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Abstract

A formal system of science is presented as a candidate for a more
powerful foundation of physics. Rather than starting with an axiomatic
theory of physics as is typically done (quantum mechanics, general rela-
tivity, classical mechanics, etc), we instead had the idea to start at the
level of science by designing a formal system of science. Our goal was then
to attempt, as a challenge, to derive the laws of physics as a theorem of
the scientific method. This allowed us to definite previously elusive no-
tions and tackle unresolved problems. Some of our notable results include
a definition of experimental data (done purely mathematically), a defini-
tion of the observer (again done purely mathematically), and a derivation
of the laws of physics as the product of the scientific method (and thus,
we allege, done uncontroversially). This group of results constitutes the
primary items of modern theoretical physics currently missing mathemat-
ical formalisation. The first part of the paper consists of constructing an
experimental basis for pure mathematics. For this we employ halting pro-
grams. Since halting programs are arbitrarily complex and subject to the
halting problem, we leverage modern notions of mathematical incomplete-
ness to create a formulation of mathematics conductive to experimental
methods in which one must conduct halting experiments to make progress.
In this setup, the observer is defined as a measure space over the domain of
science and maximizing the entropy of the measure produces a quantum-
computation-focused superset of quantum physics that supports quantum
gravity. Finally, applications of the system to fundamental open problems
of physics as well as testable predictions are proposed.
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1 Introduction

In classical philosophy an axiom is a statement which is self-evidently true such
that it is accepted without controversy or question. But this definition has
been retired in modern usage. Any so-called ”self-evident” axiom can also be
posited to be false and either choice of its truth-value yields a different model;
the archetypal example being the parallel line postulate of Euclid, allowing
for hyperbolic/spherical geometry when it is false. Consequently, in modern
logic an axiom is demoted to simply be a starting point for a premise, and in
mathematics an axiom is a sentence of a language that is held to be true by
definition.

A long standing goal of philosophy has been to find necessarily true principles
that could be used as the basis of knowledge. For instance, the universal doubt
method of Descartes had such a goal in mind. The ’justified true belief’ theory
of epistemology is another attempt with a similar goal. But, so far, all such
attempts have flaws and loopholes, the elimination of which is assumed, at
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best, to reduce the theory to a handful of statements, rendering it undesirable
as a foundation to all knowledge.

In epistemology, the Gettier problem[1] is a well known objection to the belief
that knowledge is that which is both true and justified, relating to a family of
counter-examples. All such counter-examples rely on the same loophole: if the
justification is not ’air-tight’ then there exists a case where one is right by pure
luck, even if the claim were true and believed to be justified. For instance, if
one glances at a field and sees a shape in the form of a dog, one might think
he or she is justified in the belief that there is a dog in the field. Now suppose
there is a dog elsewhere in the field, but hidden from view. The belief ”there is
a dog in the field” is now justified and true, but it is not knowledge because it
is only true by pure luck.

Richard Kirkham[2] proposed to add the criteria of infallibility to the justi-
fication. What used to be ”justified true belief” would now become ”infallible
true belief”. This eliminates the loophole, but it is an unpopular solution be-
cause adding it is assumed to reduce epistemology to radical skepticism in which
almost nothing is knowledge, thus rendering epistemology non-comprehensive.

Here, we will adopt the insight of Kirkham regarding the requirement of
infallibility, whilst also resolving the non-comprehensiveness objection. To do
so, we will structure our statements such that they are individually infallible, yet
as a group form a Turing complete language. Turing completeness guarantees
comprehensiveness. Our tool of choice will be halting programs. As we will see,
halting programs carry all desired features to make this possible. Using them,
we will be able to tackle epistemological knowledge using infallible statements,
as put forward by Kirkham. That may sound impressive, but there is a catch.
Although we can describe the knowledge once it is acquired, acquiring it in
the first place will be difficult, in some case even arbitrarily difficult. After-all,
halting programs are of course subject to the halting problem. Indeed, we still
have to identify those program that halts from those that do not, and because
of the halting problem, as there exists no general algorithm able to do so, the
system will be irreducibly experimental.

With these two features, the sum-total of epistemological knowledge becomes
well-defined and is in fact recursively enumerable. The implications of such a
construction should not be underestimated as this was a long standing goal of
the ancients of philosophy, even if attempts to crack it have generally fallen
out of favour in modern times. In any case, our formal system of science will
thoroughly exploit this construction.

Finally, let us state that attempts to find a logical basis for epistemology
have been made ad nauseam in the past but they failed for primarily two rea-
sons. First, they were attempted before Gödel-type theorems were known and
appreciated, and attempts were directed at constructing decidable logical bases.
Secondly, instead of directing efforts to recursively enumerable bases following
the discovery of said theorems, efforts simply felt out of favour. However, it is
possible to construct a logical basis for epistemology provided that such basis is
recursively enumerable (and not decidable), and further the limitations induced
by recursive enumeration ought to instead be seen as an opportunity ; in this
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case, to create a formal system to map out epistemology, such that it may serve
as the foundation to a formalization of science.

For more information regarding the connection between mathematics, sci-
ence and programs, we recommend the works of Gregory Chaitin[3, 4, 5]. A
familiarity with his work is assumed. Let us now continue.

1.1 Halting Programs as Knowledge

How do we construct an infallible statement, so that it qualifies as an epistemo-
logical statement in the sense of Kirkham?

Let us take the example of a statement that may appear as an obvious true
statement such as ”1+1 = 2”, but is in fact not infallible. Here, we will provide
the correct definition of an infallible statement, but equally important, such
that the set of all such statements is Turing complete, thus forming a language
of maximum expressive power.

Specifically, the sentence ”1 + 1 = 2” halts on some Turing machine, but
not on others and thus is not infallible. Instead consider the sentence PA ⊢
[s(0)+s(0) = s(s(0))] to be read as ”Peano’s axioms prove that 1+1 = 2”. Such
a statement embeds as a prefix the set of axioms in which it is provable. One
can deny that 1 + 1 = 2 (for example, a trickster could claim binary numbers,
in which case 1+1 = 10), but if one specifies the exact axiomatic basis in which
the claim is provable, a trickster would find it harder to find a loophole to fail
the claim. Nonetheless, even with this improvement, a trickster can fail the
claim by providing a Turing machine for which PA ⊢ [s(0) + s(0) = s(s(0))]
does not halt.

If we use the tools of theoretical computer science we can produce statements
free of all loopholes, thus ensuring they are infallible. Those statements become
programs:

Definition 1 (Halting Program). Let L be the set of all sentences with alphabet
Σ. An halting program f is a pair (TM, p) of sentences from L× L such that a
universal Turing machine UTM halts for it:

iff UTM(TM, p) halts, then f = (TM, p) is a halting program (1)

A universal Turing machine UTM which takes a Turing machine TM and
a sentence p as inputs, will halt if and only if p halts on TM. Thus a claim
that p halts on TM, if true, is an halting program because it is verifiable on all
universal Turing machines.

The second objection is that the infallibility requirement is too strong mak-
ing makes epistemology non-comprehensive, only able to tackle a handful of
statements. However, the set of all halting programs constitutes the entire
domain of the universal Turing machine, and thus the expressive power of halt-
ing programs must be on par with any Turing complete language. Since there
exists no greater expressive power for a formal language than that of Turing
completeness, then no reduction takes place. The resulting construction is both
element-wise infallible, and comprehensive as a set.
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1.2 Halting Manifests

We will now use halting programs to redefine the foundations of mathematics
in terms of halting manifests, replacing formal axiomatic systems.

Before we do so, let us build up the intuition. In principle, one can use
any Turing complete structure to re-define all of mathematics. The task is not
particularly difficult but the work can nonetheless be substantial. One gener-
ally has to build a translator between the two formulation, whose existence is
interpreted as a proof of equivalence. For instance, one can write all of math-
ematics using the english language (if one were so included), or with using set
theory (with arbitrary set equipment), or category theory, or using a computer
language such as c++, or using arithmetic with multiplication, etc. If the lan-
guage is Turing complete, then it is as expressive as any other Turing complete
language, and a translator is guaranteed to exist. So why pick a particular basis
over another? This is often due to other conveniences and constraints than pure
expressive power. For instance, can we express the problem at hand clearly, and
elegantly, and are the solutions to it also clearer and easier to formulate?

Here we will use and introduce the halting manifest formulation of mathe-
matics, and, as we will see, it is by far the most advantageous formulation for
the purposes of a system of science. A halting manifest comprises a group of
programs known to halt, and this group of programs defines a specific instance
of mathematical knowledge.

Definition 2 (Halting Manifest). Let D = Dom(UTM) be the set of all halting
programs for a given universal Turing machine. A halting manifest, or simply a
manifest, m of n halting program is an element of the n-fold Cartesian product
of D:

m ∈ Dn, m :=
!
(TM1, p1), . . . , (TMn, pn)

"
(2)

The tuple, in principle, can be empty m := (), finite n ∈ N or countably
infinite n = ∞.

• A manifest contains some, but not necessarily all, programs of the domain
of the universal Turing machine.

The halting programs of a manifest replace the normal role of both axioms
and theorems and instead form a single verifiable atomic concept constituting
a unit of mathematical knowledge. Let us explicitly point out the difference
between the literature definition of a formal system and ours: for the former,
its theorems are a subset of the sentences of L provable from the axioms —
whereas for a manifest, its elements are pairs of L× L which halts on a UTM.

Let us now explore the advantages of using manifests versus formal axiomatic
systems. Manifests are more conductive to a description of the scientific pro-
cess, including the accumulation of experimental data, than formal axiomatic
systems are. Let us take an example. Suppose we wish to represent in real-
time, and with live updates, the set of all knowledge produced by a group of
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50,000ish (and growing!) mathematicians working in a decentralized manner
(perhaps from their offices) over the course of at least many decades, and per-
haps even for an indefinite amount of time into the future. Some of the work
they produced may build on each others’, but it will also be the case that part of
their work is incompatible. For instance, some might find contradictions in their
assumptions and abandon large segments of their work. As one learns primarily
from his or her errors, we may wish to catalogue these contradictions for pos-
terity. Let us first try with formal axiomatic systems. Finding the ’correct’ and
singular formal axiomatic system to describe the totality of what they have dis-
covered, including abandoned work and contradictions, will be quite a challenge.
One challenge occurs whenever a new contradiction is found, as one would need
to further isolate it within a wrapper of para-consistent logic, before inclusion
within the all-encompassing formal axiomatic system. Another challenge occurs
when mathematicians invent new, possibly more elegant, axiomatic basis out-
right. One would constantly need to adjust his or her proposed all-encompassing
formal axiomatic system to account for new discoveries as they are made. Such
an axiomatic basis would eventually grow to an unmaintainable level, not unlike
the spaghetti codes of the early days of software engineering. And we have not
even mentioned the problems spawned by general incompleteness theorems such
as those of Gödel and Gregory Chaitin, and the negative resolution to Hilbert’s
second problem! What if someone proves a statement that is not provable from
the selected axiomatic basis; in this case re-adjustments are perpetually neces-
sary. As mathematicians are a creative bunch, one would never be able to settle
on a final axiomatic system as they could always decide to explore a sector of
mathematical space not covered by the current system. Comparatively, using
a manifest, the task is much easier: One simply need to push each new discov-
ery at the end of the manifest; no adjustment is ever required after insertion,
we never run out of space, and halting programs do not undermine each other
even if they represent a contradiction. A manifest is conceptually similar to an
empirical notebook for mathematical knowledge. It is the ultimate simplicity
in terms of accumulating mathematical data.

Formal axiomatic systems do not excel at pure description because they
are be more akin to an interpretation of mathematical knowledge based on
a preference of some patterns or tools (we like sets, thus ZFC!, or we prefer
categories, thus category theory!). New knowledge will eventually force one
to change this preference, or at least to consider alternative preferences. Not
so with manifests! Manifests are the true starting point of the logical inquiry
as they represent an infallible and non-preferential description of mathematical
knowledge.

We will now explore the concept more rigorously.
Note on the notation: we will designate fi = (TMi, pi) as an halting pro-

gram element of m, and proj1(fi) and proj2(fi) designate the first and second
projection of the pair fi, respectively. Thus proj1(fi) is the TMi associated
with fi, and proj2(fi) is the input pi associated with fi. If applied to a tuple or
set of pairs, then proj1(m) returns the set of all p in m and proj2(m) returns
the set of all TM in m.
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Theorem 1 (Incompleteness Theorem). Let m be a manifest. If m = Dom(UTM),
then m is recursively enumerable (and non-decidable). The proof follows from
the domain of a universal Turing machine being non-decidable.

Definition 3 (Premises). Let m be a manifest. The premises in m are defined
as the set of all TM in m:

P := proj1(m) (3)

Definition 4 (Theorems). Let m be a manifest. The theorems of m are defined
as the set of all p in m:

T := proj2(m) (4)

Definition 5 (Spread (of a theorem)). The set of all premises in m in which
a theorem is repeated is called the spread of the theorem. For instance if m =!
TM1, p1), (TM2, p1)

"
, then the spread of p1 is {TM1,TM2}.

Definition 6 (Scope (of a premise)). The set of all theorems in m in which
a premise is repeated is called the scope of the premise. For instance if m =
{(TM1, p1), (TM1, p2)}, then the scope of TM1 is {p1, p2}.

1.2.1 Connection to Formal Axiomatic Systems

We can, of course, connect our construction to a formulation in terms of a formal
axiomatic system (FAS):

Definition 7 (Enumerator (of a FAS)). A function enumeratorFAS is an enu-
merator for FAS if it recursively enumerates the theorems of FAS. For instance:

enumeratorFAS(s) =

#
1 FAS ⊢ s

∄/ does-not-halt otherwise
(5)

Definition 8 (Domain (of FAS)). Let FAS be a formal axiomatic system, let m
be a manifest and let enumeratorFAS be a function which recursively enumerates
the theorems of FAS. Then the domain of FAS, denoted as Dom(FAS), is the
set of all sentences s ∈ L which halts for enumeratorFAS.

Definition 9 (Formal Axiomatic Representation). Let FAS be a formal ax-
iomatic system, let m be a manifest and let enumeratorFAS be a function which
recursively enumerates the theorems of FAS. Then FAS is a formal axiomatic
representation of m iff:

Dom(FAS) = proj2(m) (6)

Definition 10 (Factual Isomorphism). Two formal axiomatic systems FAS1
and FAS2 are factually-isomorphic if and only if Dom(FAS1) = Dom(FAS2).
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1.2.2 Axiomatic Information

The first result of interest will be the introduction of axiomatic information. We
can understand the elements of any particular manifest as having been ’picked’,
in some sense, from the set of all possible halting programs. If the pick is random
and described as a probability measure ρ, we can quantify the information of
the pick using the entropy.

Definition 11 (Axiomatic Information). Let D = Dom(UTM) be the domain
of a universal Turing machine. Then, let ρ : D → [0, 1] be a probability measure
over D. Finally, let m be a manifest subset of Dn. The axiomatic information
of a single element of m is quantified as the entropy of ρ:

S = −
$

q∈D
ρ(q) ln ρ(q) (7)

For instance, a well-known (non-computable) probability measure regarding
a sum of prefix-free programs is the Halting probability[6] of computer science:

Ω =
$

p∈Dom(UTM)

2−|p| =⇒ ρ(p) = 2−|p| (8)

The quantity of axiomatic information of a given manifest (and especially
its maximization), rather than any particular set of axioms, will be the primary
quantity of interest for the production of a maximally informative theory in this
framework. A strategy to gather mathematical knowledge which picks halting
programs according to the probability measure which maximizes the entropy
will be a maximally informative strategy.

1.3 Discussion — The Mathematics of Knowledge

Each element of a manifest is a program-input pair representing an algorithm
which is known to produce a specific result. Let us see a few examples.

How does one know how to tie one’s shoes? One knows the algorithm re-
quired to produce a knot in the laces of the shoe. How does one train for a
new job? One learns the internal procedures of the shop, which are known to
produce the result expected by management. How does one impress manage-
ment? One learns additional skills outside of work and applies them at work
to produce results that exceed the expectation of management. How does one
create a state in which there is milk in the fridge? One ties his shoes, walks
to the store, pays for milk using the bonus from his or her job, then brings
the milk back home and finally places it in the fridge. How does a baby learn
about object permanence? One plays peak-a-boo repeatedly with a baby, until
it ceases to amuse the baby — at which point the algorithm which hides the
parent, then shows him or her again, is learned as knowledge. How does one
untie his shoes? One simply pulls on the tip of the laces. How does one untie
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his shoes if, after partial pulling, the knot accidentally tangles itself preventing
further pulling? One uses his fingers or nails to untangle the knot, and then
tries pulling again.

Knowledge can also be in more abstract form — for instance in the form of
a definition that holds for a special case. How does one know that a specific
item fits a given definition of a chair? One iterates through all properties refer-
enced by the definition of the chair, each step confirming the item has the given
property — then if it does for all properties, it is known to be a chair according
to the given definition.

In all cases, knowledge is an algorithm along with an input, such that the
algorithm halts for it, lest it is not knowledge. The set of all known pairs forms
a manifest.

Let us consider a few edge cases. What if a manifest contains both ”A” and
”not A” as theorems? For instance, consider:

m :=
!
(TM1, A), (TM1,¬A)

"
(9)

Does allowing contradictions at the level of the theorems of m create a
problem? Should we add a few restrictions to avoid this unfortunate scenario?
Let us try an experiment to see what happens — specifically, let me try to
introduce A ∧ ¬A into my personal manifest, and then we will evaluate the
damage I have been subjected to by this insertion. Consider the following
program TM1:

1. If (p=”A” or p=”not A”) then

2. return 1;

3. else (loop())

It thus appears that I can have knowledge that the above program halts
for both ”A” and ”not A” and still survive to tell the tale. A-priori, the sen-
tences ”A” and ”not A” are just symbols. Our reflex to attribute the law of
excluded middle to these sentences requires the adoption of a deductive sys-
tem. This occurs one step further at the selection of a specific formal axiomatic
representation of the manifest, and not at the level of the manifest itself.

The only inconsistency that would create problems for this framework would
be a proof that a given halting program both [HALTS] and [NOT HALTS] on a
UTM. By definition of a UTM, this cannot happen lest the machine was not a
UTM to begin with. Thus, we are expected to be safe from such contradictions.

Now, suppose one has a sizeable manifest which may contain a plurality of
pairs:

m :=
!
(TM1, p1), (TM2,¬p1), (TM1, p2), (TM2, p1), (TM2,¬p3)

"
(10)

Here, the negation of some, but not all, is also present across the pairs: in this
instance, the theorems p1 and p3 are negated but for different premises. What
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interpretation can we give to such elements of a manifest? For our example,
let us call the sentences p1, p2, p3 the various flavours of ice cream. It could be
that the Italians define ice cream in a certain way, and the British define it in
a slightly different way. Recall that halting programs are pairs which contain a
premise and a theorem. The premise contains the ’definition’ under which the
flavour qualifies as real ice cream. A flavour with a large spread is considered real
ice cream by most definitions (i.e. vanilla or chocolate ice cream), and one with
a tiny spread would be considered real ice cream by only very few definitions
(i.e. tofu-based ice cream). Then, within this example, the presence of p1 and
its negation simply means that tofu-based ice cream is ice cream according to
one definition, but not according to another.

Reality is of a complexity such that a one-size-fits-all definition does not
work for all concepts, and further competing definitions might exist: a chair
may be a chair according to a certain definition, but not according to another.
The existence of many definitions for one concept is a part of reality, and the
mathematical framework which correctly describes its manifest ought to be suf-
ficiently flexible to handle this, without itself exploding into a contradiction.

Even in the case where both A and its negation ¬A were to be theorems
of m while also having the same premise, is still knowledge. It means one has
verified that said premise is inconsistent. One has to prove to oneself that a
given definition is inconsistent by trying it out against multiple instances of a
concept, and those ’trials’ are all part of the manifest.

2 The Formal System of Science

We now assign to our manifest formulation of mathematics the interpretation
of a purely mathematical system of science. This is motivated principally be-
cause manifests entails a trial and error approach to identify halting programs,
as this cannot be decided by a general algorithm, thus forming an irreducible
experimental basis.

2.1 Axiomatic Foundation of Science

The fundamental object of study of science is not the electron, the quark or
even super-strings, but the reproducible experiment. An experiment represents
an ’atom’ of verifiable knowledge.

Definition 12 (Experiment). Let f = (TM, p) be a pair comprised of two
sentences of a language L. The first sentence, TM, is called the protocol. The
second sentence, p, is called the hypothesis. Let UTM be a universal Turing
machine. If UTM(TM, p) halts then the pair (TM, p) is said to be an experiment.
In this case, we say that the protocol verifies the hypothesis. If UTM(TM, p)
does not halt, we say that the pair fails to verify the hypothesis.
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UTM(TM, p)

#
HALT =⇒ the experiment verifies p

¬HALT =⇒ the pair fails verification
(11)

Of course, in the general case, as per the halting problem there exists no
decidable function which can determine which pair is an experiment and which
pair fails verification. In the general case, one must try them out to see which
one halts — this is why they are called experiments.

An experiment, so defined, is formally reproducible. I can transmit, via fax
or other telecommunication medium, the pair (TM, p) to another experimen-
talist, and I would know with absolute certainty that he or she has everything
required to reproduce the experiment to perfection.

Thesis 1 (Formal Reproducibility). Experiments are formally reproducible.

Proof. Let UTM and UTM′ each be a universal Turing machine. For each pair
UTM(TM, p) which halts on UTM, there exists a computable function, called
an encoding function, which maps said pairs as encode(TM, p) → (TM′, p′) such
that (TM′, p′) halts for UTM′. The existence of such function is guaranteed by
(and equivalent to) the statement that any UTM can simulate any other.

In the peer-reviewed literature, the typical requirement regarding the repro-
ducibility of an experiment is that an expert of the field be able to reproduce
the experiment, and this is of course a much lower standard than formal repro-
ducibility which is a mathematically precise definition. Here, for the protocol
TM to be a Turing machine, the protocol must specify all steps of the exper-
iment including the complete inner workings of any instrumentation used for
the experiment. The protocol must be described as an effective method equiv-
alent to an abstract computer program. Should the protocol fail to verify the
hypothesis, the entire experiment (that is the group comprising the hypothesis,
the protocol and its complete description of all instrumentation) is rejected.
For these reasons and due to the generality of the definition, I conjecture that
the above definition is the only possible definition of the experiment that is
formally reproducible (as opposed to say ”sufficiently reproducible for practical
purposes”), yet universal as a Turing complete language. The domain of science
thus grabs the sum-total of all possible formally reproducible mathematical and
physical experiments. Indeed;

Thesis 2. The set of all scientific truths is equivalent to the set of all halting
programs.

Proof. We repeat that formal science requires formal reproducibility. From this
the thesis follows trivially: only halting programs are formally reproducible.
Thus, by necessity, if a scientific truth is to be formally reproducible, and only
halting programs are formally reproductive, then it must be equivalent to a
halting program.
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Please note that this equivalence between scientific truth and halting pro-
grams, despite the reductionist connotation associated to a computer program,
in no way or shape reduces what can be known about reality, as halting programs
are Turing complete. For instance, one can equate the set of all non-relativistic
quantum mechanical experiments to the set of all solutions of the Schrödinger
equation. The later are programs (i.e. numerical solutions to the equation are
typically obtained by computers, or by hand), and they ought to map one-to-
one with the former, lest it is falsified. This correspondance of course must hold
true for any theory to be qualified as a non-falsified scientific theory. The reduc-
tionist connotation is in appearance only, and only if one does not sufficiently
appreciate what Turing completeness or what falsification and reproducibility
entails.

Finally, we state that since one can construct a computer in nature and
instruct it to recursively enumerate halting programs, then by necessity an
experimentally-complete physical theory (which would have account for the
inner-workings of said computer) must share its domain with that of the halting
programs. Nature can, at most, enumerate all halting programs.

This is not yet the laws of physics (upcoming Axiom 1 will be required for
that) but it is a mapping between halting programs and physical experiments,
enforced strictly by us requiring science to be falsifiable and reproducible.

Definition 13 (Domain of science). We note D as the domain (Dom) of science.
We can define D in reference to a universal Turing machine UTM as follows:

D := Dom(UTM) (12)

Thus, for all pairs of sentences (TM, p), if UTM(TM, p) halts, then (TM, p) ∈
D. It follows that all experiments are elements of the domain of science.

Definition 14 (Experimental Space). Let m be a manifest comprised of n
halting programs, and let M =

%n
i=1 proji(m) be the set comprised of the halting

programs of m. The experimental space E of m is the ”powertuple” of m:

E :=

n&

i=0

(M)i (13)

• Put simply, experimental space is the set of all possible manifests (includ-
ing the empty manifest).

• Conceptually, a powertuple is similar to a powerset where the notion of
the set is replaced by that of the tuple.

• All elements of an experimental space are manifests, and all ”sub-tuples”
of a manifest are elements of its experimental space.

Definition 15 (Scientific method). An algorithm which recursively enumerates
experiments, is called a scientific method.
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Theorem 2 (Scientific method (Existence of)). Existence of the scientific method.

Proof. Consider a dovetail program scheduler which works as follows.

1. Sort all pairs of sentences of L × L in shortlex. Let the ordered pairs
(TM1, p1), (TM2, p1), (TM1, p2), (TM2, p2), (TM3, p1), . . . be the ele-
ments of the sort.

2. Take the first element of the sort, UTM(TM1, p1), then run it for one
iteration.

3. Take the second element of the sort, UTM(TM2, p1), then run it for one
iteration.

4. Go back to the first element, then run it for one more iteration.

5. Take the third element of the sort, UTM(TM1, p2), then run it for one
iteration.

6. Continue with the pattern, performing iterations one by one, with each
cycle adding a new element of the sort.

7. Make note of any pair (TMi, pj) which halts.

This scheduling strategy is called dovetailing and allows one to enumerate
the domain of a universal Turing machine recursively, without getting stuck by
any singular program that may not halt. Progress will eventually be made on
all programs... thus producing a recursive enumeration.

Dovetailing is of course a simple/non-creative approach to the scientific
method. The point here was only to show existence of such an algorithm, not
to find the optimal one.

2.1.1 Classification of Scientific Theories

Definition 16 (Scientific Theory). Let m be a manifest and let ST be a formal
axiomatic system. If

proj2(m) ∩Dom(ST) ∕= ∅ (14)

then ST is a scientific theory of m.

Definition 17 (Empirical Theory). Let m be a manifest and let ST be a sci-
entific theory. If

proj2(m) = Dom(ST) (15)

then ST is an empirical theory of m.
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Definition 18 (Scientific Field). Let m be a manifest and let ST be a scientific
theory. If

Dom(ST) ⊂ proj2(m) (16)

then ST is a scientific field of m.

Definition 19 (Predictive Theory). Let m be a manifest and let ST be a sci-
entific theory. If

proj2(m) ⊂ Dom(ST) (17)

then ST is a predictive theory of m.
Specifically, the predictions of ST are given as follows:

S := Dom(ST) \m (18)

Scientific theories that are predictive theories are supported by experiments,
but may diverge outside of this support.

2.1.2 The Fundamental Theorem of Science

With these definitions we can prove, from first principle, that the possibility of
falsification is a necessary consequence of the scientific method.

Theorem 3 (The Fundamental Theorem of Science). Let m1 and m2 be two
manifests, such that the later includes and is larger than the former: m1 ⊂ m2.
If ET2 is an empirical theory of m2, then it follows that ET2 is a predictive
theory of m1. Finally, up to factual-isomorphism, Dom(ET2) has measure 0
over the set of all distinct domains spawned by the predictive theories of m2.

Proof. Dom(ET2) is unique. Yet, the number of distinct domains spawned by
the set of all possible predictive theories of m1 is infinite. Finally, the measure
of one element of an infinite set is 0.

Consequently, the fundamental theorem of science leads to the concept of
falsification, as commonly understood in the philosophy of science and as given
in the sense of Popper. It is (almost) certain that a predictive scientific theory
will eventually be falsified.

2.2 Axiomatic Foundation of Physics

Recall that earlier we used a dovetailing algorithm in Theorem 2 as an im-
plementation of the scientific method, and we claimed that although it was a
possible strategy, it was not necessarily the optimal one. So what then is the
optimal one? Do we want to optimize for an efficient algorithm, perhaps the
most elegant one, or the one that uses the least amount of memory, etc., but
thinking in those terms would be a trap — we must think a bit more abstractly

15



than postulating or arguing for a specific properties of the algorithm which
implements the strategy. We must optimize for knowledge:

The best strategy will be tomaximize the axiomatic information gained from
the scientific method as it produces a manifest, and this means, in the technical
sense, to maximize the entropy of a probability measure on experimental space.

To have information (in the information-theoretical sense) one must work
with a probability measure:

Axiom 1 (Observer). An observer, denoted as O, is a measure space defined
as the triplet:

O := (m,E, ρ : E → [0, 1]) (19)

where ρ is a probability measure, m is a manifest, and E is the experimental
space of m. The definition is reminiscent of a measure space in measure theory,
with the important difference that the elements of E are tuples and not sets. The
consequences of this difference will be investigated in the main result section.

An observer is a specialization of the definition of the manifest in the sense
that a manifest is an element of experimental space, and the observer admits a
measure over experimental space. Note that typically in physics, the observer
(which is not mathematically integrated into the formalism... leading to a fam-
ily of open problems regarding the ’observer effect’) is associated to a random
selection of an element from a set of possible observations. This ’effect’ will
eventually be revealed to be a consequence of the present definition, inherited
from the requirement of maximizing axiomatic information. Although it is still
obscure at this point, this definition will perfectly coincide with what we under-
stand an observer to be in quantum physics, and also to what we understand it
to be in general relativity.

Definition 20 (Laws of Physics). The probability measure that maximizes the
entropy of O, is called ’the laws of physics’.

The definition of the laws of physics are a specialization of the definition of
the measure associated to the observer, in the sense that an observer admits
a measure over experimental space, and the laws of physics are an entropy-
maximized measure of the same space. The laws of physics are thus defined
formally as the information-theoretical maximum of the scientific method for
the observer. The best strategy to maximize ones axiomatic knowledge of re-
ality produces the laws of physics as the solution. We will derive this measure
explicitly in the Main Result section.

3 Main Result

Let us now use these definitions to derive the laws of physics from first principle,
and show that they are at least the same as the laws of physics, and then
investigate extended results and predictions.
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Our starting point will be the definition of the observer, then we will maxi-
mize the entropy of ρ using the method of the Lagrange multipliers. We recall
that our definition of the observer is:

Oi := (mi,E, ρ : E → [0, 1]) (20)

where mi is a n-tuple, E is a ”powertuple” and ρ is a (probability) measure
over E.

Note the similarity between our definition of the observer to that of a measure
space. Comparatively, the definition of a measure space is:

M := (X,Σ, µ(X)) (21)

where X is a set, Σ is (often) taken to be the powerset of X, and µ is
a measure over Σ. The difference is simply that sets have been replaced by
tuples. Consequently, we must adapt the definition of a measure space from set
to tuples. To do so, we will use the following prescription:

1. We assign a non-negative number to each element of m.

2. We then equip said numbers with the addition operation, converting the
construction to a vector space.

3. We maximize the entropy of a single halting program under the effect of
constraints, by using the method of the Lagrange multipliers.

4. We prescribe that any and all constraints on said entropy must remain
invariant with respect to a change of basis of said vector space.

5. Finally, we use the tensor product n-times over said vector space to con-
struct probability measure of n-tuples of halting programs.

Explicitly, we maximize the entropy:

S = −
$

f∈M
ρ(f) ln ρ(f) (22)

subject to these constraints:

$

f∈M
ρ(f) = 1 (23)

$

f∈M
ρ(f) trM(f) = trM (24)
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where M(f) are a matrix-valued maps from M to Cn×n representing the
linear transformations of the vector space and where M is a element-by-element
average matrix.

Usage of the trace of a matrix as a constraint imposes an invariance with re-
spect to a similarity transformation, accounting for all possible linear reordering
of the elements of the tuples of the sum, thus allowing the creation of a measure
of a tuple or group of tuples form within a space of tuples, invariantly with
respect to the order of the elements of the tuples. Similarity transformation
invariance on the trace is the result of this identity:

trM = trBMB−1 (25)

We now use the Lagrange multiplier method to derive the expression for ρ
that maximizes the entropy, subject to the above mentioned constraints. Max-
imizing the following equation with respect to ρ yields the answer:

L = −kB
$

f∈M
ρ(f) ln(f) + α

'

(1−
$

f∈M
ρ(f)

)

*+ τ

'

(trM−
$

f∈M
ρ(f) trM(f)

)

*

(26)

where α and τ are the Lagrange multipliers. The explicit derivation is made
available in Annex B. The result of the maximization process is:

ρ(f, τ) =
1

Z(τ)
det exp−τM(f) (27)

where

Z(τ) =
$

f∈M
det exp−τM(f) (28)

3.1 Prior

No good probability measure is complete without a prior. The prior, which
accounts for an arbitrary preparation of the ensemble, ought to be —for purposes
of preserving the scope of the theory— of the same kind as the elements of the
probability measure. Let us thus introduce the prior as the map P : Q → Cn×n

and inject it into the probability measure as well as into the partition function:

ρ(f) =
1

Z
det exp

!
P(f)

"
det exp

!
−τM(f)

"
(29)

where

Z =
$

f∈M
det exp

!
P(f)

"
det exp

!
−τM(f)

"
(30)
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3.2 Overview

We will begin with a small overview connecting the main result to its origins as
a manifest, via a passage into quantum computation, then we will expand the
connection to physics into two parts:

Part 1: We will show that a special case of this result is an equivalent
representation of standard quantum mechanics, and discuss the implications of
this formulation.

Part 2: We will show that this result, in the general case, is a quantum
theory of gravity which adheres to both 1) the axioms of quantum mechanics
and 2) to the theory of general relativity.

3.2.1 Quantum Computing (Recall)

Let us begin by reviewing the basics of quantum computation. One starts with
a state vector:

|ψa〉 =

'

++(

0
...
n

)

,,* (31)

Which evolves unitarily to a final state:

|ψb〉 = U0U1 . . . Um |ψa〉 (32)

Clever use of the unitary transformations, often arranged as simple ’gates’,
allows one to execute a program. The input to the program is the state |ψa〉 and
the output is the state |ψb〉. One would note that, so defined and if the sequence
of unitary transformation is finite, such a program must always halt, and thus
its complexity must be bounded. One can however get out of this predicament
by taking the final state |ψb〉 to instead be an intermediary state, and then to
add more gates in order continue with a computation:

step 1 |ψb〉 = U0U1 . . . Up |ψa〉 (33)

step 2 |ψc〉 = U ′
0U

′
1 . . . U

′
q |ψb〉 (34)

... (35)

step k |ψk′〉 = U ′
0U

′
1 . . . U

′
v |ψk〉 (36)

... (37)

For a quantum computation to simulate a universal Turing machine it must
be able to add more steps until a halting state is reached (or continue to add
steps indefinitely if the program never halts). But note, that each step is itself
a completed program, and further it is the case that each step can be infinitely
divided.
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3.2.2 Sketch

The linear transformations of our main result are here interpreted in the same
manner as those used in quantum computations, but extended to the general
linear group.

We begin by splitting the probability measure into a first step, which is
linear with respect to a ’probability amplitude’, and a second which connects
the amplitude to the probability. We thus write the probability measure as:

ρ(f, τ) =
1

Z
detψ(f, τ) (38)

where

ψ(f, τ) = exp
!
P(f)

"
exp

!
−τM(f)

"
(39)

Here, the determinant is interpreted as a generalization of the Born rule
and reduces to exactly it when M is the matrix representation of the complex
numbers. In the general case where M are arbitrary n×n matrices, ψ(f, τ) will
be called the general linear probability amplitude.

We can write ψ(f, τ) as a column vector:

ψ := |ψ〉 :=

'

++++(

ψ(f1, τ)
ψ(f2, τ)

...
ψ(fn, τ)

)

,,,,*
=

'

++++(

ψ1

ψ2

...
ψn

)

,,,,*
(40)

Paths will be constructed by chaining transformations on those vectors:

|ψb〉 = T1T2 . . .Tn- ./ 0
computing steps

|ψa〉 (41)

As more transformations are chained, progressively richer manifests are con-
structed. Paths in experimental space are realized by completing the missing
computational steps required for a starting-point manifest to be the end-point
manifest.

Comparatively, quantum mechanical computations are simply a special cases
when he transformations are unitary:

|ψb〉 = U1U2 . . .Un- ./ 0
computing steps

|ψa〉 (42)
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3.2.3 Matrix-Valued Vector and Transformations

To work with the general linear probability amplitude, we will use vectors whose
elements are matrices. An example of such a vector is:

v =

'

++(

M1

...
Mm

)

,,* (43)

Likewise a linear transformation of this space will expressed as a matrix of
matrices:

T =

'

++(

M00 . . . M0m

...
. . .

...
Mm0 . . . Mmm

)

,,* (44)

Note: The scalar element of the vector space are given as:

av =

'

++(

aM1

...
aMm

)

,,* (45)

3.2.4 Sums of Paths

So far, the sums of programs we have used were over manifests comprised of a
single program each. How do we extend this to manifests containing multiple
programs? We have to use a Cartesian product on the sets of manifests and a
tensor product on the probability amplitudes. For instance, let us consider the
following sets of halting programs:

M1 = {(f1a), (f1b)} (46)

M2 = {(f2a), (f2b)} (47)

The Cartesian product produces manifests comprised of two elements:

m ∈ M1 ×M2 = {(f1a, f2a), (f1a, f2b), (f1b, f2a), (f1b, f2b)} (48)

At the level of the probability amplitude, the Cartesian product of sets
translates to the tensor product. For instance, we start with a wave-function of
one program;
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ψ1 =

1
expP(f1a)
expP(f1b)

2
(49)

Adding a program-step via a linear transformation produces:

Tψ1 =

1
T00 expP(f1a) + T01 expP(f1b)
T10 expP(f1a) + T11 expP(f1b)

2
(50)

If we tensor product this wave-function:

ψ2 =

1
expP(f2a)
expP(f2b)

2
(51)

along with a program-step:

T′ψ2 =

1
T ′
00 expP(f2a) + T ′

01 expP(f2b)
T ′
10 expP(f2a) + T ′

11 expP(f2b)

2
(52)

Then the tensor product of these states produces the probability measure of
a manifest as follows:

Tψ1 ⊗T′ψ2 =

'

++(

(T00 expP(f1a) + T01 expP(f1b))(T
′
00 expP(f2a) + T ′

01 expP(f2b))
(T00 expP(f1a) + T01 expP(f1b))(T

′
10 expP(f2a) + T ′

11 expP(f2b))
(T10 expP(f1a) + T11 expP(f1b))(T

′
00 expP(f2a) + T ′

01 expP(f2b))
(T10 expP(f1a) + T11 expP(f1b))(T

′
10 expP(f2a) + T ′

11 expP(f2b))

)

,,*

(53)

Now, each element of the resulting vector is a manifest of two programs, but
its probability is a sum over a path. One can repeat the process n times, and
even take to limit to infinity.

4 Foundation of Physics (Standard QM)

Remarkably, the main result, even if it is barely three lines, is able to produce,
as theorems, all axioms of quantum mechanics –including the famously elusive
wave-function collapse mechanism, and the origin of the Born rule– thus it
constitute, necessarily, a more fundamental formalism of QM that all other
alternatives requiring axiomatic definitions. Finally, it necessitate, implies and
guarantees not only ensemble interpretation of quantum mechanics, but also
derives it from maximum entropy principles. It thus offers a ”total solution” to
the foundations, origins and interpretation of QM.

The study of the main result will be in two parts. In the first part, to recover
QM, we will reduce the expressivity of the constraint of the main result to that
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of the matrix representation of the complex number, as opposed to a general
matrix. In this special case, we will recover standard QM without gravity. In
the section following this one, we will investigate the unadulterated version of
the main result and show that it produces a complete theory of quantum gravity
adhering both to 1) all axioms of QM, and also 2) is a complete formulation
of general relativity, thus producing what we interpret as a theory of quantum
gravity.

4.1 Born Rule

Definition 21 (Born Rule). The standard definition of the Born rule connects
the probability to the complex norm of the wave-function:

ρ = |ψ|2 (54)

The Born rule was postulated by Born in 1926, but attempts to derive it
from first principles has been elusive. Notable proposals are those of Andrew
M. Gleason[7], Kastner, R. E[8], and Lluis Masanes and Thomas Galley[9], and
others.

In our formalism the determinant rule is the result of maximizing the entropy
of a measure over a tuple. In the case of a matrix representation of the complex
number, the determinant rule becomes the Born rule. Indeed, we first note that
a complex number is represented by a matrix as follows:

a+ ib ∼=
1
a −b
b a

2
(55)

Then, we note that its determinant is the same as the complex norm:

det

1
a −b
b a

2
= a2 + b2 (56)

Finally, the determinant rule reduces to the Born rule forthe complex case:

ρ(f, τ) =
1

Z
det

3
exp−β

1
a(f) 0
0 a(f)

2
exp−τ

1
0 −b(f)

b(f) 0

24
(57)

=
1

Z
exp−β2a(f) (58)

where exp−β2a(f) is the preparation of the ensemble (the prior) and Z is
the normalization constants. In the case where β = 1/kBT , then it is a thermal
preparation. The Born rule is thus revealed to be the probability measure
derived from maximizing the entropy of the selection of a tuple from a set of
tuples, and in this sense is analogous to the Gibbs measure in statistical physics.
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4.2 Axioms of QM

4.2.1 Dirac–von Neumann Axioms (State vector)

The standard Dirac–von Neumann Axioms are recovered as theorems. This
becomes apparent if we split the probability measure into a two-step process:

ρ(f, τ) = detψ(f, τ)|ψ∈C = |ψ(f, τ)|2 (59)

where

ψ(f, τ) =
1√
Z

3
exp−β

1
a(f) 0
0 a(f)

2
exp−τ

1
0 −b(f)

b(f) 0

24
(60)

The formalism in terms of Hilbert space is obtained simply by taking ψ
rather than ρ as the object of study. To show this is almost trivial; ψ ∈ C and ρ
is given as the complex norm, therefore the ψ are the unit vectors of a complete
complex vector space.

4.2.2 Dirac–von Neumann Axioms (Expectation Value)

In statistical physics, an observable is simply a real value tied to each element
of the probability measure:

O =
$

q∈Q
ρ(q)O(q) (61)

Applied to our matrix-based constraints, this definition becomes that of a
self-adjoint operator. And the expectation is a sum as follows:

O =
$

q∈Q
detψ(q)O(q)|ψ∈C =

$

q∈Q
ψ(q)∗ψ(q)O(q) (62)

and is thus the same definition as that of the expectation value of a self-
adjoint operator acting on the unit vectors of a complex Hilbert space:

$

q∈Q
ψ(q)∗ψ(q)O(q) = 〈ψ|O |ψ〉 (63)

4.2.3 Time-Evolution (Schrödinger equation)

The last axiom of QM is usually a statement that the time-evolution of a state
vector ψ is given by the Schrödinger equation. To derive it from our framework,
that we can write:
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ψ(f, τ) =
1√
Z

3
exp−β

1
a(f) 0
0 a(f)

2
exp−τ

1
0 −b(f)

b(f) 0

24
(64)

as:

ψ(f, τ) =
1√
Z

exp−τ ib(f) (65)

where, to simplify, we have taking the prior to be unity (a(f) = 0). This is
the familiar form of the quantum mechanical unitary evolution operator, where
we rewrite τ → t and b → H. The Taylor expansion to the first linear term:
U(δt) ≈ 1− iδtH. Then:

55ψ(t+ δt)
6
= U(δt)

55ψ(t)
6
≈ (1− iδtH) |ψ〉 (66)

=⇒
55ψ(t+ δt)

6
− |ψ〉 ≈ −iδtH |ψ〉 (67)

=⇒ i

55ψ(t+ δt)
6
− |ψ〉

δt
≈ H |ψ〉 (68)

=⇒ i
∂
55ψ(t)

6

∂t
= H |ψ〉 (69)

which is the time-dependant Schrödinger equation.

4.3 Discussion — Wave-function Collapse, Interpretation
of QM

The final piece of the puzzle for standard QM is to provide a mechanism for the
wave-function collapse and an interpretation. First, let must detail the inter-
pretation. Here we derive from first principles the probability measure (Born
rule) as the fundamental object and the wave-function is simply a convenient
construction to work with linear transformations. In fact, we have found the
Born rule as a special case of the Gibbs measure and occurs when the entropy
is maximized under the constraint of a phase-invariance instrument. Let us see
in more details.

In statistical physics, constraints on the entropy are interpreted as instru-
ments acting on the system. For instance, an energy constraint on the entropy:

E =
$

q∈Q
ρ(q)E(q) (70)

is interpreted, physically, as a energy-meter measuring the system and pro-
ducing a series of energy measurement E1, E2, . . . converging to a average value
E. Another typical constraint is that of the volume:
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V =
$

q∈Q
ρ(q)V (q) (71)

associated to a volume-meter acting on the system and converging towards
an average volume value V , also by producing a sequence of measurements of the
volume V1, V2, . . . . With these two constraints, the typical system of statistical
phsycis is obtained, and its Gibbs measure is:

ρ(q,β, p) =
1

Z
exp

!
−β(E(q) + pV (q))

"
(72)

Comparatively, in the present recovery of QM, the statistical physics inter-
pretation is also adopted. Instead of an energy-meter or a volume-meter, we
have a phase-invariant meter, and the constraint is given as follows:

tr

3
0 −b

b 0

4
=

$

q∈Q
ρ(q) tr

1
0 −b(q)

b(q) 0

2
(73)

The usage of the trace enforces the phase-invariance of the instrument. Yet,
and quite simply, maximizing the entropy under this constraints produces the
probability measure of the wave-function including the Born rule. This is the
true origin of the Born rule, here reported for the first time. The interpretation
simply becomes that of an instrument performing a sequence of measurement
on the system such that an average value is obtained, but instead of the simpler
scalar instruments used in statistical physics, here we have a phase-invariant in-
strument. This instrument is responsible for the quantum mechanical behaviour
associated with the wave-function. What is an example of such a detector; quite
simply a photo-counter would be one. Such an instrument produces a sequence
of incidences (’clicks’) as photons are detected and ”advanced features” such as
an interference pattern is a consequence of this phase-invariance.

Now, the correct interpretation of quantum mechanics is simply the conse-
quence of the existence of phase-invariant photon counters producing series of
incidence counts which constrains the entropy of a physical system. Finally,
maximizing said entropy using the typical tools of statistical physics produces
the Born rule as a special case of the Gibbs ensemble. The interpretation of
QM and statistical physics are now unified as the same interpretation.

It is not a collapse that occurs but instead a derivation of the wave-function
from a sequence of incidences recorded by phase-invariant instruments. This
is the natural interpretation; as a system of statistical physics whose entropy
is maximized under proper phase-invariant constraint. Consequently, the inter-
pretation does not admit a collapse problem, anymore than a coin landing on
head creates a probability collapse problem (from 50-head/50-tail to 100-head
after landing) for classical statistics.
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5 Foundation of Physics (Quantum Gravity)

In this section we will show that the probability measure here-in derived adheres
to 1) the axioms of quantum mechanics, and 2) is simultaneously a gauge-
theoretical theory of gravitation.

We will introduce an algebra of natural states and we will use it to classify the
linear transformations on said amplitude. We will start with the 2D case, then
the 4D case. In all cases, the probability amplitude transforms linearly with
respect to general linear transformations and the probability measure, obtained
from the determinant, is positive-definite.

5.1 Algebra of Natural States, in 2D

The notation of our upcoming definitions will be significantly improved if we use
a geometric representation for matrices. Let us therefore introduce a geometric
representation of 2× 2 matrices.

5.1.1 Geometric Representation of 2× 2 matrices

Let G(2,R) be the two-dimensional geometric algebra over the reals. We can
write a general multi-vector of G(2,R) as follows:

u = A+X+B (74)

where A is a scalar, X is a vector andB is a pseudo-scalar. Each multi-vector
has a structure-preserving (addition/multiplication) matrix representation. Ex-
plicitly, the multi-vectors of G(2,R) are represented as follows:

Definition 22 (Geometric representation of a matrix (2× 2)).

A+Xx̂+ Y ŷ +Bx̂ ∧ ŷ ∼=
1
A+X −B + Y
B + Y A−X

2
(75)

And the converse is also true, each 2 × 2 real matrix is represented as a
multi-vector of G(2,R).

We can define the determinant solely using constructs of geometric algebra[10].

Definition 23 (Clifford conjugate (of a G(2,R) multi-vector)).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 (76)

Then the determinant of u is:

Definition 24 (Geometric representation of the determinant (of a 2 × 2 ma-
trix)).

det : G(2,R) −→ R
u 2−→ u‡u

(77)

27



For example:

detu = (A−X−B)(A+X+B) (78)

= A2 −X2 − Y 2 +B2 (79)

= det

1
A+X −B + Y
B + Y A−X

2
(80)

Finally, we define the Clifford transpose:

Definition 25 (Clifford transpose (of a matrix of 2× 2 matrix elements)). The
Clifford transpose is the geometric analogue to the conjugate transpose. Like the
conjugate transpose can be interpreted as a transpose followed by an element-
by-element application of the complex conjugate, here the Clifford transpose is
a transpose, followed by an element-by-element application of the Clifford con-
jugate:

'

++(

u00 . . . u0n

...
. . .

...
um0 . . . umn

)

,,*

‡

=

'

++(

u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm

)

,,* (81)

If applied to a vector, then:

'

++(

v1

...
vm

)

,,*

‡

=
7
v‡
1 . . .v‡

m

8
(82)

5.1.2 Axiomatic Definition of the Algebra, in 2D

Let V be an m-dimensional vector space over G(2,R). A subset of vectors in V
forms an algebra of natural states A(V) iff the following holds:

1. ∀ψ ∈ A(V), the bilinear map:

〈·, ·〉 : V× V −→ G(2,R)
〈u,v〉 2−→ u‡v

(83)

is positive-definite:

〈ψ,ψ〉 ∈ R>0 (84)

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (85)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (86)
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We note the following comments and definitions:

• From (1) and (2) it follows that ∀ψ ∈ A(V), the probabilities sum to
unity:

$

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (87)

• ψ is called a natural (or physical) state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• ρ(q,ψ) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ, as Tψ → ψ′, which leaves the sum
of probabilities normalized (invariant):

$

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
$

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (88)

are the natural transformations of ψ.

• A matrix O such that ∀u∀v ∈ A(V) :

〈Ou,v〉 = 〈u,Ov〉 (89)

is called an observable.

• The expectation value of an observable O is:

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (90)

5.1.3 Reduction to Complex Hilbert Spaces

It is fairly easy to see that if we reduce the expression of our multi-vectors
(A+X+B|X→0 = A+B and further restrict 〈ψ,ψ〉 ∈ R>0 to 〈ψ,ψ〉 = 1, then
we recover the unit vectors of the complex Hilbert spaces:

• Reduction to the conjugate transpose:
7
〈u,v〉 = u‡v

555
x→0

=⇒ 〈u,v〉 = u†v (91)

• Reduction to the unitary transformations:

!
〈Tu,Tv〉 = 〈u,v〉

55
x→0

=⇒ T†T = I (92)

• Reduction to the Born rule:
1
ρ(q,ψ) =

1

〈ψ,ψ〉ψ(q)
‡ψ(q)

5555
X→0

=⇒ ρ(q,ψ) =
1

〈ψ,ψ〉ψ(q)
†ψ(q) (93)
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• Reduction of observables to Hermitian operators:

!
〈Ou,v〉 = 〈u,Ov〉

55
X→0

=⇒ O† = O (94)

Under this reduction, the formalism becomes equivalent to the Dirac-Von-
Neumann formalism of quantum mechanics.

5.1.4 Observable, in 2D — Self-Adjoint Operator

Let us now investigate the general case of an observable is 2D. A matrix O is
an observable iff it is a self-adjoint operator; defined as:

〈Oφ,ψ〉 = 〈φ,Oψ〉 (95)

∀u∀v ∈ V.

Setup: Let O =

1
O00 O01

O10 O11

2
be an observable. Let φ and ψ be 2 two-state

vectors φ =

1
φ1

φ2

2
and ψ =

1
ψ1

ψ2

2
. Here, the components φ1, φ2, ψ1, ψ2, O00,

O01, O10, O11 are multi-vectors of G(2,R).

Derivation: 1. Let us now calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (O00φ1 +O01φ2)
‡ψ1 + ψ‡

1(O00φ1 +O01φ2)

+ (O10φ1 +O11φ2)
‡ψ2 + ψ‡

2(O10φ1 +O11φ2) (96)

= φ‡
1O

‡
00ψ1 + φ‡

2O
‡
01ψ1 + ψ‡

1O00φ1 + ψ‡
1O01φ2

+ φ‡
1O

‡
10ψ2 + φ‡

2O
‡
11ψ2 + ψ‡

2O10φ1 + ψ‡
2O11φ2 (97)

2. Now, 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(O00ψ1 +O01v2) + (O00ψ1 +O01ψ2)

‡φ1

+ φ‡
2(O10ψ1 +O11ψ2) + (O10ψ1 +O11ψ2)

‡φ1 (98)

= φ‡
1O00ψ1 + φ‡

1O01ψ2 + ψ‡
1O

‡
00φ1 + ψ‡

2O
‡
01φ1

+ φ‡
2O10ψ1 + φ‡

2O11ψ2 + ψ‡
1O

‡
10φ1 + ψ‡

2O
‡
11φ1 (99)

For 〈Oφ,ψ〉 = 〈φ,Oψ〉 to be realized, it follows that these relations must
hold:
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O‡
00 = O00 (100)

O‡
01 = O10 (101)

O‡
10 = O01 (102)

O‡
11 = O11 (103)

Therefore, it follows that it must be the case that O must be equal to its
own Clifford transpose. Thus, O is an observable iff:

O‡ = O (104)

which is the equivalent of the self-adjoint operator O† = O of complex
Hilbert spaces.

5.1.5 Observable, in 2D — Eigenvalues / Spectral Theorem

Let us show how the spectral theorem applies to O‡ = O, such that its eigen-
values are real. Consider:

O =

1
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

2
(105)

In this case, it follows that O‡ = O:

O‡ =

1
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

2
(106)

This example is the most general 2 × 2 matrix O such that O‡ = O. The
eigenvalues are obtained as follows:

0 = det(O− λI) = det

1
a00 − λ a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11 − λ

2
(107)

implies:

0 = (a00 − λ)(a11 − λ)− (a− xe1 − ye2 − be12)(a+ xe1 + ye2 + be12 + a11)
(108)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2) (109)

finally:

λ = {1
2

7
a00 + a11 −

9
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

8
, (110)

1

2

7
a00 + a11 +

9
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

8
} (111)
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We note that in the case where a00−a11 = 0, the roots would be complex iff
a2−x2−y2+b2 < 0, but we already stated that the determinant of real matrices
must be greater than zero because the exponential maps to the orientation-
preserving general linear group— therefore it is the case that a2−x2−y2+b2 ≥ 0,
as this expression is the determinant of the multi-vector. Consequently, O‡ = O
— implies, for orientation-preserving1 transformations, that its roots are real-
valued, and thus constitute a ’geometric’ observable in the traditional sense of
an observable whose eigenvalues are real-valued.

5.2 Algebra of Natural States, in 3D (brief)

The 3D case will be a stepping stone for the 4D case. A general multi-vector of
G(3,R) can be written as follows:

u = A+X+V +B (112)

where A is a scalar, X is a vector, V is a pseudo-vector and B is a pseudo-
scalar. Such multi-vectors form a complete representation of 2 × 2 complex
matrices:

A+Xσ1 + Y σ2 + Zσ3 + V1iσ1 + V2iσ2 + V3iσ3 +Bσ1 ∧ σ2 ∧ σ3 (113)

∼=
1

A+ iB + iV2 + Z V1 + iV3 +X − iY
−V1 + iV3 +X + iY A+ iB − iV2 − Z

2
(114)

and the determinant of this matrix connects to the determinant of the multi-
vector as follows:

det · : G(3,R) −→ C
u 2−→ u‡u

(115)

where u‡ is the Clifford conjugate in 3D:

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 (116)

To produce a real number a further multiplication by its complex conjugate
is required:

|·| : G(3,R) −→ R
u 2−→ (u‡u)†u‡u

(117)

1We note the exception that a geometric observable may have real eigenvalues even in the
case of a transformation that reverses the orientation if the elements a00 − a11 are not zero
and up to a certain magnitude, whereas transformations in the natural orientation are not
bounded by a magnitude — thus creating an orientation-based asymmetry.
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where u† is defined as:

u‡ := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 (118)

5.2.1 Axiomatic Definition of the Algebra, in 3D

Let V be an m-dimensional vector space over G(3,R). A subset of vectors in V
forms an algebra of natural states A(V) iff the following holds:

1. ∀ψ ∈ A(V), the quadri-linear map:

〈·, ·, ·, ·〉 : V× V× V× V −→ G(3,R)
〈u,v,w,x〉 2−→ (u‡v)†w‡x

(119)

is positive-definite:

〈ψ,ψ〉 ∈ R>0 (120)

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ,ψ,ψ〉 (ψ(q)
‡ψ(q))†ψ(q)‡ψ(q) (121)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (122)

5.2.2 Reduction to Complex Hilbert Spaces

We now consider an algebra of natural states that comprises only those multi-
vectors of the form u′ ∝ u‡u (called a sub-algebra, sub-ring, or ’ideal’ of
the algebra). We also consider, as we obtain an exponential map from our
entropy maximization procedure, only multi-vectors which are exponentiated.
Then, the algebra reduces to the foundation of quantum mechanics on complex
Hilbert spaces (with an extra internal geometric structure). For example, a
wave-function would be of this form:

ψ =

'

++(

(exp 1
2u1)

‡ exp 1
2u1

...
(exp 1

2um)‡ exp 1
2um

)

,,* (123)

Each element of ψ are of this form:

(exp
1

2
u)‡ exp

1

2
u = exp

1

2
(A−X−V +B) exp

1

2
(A+X+V +B) (124)

= exp(A+B) exp
1

2
(−X−V) exp

1

2
(X+V) (125)

= exp(A+B) (126)
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Restricting the algebra to such states reduces the quadri-linear map to a
bilinear form:

〈·, ·〉 : A(V)×A(V) −→ C
〈ψ,φ〉 2−→ ψ†φ

(127)

yielding, when applied to said reduced subset of vectors, the same theory
as that of quantum mechanics on complex Hilbert space, but with an extra
geometric structure for its observables. The 3D case is a stepping stone for the
4D case, where this extra geometric structure will be revealed to be (in the 4D
case) the relativistic wave-function given in the form of a spinor field.

5.3 Algebra of Natural States, in 4D

We will now consider the general case for a vector space over 4× 4 matrices.

5.3.1 Geometric Representation (in 4D)

The notation will be significantly improved if we use a geometric representation
of matrices. Let G(4,R) be the two-dimensional geometric algebra over the
reals. We can write a general multi-vector of G(4,R) as follows:

u = A+X+ F+V +B (128)

where A is a scalar, X is a vector, F is a bivector, V is a pseudo-vector,
and B is a pseudo-scalar. Each multi-vector has a structure-preserving (ad-
dition/multiplication) matrix representation. Explicitly, the multi-vectors of
G(4,R) are represented as follows:

Definition 26 (Geometric representation of a matrix (4× 4)).

A+ Tγ0 +Xγ1 + Y γ2 + Zγ3

+ F01γ0 ∧ γ1 + F02γ0 ∧ γ2 + F03γ0 ∧ γ3 + F23γ2 ∧ γ3 + F13γ1 ∧ γ3 + F12γ1 ∧ γ2

+ Vtγ1 ∧ γ2 ∧ γ3 + Vxγ0 ∧ γ2 ∧ γ3 + Vyγ0 ∧ γ1 ∧ γ3 + Vzγ0 ∧ γ1 ∧ γ2

+Bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

!

"""#

A+X0 − iF12 − iV3 F13 − iF23 + V2 − iV1 −iB +X3 + F03 − iV0 X1 − iX2 + F01 − iF02

−F13 − iF23 − V2 − iV1 A+X0 + iF12 + iV3 X1 + iX2 + F01 + iF02 −iB −X3 − F03 − iV0

−iB −X3 + F03 + iV0 −X1 + iX2 + F01 − iF02 A−X0 − iF12 + iV3 F13 − iF23 − V2 + iV1

−X1 − iX2 + F01 + iF02 −iB +X3 − F03 + iV0 −F13 − iF23 + V2 + iV1 A−X0 + iF12 − iV3

$

%%%&

(129)

And the converse is also true, each 4 × 4 real matrix is represented as a
multi-vector of G(4,R).

We can define the determinant solely using constructs of geometric algebra[10].
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Definition 27 (Clifford conjugate (of a G(4,R) multi-vector)).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4 (130)

and ⌊m⌋{3,4} as the blade-conjugate of degree 3 and 4 (flipping the plus sign to
a minus sign for blade 3 and blade 4):

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4 (131)

The, the determinant of u is:

Definition 28 (Geometric representation of the determinant (of a 4 × 4 ma-
trix)).

det : G(4,R) −→ R
u 2−→ ⌊u‡u⌋3,4u‡u

(132)

5.3.2 Axiomatic Definition of the Algebra, in 4D

Let V be a m-dimensional vector space over the 4 × 4 real matrices. A subset
of vectors in V forms an algebra of natural states A(V) iff the following holds:

1. ∀ψ ∈ A(V), the quadri-linear form:

〈·, ·, ·, ·〉 : V× V× V× V −→ G(4,R)
〈u,v,w,x〉 2−→ ⌊u‡v⌋3,4w‡x

(133)

is positive-definite:

〈ψ,ψ,ψ,ψ〉 ∈ R>0 (134)

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ,ψ,ψ〉⌊ψ(q)
‡ψ(q)⌋3,4ψ(q)‡ψ(q) (135)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (136)

We note the following properties, features and comments:

• ψ is called a natural (or physical) state.

• 〈ψ,ψ,ψ,ψ〉 is called the partition function of ψ.

• ρ(ψ(q),ψ) is called the probability measure (or generalized Born rule) of
ψ(q).
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• The set of all matrices T acting on ψ such as Tψ → ψ′ which leaves the
sum of probabilities normalized (invariant):

$

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
$

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (137)

are the natural transformations of ψ.

• A matrix O such that ∀u∀v∀w∀x ∈ V :

〈Ou,v,w,x〉 = 〈u,Ov,w,x〉 = 〈u,v,Ow,x〉 = 〈u,v,w,Ox〉 (138)

is called an observable.

• The expectation value of an observable O is:

〈O〉 = 〈Oψ,ψ,ψ,ψ〉
〈ψ,ψ,ψ,ψ〉 (139)

5.3.3 Reduction to Complex Hilbert Space

Let us select a subset of multi-vectors. The subset will contain all multi-vectors
resulting from the multiplication of an even-multi-vector by its own Clifford
conjugate. Consistent with our entropy maximization procedure, the elements
will also be exponentiated.

ψ =

'

++(

(exp 1
2u1)

‡ exp 1
2u1

...
(exp 1

2um)‡ exp 1
2um

)

,,* (140)

The form of the elements of ψ is:

ψ‡ψ = exp
1

2
(A− F+B) exp

1

2
(A+ F+B) (141)

= exp
1

2
A exp−1

2
F exp

1

2
B exp

1

2
A exp

1

2
F exp

1

2
B (142)

= expA expB (143)

On such states, the quadri-linear map is reduced to the Born rule (a bilinear
map):

〈·, ·〉 : A(V)×A(V) −→ C
〈ψ,φ〉 2−→ ψ†φ

(144)

In our example, and with this bilinear map, 〈ψ‡ψ,ψ‡ψ〉 = exp 2A.
We note the similarity of this sub-algebra to David Hestenes[11]’s geometric

algebra formulation of the relativistic wave-function, given as ψ =
√
ρeiB/2eF/2.

David Hestenes connects his wave-function to a complex number via the reverse
ψ̃ :=

√
ρeiB/2e−F/2, such that ψψ̃ = ρeiB .

36



5.4 Law of Motion

5.4.1 Probability-Preserving Evolution (Left Action in 2D)

A left action on a wave-function : G |ψ〉, connects to the bilinear form as follows:
〈ψ|G‡G |ψ〉. The invariance requirement on G is as follows:

〈ψ|G‡G |ψ〉 = 〈ψ|ψ〉 (145)

We are thus interested in the group of matrices such that:

G‡G = I (146)

Let us consider a two-state system. A general transformation is:

G =

1
u v
w x

2
(147)

where u, v, w, x are multi-vectors of 2 dimensions. The expression G‡G is:

G‡G =

3
v‡ u‡

w‡ x‡

41
v w
u x

2
=

3
v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x

4
(148)

For the results to be the identity, it must be the case that:

v‡v + u‡u = 1 (149)

v‡w + u‡x = 0 (150)

w‡v + x‡u = 0 (151)

w‡w + x‡x = 1 (152)

This is the case if

G =
1√

v‡v + u‡u

3
v u

−eϕu‡ eϕv‡

4
(153)

where u, v are multi-vectors of 2 dimensions, and where eϕ is a unit multi-
vector. Comparatively, the unitary case is obtained with X → 0, and is:

U =
19

|a|2 + |b|2

3
a b

−eiθb† eiθa†

4
(154)
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We can show that G‡G = I as follows:

=⇒ G‡G =
1

v‡v + u‡u

3
v‡ −e−ϕu
u‡ e−ϕv

43
v u

−eϕu‡ eϕv‡

4
(155)

=
1

v‡v + u‡u

3
v‡v + u‡u v‡u− v‡u
u‡v − u‡v u‡u+ v‡v

4
(156)

= I (157)

In the case where G and |ψ〉 are n-dimensional, we can find an expression
for it starting from a diagonal matrix:

D =

3
ex1x̂+y1ŷ+ib1 0

0 ex2x̂+y2ŷ+ib2

4
(158)

where G = PDP−1. It follows quite easily that D‡D = I, because each
diagonal entry produces unity: e−x1x̂−y1ŷ−ib1ex1x̂+y1ŷ+ib1 = 1.

5.4.2 Probability-Preserving Evolution (Adjoint Action in 2D)

Since the elements of |ψ〉 are matrices, in the general case, the transformation
is given by adjoint action:

G |ψ〉G−1 (159)

The bilinear form is:

(G |ψ〉G−1)‡(G |ψ〉G−1) = (G−1)‡ 〈ψ|G‡G |ψ〉G−1 (160)

and the invariance requirement on G is as follows:

(G−1)‡ 〈ψ|G‡G |ψ〉G−1 = 〈ψ|ψ〉 (161)

With a diagonal matrix, this occurs for general linear transformations:

D =

'

++(

ea1+x1x̂+y1ŷ+ib1 0 0
0 ea2+x2x̂+y2ŷ+ib2 0

0 0
. . .

)

,,* (162)

where G = PDP−1.
Taking a single diagonal entry as an example, the reduction is:

38



e−a1+x1x̂+y1ŷ+ib1ψ‡
1e

a1−x1x̂−y1ŷ−ib1ea1+x1x̂+y1ŷ+ib1ψ1e
−a1−x1x̂−y1ŷ−ib1 (163)

= e−a1+x1x̂+y1ŷ+ib1ψ‡
1e

2a1ψ1e
−a1−x1x̂−y1ŷ−ib1 (164)

We note that ψ‡ψ is a scalar, therefore

= ψ‡
1ψ1e

2a1e−a1+x1x̂+y1ŷ+ib1e−a1−x1x̂−y1ŷ−ib1 (165)

= ψ‡
1ψ1e

2a1e−a1e−a1 = ψ‡
1ψ1 (166)

5.4.3 General Linear Schrödinger Equation (Left Action)

The standard Schrödinger equation can be derived as follows. First, assume
U(t) = e−itH , and its Taylor expansion to the first linear term: U(δt) ≈ 1−iδtH.
Then:

55ψ(t+ δt)
6
= U(δt)

55ψ(t)
6
≈ (1− iδtH) |ψ〉 (167)

=⇒
55ψ(t+ δt)

6
− |ψ〉 ≈ −iδtH |ψ〉 (168)

=⇒ i

55ψ(t+ δt)
6
− |ψ〉

δt
≈ H |ψ〉 (169)

=⇒ i
∂
55ψ(t)

6

∂t
= H |ψ〉 (170)

Now, we wish to use the same derivation, but apply it to the 2D general
linear version of the unitary group:

U†U = I → (G−1)‡ 〈ψ|G‡G |ψ〉G−1 = 〈ψ|ψ〉 (171)

In the general linear case, the imaginary number i is replaced with an arbi-
trary matrix M, via the relation:

G = e−MτH (172)

where H is self-adjoint : H‡ = H.
Then, the general linear Schrödinger equation for the one-parameter group

of the general linear group G(τ) = e−MτH , for the left action is:

55ψ(τ + δτ)
6
= G(δτ)

55ψ(τ)
6

(173)

≈ (1−MδτH)
55ψ(τ)

6
(174)

=
55ψ(τ)

6
−MδτH

55ψ(τ)
6

(175)

=⇒ −
∂
55ψ(τ)

6

∂τ
= MH

55ψ(τ)
6

(176)
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and iff ∃M−1, then

−M−1 ∂
55ψ(τ)

6

∂τ
= H

55ψ(τ)
6

(177)

5.4.4 General Linear Schrödinger Equation (Adjoint Action)

And for the adjoint action, it is:

55ψ(τ + δτ)
6
= G(δτ)

55ψ(τ)
6
G(δτ)−1 (178)

≈ (1−MδτH)
55ψ(τ)

6
(1 +MδτH) (179)

=
55ψ(τ)

6
(1 +MδτH)−MδτH

55ψ(τ)
6
(1 +MδτH) (180)

=
55ψ(τ)

6
+
55ψ(τ)

6
MδτH −MδτH

55ψ(τ)
6
−MδτH

55ψ(τ)
6
MδτH
(181)

≈
55ψ(τ)

6
+
55ψ(τ)

6
MδτH −MδτH

55ψ(τ)
6

(182)

=
55ψ(τ)

6
+ δτ

:
MH,

55ψ(τ)
6;

(183)

=⇒
∂
55ψ(τ)

6

∂τ
=

:
MH,

55ψ(τ)
6;

(184)

5.4.5 Conservation of Probability (Left Action in 2D)

For a parametrization of ψ, the probability must normalize. For instance, a x
parametrization would yield:

<
ψ(τ, x)‡ψ(τ, x) dx = N(τ) (185)

To lighten the notation we will not explicitly write the dependance of ψ in
(τ, x).

dN(τ)

dτ
= 0 =

<
∂ψ‡ψ

∂τ
dx (186)

=

<
∂ψ‡

∂τ
ψ dx+

<
ψ‡ ∂ψ

∂τ
dx (187)

We now inject the following relation (derived from the general linear Schrödinger
equation):

∂ψ

∂τ
= MHψ (188)

∂ψ‡

∂τ
= (MHψ)‡ = ψ‡H‡M‡ (189)
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Injecting them, we get:

dN(τ)

dτ
=

<
∂ψ‡

∂τ
ψ dx+

<
ψ‡ ∂ψ

∂τ
dx (190)

=

<
ψ‡M‡H‡ψ dx+

<
ψ‡MHψ dx (191)

We note that M‡ = −M (this requires that 〈M〉0 = 0, which is the case for the
left action) and that H‡ = H (which it is iff it is self-adjoint), therefore:

= −
<

ψ‡MHψ dx+

<
ψ‡MHψ dx (192)

Finally, adding the requirement that [M, H] = 0, we get the conservation of
probability:

= 0 (193)

The general linear form of the Schrödinger equation is a conservation of
probability law of the general linear case.

5.4.6 Conservation of Probability (Adjoint Action in 2D)

For a parametrization of ψ, the probability must normalize. For instance, a x
parametrization would yield:

<
ψ(τ, x)‡ψ(τ, x) dx = N(τ) (194)

To lighten the notation we will not explicitly write the dependance of ψ in
(τ, x).

dN(τ)

dτ
= 0 =

<
∂ψ‡ψ

∂τ
dx (195)

=

<
∂ψ‡

∂τ
ψ dx+

<
ψ‡ ∂ψ

∂τ
dx (196)

We now inject the following relation (derived from the general linear Schrödinger
equation):

∂ψ

∂τ
= MHψ − ψMH (197)

∂ψ‡

∂τ
= (MHψ − ψMH)‡ = ψ‡H‡M‡ −H‡M‡ψ‡ (198)

Injecting them, we get:
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dN(τ)

dτ
=

<
∂ψ‡

∂τ
ψ dx+

<
ψ‡ ∂ψ

∂τ
dx (199)

=

<
ψ‡H‡M‡ψ −H‡M‡ψ‡ψ dx+

<
ψ‡MHψ − ψ‡ψMH dx (200)

=

<
ψ‡H‡M‡ψ −H‡M‡ψ‡ψ + ψ‡MHψ − ψ‡ψMH dx (201)

We note that M‡ = A − m and that H‡ = H, therefore (we also pose M =
A+m):

=

<
ψ‡H(A−m)ψ −H(A−m)ψ‡ψ + ψ‡(A+m)Hψ − ψ‡ψ(A+m)H dx

(202)

=

<
−ψ‡Hmψ +Hmψ‡ψ + ψ‡mHψ − ψ‡ψmH dx (203)

Finally, adding the requirement that [m, H] = 0, we get the conservation of
probability:

= 0 (204)

The general linear form of the Schrödinger equation is a conservation of
probability law of the general linear case.

The 4D case is omitted due to excessive verbosity.

5.5 Gravity as a Gauge Theory

5.5.1 Unitary Gauge (Recap)

The typical gauge theory in quantum electrodynamics is obtained by the pro-
duction of a gauge covariant derivative over a U(1) invariance associated with
the use of the complex norm in any probability measure of quantum mechanics.
Localizing the invariance group θ → θ(x) yields the corresponding covariant
derivative:

Dµ = ∂µ + iqAµ(x) (205)

Where Aµ(x) is the gauge field. The U(1) invariance results from the usage
of the complex norm to construct a probability measure in a quantum theory,
and the presence of the derivative is the result of constructing said probabil-
ity measure as the Lagrangian of a Dirac field. If one then applies a gauge
transformation to ψ and Aµ:

ψ → e−iqθ(x)ψ and Aµ → Aµ + ∂µθ(x) (206)
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Then, applies the covariant derivation, one gets:

Dµψ = ∂µψ + iqAµψ (207)

→ ∂µ(e
−iqθ(x)ψ) + iq(Aµ + ∂µθ(x))(e

−iqθ(x)ψ) (208)

= e−iqθ(x)Dµψ (209)

Finally, the field is given as follows:

Fµν = [Dµ,Dν ] (210)

where Dµ is the covariant derivative with respect to the potential one-form
Aµ = A α

µ Tα, and where Tα are the generators of the lie algebra of U(1).

5.5.2 General Linear Gauge

The fundamental invariance group of our measure is the orientation-preserving
general linear group GL+(n,R), if the algebra is even, or the complex general
linear group GL(n,C) if the algebra is odd, rather than U(1). Gauging the
GL+(n,R) group is known to substantially connect to general relativity, as the
resulting GL(4,R)-valued field can be viewed as the Christoffel symbols Γµ, and
the commutator of the covariant derivatives as the Riemann tensor..

A general linear transformation of ψ:

ψ′(x) → gψ(x)g−1 (211)

leaves the probability measure invariant.
The gauge-covariant derivative is:

Dµψ = ∂µψ − [iqAµ,ψ] (212)

Finally, the field is given as follows:

Rµν = [Dµ, Dν ] (213)

where Rµν is the Riemann tensor.
Since this is the result of the GL gauge invariance, then gravity is fundamen-

tally integrated throughout the present quantum mechanical framework because
of GL invariance, for the same reason that electromagnetism is fundamentally
integrated within quantum theory over the complex norm because of U(1) in-
variance.
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6 Testable Prediction

Certain linear transformations of the wave-function, under the general linear
group and its subgroups, would produce richer interference patterns that what is
possible merely with complex interference. The possibility of richer interference
patterns has been proposed before; specifically, I note the work of B. I. Lev.[12]
which suggests (theoretically) the possibility of an extended interference pattern
associated with the David Hestenes form of the relativistic wave-function and
for the subset of rotors.

We note that interference experiments have paid off substantial dividends in
the history of physics and are somewhat easy to construct and more affordable
that many alternative experiments.

6.1 Geometric Interference

Let us start by introducing a notation for a dot product, then we will list the
various possible interference patterns.

6.1.1 Geometric Algebra Dot Product

Let us introduce a notation. We will define a bilinear form using the dot product
notation, as follows:

· : G(2n,R)×G(2n,R) −→ R
u · v 2−→ 1

2 (det(u+ v)− detu− detv)
(214)

For example,

u = A1 +X1e1 + Y1e2 +B1e12 (215)

v = A2 +X2e1 + Y2e2 +B2e12 (216)

=⇒ u · v = A1A2 +B1B2 −X1X2 − Y1Y2 (217)

Iff detu > 0 and detv > 0 then u·v is always positive, and therefore qualifies
as a positive inner product (over the positive det group), but no greater than
either detu or detv, whichever is larger. This definition of the dot product
extends to multi-vectors of 4 dimensions.

2D: In 2D the dot product is equivalent to this form:

1

2
(det(u+ v)− detu− detv) =

1

2

7
(u+ v)‡(u+ v)− u‡u− v‡v

8
(218)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v (219)

= u‡v + v‡u (220)
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4D: In 4D it is substantially more verbose:

1

2
(det(u+ v)− detu− detv) (221)

=
1

2

7
⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v

8

(222)

=
1

2

7
⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .

8
(223)

= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . . (224)

= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (225)

6.1.2 Geometric Interference (General Form)

A multi-vector can be written as u = a + s, where a is a scalar and s is the
multi-vectorial part. In general, the exponential expu equals exp a exp s because
a commutes with s.

One can thus write a general two-state system as follows:

ψ = ψ1 + ψ2 = e
2
nA1e

2
nS1 + e

2
nA2e

2
nS2 (226)

(227)

The general interference pattern will be of the following form:

detψ1 + ψ2 = detψ1 + detψ2 + ψ1 · ψ2 (228)

= e2A1 + e2A2 + ψ1 · ψ2 (229)

where detψ1 + detψ2 is a sum of probabilities and where ψ1 · ψ2 is the
interference pattern.

6.1.3 Complex Interference (Recall)

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eB1 + eA2eB2 (230)
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The interference pattern familiar to quantum mechanics is the result of the
complex norm:

ψ†ψ = ψ†
1ψ1 + ψ†

2ψ2 + ψ†
1ψ2 + ψ†

2ψ1 (231)

= eA1e−B1eA1eB1 + eA2e−B2eA2eB2 + eA1e−B1eA2eB2 + eA2e−B2eA1eB1

(232)

= e2A1 + e2A2 + eA1+A2(e−B1+B2 + e−(−B1+B2)) (233)

= e2A1 + e2A2

- ./ 0
sum

+2eA1+A2 cos(B1 −B2)- ./ 0
interference

(234)

6.1.4 Geometric Interference in 2D

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eX1+B1 + eA2eX2+B2 (235)

To lighten the notation we will write it as follows:

ψ = ψ1 + ψ2 = eA1eS1 + eA2eS2 (236)

where

S = X+B (237)

The interference pattern for a full general linear transformation on a two-
state wave-function in 2D is:

ψ†ψ = ψ†
1ψ1 + ψ†

2ψ2 + ψ†
1ψ2 + ψ†

2ψ1 (238)

= eA1(eS1)‡eA1eS1 + eA2(eS2)‡eA2eS2 + eA1(eS1)‡eA2eS2 + eA2(eS2)‡eA1eS1

(239)

= e2A1 + e2A2 + eA1+A2((eS1)‡eS2 + (eS2)‡eS1) (240)

= e2A1 + e2A2

- ./ 0
sum

+ eA1+A2(e−X1−B1eX2+B2 + e−X2−B2eX1+B1)- ./ 0
interference

(241)

6.1.5 Geometric Interference in 4D

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = e
1
2A1e

1
2 (X1+F1+V1+B1) + e

1
2A2e

1
2 (X2+F2+V2+B2) (242)

To lighten the notation we will write it as follows:

ψ = ψ1 + ψ2 = e
1
2A1e

1
2S1 + e

1
2A2e

1
2S2 (243)
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where

S = X+ F+V +B (244)

The geometric interference patterns for a full general linear transformation
in 4D is given by the product:

⌊ψ‡ψ⌋3,4ψ‡ψ = ⌊ψ‡
1ψ1⌋3,4ψ‡

1ψ1 + ⌊ψ‡
2ψ2⌋3,4ψ‡

2ψ2 + ψ1 · ψ2 (245)

= e2A1 + e2A2 +
7
e

1
2A1e

1
2S1

8
·
7
e

1
2A2e

1
2S2

8
(246)

In many cases of interest, the pattern simplifies:

6.1.6 Geometric Interference in 4D (Shallow Phase Rotation)

If we consider a sub-algebra in 4D comprised of even-multi-vector products ψ‡ψ,
then a two-state system is given as:

ψ = ψ1 + ψ2 (247)

where

ψ1 = (e
1
2A1e

1
2F1e

1
2B1)‡(e

1
2A1e

1
2F1e

1
2B1) = eA1eB1 (248)

ψ2 = (e
1
2A1e

1
2F1e

1
2B1)‡(e

1
2A1e

1
2F1e

1
2B1) = eA2eB2 (249)

Thus

ψ = eA1eB1 + eA2eB2 (250)

The quadri-linear map becomes a bilinear map:

ψ†ψ = (eA1e−B1 + eA2e−B2)(eA1eB1 + eA2eB2) (251)

= eA1e−B1eA1eB1 + eA1e−B1eA2eB2 + eA2e−B2eA1eB1 + eA2e−B2eA2eB2

(252)

= e2A1 + e2A2

- ./ 0
sum

+2eA1+A2 cos(B1 −B2)- ./ 0
complex interference

(253)

6.1.7 Geometric Interference in 4D (Deep Phase Rotation)

A phase rotation on the base algebra (rather than the sub-algebra) produces a
difference interference pattern. Consider a two-state wave-function:

ψ = ψ1 + ψ2 = e
1
2A1e

1
2B1 + e

1
2A2e

1
2B2 (254)
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The sub-product part is:

ψ‡ψ = (e
1
2A1e

1
2B1 + e

1
2A2e

1
2B2)(e

1
2A1e

1
2B1 + e

1
2A2e

1
2B2) (255)

= e
1
2A1e

1
2B1e

1
2A1e

1
2B1 + e

1
2A1e

1
2B1e

1
2A2e

1
2B2 + e

1
2A2e

1
2B2e

1
2A1e

1
2B1 + e

1
2A2e

1
2B2e

1
2A2e

1
2B2

(256)

= eA1eB1 + eA2eB2 + 2e
1
2 (A1+A2)e

1
2 (B1+B2) (257)

The final product is:

⌊ψ‡ψ⌋3,4ψ‡ψ = (eA1e−B1 + eA2e−B2 + 2e
1
2 (A1+A2)e−

1
2 (B1+B2))

× (eA1eB1 + eA2eB2 + 2e
1
2 (A1+A2)e

1
2 (B1+B2)) (258)

= eA1e−B1eA1eB1 + eA1e−B1eA2eB2 + eA1e−B12e
1
2 (A1+A2)e

1
2 (B1+B2)

+ eA2e−B2eA1eB1 + eA2e−B2eA2eB2 + eA2e−B22e
1
2 (A1+A2)e

1
2 (B1+B2)

+ 2e
1
2 (A1+A2)e−

1
2 (B1+B2)eA1eB1

+ 2e
1
2 (A1+A2)e−

1
2 (B1+B2)eA2eB2

+ 2e
1
2 (A1+A2)e−

1
2 (B1+B2)2e

1
2 (A1+A2)e

1
2 (B1+B2) (259)

= e2A1 + e2A2 + 2eA1+A2 cos(B1 −B2)

+ eA1e−B12e
1
2 (A1+A2)e

1
2 (B1+B2)

+ eA2e−B22e
1
2 (A1+A2)e

1
2 (B1+B2)

+ 2e
1
2 (A1+A2)e−

1
2 (B1+B2)eA1eB1

+ 2e
1
2 (A1+A2)e−

1
2 (B1+B2)eA2eB2

+ 4eA1+A2 (260)

= e2A1 + e2A2

- ./ 0
sum

+2eA1+A2 cos(B1 −B2)- ./ 0
complex interference

+2e
1
2 (A1+A2)(eA1 + eA2) cos

1

2
(B1 −B2) + 4eA1+A2

- ./ 0
deep phase interference

(261)

6.1.8 Geometric Interference in 4D (Deep Spinor Rotation)

Consider a two-state wave-function (we note that [F,B] = 0):

ψ = ψ1 + ψ2 = e
1
2A1e

1
2F1e

1
2B1 + e

1
2A2e

1
2F2e

1
2B2 (262)

The geometric interference pattern for a full general linear transformation
in 4D is given by the product:
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⌊ψ‡ψ⌋3,4ψ‡ψ (263)

Let us start with the sub-product:

ψ‡ψ = (e
1
2A1e−

1
2F1e

1
2B1 + e

1
2A2e−

1
2F2e

1
2B2)(e

1
2A1e

1
2F1e

1
2B1 + e

1
2A2e

1
2F2e

1
2B2)
(264)

= e
1
2A1e−

1
2F1e

1
2B1e

1
2A1e

1
2F1e

1
2B1 + e

1
2A1e−

1
2F1e

1
2B1e

1
2A2e

1
2F2e

1
2B2

+ e
1
2A2e−

1
2F2e

1
2B2e

1
2A1e

1
2F1e

1
2B1 + e

1
2A2e−

1
2F2e

1
2B2e

1
2A2e

1
2F2e

1
2B2

(265)

= eA1eB1 + eA2eB2 + e
1
2 (A1+A2)e

1
2 (B1+B2)(e−

1
2F1e

1
2F2) + e−

1
2F2e

1
2F1)

(266)

= eA1eB1 + eA2eB2 + e
1
2 (A1+A2)e

1
2 (B1+B2)(R̃1R2 + R̃2R1) (267)

where R = e
1
2F, and where R̃ = e−

1
2F.

The full product is:

⌊ψ‡ψ⌋3,4ψ‡ψ =
7
eA1e−B1 + eA2e−B2 + e

1
2 (A1+A2)e

1
2 (−B1−B2)(R̃1R2 + R̃2R1)

8

×
7
eA1eB1 + eA2eB2 + e

1
2 (A1+A2)e

1
2 (B1+B2)(R̃1R2 + R̃2R1)

8

(268)

= eA1e−B1eA1eB1 + eA1e−B1eA2eB2 + eA1e−B1e
1
2 (A1+A2)e

1
2 (B1+B2)(R̃1R2 + R̃2R1)

+ eA2e−B2eA1eB1 + eA2e−B2eA2eB2 + eA2e−B2e
1
2 (A1+A2)e

1
2 (B1+B2)(R̃1R2 + R̃2R1)

+ e
1
2 (A1+A2)e

1
2 (−B1−B2)(R̃1R2 + R̃2R1)e

A1eB1

+ e
1
2 (A1+A2)e

1
2 (−B1−B2)(R̃1R2 + R̃2R1)e

A2eB2

+ e
1
2 (A1+A2)e

1
2 (−B1−B2)(R̃1R2 + R̃2R1)e

1
2 (A1+A2)e

1
2 (B1+B2)(R̃1R2 + R̃2R1)

(269)

= e2A1 + e2A2 + 2eA1+A2 cos(B1 −B2) (270)

+ e
1
2 (A1+A2)(R̃1R2 + R̃2R1)( (271)

eA1(e
1
2 (−B1+B2) + e

1
2 (B1−B2)) (272)

+ eA2(e
1
2 (B1−B2) + e

1
2 (−B1+B2))) (273)

+ eA1+A2(R̃1R2 + R̃2R1)
2 (274)

= e2A1 + e2A2

- ./ 0
sum

+2eA1+A2 cos(B1 −B2)- ./ 0
complex interference

+ 2e
1
2 (A1+A2)(eA1 + eA2)(R̃1R2 + R̃2R1)(cos

1

2
(B1 −B2)) + eA1+A2(R̃1R2 + R̃2R1)

2

- ./ 0
deep spinor interference

(275)
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6.1.9 Geometric Interference Experiment (Sketch)

In the case of the general linear group, the interference pattern is much more
complicated than the simple cosine of the standard Born rule, but that is to be
expected as it comprises the full general linear group and not just the unitary
group. It accounts for the group of all geometric transformations which preserves
the probability distribution ρ for a two-state general linear system.

General linear interference can be understood as a generalization of complex
interference, which is recovered under a ”shallow” phase rotation in 4D and
under just a plain normal phase rotation in 2D. Furthermore, when all elements
of the odd-sub-algebra are eliminated (by posing X → 0, V → 0), then the
wave-function reduces to the geometric algebra form of the relativistic wave-
function identified by David Hestenes, in terms of a spinor field.

Such reductions produce a series of interference patterns of decreasing com-
plexity, and as such they provide a method to experimentally identify which
group of geometric transformations the world obeys, using interference exper-
iments as the identification tool. Identification of the full general linear inter-
ference pattern (with all the elements A,X,F,V,B) in a lab experiment would
suggest a gauge-theoretical theory of gravity, whereas identification of a reduced
interference pattern (produced by A,F,B) and subsequently showing a failure
to observe the full general linear interference (X → 0,V → 0) would suggest at
most spinor-level interference.

In any such case, a general experimental setup would send a particle into
two distinct paths. Then, either: a) one of the paths undergoes a general linear
transformation, while the other doesn’t or b) both paths undergo a different
general linear transformation. Then, the paths are recombined to produce an
interference pattern on a screen. Depending on the nature of the transformation,
a deformation of the interference pattern based on the geometry of the setup
should be observed.

One can further utilize the non-commutativity of the general linear transfor-
mations to identify only the difference between complex-interference and general
linear interference. One would apply the same general linear transformations to
each path, but would reverse the order in which the transformations are applied.
The resulting interference pattern would then be compared to a case where both
paths are transformed in the same order. Then, complex-interference, as it is
fully commutative, would predict the same interference pattern irrespective of
the order the transformations are applied in — whereas, with general linear
interference, as it is non-commutative, would predict different interference pat-
terns.

To achieve this it may be necessary to use a three-dimensional detector,
whose idealized construction is a homogeneous bath of impurities (allowing
photons to ’click’ anywhere within the volume of the detector), instead of a
two-dimensional screen, since the opportunity for non-commutative behaviour
often kicks in at three dimensions or higher.
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7 Discussion

The overall implications of the existence of this type of proof from first principles
are of course numerous. Here, we discuss what we believe are likely to be its most
significant implications. Using our formal system of science, we have established
the following:

• The model which maximizes the axiomatic information produced by the
observer as it measures experimental space, is that of the ”universe” (for-
mulated as a model of quantum gravity).

Before we begin the interpretation of this result, let us emphasize its gen-
erality. The manifest is a ’brute’ representation of experimental data, not just
in mathematics but also those of physical experiments. This is a consequence
of the requirement that experiments be formally reproducible, and of the re-
striction that only halting programs are formally reproducible (thesis 1 and 2).
Thus, the sum-total of all experimental data must therefore be in the form of a
manifest, lest it is not formally reproducible and is thus disqualified as science.
It is under this constraint of formal reproducibility that the connection between
this purely mathematical exercise, and nature, occurs.

We re-state an example of this correspondence: For instance, one can equate
the set of all non-relativistic quantum mechanical experiments to the set of all
solutions of the Schrödinger equation. The later are programs (i.e. numerical
solutions to the equation are typically obtained by computers, or by hand), and
they ought to map one-to-one with the former, lest the equation is falsified.
This correspondance of course must hold true for any theory to be qualified as
a scientific theory.

Finally, we state that since one can construct a computer in nature, and
instruct it to recursively enumerate halting programs, then by necessity an
experimentally-complete physical theory (which would be able to account for
the inner-workings of said computer) must share its domain with that of the
halting programs.

7.1 The Observer as a Measure Space

Axiom 1 defines the observer as a measure space over experimental space. In-
formation is associated to this measure because the measure is a probability
measure. Finally, when the entropy of said information is maximized, the prob-
ability measure produces a ”model of the universe” (laws of physics/quantum
theory of gravity). One can thus understand the universe as the model which
maximizes the axiomatic information of experimental space produced by an act
of measurement.

An axiom, by definition, is not provable. Consequently neither explaining
why the observer exists nor its origins are possible, only that its existence, which
we take as the given, implies said model of the universe. We stress that this
relationship between the observer and the universe is a purely logical entailment
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and that it does not necessarily imply a causal relationship from the observer
to the universe. Let us attempt to clarify.

One is free to contextualize experimental data within a preferred formal
axiomatic system. For instance, one may invent the notion of a past and claim
a preference for past-to-present causal explanations. In such a framework, one
could create a causal model of cosmology in which the first event is the Big
Bang. One may attempt to arrange events in a sequence until, if successful,
one eventually gets to the observer. The first event of a causal model generally
cannot be explained by the model. In the present example, one would be unable
to explain the Big Bang, as this is the given and first event of the model. Further
problems may be encountered along the way especially when it comes to defining
the observer as a product of said model (at a ’high-level’ this may include up
to the hard problem of consciousness, and at lower-levels a myriads of problem
known as the ’observer effect’).

Instead one may consider a logical model, and disregard causality completely.
In this case the Big Bang would not be considered the first event, rather it would
be considered a theorem/consequence of the observed accelerated expansion of
the universe which is a part of the present set of experimental data. More
generally it is the case that the observer, by inspecting present experimental
data will derive a model he or she deems appropriate for said data. Thus, the
experimental data logically entails the model. Consequently, it is accurate and
logically valid to place the experimental data at the first level of the logical
enquiry, as we have done, and any derivable model at the level of a theorem.
Doing so, we thus obtain a, we allege, superior and more representative of reality
model whose glue is logical entailment, and not causality. The observer logically
entails the universe, and it is inconsequential whether the observer is a causal
product of the universe or if it exists brutely... the glue has already set in
the form of a logical entailment assuming its brute existence, and the model is
physically complete.

7.2 Origins of the Laws of Physics

The formal system of science predicts that (and explains why) scientists (in the
wild) eventually converged towards a scientific model of reality in which they
concluded themselves to be the inhabitants of a universe of the kind described
by the laws of physics here-in derived. As controversial as such a statement
may sound, please nonetheless note that we are simply claiming a proof that
scientists doing science will eventually discover physics — nothing unexpected
here (and empirically speaking, this is what they have done!). The unexpected
part is that the recovery of such model of the universe is a guaranteed result
obtained at the end of scientific process and holds for all possible manifests and
experimental states. Nonetheless it is what we have demonstrated. The laws of
physics do not appear special rather they appear exceedingly general; they are
merely an artefact of the structure of knowledge and how informative models
of knowledge are produced via entropy maximization, and follow directly from
the definition of an observer as a measure space over experimental space.
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7.3 Origins and Existence of the Universe

Just as we earlier decoupled ourselves from the need to used models involving
causality in section 7.1 and instead used logical entailment, we here also decouple
ourselves from another tenant of naturalism; physical ontology, consequently we
remain safely tucked away in the confines of agnosticism with respect to the
question, and instead exert a preference for information-maximal models.

The derivation of this model of the universe holds independently of the
ontology of the universe; that is whether the ’universe physically exists or not’,
decoupling itself from the need to settle this question to nonetheless is able to
provide a workable and predictive model. Only halting programs need to exists
for the derivation of the model to hold (and they do since I can easily create one
in my mind : PA ⊢ 1 + 1 = 2). This is why the system resolves the problem of
the existence of the universe elegantly; by deriving it as a model regardless of its
true physical status (an ontologically agnostic derivation), it can show that all
possible observers practicing science will eventually conclude themselves to be
residents of a universe described by said model as the guaranteed end product
of the inquiry. Note that we are not claiming that this type of proof ”creates”
the universe; we are simply claiming that it doesn’t matter for the purpose of
the model... if one does science, one will believe himself to live in one whether
said universe exists or not, and from the perspective of an observer, and further
for all practical purposes, perhaps this is equivalent to it existing.

7.4 Inviolability of the Laws of Physics

There is a continuum of models between Axiom 1 and Axiom 2 regarding how
informative they are. An observer can choose to model reality without entropy
(perhaps a belief that God is responsible for everything has a certain appeal -
in this case there is no need for entropy as there is only one possibility), or an
observer can model it at maximum entropy and obtain a model of the laws of
physics. As an observer, one can pick any model of reality provided that the
model is more restrictive of entropy than the laws of physics are. For instance,
one can say ”I won the lottery because God willed it P(win)=1”. Or one can
say ”the laws of physics give me one chance in a million and I was lucky enough
to win it P(win)=1/1000000”. Either are compatible with reality, but only
the laws of physics coincide with an informational maximum. As they are a
maximum, one obviously cannot pick a model less restrictive than the laws of
physics. The laws of physics thus appear to the observer as the most permissive
laws imaginable about reality, and perhaps this is why they seam inviolable.

8 Conclusion

We believe the formal system of science here-in presented to be a more pow-
erful formulation of the laws of physics, because it can provide mathematical
definitions for experimental data, the observer, it can derive the laws of physics
from the scientific method, provide an account for the wave-function collapse,
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identify the wave-function as a special form of the Gibbs ensemble, account for
the origin of the Born rule and finally provide an interpretation of quantum
physics matching that of statistical physics.

References

[1] Edmund L Gettier. Is justified true belief knowledge? analysis, 23(6):121–
123, 1963.

[2] Richard L Kirkham. Does the gettier problem rest on a mistake? Mind,
93(372):501–513, 1984.

[3] Gregory J Chaitin. Meta math! the quest for omega. arXiv preprint
math/0404335, 2004.

[4] G. J. Chaitin. Foundations of Mathematics. ArXiv Mathematics e-prints,
February 2002.

[5] Gregory Chaitin. Mathematics, complexity and philosophy.
https://www.academia.edu/31320410/Mathematics_Complexity_

and_Philosophy_full_bilingual_text_, 2010.

[6] Gregory J. Chaitin. A theory of program size formally identical to infor-
mation theory. J. ACM, 22(3):329–340, July 1975.

[7] Andrew M Gleason. Measures on the closed subspaces of a hilbert space.
In The Logico-Algebraic Approach to Quantum Mechanics, pages 123–133.
Springer, 1975.

[8] Ruth E Kastner. The transactional interpretation of quantum mechanics:
the reality of possibility. Cambridge University Press, 2013.
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A Notation

S will denote the entropy, A the action, L the Lagrangian, and L the La-
grangian density. Sets, unless a prior convention assigns it another symbol, will
be written using the blackboard bold typography (ex: L,W,Q, etc.). Matrices
will be in bold upper case (ex: A,B), whereas vectors and multi-vectors will
be in bold lower case (ex: u,v,g) and most other constructions (ex.: scalars,
functions) will have plain typography (ex. a,A). The identity matrix is I,
the unit pseudo-scalar (of geometric algebra) is I and the imaginary number
is i. The Dirac gamma matrices are γ0, γ1, γ2, γ3 and the Pauli matrices are
σx,σy,σz. The basis elements of an arbitrary curvilinear geometric basis will be
denoted e0, e1, e2, . . . , en (such that eν · eµ = gµν) and if they are orthonormal
as x̂0, x̂1, x̂2, . . . , x̂n (such that x̂µ · x̂ν = ηµν). The asterisk z∗ denotes the com-
plex conjugate of z, and the dagger A† denotes the conjugate transpose of A. A
geometric algebra ofm dimensions over a field F is noted as G(m,F). The grades
of a multi-vector will be denoted as 〈v〉k. Specifically, 〈v〉0 is a scalar, 〈v〉1 is a
vector, 〈v〉2 is a bi-vector, 〈v〉n−1 is a pseudo-vector and 〈v〉n is a pseudo-scalar.
Furthermore, a scalar and a vector 〈v〉0 + 〈v〉1 is a para-vector, and a combina-
tion of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades (〈v〉1 + 〈v〉3 + . . . )
are even-multi-vectors or odd-multi-vectors, respectively. The commutator is de-
fined as [A,B] := AB−BA and the anti-commutator as {A,B} := AB+BA.
We use the symbol ∼= to relate two sets that are related by a group isomorphism.
We denote the Hadamard product, or element-wise multiplication, of two ma-
trices using ⊙, and is written for instance as M ⊙ P, and for a multivector as
u⊙ v; for instance: (a0 + x0x̂+ y0ŷ + b0x̂ ∧ ŷ)⊙ (a1 + x1x̂+ y1ŷ + b01x̂ ∧ ŷ)
would equal a0a1 + x0x1x̂+ y0y1ŷ + b0b1x̂ ∧ ŷ.

B Lagrange equation

The Lagrangian equation to maximize is:

L(ρ,α, τ) = −kB
$

q∈Q
ρ(q) ln ρ(q) + α

'

(1−
$

q∈Q
ρ(q)

)

*+ τ tr

'

(M−
$

q∈Q
ρ(q)M(q)

)

*

(276)

where α and τ are the Lagrange multipliers. We note the usage of the
trace operator for the geometric constraint such that a scalar-valued equation is
maximized. Maximizing this equation for ρ by posing ∂L

∂ρ(p) = 0, where p ∈ Q,

we obtain:
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∂L
∂ρ(p) = −kB ln ρ(p)− kB − α− τ trM(p) (277)

0 = kB ln ρ(p) + kB + α+ τ trM(p) (278)

=⇒ ln ρ(p) =
1

kB

!
−kB − α− τ trM(p)

"
(279)

=⇒ ρ(p) = exp

1
−kB − α

kB

2
exp

1
− τ

kB
trM(p)

2
(280)

=
1

Z
det exp

1
− τ

kB
M(p)

2
(281)

where Z is obtained as follows:

1 =
$

q∈Q
exp

1
−kB − α

kB

2
exp

1
− τ

kB
trM(q)

2
(282)

=⇒
3
exp

1
−kB − α

kB

24−1

=
$

q∈Q
exp

1
− τ

kB
trM(q)

2
(283)

Z :=
$

q∈Q
det exp

1
− τ

kB
M(q)

2
(284)

We note that the Trace in the exponential drops down to a determinant, via
the relation det expA ≡ exp trA.

B.1 Multiple constraints

Consider a set of constraints:

M1 =
$

q∈Q
ρ(q)M1(q) (285)

... (286)

Mn =
$

q∈Q
ρ(q)Mn(q) (287)

Then the Lagrange equation becomes:

L = −kB
$

q∈Q
ρ(q) ln ρ(q) + α

'

(1−
$

q∈Q
ρ(q)

)

*+ τ1 tr

'

(M1 −
$

q∈Q
ρ(q)M1(q)

)

*+ . . .

+τn tr

'

(Mn −
$

q∈Q
ρ(q)Mn(q)

)

*

(288)
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and the measure references all n constraints:

ρ(q) =
1

Z
det exp

1
− τ1
kB

M1(q)− · · ·− τn
kB

Mn(q)

2
(289)

B.2 Multiple constraints - General Case

In the general case of a multi-constraint system, each entry of the matrix cor-
responds to a constraint:

M00

3
1 ... 0
...
. . .

...
0 ... 0

4
=

$

q∈Q
ρ(q)M00(q)

3
1 ... 0
...
. . .

...
0 ... 0

4
(290)

... (291)

M01

3
0 1 ... 0
...
...
. . .

...
0 0 ... 0

4
=

$

q∈Q
ρ(q)M01(q)

3
0 1 ... 0
...
...
. . .

...
0 0 ... 0

4
(292)

... (293)

Mnn

3
0 ... 0
...
. . .

...
0 ... 1

4
=

$

q∈Q
ρ(q)Mnn(q)

3
0 ... 0
...
. . .

...
0 ... 1

4
(294)

For a n× n matrix, there are n2 constraints.
The probability measure which maximizes the entropy is as follows:

ρ(q) =
1

Z
det exp

1
− 1

kB
τ ⊙M(q)

2
(295)

where τ is a matrix of Lagrange multipliers, and ⊙, the element-wise multi-
plication, assigns the corresponding Lagrange multiplier to each constraint.
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