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Abstract

A quantum theory of the Einstein field equation is derived by max-
imizing the entropy under the broadest geometric constraint. Quantum
field theory and non-relativistic quantum mechanics are also derived un-
der more specific geometric constraints. The origin of the Born rule is
revealed. The wave-function collapse problem is dissolved. The key idea
is to connect probability theory to geometry using the trace, then to use it
to constrain the entropy. Specifically, the trace can be interpreted as the
expectation value of the eigenvalues of the matrix times the dimension of
the vector space; and the eigenvalues as the ratios of the distortion of the
geometric transformation associated with the matrix. It then suffices to
use the Lagrange multipliers method to maximize the entropy under the
constraint of the trace. Instead of the typical Gibbs ensemble of statistical
mechanics, we find as our main result a generalized Born rule applied to a
wave-function and admitting the Einstein field equations as its equation
of motion.

1 Introduction

First, the trace: we will use the trace to introduce a new form of constraint into
statistical mechanics: the geometric constraint. The trace admits a probability
interpretation[1] as the expectation value of the eigenvalues times the dimension
of the vector space. It also connects to geometry as the eigenvalues are the ratio
of the distortion of the geometric transformation associated with the matrix.

The constraint will be defined as follows:

trM =
!

q∈Q
ρ(q) trM(q) (1)

where M is an arbitrary n× n matrix, and where Q is a sample space.
How can we use this constraint in statistical mechanics?
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In statistical mechanics, the Gibbs measure is derived using the method of
the Lagrange multipliers[2] by maximizing the entropy under constraints.

For instance, an energy constraint on the entropy:

E =
!

q∈Q
ρ(q)E(q) (2)

is associated to an energy-meter measuring the system and producing a series
of energy measurement E1, E2, . . . converging to an expectation value E.

Another common constraint is that of the volume:

V =
!

q∈Q
ρ(q)V (q) (3)

associated to a volume-meter also acting on the system by producing a se-
quence of measurements of the volume V1, V2, . . . converging to an expectation
value V .

And of course the sum over the sample space must equal 1:

1 =
!

q∈Q
ρ(q) (4)

With two of these constraints, the typical system of statistical mechanics is
obtained by maximizing the entropy using its corresponding Lagrange equation,
and the method of the Lagrange multipliers:

L = −kB
!

q∈Q
ρ(q) ln ρ(q) + λ

"

#1−
!

q∈Q
ρ(q)

$

%+ β

"

#E −
!

q∈Q
ρ(q)E(q)

$

% (5)

where λ and β are Lagrange multipliers.
Then solving ∂L

∂ρ = 0 for ρ, we get the Gibbs measure:

ρ(q,β) =
1

Z(β)
exp(−βE(q)) (6)

where

Z(β) =
!

q∈Q
exp(−βE(q)) (7)

In the case of a geometric constraints on the entropy, we remove the con-
straint E and instead inject the constraint trM. We also use the Shannon
entropy instead of the Boltzmann entropy (more on that choice in the discus-
sion section). The corresponding Lagrange equation is:
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L = −
!

q∈Q
ρ(q) ln ρ(q) + λ

"

#1−
!

q∈Q
ρ(q)

$

%+ τ

"

#trM−
!

q∈Q
ρ(q) trM(q)

$

% (8)

As we found, and as we will now investigate, solving ∂L
∂ρ = 0 for ρ produces

a quantum theory of gravity, in which the Einstein field equations are its equa-
tions of motions. Ordinary quantum field theory and non-relativistic quantum
mechanics are also recovered as special cases.

2 Methods

2.1 Notation

• Typography: Sets, unless a prior convention assigns it another symbol, will
be written using the blackboard bold typography (ex: L,W,Q, etc.). Ma-
trices will be in bold upper case (ex: P,M), whereas tuples, vectors and
multi-vectors will be in bold lower case (ex: u,v,g) and most other con-
structions (ex.: scalars, functions) will have plain typography (ex. a,A).
The unit pseudo-scalar (of geometric algebra) will be i. The imaginary
number will be i. The identity matrix will be I.

• Sets: The projection of a tuple p will be proji(p). As an example, let
us denote the elements of R2 = R1 × R2 as p = (x, y). The projection
operators are proj1(p) = x and proj2(p) = y. If projected over a set, the
results are proj1(R2) = R1 and proj2(R2) = R2. The size of a set X is |X|.
The symbol ∼= indicates a group isomorphism relation between two sets.
The symbol ≃ indicates equality if defined, or both undefined otherwise.

• Analysis: The asterisk z∗ denotes the complex conjugate of z.

• Matrix: The Dirac gamma matrices are γ0, γ1, γ2, γ3. The Pauli matrices
are σx,σy,σz. The dagger M

† denotes the conjugate transpose of M. The
commutator is defined as [M,P] : MP − PM and the anti-commutator
as {M,P} : MP+PM.

• Geometric Algebra: The basis elements of an arbitrary curvilinear geomet-
ric basis will be denoted e0, e1, e2, . . . , en (such that eν · eµ = gµν) and
if they are orthonormal as x̂0, x̂1, x̂2, . . . , x̂n (such that x̂µ · x̂ν = ηµν).
A geometric algebra of m dimensions over a field F is noted as G(m,F).
The grades of a multi-vector will be denoted as 〈v〉k. Specifically, 〈v〉0
is a scalar, 〈v〉1 is a vector, 〈v〉2 is a bi-vector, 〈v〉n−1 is a pseudo-vector
and 〈v〉n is a pseudo-scalar. A scalar and a vector 〈v〉0 + 〈v〉1 is a para-
vector, and a combination of even grades (〈v〉0+ 〈v〉2+ 〈v〉4+ . . . ) or odd
grades (〈v〉1 + 〈v〉3 + . . . ) are even-multi-vectors or odd-multi-vectors,
respectively.
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Let G(2,R) be the two-dimensional geometric algebra over the reals. We
can write a general multi-vector of G(2,R) as u = a+ x+ b, where a is a
scalar, x is a vector and b is a pseudo-scalar.

Let G(4,R) be the four-dimensional geometric algebra over the reals. We
can write a general multi-vector of G(4,R) as u = a+x+ f +v+b, where
a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and b is
a pseudo-scalar.

2.2 Geometric Constraints

Definition 1 (Geometric Constraints). Let M be a n× n matrix and let Q be
a statistical ensemble. Then, a geometric constraint is:

trM =
!

q∈Q
ρ(q) trM(q) (9)

2.3 Unitary Gauge (Recap)

Quantum electrodynamics is obtained by gauging the wave-function with U(1).
The U(1) invariance results from the usage of the complex norm in ordinary
quantum theory. A parametrization of ψ over a differentiable manifold is re-
quired to support this derivation. Localizing the invariance group θ → θ(x) over
said parametrization, yields the corresponding covariant derivative:

Dµ = ∂µ + iqAµ(x) (10)

where Aµ(x) is the gauge field.
If one then applies a gauge transformation to ψ and Aµ:

ψ → e−iqθ(x)ψ and Aµ → Aµ + ∂µθ(x) (11)

The covariant derivative is:

Dµψ = ∂µψ + iqAµψ (12)

→ ∂µ(e
−iqθ(x)ψ) + iq(Aµ + ∂µθ(x))(e

−iqθ(x)ψ) (13)

= e−iqθ(x)Dµψ (14)

Finally, the field is given as follows:

Fµν = [Dµ,Dν ] (15)

where Dµ is the covariant derivative with respect to the potential one-form
Aµ = A α

µ Tα, and where Tα are the generators of the lie algebra of U(1).
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2.4 Geometric Representation of Matrices

The notation will significantly improved if we use a geometric representation of
matrices, which we introduce now.

2.4.1 Geometric Representation of 2x2 real matrices

Let G(2,R) be the two-dimensional geometric algebra over the reals. We can
write a general multi-vector of G(2,R) as follows:

u = a+ x+ b (16)

where a is a scalar, x is a vector and b is a pseudo-scalar.
Each multi-vector has a structure-preserving (addition/multiplication) ma-

trix representation:

Definition 2 (Geometric representation 2D).

a+ xx̂+ yŷ + bx̂ ∧ ŷ ∼=
&
a+ x −b+ y
b+ y a− x

'
(17)

And the converse is also true; each 2 × 2 real matrix is represented as a
multi-vector of G(2,R).

We can define the determinant solely using constructs of geometric algebra[3].
The determinant of u is:

Definition 3 (Geometric Representation of the Determinant 2D).

det : G(2,R) −→ R
u )−→ u‡u (18)

where u‡ is:

Definition 4 (Clifford conjugate 2D).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 (19)

For example:

detu = (a− x− b)(a+ x+ b) (20)

= a2 − x2 − y2 + b2 (21)

= det

&
a+ x −b+ y
b+ y a− x

'
(22)

Finally, we define the Clifford transpose:
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Definition 5 (Clifford transpose 2D). The Clifford transpose is the geometric
analogue to the conjugate transpose. Like the conjugate transpose can be in-
terpreted as a transpose followed by an element-by-element application of the
complex conjugate, here the Clifford transpose is a transpose followed by an
element-by-element application of the Clifford conjugate:

"

(#
u00 . . . u0n

...
. . .

...
um0 . . . umn

$

)%

‡

=

"

(#
u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm

$

)% (23)

If applied to a vector, then:

"

(#
v1

...
vm

$

)%

‡

=
*
v‡
1 . . .v‡

m

+
(24)

2.4.2 Geometric Representation of 4x4 real matrices

Let G(4,R) be the two-dimensional geometric algebra over the reals. We can
write a general multi-vector of G(4,R) as follows:

u = a+ x+ f + v + b (25)

where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and
b is a pseudo-scalar.

Each multi-vector has a structure-preserving (addition/multiplication) ma-
trix representation. Explicitly, the multi-vectors of G(4,R) are represented as
follows:

Definition 6 (Geometric representation 4D).

a+ tγ0 + xγ1 + yγ2 + zγ3

+ f01γ0 ∧ γ1 + f02γ0 ∧ γ2 + f03γ0 ∧ γ3 + f23γ2 ∧ γ3 + f13γ1 ∧ γ3 + f12γ1 ∧ γ2

+ vtγ1 ∧ γ2 ∧ γ3 + vxγ0 ∧ γ2 ∧ γ3 + vyγ0 ∧ γ1 ∧ γ3 + vzγ0 ∧ γ1 ∧ γ2

+ bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

!

""#

a+ x0 − if12 − iv3 f13 − if23 + v2 − iv1 −ib+ x3 + f03 − iv0 x1 − ix2 + f01 − if02
−f13 − if23 − v2 − iv1 a+ x0 + if12 + iv3 x1 + ix2 + f01 + if02 −ib− x3 − f03 − iv0
−ib− x3 + f03 + iv0 −x1 + ix2 + f01 − if02 a− x0 − if12 + iv3 f13 − if23 − v2 + iv1

−x1 − ix2 + f01 + if02 −ib+ x3 − f03 + iv0 −f13 − if23 + v2 + iv1 a− x0 + if12 − iv3

$

%%&

(26)

And the converse is also true; each 4 × 4 real matrix is represented as a
multi-vector of G(4,R).

In 4D as well we can define the determinant solely using constructs of geo-
metric algebra[3]. The determinant of u is:
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Definition 7 (Geometric Representation of the Determinant 4D).

det : G(4,R) −→ R (27)

u )−→ ⌊u‡u⌋3,4u‡u (28)

where u‡ is:

Definition 8 (Clifford conjugate 4D).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4 (29)

and where ⌊m⌋{3,4} is the blade-conjugate of degree 3 and 4 (flipping the
plus sign to a minus sign for blade 3 and blade 4):

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4 (30)

3 Result

3.1 Non-Relativistic Quantum Mechanics

We will now recover non-relativistic quantum mechanics also using the method
of the Lagrange multipliers.

Instead of the Boltzmann entropy we will use the Shannon entropy:

S = −
!

q∈Q
ρ(q) ln ρ(q) (31)

What constraint will we use on this entropy?
In statistical mechanics we use ”scalar” constraints on the entropy such

as the energy-meter and the volume-meter. Such are sufficient to recover the
Gibbs ensemble, but are insufficient to recover quantum mechanics. Let us
introduce the ”phase-invariant” constraint, which for a complex-phase, is defined
as follows:

tr

,
0 −b

b 0

-
=

!

q∈Q
ρ(q) tr

,
0 −b(q)

b(q) 0

-
(32)

where

,
a(q) −b(q)
b(q) a(q)

-
∼= a(q)+ ib(q) is the matrix representation of the com-

plex numbers. Like the energy-meter or the volume-meter, a phase-invariant
instruments also produces a sequence of measurements converging to an expec-
tation value, but such measurements have a phase-invariance. The trace here
grants and enforces said phase-invariance.

The Lagrangian equation that maximizes the entropy subject to this con-
straint is:

7



L = −
!

q∈Q
ρ(q) ln(q) + α

"

#1−
!

q∈Q
ρ(q)

$

%+ τ

"

#tr

,
0 −b

b 0

-
−

!

q∈Q
ρ(q) tr

,
0 −b(q)

b(q) 0

-$

%

(33)

Maximizing this equation for ρ by posing ∂L
∂ρ(q) = 0, we obtain:

∂L
∂ρ(q)

= − ln ρ(q)− 1− α− τ tr

,
0 −b(q)

b(q) 0

-
(34)

0 = ln ρ(q) + 1 + α+ τ tr

,
0 −b(q)

b(q) 0

-
(35)

=⇒ ln ρ(q) = −1− α− τ tr

,
0 −b(q)

b(q) 0

-
(36)

=⇒ ρ(q) = exp(−1− α) exp

&
−τ tr

,
0 −b(q)

b(q) 0

-'
(37)

=
1

Z(τ)
det exp

&
−τ

,
0 −b(q)

b(q) 0

-'
(38)

where Z(τ) is obtained as follows:

1 =
!

q∈Q
exp(−1− α) exp

&
−τ tr

,
0 −b(q)

b(q) 0

-'
(39)

=⇒ (exp(−1− α))
−1

=
!

q∈Q
exp

&
−τ tr

,
0 −b(q)

b(q) 0

-'
(40)

Z(τ) :=
!

q∈Q
det exp

&
−τ

,
0 −b(q)

b(q) 0

-'
(41)

We note that the trace in the exponential drops down to a determinant, via
the relation det expA ≡ exp trA.

Finally, we obtain:

ρ(τ, q) =
1

Z(τ)
det exp

&
−τ

,
0 −b(q)

b(q) 0

-'
(42)

∼= | exp−iτb(q)|2 Born rule (43)

Renaming τ → t/! and b(q) → H(q) recovers the familiar form:

ρ(q) =
1

Z
|exp(−itH(q)/!)|2 (44)
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or even more familiar:

ρ(q) =
1

Z
|ψ(q)|2 , where ψ(q) = exp(−itH(q)/!) (45)

This gives us a powerful method to recover quantum mechanics from first
principle only by appealing to the instruments we have access to; in this case
phase-invariant instruments. We will discuss an interpretation in the discussion.

3.2 Quantum Theory of Gravity

We will now investigate the most general geometric constraint:

trM =
!

q∈Q
trM(q) (46)

where M is an arbitrary n× n matrix.
The Lagrange equation used to maximize the entropy subject to this con-

straint is:

L = −
!

q∈Q
ρ(q) ln(q) + α

"

#1−
!

q∈Q
ρ(q)

$

%+ τ

"

#trM−
!

q∈Q
ρ(q) trM(q)

$

% (47)

where α and τ are the Lagrange multipliers.
Maximizing this equation for ρ by posing ∂L

∂ρ(q) = 0, we obtain:

∂L
∂ρ(q)

= − ln ρ(q)− 1− α− τ trM(q) (48)

0 = ln ρ(q) + 1 + α+ τ trM(q) (49)

=⇒ ln ρ(q) = −1− α− τ trM(q) (50)

=⇒ ρ(q) = exp(−1− α) exp(−τ trM(q)) (51)

=
1

Z(τ)
det exp(−τM(q)) (52)

where Z(τ) is obtained as follows:

1 =
!

q∈Q
exp(−1− α) exp(−τ trM(q)) (53)

=⇒ (exp(−1− α))
−1

=
!

q∈Q
exp(−τ trM(q)) (54)

Z(τ) :=
!

q∈Q
det exp(−τM(q)) (55)
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We note that the trace in the exponential drops down to a determinant, via
the relation det expA ≡ exp trA.

The resulting probability measure is:

ρ(q, τ) =
1

Z(τ)
det exp(−τM(q)) (56)

where

Z(τ) =
!

q∈Q
det exp(−τM(q)) (57)

Posing ψ(q, τ) = exp(−τM(q)), we can write ρ(q, τ) = detψ(q, τ), where the
determinant acts as a ”generalized Born rule”, connecting in this case a general
linear amplitude to a real number representing a probability.

As we will now see, the extra sophistication of the general linear amplitude
along with the determinant as the ”generalized Born rule” is sufficient to produce
a quantum theory of gravity.

3.2.1 General Linear Gauge

The fundamental invariance group of the general linear wave-function is the
orientation-preserving general linear group GL+(n,R). Like quantum electro-
dynamics (via the U(1) gauge) is the archetypal example of QFT, here quantum
gravity (via the GL+(n,R) gauge) will be the archetypal example of our system.

Indeed, The exponential term exp(−τM(p)) maps to a one-parameter sub-
group of the orientation preserving general linear group:

exp: Mn(R) → GL+(n,R) (58)

and the Lagrange multiplier τ acquires the role of the evolution operator.
Gauging the GL(n,R) group is known to produce the Einstein field equations

since the resulting GL(n,R)-valued field can be viewed as the Christoffel symbols
Γµ, and the commutator of the covariant derivatives as the Riemann tensor.
This is not a new result and dates back to 1956 by Utiyama[4], and to 1961 by
Kibble[5].

The novelty here is that our wave-function is able to accommodate all trans-
formations required by general relativity without violating probability conser-
vation laws.

Due to our usage of the determinant, a general linear transformation:

ψ′(x) → gψ(x)g−1 (59)

will leave the probability measure of the wave-function invariant, because
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det gψ(x)g−1 = detψ(x) (60)

The gauge-covariant derivative associated with this transformation is:

Dµψ = ∂µψ − [iqAµ,ψ] (61)

Finally, the field is given as follows:

Rµν = [Dµ, Dν ] (62)

where Rµν is the Riemann tensor.
The resulting Lagrangian is of course the Einstein-Hilbert action which, up

to numerical constant, is:

S =

.
εabcdR

ab ∧ ec ∧ ed =

.
d4 x

√
−gR (63)

Consequently, the equations of motion of our quantum field are the Einstein
field equations.

3.2.2 Dirac Spinors (A Special Case)

For this application, we will represent arbitrary 4× 4 matrices with the general
multi-vectors of G(4,R). The wave-function then is:

ψ = exp(a+ x+ f + v + b) (64)

where a+x+f+v+b is the geometric algebra representation of an arbitrary
4× 4 matrix.

We will now impose a group reduction from the general linear group to the
spinor group. As such we pose x → 0 and v → 0.

The general linear wave-function reduces to:

ψx→0,v→0 = exp(a+ f + b) (65)

We recall that in 4D, the probability associated with our wave-function is
given as follows:

detψ = ⌊ψ‡ψ⌋3,4ψ‡ψ = exp 4a = ρ (66)

but, since we eliminated x → 0 and v → 0, we can drop the blade inversion
of degree 3, and the rule reduces to:
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detψ = (ψ‡)∗ψ∗ψ‡ψ = exp 4a = ρ (67)

Let us now recover the familiar Dirac theory.
First, we will expand the probability rule explicitly:

(ψ‡)∗ψ∗ψ‡ψ = eae−be−feae−befeaebe−feaebef (68)

Since the terms commute with each other, we can reorganize as follows:

=
*
e2ae−2be−2f

+
/ 01 2

φ‡∗

*
e2ae2be2f

+
/ 01 2

φ

(69)

With the substitutions by φ‡∗ and φ, we can then rewrite the probability
density as φ‡∗φ = ρ. Here, φ is the relativistic wave-function and ρ is the Dirac
current.

To see more clearly that this is indeed the case, we will adopt the geometric
algebra notation of David Hestenes for the wave-function. The replacements are
e4a := ρ, e4b := eib, e2f := R, where R is a rotor. We will also use 3R to designate
the reverse of R, such that 3RR = I. Thus:

φ = e2ae2be2f = ρ1/2eib/2R (70)

:= (ρeib)
1
2R (71)

φ is now identical to the David Hestenes’ geometric algebra formulation of the
relativistic wave-function[6].

We also define:

φ̄ := (ρe−ib)
1
2 3Rγ0 (72)

We can now obtain the full list of bilinear covariants:

Table 1: Bilinear covariants

Ours Standard Form Result

scalar φ̄φ
4
ψ̄
55 |ψ〉 e0ρ cos b

vector φ̄γµφ
4
ψ̄
55 γµ |ψ〉 Jµ

bivector φ̄Iγµγνφ
4
ψ̄
55 iγµγν |ψ〉 S

pseudo-vector φ̄γµIφ
4
ψ̄
55 γµγ5 |ψ〉 sµ

pseudo-scalar φ̄Iφ
4
ψ̄
55 iγ5 |ψ〉 −e0ρ sin b

Our results here are the same as those of David Hestenes’[6].
The wave-function can be parametrized over R3,1. Then it assigns an element

of the spinor group to each event, admits the U(1) local gauge symmetry, and
thus constitutes the building block of a quantum field theory.
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4 Foundation of Physics

We are now ready to begin investigating the main result as a general linear
quantum theory, in full rigour. To this end, we will now introduce the algebra
of geometric observables applicable to the general linear wave-function.

4.1 Axiomatic Definition of the Algebra, in 2D

Let V be an m-dimensional vector space over G(2,R). A subset of vectors in V
forms an algebra of observables A(V) iff the following holds:

1. ∀ψ ∈ A(V), the bilinear map:

〈·, ·〉 : V× V −→ G(2,R)
〈u,v〉 )−→ u‡v (73)

is positive-definite:

〈ψ,ψ〉 ∈ R>0 (74)

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (75)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (76)

We note the following comments and definitions:

• From (1) and (2) it follows that ∀ψ ∈ A(V), the probabilities sum to
unity:

!

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (77)

• ψ is called a natural (or physical) state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• ρ(q,ψ) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ, as Tψ → ψ′, which leaves the sum
of probabilities normalized (invariant):

!

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
!

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (78)

are the natural transformations of ψ.
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• A matrix O such that ∀u∀v ∈ A(V) :

〈Ou,v〉 = 〈u,Ov〉 (79)

is called an observable.

• The expectation value of an observable O is:

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (80)

4.2 Observable in 2D — Self-Adjoint Operator

Let us now investigate the general case of an observable in 2D. A matrix O is
an observable iff it is a self-adjoint operator; defined as:

〈Oφ,ψ〉 = 〈φ,Oψ〉 (81)

∀u∀v ∈ V.

Setup: Let O =

&
o00 o01

o10 o11

'
be an observable. Let φ and ψ be 2 two-state

vectors of multi-vectors φ =

&
φ1

φ2

'
and ψ =

&
ψ1

ψ2

'
. Here, the components φ1,

φ2, ψ1, ψ2, o00, o01, o10, o11 are multi-vectors of G(2,R).

Derivation: 1. Let us now calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (o00φ1 + o01φ2)
‡ψ1 +ψ‡

1(o00φ1 + o01φ2)

+ (o10φ1 + o11φ2)
‡ψ2 +ψ‡

2(o10φ1 + o11φ2) (82)

= φ1
‡o‡

00ψ1 + φ‡
2o

‡
01ψ1 +ψ‡

1o00φ1 +ψ‡
1o01φ2

+ φ‡
1o

‡
10ψ2 + φ‡

2o
‡
11ψ2 +ψ‡

2o10φ1 +ψ‡
2o11φ2 (83)

2. Now, 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(o00ψ1 + o01ψ2) + (o00ψ1 + o01ψ2)

‡φ1

+ φ‡
2(o10ψ1 + o11ψ2) + (o10ψ1 + o11ψ2)

‡φ1 (84)

= φ‡
1o00ψ1 + φ‡

1o01ψ2 +ψ‡
1o

‡
00φ1 +ψ‡

2o
‡
01φ1

+ φ‡
2o10ψ1 + φ‡

2o11ψ2 +ψ‡
1o

‡
10φ1 +ψ‡

2o
‡
11φ1 (85)

For 〈Oφ,ψ〉 = 〈φ,Oψ〉 to be realized, it follows that these relations must
hold:
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o‡
00 = o00 (86)

o‡
01 = o10 (87)

o‡
10 = o01 (88)

o‡
11 = o11 (89)

Therefore, it follows that it must be the case that O must be equal to its
own Clifford transpose. Thus, O is an observable iff:

O‡ = O (90)

which is the equivalent of the self-adjoint operator O† = O of complex
Hilbert spaces.

4.3 Observable in 2D — Eigenvalues / Spectral Theorem

Let us show how the spectral theorem applies to O‡ = O, such that its eigen-
values are real. Consider:

O =

&
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

'
(91)

It follows that O‡ = O:

O‡ =

&
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

'
(92)

This example is the most general 2× 2 matrix O such that O‡ = O.
The eigenvalues are obtained as follows:

0 = det(O− λI) = det

&
a00 − λ a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11 − λ

'
(93)

implies:

0 = (a00 − λ)(a11 − λ)− (a− xe1 − ye2 − be12)(a+ xe1 + ye2 + be12 + a11)
(94)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2) (95)

finally:
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λ = {1
2

6
a00 + a11 −

7
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

8
, (96)

1

2

6
a00 + a11 +

7
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

8
} (97)

We note that in the case where a00−a11 = 0, the roots would be complex iff
a2−x2−y2+b2 < 0, but we already stated that the determinant of real matrices
must be greater than zero because the exponential maps to the orientation-
preserving general linear group— therefore it is the case that a2−x2−y2+b2 > 0,
as this expression is the determinant of the multi-vector. Consequently, O‡ = O
— implies, for orientation-preserving transformations, that its roots are real-
valued, and thus constitute a ’geometric’ observable in the traditional sense of
an observable whose eigenvalues are real-valued.

4.4 Left Action, in 2D

A left action on a wave-function : T |ψ〉, connects to the bilinear form as follows:
〈ψ|T‡T |ψ〉. The invariance requirement on T is as follows:

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 (98)

We are thus interested in the group of matrices such that:

T‡T = I (99)

Let us consider a two-state system. A general transformation is:

T =

&
u v
w x

'
(100)

where u, v, w, x are multi-vectors of 2 dimensions. The expression G‡G is:

T‡T =

&
v‡ u‡

w‡ x‡

'&
v w
u x

'
=

&
v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x

'
(101)

For the results to be the identity, it must be the case that:

v‡v + u‡u = 1 (102)

v‡w + u‡x = 0 (103)

w‡v + x‡u = 0 (104)

w‡w + x‡x = 1 (105)

16



This is the case if

T =
1√

v‡v + u‡u

&
v u

−eϕu‡ eϕv‡

'
(106)

where u, v are multi-vectors of 2 dimensions, and where eϕ is a unit multi-
vector. Comparatively, the unitary case is obtained when the vector part of the
multi-vector vanishes x → 0, and is:

U =
17

|a|2 + |b|2

&
a b

−eiθb† eiθa†

'
(107)

We can show that G‡G = I as follows:

=⇒ T‡T =
1

v‡v + u‡u

&
v‡ −e−ϕu
u‡ e−ϕv

'&
v u

−eϕu‡ eϕv‡

'
(108)

=
1

v‡v + u‡u

&
v‡v + u‡u v‡u− v‡u
u‡v − u‡v u‡u+ v‡v

'
(109)

= I (110)

In the case where T and |ψ〉 are n-dimensional, we can find an expression
for it starting from a diagonal matrix:

D =

&
ex1x̂+y1ŷ+ib1 0

0 ex2x̂+y2ŷ+ib2

'
(111)

where T = PDP−1. It follows quite easily that D‡D = I, because each
diagonal entry produces unity: e−x1x̂−y1ŷ−ib1ex1x̂+y1ŷ+ib1 = 1.

4.5 Adjoint Action, in 2D

The left action case can recover at most the special linear group. For the general
linear group itself, we require the adjoint action. Since the elements of |ψ〉 are
matrices, in the general case, the transformation is given by adjoint action:

T |ψ〉T−1 (112)

The bilinear form is:

(T |ψ〉T−1)‡(T |ψ〉T−1) = (T−1)‡ 〈ψ|T‡T |ψ〉T−1 (113)

and the invariance requirement on T is as follows:
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(T−1)‡ 〈ψ|T‡T |ψ〉T−1 = 〈ψ|ψ〉 (114)

With a diagonal matrix, this occurs for general linear transformations:

D =

"

(#
ea1+x1x̂+y1ŷ+ib1 0 0

0 ea2+x2x̂+y2ŷ+ib2 0

0 0
. . .

$

)% (115)

where T = PDP−1.
Taking a single diagonal entry as an example, the reduction is:

e−a1+x1x̂+y1ŷ+ib1ψ‡
1e

a1−x1x̂−y1ŷ−ib1ea1+x1x̂+y1ŷ+ib1ψ1e
−a1−x1x̂−y1ŷ−ib1 (116)

= e−a1+x1x̂+y1ŷ+ib1ψ‡
1e

2a1ψ1e
−a1−x1x̂−y1ŷ−ib1 (117)

We note that ψ‡ψ is a scalar, therefore

= ψ‡
1ψ1e

2a1e−a1+x1x̂+y1ŷ+ib1e−a1−x1x̂−y1ŷ−ib1 (118)

= ψ‡
1ψ1e

2a1e−a1e−a1 = ψ‡
1ψ1 (119)

4.6 Algebra of Geometric Observables, in 4D

We will now consider the general case for a vector space over 4× 4 matrices.
Let V be a m-dimensional vector space over the 4×4 real matrices. A subset

of vectors in V forms an algebra of observables A(V) iff the following holds:

1. ∀ψ ∈ A(V), the quadri-linear form:

〈·, ·, ·, ·〉 : V× V× V× V −→ G(4,R)
〈u,v,w,x〉 )−→ ⌊u‡v⌋3,4w‡x (120)

is positive-definite:

〈ψ,ψ,ψ,ψ〉 ∈ R>0 (121)

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ,ψ,ψ〉⌊ψ(q)
‡ψ(q)⌋3,4ψ(q)‡ψ(q) (122)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (123)
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We note the following properties, features and comments:

• ψ is called a natural (or physical) state.

• 〈ψ,ψ,ψ,ψ〉 is called the partition function of ψ.

• ρ(ψ(q),ψ) is called the probability measure (or generalized Born rule) of
ψ(q).

• The set of all matrices T acting on ψ such as Tψ → ψ′ which leaves the
sum of probabilities normalized (invariant):

!

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
!

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (124)

are the natural transformations of ψ.

• A matrix O such that ∀u∀v∀w∀x ∈ V :

〈Ou,v,w,x〉 = 〈u,Ov,w,x〉 = 〈u,v,Ow,x〉 = 〈u,v,w,Ox〉 (125)

is called an observable.

• The expectation value of an observable O is:

〈O〉 = 〈Oψ,ψ,ψ,ψ〉
〈ψ,ψ,ψ,ψ〉 (126)

4.7 A Step Towards Falsifiable Predictions

Let us now list a number falsifiable predictions.
The main idea is that a general linear wave-function would allow a larger

class of interference patterns than what is possible merely with complex in-
terference. We note the work of B. I. Lev[7] treating the interference pattern
associated with the geometric algebra formulation of the wave-function.

As a secondary idea, it is also plausible that an Aharonov–Bohm effect ex-
periment on gravity[8] could detect a general linear phase.

An interference pattern follows from a linear combination of u and v, and
the application of the determinant:

det(u+ v) = detu+ detv + extra-terms (127)

The sum detu+detv are a sum of probability and the extra terms represents
the interference term.

We use the extra-terms to define a bilinear form using the dot product
notation, as follows:
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· : G(2n,R)×G(2n,R) −→ R (128)

u · v )−→ 1

2
(det(u+ v)− detu− detv) (129)

For example in 2D, we have:

u = a1 + x1e1 + y1e2 + b1e12 (130)

v = a2 + x2e1 + y2e2 + b2e12 (131)

=⇒ u · v = a1a2 + b1b2 − x1x2 − y1y2 (132)

Iff detu > 0 and detv > 0 then u · v is always positive, and therefore
qualifies as a positive-definite inner product, but no greater than either detu or
detv, whichever is greater; thus also satisfying the conditions of an interference
term.

• In 2D the dot product is equivalent to this form:

1

2
(det(u+ v)− detu− detv) =

1

2

*
(u+ v)‡(u+ v)− u‡u− v‡v

+

(133)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v
(134)

= u‡v + v‡u (135)

• In 4D it is substantially more verbose:

1

2
(det(u+ v)− detu− detv) (136)

=
1

2

*
⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v

+

(137)

=
1

2

*
⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .

+

(138)

= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . .
(139)

20



= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (140)

Simpler version of this interference pattern are possible when the general
linear group is reduced.

Complex interference:
For instance, a reduction to the circle group, likewise reduces the interference

pattern to complex interference:

|ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos (φ1 − φ2) (141)

Deep spinor interference:
A reduction to the spinor group, reduces the interference pattern to a ”deep

spinor rotation”.
Consider a two-state wave-function (we note that [f ,b] = 0):

ψ = ψ1 + ψ2 = ea1ef1eb1 + ea2ef2eb2 (142)

The geometric interference pattern for a full general linear transformation
in 4D is given by the product:

⌊ψ‡ψ⌋3,4ψ‡ψ (143)

Let us start with the sub-product:

ψ‡ψ = (ea1e−f1eb1 + ea2e−f2eb2)(ea1ef1eb1 + ea2ef2eb2) (144)

= ea1e−f1eb1ea1ef1eb1 + ea1e−f1eb1ea2ef2eb2

+ ea2e−f2eb2ea1ef1eb1 + ea2e−f2eb2ea2ef2eb2 (145)

= e2a1e2b1 + e2a2e2b2 + ea1+a2eb1+b2(e−f1ef2 + e−f2ef1) (146)

The full product is:
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⌊ψ‡ψ⌋3,4ψ‡ψ =
*
e2a1e−2b1 + e2a2e−2b2 + ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)

+

×
*
e2a1e2b1 + e2a2e2b2 + ea1+a2eb1+b2(e−f1ef2 + e−f2ef1

+

(147)

= e2a1e−2b1e2a1e2b1 + e2a1e−2b1e2a2e2b2 + e2a1e−2b1ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)

+ e2a2e−2b2e2a1e2b1 + e2a2e−2b2e2a2e2b2 + e2a2e−2b2ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)e2a1e2b1

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)e2a2e2b2

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)
(148)

= e4a1 + e4a2 + 2e2a1+2a2 cos(2b1 − 2b2) (149)

+ ea1+a2(e−f1ef2 + e−f2ef1)( (150)

e2a1(e−b1+b2 + eb1−b2) (151)

+ e2a2(eb1−b2 + e−b1+b2)) (152)

+ e2a1+2a2(e−f1ef2 + e−f2ef1)2 (153)

= e4a1 + e4a2

/ 01 2
sum

+2e2a1+2a2 cos(2b1 − 2b2)/ 01 2
complex interference

+ 2ea1+a2(e2a1 + e2a2)(e−f1ef2 + e−f2ef1)(cos(B1 −B2)) + e2A1+2A2(e−f1ef2 + e−f2ef1)2/ 01 2
deep spinor interference

(154)

Finally, we stress that the general linear interference pattern occurs in con-
text of quantum gravity, as ordinary quantum field theory reduces to typical
complex interference.

5 Discussion

The complete correspondence between an ordinary system of statistical mechan-
ics and our method is as follows:

Table 2: Correspondence

Concept Statistical Mechanics Geometric Constraints (Our Method)

Entropy Boltzmann Shannon
Measure Gibbs Born rule on wave-function
Constraint Energy meter Phase-invariant instrument
Micro-state Energy values Possible measurements
Macro-state Equation of state Evolution of the wave-function
Experience Ergodic Message of measurements
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Let us discuss the correspondence.
In statistical mechanics, it is common to interpret constraints as instruments

acting on the system. For instance, one can think of the constraint of an ex-
pected energy or volume value as an energy-meter or volume-meter producing
a sequence of measurements converging towards said expected value.

In this work, we have introduced geometric constraints into statistical me-
chanics. Maximizing the entropy under geometric constraints induces various
phase-invariances into the resulting probability measure whose complexity de-

pends on the geometry. Specifically, the constraint tr

,
0 −b

b 0

-
=

9
q∈Q tr ρ(q)

,
0 −b(q)

b(q) 0

-

induces a complex phase-invariance into the probability measure ρ(q) = | exp(−iτb(q))|2
giving rise to the Born rule and the wave-function, and the constraint trM =9

q∈Q tr ρ(q)M(q) induces a general linear phase-invariance in the probability
measure ρ(q) = det exp (−τM(q)) giving rise to a quantum theory of gravity. In
each cases, we can interpret the constraint as an instrument acting on the sys-
tem. In the case of the complex phase we associate the constraint to a incidence
counter measuring a particle or a photon, and in the case of the general linear
phase, and specifically its group reduction to the Lorentz group, we associate
the constraint and its phase-invariance to a interval measurement between two
events.

The probabilistic interpretation of the wave-function along with the Born
rule is entailed from its origins in statistical mechanics. The wave-function is
also entailed, hence it is not taken as axiomatic. Rather, it is the registration
of a measurement by an instrument along with the geometric constraints on
the entropy that are the forefront. Since the wave-function is derived from the
entropy of already registered measurements, it is never updated to a collapsed
state; thus dissolving the collapse problem at the interpretational level.

The consequence is a minimal interpretation of quantum mechanics: In na-
ture, there exists instruments that record sequences of measurements on systems,
those measurements are unique up to a phase, and the wave-function along with
the Born rule are the entropy-maximizing measure constrained by those mea-
surements. This interpretation is minimal, completely factual and entirely free
of all unfalsifiable redundancies: no need for many-worlds, no need to attribute
an ontological existence to the wave-function, no need to appeal to a collapse
upon measurements, etc. The pieces automatically fall into place and are all
entailed by the method.

When the geometric constraint is arbitrary (any square matrix), the proce-
dure yield a quantum theory of gravity, a wave-function of the general linear
group and a Born rule extended to the determinant. The wave-function, if
parametrized in R3,1, then represents an instruction, or superposition thereof,
to transform the frame bundle at each event in space-time. Finally, gauging this
group produces the Einstein field equations as the equations of motion of the
quantum field. We also state that under a simple reduction from the general
linear group to the spinor group (and remapping ψ to φ in equation 69), the
theory reduces to ordinary quantum field theory.
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In the correspondence, the usage of the Shannon entropy instead of the
Boltzmann entropy changes the experience from ergodic to a message (in the
sense of the theory of communication of Claude Shannon[9]) of measurements.
The receipt of such a message is interpreted as the registration of a ’click’[10]
on a screen. We also note that the screen is an instrument that is geometrically
extended, and the path of the particle or photon is also geometric. With this in
mind, quantum physics (up to quantum gravity) can thus, within our method,
be interpreted as the probability measure resulting from maximizing the entropy
of a message of geometrically constrained measurements.
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