take. For 
instance, if the mass of proton had been slightly different from its actual value, then 
the complex and stable structures we find in the universe, like galaxies, stars and plan-
ets, would not have existed; hence, life would not have existed. So, given the laws that 
most contemporary physicists accept, the existence of stable structures and, specifically, 
the existence of life is very improbable. But life does exist in our universe. How can we 
account for this puzzling evidence?

Some (e.g. Leslie 1989; Hawthorne and Isaacs 2018) think that the likelihood that our 
universe is fine-tuned for life (denoted as F ) is roughly the same relative to these two very 
different hypotheses:

G : The cosmological constants of the universe have been consciously designed by 
the God of traditional theism (as, if such a God exists, she would create the universe 
that can support life).
M : There exist very many (maybe infinitely many) universes. And most (maybe all) 
possible values of cosmological constants are actualised in some universe(s). There-
fore, it is to be expected that some universe(s) among this vast ensemble of universes 
is fine-tuned for life; and we inhabit such fine-tuned universe.

Let us suppose that the ratio of their likelihood with respect to the fine-tuning evidence, F , 
is around 1: P(F|G)∕P(F|M) ≈ 1 . Now, on this supposition, it is not clear whether there is 
a relatively unbiased or uncontentious way to evaluate the relative plausibilities of G and 
M , given evidence F.21 Some philosophers (e.g. Hawthorne and Isaacs 2018, Sect. 7.7.3) 
suggest that the prior of G should be greater than M , because “… [it is] quite strange 
indeed to suppose that we are living in a multiverse” (2018, 160). Certainly, many reject 
this. For instance, one may argue that most non-theists should assign a far greater subjec-
tive probability to the multiverse hypotheses than to the God hypothesis. Because, for most 
non-theists, the universe with God in it is more “strange” than the universe without God.22

Therefore, at least at the first blush, there does not seem to be a non-subjective way of 
assessing the relative plausibilities of G and M . And cases like these are abundant in phi-
losophy and science.

Now, it should be clear that the existence of such cases does not conflict with the main 
argument of this paper. Likelihoodists are not committed to the claim that comparative 
beliefs can be formed in all evidential situations. By contrast, all we needed to show is that, 
in many cases, comparative beliefs can be freed from subjective priors. And this is exactly 
what I have argued here: comparative belief can be objectively well-grounded even when 
the empirical information about non-relational priors are unavailable.

21  If we use the imprecise probability framework, we may say that on some rationally permissible probabil-
ity distributions, G is more likely than M , but for some other permissible distributions—M is more likely 
than G . Hence, on this framework, it seems that the evidence supports suspending judgement on whether G 
is more probable than M.
22  I have developed this type of response to the fine-tuning argument in detail elsewhere (Tokhadze 2022).
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Before concluding, let me briefly discuss the connection between the ratio form of 
Bayes’ Theorem and MCPweak . To remind the reader, MCPweak is the thesis that:

For any pair of hypotheses A and B , there is a real number r such that a rational agent 
believes A over B if her total evidence favours A over B to degree r or greater.

As I have already noted in the previous section, threshold r in MCPweak may be fixed dif-
ferently in different contexts of reasoning. But I have not elaborated on what this context 
is and how it fixes the relevant threshold. For our purposes, the most salient factor of an 
agent’s reasoning context, with respect to competing hypotheses A and B , is her compara-
tive prior probability function which provides an estimate of the value of the ratio of priors 
(for A and B ). So, if an agent estimates that A and B ’s prior ratio is some number c , then 
threshold r should be greater than the reciprocal of c . As before, the rationale behind this is 
provided by the ratio form of Bayes’ Theorem. So, the threshold r would be sensitive to an 
agent’s estimate for the relevant ratio of priors.23

In some cases, like in the considered example from cognitive neuroscience, the relevant 
value of threshold r can be estimated in a relatively uncontentious manner. However, in the 
fine-tuning example, different agents may have different estimates for threshold r . And as 
I have already discussed, this is perfectly consistent with the main argument of this paper.

This concludes the positive argument of this paper.

5 � Conclusion

From its inception, the main objective of the likelihoodist program has been to provide 
an objective (i.e., non-Bayesian) and logically coherent (i.e., non-frequentist) account of 
scientific evidence. Many have criticised the likelihoodist program on theoretical grounds. 
But some have levelled a more practical objection against likelihoodism; as these critics 
have argued, likelihoodist methods are too restrictive to guide belief.

This paper has called the above, received view into question. As I have argued, a broadly 
likelihoodist framework can accommodate belief guidance without appealing to Bayesian 
subjective prior probabilities. My main argumentative strategy has been the move from 
the non-relational to relational or comparative probabilities: probabilities of the form “ A is 
more probable than B ”. This shift towards comparative probabilities, I believe, opens up a 
new space for addressing the various issues concerning belief guidance for likelihoodists 
and non-likelihoodists alike.
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